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UPDATING THE SYMMETRIC INDEFINITE FACTORIZATION
WITH APPLICATIONS IN A MODIFIED NEWTON'S METHOD

by

Danny C. Sorensen

ABSTRACT

In recent years the use of quasi-Newton methods in optimization algo-
rithms has inspired much of the research in an area of numerical linear
algebra called updating matrix factorizations. Previous research in this
area has been concerned with updating the factorization of a symmetric posi-
tive definite matfix. Here, a numerical algorithm is presented for updating
thevSymmetric Indefinite Factorization of Bunch and Parlett. The algorithm
requires only O(nz) arithmetic operations to update the factorization of an
n*n symmetric matrix when modified by a rank one matrix. An error analysis
of this algorithm is given. Computational results are presented that investi-
gate the timing and accuracy of this algorithm,

Another algorithm is presented for the unconstrained minimization of a
nonlinear functional. The algorithm is a modification of Newton's method.
At points where'ﬁhe Hessian is indefinite. the search for the next iterate is
conducted along a quadratic curve in the plane spanned by a direction of nega-
tive curvature and a gradient related descent direction. The stopping
criteria for this search take into account the second order derivative infor-
mation. The result is<thét the iterates are shown to converge globally to a
critical point at which the Hessian is positive semidefinite. Computaﬁional

results are presented which indicate that the method is promising.
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Chapter I

An Overview
1. Introduction

In recent years the use of matrix methods in optimization algo-
rithms has received an increasing amount qf attention. Interesting
problems in numerical linear algebra have been generated by advances in
optimization methods. Similarly, new approaches to optimization methods
are sometimes made possible or éven suggested by advances in numerical
linear algebra. Here the Bunch-Parlett factorization of a symmetric
indefinite matrix is used in a Newton-type method which is based on thé
use of directions of negative curvature. In anticipation of the exten-
sion of these ideas for use in a quasi-Newton method, we present and
analyze a method for updating this matrix_factorization.

In this chapter ;he problems which shall be considered are
introduced and motivated. Chapters II and III are concerned with the
updating algorithm and should be considered as a unit. On the other
hand, Chapter IV is meant to be self-contained. For this reason some of
the same concepts are introduced in both places. The numbering of equa-
tions is done separately in each chapter. For example, a reference
within a chaptér to equation (2.1) means to refer to the equation
numbered (2.1) which will be found in Section 2 of that chapter. When~
ever there is a croas reference between chapters it will be explicitly

mentioned,
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2. Newton~-type Methods for Unconstrained Optimization

One of the major problem areas of numerical analysis is the
minimization of a non-linear functional. If we denote the n-dimensional
n ' N .
real vector space by R and the real numbers by R, the problem is:

given a domain D<:.Rn.and'a functional
f: D+ R
‘Yfind x* € D such that
£(x*) < £(x)
for all x e V.
Usually fhe task of trying to find a global minimum of f is too

difficult numerically, and we must be content with finding a local

minimum for £. That is, we seek
x* ¢ D

such that
f(x) < £(x%)

for all x ¢ N(x*) < D where N(x*) is some neighborhood of x*.

Let

3,E(0)
g = 27| = ve)

a;f(x)

be the gradient of f at x, and let
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’allf(x) alzf(x)....alnf(x)l

, 9, f(x) 9, f(x)....3, £(x)
6(x) 21 22 2n

5 £G0) anzf(x)....am'lf(x)J

= sz(x)
be the Hessian of f at x. For a sequence {xk} we shall write
fk = f(xk),
g, = 8(x)>
Gk = G(xk).

Assume that f has two continuous derivatives on D. Then the

Hessian matrix is symmetric, and for any x, X € D we have

£(R) = £(x) + g(x) (x-x) +-%(§—x)tG(x)(§—x) + o (|xx|%).

hie) = 0. Thué f is modeled well locally .

We write h(e) = o(e) if 1lim
>0
by the quadratic form defined by the first three terms of its Taylor

expansion about x. If the Hessian G(x) is positive definite then the

quadratic form
t,= 1 - t =
£(x) + g(x) " (x-x) + F(x-%x) G(x) (x-x)
has a minimum at
- -1
(2.1) x=x -6 (x)egx).
Formula (2.1) suggests the iteration

(2.2) Given X € D

for k=0,1,2,...

CpSk = 8k

K+l - FetSk
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This is, of course, the well known Newton's method for finding a.zero of
the gradient g(x). Thus .Newton's method can be viewed as minimizing the
local quadratic model of f and alsb as attempting to find a point x*

which satisfies g(x#)

0. This is important since -
(2.3) f has a local minimum at x* only if g(x*) = O.

This method has two importﬁnt properties thét make it a very
powe;ful tool for the solution Qf unconstrained minimization problems.
The»first of these is the basic simpliciéy of thé iteration (2.2). The
second and most important prdperty of Newton's method is the local
quadratic rate of convergence qf the iterates. Loosgly stated this
means that when the iterates x Qf (2.2) converge to a poiﬁt x* with

k

G(x*) nonsingular, then eventually the number of significant digits in

k

matical statement is contained in the following theorem. Before the

the approximant x, doubles at each iteration. The more precise mathe-~

theorem is stated it will be necessary to introduce the notion of a

point of attraction. A point x* is a point of attraction for the itera-

tion (2:2) if there is an open neighborhood N(x*) ¢ D such that when
Xq € N(x*), the iterates defined by (2.2) all lie in D and converge to x*.

Theorem (2.1)

Assume that g: D c Rn + Rn is continuously differentiable on an
open neighborhood N(x*) < D of a point x* ¢ D for whicﬁ g(x*) = 0, and
G(x*) is nonsingulaf. Then x* is a point of attraction pf the iteration
(2.2). .If, in addition, there exists a positive constant L such that
le(x) - 6(x#)|| f_L"x—x*Hqur all x € N(x*), then there exists a positive

constant C and a positive integer K such that k > K implies that



)
I gq = = < clleg - == .

k+1

A proof of Theorem (2.1) can be found in {17, p. 312].

There are soﬁe major difficultieé in implementing Newton's
method in its basic form. The'first qf these difficulties is that there
is no reason for the Hessian to be positive definite at an iterate X
which is far from a local minimum. Another difficulty is that the step
- Sy predicted by the quadratic model at X, may'be too large or too small.

These difficulties have led to several modifications of Newton's
method. Many of the modifications have taken the form
(2.4) ' Given X € b
for k=0,1,2,...
ék = Gk + Ek

CSk = T8

xk+l = xk + aksk .

The symmetric matrix E, in (2.4) is chosen to insure that G, is positive

k k

definite. This implies that the direction Sy satisfies

(2.5)

Thus the directional derivative of f at X, in the direction Sy is nega-
tive and the function must decrease initially in the direction S A
direction Sk that satisfies (2.5) is called a descent direction. Once a

descent direction Sy has been specified it is possible to determine a

positive number o, such that f(xk+aksk) < f

k k’

Of course, the particular way in which the matrix Ek and the

13
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scalar o, are determined are crucial in analyzing the convergence of the

k

iteration (2.4). Some success has been achieved with iterations Qf type
(2.4) invspecifying Ek,ak in such a way that the iterates x, are globally
convergent to a critical point x* (i.e. a point x* with g(x*) = 0).
Whenever possible these algorithms reduce naturaliy to Newton's method
so that the local quadratic rate of convergence is retained.

However, work in this area’'is not yet complete. In particular,
no algorithm has yet been given which can guarantee global convergence
to a local minimum. How can Newton's method be modified so that the
resulting iterates converge globally to a local minimum for £? Tn

attempting to. answer this question, we have developed an algorithm which

is different from iterations of type (2,4), This algorithm 1s presented

and analyzed in Chapter IV. The algorithm is based more explicitly on

the local quadratic model for f in that the Hessian 1s not modified.
Instead, directions of negative curvature are used in.combination with
the ‘more usual descent directions. The resulting itervates {xk} are
shown to be globally convergent to a point x* such that g(x*) = O; and
G(x*) is positive semi-definite. Thus by basing the iteration more
closely on the quadratic model we obtain an iteration which converges to

a point x* that satisfies the second order necessary conditions

(2.6) f has a local minimum at x* only if g(x*) = 0,
aind G(x*) 1s pusitive semi-definite.
Yet another drawback to a modified Newton's method is the
expense in terms of both computation and programming effort associated

with calculating the Hessian at each step of the iteration (2.4).

Attempts to overcome this undesirable feature have led to a great deal



of research in a class of methods called quasi-Newton methods. These

methods replace the Hessian Gk with an approximation B A quasi-

K"
Newton iteration has the form

(2.7) Given x,., ¢ D, and B0

0
for k=0,1,2,...

BySk = "8y

In iteration (2.7)

U, = U(B

k 10> %k Sk Bt 17 Bk

is usually a rank one or rank two matrix with

(2.8) Bit15k T Bkl T Bk

Equation (2.8)'is called the quasi-Newton equation. The advantage of
iteration (2.7) over (2.4) is that the only new information required to
obtain Bk+l from Bk is the calculatlon‘qf_the gradient 841" The

. . . . 12 .
computational savings is that only n instead of Sn scalar function

evaluations are required to obtain an approximate Hessian at step k.
Mureover, the taslk of programming the Hessian is avoided.

The price oné pays for the computational savings obtained
through the use of a quasi-Newton method is that the local quadratic
‘rate of convergence that is enjoyed by iteration (2.4) is no longer
guaranteed. Instead, if the iterates {xk} defined by (2.7) converge to
a point x* where g(x*) = 0 and G(x¥) is nonsingular,.then

=, ~x*|

k10

(2.10) : 1lim Txk—_w

koo

15
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under suitable restrictions oh.{Ek}‘and G. A sequence {xk}'that satis-

fies (2.10) is said to converge Qeéuperlinearly to x*. A thorough

account of iterations of type (2.7) can be found in the excellent survey
by Dennis and Moré [7].

Evidently, the linear systems

CrSk = 78

that must be solved at -each step are central to the implementation of
these methods. Solving linear systems Ax = b using matrix‘factoriza—
tions costs 1/3 as much as computing A_l and. has beén shown to be
numerically more stable than computing A—l. Since'the linear systems
arisiné in the context of non-linear optimization have symmetric coeffi-
cient matrices it is of great interest to obtain efficient and stabie
metﬂods for factoring symmetric matrices.

The advent of quasi-Newton methods has inspired a large portion’
Qf the research in an area pf numerical linear algebra called updating

matrix factorizations. Since the matrix B in (2.7) differs from B

k+1 k

by at most a rank two matrix, one might expect that the factorization of
Bk+l could be obtained with less computational effort if the information
contained in the factorization of‘Bk were used. 'This has indeed been
found to be the case,

The types of quasi-Newton updating formulas tﬁat have been found

to be most successful so far have satisfied

(2711a) Bk symmetric => Bk+1 symmetric,

(2.11b) B, positive definite => B, , positive definite.

For this reason, there has been much work concerned with updating



variants of the Cholesky‘factorization [9,13,14] qf a symmetric positive
definite matrix. No algorithm has been given'for maintaining and updat-
ing the factorization Qf a symmetric (possibly indgfinite) matrix. How-
ever, there is at least one promising updating formula that does not

satisfy (2.11b): Powell's symmetric form of Broyden's update [18].
3. The Symmetric Indefinite Decomposition

The modified Newton method that is to be presented in Chapter IV
relies heavily on the factorization of a symmetric matrix given by Bunch
and Parlett [5] and later improved upon by Bunch and Kaufman [4j. One
would hope that the techniques developed for the modified Newton method
could be extended to a quasi-Newton method. As a step towards reali;ing
this extension, the updating problem for the symmetric indefinite fac-
torization has been studied. A numerical method for updating the |
" factorization of a symmetric matrix when'followed by a rank one change
is presented in Chapter II. A detailed error analysis of this algorithm
is given in Chapter III. |

As noted above, most Qf the work in quasi-Newton methods has
been concerned with maintaining positive dgfinite approximations to the
Hessian. Hence the work in numerical linear algebra ggnerated by these
methods has been primarily concerned with updating éome form qf
Cholesky's method'for factoring a symmetric positive dgfinite'matrix.

The factorization'qf Bunch and Parlett does not require that the

n ,
this

s s .. . , ) nx
matrix be positive definite. Given any symmetric matrix A ¢ R
algorithm produces a permutation matrix Q, a unit lower triangular

matrix M, and a block diagonal matrix D such that

17
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QaQt = Mot .

The diagonal blocks of D are order one or two. If we call an arithmetic
operation a multiplication followed by an addition, then the number of

arithmetic operations required to obtain this decomposition is

13 2 | S : 2

ra + O(n"). (If x = ,2 ajnJ with ay # 0 we write x = O0(n") and say x
=1 -

is of order nk.)

Another algorithm for factoring a symmetric indefinite matrix

was given by Aasen [1). - In that algorithm one obtains

QaQt = L1Lt |

tridiagonal. This factorization requires %ﬂ3 + O(nz) arithmetie opera-

tions also.

Since these factorizations both requirc %n3 + 0(n2) operations,

an updéting algorithm for obtaining the factorization of a symmetric

matrix A = A+U when the factorization of A is known should require at

most O(nz) arithmetiq operations. OtherWise, there would be no compu~
tational advantage over the alternative of actually computing the matrix
A and factoring.the result. The updating algorithm presented in

Chapter II ia concerned with -Lhe fulluwluyg problem:

Rnxn’ A= At, z e %, 0 e R, let

Given A ¢
QAQt = MpM" be the Bunch-Parlett factorization

of A; let
Z = A+ ozzt .
Find an algorithm to compute

WG =



Ty

which requires at most O(n2) arithmetic operations.

This algorithm makes use of the block structure of the matrix D.
We‘found no similar way to take advantage of the corresponding tridiago-

nal matrix T in Aasen's factorization. At present we do not know of an

<a1gorithm_for updating the factorization of Aasen. The updating algo-

rithm that is presented here requires between n2 + O0(n) and %%nz + 0(n)

operations. The method is shown to be stable as long as the factor M is
well conditioned with respect to solving linear systems. These state-

ments are made precise in chapters II and III.

4. Computational Results and Conclusions

Chapter V is concerned with presenting computational evidence in
support of the theoretical work described in chapters II, III, IV.. The
computations were carried out at Argonne National Laboratory using an
IBM 370/195. All computations were done in double-precision arithmetic.

The updating algorithm has been tested for accuracy and timing
over a wide range of updating problems. We have iﬁcluded timings for
problems of various orders. The accuracy of solutions to linear
systems using the updating algorithm have been compared with solutions

obtained by computing and factorihg.A+ozzt at each step. The results

. are very encouraging. They indicate that the bounds obtained in our

analysis are quite pessimistic and that the algorithm does not break

down even when the updating process is applied over many iterations.

K The unconstrained optimization algorithm was applied to many of

the standard test problems which appear in the literature. - Although

more work is needed to obtain an algorithm that can be recommended for

19
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general use, the initial results show this algorithm to be competitive
with the algorithm qf Gill and Murray [11]. In any case the underlying
idea is ﬁorthy of further reseérch. It would be_qf great interest if
the ideas could be ex;ended toia quasi-Newton method and to a con-

strained optimization algorithm.



Chapter II

Updating Factorizations of Symmetric Matrices
1. Introduction

Methods in numerical linear algebra are usually concerned with
the solution of a single linear problem. “For example, a particular
method might be concerned with the solution of the linear system Ax = b

SOX1. n . X . .
where A ¢ R and x,b € R°'. Yet in practice we are often faced with:
solving a sequence of linear problems which are closely related. For
instance, we may be interested in solving a sequence of nxn linear

systems

.y Ax = b
Appr = At U

In many cases of interest U

k=1,2,...

is

is of low rank. Often the rank of Uk

k
one or two.

Direct methods for solving the main problems of numerical linear
algebra have come to rely heavily upon the use of matrix'factorizations.
For fgll matfices the price (in terms of arithmetic operations) of such
.factorizations is generally Sﬁbstantial. For instance, the relevant
factorization needed to sélve (1.1) requires O(n3) arithmetic operations
for each Ak' However, when Uk = Ak#i—Ak has low rank, one might e#pect
that the factorization of Ak+l could be computed in an order of magni-
tude fewer operations using our knowledge of the factorization of Ak'
For example, in (1.1) we would aim for algorithms which require only

O(nz) arithmetic operations.

Here we shall be concerned with factorizations used in solving

21
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the problem (1.1) when the matrices Ak and Uk are symmetric, and where -

each Uk is a rank one matrix. Then (l.1) has the form

(1.2) ‘ Akxk = bk,
t
S Tl A R Y

: n _ L.t . . .
where each z, € R ,.o e R, Ak = Ak' This problem arises for instance

k=1,2,...

n

k

in quasi-Newton methods for optimization problems [7].
Thus we shall concern ourselves with obtaining the factorization
of

(1.3) A=A+ozz"

not by forming A explicitly, but by using the factorization of A. Such
a process is called updating a matrix factorization.

There are two important and very distinct cases:

(i) A is positive definite,

(ii) A is indefinite,
In case (i) A may be factored in a numerically stable way into

T o
A= LDL
nx . . . Xn .

where L ¢ RT " is a unit lower triangular matrix, and D ¢ R™™ is a
&iagonal matrix with positive diagonal elements. No pivoting is re-
quired to obtain numerical stability in the positive definite case.

However, in case (ii) such a factorization may not even exist. For

example consider the matrix’

()

A numerically stable method for obtaining a factorization of A in case
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(ii) is given in [5] by Bunch and'?arlett, and is lafer revised in 4]
o . ‘ : 1
by Bunch.and Kapfmqn. By this method one obtains a permutation matrix

Q, ‘a lower triangular matrix M, and a block diagonal matrix D such that

(1.4) QaQ = oMt

The diagonal blocks of D are order one or two. Whenever Di+l i # 0
y

then Mi+1,i = 0. Also, Mii = 1 for all 1i.

) The casé in (1.3) where'bofh A and~K are theoreticaily known to
be ﬁositive dgfinite has_been studied and updating algorithms are given
in [9,13,14]. The case where A and K'arelsymmetric but possibly indefi-
nite has not‘been studied.

In the following sections we shall present and analyze an algo-
rithm for computing a, ﬁ,AB, when given the factorization (1.4); sﬁéh

that

(1.5) QAQt = DM ,

where A is given by (1.3). The algorithm requires between n2 + 4n and
11 2 , 55 25 . . . ) -
e + 7;n +_7;-ar1thmet1c operations and at most Zp comparisons. Here
an arithmetic operation is considered to be a floating point multipli-
cation followed by an addition. Divisions are counted as multiplica-
tions. The operation count compares favofably with the alternative of
computing A + ozz" and then factoring this matrix into MDM . This

' .12 SN ool
would require i + n multiplications together with Cha additions to

form the new matrix. It would then require at most

.operations to obtain the new decomposition. Therefore, a total of at

most
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operations would Be needed.

Thus it is advantaggous to use .the updatingvalgorithm ﬁhenever
n > 10. ﬁowever, it should be emphaéized that the upper bound on the
number of operations required byAthe updafing algorithm is a worst case
bound. Computational results indicate that the worst case seldom

occurs. Therefore, we expect that in practice the crossover number

would be much smaller.

i

2. Description of the Algorithm

We shall begin by describing a basic algorithm with no pivoting.
The algorithﬁs given in r9,14]‘for the positive definite case will be
presented as modifications to this basic algorithm. The moaifidations
were designed to insure numerical stability. The algorithm we present
for the indgfinite case is also a modification of this baéig algorithm.
However, it is necessarily more complicated sinée thé pivofing must be
updated,
| Assume for the moment that no permutations.Qere required to

obtain

A= MDMt

with M (block) unit lower triangular, and D block diagonal with one-by-

one or two-by-two diagonal blocks. Then -we may write

T t
A=.] MDM,
jZI i3y’

where the Dj are the-diagonal blocks of D and the Mj are the block
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columns of M. Let
' K = A+ Ozzt ,

and let Mp = z. Denote °

m 4 _
(k) t . (k
AV = "‘M.D .M W M
LMD, Z 3Py
=k . .
t t t t
where p~ = (pl,pz,...,pm).
Suppose that ﬁl.E D, + 6plp§ is non-singular, and let
= - =~ (2), t . A
lel = 0p,. Then take Ml = M1 + w bl' Note.that only the elements
below the identity part of M, are altered;
10
~ y
Ml + vl
1y

where the x's and y's denote possibly non-zero quantities. We have that
% = ()t |- (2) t. t
(2.1) A= M (D + oplpl)M -+ c(Mlp1 +w lel)

A 4 gy DO

(2) t

ay + wPHB or + w5

(2)t (2) t

+w )

(2)t (2) t
1,D,by b1D1M1)

(2) (2)t
1 1b1)

2) @t

+ a'w

(2) (2t

Observe that .the matrix A(Z) + o'w has . the form
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and thus weé may

as long as Bj = Dj + ojpjp§ is non-singular for 1 < j < m. This assump-

tion on Bj is theoretically always satisfied in the positive definite
case. However, this cannot be guaranteed in the indefinite case. After
establishing some preliminary results concerning these computations we

shall discuss some of the fumericai algorithms that have been proposed

for the positiye definite case.
Lemma (2.1). Let D and D + oppt be non-singular. Then the solution to
) . t o |
(i) (D' + opp )b = ap
| -1 S t -1
is given by b = 6D "p, where 6 = ¢/(1 + op D "p). Moreover,
) Ly _ , e -1 |
(ii) det(D + opp ) = det D(1 + op D "p) and the
PR, | . .
updated o' = v = L Db

is given by
(iii) o' = —'——-o—t—:i' .
14+agpDp
Proof:

(i) follows by substitution,

(ii) Sherman-Morrison formula (or direct computation),

(iii) follows by substitution.
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Thus if all the Bj (for 1 < j < m) are non-singular we have the formula

. . g, .
1 .
0,,, = . for 1< j<m
O i -t
3?3735 Py
and K _
. I det D,
% 4= R
g k " . ’
k 1 det D,
j=1 )
hence o1 _ det K
cm+l det A

In the case that both A and A are positivé definite, these formulas
point out the necessity of maintaining cj with the same sign as 0. We

note also that we may recursively compute tj = 051 as follows:

(2.2) tj+1 3

t. -1
=t, + p.D.7p.
i’ PJ § P. »
and we have the relation
41 _ det,Dj
t, det D, °
J J

t

(2.3)

When A is positive definite, Ej = det Ej’ dj = det Dj and

D = diag(dl,...,dn).

Now, often in practice one knows theoretically that the matrix A
should be pdsitive definite when A is positive definite. In the case
that ¢ is positive there is no difficulty since the recursion for the

' ~ +1 ~
t.'s yields an increasing sequence, and dj = —%——-dj. Thus the dj are
N , 5 )
all positive and dj z_dj. The following algorithm results for o > Ot



(2.4) e, =o L, W@ o5 A=t

for 1 = 1 step. 1 until n do

¢ P; = wgi)
(2) i+l t1+ pi/d.
(3) Ei = d;(ty,/)

(4) terminate if i = n

(5) by = (0, /d)/t
6) WD L @D
(i+1)

(7 Mi =M, + biw

Note that the number of arithmetic operations required is n2 + 0(n),
gince only i operations are needed at steps 6 and 7.
Difficulties arise when o < 0 because round off error may cause

a t,

I+1to be positive, and hence Ei will be negative indicating that the

computed A is not positive definite,

Two remedies havé been proposed. One of these [9] is to compute
the‘vector P such the Mp = z at the outset. It is noted that in the
application to quasi—Newtén méthods, the vector p is often available
anyway. If o0 < 0 then calcuiate the tjf for 2 < j ~ nt+l from the formu-
la (2.2). If one of tﬁe tj should turn out to be positive then the tj

are recalculated using

(2.5) St T efo ,

t.,

42 .
tj J+1 - pJ/dJ’ J=n,n"l,-..,l

where € is the relative machine precision. Theoc ncw values of ti are

then used in place of the old ones in (2.4), steps 3 through 7. The

effect is to replace o by t1

which gives a problem that is close to the



original problem, and for which the computed A will be positive definite.

\

In [14] another approach is taken which yields a similar algo-

rithm. The major differences being that»tn+1 is set .to e if some tj is

positive and a backwards recurrence formula is used to compute M. Thus,

in place of (2.4) steps 6 and 7,.we would have

W(n+1) =

(2.6) o

for i = n step -1 until 1 do

@ o -, |
(2 M, =n, + bW

3 w® G

However, there seems to be the need for additional storage inm

ER

(2.6). Note that the computation of w(}) réquires knowledge of Mi which
has presumably been overwritten at step (2) of (2.6).
In [9] an error analysis of this process has been given. That

analysis shows that

MOM® = A + 22T + E ,

where the eieﬁents of E have first order terms iﬁ € which depend on the
ratio /3175: in (2.4) step 7 is used. However, it is possible to show
that
(2.7) M =M /A b ®

i b B A § i
and here the error terms depend on the ratio‘/ﬁz7§;-which‘is less than 1

when ¢ > 0, In both [9] and [14] one switches to (2.7) only if the

ratiO'VHi/di becomes larger than some bound.

This leads us to the following algorithm'which is a slight

29



modification of the composite t-method given in [9].

(2.8) @y) términaté'iﬁ_c ='0; put t1 = cfl and w = z;

(Z)A‘if.d > 0'go to 6;
(3) 'if p is not . available solve Mp = z for p;

N e . . 2, .
(4) for i=1,2,...,n1 gg_ti+1 =t + Pi/di’

(5) 'iﬁ_anyAti > 0 then

‘begin
tn+1 = e/o;
§ = - Y M) } - 3 3 .
‘for i=n,n-1,...,1 gg_ti = tin pi/di,

end

(6) fpr i =1 step 1 until n do

- . (D), } 2,
52-0 > 0 then begin Py = W5 ti =ty + pi/di’
63 = typ/tys 4y = dy64s

terminate if 1 = n
by = (py/d) e s

if 6; > 4 then
AL ey Lthen
begin

Yy Tt/
~ oy (1),
YiMi + biw M

]

i

w(i+1) - w(J.) _ PiMii




: The'situation becomes completely different when the matrices A and A are

not assumed to be positive definite. In order to obtain a stable algo-

rithm for solving Ax = b pivoting must be‘uséd to factor A [3,5] and we
‘obtain

t_ wou® .

QAQ

Moreover, the following example'showsathaf Si in (2.1) may be-singuiér

even though both A and A are non-singular.

0 1 o0
Let A= |1 0 0| (=MDM, vhere M =1 and D = A),
1
0 0 A
1 t
let o = 2 2= (1,-1,1)". ' 101
- o 1 1 1) 2 2 -
.Then D, = + = [1,-1] = is singular but
1 2 1 1 T
1 0 -1 = =
2 2
A=A+ ozzt-satisfies det A = - %u Therefore, some pivoting strategy

must be employed to avoid the breakdown of the computationi(Z.l). The
main difficulty in updating the pivoting strategy is maintaining M in

triangular form.

We shall now describe the pivoting strategy given in [5] for the

Bunch-Parlett factorization in some detail. This strategy will be uéed
iﬁ~a portionlof the updating algerithm, so we inclqde_ité description
for the sake of completeness.

Given a symmetric non—singulgr matrix.A with elemgnts aij Fhe

factorization proceeds as follows:

Let 0 < o < 1 be fixed.

Let v = max |a,.| and let y = max |a__|
1<i<n * ify

31
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If v > ap, let i be the smallest index such that |aii|'= v. Let Q1 be
"the identity matrix with rows 1 and i interchanged. Then the matrix

QlAQE has the element a in the (1,1) position. The first step of the

ii

factorization is to write

) vt
t 1
Q)40 =
. v A ]
\
( t
T 61| 0 ] 1 o0
-1 -1 t -1 '
;val I 0 | A'-61 J VG; . I
. Thus
: s, ©
-1 t -t 1
M. Q,AQ /M, " = ’
11 .1 1 o | a¢®
1 0
where Ml = -1 , and A(Z) = A' - Gilvvt. If v < au, let i > j
v61 I :
indices such that [aijl = u. Let Ql be the identity matrix with row i

interchanged with row 2 and row j inﬁerchanged with row 1. Then the

" matrix QlAQ; has the element a ., in the (2,1) position. In this case

ij

the first step of the factorization is to write

e [y ¥
Q,4Q; =
AR
rI y . 't
_ LRIEN } I 0
-1 : PETCY B -1 '
vi® 1 || o | AV J v, I

Here V is the first two columns of QlAQE below the (2,1) and (2,2

is a twb—by—two matrix. Also, det D

positions, and D1 L= aiiajj _
aij < (0‘2-1)112 < 0. Thus
D1 0

-1 t ~t
M, Q,AQ M, = ,
1 1711 0 A(2) |



I 0
where M_ = [— , and AD) = arypTlvE,
1 -1 1
Stz

The factorization now proceeds by applying the same pivoting strategy to

(2)

the reduced matrix A The end result is that

o P -1 -t t -t .t -t _
M QM 1%er o0 My Q0P - QT 0T =D,
where D is a block diagonal matrix with 1x1 or 2x2 diagonal blocks.

Hence,
= t.t t t.t-
A= QuIQM, ... QIDMOQL ... MQMIQ) .
-1 t . .
Since Qi = Qi for 1 < i < k we may write

QM QM. - QM = thlnz...Mk ,

~where Qt

Qe
and M, =qt,.qf QM,Q, . ..Q,..Q

j JHLT3+27 7 Tk kT T 241 T
Then~ﬁ5 has the same form as Mj and thus if we take

M= MlMZ"°Mk

then M is a block unit lower triangular matrix such that
: t
0aQt = momM© .

For fixed a, 0 < @ < 1, the strategy just déstfibed'shall be
called the diagonal pivoting strategy Sa' When a is chosen to be
(1+VI7)/8, the factorization is almost as stable as Gaussian elimi-
nation with complete pivoting [3,5]. A modification of this strategy,
which is comparable to-Gaussiaﬁ elimination with partial pivoting, is

, T
given in [4]. The algorithm in [5] requires between %EnB + %nz + Zn

and %n3 + %nz + %n comparisons, while the algorithm in [4] requires at

2 L
‘most n -1 comparisons.

33
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.

Now, in order to establish the theorem that we shall use to
construct the algorithm for updating ‘this facto{;‘ization shall need some-

preliminary lemmas.

Lemma (2.2). Let A ¢ R pe symmetric with eigenvalues Al §_A2 ool A

~and let A = A+ ozz" for some z ¢ R™, 6 e R. If 0>0 then A has eigen-

values Xi such that

?.X, < ... < A < i
- - - — n

A A <A 5

1 1 2 n

while if o < O then the eigenvalues of A can be arranged so that

X, <A

Ay € vus €A <
1 << <X <A

1 2 n
Proof: [20} pp. 95-98. ' o ~ ‘ 0O

~

Remark: In particular if A is non—singuiar then at most one of the Ai
is zero,

With Lemma (2.2) and the pivoting strategy just described we can
establish |

k=l

n

Lemma (2.3). Let V = (\I],), where I € Caa and V' ¢ R* 7. Suppose that

D=0 ¢ R£X£ is non-singular and that w ¢ Rk+£, 0 € R. Define
(2.9) C = VDVt + cwwt

Then there is an £x£ permutation matrix Q such that
Q 0 "Qto St = _'t'
(2.10) C = VDV  + [(v,w)B(v,w) ,
0 1 0 I -
-=fT
Tww

‘where

(1) D is a non-singular block diagonal matrix with 1x1 or 2x2
diagonal .blocks,

(ii) 'ﬁ is block unit lower trapezoidal,



(1i1) v = |1, v € R,
S
o (0) - .
(iv) w = of, W€ Rk, and
W)
(v) B e.szz
Prdof: Write
D O N
(2.11) C = (V,w) V,w)
T 0 o
(T 0 D us I 0 t
= 1 t 2 1
Vl = 1 fol V' —_ ]
L " w HUs H " w
where )
w
' 1 ‘e [}
w = , W, € Ry w' = w, ~-V'w
- 1 2 1’
-2
- t
D=D+ cwlwl,
and - s = OW, .

Here u may be any positive real number; if u is chosen small enough then

the diagonal pivoting strategy Sa will give either

Q 0V(P ws)fato)
(2.12) 9 A
o 1 Hs p o n 1

or



0 0
0 0
=@ 1 0|l0 0 & wi|l@m 1 o0f,

M 0 0 D t.

(M 0 0

) |
w® 0 1) 0 0w e lu" 0 1

where D is block diagonal wifh 1x1 or 2%2 diagonal blocks, and M has the
corresponding block unit lower triangular structure. Since D is non-.
singular, Lemma (2.2) implies that D has at most one zero eigenvalue.
The diagonal pivoting strategy ﬁreserVes the inertia of D. Therefore, D
is non-singular. Note that § = 0 in (2.13) if and only if D is singular
and in this case we canhot’carry the decoﬁpositiqn further without per-
muting the last row and column of

(D us

t

‘ 2
us  uo

If (2.12) is obtained then

Q@ o) (a0
C 1

0 1 0 I

(q oY(a* o Y{q o)fD ws){a"o0)fq" Q% o
Lo 1 j{va Ll—w' 0 1 J{us® wiojl o 1){va" %w" 0 I
I 0 [ﬁ oY(B o)(® o)1 o \*

| G %'w' lpbt 1 0 uzo'J ubt 0 | \ %-w'

(M | 0 [B‘o M RN

= ~ t| — tl s, Wwhere

{ +w'b | w' l 0 o')W+ w'b | w

(1 0 (q o)fq* |f1

(v o lox v' Qt lV'Qt
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Here we take

(T _
v=1. el and w = w'.
lVM+w'b
If (2.13) is obtained then
Q o) {qto
C
0 I 0 I
Q oY(Q" o0 Y{q o0)(D ws){Q"o)(Q o 1%fc“o
o 1 lvgt %w' 0 1]lust wl)lo 1])lvQt %—w' 0 I
_ . 00} _ ¢
M 0 0 D 4 o M 0 0] .
I 0 0 t . [I 0 ©
= m 1 0|0 0O & uB 10 . L
1, . 1,
v —w ¢ 9 ¢ V v —w
" wb® 0 1 {0 0w wo'f{ub 0 1 s
- 0 )
M l ol O M l ol o
3 o 00 § 8| _ _, .
WM+vm +w'bl| v | w W™M+vm +wb|v|w
0 0 B 0')
"f1 0) (q o)[q" 1 )
where n = = .
vV v o 1]lv'Qt V'QtJ
| B
Here v= | _ |, where v e R",
| 5
and we take
. (™ s 8Y) _
ve L | D= sy w=w'
VM +vm + w'b g a
This gives the desired result. : g .

Observe that the scale factor p does not actually'enter into the
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computations and thus explicit scaling need not be implemented in a
code. Also, we note that for the intended application, we will have

£ < 3 in Lemma (2.3). When £ < 3 we have

D O t
c = (V,w) : (sz)
0 o

with D of order at most 3. Then in the computations non-singular
matrices of order at most 4 are inserted between the factors on the

right and permutations are used to obtain
t ~
Q 0 Q0 ~ - | DO
' C = (VIV,W)
0 I 0 1)

(G{v,a)t

0 B

Thua, some fixed number of arithmetic operations are required tuv cumpute

B and B. Also, some fixed multiple of k arithmetic operations are .

required to compute v.

Before we give the main theorem of this section we shall need to
establish one more lemma. The proof of the lemma is trivial but it is

included for the sake of clarity in some of the following computations.

| ¢ 8 2x2 ~
Lemma (2.4). Let B = e R , where B # 0. Then
B o
1y (A, 0Yf1 ¥
B = : 1 ,
y 1 0 AZ -y ,1

wieh 3] 2 1yl

Proof: Let ul,uz be the eigenvalues of B with |u1| z_|u2|. Since

B # 0, B has an eigenvectof corresponding to My of the form (i). Thus
§ B 1 1

B o) ¥ y
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Therefore, . &4By = My .and since B # 0

we have oy = (u1—6)/8 .

Since B is symmetric it has an orthonormal system of eigen-

vectors. Thus

where A, = u,/(l+72), i=i,2.
i i 0

The following theorem will.show how Lemma (2.3) can be used to

obtain an O(nz) updating algorithm.

Theorem (2.1). Let A ¢ RV pe non-singular with QAQt4= MDMt. Suppose

n

that z ¢ R, ¢ ¢ R are such that
~ t
A=A+ o022

is also non-singular. Then 625t = MDMt can be computed from the factor-

. . . 2 . . .
ization of A in O(n") arithmetic operations.

Proof: Let w = Qz. Then QKQt = MDMt + cwwt.- We denote

k ' m
'A(k) = X M D Mt A(k) = z M,D.MF. First we may write

M,
. X t
I w D O I w : :
QAQ" = 1 M [ R NS T

v v, 0 ¢ v vy

I w1

with Ml = , W = s, D= Dl' _Then by Lemma (2.3) we may
v w2

construct a permutation U1 such that



. 1 0 1 0"
1)y B oo
v, W vy W'
or
" t 0 0 0o o)*
U0} y[vp 0 1) (1)
(2.14) c = ¢ (4i1) )] J + 1 0Bl 1 O .
0 I 01 v, v v '
2 2 vy w vy w
or
' 1) (1)t 0 | .
(iid) Dl + o : (o,w'") ,
‘Vl . Vl_ . w
\ i
where § # 0, 51 € szz is non=-singular, B ¢ sz?, and o' ¢ R. Observe
' (. o) .. (utao -
aiso that L . A(Z) 1 = A(Z). If (1ii) is achieved then the
0 I 0 I ; '
problem becomes
0 .
&t = K + 4P 401 l(0,uw'h
11 _ '
4 w
[y, 0
where ‘ Ql = [ 7 Q. Note that
- 0 I)
{0
A2 c't ](o,w't>
w'

haé the same form as the original problem but the dimension of the prob-
lem is decreased to n-1 or n-2.

In the tollowing discussion we shallldrop the primes and sub-
scripts from the expréssions on the right qf (2.14). Also, some of the
qualities. appearing in (2.14) are redefined below.

If (i) holds in (2.14), then
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. {10 10
QIAQI= . W}B{ }+A(‘2)

while if (ii) holds then

0o o)*
oAt =K + |1 0Bl 1 o] +a®@ |
0 vV W vV W
Let | I | = MZ'- Then we may write
v
(1) c(@ + A(B),
. )
QlAQ1 = <or
(1) AL 4 @ 4, ,O)
In (i) we have
1 0 0 (1 o0
JPE) N I LOER | S
(2.15) c = |v, w, I ' v, W ,
1 1 1 1
v, ow, v jtO Dl g gy
2 2 -2 2
and a similar expression in (ii). Here v = | _ and w = _"| have
( V2 ' Y2

been partitioned so that VGl and Vﬁl are defined.

Now if (i) or (ii) occurred in (2.14) then

§ B’
B =
B o

satisfies |6I < a|B]: ‘Hence by Lemma (2.4)

{1~y A. O 1 v
y 1 0 Ay jly 1

withA|All 3_JA2|. Mqreover,'Al # 0 since Al = 0 implies that B = 0.



Let

L S
v, oW = ‘Xl Yl ,Y )
Vo ¥ V2 W2
Using this expression in (2.15) gives
| (1 0 w )2 O 0 1 0 t
(2.16) - ¢ . w0 b
e 1N 1 2 "1
\VZ.V 9 ) 0 )\2 A
( - 3 - ' t
1 0 : LA D 0 1 0 : Yo
Rl e g w
L vy \4 | Wy v, v : v,
. 1 olfr 031 0]"
with D = ) non-singular and v, = v,-Vv_.. Now,
v. I Jla nflv, I - 2 21
1 2 1
Lemma (2.3) may be applied to obtain
’ 1 0 0)°
1 o (Bl 1 O ’
v, W v, w
U, 0) [ 0; O 1) (11" } 1
C “ = | ID| _ +-ﬁ or
0 I 0 I v \Y
) ‘o
o' . |c0,%5) .
. (1
We take ﬁl =D and ﬁl = [ . Case (ii) of (2.14) is similar. This
1 - o .

process may be continued until the full updated'factorization has been
attained. |

‘o sée thart oﬁly O(nz) oper#tluusvare needed, obsefve~thnt a
small fixed number of arithmetic éperations (bounded by b say) are re-
quired to obtain a‘hew diagonal block. Manipulating the columns of the
triangular matrix M at step k requires some fixed multiple of (n - k)

arithmetic operations (bounded by a say). Thus, there are at most
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a(n + (n—l) +...+ 1) + bn =.Eﬂggtll + bn
arithmetic operations required. ‘ 0

We remark now that the implementation does not actually rewrite

<@

as in (2.16). 1Instead, (2.15) is written as
1 t
1 0 O § 0 B 1 0 0
(2) _
(2.17) C = vy I vy [ 0 D2 0 vy I wl
v, \ v, JUB O o v, \) v,
Y, — 1t
[1 0;0 5 V[ 1 o:lo .
= 0O I 0 0 I 0 s
| t |
v2 \Y | WZJ v2 \' | w2
t
— 3
3 b 1 0 0 § 0 B{ 1 0 O
where bt ) = vy I vy 0 D2 0 vy I wl :
0 0 1 B 0 o 0 0 1

Multiplying the matrix factors and then equating matrix elements
will show that D in (2.17) is equal to the matrix B-appearing in ex~
pression (2.11) of Lemma (2.3) if we had first obtained (2.16) and then

(2)

applied Lemma (2.3). Afteg this form of C has been obtained, the
factorization may proéeed as described in Lemma (2.3).

We'afe ready now to give an Algol—like‘description Qf_the imple-
mented algorithm. Some of the detéils have 5een left out for the sake
of simplicity. The moét notable of these omissions is that when updat-

ing a diagonal block D, we may obtain two 1x1 blocks instead of a 2x2,

k

The explicit boékkeeping involved is not present in this somewhat
simplified description.
In the following description of the algorithm we shall make the

following conventions:
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(1) The expression a : = b means b overwrites a.

(2) D will be a matrix of order at most 4. An expression of
R D 0 ' .
the form D : = will mean we have increased the
- 0 o ,
size of D with elements defined as indicated., "Similar

remarks will apply to the arrays V and B.

0
(3) At step k, w will always have the form w = LARE where
Y2
L2 has 1 or 2 components whenever Dk is 1x1 or 2x2

respéctively. Matrices Q and Qk are permutation matrices.

r :
Let QAQt = 3 MijMg, o, z be given. Let 0 < a < 1 be fixed. The
following algorithm will compute MijM; and Q such that

. r .o
QA + 0zzHQ" = ) M.D M.
21 37373
J
(1) begin
w:=Qz; k:=1; 3 : = 1;

t
Dl + oW, Wy aw

o>
Il

c V: = Ml; WS wW - lel;
_ owl o

(2) 1.1 : comment decompose D as described in Lemma  (2.3);

t —
Q O0j.tqQ O D 0 }_
k D k v Mt;
0 1 0 1 0 B
D: =D;
(3) 4if B is 1x1 then
begin £
[0 q 0
(M-ksw) R (V,W) M,
.0 I c 1
g : = B; B = 6,



(4)

£ : = order of Ekj; k:=k+1;3:=3+4L;
iy _ t
D: = Dk + ow, Wy
if (j = n and D is 1x1) or (j = n - 1 and
Dyl > max(]DllI, |D22|)) then go to QUIT;
A D oy
D: = t 3 Wl T w —,Mkwl; V= Mk;
ow, O
1l
Update Q with Qk;
go to L1;
end;
if B is 2x2 then
begin
Q0 Q o)
W, v, w s=| 5w, w] <
0 I 0 1
Bk =D; £ : = size(sk); k:=k+1l; 3 :=3+4;
if j > n then begin Ek i = Bll; go to QUIT; end;
\
[Bi1 O By
D: = 0 Dk 0 5
By O By 1 , }
t- L -W
(V, w) = (V, M W) ; comment where (V, Mk) =
& L O 1
R [ L w1 n Lt'O
D: = D ¢ 5
[ 0 1 LA 1
go to Ll;
end
-~ QUIT:

end.

L

M'

45
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We refer the reader now to the brief flow diagram (Al) describ-
ing the pivoting strategy and to the program listing (A2) in the
appendix. The operation count that follows refers to that particular
implementation. The results of the operation count are giQen in Table 1.

By an £-step reduction we shall mean that £ columns of M and”
the corresponding diagonal blocks have been completely determined by the
algorithm we have just described. Operations at step k which are
carried out on columns of M or the vector w contribute to the O(nz) por-
tion of the operation count and will be referred to as aperatrinns nf
tyﬁe—A. Opcrations needed to update a diagonal block will be called
operations of type-B and they conpribute only to.the linear term in our
operation count. We shall consider an operation as a multiplication and
an addition; with this convention we are ignoring'the important contri-
bution of interchanges to the O(nz) term. The paths cited refer to thel
flow diagram (Al) in the appendix.

Table 1 needs some explanation. The counts given under the
heading "path 1" refer tn a successful one=step reduction without entecr-
ing paths Zror 3k(see Al). The operation counts given for paths 2 and 3

include those cases which begin with path 1 and end in paths 2 or 3.

Table 1
Operations Required at Step k
Tatlh 1 Patlh 2 Path 3
4(n - (k+1)) < m < 10(n - (k+2)) + 2 < m <

type-A 2-K) | Gp - (k1)) F 1 11 = (kt2)) + 2
type-B 5 15 <m <19 ‘ 42
comparisons 1 4 | 6
reduction 1 . 2 . 3

m denotes number of operatioms.



The best possible situation occurs when Path 1 is taken at each step; we

then have that the total operations required are

[77]
[

n
Y 2(n-j) + 5(n-1)
j=1

n(n-1)

27

+ 5n

]

n2 + 4n .

]

The worst possible case will now be considered.

Suppose

path 1 is taken for k jl,...,jk H

1
path 2 is taken for k = Zl,...,2k7;
path 3 is taken for k = L H

3

where n = kl + 2k2 + 3k3.

. o 2 .
The total number of operations contributing to the n~ term is

then bounded by the sum S, where

w
!

= 2(n - jl +n - j2 4o+ n - jk )
1

+ 6(n - (£1+1) + n - (£2+1) +...+n - (Zk +1)) + k

2

+ 11(n ~ (m+2) + n - (m,+2) +...+ n - (m, +2)) + 2kq
3

=3(n-3, +n-j,+..ctn-3 )
-1 2 kl
+3({n - £, + 0 - LD} HH {n - Kkz
+ 3({n - my +n - (ml+l) + n - (mle)} +...
+ {n -m +n-(m +1) +n - (m
k0T My ks
+ 2(n - (ml+2) +...+n - (mk3+2))
- (n - jl +...+ n - jk ) .

1

+n - (g +1)}H

+2) b - 2k, - Tk

47
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Thus

. k k
_3 2 3 _ 3 1.
s=5n 5 0+ 2kgn 2.'2 mi+.z i; 1_<ln—2k2—11k3.
i=1 i=1 '
Now,
ky Xq <
2k3n-—2'z mi_<_2k3n—2.z (1 + 3(i-1)) = k3(20-3k,) + kg ,
i=1 i=1 .
and
k n
1 1.2 .1
)T i, - kn < Y} Jj-kn=->ki+Sk
4o 1 1 J—n-k1+l 1 21 21
Thus
3 2 3 : 1.2, 1 -
S 5_2 n” -3n 4 33(2n—3k3*10) -5 kl + 2 kl - 2k2
3 2 3 1 y)
<50 -5n+ §(n—5)
1229 25
._61'1 6,n+3,

whéete we have maximized the expression k3(2n—3ké—10) over {k3 kg 2 0}.
The analysis is not valid unless n > 5.

Let us divide the counts for type-B operations by the corres-
ponding reduction at step k. An upper bound for this number in the
worst case is 14. Thus l4n is an upper bound for the number of type-B

operations needed. Therefore, the worst case operation count is bounded

by
11 2 _ 29 25
6 n 7;-n + 7;—+ 14n
_ 11 2 55 25
= —g-n + 7;-n + j?"

The maximum number of comparisons needed is 2n.
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3. A Pictorial Description of the Algorithm

"In the last section we gave a formal description and proof of
correctness of an algorithm fo update theAfactorization of a symmetric
matrix. The main difficulty in obtaining.this algorithm was updating
the pivoting strategy while maintaiﬁing the triangular structure of M
and M.

The following diagram represents the algorithm at step k.

=

! |

7 (k) (0 A (kHD)
Figure 1
Pivoting in Lhe Updating Algorithm

~(k)

In Fig. 1, A represents that portion of the factorization of

(k) .

represents a working array that involves

A(k+l) is

A obtained up to step k. C
information from the vectof w and at most three columns of M.
that portion of the factorization Qf A which has not yet been con-

sideréd. From this diagram we see that the pivoting effects neither the

triangular structure of M that has already been computed nor the

triangular structure of that portion of M which has not yet been
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considered.
One can also represent the operations on the elements in a dia-
gram. In the following, d's will represent elements of the diagonal’

blocks Dk of D, m's will represent elements of the Mj's which occur

‘below the block diagonal of identity matrices in the matrix M, and w's

(k)

will represent elements of the vector w = Qz. Let o and A

(k)

be as in
Section 2, and we assume that A is in factored form, so only the

lower triangle and diagonal D need be stored. A '"~" over an element

-means that some operation has altered this element, If a 0 appears then

that element has been "zeroed ou;" and ioc not subject to further
alteratiuu. |

Only thosc.clcmcnts that need to be stored are represented; the
elements known by defiﬁition are left biank; we store the diagonal

matrix D in place of the identity matrices in M. Row pérmutations are

—
denoted by C " or E::; column permutations are denoted by t_j t=T j.

I'he permutation matrices ( are not explicitly represented.

We shall illustrateée the algorithm with a 5X5 example.

.Case 1:
D, is 1x1
1t r } 3
(1) d : 0
m. w
A=|m +o0{wl|( ’ 1.
al? .
m w
m w
) L




~

D, is computed and

1
(2)
A =
Case 2:
Dl is 2x2,
(1)
K 3

1

(2)

t
Q; 03 1 Q/ O
1 " 1 ]

0 I 0 1.

We are finished with D

diagonal element in the second position.

D, has been computed

(

o

)

B Bl B

B

(a7

L

(2)

\

Compute

(&

(2)

7

Q)010; = M e
d

i\ *

&

m{m

Pl @

m|m

1

I

(

\

(M, V) =

W

N

€ 2 1l o

€

7

ar

r

and are ready to apply

21 €2 szlo_ o

found to satisfy the pivoting criteria,

and does not satisfy the criteria for a 2x2 pivot.

Ql,O

M. QM
o 1 |'1h

\

the algorithm to the

51
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Case 3:

~

D, is 1x1 and does not satisfy. the pivoting criteria with D, also 1x1.

1 2
B ~<\\ N N w . ( W
(1) d \ ' 0
m A}\ . w
LY
A=|mn|m +0 | W [ ]
ol o A3 w
m | m w
\ ) L)
(2) Compute‘(Ml, M,) = (Ml; M,)M, M
i - 0 D
2J
o~ ) A (- h
. d\ 0
d d 0
A = I + 0 ;, [ ]1.
m m A(B) w
m m w
\ S . P
(3) Apply Case 2.
Case 4:

~

D1 is 1x1 and does not satisfy the pivoting criteria, and 52 is 2x2.

[ .~ . ‘ ) ( 3

(1) cd D
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R (D 0)
(2) Compute (Ml’ MZ) = (Ml’ MZ)L,.L 1 Lt
4 Lo ny
~ Yoo )
(d s ‘r O
d 0
A=1|4d +0 {0 [ ]
m m m v
m m m J w
L \ J
= : ot = 51 0 1_¢
(3) Compute Q,, M such that Q.DQ., = M M
1 171 0 D

In (3) the diagonal pivoting strategy could have produced

several different block structures for 51 and 52 depending

on the matrix D. We only show the case Bl is 2x2 and Bzﬂis

1x1,
f~ 1 ’
3 0|
t ~ d 0
Ql 0 Q1 0 — ~
A = m +0 | 0| 1.
0 I 0 I I b -
m m| m ] w
L A(3) N
m m | m w
J \ J

\

:

(4) We are finished with D1 and are ready to apply the algo- .

rithm to the diagonal element in the third positiom.
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Chapter III:

Error Analysis of the Updating Algorithm
1, Introduction

We have updated the symmetric indefinite factorization of '
~ t
(1.1) _ A=A+ ozz
in order to solve the linear system
(1.2) Ax = b .

A method for solving (1.2) is considered to be stable'if the computed

result X, satisfies

(1.3) _ (K+E)xc = b

is the matrix norm induced by

-1

The following analysis is influenced by the error analysis of -

where |[E| is small compared to "K“. (

. : n .
a vector norm on R~ which we also denote by

the diagonal pivoting method given by Bunch [3]. The solution to (1.2)

is given in four steps:
(1.4) ; (1) A = MDME (update the‘décomposition);
(ii) Mc = b (find the new right-hand side c),
(iii) Sy = c (solve'the 1x1 and 2Zx2 systems),

(iv) ﬁtx =y (obtain the final solutiom x).

We have presented an algorithm that is algebraically correct for
obtaining (i). There are standard methods for solving (ii), (iii), and
(iv). However, in finite precision arithmetic error is introduced at

each of the steps (i) - (iv).



Instead of obtaining the exact decomposition of K, we actually
‘obtain M = (ﬁ+Aﬁ), and D = (5+A5) such that MDMt = azat + S. Then when

-

equations (ii), (iii), and (iv) in (1.4) are solved, the errors 6M1,

are introduced at steps (ii), (iii), and (iv), respectively.

~ ~

sD, &M

2
vThus, we actually compute M, D, ¢, ¥y, X such that
B ty
(1.5) (i) ™MDM~ = Q(A+ozz )Q + S,

(11) (#6M )c = b,
(iii) (D+SD)y = ¢,
(iv) (M%sz)x = vy,
~ Now, M and D are the exact factors of A. Therefore, steps (i) -

(iv) give the exact solution to the system (K+F)x = b, where

(1.6) F o= (Al 1) [D + (aD+6D)][H + (aMHsM,) 1"
+ M(ABH+SD) [ + (AMraM,) 1"
+ FﬂN)(AFH(SMz)t + S,
In this chapter 1if x = a.€ #* 3252 *, . .F akek, where a4 # 0, then
we write x = 0(¢) and say x is of order € as ¢ -+ 0. If B is an n*n
matrix with elements bij’ then we shall denote B = 0(e)B if
bij = bij¢ij(e), where ¢ij(g) = 0(g). Iq the following analysis we

shall obtain expressions of the form

(1.7) (1) (AMHSM,) = 0(e)M + G(e),

1)
(ii) (AD+6D) = 0(e)D + H(e),

(111) (Aﬁ+sﬂ2)t = 0(e)ME + G(e).

Using (1.7) in (1.6) gives



57

(1.8) F t

(0(e)M + G(e))[D + 0(e)D][M + 0(e)M" + G(e)]
+ M(0(e)D) [M + 0(e)M + G(e)]t
+ MD(0(e)M + 6(e)) T + MH(e)ME + S

'O(E)ﬁﬁﬁt + G(E)Bﬁt

+ M(0(e)D)M"
+ M(0(e)MY) + MD[G(e)]T + MH(e)NUT

+ O(eZ)B + 8.

The O(EZ)B term in (1.8) is negligible when compared to the

dominant first order terms. The combined terms give
_ et 2 '
F = 0(e)MDM + 0(e")B + S,

if G(e) = 0(e)M, H(e) = 0(e)D, and S = O(e)A. Then

(1.9) R ey

AT

hence the mefhod is stable.
However, we shall also see that the terms S, G, and E will in-
volve products of the entries of solﬁtions to triangular systems
.involving the original factor M. Thus if M is ill-conditioned,
(”M” ”M-l” is large compared to the number of significant digits avail-
able in our finite precisioﬁ arithmetic) then the updating'procedure
cannot guarantee that the constant in the 0(e) term in (1.9) is of

moderate size.
2. A Detailed Description of the Updatlng Algoiithm

We shall now give a detailed floating point analysis of the
computations performed in our updating algorithm. There are two parts:

to a step of the algorithm. An intermediate step of the algorithm
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results in a sum .0of matrices of the form

~ st ~(k-1) (k+£)
(2.1) QAQ = A +C +A ,
with
k-1 m
A1) Y OM.D.ME, AGHD Yy MM,
(.)' wij) m .
where £ is 1 or 2. Let w3’ = . for 1 < j < m, where w = z M,W(J)
1) -7 = 21 31
0 0 G
and . = . - M,w .
Gt 6D il

Part 1 of a step consists in preparing the matrix C, for part 2,

k

This involves possibly bringing‘the term Mk+KDk+£M§+£ into the matrix Ck

and performing certain operations on the factors of CP to obtain a

4

special form. Part 2 consists in permuting certain columns and elements

of the factors of Ck and obtaining the updated ﬁk and D

We shall now describe an intermediate step in detail.

K

Part 1.

The previous steps of the algotithm have resulted in

0 0 [6 8 Y[ o o )\t
@ ¢ = |1 o (s o] 0
| RORMGEY SO

with |6| < a|8|, or in

0 fA[o][O, w(k)t]

®) o= | | ,



" We shall now drop the superscripts.

If (a) holds

then we replace Ck by

(0] 1o)(s o Yol 1o0]}"
l | | |
G =1 }Mk+l: 0110 Dy O] 12 lle+].l 0
LV lwjlBe 0 o]Vl | w

LVZ M' WZJ kV2 M' WZJ
where we have partitioned
(0 )
v w 0
1 1
v v > M ©
v2 w2 I
LM'J
We then compute ‘
( Yoo ( \t
0 -0 0 (D) 0 0 0
‘ 1 0 .0 . 1 0 0
(2.2) ck = ,
0 1 0 0 1 0 :
—M" 1 y M? MV 1 M?
LY vl M w,-M w1J va M vl M w2 M wl)
where
t. t
8 le + Swl B
() = |v,6+wB D + sv.vE + B(v.wiHw,vh) + owwt v B + wio|.
1 1 k+1 1’1 11 "11 171 1 1l
t t
B Bvl +‘ow1 G

Now we proceed to part 2.

If (b) holds then we replace Ck by

59



60

r IO] Dk Owr Iowt
Cp = | M ! M |
\ IWJ 0 GJL |W‘
(0 o0 ) (0 o |\t
' A
‘ Dk 0
: 0 g J|
\M' WZJ ‘LM' W2)
where we have partitioned
[ 0
w
1
w = , =|1
We then compute
0 0 D+ oww; ow ) [.0 o \*
(2.3) c, = |1 0 owi o)l 1 0
' _mt ' RY1
M w2 M Wl M w2 M w1

and proceed to part 2.

" Part 2.

Part 1 has resulted in a matrix ot the form

o ol(D bl(o o)F
(2.4) - c,= |1 oflbd" oj|1 01
v w ‘ v W J

where D is a symmetric matrix of order at most 3. We then apply pivot-

- ing strategy Sa only to the matrix,ﬁ.producing a permutation matrix Q,

and a 1x1 or a 2x2 matrix 5 such that



is giveh by one of the following forms:

(a) D= (8) is 1x1, b = (8), and |§] > a|8].

( -0 oY(s o) o 0\t
(2.5) C, = 1 offo oj| 1 0,
viw(B/8) w | - vtw(B/8) w
0
with o = 0—82/6. We then take Bk = (§), ﬁk = 1 , and o is
replaced with G. Return to part 1. . v+w(B/6)}
(s,, &
— 11 21 t
(b) QDQ" = [ . ], b= (B1»B,), 85,1 > [8,,], and
21 22
|611| 3_a|621|. Then
8 0
(2.6) C, = L, 11 L;,
0 B
where
. 2
o[ 8y 7 85178y By = (818570784,
B = ’

2
By = (88,1218, 0 = By/8yy

( 0

| 0| 0]
|
: 1 ol o
L = | | ’
k .
8517011 } 1 I 0
(v + V(85 /89) + W (B /8 )] vyl W ]

and we have partitioned V = (yl,vz). We then take

61
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o
It

k+1

- Return to part 1.

v
\

1

0 Y

— 831 91 |
(¢) D= J and max(|6
621 622
_ 0 0 [
2.7) Ck=' I 0 1.
vV + wbt-ﬁ—l w
We then take
[ 0
Dk = D’.Mk = I
v + wbD L
t_ -1
and replace o hy d — h'D "h.
81 %1 S;
— t
@ "= |8 _
21
D
§ 2 J
31 o

o,

1

$

%21/%11
+ v2(621/611) + w(Bl/dll)J

0

, and

/6

(o0 o)f
(8)
0 0
1 0
va WJ

nls |

D

0 o
’

’ 611

- b5

S501) < al6y ]

0 ] 0 o‘]t

I 0 .
=1 .

vV + wbtf" i

is the pivot choice when

S . —_ . _ . t _ t
S  is applied to D, |611| Z_u|§il[ for i=2,3; and b = (Bl,bz).



0 0 O

o
S—
O .
o
o

11 o0
1 0o o offo D, b 1
@8 T = ley/ey 10 oflos bS T {6,764
- 537/8); O 10 531/511
S, v, W) oy

01

where v; = vy + v2(621/611) + v3(631/511) + V(Bl/dll)f

\
., |
D, =Dy -3 (8595 8310 »
1 |
31
“t o, t .
by = by = (8;/817)(8pys 839)
~ 2
o =0 -83/8;; >

and we have partitioned V= (Vl’VZ’VB)

We then take

3 0 3
1
Dy = Grp)s My = 18577850
631/6'11
\ vl p.
: Y Vs OTONT
and 0 0 0 D2 b2 0 0
0O 0 0 E;' o 0 0
Chyp = |1 0 O 1 0
0o 1 0 1o 1
| MERLY y ) (V1 Y

-

o
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We now bypass part 1 since C is already in the proper form.needed to

k+1
apply part 2.
D §31 }
(e) QﬁQt = 1 632 3 S& applied to D resulted in-
8317 833 633

the choice of a 2x2 pivot D,; |det 5i| 3_(1—a2)(max|dij|)2, and

t_ .t
b - (blsez)'

( 0 o o)(D, o) 0 o o)*
I 0 0410 B T 0 0
(2.9) T, = . N
k 3t 1 0 - 3t 1 0
Nt ot S N I -
LV] + v2d + Wbl v2 'W ] kV1 + v2d + Wbl ‘vz w |
where
~t . =1
d” = (8395 64,0017
~t o t=
¢ ' 8 8 \
—1%31 t=-11%31
| 833 = (859 655D s J B, = b0y [6 ]
_ ' 32 32
B = - >
s - |
t=-11°31] t=-1
By - b0y [6 ] ‘ o - byDy by
\ 32 J

and we have partifioned V= (Vl, vz).

We then take

k 1’ Mk= A~t

~

+ v d~t + WSEJ

v

and
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(0 o} (o 0)*
| (8)
0 o0 0 0
c .. = |
ktl 1 0 1 0
‘kvz WJ va WJ

Return to part 1. _ . i
3. Floating Point Analysis

' Now that we have a detailed description of the numérical opera-

tions performed, we are ready to examine the error introduced when these

operations are carried out in finite precision floating point arith-

metié, We shall work in base B, t-digit floating point arithmetic. We

call ¢ E~% Bl_t the basic machine unit. Let

v t . C
FL(B,t) = {6: 6 = iek ) YjB-J s O ij < (8-1) ,

j=1
each Gj an integer,

1< Y1 < (B-1), k any inl;eger},

We then have [10]

fl(el*ez) = (61*62)(1+€') s

where |e'| < €, whenever 61,9 e FL(B,t) are'floating point numbers, gnd

2
* is one of the operations {+,.f, ., /}, and fl(el*ez) is the nearest

number in FL(B,t) to the real number'el*ez. We shall also write f££(B)

to denote the computed elements of the matrix (or vector) B.

Lemma (3.12. Consider the vector v(k) defined in part 1(a) of section 2.

Then the components vik)”of v(k).satisfy



..fl(vik)) = vik) + Tik)(s) ’
where ‘ .
(3.1) <9 (e)] < (3te) E(i"1>?;;:|f’§£) -

(k)

Proof. The vector.v is the vector v, appearing in one and only one

2

of the expressions (2.6) or (2.9) at step k-1. The vector v, in (2;6)

or (2.9) is one of the columns of the matrix V in the expression (2.4).

Since V in (2.4) is given by (2.2) or by (2.3), we see that

(3'2) . A" =. (V§k-l) - M'v](-llc-l)) ar v - M' s
where L .
0 , “v(k‘l) ‘ -
= 1 _ ., (k-1)
PP e @ ey [TV
[ Ml . . 2

If v(k) is defined as a column of M, then no error is intro-

duced. However, if

(3.3) v(K) ;_Vék—l) _ M.vik-l),

(3)

then let j be the largest index less than k for which v was defined

by a column of M. Then

0 ) 0 k
T (£-1)

(3.4) =yl = 1 My ,
JO) T @] T pby €1 |

(@

v i . . . (‘K) = 1 (!-l) )
where we have'partitioned v ' = L) so that sz1 makes scnse:. The
v : . .
2

formula (3.4) can be derived from (3.3) using an inductive argument. We

recognize (3.4) as the process we would use to solve the linear system



| 0 |
(3 -5) . Mx = " >
v(.J) .

where v(k)'is‘the result of the kth step of .that process. Then it has

been shown [6] that:
22wy = v 4 Wy
where

(3.6). . ° lfik)(e)l < (3+e)e(i~1) max lvgz)l .
| itk *

The bound (3.1) follows from (3.6),~but is not as good as (3.6); however,

(3.6) cannot be obtained without prior knowledge of the index j. 0

We shall comment now on the growth of the v(z)-in (3.4). Let us

i
(3)

consider equation (3.5) further. Since v is defined by that portion

of some column of M (say column i) which lies below the main diagonal,

we may write (3.5) as

. . (0 if §# i
where ei 1s.the basis. vector dgflned by (ei)j = {l if§ =i Thus

M(x—ei) =-e, .

Therefore, the solution ei - x is a column of M—l. This shows that the

1

vgz) in (3.4) are in fact composed of elements of M . We now observé

€9

that undue growth in the vy in (3.4) indicates severe ill-conditioning

of the matrix M with respect to solving linear equatioms.
Lemma (3.2). Consider the computed quantities fl(wgk)). Then if‘

f{C(,w(‘l‘),)
Pzl
fﬂ(wim))
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we have the 5 satisfies the equation
QHT)p = w ,

where the elements Ty of T satisfy

lTijl ff(nfl)Y|mij|€

Here, vy is a constant of order unity and the m,, are the elements of M.

ij
&)

Proof: One observes that the LA are computed from the standard back

substitutioﬁ algorithm. The result then follows from [20].

O
Let us drop the ff-notation and hereafter regard the quantities
wiJ) as computed quantifies. Then Lemma (3.2) shows that we may write
oD
3.7 oMt + owe® =MD + 0| iDL W)
‘ S ";(m) :
1
e
o+ U(T . wt + [w(l)...wim)]Tt)
O
1
(@ )
+ oT]|. . [w(l){..w(m)]Tt
. 1 1 -
MY
1
Thus we shall now regard the vectors w(k) as cxact quantities. The

error introduced from the computation of these quantities in finite
precision is expressed in the error matrix
e ~t ot et
S = o{Tpw" + wp' T" + Tpp.T'} .

(k)

Lemma (3.3). Let vi ) denote a component of vy e (See Lemma (3.1),

equation (3.2).) Let w§ ) denote a compohent of wik). Then the floating -

point compotetion of D results in



69 .
£2(P) =DA+E ,

where E is a block diagonal matrix with the same structure as that of

D. Moreover, the 2x2 blocks of fK(B)'satisfy

3 (k) “(k)
uld | > max(|6(k)| (k)|), where Dk N%i) ~%i)
: 21 22

.and the elements eij of E satisfy

(3.8) le..] < ce,

ij
where

02 ¢ <max(lo ], o Isk(v(k) 2|, 2lgu®u®], o, w8Y2)as

Cijk
(Here 9 is "o" at the k step, and Bk is the "g" appearing in part 1
at the kth step.) -

Proof: From equations (2.2) and (2.3) we see that the updated diagonal

blocks Sk are obtained by decomposing matrices of the form

‘ t t B
) le + Bwl | B
N - . ) . ! ‘t. . t
D, = v16 + wlB 'Dk+1 + 6v1v1 + B(vlw1 + LA) 1) + oW, Wy le + oWyl s
, ot t S A
. B - Bvl + owl A . . 0. J

" with |8] < a|8] if equation (2.2) was used, or

) t
Dk + owlwl owl

o>
n

if equation (2.3) was.used. Here the v's, w's, B, 6, o are the pre-
viously computed Quantities at step k; we have left off the

superscripts. .
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Then
EL(Dy) = Dy + By, (Lds Lor 2) ,
where a typical (i,j) element qf‘fﬂ(Dl) is 6f the form
[{[sij +'6vivj(l+el)(l+82)](1+83) + 28v,0, (I¥e,) (14e,)
}(1+e6) + owiwj(l+e7)(l+68{}(l+€9)
= Glj(1+s3)(l+e6)(1+eg) + §vivj(1+el)(1+sz)(1+eé)(1+e6)(1+69) 
+ ZBviwj(1+e4)(l+e5)(1+e6)(1+59) + owjmj(l+e7)(l+58)(l+eg) ,

where‘lsjl < €.
Now, if re < 0.1 and lpl < €, then (l+p)r =1+ rp', where

f|p'| < 1,06c [19, ex. 4, p. 80], and if Ipll,...,|pr!'§;é then

(1+pl) :.. (1+pr) =1+4+1xr ,

~

‘where |p| < 1.06c. Thus we see that if the elements of D, are denoted

(£) ( 2

'by‘éij and the elements of EZ are denoted by €4 then

4L ) ( ) S5 14 L
613 *t ey ij(l+3pl) + Svivj(1+5p2) f

+ ZBviwj(1+403) + owiwj(1+394) ’
. where lpil < 1.06e for j = 1,2,3;4,Aand ISI < a|B|. .Hence,
Dy .. . . '
Isij | g_maf(lcijl,_aleivjl,.2|8vimj|, [gwiwj|)15(1.06)e )

Maximizing the quantities which appear in this expfession‘gives the
bound

@9 9] < max(lG 17, 208, v (k) (k)l E (k) )2[)15.9€.

ijk

|aB [v

il o (@

The case we have examined is clearlythe worst case for the type

of analysis we have carried out. Thus we‘takev(3.9) as our bound for



the elements of E , (£ = 1,2).

is given by decomposing D, or.D,

according to one of the equations (2.5)-(2.9). Let us refer now to the

The next step in obtaining Bk

proof of Lemma (2.3) of Chapter II. Specifically we consider the decom-

position given in equation (2.12) of Chapter II. There it was shown
that a scale factor u may be‘implicitiy introduced in the last row and
This factor has no consequence on the final result.

column of D or D

1 2°

However, when D1 or D2 is suitably scaled in this way then pivoting
strategy Sa does not choose any of the elements in the last row or
column as pivot elements. We then obtain a computed factorization.
e [Q O . Q o)F
MDM~ = (D, + Ei) + F, (i =1o0r 2).
o 1) * 0 1 o _

The analysis given in [3] applied to this (at mbst) 4x4 case shows that

the elements fgg) of F, satisfy
' ij £
(3.10) 1£D | < max|s$9 | (34e).
iy ' =gy 13
Now (3.10) together with (3.9) give the bound in (3.8). n
We have given an analysis of all of the operations in part 1 and
of ﬁhe,formation of D. We no& turn to an analysis of the fimal forma-

tion of the elements of M. We begin with

Lemma (3.4). Let ;ij be the.ijth,element of M with 1 > j. Then

(3.11) : fﬂ(mij) = mij + mijuij(e? + vij(e) .

where
|“1j(€)_| < e(Gte) ,

and

71
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|v15(6)| i'méirvik)|(€(3 + ﬁax[%; I i'd]) + O(ez))
1 . . ’ ’ .

Proof: We shall give a detailed analysis of the operations used in
forming M. These operations are described in part 2 a-e. We shall have

to examine each case separately. Cases a-e below refer to the opera-

tions performed in part 2 a-e, :espectively.A The errors resulting from

computing the duantities B/S, th—l have been accounted for in Lemma
(3.3). Therefore, we shall'assume here that we have these quantities

exéctly.

.Case a: The vector Ek is computed by .

| 0
£L(M) = 1

'fl(v(k) + w(k+l)(3/5)5

Now,
iR (D) s
IO OO
= 08 4 108 g/ 1 (e ) (14e,)

- b+ P @r8)104e) + wl (8/6) (e e e

e o~ (R) e
= M + iy 2 + wi- (S/&)(ei+elez),

~

Bk

f aik82 + (yik)_+ mik)(B/G))(el+elez)

- vik)(si+eiéz)

mie B eptepteyEy) - vy T egteyEy)



Case b: ﬁk is computed by
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o ) }
LR, ) =
RagL¥ s /s
, 21/ °11 _
1 (k+1)
(ELCvy + vy(8/8yp) + w77 (8161900
Let v. have components v,., j = 1,2:
j ij :
Now,
o g ) (k+1) "
f(my,) = vy, + “12(621/§11) w8 /801))

(k+1)

+ wi

(k+1)

+ wi

~

+m, €

n ik%4

ik

+ (l-l7(~:4) [\)ilt»:2 +

(k+l)(B

+ mi

1/811)¢5]

+ (e ) [y +v55(8,,/879) + wik+l)(81/6ll))€

+ vil(ezée3) + viz(é

{lvgy + 508,178, (THe )1 (T4ey)

(8,/8,1) (+ey) }(2+e,)
[vil(i+52) + v12(621/611)(1+el+ez+elez)

(8,/8,1) (I+e )1 (T+e,)

V508,178 1) (egte te e,

3

/6 63+eiez)]

1/811) (eg¥ey-

m + mik(e3+2€4+5334) f Vi1(€2—€3+e4(62_€j))
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Case c: ﬁk is computed by
0
£L(M) = I
; (k1) t
'fﬂ[(vl,vz) + w b Dk ])
Let bD. 1 = (3.,8.). Th |
k B12B5) - en
= - o k)Y (k+1)
£LQM) = LGy t w8 ),4f£(v B,
Each of the components falls under the same analysis as case a. We
_obtain
=m  +m -
tll(m ) o, mij(e 1reateq e )_ V11(€1+51€2)‘
and '
-~ = ~ ot - 1 1
EB(mys4) = Byger ¥ Bygua(ertegterey) - vi(ertere))
where Mik = (mij’ mij+l)'
" Case d: Ek is computed by
4 | 0 1
1
£eaL) = 851711
831/911 '
' . » (k+2)
EL(vy + v, (8,1/814) + vi(85,/8,9) + v (84/8,10))
' So
~ . , (k+2) ., /4
EL(myy ) = ££(vyq + vyp(8,1/87) + V;4(8,,/8);) + wg LB /8)1))

+ vy3(839/819) (e ) Fte,) + @§k+2)(81/611)(1+e5)J(1+e6)



= {vil V508,78, + v,

©(k+2
21/811 /6.1) +w ).“31/511)

3( 31 117 i

+ v, 1(82+€4+€2€4) + v, ( 21/511)(€1+€2+€4+€182

+e, (e Fe +e ))

4 l 2 €152
n W) |
3(631/611)(€3+€4+€3€4) +-w (8,78, )es}(24e )
= aik + Eik€6 [e +€4+€ +€2€4+€6(E +54+eze4)]‘

5. 2 54" %6 c1527 %4 €152

1821 ‘
+ v, [e,+e te,+e +e. e +e, (e +e
i2 11/ 1

+e6-(el+52+54+8182+€4(€ +¢ +€1€2) )]

6 .
o 31
+ "13[511}[E gretegtese tec(eyte beqe,) ]

(k+2)[ ]
(e *e +e_e,)
Wy 611 576 56
~ 21

~ ' S %31
= my t ol to(egtegtes e6”"11* Viols..) Yt Vi3ls

11 11
(k+2)[ 1 ]
+ w, —1]
i 611

+ vy, Leyte, €5+€2€3 e5egt0(e) ]

+

82)+0(e )]

621
+ vools . [e +e -g _+e_€ +€ (e +52+e1

€, €5+E 1857 E5Eg
;, o
* Vyq 6 [53 4 e5+€3€4 €5 6+°(e )1

Case e: ﬁk is computed by
~ . I
(M) = -1

( 31"332)D

\ft[(v Y, ) + vy (68 )5

+ v (g ,8.)5,71)

31’ 32 k
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where we have partitioned A =:(vl,v2,v3), = (B ,62,8 Y. Thus if we
let (531 32) € 31,632) k , (B ,B ) = (Bl,B )D be.the quantities
computed in (2.9), we have

' ~ _ ~ (k+2)
_f£(Mik) = (fﬂ(vil .. +tw

~ (k+2)
vi384q 31) . fl_(v .. + w

V13%32 By)) -
Then the components Qf ﬁk:fall under the same analysis as case b.

We have shown fhgt if ;ij is computed from the formulas given in
part 2 a, B, ¢, d, and e using the computed quantities from part 1 and

from the formation of 5, then
'fﬂ(mi.)'= mij +m 13 1J(e) + 2 (e)
(k )|

Define v = maxlv Then taking absolute value, using the triangle

i,k
inequality, and recalling that |sk| < € gives

Iuij(z:)l < e(3+e) ,

and
]
ve(l+e) in case a,
| 591 2 |
N(3e(l + E“‘ ) + 0(c™)) in cuoc b,
. .~ .11 '
Ivij(e)l §_<ve(l+e) in case c,
. , 621 6
1v(e(3 + 4 T + 6 ) + 0(5 )) in case d,
. 11 11

h?(3e(1 + max(|631|, [632|) + 0(e )) in case e.

By the properties of pivoting strategy S, we have that

621

1811

S51|

811

<g and max(!531‘ 85,0 < 755 -




Thus,

1
l1-~a

v ] < v + maxtl, 722D + o(e?)

in all cases,

We now return to equations (1.5). :Régarding (1.5) (i) we have

ij(8)

.'given in Lemma (3.4). We also have that AD = E in Lemma (3.3) is blqckk

h M =M + '. {
shown that AMij ‘Mij“ij(e) YiJ(e), with bgunds for uij(e) and v

diagonal with the same block structure as 5. Using the analysis given

in [3, p. 667] we see that in (1.5)(i) and (iv) that

A A

3 . Nl
ldzMij I ’ I‘Sl ij ‘ i? e[l + 0(e) ] (n-2+1-3) IMlJI ‘s
and in (1.5)(iii) we have
|6, .| < |D..|e
iit — 1744
if Dii is a one-~by-one block; otherwise, from [3]

. a 1

|6Dii| | (D). |
i+1,i

] A
L+ 4 ¢ eravo(e)1|D

|(5D)1,1+1l [ (8D 441, 41 1 a

Finally, we have that the error matrix S, defined in Lemma (3.2)

and discussed in the remarks following it, is bounded by

2 2
Is., < {2lzll Mell Jll, + i llell 2 el

< {an(m+1)y maxlmijlmax|w§k)|"w”we |

C+ ez[n(n+l)]2Y2max|w§k)lz}lql s
where y is the constant appearing in Lemma (3.2). The matrix G(e) in
(1.7)(1) and (iii) is given by G = (v;;(e)). (Note rhat G is lower
triangular.)

" We have the bound for F given by

77
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G [F], < 2 ;;ailvi.k}[eo + max(L, <
+ 2 max(|p, il alsk(v(k) 2l, 2 |8, (k) (k)|
ijk
o, )2y agelfll 157,

+ e[l + O(c-:)]"MDMtnm + |s|, + o(e?)

~We have already mentioned that the |§§k)| and |w§k)L and HSH°°

may grow with n for ill-conditioned matrices M. However, the computa-

tional evidence indicates that the usual remarks concerning the solution
of triangular systems apply: in practice large growth does not occur in

these quantities.
. x !

)
. . k s
and Bk's are bounded. We shall do this by showing that the growth of .

In order to guarantee stability we must also show that the ¢
o is bounded at each step of the algorithm. This is sufficient since
it can be demonstrated that the growth of Bk+1 is bounded as long as thé
growth of Optl 1s-bognded.

Tt will be necessary to impose an additional condition on the

acooptance of a 1%1 pivot. The uuwber § lu

)

will be accepted as a 1x1 pivot if |§| Z_alB[ as before, or if

|06| > aBz. This does not affect any of the preceding analysis.

We shall Begin by  establishing several preliminary lemmas.
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‘Lemma (3.5). Let A be symmetric and suppose that A = MDMt. Let the

i 2 j,;.ﬁ_An, and let the eigenvalues ofAD be
My §_u2 j,;.j_un. Let k be the index sugh that Aj §_O'for 1<j<k,

and Aj > 0 for k < j < n. Then Kj f_cuj for 1 < j < k, and Aj 3_cuj

eigenvalues of A be A; < A

for k < j < n, where /E-is the smallest singular value of M.

Proof: By the mini-max theorem .

£
A, = min max = ﬁx
J dim(S)=j|xeS  x'x
[x#0
= min max —Stgs_—
dim(S)=7j|seS stM_lM—ts
| s#0 :
= min max StDS sts -]
dim(S)=j|seS sts stM_lM—tsJ
. |s#0 ’
sts '
Since < -1t 2°¢? 0, we have for j < k that
s M lM. 5 _
. I StD .
A, <c min max tS ‘= CU., .
J dim(S)=i|seS s's J
s#0.
Similarly, for j > k we have A; = cuj. ' '

For the following discussion we'shall also need to kndw the

smallest singular value of certain lower triangular matrices in order to

apply Lemma (3.5).

Lemma (3.6). If M= [i g], then the smallest singular value of M is
/E; where
c > 1
- 2

79
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. ' 10
The smallest singular value of [ Yo 1
. ' : ' ' Y1 0

IfM=|ygl 0|, then the smallest singular value of M is /E; where
y1 0 1, '
'y0+'yl+2

N 4
. Proof: The smallest singular value of [ i 2 J is v/c, where -

c = (Yz + 2 - /44+4Y?)/2 .

] is /E;.where

OO

c= (24 v 2 - D s aiied) e

If ¢ ='(a + 2 - /22 + 4a)/2 with a > 0, then

_ (@)% - (a%ria)

2(a + 2 + /alt4a)

2
a+ 2+ Vaz+4a

,
a+ 2+ Yalthats

v

- The lemma follows from this inequality.

It will also be of interest in the followiﬁg discussion to bound the

" w—norm of the inverse of a 2x2 biock,

811 %21

521 6221

Lemma (3.7). Suppose.tﬁat D =

Then

, with dIGle >,max([6

|6

22|)'
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-1 1
”D "co i (1_a)"l621| ¢
" Proof:
-1 1 '
Io™ 1, = 757 Iol, »
where |A| = |§11622 - 6§l| 3_621 - dzsgl = Ggi(l—az).
"D"m = |821| + max(l:(s_lll’ll.a'zzl)
< (o) |8, |
-1y _ (1+0) 1 | 1 . . :
Thus |07, < ) - : | -

Two more lemmés are needed before we can establish'the bounded-

ness of the ok.

Lemma (3.8). Let B ¢ R be symmetric and nonsingular with eigenvalues

A <A

1 <...< A_, where n > 2. LetVZ'e‘Rn, and n € R. Let

2 - 'n

B' =B + r]zzt

| > A, where A = min |A,|.

Then n max|B’
> 1<j<n

Proof: Let B' have eigenvalues My 2 u, Seeel M. From Lemma (2.2) of

Chabter 11,

n>0=>>\1<u1 Aniun,
while
n<o0=> ulixliunixn
If A, > 0, then |un|'3,|>\1|. |
If A, <0and ) > 0, then |“n|,3“‘kn| when‘n > 0 and lull 3_|Ai|<when

n < 0.
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If A_ <0, then |u | 2 A |,

We conclude that

¢ = max iu,! > A
l<j<n .

By the standard norm inequalities we obtain
n maxIBijl >y
and the fesult is established.

Lemma‘(3.92. Suppose that the k-th step of the updating algorithm has

resulted in

; t
: : 1 0 S B 1 0
o) ,
vV W B o v o w
with 0 # 0, |8| < a|g] and |06] < 082. Then
) o] laet B | |1+ 0yz"AT e
B2 (k)¢ TA-T l” | |
-— . ~ . AP A A 1 3
(1400 [det D] (la] W™, nzlmz | + 1+ 7
L (B 0
Where M’ = (Ml'Mz) » n = A R
2.
. - ﬁ 0 o
0a0" = (M| T fawENE
4 ) 0 D ’ .
2
and B(k)'is that portion of D obtained up to step k. Here oo‘is the

starting "o", and ¢ is the modified "o" after k steps of the algorithm.

O



Proof: At the k-th step we have

Qg

(k)t

(e o 0)[s 8
- gglgde L1 o [ B o }
v w

ol 01 ) (k) 0, 0} .ol 01 \t
= | M7 1N, 0 (8~8%/0) 0 || M '] 1 IM,
| v | 0 0 D, ) | v | J
| 0 t ¢
+ o B/U (09 8/0’ w o+ B/GV )
wtB/ov ‘
t -1 0
Now, det(A + cozzt) = det A(1l + ooz A “z). Also, if p = 8/c .|, and
wtB/ov
ol 01, 530 o, o) ol o,
B=| M| 1M, 0 (6-8%/0) 0 || M1 1 I M, |,
| v | 0 0 D, | v |
then
det A(1 + oOztA-lz) = det(B + cppt)
t_-1
= det B(1 + op B p)
~ 2 T 2 Y -

= det 5™ (s - E)dee D, (1 + op B 7p)

Thus
¢ -1 ~ (k) n g2 t.-1

(3.13) |det A]|1 + 0,z A z| = [det D™ ||det D,|[6 - 7;1[1 + op B pl.

Since Idol §_a62, we have

(3.14)
and

(3.15)

|s0-8%] > 8% - 60|

|60-82|_§ |sa| + g2

Also, onc can chow that

|v

Ia

(l—a)B2

s

(a+1)8? .

83
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-1 [ o

p = ‘B/o

L ~-]

®)|
! - B/oM, v + ﬂ;l(ws/ov)

< RO
=

,

0

= | B/o ,
L M21W

~—1 . ' . . »
where we use M2 to mean the inverse of the unit lower triangular matrix

that occupies the lower triangle of ﬂz. Thus if ¢ = w Mztﬁglﬂ; w, we
have
2
1
PB 1p = 'LZ 5t Y
RS
o
Hence
' 2
- (3.16) 17| < B >+ |9l
lof]os - 87
1
< ———+
— |0l(l—0t) |¢|

by (3.14). Using (3.15) in (3.13) gives

|det A||l + coztA_lzL

1
|det D(k)lldet ﬁ2||l + UptB_lpl

(3.17) 5] (1+0) 8% > |§ - 8%/0| =

Therefore, using (3.16) in (3.17) gives

|det ﬁl||l + ooztA-lz1

~(k),, 1
ldet 5% [(Jo] 6] + 1+ 370

2 o]

(3.18) B2 (14n)

This 1s the desired result.

Observe that the quantities in (3.18) are independent of the updating
~(k )I

process except for |0|, and |det D Now we are ready to prove



Theorem (3.1). Suppose that Fhe k-th step qf the updating algorithﬁ has
resulted in | "
(1 0)(fs 8)(1 o)t
i vV w B o vV w
with |§] < a|B], and |o6] < 08%. Then the next step of the algorithm

will produce a o' of the form

tv-1

' = -
o) o kak bk
with |o'| bounded.
§ g1 1) & B\ [-v -y
Proof: Let =N , and | = U, with
L\ B8 o Y Y B o 1 .ll

|u1| z_luz} as in Lemma (2.4) of Chapter IL. Let nj = uj/(1+yz), ji=1,2.

As we have already seen in Chapter II the updating process is

equivalent to forming

1 w n. 0 oYf1 o w)©
(I+1) 0 1 0
(3.19) C = I w 0 D' O v. 1 w s
1 1 l 1 lJ
Vo A v, 0 0 n2 v, .V Wy
0
where D' and | I are, respectively, the next diagonal block of D and
\Y S v .
the corresponding column of M. In (3.19) WO = =Y, 1 = v+yw, and
w, ) v ’
M1 o LY
= w-yV.
wzb
The next step is to form
(. A t
1 oolw )\ olf? 0}w
C(k+1) = 0. I } Wy I l w s
~ 0 n
v, VIw, 2jlv, V1w, J
X 1 03(n, O 1 0)" .
‘'where D = _ , and v, = v2—Vv1.
' v I 0 D' v I
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CIf it is 2x2, |B

Then we form

1 0] 0])[+ el M1 olo)f
c =10 I l o | __ " _ + - 0 I l 0 ,
~ A - t . ~ ~
v, VI, n,b Iny JUvy, V1w,
( v
wﬁere b= , and w2 = wz—vzwo—le.
Y
1
Finally, we pivot and obtain the updated diagonal block 5k+1°

Let D = ﬁ+n2bbt, and let £ = max|5£j|. Then lSkl > at when Bk+1 is 1x1,

~-1 1

k+lmn‘j-ETIjET' Te avoid cumbersome notatlun we
shall let B = Dit1e . .
D myb : 2 t.-1
The factoring of . gives.an updated n = nz—nzblB bl’
NP My | |
where b1 consists of components of b. ‘It can be shown that
w! ‘
w, = (1+72)(wé—Vwi), where w = 1 . Comparing this with the updating
1 ‘ : .

w
algorithm described in Chapter II %ill show that

(3.20) ot = .
. R 2., t. -1 ‘
NO_W, Inl < Inz| + nzlth hl‘
) 2 2 -1
< Inyd + 302 o, 12 1572,

Hence, if o > '1/2 then

2 2

3.21) [yl + 2 ol
. < —_ .
Inb < Iny 1+ )
. | - ;
Let /8 be the smallest singular value of A . From Lemma (3.6),
: ' v, I
1

6 > 1/(v, [ + 2

By Lerma (3.8) we have that 35_1|A|where A is the smallest eigenvalue of

D (in absolute value). However, Lemma (3.5) implies |A|>'6 min(lnll,lul),



and thus

(3.23) £ >3 0 minCln,|,|u])

where p is the smallest eigenvalue of D' (in absolute value). Finally

we have that

(3.26) v =y ll, < Iol, < maxCyl, fwl, + Iv] vl

Combining inequalities (3.21)-(3.24) gives

v29

no vy [P+2)

(3.25) In] < In,| +

min({n |, {u])(1-0) °

Since‘llw"°° and ”v"°° are bounded we have that v2 = O(Yz) and

2

"Vl"2 = 0(y"). Thus it is sufficient to bound the quantity

4
nzY

(3.26)

min('l'n‘ll N

Suppose that |B| > |o|. Since y = (o—uz)/B we have

(o+68) - sgn(c+6)/?o—6)2 + 482 +

1

Iyl <

<

N+

Thus (3.26) is bounded since

shall assume that |B| < |0|.

8o - B

1
Now,

2

28

(1+o+ /(1+a)2 4 4) +1 .

< 1 and |u| is fixed. Therefore, we

1 12

InZI N ny

However,

|

l'*'YZJ
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Let ¢ ='sgn(0+6)/€0—6)2+482. Then

-
Yy [(o=8) )2 [(08) rpt26]

o 86.20
: 2. 2
_ [(a—a> +¢} ((o—a) -y ] 28 (o- a)+w]
20 462 86 o
Thus qu
- 2 <1+ §%_ 2 ,
8?
where 1 =. Sg:g%—ilikl; Observe that

1 [ . 19042 . 418]2
2|1+ lc' + /1 + lcl) + 4 0’ J

i%[l+a+;/<l+a)2+4] :

< o < 1 so that

By assumption
2
. B°
qu
2 < T+ 12
[l -
We also have that
e o] 0 | .
luy| = 5| (Co+e) = ¥]| = 3|LC0=8) - W + 26]
2
1___ 48
<3 T + 1ol
Now,
‘ A2 L a2
|(o-8) + v| = |o=8] + V]u-6]" + 48 > 2|0-8|
Thus,

-2
iyl < o+ 18] < ('18') + 18] .



Therefore,

|n2| < (1+v> ['3' + |8] + fo] (vt )] :

It follows that

4
IY n2
| n

[—'1—3—'—+ [8] + |o| (x4t )J

| A
tll—‘

<

! IE

[_1_+a+T+T2)
l-a

4
n,Y

To bound ’ I we consider

5]

P&' _

§o - 32‘ . (1+a) B2
nl -

2 2
1 L1

v

But

> 2062 + 262 + 2(0%-6%) + (0-6)°

.502 - 206 + 62 + 462

So% + (4-20)8% > 502 .

jv

Thus

But

| A
"—l
+
Q
+
~~
x
e’

+ 48°

= (o+8)% + 2|o+8|No-6)2 + 4% + (0-8)2 + 4B’

— 2
2+4] :
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It follows tha;

A 4
Y n LA g —"
2| < °4 l-—z—H‘l—i-a-!-/(l-l-a)z-f-l;]
ny 168" 'M1 :
L2 . . — 4
< 2 (1+a) [+ o+ Jara)? + 4
~ 808> L , :

Using the same notation as in Lemma (3.9) and applying that result gives

2 (1) o] [det B[ (o8] + 1 + 1)

a_ . 1-a
2 — - t, -1
B |det D1l |1+ 942 A "z
Observe that if the previous o's and B's are bounded then |det B(k)| is
bounded. Thus we have bounds
Y4ﬁ 'Y471
2\ <K, and 2| <, .
u -1 ngol T2
This gives
In] < In, 1@ + max(K ,K)))
But
n,| < |o]1 2)_'2(———l ta+ T+ T
ol = +r ll—a t T
) e 2.2
Since o' = (1+y") n, we have
[o'] < |o| l—'+ a+ T+ 2 (1 + max(K,,K,))
- 1-o 1’72
This concludes the proof. ' A .D

Theorem (3.1) provides a bound on the growth of ¢ when pivoting is done.

The following theorem provides a bound in the remaining cases.

Theorem (3.2). If the algorithm updates a 2x2 block and accepté the

. updated block as a 2x2 pivot then



o] = |0|[l +ﬁ]

or if a 1xl pivot is accepted from the updated block then
‘ - _4a
' < —
o1 = lol 1 + 1)
. . (68
If § is accepted from 8 o as a 1x1 block then
lo"| §_|o[ + max(lo[,[8|)/a .
Proof:
Case 1. 1If § is accepted as a 1X1 block as a result of
§ B
g ©

satisfying |&| > a|8|, or |6o| > aﬁz then

o' =0 - B7/S
B2
Hence lo'] < |o| + 7;!
< lo} + |o|/a = |ol@ + 1/0) ,
or lo"| < [o] + [8]/a

Case 2. Suppose that a 2X2 block is updated and accepted as é 2x2
"pivot. If the old block has elements 6ij then the updated block has
elements of the form Eij =‘6ij + cw.wj. The conditions that must be
satisfied are a|621| > max(|611| | 6 2I), and |8 1| > max(lélll 22|).
Let D represeﬁt this 2x2 updated block, and let wt = (Wl’w2)° Without
loss of generality we assume ||w||°° = lel, Then Ilwt"°° §_2|wl|. ‘In this

case we have

g pecl
o' =09 - 02w D w

91



so that

2y ~-1

lo*] < ol + 2[o] [w %57, -

From Lemma (3.7),"5—1"°° f;—j:E%Té——T .
21

Now,
2 2,
lowll - |6_]_1l h |§11+°w1| .< OLIG +°w2W1
Thus
., e
|owi! < a|621} + |61l|
i.a(1321| + |621|)

| A

a(lgzjl + [8,, + ow?w]l + [ow?w1|)

~ 2
2q|621| + a|cwl| .

LA

Hence (l—a)|cwi| < 2al6,.|, and we have

21l

20 |°wi|
M[l  2fie) T‘n‘]
|o|(l +-——%

Case 3. A 2x2 block is updated and it is found that

|o"|

| A

a|621| f_max(lélll 22|) We use the same notation as for Case 2.
Without loss of generality we assume that lglll 3_|§22| (otherwise 322

is brought to the Ell position). Then

2 2
o' =0 - ONWl .
611
Now
)
|6, bow?| > Jow?| - |5,
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so that
2 ~
Jou?] < 13,1 + I8, .
Thus
2
low | |61
e LA
181, 161,
But
1811 < al8yy |
f;a(ld +ow W | + |cw2w1|)
= a(l321| + |ow2wl|) .
Thus
2 , ~
(3.27) _ = <l4+a-—==—<2.

A similar argument shows that

lows| 18,1 + [8,,] 18, + |owywy
2! P22 22 PR 21" 2"
|8

15,1~ B

llI 11|

Thus
|ow§| - a|ow W

(3.28) |§

i, |

1l

1f |wl| z_|w2| then (l-a)lowil j_lcwil - a|ow l, and inequality (3.27)

shows that .

(3.29)

However, 1if [wé]’> 1w1| then (1—a)|cwi| 5_(1—&)[0w§| f_lcwgl - a|owl )



94

and inequality (3.28) gives inequality (3.29).

Theorem.(3;1) shows that the g;owth qf 0 can Be sensitive to
near singularity in A. This can result in two,wayé} If o is much
lafger than the eigenvalues“éf A then numerically A appears to be a rank
one matri%. Also, one qf the updated eigenvaluesvcan be shifted to zero.
This is reflected in the bounds obtained in Theorem (3.1) since one of
the bounds depehds on %'where B is an eigenvalue of.D, and the other

bound depends upon l/(1+crztA_l

z). The quantity 1+oztA—lz = 6 if and

only if A has a zero eigenvalue. We conclude that the use qf'th; algo-
rithm should be restricted to cases where the matrices involved are well
conditioned. -Finally, we AO not expect this technique to generalizé to

the LU decomposition of non-symmetric matrices since our results are

heavily dependent upon properties of symmetric matrices.
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Chapter IV
The Use of Directions of Negative Curvature
" in a Modified Newton Iteration

1. Introduction

In this chapter we present an algorithm for obtaining a numeri-

cal approximation to the solution of the foliowing problem:

(1.1) let f: D ¢ R" + R;
find x* ¢ D such that
f(x*) < £(x)

for all x in some neighborhood of x*.

For theoretical reasons we shall assume once and for all that f has two
éontinuous derivatives on D and that for any X, € D, the level set
L(xo) = {x: f(x) g_f(xo)} is a compact subset of D. Additional'assump-
tions will be introduced as theyAare needed. The assumptions‘just
stated shall be referred to as assumptions (1.2).

Recall from Chapter I that we denote the gradient qf f(x) by
g(x), and the Hessian by'G(x). Given a sequence of vectors {xk} C.D we

shall use the notation fk = f(xk), 8 = g(xk),'and G, = G(xk). We shall

k
sometimes omit the argument x and write f for f(x), and g for g(x),
etc.,'when-there is no danger of confusion. Throughout this chapter we

use

to denote the Euclidian norm, and xty to denote inner products.
The algorithm we shall present may be classified as a descent
method. Usually a descent method determines a descent direction:sk at

the iterate X, (i.e. g;sk < 0). Then a linear search is performed to

obtgin oy >'0 such that f(xk+aksk)_f-fk and we take xk+1 = xk}aksk.
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Under some additional restrictions on the choice of ak one can show that

Kk is usually related to gk in such a way

lim gisk/"sk” = 0. The vector s
koo : .
that this limit equalling zero implies that the iterates converge to a
point x* where g(x*) = O.

In addition to obtaining suchAa point x* we would.like.to be
able to assert that G(x*) is positive definite for this would imply that
f(x#) < f(x) for all x in some neighborhood of x*. Of course, we shall
not be able to accomplish this goal; but through the Qse of directions
of negative curvature we shall be able to guarantee that G(x*) is poéj—
tive semidgfinite. For ﬁractical purposes this is very strong assertion.
For instance, .if the Hessian were known to be nonsingular at all critical
points then the point x* would have to be a local minimum.

Recently the idea of using directions of negative curvature'has
appeared~in modified Newton algorithms [8,11,16]. 1In particular we are
indebted to the paper of McCormick [16]. Indeed, Theorem (3.1) is only
a slight modification of McCormick's result. However, this Fesult led
us to consider a new line search strategy. The implementatinn of this
strafegy which we present here is based in a fundamental way on the
factorization qf symmetric matricés using the algorithm of Bun¢h and
Parlett [5] and this is discussed in section 4.A in section 5 wé give
termination criteria for the new univariate search sfrategy, and show
how this relate§ to previous strategies. ~ Finally, in section 6 we give‘
a convergence result that includes various choices of descent directions
and we suggest a particular way to define a modified Newton iferation.

Since the'algorithm is a descent method we shall begin with a

discussion of descent directions.



2. Descent Directions

The following definitions will be useful throughout this

chapter.

‘ Definition (2.1). Let f: R™ > R be twice differentiable in the dpén_set

D.

"(a) A point x in D is an indefinite point if G(x) has at least

one negative eigenvalue.

(b) If x is an indefinite point then d is a direction of

negative curvature if dtG(x)d < 0.

(¢) A pair of vectors (s,d) is a descent pair at the point x

if when x is not an indefinite point then gts < 0, gtd <0,
-and dtGd = 0, while if x is an indefinite point then

g's <0, g'd < 0, and dfcd < 0.

An example of a descent pair would Be to take s = -g(x). Then
if G(x) is positive semidefiﬁite take d = 0; and otherwise take 7
d = fsgn(gte)e where e is the unit eigenvector corresponding to the ﬁost
negative eigenvalue of G(x). We shall seé that there are more attrac-
tive choicés fhanlthis. However, :egérdless of the specific choice, a
descent pair fails to exist at x only if'g(x) = 0, and G(x) ié pbsitive
semidefinite.

The search strategy we shall present departs’from the usual
strategy discussed in thé introduction. Instead of using only oné
-desceht direction and searching in a line determined by that direction,

we shall consider searching along a curve of the form

(2.1) L “C: {xm = x+¢1(a)s+¢2(a)d: o 3 0}

97
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with (s,d) a descent pair at x, and with ¢1(0) = ¢2(0) = 0. We hope to

produce an o > 0 such that
(2.2) f(xa) < f(x)

If we let 9(a) = f(xa) we encounter a univariate minimization problem
where 9" is continuous as long as ¢$,¢g are continuous. The following

lemma gives sufficient conditions under which (2.2) can be satisfied.

'Lemma (2.1). Let ®: R + R be twice continuously differentiable on the

open interval I which contains the origin, and assume that p ¢ [0,1).

Then there is an 3 > 0 such that

o(a) < @(0) + u[?'(O)a + 8" (0) TZJ
for all o € [0,a] provided that either &'(0) < 0, or &'(0) = 0 and
"(0) < 0.

Proof: The mean value theorem implies that for every v > 0 there exists

8 ¢ (U,a) such that

2
8(a) = 8(0) + &' (0)a + 3" (0) ‘;—
+2[0"(8) - 0" (0) o’ .
Hence,
. . . cnz.
() = 0(0) + u‘(b'(O)a + 9" (0) TJ + rla) ,
where '
- o2
2@ = G0 [e @ + 870) 4]
+208"(0) - 0" (0]a” .
Since
Tim =% < g,
(1'*0+ (;2'

. there exists an o > 0 such that r(a) < 0 for all a ¢ [O,Ej. RS



This lemma not only tells us when (2.2) can be satisfied, but
also'that the function f must decrease by a significant amount along the
éuryé X It aléo indicates that a larger decrease is likely when
"(0) < 0. We, of course, want to use the simplest'functions ¢l and ¢2
which will guarantee that the hypothesis of Lemma (2.1) is satisfied.

Observe that if d(a) = f(xa) with X, as in (2.1) then

(2.3) ¢'(0)

80 (4](0)s + $3(0)Q) ,

(2.4) ' 3" (0)

t .
2(0) S (07 (0)s + ¢4 (0)a)
t
+ (41(0)s + $3(0)d) “6(x) (9](0)s + $3(0)d)
Suppose that gts = gtd = 0 at an indefinite point (this occurs for
instance at a saddle point). Then in order to insure ¢'"(0) < 0O without

imposing further conditions on s we must require ¢i(0) = (0, and

'(0) > 0. Then (2.3) and (2.4) simplify to
¢, ;

(2.5) T 8'(0)

g(x) “(63(0)d) ,

(2.6) 2"(0) = g(x)"(#}(0)s + $3(0)a)

+ (0308 6 (95 (0)d) .
When G(x) is positive definite then d = 0 must be satisfied in order for
(s,d) to be a descent pair. Thus ¢'(0) = 0 and we must have ¢;(0) >.0
: IS
in order to insure 9'"(0) < O. Thergfore, if ¢1(a)‘= jZo

¢2(a) = 'ZoyjaJ then we must have BO = Bl = 0 with 82 > 0 and Yo = 0
j=
> 0.

B.aJ and
J

with Y1 ‘'The simplest functions Qf thié type are, Qf course,
¢1(°‘) =, ¢2(0.) = o .

In this case
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g(x)ta ,

(2.7) 2'(0)

¥

(2.8) - e"(0) = 28(x)"s + de(x)d .

3. A Modification of the Armijo Steplength Procedure

In Section 2 we introduced the notion qf a descentiﬁair. The
motivation.for considering the use Qf a pair Qf vectors rather than the
simpler stfategy of determining a single direction qf descent will be
discussed now. We shall present here a modification of a theorem of
McCormick. 1In [161 McCormick-gives’a modifiqation of the Arﬁijo step-

length algorithm [2] which includes second derivative information in the

form ot directione of negative curvature.

The steplength algorithm will be described now. "Given

YU € (0,1), let {xk: k=0,1,2,.},} Be a sequence of points derived from

‘ fhe given point x. as follows:

0

Determine a descent pair (sk’dk) at X and let ik be the smallest

non-negative integer i such that

‘ L2k i
(3.1) yk,izxk+Y sk+deeD~
and
G.2) £y, ) < £ + pyigts, + Lafc a )
: : k,i’ = Tk K’k 2°k°k k
Take x =y . Lemma (2.1) shows that the iterates are well defined,
k+1 k,i .

then we accept x, as 'a solu-

k

and if a descent pair does not exist at Xy

tion to problem (1.1).

Theorem (3.1). Let f satisfy assumptions (1.2) and suppose that

"skﬂ,”dk" are bounded independent of k. Then
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(3.3) . 1lim (-gisk) =0
k>
and
. t 3
(3.4) lim (—dekdk) =0 .
koo

Proqf: The sequence {fk} is a decreasing sequence which is bounded
below due to the continuity of f and the compactness of L(xo). Thus

lim (f -f

o w1 = 0 Theré are two cases to consider.

Case 1. Suppose the integers {ik} are bounded above by some m > 0.
Then
2m[ t 1.t
F 1 2 WY <[§ksk *3 qukqg]
Since

t t
=8, Sy > 0 and —de d
the conclusion follows.

Case 2. The integers {ik} are not bounded above. Without loss of gen-

erality we assume that lim ik = 4o, By the definition of ik’ if
o koo ‘ l
- kD

Ok » then

2| t 1 .t
(3.5) fk+l z_fk+uok[gksk +-§ dekdk]

However, due to our assumptions on f and L(xo), a Taylor series argument

and the fact that gidk'f_o may be used to show that

(3.6) 'fk+1‘§(fkfoi[g;sk + %-d;ckd;] + E(x 8,500
with , | '
G3.7) 1im r(xk’sk;dk’ok) -0 .

koo Ok ’

Hence, combining (3.5) and (3.6) gives
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A, 1is defined as the most negative eigenvalue of G

‘many indefinite points {x

~r(x,,s,,d. ,0 ) . o
kKK’ Tk’ k% t . 1l .t
(3.8). 2 > =(1-u) gSk t 3 dekdk:I .
’ k

The conclusion follows from (3.7) and (3;8).

The result presented by McCormick did not specify a choice of
X1 when x, was not an indefinite point, but did suggest the Newton

direction. In the case that xk was an indefinite point then

s = ("gk”/"pk")pk with p, a descent direction such that -g;pk Z_cl"ng.

Also, d, was required to be a unit vector such that dtG d < A, where

C
k k' k k ?Gk

In the above

Gk k

statements c,,c, > 0. McCormick was ahle to conclude that if infinitely

Xk } were to occur in the sequence {xk}, then
3

any point of accumulation x of the sequence {xk } must satisfy g(x) = 0,
' k|

.and G(E) is positive semidefinite with at least one zero eigenvalue. A

specific choice of s, and d, was not suggested.

k k

Under the additional hypothesis that the number of critical

points in D is finite, and with a judicious choice of (Sk’d ) one can

'show that the iterates definéd by (3.1) and (3.2) converge to a point x*

where g(x*) = 0, and G(x*) is positive semidefinite. However, Armijo
type sFeplength procedures do not take into account any information
about the shape of the function along the curve X, More sophisficéted
strategies are available for determining tﬁe steplength o .

In the rest gf this chapter we shall be concerned with the
choice qf (Sk’dk)’ and with a steplength procedure which specifies
criteria for terminating a univariate search along curves X, of the form
(2.1). Finally, a convergence result wili be given that indicates these

choices are quite reasonable.
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4. Determining Directions of Negative Curvature

As we shall see, the results'of Theorem (3.1) are useful only if

(4.1) (8fs, + 0) => (g_+ 0) ,
and
(4.2) (@6 d, >0 = (A, >0,

k

G is defined to be the most negatiﬁe'eigenVaiue of‘Gk when Xy is
k

an indefinite point and zero otherwise. Intuitively, if (4.1) and (4.2)

where A

hold then the iterates {xk} are convergi#g to a pritical poin; where the
Hessian is positive semidefinite. Ihese statements will be made precise
in sections 5 and 6. Here We_present variqus ways in which (4.2) can be
accomplished. Matrix factorizations will play an important role. The
factorizations we shall discuss in some detail are Gill and Murray's |
modified Cholesky factorization_[lll,‘and the method of Bunch and
_Parlett [5].

Gill and Murray present an algorithm which‘for any symmetric
matrix A produces a unit lowgr triangular matrix L, a diagonal matrix D
with positive diagongl elements, and a diagonal matrix E wi;h nonnegative

diagonal elements such that
A+E = 1oLt .

The elementé of LD;é and E are bounded relative to the maximum element of
A. This faétorizétion depends'upon nonnegative parameters (§,8). The
parameter g is uscd to.force a bound upon the elements of LD%. The
parameter § in a sense determines the level of positive dgfiniteness
that the matrix A+E is required to havg. Given the parametgr,ﬁ >0,

thie factorization proceeds much the same as the Cholesky factorization
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with the exception that when a diagqnal element'is'found to be .less than
or equal to §, it is modified. This modifiéation is e#pressed in the
diagon#l matrix E. |

It is possible to obtain a direction of negative curvature from
this factorization when § = 0. Assuming A has a negétive eigenvalue,

one- computes an index £ such that Dll— 173 ﬁ_Dj '-Ejj for 1 < j < n. Then

]
the solution d to the equation

Ltd = _ez ,
where ea<is.the unit vector whose E—tﬁ-component is 1, can be shown to
be a direction of negative curvature.
- With this factorization A can have a negative eigenvalue only if
E is nonzero. However, when § > 0 it is pqssible'for E to be nonzero

even though A is positive definite. Thus the direction d obtaiﬁed above

cannot be guaranteed. to be a direction of negative curvature unless

8 =0. Unfortunatelf, when this factorization is used in a modified

Newtoq's method § > 0 must be specified to obtain a proof of convergence.

The'factbrization'qf Bunch and Parletrr allows an alternative
that avoids this difficulty. We have already discussed.this‘factoriza—
tion in chapters I and II,Abﬁt we wish to emphasize here the broperties
of this factorization relevant to this discussion.

Given any symmetric'matrix A thé‘factorization will obtain a
permutation matrix Q; a block diagonal matrix D, and a gnit lower tri-
angular matrix M such that |

QaQt = momt .

The matrices M and D satisfy



(4.3)
.0
(4.5)

(4.6)
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The elements of M are bounded by a fixed positive

constant which is independent of the matrix A.

D is a block diagonal matrix with one-by-one or

two-by-two diagonal blocks.

D has the same number of ppsitive, negative, and zero

eigenvalues as A (Sylvester's Inertia Theorem).

The number of 2x2 diagonal blocks plus the numbér pf
negative diagonal elements which éccur as 1x1 diégonal
"blocks .of D is equal to the number of negative eigen-
values of A. In the case that.A'is positive semi-
definite, D is a diagonal matrix with nonnegative

diagonal elements.

The following lemma will show how this factorization can be used

to obtain directions of negative curvature which satisfy (4.2).
!

Lemma (4.1).

is symmetric.

J
eigenvalues
k
Let z.= Z z
j=1
(4.7)
Then

{z.: §=1,2,...

X nX
Let A = WRW® where W ¢ R " is nonsingular, and B ¢ R

Assume that A has at least one negative eigenvalue. Let

,m} be unit eigénvectors for B corresponding to

A 2 A 2 a2 <0,

. where 1 < k < m and let

Wty =z
A > KP[K. (W) ]2 Yy AY
AT T2 t

yy
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where A

A is the smallest.eigenvalue of A, and KZ(W) = ”W""W-ln is tﬁe

Euclidean condition number of W.

Proof: If x is a unit eigenvéctor for A corresponding to AA then

xtAx = A th then

A ané if u

A

A xtAx = u®Bu 3_Al"u"2 .

Moreovef, since [uf| < [W|}, and A <0,
@8 e fw)? .

Now note that from (4.7)

¢ |k k k
yAy = | Yz, | Bl Yz |= YA <0.
j=l J J= J J=l J .

‘ e[k ’ 1 L
Since ||yl = |w "} I z. |l < k|w "] we have

e

' k
: Ao

t Ly A

4.9) - YAy . =1 < 1

t, = 2y =12 = 2y =2 C
yoy KW TR
Together, inequalities (4.8) and (4.9) give the desired result.

If Lemma (4.1) is to be uéeful, then Wty = z must be easy to

solve. Also, the eigensystem of B must be readily évailable, and the

factorization A = WBW® should be relatively cheap to compure. These

reqﬁirements rule out a‘full'eigensystgm decomposition of A and also the

factorization of Aasen [1] which gives B in tridiagona11form. However,

the Bunch-Parlett factorization certainly satisfies all these require-

ments with the additional feature that K,(W) has a bound that is
independent of A,
Fletcher and Freeman [8] have éuggeSted the use of this factofi—‘

zation to obtain a direction of negative curvature. The direction they



suggest corresponds to taking k = m in Lemma (4.1). However, Lemma
(4.1) suggests that the best direction to use is with k = 1 since this
reduces the magnitude of the constant kz[Kz(W)]2 and is slightly cheaper

- to compute.
5. A Steplength Algorithm

Once a descent pair (s,d) has been determined at a point x then

we are faced with the problem of determiningla such that
f(xa? < £(x)

2 P ' =
where X, = x+0 stad, 0 < a. One solution would be to determine o such

that

(5.1) £(x3) ='1;;—3' £(x,) »

but this is a very difficult computational problem. It is computatién-
ally more desirable to replace the problem of satisfying (5.1) exactly
with the specification of criteria for terminating a univariate minigiza—
tioﬁAprocedure thgt is designed to solve (5.1).

Such an“approach is méﬁivated by the success qf previous algo-
rithms which have been used when a single descent direction is specified.
Given a descent direction s at a point x, one such algorithm is to ter-

minate the..line search when an & has been found which satisfies

(5.2) g(X+oTS)ts > ng(X)tS s
and |
(5.3) f(x+as) < f(x) + aug(x)ts ,

where 0 < p < n < 1 are preassigned constants.. If a sequence of points

1 1 = w1l = = =
{Xk’ are determined where_xk+1 xkfaksk with x = %), & Spr @7 oy
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satisfying (5.2) and (5.5) for each k, then
) t ) t
and hence
t

(5.4) " gk+1_gk|| 2 ‘(1—n)8k5k/ ”'Sk" .

- It follows from (5.4) that

: t

(5.5) oy lleyll 2 w(-<1-n,>gksk/|(sk||>
where ¢ is the reverse modulus of continuity of g [17, p. 482]. Since

fk+l i-fk’ and f must be bounded below on the compact set L(xo), we have

that 1lim (fk-

k>

(5.6) (@ lls ) gps, /lls ] > 0 .

fk+1) = 0 and thus (5.3) %mplies.

Since w(tk) + 0 implies t, > 0 it follows from (5.5) and (5.6) that

k

(5.7) lim g s, /lls,Jl = 0 .
koo

k

are relatéd so that (5.7) implles»"gk” + 0 which in
turn implies ”Sd| + 0. Thus it is concluded that ”kal—xkﬂ + 0 and

~ Usually g, and s

Hgk” + 0 as long as the a are bounded. This is enough to insure that

k

1lim x, = x*
P
with x* a critical point of f due to the following lemma given in [17].

Lemma (5.1). Let f: D c R™ + R be continuously differentiable on the

compact set Do cD. Let
S = {x:'x € DO’ g(x) ='O} ,
and assume that S is finite. If {xk} c Uo is a sequence such that

lim ”xk+1—xk" = 0, iim;"gk”‘= o,
koo ko
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then lim x, = x*, where x* e S.

koo

k
Proof: See [17, p. 476].

- A full discussipn of this type of strategy may be found in [17]. Par-
ticular algorithms of this type are given in [12,17]}. The strategy has
a geometrical interpretation which is depicted in figure 2.

Ayv

' f(xa) ,
T~ ,/// LG
- .

Sy =£fkx) + ang (x) °s
y=c+ ang(x)ts

Figure 2
A-Search Along x+as
Here p = n and o* is the smallest ﬁositive root of the equation
g(x+as)ts =}ng(x)ts. The local quadratic approximation to f(x+ap) is

2

6(a) = £(x) + 0g(®) %6 + 7 a’s"C)s

which'ié convex near o = 0 if G(x) is posifive definite as shown in
figure 2. Condition (5.3) guarantees sufficient decrease of the func-
tion so that‘“gk" + 0 which means that f(x+ap) lies below the top line
in figure 2. Condition (5.2) guarantees that the distance ka+1 - xk"4
does not become arbitrarily small, .The picture indicates that the only
possibility'for a¥ 5-dk to be small is that x 1s close ﬁo a local

minimum.
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The termination criterion we shall give may be viewed as an
extension of these ideas which are suitable for the situation when an

iterate x, is an indefinite point. We replace (5.2) and (5.3) with the

k

following rule. If (s,d)Ais a descent pair at x then we terminate the

search when a has been found which satisfies

(5.8)  8(x)"(23s + @) > nlg®s + 2a(e%s + %dtcd)] ,
and
2.t 1.t |
(5.9) f(xa) fif + ua"[gs + Ed Gd] , : -

with 0 < p < n < 1 as before. Note that when d = 0 these conditions
reduce to those of (5.2) and (5.3). Again there is a'géometrical inter-

pretation which is depicted in figure 3,
1#

y=f+ ahgtd

f(xa)

r‘//~y = f +_n[ugtd + az(gts+dtGd)]

LY ¢ + n[czgtd + az(gts-l-fdtGd)]

Figure 3
A Search Along x+a2s+ad



Here o* is thersﬁallest positive root of the equation
g(x )" (2astd) = nlg"d + 2a(g"s + 3a%6D)] .
The situation shown in figure 3 describes the shape of f(xa) along the
curve
c: {x :x_ = x + azs+ad}‘ .
. a- o - ?

where x is an indefinite point (see figure 4).

4k/—c
d
Figure'4
The Curve x+azs+ad

An additional requirement is placed on a steplength algorithm -at an
indefinite point. Sufficient decrease qf the_function must be used to
‘force the negative eigenvalues Qf the Hessian to zero as well as to
force the gradient to zero. This is guaranteed by condition (5.9). In
addition to this we must not let “xk+i —‘xk” become.arbitfarily small.
This is accomplished by condition (5.8). The a* picturéd in_figure 3 is
similar to its counterpart in.figure 2. The picture suggests'that the
only possibility.for a* to become small is:for the iterate X, to be
close to a local minimum. The ipflection point which must occur along
the path C must either bé créssed or become "flattened out" in the
iterative process;

| We ﬁoté with Fletcher and Frgemah [8] that if a direction dk of

negative curvature alone is used (taking s = O)'then the condition

111
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~lg;+1dk| j_fng;dk is inappropriateAfor<terminatioﬁ of Fhe linear‘search
because g;dk may be closé to zero'even‘far away‘from a minimum. Théy
._found'it,necessary to give términatién'criteria based on ‘an gstimate of
the‘first derivative qf‘f(xa) at the ipflection point. The estimate
was<obtained_from the value qf the derivative qf a ;elated,quartic poly-
nomial at its corresponding ipflection'point.
The following lemma will'show that conditions (5.8) and (5.9)

can be satisfied whenever a descent pair exists at a point x.

Lemma (5.2). Let &: R - R be twice continuously differentiable in an
open interval I which contains the origin; and suppose that L(0) c I is

compact where L(Q) = {a e I: ¢(a) < ¢(0)}. Let u € [0,1) and n € [u,1).

Then if &'(0) < 0 and 9"(0) < O there is an o € (0,) n I such that

(5:10) 8'(a) > n[e'(0) + o"(0)a] ,
and | :

' L . -2
(5.11) 2(a) < 9(0) + u[8'(0)a + ¢"(0) %]

Proof: The assumption that ¢'(0) < 0 and ¢"(0) < U implies the existence
of B € I with ¢(a) < @(05 for 0 <o < B. Let B = suﬁ{B: ®(a) < 9(0)
with 0 < a < B}. Then 8 > 0, .and the assumption on L(0) implies B € I

is finite. The continuity of ¢ implies ¢(0) = ¢(B). Thus

(5.12) : o(B)

|v

2
8(0) + u[8'(0)8 + 2"(0) £,

Define h: I + K By

| -
o(a) = ©(0) - n[e'(0)a + #"(0) &1 .

h(a)

Since u < n we have h(g) E_O. Note also that h(0) = 0, h'(0) < O,
h"(0) < 0. This together with the continuity of h implies the existence

of 61 e (0,B] such that>h(81) = 0, and h(d) < 0 for all a € (O,Bl). Now
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Rolle's Theorem implies the existence of a € (O,Bl) such that h'(a) = 0,

and (5.10) follows. Also, h(a) < 0 and ﬁ < n imply (5.11). 0
1f we take ¢(o0) = f(xa) then Lemma (5.2) implies that conditions (5.8)
and (5.9) can be satisfied. In the next section we will show how these

conditions may be used to prove the convergence of a modified Newton

method.
6. Convergence of the Modified Newton Iteration

Now we turn our attention to defining a modified Newton itera-
tion. We shail give a convergence result based on thevuse qf descent
pairs and the steplength algorithm discussed above. The proéf proceeds
in two pafts{ The first result is soméwhat independent of the dgfini—
tion of the iterates. The second part will use the particular way in
which the itérates_are defined to establish convérgence.

| The general iteration from a point X begins with determining a

descent pair (Sk’dk) at X - Let

(6.1) A @k(a) =.f(xk + azs + adk) .

k
Assume p € (0,1) and n € [u,1) are independent of k. Then o > 0 is

determined such that

(6.2) Ve = ¥t aisk +ad 0,

: o 2
L %k

6.3 £(y,) < £Gx), + uop(0) 5

(6.4) 01(a) 2 nl8L(0) + oN(0)ay]

Take %41 = Yy-

One mightvnote that due to (5.11) in the statement of Lemma (5.2)~
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2
. . . _.a :
we could require f(y,) < f(x,) + u|®'(0)a, + ¢'"(0) K instead of (6.3).
. k7 — k k k k 2 ;

However, the additional term does not enhance the éonvergence.result in
any way, while it -does give a more stringent requirement to be satisfied

by the univariate search. The first step in the convergence result is

Theorem (6.1). Let f satisfy assumptions (1.2). Then the iteration

defined above satisfies

t
(6.5) lim -g,s, =0,
k k k.
and
t .
(6.6) lim -d G . d,_ = 0 .
Jx<o kkk

. ’ | ' = t. " =
Proqf. From (2.7) and (2.8) we have ¢k(0) : gkdk and $ (0) ng k

t . A ' "
dekdk' Since (sk,ﬁk) is a descent pair, @k(O) < 0, and Qk(O) < 0.

Thus (6.3) implies that {xk} c L(xn). By the continuity of f and

compactness of L(x ) we have 11m(f k+l) . Now
2 ke
: -t - 1" —_— r 4n
fk,tk+1 > qu(O). > > 0, so that
o ) 2t .
(6.7) 1im —apts = 0
, ko K k'k ’
and
(6.8) i%ﬁ akdekdk 0.

From condition (6.4) we obtain

|v

o (a,) = #1(0) ~ a0} (0) (- [9,€0) + 9 (D]

and hence

|v

2 oy) = 20 = @O 2 (Lm0 >

An application of the mean value theorem now yields that for some

ek € (O,Gk),
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(6.9) 2,.(8)) = 2p(0) > ~(1-n)eyi(0) .

The desired result now follows réadily, for if either (6.5) or (6.6) .do

not hold, then there is a subsequencé {ki}'and a ¢ > 0.such that

(6.10) el (0 20> 0.
i

Hence (6.9) implies that {dk } does not converge to zero. However, if
i .
{ak } does not converge to zero and (6.10) holds, then (6.7) and (6.8)
1 :

cannot be satisfied. This contradiction establishes the theorem. 0

The {ak} of (6.2)-(6.4) are to be determined by a ﬁnivariate
minimization algorithm applied to @k(a); Let B > 0 be_fixéd, and termi-
nate the search whep 0<a <B has been‘found such that (6.4) is
satisfied with &_ig place of oy . If (6.3) is also satisfied we accept

o = a. If either (6.4) cannot be satisfied (say wi;hin a fixed nuﬁber
of steps)_or if a does not satisfy (6.3) we take w to be the largest
element of the set {Z-i: i=0,1,2,...} such that (6.3) is satisfied with
aw in place of oy and then accept dk = aw. If infinitely many qf thé
ak's ﬁust be determined in this way, then Theorem (3.1) applies so that
(6.5) and (6.6) are still obtained. We shall call this process the
steplength rule SR(u,n,B).

Our pex; resulﬁ will show that the iterates defined by this
steplength rule converge to a critical point of f where the Hessian is

positive semidefinite. It is here that specific properties of the

descent pairs (Sk’dk) are crucial.

Théorem (6.2). Assume in addition to the hypothesis of Theorem (6.1)

.that f has finitely many critical points in L(xo). Suppose that the

sequence {ik: k=0,l,2,.;.} has been obtained using the steplength rule
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zero eigenvalue.

hence lm ||x
. ko

SR(u,n,B) where the descent pairs (Sk?dk) satisfy

{llsll> Hayll: %=0,1,2,...} is bounded' together with -

e E o |

(6.12) .(gksk -+ .0) ->“(gk + 0 and Sk +.0 ,
and '

(6.13) (dek Kk -.0) => «-(?‘G‘ > 0 and dk + 0) ,

k -

as k > », Then

lim x, = x*
koo k

“with g(x*)'= 0 and G(x*) positive semidefinite: Moréove;, if infinitely

many of thé x, are indefinite points, then G(x*) must have at least one

Proof: From Theorem (6 1) we see that lim gk Kk = 0 and lim dekdk 0.

By (6.12) we have gk -0 and S, 0. By (6.13) we have AG + 0 and

k-

dk -+ 0. Now,

Iy - % < 828l + slla)l
K+l ~ 'k” =0.

Therefore, Lemma (5;1) applies and we obtain

liw a, = z% ,
o k

Gy

thét G(x*) musf be positive semidefinite. Moreover, if infinitely many

with g(x*) = 0. Since A. - 0, .we also have by the continuity of G

of the xk

an indefinite point. Thus the continuity of G implies that G(x*) has at

are indefinite points then every neighborhood of x* contains

least one zero eigcnvaluc. : ) L ‘ 0

Obviously, the proof of Theorem (6.1) rests on the steplength
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rule, while the proof of Theorem (6.2) .rests on.the particular choice of

the descent pairs. Many choices of s, "are possible which satisfy (6.12).

k

: Indeed, if Ak is any sequence of symmetric positive definite matrices
such that “Ak",”A;IH are bounded independently of k, then choosing Sy

as the solution of

Ay = 8y
will satisfy (6.12).

In section 3 we gave several ways to choose the dk at an indefi-

nite point so that

(46,4, > 0) => O, > 0) .
. 6,

The additional requirements that dk must satisfy are obtained if we

replace d with~iy(AG )dk’ where y is a function such that Y(tk) + 0 =>

-+ 0, and where the sign is chosen to make g{idk < 0.

k

t —

k
The iterates should also reduce naturally to Newton's iteration

as soon as a region is found where the Hessian is positive definite.

[

Indeed, the main motivation for this strategy is to obtain the iterates

using second defi&ative information Which ig baséd on the true quadratic
model at each X - of course;.it:is,expected that iﬁ practice very few
indefinite points will bevenqountered during the iterative process. In
‘fact, Theorem (672) indicates that the strategy we have presented
1&cti§elz seeks a regipn where the Hessian matrix is positive semi-
definite. If, for example, the Hessian G(x) is nonsingular whenever x
vis a critical point of'f then only finitely many qf the iterates can be
indefiﬁite points. ‘

Finally, we shall suggest a way to obtain the descent pairs
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'(sk,dk).which satisfy all of .the requirements of Theorem (6.2). In our
e : ut o o |
description we assume G, = MkaMk.is'theABunch—?arlett.factorization of
the Hessian. Thus we have omitted explicit representation of the per-
mutations Qk which will be present in practice. Given f and X which

satisfy the hypothesis of Theorem (6.2), for k=d,1,2,... define
(6.14) - s, as the solution of
(MDM)s, = -
M DM s = 8y
o =
where D, = U AU, 1s obtained from D, by first.

obtaining the eigensystem D, = U A Ut of D, and

k k'k'k k
then replacing the diagonal elementslkgk) of Ak
wiLh

max (1A§k)|, £n max.rkik)|, e) ,

' ' . 1<j<n 1<i<n
where ¢ is the relative machine precision. In the decomposition of Dk
we have U;Uk =1, and Ak diagonal. Note that only O(n) arithmetic

operations are required to obtain Dk from Dk’

(6.15) d, is the solution to

k
t %
= *|

Mkdk ﬁlAD Ixzk
, 'k '

where Ab is the most negative eigenvaiue.and Z,
k o

the corresponding unit eigenvector pf Dk. When Dk

does not have a negativé eigenvalue we take dk = 0.

The compactness of‘L(xo) and the continuity of G imply that the
elements of Gk and the compoﬁenfs of g, are uniformly bounded. Thus
(Sk’dk) satisfy the requirements of a descent pair as well as (6.12)

and (6.13) due to the bound on the condition numbérs.Kz(Mk).
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The above choiceApf (sk}dk) is .somewhat ad hoc and we make no
mathematical statements cdncerning‘theldesirability pf.this.chqice.
However, in the ne*t chapter computational results will be reported
which show that this specification qf (sk,dk) works .reasonably well in.
practice. We wish to emphasize that many other choices are possible.

We have not- addressed the problem of providing an initial step a
to the univariate search. Many strategies'fof determining ‘the initial
step are possible. However, we have not found a strategy with enough
theoretical basis to recommend it over something very simple such as
taking the initial step to be o = 1 each time. Note, however, that
whatever strategy is chosen must eventﬁally take o = 1 in ofder'to retain

the local quadratic rate of convergence enjoyed by Newton's method.
7. Conclusions

The algorithm we have just described has the following informal
description:
(7.1 Given X, € D
for k=0,1,2,...
(1) Determine a descent pair (sk,dk)

(2) Determine a, by SR(u,n,B)

2
3) X1 = % + o s, + akdk .
Step (1) involves evaluating and factoring the Hessian Gk' Step (2)
involves the use of a univariate search that can satisfy SR(u,n,B).
The importance of this iteration is that it represents a natural
extension of previous theory to include second derivative information.

It avoids saddle points and possesses a strong theoretical convergence
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property. Finally,.theniteration,.even in .this preliminary stage of

deveiopment,.performsAwell in pfactice.
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Chapter V

Computational Results
I. Introduction

The purpose of this chépter is to present computational support
qf the theoretical results obtained in chapters II, III, and IV. The
updating algorithm was tested for timing and accuracy oﬁ a large number
of random up&ating problems. The optimization aigorithm was tested on a
set of test problems which Have been used extensively at Argonne’
National Laborator?lfor such purposés [5]. In addition to this, the
algorithm was tested én some problems which demonstrate its.behavior

when many indefinite points are encountered during an iteration.
2. Testing the Updating Algorithm

There are two important criteria for testing an updating algo-
rithm. The first criterion is that the updating algorithm actually
should represent a computational savings over the alternative of forming
the updated matrix and refactoring. The second criterion is that solu-
tions of linear equations using the uﬁdating methoq should be reasonably
close to solutions obtained by forming the updated matrix and
refactoring. |

Timing the updating aigorithm,and compariné to the alternative
is a straightforward taék; In order to address the question of accuracy
one must decide what quantities should bé measured and compared. For

each update it seems reasonable to compare

@ s/
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with

2.2 Jax o] /]]

for several right hand sides b. In (2.1) the vector x; is the solution
obtained by forming and refactoring the updated matrix. In (2.2) the
vector X, is the solution obtained by using the updating algorithm. The

quantity
(2.3 = I /1=l

should also be cbmputed.

The qqéntities in (2.1) and (2.2) mEasﬁrP the relative aerror in
the residual. This-relative re;idual indicates how close the computed
solution is to satisfying the equation Ax = b relative to the size of
the right hand side b. The quantity (2.3) measures how much the answer -
obtained by‘the updating method has deviated from the answer obtéined by.
computing and refactoring the updated matrix.'

The procéss used ﬁb'test these criteria camn most easily Be des-
nr{bedAby‘means qf an informal algorithm. Giveu a dluenslon n, we start
with A = I the ﬁxn‘;dentify matrix. Theg the following iteration is
carried out. |
(2.4) A:=1 ,

for k=0,1?2,...,m
(1) =z ¢ Rn is éhbsenlwith random components in (-1,1);

(2) o ¢ R is a.random number in (.-100»,100‘).

t

(3) A=A+ o2z

&

uuu

"
=
(=,
=1

(3.1) _Guxas by updating;

]
=
(=
=1

(3.2) ECKEE by forming A and factoring;
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(4) for j=1,...,5
(4.1) b« Rn is chosen with random components in
(-50,50);
(4.2) Solve Ax = b
(i) Using (3.1) to compute X3
. (ii) ’Using‘(3}2) to compute X _;
(4.3) Compute
@ Iae ] /]l

(1) [ax -]l /| bl

(iii) [x_-x [/

.
b

The steps (3.1) and (3.2) of iteration (2.4) were timed. These
timings were averaged over the number m of updates. Thus the time re-
quired by the updating algorithm can be comparéd'to the time required. by

. the alfernative of computing A and rgfactoring. The solutioﬁ to Ax = b

was computed for five different right hand sides after each update. This

was done to increase the chances of obtaining a large residual

HAxu—bH /||b]|. The quantities (2.1), (2.2), and (2.3) were averaged over
all iterations and right hand sides. The results are shown in tables 2
" and 3. |
Table 2 shows the above quantities for various values of the

dimensioﬁ n. In Table 2 UAVE is the average value of "Axu—bll/"bu, CAVE

is the aﬁerage value of "Axc—b||/“b”, and AVERR is the average value qf

“xc-xu"/|lxc|, The quantity CTIME is the average time to compute and

refactor X and UTIME is the average time to update the factorization.
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‘Table 2

Results for Increasing Order

n UAVE . CAVE AVERR UTIME| CTIME

506x107 | 4ax10!® | 4x107tt | 167 | 424
10 2x101%}2x107* | 3x1073 | 320 1567
20 1 x107!% | 3 x107! | 1 x107%3 | 706 | 6459
30 | 3x 10723 | 7 x 1071 | 2 x 10713 | 1162 | 16606
40 | 8 x 10713 | 2 x 10723 | 4.x 10713 | 1819 | 32468
50 | 2 x10°%2 ] 3x107'% | 4 x107'3 | 2533 | 55016

The times shown here are in microseconds. - The important thing
to note is the relationship of UTIME to CTIME as n increases. To see
that the numbers are in the correct proportion one should compare n2 to

3
UTIME and 2~ to CTIME. Observe also that there is roughly only a one

6
digit loss of accuracy using the updating algorithm. -For each of the
. results in Table 2 we have taken m = 100 in (2.4).
Table 3 shows the results of a particular updating seqdence
computed by the iteration (2.4). 1In this example n = iO. The updating
- process was carried out for 1000 updates. The results sﬁow every fifth
update selected from the beginning, middle, and end of these computa-
tions. In Table 3 the quantities are not averaged. UERR is
"Axu—b||/“bﬂ, CERR is "Axc-bll/"b“, and XERR is "xc—xun /“xC" for only
one right hand side. UTIME and CTIME are the timings for each indi-

vidual update in this case. For the entire sequence, the average

quantities were UAVE = 2 X 10_13, CAVE = 3 x'1ow15, and AVERR = 1 x 10713,
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Table 3 i
Results of a Long Range of Updates

"UERR CERR " XERR UTIME| CTIME
6 x 10735 | 4 x107'° | 8 x 10716 312 | 1563
7 x10°M | 3 x 107" | 6 x.1071% | 313 | 1875
beginning | 3 x 1072° | 7 x 1071 | 3 x 107'% | 521 | 1979
1x107 | 5 x1071° | 2 x107'% | 417 | 2083
=14 15 -14
1 x 10 4 x 10 2 x 10 417 | 1563
5 x 107" | 6 x 1078 | 5 x 107 | 312 | 1667
2 x 10713 | 1 x 1071 | 7 x 1071% 313 | 1562
middle 8 x 107% | 6 x 10718 | 4 x 107" | 208 | 1563
7 x10°™ | 1x10715 | 5 x 107 | 312 | 1980
-13 16 -13
1 x 10 4 x 10 1 x 10 312 | 1667
7x10° 13 | 3x 10715 | 2 x107'% | 208 | 1458
5x 10713 | 3x107!% | 5 x 1073 | 312 | 1667
end 5x10 %3 | 1x 10785 | 2 x 107'2 | 209 | 1458
2x10°3 [ 1x10715 | s x107'% | 209 | 1772
~13 -15 -13
1% 10 1 x 10 2 x 10 312 | 1563

These .results indicate that the error analysis in Chapter III is
somewhat pessimistic. In particular, Table 3 shoﬁs that obtaining the
factorization by the updating method does not deteriorate much even over
a long range of updates. The timings show that the operation'count
~given in Chapter II was indeed a worst case analysis. They indicate
that the worst case rarely happens. This is demonstrated in Table 3
since for matrices of order lQ the operétion count predicts that the

updating algorithm should require as much work as the alternative.
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One disadvantage of the updating algorithm is the length of
computer code necessary to describe the algorithm. The timing results
indicate that it would be a worthwhile project to see if the length of

code could be decreased; perhaps at the expense of increasing the

~operation count slightly.

3. Testing the Modified Newton's Method

The unconstrained 6ptimization algorithm déscribed in Chapter IV
was tested on some standard minimization probleme. Thc computer imple=
mentation is still under development. - Therefore, the results presented
here are to be regarded as an indication that the method is promising.
There are a number of practical considerations that must be settled
before this algorithm can be recommendedAfor'general use.

‘One qf the practical problems is the choosing of the descent’
direction s at an indgfinite point. We have descrihed nne way in
Chapter IV, but we'feél that others should be tried. Also, it is not
clear what the scaling qf the descent direction s should he relative to
the direction of negative curvature d.

Another problem is choosing the initial step for the linear
search procedure at an indefinite point. Enough information is avail-
able at an indgfinite point to use a cubic polynomial to preéict an
initial step. To do this, one interpolates f, f', f" at x where the

. . ' 2 $ e .
derivatives are taken along the curve x+a stad. The resulting cubic

polynomial is then required to achieve a decrease A at its local minimum

-~

a. The number A is the amount of decrease obtained on the last itera-

tion. This prbcess uniquely defines a polynomial p. We then havg



o = (3A-2£')/E" .

We also require that the initial step o, satisfy .5 < o < 1. Thus we

A 0 0
take aq = o if .5 §_; < 1. Otherwise we take the closest endpoint to &.
Obviously there is little theoretical justifiéation»for this choice of
ao, but it does an gdequate job when sgfeguardéd as mentiéned.

Finally, there is always the task of choosing parameters. For
instance we must specify u, n, and B for the steplength rule SR(u,n,B)
(sée Chapter 1IV). In addition fo this we must specify criteria for
accepting an iterate as an approximation to a local minimum. This, of
course, requires the specification qf other parameters.

In the following examples we have taken u = 10_4,'n = .9, and

6 . . o o
B = 10 . An iterate x, 1is accepted as an approximation to a local mini-

mum when

(i) The Hessian is positive semidefinite,
. . 2
(ii) lfkffk;ll < (7 +e)(1+|fk|),
(111) oy _4lls 4l < (T+/E)(1+uxkn),

. (iv) gisk < 32/_3(1+|fk|)2 .

Here & is the relative machinc precision. The parameter T is specified
by the user but defaults to 10V if found to be smaller than €. For
these examples T is given the dgfault value., These stopping criteria

are used in the Gill and Murray algorithm. We havé adopted them in order
to obtain a good comparison of the two algorithms. TheseAfunctions were

used as test problems:

127
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(3.1) Rosenbrock's Problem;
n=2,
£ = (’i-xl)2 + 100 (x, %),
standard‘start: (-1.2,1.0).
. (3.2) Powell's Function of Four Variables;

n =4,

2 2 4
:f .(x1+10x2) + 5(x3~x4) +,(x2-2x3) + lO(xlfx4)4,

standard start: (3.0, -1.0, 0.0, 1.0).
(3.3) * Brown's Function with Two Global Minima;
n= 2,

2 2 . 2 : 2 2
(Xl_xz-l) + ((xl-xz) + (xz_o'-_s) - l) ]

f
standard start: (0.1, 2.0).

(3.4) : Powell's Badly Scaled Function of Two Vériables;
n= 2,

f = (1o4x1x2-1)2 + (¥l 4+ ¢7*2 _ 1.0001)2,

standard start: (0.0, 1.0).

(3.5) , Box's Function;

n=3

;
i=1

where 6, = /10,

Af (e—xldi _ C—xzéi' _ x3(e_6i _ e—lOGi))Z

standard start: (0.0, 20.0, 20.0).
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(3.6) Wood's Function;

n =4,

h
1]

2,2 2 2,2
100(x,=x7)* + (1=x)? + 90(x, x50 + (1-x,)°
+10.1(G,x) % + (1,1 %) + 19.8(x)=1) (x,-1),

standard start: (-3.0, -1.0, -3.0, -1.0).

(3.7) ‘Penalty Function I;
n = 4,
n n 2 :
f=A Z(x.—1)2+13"z x%—l] , where A = 107, B = 1,
. i . i 4
i=1 =1

standard start: x; = i, (for 1 < i < n).

(3.8) EXP6; .

n =06,
3 X124 -X0Z3 X524 2

£= ) xpe 191 o x e 2% 4 x e 0% -y )T,
s 3 4 6 i
i=1 -2 -10z4 -4z

where y, = e Zi _ s5e 14 3e 71,

z, = (0.1)i, (for 1 <1 < 13),

standard start: (1.0, 2.0, 1.0, 1.0, 1.0, 1.0).

(3.9) Brown's Badly Scaled Problem;

n= 2,

6,2 | -6,2 2
f (xl—lO Yo+ (x2—2X10 Yo+ (xlx2—2) .

standard start: (1.0, 1.0).

(3.10) Beal's Function;
n= 2,
3 1.2
f = 'Z (Ci-xl(l-xz)) R
i=1
where ¢y = 1.5, c24= 2.25, cg = 2.625,

standard start: (1.0, 1.0).
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(3.11) Rosenbrock's Cliff Function;
n= 2,
x.-312
i [100) - Gy + 200072,

standard start: (0.0, -1.0).

(3.12) Cubic Function;

2

7
£= 7 fi + 2,
‘ i=1" :
» £5 = £y

_ 2 2 4
5 _.f6 = O.lxl(x3el) . f7 (x3-1) .
standard start: (2.0, -3.0, 3.0).

TS

_ 2 2 _ N4
= 0.1xl(x2—l)_, f4 = (x2 1),

£
=
U]
H
o
Fh
=
]

x

Hn
|

(3.13) GutLfrled's Functlun;
n=2,
_ _ _ 2
‘f = (xl 0.1136(x1+3x2)(1 xl))

2
+ (x2 + 7.5(2xl-x2)(1—x2)) ;
standard start: (0.5, 0.5).
(3.14) Four Cluster Function;

n=2,

' 2 2
'f [(xl—xz)(xl-sin(xz))l .
] . T =2
+ [(cos(x,)-x,) (x,~cos(x;))]",
standard start: (0, 0).
(3.15) Hyperhola-Cirecle Function;
n=2,
_ 2 2.2 ,.2
£ = (xlxz—l) + (xl+x2—4) ,

standard start: (0.0, 1.0).
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Table 4 shows the results qf these tests on problems (3.1) -
'(3.15) with the starting point X, taken to be the standard start. The
results of the Gill and Mprray algorithm on the same problems are also
given in this table. For each problem the'first entry is the result of

the algorithm presented in Chapter IV and the second entry is the result

of the Gill and Murray algbrithm. The quantities represented are:

NITER

= the number Qf Hessian evaluations,
NFEV = the number qf‘function evaluations,
g% = el
POSDEF'= T if the Hessian was‘found to be positive
semidgfinite at the solution, and F otherwise,
NEGCNT = the number of indefinite points encountered

during the iteration,

FLAG = 0 means normal termination.
1 means abnormal termination.
(We note that for either algorithm an abnormal
termination maylhave been indicated even though

: ! .
the approximation was close to the solution.)
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Table 4

Results of Tests with Standard Starts’

# NITER | NFEV gte POSDEF | NEGCNT | FLAG
21 28 5x 10 19 T 0 0
34 23 29 6 x 10”27 0
29 30 5x 10 28 T 0 0
32 - 25 25 |5 x 1072} 0
8 10 0.0 " 0 0
>+ 9 10 1x 1018 0
138 239 1% 100 T 2 0
>4 T g 344 |2 x 10700 1
14 18 2 x 10777 T 2 0
30 10 10 4 x 10728 1

38 48 2 x 10'}7_ T 1 0
>-0 39 50 1x 1017 1
34 43 2x10°°° | T 0 0
> 36 44 1 x 10720 0
527 1000 6 x 10°° F 527 1
3-8 47 382 4 x 102" 0
10 2 x 1071 T 1 0
29 8 10 2 x 107" 0
' 9 11 9 x 107" T 2 0
°-10 9 71 2 x 107! 0
27 28 3 x 10727 T 0 0
Y 29 1 x 107%° 1
66 67 2 x 1077 T 0 0
s BEY 33 | 1x10°" 0
16 9 x 102> | T 3 0
> 13 1354 4 x 10°° 1
11 12 1x 10 °° T 0 0
3.1 14 33 1 x 102" 0
6 0.0 | T 1 0
2+ 1 g8 |9 x10°° 0
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The algorithﬁ presented in Chapter IV requires the calculation
qf‘the'Hessian'from an analytic expression in order.for the underlying
theory to be valid. However, one may want to use the algorithm with a

‘finite difference approximation to the Hessian. In Table 5 the resﬁlts
Qf using such an approximation on problems (3.1) - (3.15) are presented.
'The headings in this table are as in Table 4. Again we use the standard
starts for Xy It should be noted that except for Powell's Badly.Scaled
Function (3.4), there is little difference between the behavior of the
algorithﬁ with finite differences and with analytic derivatives.

Table 5

Results from Using Finite Differences

# | NITER | NFEV g% POSDEF| NEGCNT| FLAG
3.1 21 | 28 1 x 10 '8 T 0 0
3.2 1 29 30 7 x 1028 T 0 0
3.3 8 10 3 x 10 28 T 0 0
3.4 | 553 1000 1 x 108 F 546 1
3.5 14 18 3 x 10 2° T 0
3.6 38 48 5 x 10717 T 0
3.7 34 43 3 x 10 2} T 0
3.8 561 1000 g x 107 ° F 561 1
3.9 1 23 2 x101% T 2 0
3.10 9 11 3 x 10 12 T 2 0
3.11 34 44, 2 x 1071® T 16 0
3.12 66 67 2 x107%% | T 0 0
3.13 8 16 3 x 10 17 T 3 0
3.14 11 12 2 x 10~ 20 T 1 0
3.15 6 7 6 x 1030 T 1 0

The use of standard starting poihts on these test examples does

not fully reveal the performance of this algorithm. Some Qf the
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standard starts are in regions such that little or no.qegative curvature
is encountered during the iteration.
algorithm performs when many indefinite points are encountered; we
include results qf the algorithm on problems (3.5), (3.8), (3.9), and
(3.13) with random starting ﬁoints. These results are presented in
tables 6, 7, 8 and 9. In each table fﬁe results from ten random starting

points are given. For each point there are two entries. The first is

‘Table 6

Box's Function

from Gill and Murray's algorithm on the same problem.

In order to demonstrate how the

from the algorithm presented in Chapter IV and the second is the result

# NITER NFEV- gtg POSDEF | NEGCNT FLAG
25 36 | 1x 102° T 21 0
! 24 140 | 4 x 1078 1
16 17 | 2 x 10731 T 3 0
: 36 97 | 1 x 10 %" 1
14 15 | 3 x 10 3¢ T 3 0
> 27 70 | 5 x 10?7 1
20 26 | 1 x 10720 T 2 0
“ 20 20 | 6 x 10733 0
26 42 9.0 T 22 0
> 37 118 | 5 x 10723 1
22 41 | 1 x 10732 T 17 0
6 26 64 | 1 x 10722 1
20 33 | 1 x 10 2% T 18 0
’ 19 26 | 1 x 1027 0
18 22 | 4 x 10 28 T 3 0
8 9 9 | 2 x107%! 0
16 20 | 5 x 107%° T 1 0
? 14 14 | 1 x107°8 0
12 16 | 8 x 10”32 T 7 0
10 33 95 | 2 x 10 2° 1




Table 7 -

EXP6

# NITER| NFEV g'e POSDEF | NEGCNT| FLAG

L 485 730 | 2 x 102! T 41 0

2 81 overflow 1

) 6 6 | 6% 10 F 6 1

135 198 | 4 x 107° 1

; 25 25 | 2 x 10® F 25 1

79 147 | 2 x 10723 0

. 202 276 | 5 x 10728 T 200 0

108 353 | 2 x 10 1

S 8 | 71 | 6x10° F 8 1

98 418 3 1

] 40 431 | 4 x 10720 T 38 0

128 253 | 4 x 10°° 1

, 335 543 | 2 x 10713 T 59 0

129 227 | 9 x 107" 1

g 98 138 | 5 x 10713 T 32 0

88 474 4 1

. 865 | 1000 | 2 x 10" F 865 1

112 332 | 2 x 107} 1

” g0 | 1000 | 5x10° | F 810 1

108 358 | 1 x10°° 1

135
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Table 8

Gottfried's Function

# | NITER | NFEV gt POSDEF | NEGCNT| FLAG
26 29 | 2x 10 T 3
1 1
27 29 | 2 % 10
18 26 | 3 x 1018 T 3
2 ‘ =T
19 22 | 5 x 10
12 17 | 8x10% | T 3 )
3 - —5~ -
14 15 | 1 x10% 0
21 29 | 1 x 10 2° T 6 0
4 13
1 | 1001 | 2 x10 1
19 27 | 5 x 1072 T 8 0
5 : 15
1 {1001 | 2 x 10 1
13 15 | 1 x 10727 T 3 0
.6 12
1 | 1001 | 9 x 10 , 1
25 | 27 |1 x10'? T 2. | o
7 -22
25 26 | 4 x 10 0
21 25 | 8 x107%! T 4 0
8 18
1 1001 [ 2 x10°7 o , 1
15 16 | 1 x10°%7 T 2 0
9 16
1 | 1001 | 4 x10 1
14 16 | 1 x 10”28 T 3 0
10 14
1 | 1001 | 3 x10 1




Table 9

Brown's Badly Scaled Problem

# | NITER | NFEV , gte POSDEF| NEGCNT| FLAG

22 43 | 2 x 107*3 T 14 0
1 3 .

24 105 2 x 10 0

21 43 |2x10*3 | T 14 0
2 19

21 89 8 x 10 1
) 21 40 |2 x10 "3 T 13 0
3 =12

: 21 91 | 4 x 10 1

. 19 45 | 2 x 10 'O T 8 0

19 81 | 4 x10°° 1

21 40 |2 x10 "7 T 14 0
5 —-17 .

21 90 | 4 x 10 1
] 19 42 2 x 10 *° T 12 0

21 95 | 2 x 10 19 1
; 21 41 | 2 x 10719 T 14 0

22 99 | 1 x 108 B 1

8 22 41 2 x 10 43 T 15 0

21 101 2 x 10 43 0
o 23 44 2 x 10 12 T 16 0
- 23 111 1 x 10 13 1

10 19. 36 | 2 x 10 19 T 10 0.
21 97 4 x 10 14 1

137
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Tests using fandom starts were made with the other functions as
well. However, with the exception of problems (3.5), (3.8), (3.9),
(3.10), and (3.13), the results shown in Table 4 were consistent with
results using random starts. On Beal's Function (3.10), the two algo-
rithms behaved quite differently depending upon the starting point. The
problem exhibited.a lot qf negative curvature. However, one algorithm
would do much better than the other on one starting point, but the oppo-
site gsituation would qccur‘dn another starting point.

We have compared these results with the results obtained by the
algorithm of Gill and Mnrray [11], and havé found them to be competitive.
This is encouraging sinée the Gill and Murray algorithm has undergone'a
thorough development and is one of the best codes available.

The results shown here indicateAthat the mé;hod presented in
Chapter IV is promising. Further development is needed iﬁ fhe practicél
problem areas discussed at the beginning of this section. However, the
evidence so far indicates that a filly developed algorithm has :the' .
potential of being a reliable and efficient method for unconstrained

optimization.



. 139

Appendik Al

[ START

Update 1x1 Block

ENTER 1x1 $——
Update
the Kth
column.
K«K+1
£ Join the next
I 2xo 1x1 block to
next.block form a 2x2 : .
is
1x1
PATH .2
GO TO PATH 1 ¥
Update : )
2x2 block ENTER 2x2 '
Update column P;VOt and
actor
. Kand K+ 1 LS
K<K+ 2 obtaining two
1x1 blocks
) ‘Update the
next.block Kth column.
S K+K+1
GO TO ENTER 1x1
GO TO PATH 1 GO TO PATH 2 i
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Do a -
1x1 pivot
and
factor

v

Update
the k-th
column. .
K< K+ 1|

v

PATH 3

!

Join
the next
2x2 block
to form a 3x3

GO TO ENTER- 2%2

Do a
2x2 pivot
and
factor

v

Update
the Kk-th and
K+l-st columns
K<« K+ 2

v

GO TO ENTER 1x1




CEARE XA B BN LSRR YRR EEAREC N R EER R B RS TR RAAR RS N ER SR bRk kb o kR o Tk

(X z) ﬂlﬂf\ﬁl\(\ﬁ(ﬁfﬁﬂtﬁf\ﬂtﬁfiﬁtﬂfiﬁtﬁfiﬁtﬁfﬁﬁtﬂf\ﬂ(\f\ﬁtﬂf’ﬁt\(lﬁlﬂf\n(Wfiﬁ(ﬁfiﬁtﬁflﬁ(ﬂr‘ﬁ(ﬁ(\f\ﬁ

Appendix A2

SUSROUTINF SYMUPNIANLDyNsSIGMA.Z+CHANGE QW)
DOUBLE PRECISICHM SIGMA

INTEGER M, NLD

DOUALE PRECISICN A(NLD, \).l(N)oCHANG‘(N)'H(N)
INTEGER Q(N)

THIS SUBRCUTINE COMPUTES THE UPCATED SYMMETRIC FACTCRIZATION
OF AN N X N SYMAETRIC MATRIX A FOLLOWED BY & RAMK CNE UPDATE
OF THE FORM A + SIGMA%Z2' . IT IS ASSUMED THAT

QAQ' = MCHM?

WITH D BLGCK DIAGONAL CONSISTING OF 1 X 1 AND 2 X 2 DIAGONAL
PLOCKS, AND M "OCCUPYING THE LOWER TRIANGLE CF THE PHYSICAL
APRAY A, THE BLOCK STRUCTURE OF D IS INDICATED EY THE
ARPRAY CHANGE.

CHANGE(K) 1 IF ENTRY K IS A 1 X 1 BLOCK
2 IF ENTRY K IS THE START OF A 2 X 2 BLCCK
THE DETERMINANT OF THE 2 X 2 BLOCK WHICH
STARTS AT ENTRY K—-1le.
THE ARRAYS 4,G,PIVOT ARE OVERWRITTEN WITH THE UPCATED
FACTGRIZATICON :

MDM' = Q(A ¢ SIGMA®2Z')(Q!

THE UPPER TRIANGLE CF THE PHYSICAL ARRAY A IS NOT ALTERED
IN ANY MANNERP, THUS A CNPY 0OF THE CRIGINAL MATRIX A MAY BFE
STNRED IN THE UPPER TRIANGLE GF A IF A HAS CIMENSIONS
N X N+1, THE VECTOR Z IS MCT ALTERED.

-

L2 222 2 222 1 3

A IS A RECTANGULAR ARRAY WHOSE LEADING DIMENSION IS
NLD. THIS ARKRAY IS ASSUMED TGO CONTAIN THE SYMMETRIC
MATRIX A IN FACYOREC FCRM AS DESCRISED A30VE., THF
LOWER TRIANGLE CF A CONTATNS THE MATKRIX M. THE BLOCK
DIAGAOMAL MATRIX O IS STORED IN THE CORRESPONCING
BLOCK DIAGCNAL LOCATICNS OF THE ARRAY A. THIS IS
POSSTHLE SINCE IF D(l,J) (I «NE. J) 1S -hCNZERQ
THEN M(1,J) IS ZERD. THEREFORE, THESE LOCATIONS
AS WELL AS THE DIAGONAL ENTRIFS QF A MAY BE USED TO
TO STORE D.

NLD THE LEADING DIMEMNSION CF THE ARRAY A,

N THE DIMENSION OF THF MATRIX A,

SIGMA  THE SCALAR DESCRIBED ABGVE.

2 THE N DIMENSIONAL VECTCR IN THE'UPDAYlhd FORMULA.

CHANGE THE N DIMFENSIOMAL ARPAY WHICH INDICATES THE BLOCK
STRUCTURE QOF THE BLOCK DIAGONAL MATRIX D. THE
CONTENTS OF THE ARRAY CHANGE ARE DESCRIBED ABOVE.

0 AN N CIMENSIONAL INTEGFR APRAY THAT INDICATES THE
PIVOTING NECESSARY TO ORTAIN THE FACTORIZATION.

W AN N DIMENSIONAL LINEAR WORK ARRAY,

Qt.att**#tﬂ#t###t#*#t*#f#t#t##tﬁ*#*#*#‘##t##tt###*#**#####$##t#t*‘##

DOUALE PRECTSINN MAXNUM
-POUBLE PRECISION ALFA.DI110210031v022v032v033'51'329831U1vU09

-1 T Tl'TZ’an'thLZ

INTEGER 01¢Q2+03,1,10,11+KLsKoKMLoKPLyKP2,KP34J

ALFA={1.,000 + NSOQRT(17.000}}/8.0D0

100. -
100.1
100.2
100.3
100.4
100.5
100.6
100.7
100.¢
106.9
101l.
101.1
101.2
101.3
101.4
101.5
101.6
101.7
101.8
101.9
102.

102.1
102.2
102.3
102.4
102.5
102.¢6
102.7
102.8
102.9
103,

103.1

103.2

103.3 |

103.4
103.5
103.¢
103.7
103.8
103.9
104.
104.1
104.2
104.3
164.4
104.5
1C4.¢€
104.7
104.8
104.9
105.
105.1
105.2
105.3
105.4
105.5
105.6
105.7
105.8
105.9
106
106.1
106.2
106.3
106.4
106.5
106.6
106.7
106.8
106.9
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NO 100 Jd=1,N 107.
WlJI=2(n(d)) 107.1
100 CONT INUE , 107.2
K=1 ' : 107.3
101 CONTINUE 107.4
c , ©107.5
C THE PROCESSING 3SGINS HERE ~- , 107.¢
c : 107.7
KP1=K+1 ' 107.8
KP2=K+2 107.9
IF((K.LT.N) JAND. {CHANGE{KP1) .LT.0)) GO TO 115 ‘ 108.
(o 108.1
c THE NEXT BLOCK IS A 1 X 1 BLGCK g 108.2
c . . 108.3
T=h(K) ‘ 108.4
B1=SIGMA%T 108.5
C11=A(K,K)+81*T 4 y 108.6
IF(KP1 .GT. N} GO TG 202 _ 108.7
D2 102 J=KP1,N : - 108.8
Wl =Wl S)-AlJ,K)ET . , 108.9
102  CONTINUE o , : , 109.
202 CONTINUE , ‘ = ' 109.1.
103 CONTINUC . : ‘ 4 109.2
c : 4 109.3
c ENTER 1 X 1 : _ 109.4
c ' : _ 109.5
IF(K.LT.N) GO TO 104 : 106. ¢
AlK,K)=011 , : 105.7
c : ' . 105.8 -
A THE DECOMPOSITICN IS COMPLETE .IF K=N 106,%
c : 110.
RETURN ' : 110.1
c T 110.2
104  U1=DARS(DI}) A ‘ . 110.3
UO=DABS(81) 110.4
IF((UL.LT.[ALFA%UO)) <AND. (UL1*DABS{SIGMA) .LE. ALFA®UO®UO))  110.5
1 60 TO 106 110.¢
SIGMA=SIGMA-R1*B1/D11 110.7
. Bl E BLICLL - 110.8
A{KsK)=D11 110.9
c - 111.
C UPDATE THE K=TH COLUMN -OF M. . 111.1
c , _ : 111.2
IFIKPL .GT. N) GO TD 205 - - ‘ ©111.3
DO 105 J=KP1,N ) ‘ . iill.a
A(JoKI=A(JKI+BLEWLI) : 111.5
105 CONTINUE- _ 111.6
205 CONTINUE 111.7
K=KP1 _ ' : . 111.8
‘ GO TO 101 - : : 111.9
c : : 112,
106 IF((CHANGE(KP2).LE. 0} AND.{KP2.LE.N}) GO TO 108 : 112.1
c ' 112.2
c A 2 X 2 BLOCK 1S FORMED BY CCMBINING THME NEXT 1 X 1 BLOCK 112.3
c WITH BLOCK K. . - 112.4
¢ 112.5
B2=W(KP1) : 112.6
YeB2 - . 112.7
C21=82%81 - . 112.8°
B2=SIGMA#82 . ' 112.9
D22=A(KP1,KP1)+B2*T o 113,
L1=A{KP1 ¢K) . . < 113.1
N22=022+L1%D21 : 113.2
82=82+11%81 . , o 113.3
D21=D21+L1%D11 , _ » 113.4
£22=D22+L1%D21 : 113.5
C : 113.6
C INCLUDE INFORMATION FROM THE (K+1)=ST COLUMN OF M. . ::g.;
c L]

IF (KP2 .GT. N) GO TO 207 ‘ 113.9
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107
207

DD 107 J=KP2,N :
WEJY=W{J) -A(JyKPL}%T
A{JsKI=ALJ,K)=-ALJIyKPL)=L]

CONTINUE

CONTINUE

60 TN 117

108 CONTINUE

109
209

i10

210

IF THIS PORTION COF THE CODE IS REACHED WE ARE IMN THE CASE OF A

1 X 1 CINGULAR BLOCK FOLLOWED BY A 2 X 2 BLOCK. THIS 2 X 2

ELOCK [3 JOINED TO THF 1 X 1 €LOCK YO FORM A 3 X 3 MATRIX D.

Tl=W(KP1l,

T2=W(KP2}

B2=SIGMA%T]
B3=SIGMAeT2
D22=A{KP1,KPL ) +B82%T1
D32=A(KP2+KP1)+h3*T1
033=A(KP2,KP2)+33%T72
D21=T1%*B1]

D31=T2281

L1=A(KP1,K)
L2=A(KP2,K)

T=L2%011
£33=D33+L2%(2.020%031+T)
D31=031+T
£32=032+L1%D31+L2%D21
T=L12011
D22=D22+L1%(2,0D0%D21+T)
C21=021+7

82=02+L1=81
B3=R03+1.2%81

KP3=K+3

INCLUDE INFORMATICN FROM THE (K+1)-ST AND (K+#2)-ND CCLUMNS
BF M,

1F (KP3.GT.M) GO TO 209
DO 109 J=KP3,N
W) =Wl ={ALJ KPL)ETL+A(J,KP2)*T2)
Ay KI=ALI K)=-(ALI,KPLIBLLI+ALJ,KP2) %L 2)
CONTINUE
CONTINUE
Ul=raxnUM({C11,022.033,11)
Uo=mnaxmuM(n21,031,032,10)
IF (Ul.LT.(ALFA*UQO)) GO TO 112

X 1 PIVOT WILL BE USED

Cl=1

Q2=2

Q3=3 -

CALL PlVle(DllqDZloDJlnDZZn032'033o81'82.83.CHANGE.QI.
Q2+Q3,11:KyN)

K1=K-1+0Q1

SIGMA=SIGMA-D1ll*Bl*%B1

UPCATE THE K-=TH CCLUMN OF M

IF{KP3.GT.N} GC TO 210
D0 110 J=KP3,N
Y=A(Js K} . .
A(JoK)=A(J'K1,‘
A(JeK1)=T
AlJ KISALJoK)+021%A(JoKPLI+D312ALI,KP2)+BL*W(Y)

. CONTINUE

CONTINUE
KM1=K-1

114,.1
114.2
114.3
114.4
114.5
l11l4.¢
114.7
114.8
114.9
115.
115.1
115.2
115.3
115.4
115.5
115.6
115.7
115.8
115.9
116,

“116.1

116.2
116.3
116.4
116.5
116.6
116.7
116.8
116.9
117.

117.1
117.2
117.3
117.4
117.5
117. ¢
117.7
117.8
117.9
118.

118.2
118.3
118.4
118.5
118.6
118.7
118.8
118.9
119.

119.1
119.2
119.3
116.5
119.6
119.7
119.8
119.9
120.

120.1
120.2
120.3
120.4
120.5
120.6
120.7

143
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C
c
f.

[ X aKal

111
211

112

113
213

114

INTERCHANGE THE CORKESPONDING ROWS OF M.

IF (KMl LLT. 1) GO TC 211
CO 111 J=1,KM]
T=A(K,J)
A(KyJ)=ALK] s J)
A(K1yJ)=T
CONTINUE
CONT INUE
I=9(K)
Q(K)=0Q(K1)
QIK1)=1

Al{KyK)=D11
A(KP1,K)=D21
A(KP2,4K}=D31
Cl1=D22
€22=033
£21=032
r1=82
B2=B3
« K=KP1
KP1=KpP2
KPI=Kk02+]
G0 TO 117
CONTINUE

A 2 X 2 PIVCT WILL BE USED

Ql=1
02=2
Q3=3

CALL PIV2Xx2(D11,D21,031,C22,032,033,81,82,B83+yCHANGE,SIGMA,Q],

Q2,03,10,K,N)
K1=K=-1+Q1l
K2=K-1+Q2
1=0(K)
HIR)}=z0(R1)
Qixl)=l]
1=Q(KP1)
QIKPL)=Q(K2)
Q({K2)=]

UPDATE THE K-TH ANDO (k+1)-SY COLUMNS GF M,

IF (KP3.GT.N) GO TC 213
00 113 J=KP3,N
T=A(J,yK)
ACJ KY=AL I K1)
AlJiKL1)=T
T=A(J,KPL)
A(J KP1)=A(J,K2)
AlJK2)=T ’
AlSsKI=A{JI K)+D31%ALJ,KP2) +RL2WI( )

ALSIKPLI=ALJ 1 KPL)+0322A(J,KP2)+32%4(J)

CONTINUE
CONTINUE

INTERCHANGE THE CORRESPUNDING ROWS OF M.

KM1=K-1

DO 114 J=1.,KM1
T=A(Ks J)
A{KyJI=A(K]1,J)
A(KlsJ)=T
T=A(KP1l,J)
ALKPLlyJ)}=A(K2,J)
AlK2,J)=T

CONTINUE

120."
120«
121.
121.1
121.2
121.3
121.4
121.5
121.¢
121.7
121.8
121.9
122.
122.1
122.2
122.3
122.4
122.5
122.6
122.7
122.8
122.9
123,
123.1

123.2

123.3
123.4
123.5
123.6
123.7
123.8
123.9
124.
124.1
12442
124.3
124.4
124.5
124.6
13".7
124.8
124.9
125.
125.1
125.2
125.3
125.4
125.5
125.¢
12547
12540
125.9
126.1
126.2
126.3
12644
126.5
126.6
126.7
126.8
126.9
127.
127.1
127.2
127.3
127.:
127.!
127.¢
J127.7
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A{K,K)=D11
AlKP1,K)}=N21
ALKPL KPL)=522
A{KP2,K)=D31
A{KP2,XP1)=N32"

011=D3
Bl=B3
K=KP2
KP 1l=X+
KP2=K+
’ GO 10
115  CONTINUE

Tl=W(K

3

1
2
103

)

T2=W(KP1)

Bl=SIGMA 24 (K)

"R2=SIGMA%H(KP])

Dl1l=A(K,K}+B1¥W({K)

C21=A(KP1,K)+B2*W(K)

D22=A(KP1,KP1)+B2*¥(KP1)

IF (KPl.GE.M) GU TO 117

DO 116 J=KP2,N

WEII=WLDI=(A(J KI*TL + A{JyKP1)2T2)

116 CCNTINUE

117 CCMTINUE

ENTER 2 X 2
THE 2 X 2 BLOCK WILL BE PROCESSED

T1 = 0.

000

THE DIAGONAL BLOCK BEGINNING AT ENTRY K IS 2 X 2 .
CIAGONAL ALGOCK D IS REQUIREL TO SATISFY

ABS(DZI)*ALFA «GT. MAX{ABSIDLL) , ABS(D22)).

Ul=MAXNUMIDL11,022,T1,11)
IF (Ul.GE.(ALFA=DABS(D21))) GO TO 119

A2 X 2 PIVOT WILL BE USED

CET=011%022-D21%*021

CHAMGE

(K}=2

CHANGE(XPL1)=DET

AlK K}
Al{KP1l,

=011
K)=n21

A(KPLl,KPP1)=D22

IF (KP

1.FQ.

M)} RETURN -

T1=(022%01-D21%82)/0cY
T2=(-D21%*B1+¢011%82)/0ET

IF (KP

2 .GT.

N} GO TO 218

UPDATE THE K~TH AND (K+1)-ST COLUMNS CF M.

DO 118 J=KP2,N

T =

HiJ)

ALJ W KI=A(J,KI+T1%T
A(JsKPL)=A{J,KPL)+T2%T

SIGMA=SIGMA-{T1%81+T2%R2)

119 CONTINYE

.118 CONTINUE
218 CONTINUC
K=XP2
G0 TO 101

THE UPDATED

TF THIS IS NOT SATISFIED THE BLOCK 1S SPLIT INTO TWC 1 X 1 BLOCKS.

127.8
127.9
128.
128.1
128.2
128.3
126.4
128.5
128.6
128.7
128.8
128.9
129.
129.1
129.2
129.3
129.4
129.5
129.6
129.7
129.8
129.9
130.
130.1
130.2
130.3
130.4
130.5
130.6
130.7
130.8
130.9
131.
131.1
131.2
131.3
131.4
131.5
131.6
131.7
131.8
131.9
132.
132.1
132.2
132.3
132.4
132.5
132.6
132.7
132.8
132.9
133,
133.1
133.2
133.3
133.4
133.5
133.6
133.7
133.8
133.9
134.
13441
134.2
134.3
134.4

145
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[aNaXal

e XaXe! (o)

[eXaNal

120
220

121
221

122

123
223

Al

X 1 PIVOT witl BE USED

IF (11.NE.2) GO TO 122

INTEPCHANGE THE ROWS AND COLUMNS GF M IF NECESSARY.

T=D11"'
011=022
n22=T
T=61
©1=52
g2=7
1=0(K)

©QIKI=QIKPL)

Q{KPL)=1
IF (KP2.GT.N)} GO TO 220
N0 120 J=KP2,N
T=A(JsK)
A{JsK)=AlJWKPL)
A(JyKPL)=T
CONTIMUE
CONTIMNUE
KMl=K-1
TF (KM1 L1 T. 1) GO TP 221
90 121 J=1l.KM1
T=A(K,J)
A{Ky J)=A(KP1,+J)
A(XPl,J)=T
CONTINUE
CONTINUE

CONTIMUE

PROCESS THE Tw0 1 X 1 BLOCKS

CHANGE (K) =1

CHANGE (KP1)=1
022=222=(N21%0211/011
021=021/011
B82=p2-81%D21

81=81/D11

IF (KP2.GT.N) GC TO 223

UPDATL THC K-TH CCLUMN UF M.

END

DO 123 JaKP2 4N

A{J s KI=A(J K)+D21%A(J,KPL)+RL1XW(J)
CONTINUZE
CONTINUF
AlK.K)=D11
A(KPL,K)=D21
SIGMA=SIGMA-BL*C11%B1
t11=022
Bl1=B2
K=KP1
KPl=KP2
KP2=K+2
GO TO 103

134.5
134.6
124,7
134.8

- 134.9

135.

135.1
135.2
135.3
135.4
125.5
135.6
135.7
135.8
125.9
136.

136.1
136.2
136.3
13¢€.4
136.5
13¢6.¢
136.7
136.8
13A.49
127.

137.1
137.2
137.3
137.4
137.5
137.6

138.2
138.4
138.5
138.6
138.7
138.8
138.9
135.

139.1
139.2
139.3
139.4
139.%
139.6
139.7
139.8
139.9
140.

140.1
140.2
140.3
140.4
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20

30

10

1

SUBRGUT I Wk p!Vle(Dll10210031'0220032v033;91!BZ!B3QCHANGE'
N Ql.BZ.OB'Ile.N) .
DOUBLE PRECTISICON D11,0:21,731,(22,032,D33,81,82,83

INTEGER Q1402034 114KyM
LOUBLE PPLCISIGN CHANCE(N) .
(A e I R N A I

THIS SURROUTINE PERFOFMS A 1 X 1 PIVOT,
D=(C1Y)
CPITFRIA WITH D(ILl,11} AS THE PIVODT ELEMENT,
1S PERMUTED. TN BRING L(lL,11)

SYMMETRIC MATRIX

GIVEM A 3 X 3

WHICH SATISFIES THE I X 1 pPiveoT

TC THE (1,1)

THE 3 X 3 MATRIX
POSITIGN ANG

THEN THE FIRST STEP (F THE FACTOPIZATION IS DONKE IN PLACE.

COUBLE PRECISION T
INTEGER KP1,KP2

KP 1=K+1

KP2=K+2

GO TO (10,204+30),11

THE MAX ELEMENMT S 522

T=C11
C11=D22
G22=71

T=032 .
£32=031
£31=T

T=R2
B2=81
Bl=7
Ql=2
Q2=1
G3 10 10

THE MAX ELEMENT IS 033

T=Cl1
C11=033
033=7

T=C21
021=032
D32=T

T=81
81=83
B3=7

Q1=3
Q3=1

THE MAX ELEMENT 1S D11

022=D22-(D21%021) /D11
£32=C32-{N31*D211/011
033=033-(D031%D031) /D11
81=81/011
A2=82-B1%021
83=83-81*D31
D21=C21/011
031=C31/011
CHANGE(K)=1.

RETURN

END

LA AR A R R AR L R I R A L R T Y 2 T R e R 2 g g S PR P I P

n

140.5
140.¢
140.7
140.8
140.9
141,

141.1
141.2
141.3
141.4
141.5

14l.6-

l4l1.7
141.6
141.9
142.
142.1
142.2
142.3
142.4
142.5
142.¢
1642.7
142.8
142.9
145.
143.1
143.2
143.3
143.4
143.5
143.6
143.7
143.8
143.9
l44.
144.1
144.2

144.3 .

144.4
144.5
144.6
144.7
144.8
144.9
145.

145.1
145.2
145.3
145.4
145.5
145.6

.145.7

145.8
145.9
146.

146.1
146.2
146.3

146.4

146.5
146.06
146.7
146.8
146.9
147.

147.1
147.2

1473

147.4
147.5

147
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SUBROUTINE PIV2X2(DO11,021,031+022+032,033,81482yB3CHANGE,SIGMA,
Q1,Q2+Q3, 104Ky N}

cAURLE PRECISION P11,0214D22031:032,033,61,82,83,51CMA

IMTEGER Q1l,02,Q03,10,4K,N

NDOUBLE PRECISINM CHANGE(IN)

Cﬁ#######t###**#t#{#*##*ﬂ####ﬁ#ﬁ‘tﬁ###&3#4#‘###§V###‘ﬁt#i#t##tvtﬁ#*ttt

eXalakalaXalialaiakaKsksXalaKaXe

[aXaKe!

THIS SUBROUTINE PEFFOPMS A 2 X 2 PIVCY ON THE 3 X 3 MATRIX

0= (BIJ)e THE MAXIMUM OFF-DIAGONAL ELEMFENT [.S BROUGHT TG THE
{2,1) POSITION. ITS ORIGINAL LOCATICN IS INDICATED BY THE
VARIABLE 10:

10=1 D21 IS THE MAX ELEMENT
10=2 D31 IS THE MAX ELLMENT
10=3 D032 IS THE MAX ELEMENT

THE FIRST STEP OF THE FACTOFIZATINN CF THE MATRIX (DIJ) IS
CARRIED OUT IN PLACE USING THE 2X2 PIVOT.

AEXBUAAAESE TG AR SRR BR LSRR AR RS A AARERE ARG E AR R RAE G LR CR AP EXEREC L &N

20

INTEGER KPL14KP2

TOURLE PRECISION: S,T,0ET

KP 1=K+l : , '

- KP2=K+2

GO TO (10,20,30),10
CONTINUE )

P31 IS THE MAX ELEMENT
1=C22
£22=033
n32=7
T=D21

£21=031
031=T

02=3

GD TC 10

30 CONTINUE

OO

D32 15 TNC MAX ZLOMONT

T=011
Cl1i=0D22
D22=N33
D33=T7

T=n21
£21=032
£32=031
D31=T

T=81
g1=82
62283
83=T
cl1=2
-Q2=3
Q3=1

10 CONTINUE -

147.6
147.7
147.8
147.9
148,
14841
148.2
148.4
148.5
148.6
148.7
148.8
148.6
149.
149.1
149.2
149.3
1“9.4
149.5
149.6
149.7
149.8
149.9
150.
150.1
150.2
150.3
150.4
150.5
150.0
150.7
150.8
150.9
151.
151.1
151.2
151.3
151.4
15145
151.6
151.7
151.8
151.9.
152.
152.1
152.2
152.3
152.4
152.95
152.¢
152.7
152.8
152.9
153.
153.1
153.2
153.3
153.4
153.5
153.6
153.7
153.8
154.
154.1
154.2
154.3
154.4
154.5
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C 154.¢
c nN21 IS THE MAX FLEMENT 1%.7
c THE 2 X 2 PTVOT 1S DONE -HERF 154.8
c : 15449
NEY=C11%N22-C21%021 155.
1=(022=2031-N21%232)/DET 155.1
S=(=-C2'1¢D31+C11*N32) /0ET 155.2
R3=B3-{ T*B]+S%A2) ' 155.3
N32=033-(T=031+45¢D32) 155.4
031=Y 155.5
n32=$ 155.6
T=(022%P1-D21*B2)}/DET 4 : N 155.7
S={-C21%B1L+D11%B2)/CET ) 155,.8
SIGMA=SIGMA-(T*B]1+5%B2) . . ) 155.9
81=T 156,
A2=§ 156.1
CHANGE (K} =2 , : 15¢6.2
CHANGE(KP1)=DET 15643
CHANGE(KP2) =1 ’ 156.4
RETUARN 156.5
ENC 156.6
COUBLE PRECISION FUNCTTON MAXNUM(A,B,C,I) 156.7
OCURLE PRECISIAN A,8,C 156.8
INTEGER 1 . . " 15649
CRBU LA R R RN R AR YA R G AR SRR XX REL TR RS o ek ek ek & 157.
c 157.1
C THIS FUNCTIGN FINDS THE MAXIMUM OF THE ABRSOLUTE VALUFS OF A,B,C 157.2
C AND INCICATES WHICH 0Of THF VALUES 1S SELECTED BY SETTING 157.2
C I = 14243 RESPECTIVELY. 157.4
c : , 157.5
C# AU BREE R EE R ARG A SE SRS XA AL A G ARG EEARAF AN RS ae AR AP SRR BB AT ® 157.6
DOUBLE PRECISION S,T : : ' 157.7
1=1 157.8
T=0ABS({A) 157.6
S=CABS(B) 158.
IF (S.LE.T) GO 10 10 : . 158.1
T=5 . 156.2
1=2 - ‘ 158.3
10 CCNTINUE 158.4
S=CABS{C) g ' 158.5
IF (S.LE.T) GO TO 20 156.¢
T=$ . 158.7
1=3 ’ 158.8
20  CONTINUE 158.9
MAXNUM=T : : 159.
RETURN . , 159.1

END ) 159.2
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SUBRCUTINZ SOLVE(A,NLD N CHARGE 1Q4X,IFAILY)
INTEGER NONLD,IFAIL

DOUBLE PRECISIGN A(RLGyN) 9 XIN) o CHANGE(N)
INTZGER QIN)

C*##**t#t##*#*###*t#*##**i*#*tt##t#$#¢¢*$#3*¢&$ﬁ&tt##t###*ttt#t##t#*#t

AN OO0 N 2 XaXaXsXaisialskaiaXakaialalsXskakakaXaXaXa)

[aNeXgXe

A hggRbbighk

THIS SHBROUT INE COMPUTES THE SOLUTIGN TO AX = 8.
THE MATPIX A IS ASSUMEC TO BE IN THE FACTOREZD FORM
QAQ* = MDM! .

WHERE M IS BLOCK UNIT. LUWER TRIANGULAR AND D IS BLOCK
DIAGONAL WITH 1X1 AMD 2X2 DIAGONAL BLOCKS. [T IS
ASSUMED THAT M, D AFE CUTPUT FROM THE RPOUTINE SYMUPL

AND THAT THAT THESE -ARKAYS AFE STCPED IN THE LCWER
TRIANGLE OF A, ON INPUT THE ARRAY X CONTAINS THE
RIGHT HAMND SIDE B AND CN OUTPUT X CONTAINS THE
SOLUTION VECTOR. IfAlIL = 1 IF THE SYSTEM IS

SINGULAR (NN SOLUTICN Tt THIS CASE) 'CTHERWISE IFAIL

IS RETURNED WITH THE VALUE O (A SOLUTICN WAS OBTAINED).

i
i

A - THE ARPAY A 1S RECTANGULAR WITH LEADING CITMENSICON NLOD.
THE SECOND DIMEMSION MUST BE GREATER THAN OF EQUAL TG N,
THE ARRAY A IS ASSUMED T HAVE THE FACTORIZATICN OF THE
MATRIX A AS DESCRTBED IN THE SUBROUTIMNE SYMUPD.

NLC THE LEADING DIFMENSICN OF THE ARRAY A.
N THE DIMENSIGN CF THE MATRIX A,

CHANGE AN N OIMEMSIONAL VECTCR WHICH CONTAINS A DESCRIPTICON
OF THE B8LOCK STRUCTURE OF N, AND THE CETERMINANT
UF EACH 2RZ UIALUNAL UF Ue Sttt THE UULUKENTADL UM FUV
THE SUGROUTIME SYMUPT FOR A MCRE COMPLETF DFSCFIPTION
OF THE CONTENTS OF CHANGE.

0 AN N DIMENSIONAL INTEGER AQRA9 WHICH CUNTAINS THE
PLVOTING USLD TD OBTAIN THE FACTCRIZATION OF A.

X AN N DIMENSIONAL VECTCR. THE CONTENTS OF X ARE
DESCRIBED AbUVE.

IFAIL AN INTZGER VARIABLE THAT lNDICATES WHEN A IS SINGULAR.
THE COMTENTS OF IFAIL ARE DESCRIBED ABCVE.

#‘####‘##O#*ﬂ#v*t##tt***##*#*#####*t&t#*####*#t##*#t##t###t‘#*#tttt’t

10

20

DOUBLE PRECISION T,S

INTEGER I,JsKy1PL,1P2

DOUBLE PRECISION W(50)

IFAIL = 0

00 10 J = 1,N
HEJ) = Xt

CONT INUE

QtJ)

BACKSOLVE THE LOWER TRIANGULAR SYSTEM AND INVERT THE DIAGONAL
BLCCKS.

1 =1
IF {1 .GE. N) GO TG 60
IPL =1 + 1

IF (CPAMNGE(IP1) .GT. 0) GO TO 40
IF (CHANGELIPl) +EG. 0CO) GO TO 1000

159.3
159.4
159.5
159.6
159.7
159.8
159.9
1€0.

160.1
160.2
1€60.3
1€0.4
160.5
160.6
160.7
1¢0.8
1¢0.9
l161.1
1¢l.2
161.3
161 .6
161.5
1€1.6
161.7
161.8
161.9
162.

162.1
162.2
162.2
162.4
162.5
162.6
162.7
162.8
162.9
1hie

1€3.1
163.2
163.3
163.4
1€3.5
163.¢
1€3.7
163.8
163.9
lé4.

164.1
164.2
164.3
164.4
164.5
164.6
1¢4.7
164.8
164,95
165.

165.1
165.2
165.3
165.4
165.5
165.6
165.7
165.8
165.9
1¢€6.

l66.1
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30

130

40

50

60

65

70

s Ea Ngd

80

WE HAVE A 2 X 2 PIVOT AT STEP I

IP2 =1 + 2
S = W(I)
T = WllPl)
IF (IP2 .GT. N} GC TO 130
D2 30 4 = IP2,N .
WlJd) = ¥ilJ) = (STA(J]) ¢ T=A(J,IP1))
CONTINUE L
CONT INUE
Wil) = (A(IP1,IP1)2S = A(CIPL,11%T)/CHANGE(IP])
WIIPLl) = (~ACIPLl,1)%S + A(1,1)=T)/CHANGE(IPL)
I = IP2 ' :
GO TQ 20

CONTINUE
WE HAVE A 1 X 1 PIVOT AT STEP |

T = W)
O S0 J = IP1,N.

W(J) = WIS = AlLJ,1I%T
CONT INUE . . ,
IF (&(1,1) .5Q. 0.000) GO TO 1000
WOT) = WIII/ZACT, 1)

1 = IPl1
GO TC 20
I =N

INVERT THE LAST DIAGONAL BLCCK ANC INITIALIZE
FOR THE FORWARD SOLUTICN

IF (CHANGF(I) .GT. 0.0CD) GC TO 65
IF (CHANGF(I) .=Q. OCO) GO TC 1000

THE LAST BLOCK IS 2 X 2
IT HAS ALREALY BFEEN INVERTECD

P1 =1 -1

1 =1-2

Ga TD 70
CONT INUE ‘

THE LAST BLOCK IS 1 X 1
1€ (A(N,N) .EO. 0.00C) GO TO 1000
WIN) = WINIZAINGN)
Pl =1 »
T . =1-1
CONT IMUE
FORWARD SOLVE THE REMAINING UPPER TRIANGULAR SYSTEM

1F (1 .LE. 0) GO TO 1001
IF (CHANGE(I) .GT. 0.0C0} GO TO 90

2 X 2 PIVNY

1P2 = 1P}

1Pl = |
1T =1-1
DO 80 J = [P2,N
WIIPL) = WIIPL) = ACJ,IP1)EW(J)
WD) = WD) = ACJe D)W (J)
CONT INUE

166.2

166.3

T 166.4

1¢6.5
léG. €
166.7
166.8
1¢6.9
167.

167.1
167.2
1¢7.3
167.4
167.5
1¢67.6
167.7
1€7.8
167.9
166.

166.1
166.2
1¢6.3
168.4
168.5
168.¢
168.7
léE.8
168.9
169.

169.1
169.2
1¢9.3

"1€69.4

165.5
169.¢€
165.7
169.8
169.9
170.

170.1
170.2
170.3
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1Pl = 1

I =1 -1

GO TO 70

CNNT INUE

THE WATRIX IS SINGULAR

IFAIL = 1
RETURN

CONT INUE ' _
THIS IS THE NOKMAL RETURN « « & A SOLUTION WAS FOUND

£O 110 J = 1,M
XUQLI)Y) = wid)

CONTINUE

RETURN

END -
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