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UPDATING THE SYMMETRIC INDEFINITE FACTORIZATION 
WITHAPPLICATIONS I N A M O D I F I E D N E W T O N ' S M E T H O D  . 

Danny C. Sorensen 

ABSTRACT 

In recent years the use of quasi-Newton methods in optimization algo- 

rithms has inspired much of the research in an area of numerical linear 

algebra called updating matrix factorizations. Previous research in this 

area has been concerned with updating the factorization of a symmetric posi- 

tive definite matrix. Here, a numerical algorithm is presented for updating 

the Symmetric Indefinite Factorization of Bunch and Parlett. The algorithm 

2 requires only O(n ) arithmetic operations to update the factorization of an 

nxn symmetric matrix when modified by a rank one matrix. An error analysis 

of this algorithm is given. Computational results are presented that investi- 

gate the timing and accuracy of this algorithm. 

Another algorithm is presented for the unconstrained minimization of a 

nonlinear functional. The algorithm is a modification of Newton's method. 

At points where.the Hessian is indefinite the search for the next iterate is 

conducted along a quadratic curve in the plane spanned by a direction of nega- 

tive curvature and a gradient related descent direction. The stopping 

criteria for this search take into account the second order derivative infor- 

mation. The result is.that the iterates are shown to converge globally to a 

critical point at which the Hessian is positive semidefinite. Computational 

results are presented which indicate that the method is promising. 
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Chapter I 

An Overview 

1. I n t r o d u c t i o n  

I n  r e c e n t  y e a r s  t h e  u s e  of ma t r ix  methods i n  op t imiza t ion  algo-  

r i t hms  has  rece ived  an  inc reas ing  amount of a t t e n t i o n .  I n t e r e s t i n g  

problems i n  numerical  l i n e a r  a lgeb ra  have been generated by advances i n  

opt imizat ion methods. S i m i l a r l y ,  new approaches t o  op t imiza t ion  methods 

a re  sometimes made p o s s i b l e  o r  even suggested by advances i n  numerical  

l i n e a r  a lgeb ra .  Here t h e  Bunch-Parlett  f a c t o r i z a t i o n  of a symmetric 

i n d e f i n i t e  ma t r ix  i s  used i n  a Newton-type method which i s  based on t h e  

u s e  of d i r e c t i o n s  of nega t ive  cu rva tu re .  I n  a n t i c i p a t i o n  of t h e  exren- 
. . 

s i o n  of t h e s e  i d e a s  f o r  u se  i n  a quasi-Newton method, we p r e s e n t  and 

ana lyze  a method f o r  updat ing  t h i s  m a t r i x  f a c t o r i z a t i o n .  

I n  t h i s  chap te r  t h e  problems which s h a l l  be  considered a r e  

in t roduced  and motivated.  Chapters  I1 and 111 a r e  concerned wi th  the .  

updat ing  a lgor i thm and should b e  considered a s  a u n i t .  On t h e  o t h e r  

hand, Chapter I V  i s  meant t o  be se l f - con ta ined .  For t h i s  reason  some of 

t h e  same concepts  a r e  in t roduced  i n  both  p l aces .  The numbering of equa- 

t i o n s  i s  done s e p a r a t e l y  i n  each chap te r .  For example, a r e fe rence  

w i t h i n  a chapter  t o  equat ion  (2.1) means t o  r e f e r  t o  t h e  equat ion  

numbered (2.1) which w i l l  be  found i n  Sec t ion  2 of t h a t  chap te r .  When- 

ever t h e r e  i s  a c r o s s  r e f e rence  between chap te r s  i t  w i l l  be  e x p l i c i t l y  

mentioned, 



2. Newton-type'Methods for Unconstrained Optimization 

One of the major problem areas of 'numerical analysis is the 

minimization of a non-linear functional. If we denote the n-dimensional 

n 
real vector space by R and the real numbers by R, the problem is: 

given a domain D c .R" 'and a functional 

find x* E such that 

f (x*) < f (x) 

for all x E,  U. 

Usually the task of trying to find a global minimum of f is too 

difficult numerically, and we must be content with finding a local 

minimum fcr f. That is, we seek 

such that 

f (xl 5 f (x*) 

for all x E N(x*) c D where N(x*) is some neighborhood of x*. 

Let 

be the gradient of f at x, and let 



= vLf(x)  

be t h e  Hessian of f a t  x .  For a sequence {x } we s h a l l  w r i t e  
k 

Assume t h a t  f has two continuous d e r i v a t i v e s  on D. Then the  

Hessian matr ix  i s  symmetric, and f o r  any x ,  x E D we have 

2 
f (x) = f (x) + g (x) (x-x) + L(x-x) 2 t ~ ( x )  (x-x) + o (11 x-x 11 ) . 

h ( ~ )  - 0. Thus f i s  modeled w e l l  l o c a l l y  . W e  w r i t e  h(e)  = O ( E )  i f  l i m  - - 
E+O E 

by t h e  quadra t ic  form defined by the  f i r s t  t h r e e  terms of i t s  Taylor 

expansion about x.  I f  t h e  Hessian G(x) i s  p o s i t i v e  d e f i n i t e  then the  

quadra t i c  form 

has  a minimum a t  

Formula (2-.l) suggests  t h e  i t e r a t i o n  

(2.2) Given x E P 0 
f o r  k=0,1,2, ... 

- 
G k s k  - -gk 

X = x +s 
k+l k k  - 



This is, of course, the well known.Newtonls method for finding a zero of 

the gradient g(x). Thus ~ewton's method can be viewed as minimizing the 

local quadratic model of f and also as attempting to find a point x* 

which satisfies g(x*) = 0. This is important since Le 

(2 3) f has a local minimum at x* only if g(x*) = 0. 

This method has two important properties that make it a very 

powerful tool for the solution of unconstrained minimization problems. 

The first of these is the basic simplicity of the iteration (2.2). The 

second and most important property of Newton's method is the local 

quadratic rate of convergence of the iterates. Loosely stated this 

means that when the iterates x of (2.2) converge to a point x* with k 

G(x*) nonsfngular, then eventually the number of significant digits in 

the approximant x doubles at each iteration. The more precise mathe- 
k 

matical statement is contained in the following theorem. Before the 

theorem is stated it will be necessary to introduce the notion of a 

point of attraction. A point x* is a point - of attraction for the itera- 

tion (2.2) if there is an o p a l  neighburhood N(x*) c 0 such that when 

Xo E N(x*) , the iterates defined by (2.2) all lie in p and converge to x*. 

Theorem (2.1) 

Assume that g: P c Rn -+ R" is continuously differentiable on an 
open neighborhood N(x*) c D of a point x* E V for which g(x*) = 0, and 

G(x*) is nonsingula;. Then x* is a point of attraction of the iteration 

(2.2). If, in addition, ('here exists a positive constant L such that 

I[G(X) - G(x*)~ - < ~llx-x*~i~'for all x E k(x*), then there exists a positive 

constant C and a positive integer K such'that k > K implies that 



A proof of Theorem (2.1) can be found in [17, p. 3121. 

There are some major difficulties in implementing Newton's 

method in its basic form. The first of these difficulties is that there 

is no reason for the Hessian to be positive definite at an iterate "k 
which is far from a local minimum. Another difficulty is that the step 

. . sk predicted by the quadratic model at % may be too large or too small. 

These difficulties have led to several modifications of Newton's 

method. Many of the modifications have taken the .form 

( 2 . 4 )  Given xo E D 
for k=0,1,2, ... 

I Xk+l 
= \ + a s  

k k '  

,. 
The symmetric matrix Ek in (2.4) is chosen to insure that Gk is positive 

definite. This implies that the direction s satisfies , 

k 

Thus the directional derivative of f at \ in the direction s is nega- k 

tive and the function must decrease initially in the direction s A k ' 

direction s that satisfies (2.5) is called a descent direction. Once a 
k 

descent direction sk has been specified it is possible to determine a 

positive number a k such that f(\+aksk) < fk. 

Of course, the particular way in which the matrix Ek and the 



scalar a are determined are crucial in analyzing the convergence of the k 

iteration (2.4). Some success has been achieved with iterations of type 

(2.4) in specifying E k'@k in such a way that the iterates \ are globally 

convergent to a critical point x* (i.e. a point X* with g(x*) = 0). 

Whenever possible these algorithms reduce naturally to Newton's method 

so that the local quadratic rate of convergence is retained. 

However, work in this area'is not yet complete. In particular, 

no algorithm has yet been given which can guarantee global. convergence 

to a local minimum. How can Newton's method be modified so that the 

resulting iterates converge globally to a local minimum for f? Tn 

attempting to.answer this question, we have developed an algorithm which 

;-s different from iterations of type (2.4). This i i l g n r i t h m  i.s presented 

.and analyzed in Chapter IV. The algorithm is based more explicitly on 

the local quadratic model for f in that the Hessian is not modified. 

Instead, directions of negative curvature are used in combination with 

the more usual descent directions. The resulting iterates {xk} are 

shown to be globally convergent to a point x* such that g(x*) = 0, and 

G(x*) is positive semi-definite. Thus by basing the iteration more 

closely on the quadratic model we obtain an iteration which converges to 

a point x* that satisfies the second order necessary conditions 

f has a local minimum at x* only if g(x*) = 0, 

dild .O(x&) is puslrive semi-def inite. 

Yet another drawback to a modified Newton's method is the 

expense in terms of both computation and programming effort associated 

with calculating the Hessian at each step of the iteration (2.4). 

Attempts to overcome this undesirable feature have led to a great deal 



of research in a class of methods called quasi-Newton methods. These 

methods replace the Hessian G with an approximation B A quasi- k k ' 

Newton iteration has the form 

'(2.7) Given x E D, and Bo 0 
for k=0,1,2, ... 

In iteration (2.7) 

1 U k = U (Bk 9 aksk 9 gk+l ' gk 

is usually a rank one or rank two matrix with 

(2.8) Bk+lsk =, gk+l - gk ' 

Equation (2.8) is called the quasi-Newton equation. The advantage of 

iteration (2.7) over (2.4) is that the only new information requir,ed to 

obtain B from B is the calculation of the gradient gk+l. The k+l k 

computational savings is that only n instead of ?q2 2 scalar function 

' 

evaluations are required to obtain an approximate Hessian at step k. 

Mureover, the task of programing t h e  Hessian is avoided. 

The price one pays for the computational savings obtained 

through the use of a quasi-Newton method is that the local quadratic 

rate of convergence that is enjoyed by iteration (2.4) is no longer 

guaranteed. Instead, if the iterates {xk) defined by (2.7) converge to 

a point x* where g(x*) = 0 and G(x*) is nonsingular, then 

11 X~+~-X* 11 
lim = 0 
k* Ilxk-x*ll 



under suitable restrictions on { B  } and G. A sequence {xk} that satis- k 

fies (2.10) is said to converge Q-superlinearly to x*. A thorough 

account of iterations of type (2.7) can be found in the excellent survey 

by Dennis and More ['7]. 

Evidently, the linear systems 

G s  - k k - .-gk 

that must be solved at.each step are central to the implementation of 

these methods. Solving linear systems Ax = b using matrix factoriza- 

tions costs 1.13 as much as computing . . A-' and. has heen shorn to be 

- 1 numerically more stable than computing A . Since the linear systems 

arising in the context of non-linear optimization have symmetric coeffi- 

cient matrices it' is of great interest to obtain efficient and stable 

methods for factoring symmetric matrices. 

The advent of quasi-Newton methods has inspired a large portion 

of the research in an area of numerical linear algebra called updating 

matrix factorizations. Since the matrix B in (2.7) differs from B 
k+l k 

by at most a rank two matrix, one might expect that the factorization of 

Bk+l could be obtained with less computational effort if the information 

contained in the factorization of' Bk were used. 'This has indeed been -. 

found to be the case. 

The types of quasi-Newton updating formulas that have been found 

to be most successful so far have satisfied 

(2.11a) B symmetric => Bk+l symmetric, k 

(2.11b) Bk positive definite => Bk+l positive definite. 

For this reason, there has been much work concerned with updating 



variants of the  holes sky factorization [9,13,14] of a symmetric positive 

definite matrix. No algorithm has been given for maintaining and updat- 

ing the factorization of a symmetric (possibly indefinite) matrix. How- 

ever, there is at least one promising updating formula that does not 

satisfy (2.11b): Powell's symmetric form of Broyden's update [18]. 

3. The Symmetric Indefinite Decomposition 

The modified Newton method that is to be presented in Chapter IV 

relies heavily on the factorization of a symmetric matrix given by Bunch 

and Parlett [5] and later improved upon by Bunch and Kaufman [4]. One 

would hope that the techniques developed for the modified Newton method 

could be extended to a quasi-Newton method. A s  a step towards realizing 

this extension, the updating problem for the symmetric indefinite fac- 

torization has been studied. A numerical method for updating the 

factorization of a symmetric matrix when followed by a rank one change 

is presented in Chapter 11. A  detailed error analysis of this algorithm 

is given in Chapter 111. 
, , 

A s  noted above, most of the work in quasi-Newton methods has 

been concerned with maintaining positive definite approximations to the 

Hessian. Hence the work in numerical linear algebra generated by these 

methods has been primarily concerned with updating some form of 

Cholesky's method for factoring a symmetric positive definite matrix. 

The factorization of Bunch and Parlett does not require that the 

nxn 
matrix be positive definite. Given any symmetric matrix A E I? t.his 

algorithm produces a permutation matrix Q, a unit lower triangular 

matrix M y  and a block diagonal matr2x D such that 



The diagonal blocks of D are order one or two. If we call an arithmetic 

operation a multiplication followed by an addition, then the number of 

arithmetic operations required to obtain this decomposition is 
k 

2 2 + O(n ).  (If x = . 1 a.nJ with a f 0 we write x = O(n ) and say x F j=1 J k 
k 

is of order n .) 

Another algorithm for factoring a symmetric indefinite matrix 

was given by Aasen [l]. . In that algorithm one obtains 

where Q is a permutation matrix, L is unit lover triang~1.a.r~ aild T i s  

2 
tridiagonal . This factorization requires L3 + O(n ) arithmetic opera- 6 '  

tions also. 

2 
Since these factorizations both requirc L3 + O(n ) operations, 6 

an updating algorithm for obtaining the factorization of a symmetric 

matrix 'ti = A+U when the factorization n f  A is known should require at 

2 most O(n ) arithmetic operations. Otherwise, there would be no compu- 

~ational advant,age over the alternative of actually computing the matrfx 

- 
A and factoring the result. The updating algorithm presented in 

Chaptcr I1 is concesatd with .~11e Iulluwlug problem: 

n xn t Given A E R , A = A , z E R", a E ??, let 

t t QAQ = MDM be the Bunch-Parlett factorization 

of A; let 

Find an algorithm to compute 



2 which r e q u i r e s  a t  most O(n ) a r i t h m e t i c  ope ra t ions .  

This  a lgor i thm makes u s e  of t h e  b lock  s t r u c t u r e  of t h e  ma t r ix  D.  

We found no s i m i l a r  way t o  t ake  advantage of t h e  corresponding t r i d i a g o -  

n a l  ma t r ix  T i n  Aasen's f a c t o r i z a t i o n .  A t  p r e sen t  we do n o t  know of an 

a lgor i thm f o r  updat ing  t h e  f a c t o r i z a t i o n  of Aasen.  h he updat ing  algo-  

rithm t h a t  i s  presented  he re  r e q u i r e s  between n2 + O(n) and %2 + O(n) 

ope ra t ions .  The method i s  shown t o  be s t a b l e  as long as t h e  f a c t o r  M i s  

w e l l  condi t ioned  w i t h  r e s p e c t  t o  so lv ing  l i n e a r  systems. These s t a t e -  

ments a r e  made p r e c i s e  i n  chap te r s  I1 and 111. 

4 .  Computational k e s u l t s  and Conclusions 

Chapter V i s  concerned w i t h  p re sen t ing  computat ional  evidence i n  

support  of t h e  t h e o r e t i c a l  work descr ibed  i n  chap te r s  11, 111, I V .  The 

computations were c a r r i e d  o u t  a t  Argonne Nat iona l  Laboratory us ing  an  

IBM 3701195. A l l  computations were done i n  double-precis ion a r i t h m e t i c .  

The updat ing  a lgor i thm has  been t e s t e d  f o r  accuracy and t iming 

over a  wide range  of updat ing problems. We have inc luded  t imings  f o r  

problems of v a r i o u s  o rde r s .  The accuracy of s o l u t i o n s  t o  l i n e a r  

systems us ing  t h e  updat ing  a lgo r i thm have been compared wi th  s o l u t i o n s  

obta ined  by computing and f a c t o r i n g  A + I J Z Z ~  a t  each s t e p .  The r e s u l t s  

are v e r y  encouraging. They i n d i c a t e  t h a t  t h e  bounds obta ined  i n  our  

a n a l y s i s  a r e  q u i t e  p e s s i m i s t i c  and t h a t  t h e  a lgo r i thm does n o t  b reak  

down even when t h e  updat ing process  i s  app l i ed  over many i t e r a t i o n s .  

I The unconstra-lned op t imiza t ion  a lgo r i thm was app l i ed  t o  many of 

t h e  s t anda rd  t e s t  problems which appear  i n  t h e  l i t e r a t u r e .  .Al though 
LY 

more work i s  needed t o  o b t a i n  a n  a lgo r i thm t h a t  can be  recommended f o r  
1 



general use, the initial results show this algorithm to be competitive 

with the algorithm of Gill and Murray [Ill. In any case the underlying 

idea is worthy of further research. It would be of great interest if 

the ideas could be extended to'a quasi-Newton method and to a con- 

strained optimization algorithm. 



Chapter I1 

Updating ~ a c t o r i z a t i o n s  of Symmetric Matr ices  

1. In t roduc t ion  

Methods i n  numerical  l i n e a r  a lgeb ra  a r e  u s u a l l y  concerned w i t h  

t h e  s o l u t i o n  of a s i n g l e  l i n e a r  problem. 'For example, a p a r t i c u l a r  

method might be  concerned wi th  t h e  s o l u t i o n  of t h e  l i n e a r  system Ax = b 

nxn. 
w h e r e A ~  R a n d x , b ~ ~ ~ .  Y e t  i n p r a c t i c e w e a r e o f t e n  f a c e d w i t h .  

s o l v i n g  a sequence of l i n e a r  problems which a r e  c l o s e l y  r e l a t e d .  For 

i n s t a n c e ,  we may be i n t e r e s t e d  i n  so lv ing  a sequence o f . n x n  l i n e a r  

s y s  tems 

I n  many c a s e s  of i n t e r e s t  U i s  of low rank.  Often t h e  r ank  of Uk i s  
k 

one ' o r  two. 

D i rec t  methods f o r  s o l v i n g  t h e  main problems of numerical  l i n e a r  

a lgeb ra  have come t o  r e l y  heav i ly  upon t h e  use  of ma t r ix  f a c t o r i z a t i o n s .  

For f u l l  ma t r i ce s  t h e  p r i c e  ( i n  terms of a r i t h m e t i c  ope ra t ions )  of such , 

f a c t o r i z a t i o n s  is  g e n e r a l l y  S u b s t a n t i a l .  For i n s t a n c e ,  t h e  r e l e v a n t  

3 
f a c t o r i z a t i o n  needed t o  s o l v e  (1.1) r e q u i r e s  O(n ) a r i t h m e t i c  o p e r a t i o n s  

f o r  each %. However, when U = \+l-% h a s  low rank ,  one might expect  
k 

t h a t  t h e  f a c t o r i z a t i o n  of %+1 could be computed i n  an  o r d e r  of magni- 

tude  fewer o p e r a t i o n s  us ing  our  knowledge of t h e  f a c t o r i z a t i o n  of . 4( 
For example, i n  (1.1) w e  would aim f o r  a lgor i thms which r e q u i r e  on ly  

2 O(n ) a r i t h m e t i c  ope ra t ions .  

Here we s h a l l  be concerned w i t h  f a c t o r i z a t i o n s  used i n  s o l v i n g  



t h e  problem (1.1)  when t h e  m a t r i c e s  Ak and U a r e  symmetric, and where 
k 

each Uk i s  a  rank one ma t r ix .  Then (1.1) has  t h e  form 

t where each  z  E Rn, ok E R, Ak = Ak. This  problem a r i s e s  f o r  i n s t a n c e  
k 

i n  quasi-Newton methods f o r  op t imiza t ion  problems [ 7 ] .  

Thus we s h a l l  concern ou r se lves  w i t h  ob ta in ing  t h e  f a c t o r i z a t i o n  

(1 3) = A + ozz 
t 

w 

n o t  by forming A e x p l i c i t l y ,  bu t  by us ing  t h e  f a c t o r i z a t i o n  of A. Such 

a p roces s  i s  c a l l e d  updat ing  a ma t r ix  f a c t o r i z a t i o n .  

There are two important  and very  d i s t i n c t  cases :  

( i )  A i s  p o s i t i v e  d e f i n i t e ,  

( i i )  A i s  i n d e f i n i t e .  

I n  ca se  ( i )  A may be  f ac to red  i n  a numer ica l ly  stab]-e way i n t o  

where L E RnXn i s  a  u n i t  lower t r i a n g u l a r  ma t r ix ,  and D E RnXn i s  a  

d iagonal  ma t r ix  w i t h  p o s i t i v e  d iagonal  e lements .  No p i v o t i n g  i s  re-  

qu i r ed  t o  o b t a i n  numerical  s t a b i l i t y  i n  t h e  p o s i t i v e  d e f i n i t e  ca se .  

However, i n  c a s e  ( i i )  such a  f a c t o r i z a t i o n  may n o t  even e x i s t .  For 

example cons ide r  t h e  mat r ix '  

A numer ica l ly  s t a b l e  method f o r  ob ta in ing  a f a c t o r i z a t i o n  of A i n  ca se  



[ ( i i ' )  i s  given i n  [5 ]  by Bunch a n d . ~ a r l e t t ,  and i s  l a t e r  r ev i sed  i n  f.41 
I 

by .Bunch.and Kaufman. By th5s  method one o b t a i n s  a permutat ion ma t r ix  

Q y  ' a  lower t r i a n g u l a r  ma t r ix  M y  and a  block d i agona l  ma t r ix  D such t h a t  

The d iagonal  b locks  o f ' D  a r e  o r d e r  one o r  two. Whenever D 
i+l, i # 0 

then  Mi+lyi = 0. Also, Mii = 1.' f o r  a l l  i. 
. . 

The c a s e  i n  (1.3) where both  A and i aire t h e o r e t i c a l l y  known t o  

be  p o s i t i v e  d e f i n i t e  has  been s tud ied  and updat ing  a lgo r i thms  a r e  given 

i n  [9,13,14] . The c a s e  where A and a r e  symmetric bu t  p o s s i b l y  indef  i- 

n i t e  has  no t  been s tud ied .  

I n  t h e  fo l lowing  s e c t i o n s  we s h a l l  p r e s e n t  and ana lyze  an  algo-  

N N -  . . 

r i t h m  f o r  computing Q,  M , . D ,  when given t h e  f a c t o r i z a t i o n  (1 .4 ) ,  such 

t h a t  . . 

where i is  given by (1 .3) .  The a lgo r i thm r e q u i r e s  between n2 + 4n and 

5 5 25 s2 + a + - a r i t h m e t i c  o p e r a t i o n s  and a t  most 2n comparisons. Here 
6 6 3 .  

an a r i t h m e t i c  ope ra t ion  is  considered t o  be  a f l o a t i n g  p o i n t  m u l t i p l i -  

c a t i o n  followed by an a d d i t i o n .  D iv i s ions  a r e  counted a s  m u l t i p l i c a -  

t i o n s .  The ope ra t ion  count. compares f avo rab ly  w i t h  t h e  a l t e r n a t i v e  of 

t - t 
computing A + azz  and then  f a c t o r i n g  t h i s  ma t r ix  i n t o  MDM . This  

would r e q u i r e  L2 + n r n u l t i p l i c a t ~ i o n s  toge the r  k i t h  L2 a d d i t i o n s  t o  
2 . . 2 

fo& t h e  new mat r ix .  It would then  r e q u i r e  a t  most 

o p e r a t i o n s  t o  o b t a i n  t h e  new decomposition. Therefore,  a t o t a l  of a t  

most 



o p e r a t i o n s  would be needed. 

Thus i t  is  advantageous t o  u s e  : t h e  updat ing  a lgo r i thm whenever 

n - > 10. However, i t  should be  emphasized t h a t  t h e  upper bound on t h e  

number of o p e r a t i o n s  r equ i r ed  by t h e  updat ing  a lgo r i thm i s  a worst  c a s e  

bound. Computational r e s u l t s  i n d i c a t e  t h a t  t h e  worst  c a s e  seldom 

occurs .  Therefore ,  we expect  t h a t  i n  p r a c t i c e  t h e  c.ross'over number 

would b e  much sma l l e r .  

2.  Desc r ip t ion  of t h e  Algorithm 

W e  s h a l l  begin  by d e s c r i b i n g  a  b a s i c  a lgo r i thm wi th  no p ivo t ing .  

The a lgo r i thms  given i n  [9,14]  f o r  t h e  p o s i t i v e  d e f i n i t e  c a s e  w i l l  be  

p re sen ted  a s  mod i f i ca t ions  t o  t h i s  b a s i c  a lgor i thm.  The modif ic 'a t ions 

were designed t o  i n s u r e  numerical  s t a b i l i t y .  ~ h b  a lgo r i thm we p re sen t  

f o r  t h e  i n d e f i n i t e  c a s e  i s  a l s o  a  mod i f i ca t ion  of t h i s  b a s i c  a lgor i thm.  
1 ' 

However, i t  i s  n e c e s s a r i l y  more complicated s i n c e  t h e  p ivo t ing  must be 

updated. 

Assume f o r  t h e  moment. t h a t  no permutat ions &ere  r equ i r ed  t o  

o b t a i n  

A = MDM t 

w i t h  M (block)  u n i t  lower t r i a n g u l a r ,  and D b lock  d iagonal  w i t h  one-by- 

one o r  two-by-two d iagonal  b locks .  Then-we may w r i t e  

where t h e  D .  a r e  t h e .  d i agona l  b locks  of D and t h e  M a r e  t h e  b lock  
J j 



.cdIumns of M. Let 

and l e t  Mp = z .  Denote 

.t t t t 
where p = C p 1 y ~ 2 s - * 0 ~ ~ m ) a  

w ' -  

Suppose t h a t  Dl = Dl + &p pt is  non-singulary a n d  l e t  1 .1 - 
Dlbl = up1. Then take  Kl = M + w 1 

(2)b:. Note t h a t  only t h e  elements 

below the  i d e n t i t y  p a r t  of M a r e  a l t e r e d ;  
1 

where t h e  x"s .and y ' s  denote po-ssibly non-zero q u a n t i t i e s .  W e  have - that  

Observe t h a t  t h e  matr ix  A'*) + O ~ W ( * ) W ( ~ ) ~  has t h e  form 



and thus  we .may recurs ive ly  apply t h i s  procedure . to  ob ta in  

N t a s  long a s  D E D .  + 0.p.p.  i s  non-singular f o r  1 2  j  5 m. This assump- 
j J  J J J  

t i o n  on 5 is t h e o r e t i c a l l y  always s a t i s f i e d  - i n  the  p o s i t i v e  d e f i n i t e  
j 

case.  However, t h i s  cannot be guaranteed i n  t h e  i n d e f i n i t e  case. Af ter  

e s t a b l i s h i n g  some prel iminary r e s u l t s  concerning these  computations we 

shall discuss some sf the liumerical algori thms t h a t  have been proposed 

f o r  t h e  p o s i t i v e  d e f i n i t e  case. 

Lemma (2.1). Let D and D + crppt be non-singular. Then t h e  s o l u t i o n  t o  

t 
(i) (D' + upp ) b  = up 

t -1 
is given by b  = BD-'~,  where ' 8 = o/ (1 + crp D p) . Moreover, 

t -1 
( i i )  det(D + uppL)  = d e t  D(l  + up D p) and t h e  

t -' 
updated u' - u - L Db 

is given by 

u 
( i i i )  a '  = t -1 ' #  

i + ~ p ~  p 

Proof: 

( i )  fol lows by s u b s t i t u t i o n ,  

( i i )  Sherman-Morrison formula (or d i r e c t  computation), 

( i i i )  fol lows by s u b s t i t u t i o n .  



27 

Thus i f  a l l  t h e  6 ( f o r  1 < j < rn) a r e  non-singular we have t h e  forinula 
j - - 

u =----.I--- f o r  1 < j < m ,  
t -1 - - 

j+' 1 + u,p,D, pi 

and 

J J J  J 

a 
IT d e t  D 

1 . . .= I  . . . . j  
- -  - 

k  . 9  

Ok 
r[ d e t  D 2  . 

hence 
u 1 d e t x  

-- - -  
o m+l d e t  A ' 

I n  t h e  case  t h a t  bo th  A and a r e  p o s i t i v e  d e f i n i t e ,  t h e s e  formulas  

p o i n t  out  t h e  n e c e s s i t y  of main ta in ing  a w i t h  t h e  same s i g n  a s  a .  We 
j 

- 1 n o t e  a l s o  t h a t  we may r e c u r s i v e l y  compute t = o as fo l lows:  
j j 

and we have t h e  r e l a t i o n  

t d e t  5 
( 2 . 3 )  j + l -  3. 

t d e t  D . 
j j 

N w 

When A i s  p o s i t i v e  d e f i n i t e ,  d .  = d e t  D d .  = d e t  D .  and 
J j '  J J 

D = d iag (d l , .  . . ,dn) .  
N 

Now, o f t e n  i n  p r a c t i c e  one knows t h e o r e t i c a l l y  ' t ha t  t h e  m a t r i x  A 

should be  p o s i t i v e  d e f i n i t e  when A i s  p o s i t i v e  d e f i n i t e .  I n  t h e  c a s e  

t h a t  cr is  p o s i t i v e  t h e r e  i s  no d i f f i c u l t y  . . s i n c e  t h e  r e c u r s i o n . f o r  t h e  
t 
j+l 

t . ' s  y i e l d s  an  i n c r e a s i n g  sequence, and d  = d  . Thus t h e  'i. a r e  
J j ti j J 

N 

a l l  p o s i t i v e  and d  > d  .   he fo l lowing  algori;hrn r e s u l t s  f o r  o . 0: 
j -  j 



-1 C.1) = Z ,  A = MDM t t l = a  , W 

f o r  i = 1 s t e p .  1 . u n t i l  n ' d o  - - - -  

(4) t e rmina te  i f  i = n 

~ o t e  t h a t  the 'number of a r i t h m e t i c  ope ra t ions  r equ i r ed  is n2 + O(n), 

sfnce on ly  i o p e r a t i o n s  a r e  needed a t  s t e p s  6 and 7.  

D i f f i c u l t i e s  a r i s e  when a < 0 because round o f f  e r r o r  may cause - 
a t t o  be p o s i t i v e ,  and hence d .  w i l l  be nega t ive  i n a i c a t i n g  t h a t  t h e  

i+l 1. - 
computed A i s  n o t  p o s i t i v e  d e f i n i t e , ,  

Two remedies have been proposed. One of t h e s e  [9 ]  i s  t o  compute 

t h e  v e c t o r  p  such t h e  Mp = z a t  the o u t s e t .  It i s  noted t h a t  i n  t h e  

a p p l i c a t i o n  t o  quasi-Newton methods, t h e  v e c t o r  p  i s  o f t e n  avai1ahl.e 

anyway. I f  CJ < 0 t hen  c a l c u l a t e  t h e  t f o r  2  < j n+l from t h e  formu-. 
j ' - - 

l a  ( 2 . 2 ) .  If one of rhe e .  should t u r n  ou t  t o  be p o s i t i v e  then  t h e  t 
J j 

a r e  r e c a l c u l a t e d  us ing  

where E is  the relatjve  machine p r e c i s i o n .  Thcoc ncw v a l u e s  of t are i 

then  used i n  p l a c e  of t h e  o l d  ones i n  ( ,2.4),  s t e p s  3 through 7 .  The 

-1 
e f f e c t  i s  t o  r e p l a c e  u by t which g ives  a  problem t h a t  is c l o s e  t o  t h e  

1 



o r i g i n a l  problem, and f o r  which t h e  computed will:  be p o s i t i v e  d e f i n i t e .  

I n  [14] another  approach i s  taken which y i e l d s  a s i m i l a r  a1g.o- 

r i thm.  The major d i f f e r e n c e s . b e i n g  t h a t . t  i s  s e t . t o  E i f  some t ;  is 
. . n+l  J. 

w 

p o s i t i v e  and a backwards r ecu r rence  formula f s  used t o  compute M. Thus, 

i n  p l a c e  of (2.4) s t e p s  6 and 7, .we would have 
. * . . 

f o r  i = n s t e p  -1 u n t i l  1 do - - - 

However, t h e r e  seems t o  be t h e  need f o r  a d d i t i o n a l  s t o r a g e  i n  
3 * 

(2 .6 ) .  Note t h a t  t h e  computation of w( i )  r e q u i r e s  knowledge of M which i 

has  presumably been ove&i t t en  a t  s t e p  (2)  of (2 .6) .  

I n  [ 9 ]  an e r r o r  a n a l y s i s  of t h i s  process  has  been given.  That 

a n a l y s i s  shows t h a t  

where t h e  elements of E have f i r s t  o rde r  terms i n  E wh'ich depend on t h e  

r a t i o  d v  i n  (2.4) s t e p  7 i s  used.  However, it i s  p o s s i b l e  t o  show 
I 

t h a t  

and hare t h e  e r r o r  terms depend on t h e  r a t i o  Adi/ai w h i c h i s  l e s s  t han  1 

when o > 0. I n  both [ g ]  and [.i4] one swit.ches t o  (2.7) on ly  i f  t h e  

r a t i a  a i / d  becoies  l a r g e r  than  some bound. 
1 I '. 

This  l e a d s  u s  t o  t h e  fo l lowing  a lgor i thm which i s  a s l i g h t  



modification of the composite t-method .given in [ 9 ] .  

(2.8) 
-1 (1) terminate'if u ='0; put t = u and w 0) = z; - 1 

(2) if b > O ~ t o  - 6; 

(3) ' 'if p is not .available solve Mp = z for p; 

2 
( 4 )  for - i=1,2,. . . ,n do - t ' = t. + p./di; i+l 1 1 

(5) 'if - any.t' > O'fhen i -  - 

'begin 

n+l = €/a; ' 

far I=n,n-1, ..., l do t = t 
3 - - i i+l 

end 

(6) for i = 1 step 1 ,until n do 
,- - - 
if u > 0 then begin p = w (i). 2 I - i i ' ti+l = ti + pi/di; e&'; 

I terminate if i = n 

I begin 

W 
( 1  (I) 

= w  - piMi; 

end I - 

I begin 

'end , .- I-. 



c.d 

The s i t u a t i o n  becomes completely d i f f e r e n t  when t h e  m a t r i c e s  A and A a r e  

' no t  assumed t o  be p o s i t i v e  d e f i n i t e .  I n  o rde r  t o  o b t a i n  a s t a b l e  algo-  

rithm f o r  so lv ing  Ax = b p i v o t i n g  must be .used t o  f a c t o r  A [3,5] and we 

o b t a i n  

t 
QAQ = M D M ~  . 

N 

Moreover; t h e  fo l lowing  example,shows, t h a t  D i n  (2.1) may be. s i 'ngular  
i 

w 

even' though both  A and A a r e  non-singular.  

h. t - 
A = A + azz  . s a t i s f i e s  d e t  A = - - Therefore ,  some p i v o t i n g  s t r a t e g y  

2 ' 

must be  employed t o  a.void t h e  breakdown of t h e  computation (2 .1) .  The . 

- 
main d i f f i c u l t y  i n  updat ing t h e  p i v o t i n g  s t r a . t egy  is  ma in ta in ing  M i n  

t r i a n g u l a r  form. 

t 
(= MDM,, where M = I and D = A), 

( 0  1 o \  

We s h a l l  now d e s c r i b e  t h e  p i v o t i n g  s t r a t e g y  g iven  i n  [5,] f o r  the. 

0 0 -, 4 

Let  A = 

Bunch-Parlett  f a c t o r i z a t i o n  i n  some d e t a i l .  This  s t r a t e g y  w i l l  b e  used 

1 0 0 

1 

in  a p o r t i o n  of t h e  updat ing  a lgor i thm,  so  we inc lude  i t s  desc ' r ip t ion  

f o r  t h e  sake  of completeness.  

Given a  symmetric non-singular  ma t r ix  A w i t h  elements  a t h e  
i j  . 

f a c t o r i z a t i o n  proceeds as f nl.l.ows : 

Let  0 < a < 1 be  f i x e d .  

Le t  v = max l a  I and l e t  p = max l a . , l  . 
l< i < n  i i 

' i#j  1J. --  



If v 1. up, let i be the smallest index such that laii 1 = v .  Let Q1 be 

.the identity matrix with rows 1 and i interchanged. Then the matrix 

t Q AQ has the element' .a in the (1,l) position. The first step of the 
.1 .1 ii 

factorization is to write 

1 0  -1 t 
where Ml = I ] , and = A' - S1 w . If v < op, let i > j 

indices such that la . I = p. Let be the identity matrix with row i 
i~ 

interchanged with row 2 and row j interchanged with row 1. Then the 

t 
matrix Q AQ has the element a in the (2,l) posirfon. In this case 1 1  i j 

the first step of the factorization is to wri te  

t Here V is the first two columns of Q. AQ below the (2,l) and (2,Z) 
1 1  

positions, and D is a two-by-two matrix. Also, det Dl = aiiajj - 1 



The f a c t o r i z a t i o n  now proceeds by applying t h e  same p i v o t i n g  s t r a t e g y  t o  

t h e  reduced ma t r ix  The end r e s u l r  i s  t h a t  

3 

where D i s  a  block d iagonal  ma t r ix  w i t h  1 x 1  o r  2x2 d iagona l  b locks .  

Hence, 

t 
Since  Q-' = Qi f o r  1 < i < k we may w r i t e  

i - - 

where 

and 

Then.%. has  t h e  same form a s  M and thus  i f  we t a k e  
J j 

then  M is  a b lock  u n i t  lower t r i a n g u l a r  ma t r ix  such t h a t  

4 

For f i x e d  a ,  0 c a c 1, t h e  s t r a t e g y  j u s t  descr ibed  shall be  

c a l l e d  the  d iagonal  p i v o t i n g  s t r a t e g y  S . When a i s  chosen t o  be 
a 

( l + a ) / 8 ,  the f a c t o r i z a t i o n  i s  almost a s  s t a b l e  a s  Gaussian e l imi -  

n a t i o n  w i t h  complete p ivo t ing  [3,5]. A modi f i ca t ion  of t h i s  s t r a t e g y ,  

which i s  comparable t o .Gauss i an  e l i m i n a t i o n  w i t h  p a r t i a l  p i v o t i n g ,  i s  

3 2  1 
given i n  [ 4 ] .  The a lgor i thm i n  [5] r e q u i r e s  between h3 12 + + 

1 3  1 2  1 
and a + + -in comparisans, while t h e  algorithm I s  [ 4 ]  r e q u i r e s  at  

6 
2 

most n  -1 comparisons. 



Now, i n  o r d e r  t o  e s t a b l i s h  t h e  theorem t h a t  we s h a l l  u s e  t o  

c o n s t r u c t  t h e  a lgo r i thm f o r  updat ing  t h i s  f a c t o r i z a t i o n  s h a l l  need some. 

p re l imina ry  lemmas. 

Lemma (2 .2 ) .  Le t  A r RnXn be symmetric w i t h  e igenvalues  A 5 A 2  5.. .L A 
n . 

t N 

and l e t  = A + a z z  f o r  some z E Rn,  o E I?. I f  a > 0 then  A has  eigen- 

v a l u e s  . . i  x such t h a t  

N 

whi l e  i f  a - < 0 then  t h e  e igenvalues  of A can be  arranged s o  t h a t  

Proof:  [20]'. pp. 95-98. 0 

N 

Kemark: I n  p a r t i c u l a r  i f  A is  non-singular  t hen  a t  most one of the, A i 

i s  zero ,  

With Lemma (2.2) and t h e  p ivo t ing  s t r a t e g y  j u s t  descr ibed  w e  can 

e s t a b l i s h  

I k x l  
Leupa (2 .3) .  L e t  v = [ ,), where I E .v . 8'' and V' r R . Suppose t h a t  . 

t 
D = D  E 

k+L 8" is  non-singular  and t h a t  w c R , o t R. Define 

(2  9) 
t t 

C - VDV + oww . 
Then t h e r e  is a n  1 x 1  permutat ion m a t r i x  Q such t h a t  

where 

- 
( i )  D i s  a non-singular  b lock  d i agona l  ma t r ix  w i t h  1 x 1  o r  2x2 

d i agona l  .b locks ,  : 

( i i )  ,v i s  b l o c k  u n i t  lower  t r a p e z o i d a l ,  



~ r d o f :  Write  

D 0 . . 

(2.11) 
0 a .  

where 

and 

Here p may be  any p o s i t i v e  r e a l  number; i f  p i s  chosen . smal l  enough then 

t h e  diagonal  p ivot ing  s t r a t e g y  S w i l l  give e i t h e r  
a 



where D is block diagonal with 1x1 or 2x2 diagonal blocks, and M has the 

corresponding block unit lower triangular structure. Since D is non-. 

singular, Lemma (2.2) implies that 5 has at most one zero eigenvalue. 

The diagonal pivoting strategy prese~es the inertia of 5. Therefore, 5 

is non-singular. Note, that 6 = 0 i n  (2.13) if and only if 5 is singular 

and in.this case we cannot carry the decomposition further without per- 

muting the last row and column of . 

If (2.12) is obtained then 



Here we t.ake 

N [ " 
V = , and w = w ' .  1;. + W'bt 

I f  ( 2 . 1 3 )  i s  obta ined  then 

I 

N 0 o \  

t 
0 0 6 ' . B  

i G + v m t ' + w ' b  I v I w' 
\ 0 0 B a ' ,  

Here 
k 

= [ I ) ,  - w e r e  c R , 
v  

and we t a k e  

VM + it + w'b 

Th i s  g i v e s  t h e  d e s i r e d  r e s u l t .  0 7 
I 

Observe t h a t  t h e  s c a l e  f a c t o r  p.  does no t  a c t u a l l y e n t e r  i n t o  t h e  



computations and t h u s  e x p l i c i t  s c a l i n g  need n o t  be  implemented i n  a 

code. Also, w e  n o t e  t h a t  f o r  t h e  intended a p p l i c a t i o n ,  we w i l l  have 

L - < 3 i n  L e ~ a  ( 2 . 3 )  . When 1 - < 3  we have 

w i t h  D of o r d e r  a t  most 3 .  Then i n  t h e  computations non-singular 

m a t r i c e s  of o r d e r  a t  most 4 a r e  i n s e r t e d  between t h e  f a c t o r s  on t h e  

r i g h t  and permuta t ions  a r e  used t o  o b t a i n  

. Thus, some f i x e d  number of a r i t h m e t i c  o p e r a t i o n s  a r e  required co cumpute 

- 
D and B. Also, some f i x e d  m u l t i p l e  of k a r i t h m e t i c  o p e r a t i o n s  a r e  

.-.a 

r equ i r ed  t o  compute V. 

Before we g i v e  t h e  main theorem of t h i s  s e c t i o n  w e  s h a l l  need t o  

e s t a b l i s h  one more lemma. The proof of t h e  lemma is t r i v i a l  b u t  i t  is 

inc luded  f o r  t h e  sake  of c l a r i t y  i n  some of t h e  fo l lowing  computations.  

Proof:  Le t  p1,p2 b e  t h e  e igenvalues  of B w i th  I p 1 , I p2 I . Since  
1 

1 
B $. 0 ,  B has  a n  e ipenvec tor  correspending t o  p of t h e  form ( ) .  Thus 

1 Y 



Therefore, &+By = u1 and since B f '0 

we have ' y = (ul-6)/B 

Since B is symmetric it has an orthonormal system of eigen- 

vectors. Thus 

where 

The following theorem will show how Lemma (2.3) can be used to 

2 obtain an O(n ) updating algorithm. , 

Theorem (2.1). Let A E RnXn be non-singular with Q A Q ~  = M D M ~  Suppose 

that z E RnY o E K are such that 

- t 
A = A + ozz 

---t -t 
is also non-singular. Then QAQ = MDM can be computed from the factor- 

2 
ization of A in O(n ) arithmetic operations. v . 

t t 
Proof: Let w = Qz. Then Q;Qt = MDM + o w  . We denote 

lc m i(k) = 1 6 at = 1 M.n.Mt. First we may write 
j =1 3.j j' j =k J J ~  

with MI = [:Iy w = [:Iy D = Dl. Then by Lemma (2.3) we may 

construct a permutation U1 such that 



. . 
where 0, E., E is non-singular ,  B E R ~ ~ ~ , ,  and u 1  E R .  Observe 

I 
t ( 1 1  0 

a i s o  t h a t  I " ]A(') [ U1 ' ] = 8") . I f  ( i i i )  : is  achieved then  t h e  
0  I 0  I 

problem becomes 

u 0 

Q1 - [ g1 19. Note t h a t  

has  t h e  same form a s  t h e  o r i g i n a l  problem b u t  t h e  dimension of t h e  prob- 

1 e m . i ~  decreased  t o  n-1 o r  n-2'. 

I n  t h e  fo l lowing  d i s c u s s i o n  we  s h a l l  drop t h e  primes and sub- 

s c r i p t s  from t h e  expres s ions  on t h e  r i g h t  of (2.14) .  Also, some of t h e  

q u a l i t i c s  appearing i n  (2.14) a r e  redef ined  below. 

I f  ( i )  ho lds  i n  (2 .14) ,  then  



while i f  ( i i )  holds then 

I n  ( i )  w e  have 

- ' 
and a s i m i l a r  expression i n  ( i i ) .  Here v = [ " ] and = [ Y 2 ]  have 

been p a r t i t i o n e d  so t h a t  VG and V; a r e  defined.  
1 1 

Now 'if ( i )  o r  ( i i )  occurred i n  (2.14) then 

s a t i s f i e s  16 1 < a 1 13 1 ; Hence by Lemma (2.4) 

with 1 h I > I h I . Moreover,, h1 # 0 since. hl = 0 impl ies  t h a t  B 0. 1 - . '  2 . , . 



Let 

Using t h i s  express ion i n  (2.15) g ives  

1 0  t 

non-singular and = v -VV Now, 
2 2 1' 

Lemma ( 2 . 3 )  may be appl ied  t o  ob ta in  

M 

W e  take  El = D and "M . Case ( i i )  of 
1 

(2.14) i s  s i m i l a r .  This 

process may be continued u n t i l  t h e  f u l l  updated f a c t o r i z a t i o n  has been 

a t t a i n e d  . 
2 

To see rhar only O(n ) u p e r a t l u ~ l s  axe heeded, abse~vo that  n 

s m a l l  f ixed  number of a r i thmet ic  opera t ions  (bounded by b say) a r e  re-  

quired t o  ob ta in  a new diagonal  block. Manipulating t h e  columns of the  

t r i a n g u l a r  matr ix  M a t  s t e p  k r e q u i r e s  some f ixed mul t ip le  of (n - k) 

a r i thmet ic  o p e r a t i o n s  (bounded by a say) .  Thus, t h e r e  a r e  a t  most 



a r i t h m e t i c  ope ra t ions  r equ i r ed .  

. . We remark now t h a t  t h e  implementation does no t  a c t u a l l y  r e w r i t e  

C(2) a s  i n  (2.16) .  I n s t e a d ,  (2.15) i s  w r i t t e n  a s  

where 

Mul t ip ly ing  t h e  ma t r ix  f a c t o r s  and then  equat ing  ma t r ix  elements  

w i l l  show t h a t  6 i n  (2.17) i s  equal  t o  t h e  ma t r ix  5 appear ing  i n  ex- 

p r e s s i o n  (2.11) of Lemia (2.3) i f  we had f i r s t  ob ta ined  (2.16) and then  

app l i ed  Lemma (2.3) . Af te r  t h i s  form of c ( ~ )  has  been obta ined ,  t h e  

f a c t o r i z a t i o n  may proceed a s  desc r ibed  i n  Lemma (2 .3) .  

We a r e  ready now t o  g i v e  a n  Algol - l ike  d e s c r i p t i o n  of t h e  imple- . 

mented a lgor i thm.  Some of t h e  d e t a i l s  have been l e f t  o u t  f o r  t h e  sake  

of s i m p l i c i t y .  The most n o t a b l e  of t h e s e  omissions is  t h a t  when updat- 

i ng  a  d i agona l  b lock  D we may o b t a i n  two 1x1 b locks  i n s t e a d  of a  2x2. 
k 

The e x p l i c i t  bookkeeping involved i s  no t  p r e s e n t  i n  t h i s  somewhat 

s i m p l i f i e d  d e s c r i p t i o n .  

I n  t h e  fo l lowing  d e s c r i p t i o n  of t h e  a.lgorit.hm we s h a l l  make t h e  

fo l lowing  convent ions:  



(1) The expression a : = b means b overwrites a. 

(2) D will be a matri~ of order at most 4. An expression of 
( D  o \  . . 

the form D : = I ( will mean we have increased the 
A 1 0  ~1 

size of D with elements defined as indicated. 'Similar 

remarks will apply to the arrays V and B. 

(3)  At step k, w will always have the form w = 

w1 has 1 or 2 components whenever D is 1x1 or 2x2 
k 

resiectively. Matrices Q and Q k are .permutation matrices. 

. t Let QIQt = M.D,,M., o, z be given. Let 0 u c 1 be fixed. The 
;=1 J J J  
J J -  " " "t 

following algorithm - will compute M.D .M and such that 
..- J J ~  

(1) begin 

w : = Q z ; k : = l ;  j : = I ;  

n 

(2 )  L1 : comment decompose D as described in Lemma.(2.3); 

( 3 )  if B is 1x1 then 

begin 



w 

1 : = order of Dkj ;  k : = k + 1; j : = j + 1; 

i f  ( j  = n and D is  1x1) or ( j  = n - l ' a n d  - - - 
A 

16211~ > m a x ( l ~ ~ ~ 1 .  1 6 ~ ~ 1 ) )  then go t o  QUIT; 

Update Q with Q 
k ; 

go t o  L1; 

end ; - 

( 4 )  if B i s  2x2 then 

,. 
N N 

Dk 
: = D; 1 : = size(D ); k : = k +  1; j : = j + t ;  

k 
N . Bll; go t o  Q U I T ;  &; i f  j > n then begin D ' = - - 

D : = 

- 1 

comment where (V,  Mk) = ' ---.< .". 

end - 
. . 

Q U I T  : 

end . - 



We r e f e r  t h e  r eade r  now t o  t h e  b r i e f  f low diagram (Al) desc r ib -  

i ng  t h e  p i v o t i n g  s t r a t e g y  and t o  t h e  program l i s t i n g  (A2) i n  t h e  

appendix. The o p e r a t i o n  count t h a t  fo l lows  r e f e r s  t o  t h a t  p a r t i c u l a r  

implementation. T h e . r e s u l t s  of t h e  o p e r a t i o n  count  a r e  g iven  i n  Table 1. 

By a n  1 - s t e p  r educ t ion .  w e  s h a l l  mean t h a t  1 columns ,of and 

t h e  corresponding d i agona l  b locks  have been completely determined by t h e  

a lgo r i thm we have j u s t  desc r ibed .  Opera t ions  a t  s t e p  k  which a r e  

2 
c a r r i e d  o u t  on columns of M o r  t h e  v e c t o r  w c o n t r i b u t e  t o  t h e  O(n ) por- 

t i o n  of t h e  o p e r a t i o n  count  and will be r e f e r r e d  t o  a s  npetatinns nf 

type-A, Opcra t ions  needed t o  update  a d i agona l  b lock  w i l l  be called 

o p e r a t i o n s  of type-B and they  c o n t r i b u t e  only  t o  t h e  l i n e a r  term i n  our . 

o p e r a t i o n  count;  W e  s h a l l  consider an ope ra t ion  as a  m u l t i p l i c a t i o n  and 

an  a d d i t i o n ;  w i t h  t h i s  convent ion we a r e  i gnor ing  t h e  important  c o n t r i -  

2 
bu t ion  of i n t e rchanges  t o  t h e  O(n ) term. The p a t h s  c i t e d  r e f e r  t o  t h e  

f low diagram (Al) i n  t h e  appendix. 

Table  1 needs some exp lana t ion .  The counts  g iven  under t h e  

heading "path 1" refer tn a avccess fu l  one-step r educ t ion  wi thout  en t c r -  

ing  pa ths  2 o r  3 ( s e e  Al) .  The o p e r a t i o n  counts  g iven  f o r  p a t h s  2 and 3 

i nc lude  those  c a s e s  which begin w i t h  p a t h  1 and end i n  p a t h s  2  o r  3.  

Table 1. 
Opera t ions  Required a t  S tep  k 

type-A 

type-B 

comparisons 

r educ t  ion  

, m denotes  number of ope ra t ions .  

ratl-I 1 FciL11 2 Bath 3 

10(n  - (k+2)) + 2 _t m 
l l ( n  - (k+7)) + 2 

4 2 

6 3 

3 

2 (n-k) 

5 

1 

1 

4(n - (k+l)) 5 m 5 
6 1n - ) + 1  

15 - < m - < .I9 

4 

2 



The b e s t  p o s s i b l e  s i t u a t i o n  occurs  when Pa th  1 i s  taken a t  each s t e p ;  we 

then have t h a t  t h e  t o t a l  ope ra t ions  r equ i r ed  a r e  

= n2 + 4n . 

The worst  p o s s i b l e  ca se  wil l .  now be considered.  

Suppose 

pa th  1 i s  taken f o r  k = j 
1'"" j ; 

kl 
pa th  2  is  taken f o r  k  = el'...,% ; 

2 
path  3  i s  taken f o r  k.= ml, ..., m ; 

k3 
where n  = k  1 + 2k2 + 3k3. 

The t o t a l  number of o p e r a t i o n s  c o n t r i b u t i n g  t o  t h e  n2 term i s  

then  bounded by t h e  sum S ,  where 



Thus 

Now, 

and 

- 
Thus 

whete we have maxmlzed rhe expression k (2x1-3k -10) over {k : b3 r 01.  3 ,  3 3 

The a n a l y s i s  i s  n o t  v a l i d  u n l e s s  n  - > 5. 

Let  u s  d i v i d e  the c o ~ r n t s  f o r  type-B ope ra t ions  by t h e  co r r e s -  

ponding r e d u c t i o n  a t  s t e p  k. An upper bound . fo r  t h i s  number i n  t h e  

wors t  c a s e  i s  14.  Thus 14n i s  a n  upper bound f o r  t h e  number of cype-B 

o p e r a t i o n s  needed. Therefore ,  t h e  worst  c a s e  o p e r a t i o n  count i s  bounded 

The maximum number of comparisons needed i s  2n. 



' 3 .  A P i c t o r i a l  Desc r ip t ion  of t h e  Algorithm 

' 

. I n  t h e  l a s t  s e c t i o n  we gave a  formal  d e s c r i p t i o n  and ,proof of 

c o r r e c t n e s s  of an a lgor i thm t o  update  t h e  f a c t o r i z a t i o n  of a  symmetric 

mat r ix .  The main d i f f i c u l t y  i n  ob ta in ing  t h i s  a lgor i thm was updat ing  

t h e  p i v o t i n g  s t r a t e g y  wh i l e  main ta in ing  t h e  t r i a n g u l a r  s t r u c t u r e  of M 

and c .  
The fo l lowing  diagram r e p r e s e n t s  t h e  a lgor i thm a t  s t e p  k. 

F igure  1 
P i v o t l ~ l g  i l l  Llle Updating Algorithm 

I n  Fig.  1, r e p r e s e n t s  t h a t  p o r t i o n  of t h e  f a c t o r i z a t i o n  of 

ob ta ined  up t o  s t e p  k.  c ( ~ )  r e p r e s e n t s  a  working a r r a y  t h a t  i nvo lves  

informat ion  from t h e  v e c t o r  w and a t  most t h r e e  columns of M. A is 

t h a t  port<.on trf t h e  f a c t o r i z a t i o n  of A which has  n o t  y e t  been con- 

s i d e r e d .  From t h i s  diagram we s e e  t h a t  t h e  p i v o t i n g  e f f e c t s  n e i t h e r  t h e  

,.. 
t r i a n g u l a r  s t r u c t u r e  of M t h a t  has  a l r e a d y  been computed nor t h e  

triangular s t r u c t u r e  of t h a t  p o r t i o n  of M which has not  y e t  been 



cons idered .  

One can  a l s o  r e p r e s e n t  t h e  o p e r a t i o n s  on t h e  elements  i n  a  d ia -  

gram. I n  t h e  fo l lowing ,  d ' s  w i l l  r e p r e s e n t  e lements  of t h e  d iagonal  

b locks  D of D ,  m ' s  w i l l  r e p r e s e n t  elements of t h e  M 's which occur  
k j 

below t h e  b lock  d i agona l  of i d e n t i t y  m a t r i c e s  i n  t h e  ma t r ix  M y  and w ' s  

w i l l  r e p r e s e n t  e lements  of t h e  v e c t o r  w = Qz. l e t  o and A ( ~ )  be  as i n  

Sec t ion  2 ,  and we assume t h a t  A ( ~ )  i s  i n  f a c t o r e d  f o r m , ' s o  only  t h e  

lower t r i a n g l e  and d i agona l  D need be s t o r e d .  A."-" uver an  element 

means t h a t  some o p e r a t i o n  h a s  a l t e r e d  t h i s  element,  If a 0 appears then 

that element has been "zeroed out'' and i o  n o t  s u b j e c t  t o  f u r t h e r  

Only thoac  clcmcnts  t h a t  need t o  be s t o r e d  are ~ ~ - e p i e s e n t e d ;  t h e  

elements  knowri by d e f i n i t i o n  a r e  l e f t  b lank;  we s t o r e  t h e  d i agona l  

ma t r ix  D i n  p l a c e  of t h e  i d e n t i t y  m a t r i c e s  i n  M. Row permutat ions a r e  
-+ -+ 

denoted by (__t o r  ; column permutat ions a r e  denoted by Lf t, 1 t .  
'I'he permuta t ion  m a t r i c e s  Q a r e  n o t  e x p l i c i t l y  r e p r e s e n t e d .  

W e  sha1.l. i.I.l11st.rat.e t h e  a1 gori  t h m  w i t h  a 5x5 example. 

, Case 1: 



- 
D, i s  computed and found t o  s a t i s f y  t h e  p i v o t i n g  c r i t e r i a ,  

Case 2: 

Dl i s  2x2, 

(1) 

- 
Dl ha s  been computed and does no t  s a t i s f y  t h e  c r i t e r i a  f o r  a 2x2 p i v o t .  

O Q,. 0 
(2) Compute 

= ii[ 
] a, (i*, ,~) = [ I ]n1qF 

0 d  

apply  t h e  a l g o r i t h m  t o  t h e  



Case 3: 
- N 

D i s  1x1 and does no t  s a t i s f y .  t h e  p ivot ing  c r i t e r i a  wi th  D a l s o  1x1. 
1 2 

~t 
(2) Compute , ,  +' = (%,M. , I~ ,  L ii[ j 

O D2 

( 3 )  Apply Case 7.. 

- - 
Dl is  1x1 and does not  s a t i s f y  t h e  p ivot ing  c r i t e r i a ,  and Di i s  2x2. 



- 
- 

(3 )  Compute Q M s u c h  t h a t  Q ~ D Q :  = H 
1 ' [ 

I n  (3 )  t h e  d iagonal  p ivo t ing  s t r a t e g y  could have produced 
N - 

s e v e r a l  d i f f e r e n t  b lock  s t r u c t u r e s  f o r  D and D depending 
1 2 
N N 

on t h e  ma t r ix  D .  We o n l y  show t h e  case  Dl i s  2x2 and D2 i s  

We a r e  f i n i s h e d  w i t h  D and a r e  ready  t o  
1 

apply t h e  algo- 

rithm t o  t h e  d i agona l  element i n  t h e  t h i r d  p o s i t i o n .  



WAS INTENTIONALLY 
LEFT BLANK 



Chapter 111. 

Er ro r  Analysis  of t h e  Updating Algorithm 

1, I n t r o d u c t i o n  

We have updated t h e  symmetric i n d e f i n i t e  f a c t o r i z a t i o n  of 

i n  o rde r  t o  s o l v e  t h e  l i n e a r  system 

A method f o r  so lv ing  (1.2) i s  c o n s i d e r e d . t o  b.e s t a b l e  i f  t h e  computed 

r e s u l t  x  s a t i s f i e s  
C 

where 1 1 ~ 1 1  i s  smal l  compared t o  ( l i ( .  (11-1 i s  t h e  ma t r ix  norm induced by 

n  a  v e c t o r  norm on R which we a l s o  denote  by 11 11.) 

The following a n a l y s i s  i s  in f luenced  by t h e  e r r o r  a n a l y s i s  of 

t h e  diagonal- p ivo t ing  method g iven  by Bunch [ 3 ] .  The s o l u t i o n  t o  (1.2) 

i s  g iven  i n  fou r  s t e p s :  

. N NNN t 
(1.4) ( i )  A = MDM (update  t h e  decomposi t ion) ,  

I 

( i i )  Mc = b ( f i n d  t h e  new r ight-hand s i d e  c ) ,  

N 

( i i i )  Dy = c  ( s o l v e  t h e  1x1  and 2 x 2  sys tems) ,  

-t 
( i v )  M.x = y ( o b t a i n  t h e  f i n a l  s o l u t i o n  x ) .  

We have presented  a n  a lgor i thm t h a t  i s  a l g e b r a i c a l l y  c0rrec. t  f o r  

ob ta in ing  ( i ) .  There a r e  s t anda rd  methods f o r  s o l v i n g  ( i i ) ,  ( i i i ) ,  and 

( i v )  . However, i n  f i n i t e  p r e c i s i o n  a r i t h m e t i c  e r r o r  i s  in t roduced  a t  

each of t h e  s t e p s  ( i )  - ( i v ) .  



N 

Ins tead  of obta in ing the  exact  decomposition of A, we a c t u a l l y  
. . 

A A " t  -- t 
ob ta in  M = (&+A&), and D = (bAfPS) such t h a t  MDM = QAQ + S. Then when 

A  

equations ( i i ) ,  ( i i i ) ,  and ( i v )  i n  (1.4) a r e  solved,  the  e r r o r s  6M1, 
A  A  

6D, 6M a r e  introduced a t  s t e p s  ( i i ) ,  ( i i i ) ,  and ( i v ) ,  r e spec t ive ly .  
2 

A  A  

Thus, we a c t u a l l y  compute M y  D ,  c ,  y ,  x such t h a t  

A  A  

( i t )  (M+GMl) c = b y  
A A  

( i i i )  (D+bD)y = c ,  
A  A  

(iv) (M+BM2)x = y.  

N 

Now, % and a r e  t h e  exact  f a c t o r s  of A .  Therefore,  s t e p s  ( i )  - 
N 

( i v )  g i v e  the  exact  s o l u t i o n  t o  t h e  system (A+F)x = b y  where 

we w r i t e  x = O(g) and say x i s  of order  E a s  E + 0. I f  B i s  an nxn 

matr ix  wi th  elements b then we s h a l l  denote 5 = O(E)B i f  
i j  ' 

N 

= b.  .$.  . ( E )  , where mij  (9 = O(E) . I n  the  fol lowing a n a l y s i s  we 
bij Ijlj 

s h a l l  o b t a i n  expressions of the  form 

( i i i )  ( G + & I ~ ) ~  = 0(c)Gt + G(E). 

Using (1.7) i n  (1.6). g ives  



2 
The O(E )B term i n  (1.8) i s  n e g l i g i b l e  when compared t o  t h e  

dominant f i r s t  o r d e r  terms. The combined terms g ive  

i f  G(E)  = o(E)E,  H(E) = O ( E ) ~ ,  and S = o ( E ) ~ .  Then 

\ 

hence t h e  method is  s t a b l e .  

However, we s h a l l  a l s o  s e e  t h a t  t h e  terms S, G ,  and E w i l l  in-  

vo lve  products  of t h e  e n t r i e s  of s o l u t i o n s  t o  t r i a n g u l a r  systems 

i n v o l v i i ~ g  t h e  o r i g i n a l  f a c t o r  M. Thus i f  M i s  i l l - cond i t i oned ,  

(IIMII I I M - ~ ~ ~  i s  l a r g e  compared t o  t h e  number of s i g n i f i c a n t  d i g i t s  a v a i l -  

a b l e  i n  our  f i n i t e  p r e c i s i o n  a r i t h m e t i c )  then  t h e  updat ing  procedure 

cannot guarantee  t h a t  t h e  cons t an t  i n  t h e  O(E) term i n  (1.9) i s  of 

moderate s i z e .  

2. A Deta i l ed  ~ e s c r i p t i o n  of rhe Updating Algor i t lm 

We, s h a l l  now g i v e  a  d e t a i l e d  f l o a t i n g  p o i n t  a n a l y s i s  of t h e  

computations performed i n  our  updat ing a lgor i thm.  There a r e  two p a r t s ,  

t o  .a  s t e p  of t h e  a lgor i thm.  An i n t e rmed ia t e  s t e p  of t h e  a lgo r i thm 

. . 



r e s u l t s  i n  a sum .of m a t r i c e s  of t h e  form 

wi th  

P a r t  1 of a  s t e p  c o n s i s t s  i n  p repa r ing  t h e  ma t r ix  C k  f o r  p a r t  2 .  

This  i nvo lves  p o s s i b l y  b r ing ing  t h e  term i n t o  t h e  ma t r ix  C %+lD k + l k  k 

and performing c e r t a i n  o p e r a t i o n s  on t h e  f a c t o r s  of C k t o  o b t a i n  a 

s p e c i a l  form. P a r t . 2  c o n s i s t s  i n  permuting c e r t a i n  columns and elements  

of t h e  f a c t o r s  of C and ob ta in ing  t h e  updated % and 6 
k k ' 

We s h a l l  now d e s c r i b e  an  in t e rmed ia t e  s t e p  i n  ' d e t a i l .  

P a r t  1. 

The previous  s t e p s  of t h e  a lgor i thn l  have r e s u l r e d  fn 

wi th  ( 6 1  < ~ I B I  Y o r  in 



We s h a l l  now drop t h e  s u p e r s c r i p t s .  If (a )  h o l d s  then we r e p l a c e  Ck by 

where we have p a r t i t i o n e d  

I. 0 1 

where 

= 

Now we proceed t o  p a r t  2 .  

0 

I 

M', 

If (b) h o l d s  then we r e p l a c e  Ck by 

We then  compute 
\ t  

9 ( 2 . 2 )  
- 

Ck - 

1, 

.''(61t 
I 

0 .  0 o 

1 , O  . o  

' 0 I 0 

v - M 1 v  M' w -M1w v - M 1 v .  M' w -M1w 

0 0 0 

1 '  . 0 0 

0 I 0 

, 2  1 2 , 2  1 2 1, 



where we have p a r t i t i o n e d  

O' -= ( : : ] .  % = [ I  M', 

W e  .then compute 

and proceed t o  p a r t  2 .  

Part 2. 

P a r t  1 has r e s u l t e d  i n  a matrix of t h e  form' 

where 5 i s  a symmetric m a t r i x  of o r d e r  a t  most 3 .  We then  apply p ivot -  

- 
i n g  s t r a t e g y  Sn on ly  t o  t h e  ma t r ix  D producing a permutat ion matrix Q ,  

w 

and a 1 x 1  o r  a 2x2 ma t r ix  D such t h a t  



is given by one of the following forms: 

- 
(a) D = (6) is 1x1, b = ( 8 ) ,  and 161 2alBl- 

I 
0 1 - 2 N 

with o = 0-8 16. We then take Dk = (6), < = 1 I , and o is 

N 

replaced with a. Return to part 1. ,v+w(B/~) 

where 

and we have partitioned V = (y1,v2). We then take 



Return t o  p a r t  1. 

I 0 
\ 

N N 
1 

Dt = (Sll), % = 

, 62116i1 

d e  then  t a k e  

and 

t -1 
and rep lac^ n hy 0 - h n h .  

+ v ( 4  16 ) + W ( B ~ / ~ ~ ~ ) ,  iV1 2 21 11 

t 
> a l 6 .  I f o r  i=2 ,3 ;  end b  = (B b t ) -  S, is  a p p l i e d  t o  6, 1 611 1 - 11 1' 2  

&21 ' 631 

- Sll i s  t h e  p i v o t  choice  when 

D 2 .  1 



and we have partitioned V = (v1,v2,v3) . 
We then take 

'0 0 0 
.t 

0 0 0  

1 0 0 .  

and 

CHI= 

0 1 0 .  

.'Vl W 

( 0  0 0 

0 0 0  

1 '0 0 



' We now bypass  p a r t  1 s i n c e  C is  a l r e a d y  i n  t h e  proper  form.needed t o  k+l 

apply p a r t  2. 

2 2 
t h e  cho ice  of a 2x2 p i v o t  Dl; 1 d e t  01 1 - > (1-a ) (maxl d . .  1) , and 

1J 

I 

where 

( e l  Q T ~ ~ ~  = 

and we have p a r t i t i r n e d  V = (V1, v2). ,  

- 
1 a p p l i e d  t o  5 r e s u l t e d  i n .  

W e  then  t a k e  

' 631 '32 '33 

. and . 



Return t o  p a r t  1. 

3. F l o a t i n g  P o i n t  Analys is  

, . 

' Now t h a t  w e  have a  d e t a i l e d  . desc r ip t ion  of t h e  numerical  opera- 

t i o n s  performed, we a r e  ready  t o  examine t h e . e r r o r  in t roduced  when t h e s e  
, . 

o p e r a t i o n s  a r e  c a r r i e d  ou t  i n  f i n i t e  p r e c i s i o n  f l o a t i n g  p o i n t  a r i t h -  

m e t i c .  We s h a l l  work i n  base 8 ,  t - d i g i t .  f l o a t i n g  p o i n t  a r i t h m e t i c .  We 
.. . 

1 gl-t c a l l  E : - 2 t h e  b a s i c  machine u n i t .  Let  

each 6 .  a n  i n t e g e r ,  
J 

1 y ( 8 -  k  any i n t e g e r ) .  

W e  then  have ' [ lo ]  

ft(el*e2) = (e1*e2) ( i + ~ ' )  , 

where 1 E '  1 2 E ,  whenever 8 8 E Fl(f3, t )  a r e  f l o a t i n g  p o i n t  numbers, and 
1' 2 

* i s  one o f .  t h e  ope ra t ions  {+, . -, , 11, and f l ( 8  *€I ) is  t h e  n e a r e s t  . 1 2  

number i n  Fl(f3, t )  t o  t h e  real number' e1*02. We s h a l l  a l s o  w r i t e  f l ( ~ )  

t o  denote  t h e  computed elements  of t h e  m a t r i x ,  ( o r  v e c t o r )  B. 

Lemma ( 3  . I ) .  Consider t h e  v e c t o r  v ( ~ )  de f ined  i n  p a r t  l ( a )  df s e c t i o n  2. 
. . 

Then t h e  fomponents v:~)" o f  v ' ~ ) '  s a t i s f y  



where 

Proof. The vecior .v(~) is the vector v appearing in one and only one 
2 

of the expressions (2.6) or (2.9) at step k-1. The vector v2 in (2.6) 

or (2.9) is one of the, columns of the matrix V in the.expression (2.4). 

Since V ,  in (2.4) is given by (2.2) or. by (2.3). , we se'e that 

where 

If is defined as a column of M, then no error is intro- 

duced. However, if 

then let j be the largest lndex less than k,for which v") was defined 

by a column of M. Then. 

where we have'partitioned v 

formula (3.4) can be derived from (3.3) using ,an fnductive argument. We 

recog*ize (3.4) as the ptocess we would use to solve the linear system 



where v ( ~ )  i s  t h e  r e s u l t  of t h e  kth s t e p  of t h a t  process.  Then it  has  

been shown [6]  t h a t .  

where 

TKe bound (3.1) fol lows from (3 .6 ) ,  . but  i s  n o t  a s  good a s  (3 .'6) ; however, 

(3.6) cannot be obtained without p r i o r  knowledge of t h e  index j .  0 

We s h a l l  comment now an thg growth o f  t h e  v!') i n  (3.4).  Let  u s  
1 

cons ider  equation (3.5) f u r t h e r .  Since v ( j )  i s  defined by t h a t  po r t ion  

of some column of M ( say  column i )  which l i e s  below t h e  main d iagonal ,  
, . 

we may w r i t e  (3.5) a s  
. . 

O i f  j # i where e  i s  t h e  b a s i s . v e c t o r  defined by ( e . )  - 
i r j - { l i f  j = i 0  

-1 
Therefore,  t h e  s o l u t i o n  e - x i s  a column of M . This shows t h a t  t h e  

i 
-1 

viL) i n  (3.4) a r e  i n  f a c t  composed of element? of M . We now observe 

t h a t  undue growth i n  t h e  v(') 1 i n  (3.4) i n d i c a t e s  seve re  i l l - cond i t ion ing  

of t h e  matr ix  M wi th  r e spec t  t o  so lv ing  l i n e a r  equat ions .  

(k) ) Lemma (3.2) .  Consider t h e  computed q u a n t i t i e s  f l ( w  1 . Then i f  



we have t he  s a t i s f i e s  t h e  equation 

where t h e  elements T of T s a t i s f y  
i j  

I r ; . l  11 i ( n + l ) y l m i j I ~  

Here, y  i s  a  constant of order un i ty  and the  m are the  .elements of M. 
i j 

Proof : One observes t h a t  t h e  w y )  a r e  computed from the  s tandird  back 

subs t i t u t i on  . algorithm. . The r e s u l t  then . . follows from [20]. 0 

Let us drop the  . f l -nota t ion . and hereaf te r  regard the  quan t i t i e s  

w(j) a s  computed quan t i t i e s .  Then Lemma (3.2) shows t ha t  we  may wr i te  
1 

Thus we s h a l l  now regard tho vectors  w ' ~ )  as cxact quant i t ieo .  Thc 

e r ro r  introduced from the  computation of these  quan t i t i es  i n  f i n i t e  

precis ion is expressed i n  the  e r ro r  matrfx 

- t  --t t -t t 
S  = U ( T ~ W  + w p  T + Tpp T . 

' lemma (3.3) . ~ e t  v 1 jk) denote a component of v!k).. (see ~ e m a  (3.11, 

e q u a ~ i o n  (3.2) .) Let J denote a component' of w ( ~ '  1 . Then the  f l oa t i ng  

w 

point computation of D r e s u l t s  i n  



wher.e E 'is a block diagonal  matr ix with t h e  same s t r u c t u r e  a s  t h a t  of . . 

N 

D. Moreover, the  2x2 blocks of £ 1 6 )  , s a t i s f y  

N 

;(k) -(k) 

I), where D = [ ] k ;(k) -(k) 

and t h e  elements e of E s a t i s f y  
i j  . . 

where 

(Here ok i s  "on a t  t h e  kth s t e p ,  and Bk i s  t h e  "f3" appearing i n  p a r t  1 

t h  
a t  the  k s t e p . )  . . 

Proof: From equations (2.2) and (2.3) we s e e  t h a t  t h e  updated diagonal  
. . 

blocks 5 a r e  obtained by decomposing matr ices  of t h e  form 
k 

with 161 < alf3l i f  equation (2.2) was used, o r  

i f  equation (2.3) was used. H e r e , t h e  v ' s ,  w ' s ,  f3 ,  6 ,  a a r e  t h e  pre- 

v ious ly  computed q u a n t i t i e s  a t  s t e p  k; we have l e f t  of f  the  

supersc r ip t s .  . . . . 



Then 

where a t y p i c a l  ( i , j )  element of f (D ) i s  of t h e  form 
. . L  1 

where '  I s ,  1 < s. 
. J  - 

Now, i f  r E  < 0.1 and I p (  < E ,  t hen  ( l + ~ ) ~  = 1 + rp l ,  where 

I p ' I  .: 1 . 0 6 ~  1 ex.  4 ,  p. DO], arirlil l p  1 ,... , l p , l ' ~ c  then  
1 

(l+pl) . . . (l+pr) = 1 + rp  , 

wliere 1 p 1 < 1 , . 0 6 ~ . '  Thus we s e e  t h a t  i f  t h e  elements  of D . a r e  denoted 1 

by 6 ; : )  and t h e  elements of E a r e  denoted by E(') then .t i j 

+ 28v.0. (1+4p3) + o o . ~ .  (1+3p4) 9 

X J  1 J  

. where Ip.1 < 1 . 0 6 ~ :  f o r  j = 1 , 2 , 3 , 4 , , a n d  161 < 'a l f3I .  .Hence, 
1 

Maximizing t h e  q u a n t i t i e s  which appear  i n  t h i s  exp res s ion  g i v e s  t h e  

bound 
. . ( k j O ( k ) ( ,  l 0 ~ ( ~ : ~ ) ) ~ 1 ) 1 5 . 9 ~ .  

I < m a ~ ( l 6 ~ ~  1 ,  1afik[v jk)121, 21 f ikv f , .  (3.9) l E i j  - 
i j k  

The c a s e  w e  have examined i s  c l e a r l y  t h e '  wor s t  c a s e  f o r  t h e  type  

of a n a l y s i s  we have c a r r i e d  ou t .  Thus we t a k e  (3.9) a s  o u r  bound f o r  



t h e  elements of E , (1 = 1,2)  . 
- A h 

The nex t  s t e p  i n  ob ta in ing  D i s  given 'by decomposing D o r .  D 
k. 1 2 

according t o  one of t h e  equat ions  (2.5)-(2.9).  Le t  u s  r e f e r  now t o  t h e  

proof of Lemma (2.3) of Chapter 11. S p e c i f i c a l l y  we c o n s i d e r . t h e  decom- 

p o s i t i o n  given i n  equat ion (2.12) of Chapter 11. There i t  was shown 

t h a t  a s c a l e  f a c t o r  u may be  i m p l i c i t l y  introduced i n  t h e  last  row and 
A A 

column of D o r  D This  f a c t o r  has  no consequence on t h e  f i n a l  r e s u l t .  
1 2 ' 

A h 

However, when D o r  D i s  s u i t a b l y  sca l ed  i n  t h i s  way then p ivo t ing  
1 2 

s t r a t e g y  S does not  choose any of t h e  elements i n  t h e  l a s t  row o r  
a 

column a s  p ivo t  elements.  We then  o b t a i n  a co'mputed f a c t o r i z a t i o n .  

The a n a l y s i s  given i n  [3]  app l i ed  t o  t h i s  ( a t  most) &x4 case  shows t h a t  

t h e  elembnts f(') of Fe s a t i s f y  
ij. 

Now (3.10) toge the r  wi th  (3.9). g i v e  t h e  bound i n  (3 .8)  . 0 

We have given an . ana lys i s  of a l l  of t h e  ope ra t ions  i n  p a r t  1 and 

of t h e  formation of 5. We now t u r n  t o  an a n a l y s i s  of t h e  f i n a l  f  orma- 

t i o n  of t h e  elements . of . M. We begin wi th  

N 

Lemma (3.4) .  Let  m be t h e  i j  th element of M w i th  i > j . Then 
i j 

where 

and 



~ r d o f :  W e  s h a l l  g i v e  a d e t a i l e d  a n a l y s i s  of t h e  operat . ions -used i n  - 
N 

forming M. These o p e r a t i o n s  a r e  desc r ibed  i n  p a r t  2 a-e. We s h a l l  have 

t o  examine each c a s e  s e p a r a t e l y .  Cases a-e below r e f e r . t o  t h e  opera- 
. . 

t i o n s  performed i n  p a r t  2 a-e, r e s p e c t i v e l y .  The e r r o r s  r e s u l t i n g  from 

t--1 
computing t h e  q u a n t i t i e s  8 1 6 ,  b D have been accounted f o r  i n  Lemma 

( 3 . 3 ) .  Therefore ,  we s h a l l  assume h e r e  t h a t  we have t h e s e  q u a n t i t i e s  

. . . . exac t ly .  

N 

Case a: The v e c t o r  $ is  ~ompured .  b y  

Now, 



Case ti: is computed by 

Let v. have components v , j = ,1,2. 
J ij 

Now, 

= { [vi, + ~ ~ ~ ( a ~ , / 6 ~ ~ )  (I+E~) I ( 1 + ~ ~ )  

(k+l) 
+ "'i (B1/6,,) } 

- - [vil + ~ ~ ~ ( 6 ~ ~ / 6 ~ ~ )  ( ~ + E ~ + E ~ + E ~ E ~ )  



Case c: % is computed by 

t-- 1 
Let b Dk = (F1 ,a2) . Then 

N 

~L(M~,) = (fe(vi1 + i (k+l)i 1 1, fecvi2 + Wlk+1)i2)) I . 
Each of the components falls under the same analysis as case a. We 

. . 

obtain 

and 

N - 
where ik = bij9 mij+l). 

case d:  4 is computed by 
0 
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t 
where w e  have p a r t i t i o n e d  V = (v1,v2.v3), b  = (B B B ). Thus i f  w e  

1' 2' 3  
N - 

let (S313632) = ( ~ ~ ~ ' ~ ~ ~ ) ~ i ~ ,  (a1,a2) = B l l  be the  q u a n t i t i e s  

computed i n  (2.9),  we have 

Then t h e  components of q', f a l l  under t h e  same a n a l y s i s  as case  b. 

N 

We have shown t h a t  i f  m i s  computed from t h e  formulas given i n  
i j 

p a r t  2 a ,  b,  c ,  'd, and e using t h e  computed q u a n t i t i e s  from p a r t  1 and 

N .  

. . from t h e  formation of D ,  then 

Define ;= maxi v(k) I . Then taking absolute  va lue ,  using t h e  t r i a n g l e  i i n k  
i n e q u a l i t y ,  and r e c a l l i n g  t h a t  1 e  I < e  g ives  

k  . -  

and 

[ V E ( ~ + E )  i n  case  a ,  

i n  case  c ,  

R 3 1  2 621 + 3  - )  + O(r )).in case d ,  v(c(3' + 4 - 
51 

2 + max(lXgll, 1x321.) + O(E ))  i n  case  e. 

By the  p r o p e r t i e s  of p ivot ing  s t r a t e g y  S we,have that 
a 



Thus, , 

in all cases. 
: 0 

We now return to eqbations (1.5). ' ~ e ~ a r d i n ~  (1.5) (i) we have 
. . . . . . 

N 

shown that AG = M. .p. .(E) + v. .(E) , with bounds for ~ ~ ~ ( € 1  and v (E) ij IJ ij .1J i j 

given in Lemma (3.4) . We also have that A; = E in Lemma (3.3) is block - 
diagonal with the same block structure as D. Using the analysis given 

in [3, p. 6671 we see that in (1.5) (i) and (iv) that 

and in (1.5) (iii) we have 

- 
laDiil i biiI~ 

if Dii is a one-by-one block; otherwise, from [3] 

Finally, we have that the error matrix S, defined in Lemma (3.2) . . 

and discussed in the remarks following it, is bounded by 

2 2 I1 s 11- .2 t ~ ~ l l ~ l l ~ l l ~ l l ~ l l ~ l l ~  + l l . ~ l l ~ l l ~ l l ~ ~  I fl I 
< {*n(n+l)y maxlm.. lmaxlwik)l IIwll,~ . - 

1J 

2 2 2 + E [n(n+l)] y maxlw:k)12}lql , 

where y is the constant appearing in Lemma (3.2). The matrix G(E) in 

(1.7) (1) and (iii) is given by G = (vij (€1) (Note char G is luwrr 

triangular.) 

We have the bound for F given by 

. . 



(k) (k) 1 + 2 r n a * ( : l ~ ~ ~  1 ,  ~ l 6 ~ ( . ~ ~ ) ) ~ 1 ,  2 1  ekvi 
j i j k  

2 .  + €11 + o ( E ) I I ( ~ M ~ ~ I -  + 11 s I I ,  + O(E ) . 
We have a l r e a d y  mentioned t h a t  t h e  1 I and I and S 11- 

J 

may grow w i t h  n f o r  i l l - cond i t i oned  m a t r i c e s  M. However, t h e  computa- 

t i o n a l  evidence i n d i c a t e s  t h a t  t h e  u s u a l  remarks concerning t h e  s o l u t i o n  

of t r i a n g u l a r  sy$tems apply:  i n  p r a c t i c e  l a r g e  . . growth does  n o t  occur  i n  

, t hese  q u a n t i t i e s .  
I .  

I 

I n  o r d e r  t o  guarantee  s t a b i l i t y  w e  must a l s o  show t h a t  t h e  a 's 
k 

and f3 's are bounded. We s h a l l  do t h i s  by showing t h a t  t h e  growth of 
k 

Ok 
i s  bounded a t  each s t e p  of t h e  a lgor i thm.  Th i s  is  s u f f i c i e n t  s i n c e  

i t  can be  demonstrated t h a t  t h e  growth of f3k+l i s  bounded as long as t h e  

growth of ak+l i s -bounded .  

T t  wbl.l be necessary  t o  impose an a d d i t i o n a l  cond i t i on  on t h e  

' aoaoptancc of a 1 x 1  p i v o t .  Tllc L I U L L I ~ J ~ L  O 111 

w i l l  be  accepted  a s  a 1 x 1  p i v o t  . i f  ( 6  1 a1 61 a s  be fo re ,  o r  i f  

2 
106 ( > af3 . Thi s  does n o t  a f f  e c t  any of t h e  preceding a n a l y s i s .  

We s h a l l  begin  b y . e s t a b l i s h i n g  s e v e r a l  p re l imina ry  lemmas. 

> '  



t Lemma (,3.5). Let  A be symmetric and suppose t h a t  A = MDM . Let t h e  

e ige iva lues  of A be  A < h . . . A n ,  and l e t  t h e  eigenvalues o f  D be 
1 -  2 -  

. . 

1 2 . . n .  Let  k  be t h e  index such t h a t  . A j -  < 0 f o r  1 - < j - < k, 

and h > 0 f o r  k  < j < n. Then A ;  < cp f o r l c  j < k ,  and h > cpj j ' J -  j .  . -  - j - 
f o r  k  < j - < n ,  where 16 i,s t h e  sma l l e s t  s i n g u l a r  va lue  of M. 

Proof: By t h e  mini-max theorem 

= min 

I - - min 
dim(S)= - . . 

Since sLs > c >  0 , w e h a v e f o r  j i k t h a t  
s tM-'-M-.t s 

- 
I- .-I 

t 
A .  < c  min 

- dim(S)=i j *  

S imi la r ly ,  f o r  j > k we have h > cp . 
j - j 0 

For t h e  fol lowing d i scuss ion  we s h a l l  a l s o  need t o  know the '  

sma l l e s t  s i n g u l a r  va lue  of c e r t a i n  lower t r i a n g u l a r  . , mat r i ces  i n  o rde r  t o  

apply Lemma (3.5) . 
Lemma (3 .6) .  I f  M = (t !), then t h e  sma l l e s t  s i n g u l a r  va lue  of N i s  

&, where 



1 0 0  . Ii M = ,. yo 1 1. then t h e  smallest  gingular  value  of M i s  6. where 
Yl 0 

Proof: The smal les t  s ingu la r  value  of [ : 1 is G, where 

1 0  0 
The smal les t  s ingu la r  value  of ;; i s  c, where 

I f  c = ( a  + 2 - d2 + 4a)/2 with a > 0, then 

. . 
, The lemma follows f r o m , t h i s . i n e q u a l i t y .  

It w i l l  a l s o  be of i n t e r e s t  i n  t he  following discuss ion t o  bound the  

--norm of the  inverse  of a 2x2 block.. 

Lemma (3.7). ~ u ~ ~ o s ~  t h a t  D = with alSZll 5 max(16111916221). 

Then 
. I 



Proof: 

- 1 1 Il D II, = I1 D ll, 3 

where = 16 6 
2 2 

> s2 - a26' = 6 . (1-a ) .  
11 22 - 6211 - 21 21 21 

Two more lemmas a r e  needed before we can e s t a b l i s h t h e  bounded- 

ness of t h e  a k ' 

Lemma ( 3 . 8 )  . Let B E RnXn be symmetric a n d  nonsingular with eigenvalues 

A < A <...< A n ,  where n > 2. Let z E R", and TI E R .  Let 
1 -  2 -  - - 

Then ti maxl~! . I  > A ,  where, A' = min I x . ( .  
11 - l ~ j < n  J . - 

Proof: Let B'  have eigenvalues p1 5 p2 r...i pn. Prom Lemma (2.2) of 

Chapter 11, 

< A  < v n ,  T I >  O = > h l i u l -  n -  

while 

I< A1 > 0, then lvnl", 1 ~ ~ 1 -  
I f  A < 0 and An > 0,  then 1 vn 1 , , I  A n  1 when TI > 0 and lpl 1 - > I h i  1 when 

n < 0. 



I f  An < 0, then  lvl! 2 Ihnlw 

We conclude t h a t  

By t h e  s t anda rd  norm . i n e q u a l i t i e s  we o b t a i n  

and t h e  r e s u l t  i s  e s t a b l i s h e d .  0 

Lemma (3 .9 )  . Suppose t h a t  t h e  k-th s t e p  of t h e  updat ing  a lgor i thm has  . 

r e s u l t e d  i n  

2 
with  a 0, 161 < a(f3I and 2 a6 .. T h e n  

where 

and 5 ( k ) i s  t h a t  D" obta ined  up t o  s t e p  k. Here a 0 i s  t h e  

s t a r t i n g  "a", and a i s  t h e  modif ied "a" a f t e r  k  s t e p s  of t h e  a lgor i thm.  



Proof:  A t  t h e  k-th s t e p  we have 

t -1 
0 

t 
Now, de t (A + uOzz ) = d e t  A ( l  + uoz A z ) .  Also, i f  p = [ dig;& 1 ,  and 

then  

t -1 t 
d e t  A( l  + uoz A z) = det (B + app ) 

t -1 
= d e t  B ( l  + up B p )  

B~ t -1 
= d e t  E ( ~ )  (6 - -)det a i 2 ( 1  + up B p)  . 

Thus 

e2 t -1 (3.13) l de t  A ]  11 + u Z ~ A - ~ Z I  = Ide t  D ( ~ )  I l d e t  D21 16 - -1 11 + dp B p l .  
0 u 

L 
Since  160 1 2 a 8  , we have 

(3.14) 
2 2 2 

160-8 I 2 B - 1 6 ~ 1 . 2  (1-a)@ , 

and 

Also, onc can chow t h a t  



--I 
where we u s e  M t o  mean t h e  i n v e r s e  of t h e  u n i t  lower t r i a n g u l a r  ma t r ix  

2 
n t n - t n - l n - l  

t h a t  occupies  t h e  lower t r i a n g l e  of M Thus i f  4 = w M D M w,  w e  2 ' 2 2 2 

have 

t - i  2 1 
P B  p - .  2 + 4 J  

fi2 (6 - -) 
o 

by (3.14) . Using (3.15) i n  (3.13) g i v e s  

t -1 
1 

l d e t  ~ l l l  + ooz A a1 
- ( l + a ) ~ ~  > 

2 
(3.17) - 16 - ,/a1 = 1 0 1  1 d e t  D ( ~ )  1 1 d e t  i2 1 11 + up t I3 -1 p 1 

' 

Therefore ,  u s ing  (3.16) i n  (3.17) g ives  

This  i s  the d e s i r e d  r e s u l t .  
0 

Observe t h a t  t h e  q u a n t i t i e s  i n  (3.18) a r e  independent of t h e  updat ing 

process  except  f o r  1 o 1 ,  and 1 d e t  E ( ~ )  I . Now we a r e  ready t o  prove 



Theorem (3.1) .  Suppose t h a t  t h e  k-th s t e p  of t h e  updat ing a lgo r i thm has  

r e s u l t e d  i n  

Z 
wi th  16 1 < a 1 f3 1 , and 1 ad,l 5 a B  . Then t h e  n e x t  s t e p  of t he  a lgo r i thm 

w i l l  produce a '  a '  of t h e  form . ' 

w i t h  1 a '  1 bounded. 

6 B 
Proof: L e t , [ '  B a " [ : ] = p l [ : ] , a n d , .  B a ] ~ ] = p l ~ : ] w i t h  

2 I p 1 1  2 lp ( a s  i n  Lemma (2.4) of Chapter 11. Let  n = pj / ( l+y  ) ,  j=1 ,2 .  
2. j 

A s  we have a l r e a d y  seen  i n  Chapter I1 t h e  updat ing process  i s  

equ iva l en t  t o  forming 

where D' and [ ] a r e ,  r e s p e c t i v e l y ,  t h e  n i t  d i agona l  b lock  of D and 

t h e  corresponding column of PI. I n  (3.19; wo = -y, 1. 1: = &w, a n d  

The nex t  s t e p  i s  t o  'form 

where  6 , -  [: :I[", .:,I[: 1 : I t ,  a n d ;  2  = v2-Vvl. 



Then w e  form 

~ i ' n a l l ~ ,  we p i v o t  and o b t a i n  t h e .  updated d i agona l  b lock  D k+l ' 
- N N 

Le t  5 = &tn2bbt, and l e t  5 = max I D .  . I . Then 1 D~ 1 1- uS when U i s  1x1.  ' 

1J k+l 

where bl c o n s i s t s  of components of b.  It can be shown t h a t  

A 2 
w2 = (l+y ) (w-Vw)  , where w = [ 2 . t h i s  w i t h  t h e  updat ing 

a lgor i thm desc r ibed  i n  Chapter 11 h i l l  show t h a t  

Hence, i f  a - > .1 /2  then  

1. 0 ' 
L e t  6 be  t h e  s m a l l e s t  s i n g u l a r  v a l u e  uf , [ul I. ~ r o m ~ e m a  (J .L ) ,  

By Lemma (3.8) we have t h a t  35 lhl where h i s  t h e  s m a l l e s t  e igenvalue  of 

. i) ( i n  a b s o l u t e  v a l u e ) .  ~ o h e v e i ,  Lemma (3.5) imp l i e s  1 A 1.8 mi.( 1 nl 1 ,111 1 ) 



and thus  

(3.23) 
1 

S y 9 min+l1I,  1 ~ 1 )  

where p i s  t h e  sma l l e s t  e igenvalue of D' ( i n  abso lu te  v a l u e ) .  F i n a l l y  

we have t h a t  

(3.24) v '11 bl 11, 5 11 k3 11, i max( 1 Y 1 Y 11 wII, + 1 Y 1 11 v.llw) 
. . 

Combining i n e q u a l i t i e s  (3.21)-(3.24) g ives  

2 
S i n c e  I I w  11, and I I v  11, a r e  bounded we have t h a t  v2 = O(y ) and 

2 
llvl 112 = O(y ) . Thus i t  i s  s u f f i c i e n t  ro bound t h e  quan t i ty  

Suppose t h a t  I 8 I , 1 o 1 . Since  y = (o-p2) I f 3  we have 

Thus (3.26) i s  bounded s i n c e  < 1 and 1p1 i s  f i x e d .  Therefore,  we 

s h a l l  assume t h a t  I f3 ( < 1 a 1 . Now, 

However, 



J 2 2  Let $ = sgn(a+6) (.a-Q 3.48 . Then 

Thus 

By assumpticin < a < 1 SO t h a t  121 - 

where r = . I ('-') + 

2 a 

2 
Yl' 2 
l + I 2 r + T  

; ' Observe thac 

We a l s o  have t h a t  

Thus, 



Therefore ,  

It fo l lows  t h a t  

4 
'12Y To bound 1 - lil I we cons ider  

But 

Thus 

But 



It fo l lows  t h a t  

Using t h e  same n o t a t i o n  a s  i n  Lemma (3.9) and apply ing  t h a t  r e s u l t  g ives  

1 2 (l+ar)iol l de t  ~ ( ~ ' 1  ( 1 0 1  + 1 + =) 
- O <  

p2 - 
t -1 

l d e t  6 I 11 + on= A zl 1. 

Observe t h a t  i f  t h e  previous  a ' s  and 6 ' s  a r e  bou~lded Cllrn l d e t  1 i s  

bounded. Thus we have bounds 

4 '  4 (?I 2 K l  and 

Th i s  g i v e s  

But 

Since b' = ( 1 + y 2 ) 2 ~ 2  we have 

Th i s  concludes t h e  proof .  0 

Theorem (3.1) p rov ides  a bound on t h e  growth of a when p i v o t i n g  i s  done. 

The fo l lowing  theorem provides  a bound i n  t h e  remaining c a s e s .  

Theorem (3 .2) .  I f  t h e  a lgo r i thm updates  9 2x2 b lock  and accep t s  t h e  

updated b lock  as a 2x2 p i v o t  f i n  



o r  i f  a 1x1 pivo: i s  accepted from t h e  updated b lock  then 

' [ ] a s  a 1 x 1  b lock  then  I f  6 i s  accepted from 

Proof : 

Case 1. I f  6 i s  accepted a s  a 1x1  b lock  a s  a r e s u l t  of 

Hence 

Case 2. Suppose t h a t  a 2x2 b lock  i s  updated and accepted as a 2x2 

p i v o t .  I f  t h e  o l d  b lock  has  elements  6 i j  then  t h e  updated b lock  has  
N 

elements  of t h e  form 6 i j = . 6 i j  + 0w.w . The cond i t i ons  t h a t  must be 
I j 

N N N 

s a t i s f i e d  a r e  a16 2 1 I > m a ~ ( ( 6 ~ ~ I  , I S ~ ~ I ) ,  and a16211 > m a ~ ( 1 6 ~ ~ 1 . 1 6 ~ ~ ) ) .  

t 
Let  r ep re sen t  t h i s  2x2 updated b lock ,  and l e t  w = (w1,w2). Without 

t 
l o s s  of g e n e r a l i t y  we assume 11 w ( _  = I wl 1. .  Then 11 w 11- 2 2 1 wl 1 . ' I n  t h i s  

ca se  we have 



so that 

. . 1 ' 
From Lemma (3.7),11~-~11 --01q- 
Now, 

2 2 .  
lm,I - I 5 1611+m11 ' a1621*w2wll . 

Thus 

3 

l(JwJ I 1x211 + 1 6111 

~ ( l a ~ ~ 1  + Is2,1, - 

< a(1x21 1 + P7., + (JW w I + I(Jw~w, I) - 7 3 

2 
Hence (1-a) 1 owl 1 5 2a 1 621 1 , and we have 

Case 3. A 2x2 block is updated and it is found that - - N 

a1621( Irna~(16~~1,16~~1). We use the same notation as for Case 2. 
N N IV 

Witlmut loss of generality we assume that 16 1 2 1 1 (otherwise 622 
11 - 

is brought to the 611 position). Then 

Now 



so t h a t  

Thus 

Thus 

A s i m i l a r  argument shows t h a t  

Thus 

2 2 
If lwll 2 Iw21 then  (1-a) lowll 5 lmll - aim 1 2  w I ,  and i n e q u a l i t y  (3.27) 

shows t h a t  . 

2 
I=w11 2 .  

(3.29) ' < - .  
l l 1 l  - 

2 ,  2 2 .  
However, i f  I W ~ I  , ' 1  wl 1 t hen  C.1-a) 1 owl 1 2 (1-a) l.m2 1 5 I m2 1 - w w  I 9 1 2  



and i n e q u a l i t y  (3.28) g i v e s  i n e q u a l i t y  (3.29) . 

Theorem (3.1) shows t h a t  t h e  growth of a can b e  s e n s i t i v e  t o  

N 

n e a r  s i n g u l a r i t y  i n  A .  Thi s  can r e s u l t  i n  twoways.  I f  a i s  much 

N N 

l a r g e r  t han  t h e  e igenvalues . 'o f  A then numer ica l ly  A appears  t o  be a rank  

one ma t r ix .  Also,  one of t h e  updated e igenvalues  can b e  s h i f t e d  t o  zero.  

This i s  r e f l e c t e d  i n  t h e  bounds obta ined  i n  Theorem (3.1) s i n c e  one of 

u 
t h e  bounds depends on - where p is  a n  e igenvalue  of D ,  and t h e  o t h e r  v 

t -1 t -1 
bound depends upon l / ( l + a z  A z ) .  The q u a n t i t y  l+az A z = 0 i f  and 

N 

only  i f  A has  a ze ro  e igenvalue .  We conclude t h a t  t h e  u s e  of t h e  algo- 

rithm should b e  r e s t r i c t e d  t o  c a s e s  where t h e  m a t r i c e s  involved a r e  w e l l  

condi t ioned .  . F i n a l l y ,  we do no t  expect  t h i s  technique  t o  g e n e r a l i z e  t o  

t h e  LU decomposi.tion of non-symmetric ma t r i ce s  s i n c e  our  r e s u l t s  a r e  

heav i ly  dependent upon p r o p e r t i e s  of, symmetric m a t r i c e s .  



Chapter IV 

The Use of Directions of Negative Curvature 
in a Modified Newton Iteration 

1. Introduction 

In this chapter we present an algorithm for obtaining a numeri- 

cal approximation to the solution of the following problem: 

(1 1) ~ e t  f: D c Rn -+ R; 

find x* E D such that 

f (x*) 5 f (x) 

for all x in some neighborhood of x*. 

For theoretical reasons we shall assume once and for all that f has two 

continuous derivatives on P and that for any x E D, the level set 
0 

L(x ) = {x: f(x) 5 f(xo)} is a compact subset of 0. Additional assump- . 0 

tions wtll be introduced as they are needed. The assumptions just 

stated shall be referred to as assumptions (1.2). 

Recall from Chapter I that we denote the gradient of f(x) by 

g(x), and the Hessian b$ G(x). Given a sequence of vectors {xk} c D we 

k = g(xk) , and G = G(xk) . We shall shall use the notation f = f (xk), gk , k 

some,times omit the argument x and write f for f(x), and g for g(x), 

etc., when -there is no danger of confusion. Throughout this chapter we 

t 
use 1) *'I1 to denote the Euclidian norm, and x y to denote inner products. 

The algorithm we shall present may be classified as a descent 

method. Usually a descent method determines a descent direction:sk at 

the iterate x (i.e. k g;sk < 0). Then a linear search is performed to 

obtain ak ? O  such that f(%+a s ) < f and we take x ~ + ~  = x +a s k k  - k k k k* 



Under some additional restrictions on the choice of a one can show that 
k 

t 
lim gksk/llskll = 0.. The vector s is usually related to g in such a way 
w k k .  

that this limit equalling zero implies that the iterates converge to a 

point x* wh,ere g(x*) = 0. 

In addition to obtaining such a point x* we would like to be 

able to assert that G(x*) is positive definite for this would imply that 

f(x*) < f(x) for all x .in some neighborhood of x*. Of course, we shall 

not be able to accomplish this goal, but through the use 01 directions 

of negative curvature we shall be able to, guarantee that G(x*) is pasj -  

tive semidefinite. For practical purposes this is very strong assertion. 

For instance, .if the Hessian were known to be nonsingular at all critical 

points then the point x* would have to be a local minimum. 

Recently the idea of using directions of negative curvature has 

appeared in modified Newton algorithms [8,11,16]. In particular we are 

indebted to the paper of McCormick [16]. Indeed, Theorem (3.1) is only 

a slight modification of ~c~ormick's result. However, this result led 

us to consider a new line search strategy. The i r n p l ~ r n ~ n ' t ~ t i n n  of this 

strategy which we present here is based in a fundamental way on the 

factorization of symmetric matrices using the algorithm of Bunch and 

Parlett. [5] and this is discussed j.n section 4. In section 5 we give 

termination criteria for the new univariate search strategy, and show 

how this relates to previous strategies. ' Finally, in section 6 we give 

a convergence result that includes various choices of descent directions 

and we suggest , , a particular way to define a modified Newton iteration. 

Since the algorithm is a descent method we shall beg,in with a 

discussion of descent directions. 



2. Descent Directions . 

The following definitions will be useful throughout this 

chapter . 

Definition (2.1). Let f : + R be twice differentiable in the open set 
. . 

D. 

(a) A point x in D is an indefinite point if G(x) has at least 

one negative eigenvalue. 

(b) If x is an indefinite point,then d is a direction of 
t negative curvature if d G(x)d < 0. 

(c) A pair of vectors (s,d) is a descent pair at the point x 

t t 
if when x is not an indefinite point then g s <. 0, g d 5 0, 

t 
.and d Gd = 0, while if x is an indefinite point then 

t t t 
g s 5 0, g d 5 0, and d Gd <. 0. 

An example of a descent pair would be to take s = -g(x).' Then 

if G(x) is positive semidefinite take d = 0, and otherwise take 

t 
d = -sgn(g e)e where e id the unit eigenvector corresponding to the most 

negative eigenvalue of G(x). We shall see that there are more attrac- 

tive choices than this. However, regardless of the specific . choice, a 

descent pair fails to exist a,t x only if g ( x )  = 0, and G(x) is 

semidefinite. 

The search strategy we shall present departs from the usual 

strategy discussed in the introduction. ~nstead of using only one 

descent direction and searching in a line determined by that direction, 

we shall consider searching along a curve of the form 



with ( s ,d )  a  descent  p a i r  a t  x,  and with ml(0) = m2(0) = 0. We hope t o  

produce an > 0 such t h a t  

I f  we l e t  @(a)  = f ( x  ) w e  encounter a  u n i v a r i a t e  minimization problem 
a .  

where @I1 i s  continuous a s  long a s  +",9i' a r e  continuous; Thg following 
1 2  

lemma gives s u f f i c i e n t  condit ions under which (2.2) can be s a t i s f i e d .  

 emma ma (2 . I ) .  Let @: 'R -t R be  twice continuously d i f f e r e n t i a b l e  on the  

open i n t e r v a l  I which conta ins  t h e  o r i g i n ,  and assume.that  p E [0 ,1) .  

Then t h e r e  i s  an > 0 such t h a t  

f o r  a l l  a E [O,z] provided t h a t  e i t h e r  6 (0) < 0,  o r  @ ' (.o) = 0 and 

@"(O) < 0. 

Proof: The mean value  theorem implies t h a t  f o r  every w > 0 t h e r e  e x i s t s  

d E (U,aj such t h a t  

2 
(a)  = m (0) + a '  (0)a  + a" (0) 

- 

1 2 + ?[@"(0) - @" (0) ] a  . . 
Hence, 

where 

, . 

Since 

. there  e x i s t s  an > 0 such t h a t  r ( a )  < 0 f o r  a l l  & E [o,;] . 



This lemma not only tells us when (2.2) can be satisfied, but 

also that the function f must decrease by a significant amount along the 

curve x . It also indicates that a larger decrease is likely when 
a 

@ll(0) < 0. We, of course, want to use the simplest functions and 92 

which will guarantee, that the hypothesis of Lemma (2.1) is satisfied. 

Observe that if @ (a) = f (x ) with x as in (2.1) then 
a a 

t t 
Suppose that g s = g d = 0 at an indefinite point (this occurs for 

. . 

instance at a saddle point). Then in order to insure @I1(O) < 0 without 

imposing further conditions on s we must require $i(O) = 0, and 

$;((I) > 0. Then (2.3) and (2.4) simplify to 

(2.5) 

When G(x) is positive definite then d = 0 must be satisfied in order for 

(s,d) to be a descent pair. Thus @ '  (0) = 0 and we must have $"(O) > ,O 
03 

1 

in order to insure @ll(0) < 0. Theref ore, if = 1 fij a' and 
i =O 03 
J - 

m2(u) = 1 Y.aj then we must have Do = fil = 0 with B2 5 0 and yo = 0 
i =O J 
J 

with yl > 0. The simplest functions of this type are, of course, 

In this case 



3. A Modif ica t ion  of t h e  Armijo S tep leng th  Procedure 

I n  Sec t ion  2 we in t roduced  t h e  n o t i o n  of a descent  p a i r ,  The 

mot iva t ion  f o r  cons ider ing  t h e  u s e  of a p a i r  of v e c t o r s  r a t h e r  than  t h e  

s impler  s t r a t e g y  of determining a s i n g l e  d i r e c t i o n  of descent  w i l l  be  

d iscussed  now. We s h a l l  p re sen t  h e r e  a mod i r i ca t ion  of a theorem of 

McCormick. I n  [16] McCornpick g ives  'a mod i f i ca t ion  of ' t h e  Armijo s t ep -  

l eng th  a lgo r i thm [2]  which in5 ludes  second de r iva , t i ve  informat ion  i n ' t h e  

form o t   direction^ of nega t ive  cu rva tu re .  . , 

The s t e p l e n g t h  a lgo r i thm w i l l  be  descr ibed  now. 'Given 

y , p  E (~,1), l e t  {xk: k=O,1,2, ... .} be  a sequence of p o i n t s  de r ived  from 

t h e  g iven  p o i n t  x as. fo l lows:  
0 

Determine a descent  p a i r  ( s  d ) a t  x and l e t  i he t h e  smal.S.ost k' k k k 

non-negative i n t e g e r  i such t h a t  

and 

Take xH1 = 
Yk, i' 

Lemma (2.1) shows t h a t  t h e  i t e r a t e s  a r e  w e l l  de f ined ,  

and i f  a descen t  p a i r  does no t  e x i s t  a t  x then  we accep t  x a s ' a  solu-  
k lc 

t i o n  t o  problem (1.1) .  

Theorem (3.1) .  Le t  f  s a t i s f y  assumptions (1.2) and suppose t h a t  

11 sk] , lldkll a r e  bounded independent of k. Then 



and 

t 
l i m  (-g s ) = 0 
k- 

k k  

l i m  (-d;ckdk) = 0 . 
k- 

Proof :  The sequence i fk}  i s  a decreas ing  sequence which i s  bounded 

below due t o  t h e  c o n t i n u i t y  of f and t h e  compactness of L(x ). Thus 
. . 0 

l i m  ( f  -f ) = 0. There a r e  two cases  t o  cons ider .  
k- k k+l  

Case 1. Suppose t h e  . i n t ege r s  {i ) are bounded above bp some m 1 0 .  
k 

. . Then 

Since 

-gLs > 0 and -dLG d > 0 
k k -  k . k k -  

t h e  conclus ion  fo l lows .  

Case 2 .  The i n t e g e r s  {i ) a r e  n o t  bounded above. Without l o s s  of gen- 
k 

e r a l i t y  we assume t h a t  l i m  i = +. By t h e  d e f i n i t i o n  of ik, i f  , k 
k- 

bk 
= y ( 4 - 1 )  , then 

However, due t o  our  assumptions on f and L(x 0 ), a Taylor  s e r i e s  argument 

t 
and t h e  f a c t  t h a t  gkdk.( 0 may be  used t o  show t h a t  

< f +02 [ 'S + dtG d ] + r(Xk,sk,dk,okj 9 
£k+l.-. k k g k k  2 k k k  

wi th  
r (xk ,  sk,dk,ok) 

l i m  (3  7) 2 
= o .  

k- Ok 

~ e n c e ,  combining (3.5) and (3.6). g ives  



The conclus ion  fo l lows  from (3.7) and (3 .'8) . 
The r e s u l t  p resented  by McCormick d i d  n o t  s p e c i f y  a choice  of 

%l when x  was n o t  an i n d e f i n i t e  p o i n t ,  bu t  d i d  sugges t  t h e  Newton 
k  . . 

d i r e c t i o n .  I n  t h e  c a s e  t h a t  x  was a n  i n d e f i n i t e  p o i n t  then  
k 

t 
s = (Ilgtll/llPk(l)Pk wi th  pk a descent  d i r e c t i o n  such t h a t  -g p > c  llg 11. k  k k -  1. k 

t 
Also,  d  w a s  r e q u i r e d  t o  be a u n i t  v e c t o r  such t h a t  d  G d  < c  A where 

k  k k k . -  . 7 C ,  
k 

A is  de f ined  as t h e  most n e g a t i v e  e igenvalue  of G I n  t h e  above 
Gk . , 

. . k ' 

s t a t emen t s  c  1 , ~ 2  > 0. McCormick w a s  ah1.c t.n concl.ude t h a t  i f  i n f i n i t e l y  

many i n d e f i n i t e  p o i n t s  {x  ) were t o  occur  I n  t h e  sequence {x ), t hen  k; k 
J 

any p o i n t  of accumulat ion x of  t h e  sequence {x } must s a t i s f y  g(G) = 0, 
k  i 
9 

.and G(:) is  p o s i t i v e  s e m i d e f i n i t e  w i t h  a t  l e a s t  o n e ' z e r o  e igenvalue .  A 

s p e c i f i c  choice  of sk and d  was n o t  suggested.  
. . k 

Under t h e  a d d i t i o n a l  hypothes is  t h a t  t h e  number of c r i t i c a l  

p o i n t s  fn 0 i s  f i n i t e ,  and w i t h  a  j ud ic ious  choice  of (skYdk) one can 

'show that t h e  i t e r a t e s  de f ined  by (3 .1)  and ( 3 . 2 )  converge t o  a p o i n t  x* 

where g(x*) = 0, and G(x*) i s  p o s i t i v e  s e m i d e f i n i t e .  However, Armijo 

type  s t e p l e n g t h  procedures  do no t  t a k e  i n t o  account  any informat ion  

about t h e  shape of t h e  f u n c t i o n  a long  t h e  curve x . More s o p h i s t i c a t e d  u 

s t r a t e g i e s  a r e  a v a i l a b l e  f o r  determining t h e  s t e p l e n g t h  a k ' 

Ia L11r rest  of t h i s  chap te r  we s h a l l  be concerned w i t h  t h e  

choice  of (sk,dk) .  and wi th  a s t e p l e n g t h  procedure which s p e c i f i e s  

c r i t e r i a  f o r  te rmina t ing  a u n i v a r i a t e  s ea rch  a long  curves x o f . t h e  form 
a 

(2.1) .  F i n a l l y ,  a  convergence r e s u l t  w i l l  be  g iven  t h a t  i n d i c a t e s  t h e s e  

choices  a r e  q u i t e  reasonable .  



4 .  Determining Directions of Negative Curvature 

As we shall.see, the results of Theorem (3.1) are useful only if 
. . 

and 

( d L ~  d + 0) => ,(A + 0) , 
k k k  Gk 

where A is defined to be the host ne~ati~eeigenvalue of G when xk is 
Gk 

k 

an indefinite point and zero otherwise. ,Intuitively, if (4.1) and (4.2) 

hold then the iterates {xk; are converging to a critical point where the 

Hessian is positive semidefinite. These statements will be made precise 

in sections 5 and 6. Here we present various ways in which (4.2) can be 

accomplished. Matrix factorizations will play an important role. The 

factorizations we shall discuss in some detail are Gill and Murray's 

modified Cholesky factorization [ll], and the method of Bunch and 

Parlett [ 5 ] .  

Gill and Murray present an algorithm which for any symmetric 

matrix A produces a unit lower triangular matrix L, a diagonal matrix D 

with positive diagonal elements, and a diagonal matrix E with nonnegative 

diagonal elements such that 

t2 The elements of LD and E are bounded relative'to the maximum element of 

A. This factorization depends upon nonnegative parameters (6,B). The 

t2 parameter 0 is uscd to force a bound upon the elements of LD , The 

parameter 6 in a sense determines the 1evel.of positive definiteness 

that the matrix A+E is required to have. Given the parameter 6 2 0, 

this factorization proceeds much the same as the Cholesky factorization 



with  t h e  exception t h a t  when a diagonal  e l e m e n t ' i s  found t o  b e . l e s s  than 

o r  equal t o  6 ,  i t  i s  modified. This modificat ion i s  expressed i n  t h e  

diagonal  matrix E. 

It is. poss ib le  t o  obta in  a' d i r e c t i o n  of negative curvature from 

t h i s . f a c t o r i z a t i o n  when 6 = 0. Assuming A has a negat ive  eigenvalue, 

one.computes an  index such t h a t  D < D -E..  f o r  1 < j < n. Then U-~AX - jj J J  - - 
t h e  s o l u t i o n  d t o  t h e  equa-tion 

where e i s  t h e  u n i t  vector  whose 1- th  component is  1, can be shown t o  .e' , 

be a d i r e c t i o n  of negat ive  curvature.  

. 'With t h i s  f a c t o r i z a t i o n  A can have a negative eigenvalue only i f  

E i s  nonzero. However, when 6 > 0 i t  is poss ib le '  f o r  E t o  be nonzero 

even though A i s  p o s i t i v e  d e f i n i t e .  Thus t h e  d i r e c t i o n  d obtained above 
. . 

cannot be  guaranteed. t o  be  a d i r e c t i o n  of negative curvature  un less  

6 = 0. Unfortunately,  when t h i s  f a c t o r i z a t i o n  i s ' u s e d  i n  a modified 
. . 

Newt.onls method 6 > 0 must be spec i f i ed  t o  obta in  a proof of convergence. 

The faceorizarion of Bunch and Parlerr allows an alternarive 

t h a t  avoids t h i s  d i f f i c u l t y .  We have a l ready discussed t h i s  f ac to r i za -  

t i 0 1 1  i n  chapters I and 11, but w e  w i s h  t o  m p l ~ a s i z e  here the  p roper t i e s  

of t h i s  f a c t o r i z a t i o n  re levan t  t o  t h i s  d iscuss ion.  

Given any symmetric matrix A t h e  f a c t o r i z a t i o n  w i l l  ob ta in  a 

peruuta t ion matrix Q,  a block diagonal  matrix D, and a u n i t  lower tri- 

angular matr ix  M such t h a t  

The matr ices  M and D s a t i s f y  



(4 -3)  The elements of M a r e  bounded by a f ixed p o s i t i v e  

constant  which is  independent of t h e  matrix A. 

(4 . . 4) D i s  a block diagonal matrix with one-by-one o r  
. . 

two-by-two diagonal blocks. 

(4 -5) D has t h e  same number of p o s i t i v e ,  negative,  and zero 

eigenvalues a s  A ( s y l v e s t e r i s  I n e r t i a  Theorem). 

(4.6) The number of 2x2 diagonal  blocks p lus  t h e  number of 

negat ive  diagonal elements which occur a s  1x1 diagonal  

' b locks .o f  D is equal t o  the  number of negat ive  eigen- 

values  of A'. I n  t h e  case t h a t  A i s  p o s i t i v e  s e m i -  

d e f i n i t e ,  D i s  a diagonal  matr ix  wi th  nonnegative 

diagonal  elements.. . . , 

- - 
. , The following lemma w i l l  show how t h i s  f a c t o r i z a t i o n  can be used 

t o  ob ta in  d i r e c t i o n s  of negative curvature  which s a t i s f y  (4.2) .  
I 

. . 
t iixn 

Lemma ( 4 . 1 ) .  Let .  A = WRW where W E RnXn i s  nonsingular , and B E R 
. . . , 

is  symmetric. Assume t h a t  A has a t  l e a s t  one negative eigenvalue. L e t  
.. . 

{ z j  : j=1,2,.  . . m be u n i t  eigenvectors f o r  B corresponding t o  

eigenvalues 

A l ( h 2  (... - < Am < 0 . 
. .. 

k 
Let z =  1 z j  where . - -  1 < k < m and l e t  

j=l 
. . t . . 
(4.. 7) W y = z .  

Then 



where h i s  t h e  smal les t  e igenvalue  of A ,  and KZ(W) = I I w I I  I I W - ~ I I  is the  
A 

Euclidean condi t ion  number of W. 

Proof: I f  x is  a u n i t  eigenvector f o r  A corresponding to, h the6 
A 

t t x Ax =, hA and i f  u = W x then 

t ' t  2 
hA = x Ax = u Bu 2 hlllu1l , 

Moreover, s i n c e  l(ull 5 l l ~ l l ,  and h1 < 0, 

Now note  t h a t .  from' (4.7) 

s ince  1, y 11 = 11 W-" f lrl] 1 1  5 > 11 we h a i e  ' ' 

k - 

Together, i n e q u a l i t i e s  (4.8) and (4.9) give t h e  des i red  r e s u l t .  
, . 

0 
t I f  Lemma (4.1) is  t o  be use fu l ,  then W y = z must be easy t o  ' , 

. . solve.  Also, the. eigensystem of B must. be r e a d i l y  avaiilable, and the. 

t 
f a c t o r i z a t i o n  A = WBW should be r e l a t i v e l y  cheap t6 empure. These 

requirements r u l e  ou t  a '  f u l l '  eigensystem decomposition of A and a l s o  t h e  
. . 

f a c t o r i z a t i o n  of ,. Aasen [ I ]  which gives  B i n .  . t r idiagonal:  f o m .  However, 

t h e  ~ u n c h - ~ a r l e t t  f a c t o r i z a t i o n  c e r t a i n l y  . s a t i s f i e s  a i l  these  require-  

ments wi th  the  a d d i t i o n a l  f e a t u r e  t h a t  K2(W) has a bound t h a t  is 

independent of A. 

F le tcher  and Freeman [8] have sugge$ted t h e  use of t h i s  facto'i-i- 

za t ion  t o  ob ta in  a d i r e c t i o n  of negat ive  curvature.  The d i r e c t i o n  they 



suggest corresponds t o  taking k = m i n  Lemma (4.1). However, Lemma 

(4.1) suggests  t h a t  t h e  bes t  d i r e c t i o n  t o  use is with k = 1 s i n c e  t h i s  

2 reduces t h e  magnitude of t h e  constant  k [K2(W) l 2  and i s  s l i g h t l y  cheaper 

t o  compute. 

5. A Steplength Algorithm 

Once a descent p a i r  (s ,d)  has been determined a t  a point  x then 

we a r e  faced with the  problem of determining i such t h a t  

2 
where x = x+a s+ad, 0 < a. One so lu t ion  would be t o  determine ii such 

a 

t h a t  

f (x-) = min f (xu) , 
a' a>o - 

but t h i s  i s  a very d i f f i c u l t  computational problem. It i s  computation- 

a l l y  more des i rab le  t o  replace  t h e  problem of s a t i s f y i n g  (5.1) exact ly  

with t h e  spec i f ida t ion  of c r i t e r i a  f o r  terminating a u n i v a r i a t e  minimiza- 
. < 

t i o n  procedure t h a t  is  designed t o  solve  (5.1) . 
Such an"approach i s  motivated by t h e  success of previous algo- 

rithms which have been used when a s i n g l e  descent  d i r e c t i o n  is  spec i f i ed .  

Given a descent d i r e c t i o n  s a t  a point  x ,  one such algorithm is t o  t e r -  

minate the . . l ine  search when an cl has been found which s a t i s f i e s  
. , 

(5 2) 

and 

t 
(5.3) f (x+;s) - < f (x) + eJ.,g (x) s , 

. . 

where 0 - < p - < q < 1 a r e  preassigned cons tan t s . ,  I f  a sequence of po in t s  

- 
{xk] a r e  determined where x = x +a s with x = xk, s = k+l k k k  sk' a = ak 



s a t i s f y i n g  (5.2) and (5.3) f o r  each k, then 

and hence 

It follows from (5.4) t h a t  

where $ is  t h e  reverse  modulus of cont inui ty  of g [17, p. 4821. Since 

'k+l lc' and f must be bounded below on t h e  compact s e t  L(x ), we have 0 

t h a t  l i m  (fk-fk+l) = 0 and thus (5.3) implies 
k* 

Since $( tk)  * 0 implies tk 4 0 i t  follows from (5.5) and (5.6) t h a t  

Usually gk and s a r e  r e l a t e d  $0 char (5.7) 1 1  -) 0 which i n  
k 

\ 

turn  impl ier  lls& 4 0. Thus it is w n ~ l u i l e d  t h a t  I ! X ~ , ~ ~ - X ~ I ~  + 0 and 

l l g k l l  * 0 a s  . long . as the  uk a r e  bounded. This i s  enough t o  insure  t h a t  

l i m  x = x* 
k+J k 

with x* a c r i t i c a l  point  of f dde t o  t h e  following lemma given i n  [17]. 
. . 

Lemma (5'.1). Let f : V c R" -t R be continuously d i f f e r e n t i a b l e  on t h e  
. . 

compact s e t  0 c 0. Let 
0 

A h  

S = {x: , X  E 00, g(X) = o }  , 

and assume t h a t  S is  f i n i t e .  I f  {xk} c V0 i s  a sequence such chat 



. then lim x = x*, where x* E S. 
k k- 

. . . . 

Proof: See [17, p. 4761. 0 

A full discussion of this type of strategy may be found in [17]. Par- 

ticular algorithms of this type,are given in [12,17]. The strategy has 

a geometrical interpretation which is depicted in figure 2. 

Figure 2 

A. Search Along x+as 

* 
Here I.I = n and a is the smallest positive root of the equation 

t t g(x+as) s = ,ng(x) s. The local quadratic approximation to f(x+ap) is 

t 1 2 t  
)(a) = f(x) =I= ug(x) s + I "  s G ( x ) s  

which is convex near a = 0 if Gcx) is positive definite as shown in 

figure 2. Condition (5.3) guarantees sufficient decrease of the func- 

tion so that 1 1  gkll s 0 which means that f (x+ap) lies below the top line 

in figure 2. Condition (5.2) guarantees that the distance i ~ ~ + ~  - xkll 

does not become arbitrarily small. The picture indicates that the only 

possibility for a* 5 ak to be small is that x is close to a local 

minimum. 



. . The termination criterion we shall give may be viewed as an 

extension of these ideas which are suitable for the situatfon when an 

iterate x is an indefinite ,point. We' replace (5.2)' and (5.3) with the k 

following rule. If (s,d) 'is a descent pair at x then we terminate the 

search when has been found which satisfies 

and 

(5 9) 
- 2 t  l t  

f (x-) < f + pa [g s + Gd] , 
a -. 

with 0 - < p - < T-I < 1 as before. Note that 'when d = 0 these conditions 

reduce to those of (5.2) and .(5.3).. Again there is a geometrical inter- 

pretation which is depicted in figure 3, 

Figure 3 



Here a* i s  the  smal les t  p o s i t i v e  roo t  of t h e  equation 

t ' I t  
(xa) (2as+d) = [gtd + 2a,(g s + 2 Gd) ] . 

' The S i t u a t i o n  shown i n  f i g u r e  3 descr ibes  t h e  shape of . . f(xa) along t h e  

curve 

2 
C :  {xu: xa = i + a  s+ad} ., 

where x  is  an i n d e f i n i t e  point  (see  f i g u r e  4 ) .  

Figure 4 
2 The Curve x+a s+ad 

An add i t iona l  requirement is  placed on a  s t ep leng th  algorithm .a t  an 

, i n d e f i n i t e  point .  S u f f i c i e n t  decrease of t h e  funct ion must be used t o  

fo rce  t h e  negative eigenvalues of t h e  Hessian t o  zero a s  we l l  a s  t o  

fo rce  t h e  gradient  t o  zero. This i s  guaranteed by condit ion (5.9). I n  

- x become a r b i t r a r i l y  small.  addi t ion  t o  t h i s  we must not l e t  llxk+l 
, 

This i s  accomplished by condit ion (5.8). The a* pic tured i n  f i g u r e  3 is  

s imi la r  t o  i t s  counterpart  i n  f i g u r e  2. The p i c t u r e  s u g g e s t s ' t h a t  t h e  

only p o s s i b i l i t y  f o r  a* t o  become small i s  f o r  t h e  i t e r a t e  xk t o  be 

c lose  t o  a  l o c a l  minimum. The i n f l e c t i o n  point  which must occur along 

t h e  path  C must e i t h e r  be crossed o r  become " f l a t t ened  out" i n  t h e  

i t e r a t i v e  process. 

We no te  with Fle tcher  and ~ r e e m i  181 t h a t  i f  a  ' d i r e c t i o n  dk of 
. . 

negative curvature alone i s  used ( taking sk = 0) ' t hen  t h e  condit ion 



t 
d I < -qg d is inappropriate for termination of the, linear, search .l.gk+l k - . k k  . . 

t 
because g d may be close to zero even far away from a minimum. They k k  

found'it,necessary to give termination'criteria based on'an estimate of 

the first derivative of f(x ) at the inflection point. The estimate 
. . a 

was. obtained from the value of the derivative of a related quartic poly- 

nomial at its corresponding inflection' point. 

The following lemma will show that conditions' (5.8) and (5.9) 

can be satisfied whenever a descent pair exists at a point x. 

Lemma (5.2). Let @: R -t R be twice continuously differentiable in an 

open interval I which contains the origin; and suppose that L(0) c I is 

compact where L(0) = {a E I: @(a) 5 ~(0)). Let p E [0,1) and q E [p,1). 

Then if Qf (0) 5 0 and @'.'(O) < 0 there is an E (0,m) n I such that 

and 

Proof: The assumption that 6'(O) < 0 and. @"(0 )  i U implies the existence . -  - 
4 

of E I with a(!) < @(0j for 0 < a < k Let B = sup{B: @(a) < @(0) 
. . 

h 

'with 0 < a < B). Then B > 0, .and the assumption on L(0) implies 8 E I 

is finite. The continuity of @ implies ~(0) = @.(B). Thus 

Define h: I -i K by 

a 2 .  
h(a) = @(a) - m(o) - n[mf (o)a + ml1(o) . 

Since P - < q we have h(B) 2 0. Note also that h(0) = 0, hl(0) 2 0, 
. . 

h"[O) < 0. This together with the continuity of h implies the existence 

of B1 E (0,Bl such that h(B1) = 0, and h(a) < 0 for all a E (O,B1). Now 



Rolle ' s  Theorem implies the  exis tence  of i E (0,O ) such t h a t  h1(;) = 0, 
1 

and (5.10) follows. Also, h ( i )  < 0 and p  5 q imply (5.11). 0 

I f  we take  @(a)  = f ( x  ) then Lemma (5.2) implies t h a t  condit ions (5.8) 
a  

and (5.9) can be s a t i s f i e d .  I n  t h e  next  s e c t i o n  we w i l l  show how these  

condit ions may be used t o  prove t h e  convergence of a  modified Newton 

method. 

6. Convergence of t h e  Modified Newton I t e r a t i o n  

Now we ' turn  our a t t e n t i o n  t o  def in ing a  .modified Newton i t e r a -  

t ion .  We s h a l l  g ive  a  convergence r e s u l t  based on t h e  use of descent  

p a i r s  and t h e  s teplength  algorithm discussed above. The proof proceeds 

i n  two par t s .  The f i r s t  r e s u l t  is  somewhat independent of t h e  de f in i -  

t i o n  of t h e  i t e r a t e s .  The second p a r t  w i l l  use t h e  p a r t i c u l a r  way i n  

which the  i t e r a t e s  a r e  defined t o  e s t a b l i s h  convergence. 

~ h e . g e n e r a 1  i t e r a t i o n  from a  point  x  begins with determining a 
k .  . 

descent  p a i r  (sk,dk) a t  xk. Let 

Assume p E ( 0 , l )  and q E [ p , l )  a r e  independent of k .  Then ak > 0 i s  

determined such t h a t  

Take x ~ + ~  - 
-, Yk* 

One ?ight '  note  t h a t  due t o  (5  . l l )  i n  t h e  statement of Lemma (5.2) 



2 

[ k OIL] instead of (6.3). we could require f (yk) 5 f (.xk) + ,p @ ' (0) % + @r(O) T 

However, the additional term does not enhance the convergence .result in 

any way, while it.does give a more stringent requirement to be satisfied 

by the univariate search. The first step in the convergence result is 

Theorem (6.1). Let, f satisfy assumptions (1.2). Then the iteration 

defined above satisfies 

and 

lim ,-g;sk = 0 , 
k-- 

t liw -d C d = 0 . 
k-= kTk k 

. . 
t t Proof: From (2.7) and ('2.8) we have @;(0) =, gkdk and @;(O) = 2gksk + 

dSkdk. Since (sk,dk) is a descent pair, @;(0) 0, and @;(0) < 0. 

Thus (6.3) implies that {%} c L(xO). By the continuity of f and 

compactness of L(x ) we have lim(fk-fk+l) = 0. Now 
0 

9 k* 

and 

(6.8) 
2 t  lim -a d G d. = 0 .  

k k k k k  

From condition .{6.4) we obtain 

and .hence 

An application of the mean value theorem now yields that for some 



The d e s i r e d  . r e s u l t  now fo l lows  r e a d i l y ,  f o r  i f  e i t h e r '  (6.5) o r  (6.6) . do  
. .  . 

'not ho ld ,  t hen  t h e r e  i s  a subsequence {ki} and  a  0 > 0 S u c h  t h a t  

(.6.10) -a" (0)  > a > 0 . 
ki . 

- 

Hence (6.9) imp l i e s  t h a t  { &  ) does n o t  converge t o  zero .  However, i f  
ki 

{ak ) does n o t  converge t o  ze ro  and (6.10) ho lds ,  then  (6.7) and (6.8) 
i 

cannot be s a t i s f i e d .  This  c o n t r a d i c t i o n  e s t a b l i s h e s  t h e  theorem. 
0 

The {ak} of (6.2)-(6.4) a r e  t o  be  determined by a  u n i v a r i a t e  ' 

.. minimizat ion a lgor i thm appl ied  t o  (Pk(a) .' Le t  > 0 be  f i x e d ,  and termi- 

n a t e  t h e  sea rch  when 0 < < B has been found such t h a t  (6.4) i s  - 

s a t i s f i e d  wi th  a i n  p l a c e  of a  I f  (6.3) is  a l s o  s a t i s f i e d  we accept  
k  ' 

- - ak - a .  I f  e i t h e r  (6.4) cannot be  s a t i s f i e d  ( say  w i t h i n  a  f i x e d  number 

of s t e p s )  o r  i f  a does n o t  s a t i s f y  (6.3) we t a k e  w t o  be  t h e  l a r g e s t  

element of t h e  set 2 0 1 2, .  . . } such t h a t  (6.3) is  s a t i s f i e d  w i t h  

- - 
aw i n  p l ace  of a  and then  accep t  a = aw. I f  i n f i n i t e l y  many of t h e  k k 

t 1 s  must be determined i n  t h i s  way, then  Theorem (3.1) a p p l i e s  s o  t h a t  

(6.5) and (6.6) a r e  s t i l l  obtained.' We s h a l l  c a l l  t h i s  process  t h e  

s t e p l e n g t h  r u l e  SR(u,n,B). 

Our nex t  r e s u l t  w i l l  show t h a t  t h e  i t e r a t e s  de f ined  by t h i s  

s t e p l e n g t h  r u l e  converge t o  a c r i t i c a l  p o i n t  of f  where the  Hessian i s  

p o s i t i v e  semide f in i t e .  It i s  h e r e  t h a t  s p e c i f i c  p r o p e r t i e s  of t h e  

descent  p a i r s  (sk,dk) a r e  c r u c i a l .  

Theorem (6.2) .  Assume i n  a d d i t i o n  t o  t h e  hypothes is  of Theorem (6.1) 

, t h a t  f  has f i n i t e l y  many c r i t i c a l  p o i n t s  i n  L(x ). Suppose t h a t  t h e  
0 

sequence {x k=0,1,2,.  .. } h a s  been obta ined  us ing  . the s t e p l e n g t h  r u l e  . 
k : 



SR(y,n,@) where the .descen t  p a i r s  (.sk,dk) s a t i s f y  

{IIskll , Ildkll: . k=0,1,2, . .. ] i s  bounded. t ,ogethet with : 

(6.. 12) 
t 

(.gksk 0) =>: (gk -+ 0  and s i  -+ 0 )  , 
and 

as k  -t oo. Then 

l i m  x  = x* 
k- 

k  
. . 

' with g (x*) = 0 and ~ ( x * )  p o s i t i v e  semidef i n i t e  . Moreover, i f  infinitely 
. . 

many of  the' x a r e  i n d e f i n i t e  points ,  then G(x*) must have a t  l e a s t a  one 
. k  

! 1 

zero eigenvalue. , 

t t Proof: ~ r o h  Theorem (6.1) we see t h a t :  l i m  gksk = 0  and l i m  dkGkdk = 0. 

; B y  (6.12) w e  have g k +  0  and s k + O .  By (6.13) we haveX + O  and 
Gk 

dk + 0. Now, 

l i m  11 x ~ + ~  - xkll = 0  . 
Z c - P  

Theref ore ,  Lemma (5.1) app l i es  and' w e  obta'in 

l i u  A X* , k k+- 

with g(x*) = 0. Since X -+ 0, we a l s o  have by t h e  con t inu i ty  of G 
Gk 

t h a t  G(x*) must be p o s i t i v e  semidefini te .  Moreover, if i n f i n i t e l y  many 

of t h e  x  are i n d e f i n i t e  po in t s  then every neighborhood of x* conta ins  . 
k  . . 

an i n d e f i n i t e  point .  Thus the  con t inu i ty  of G implies tha't G(x*) has  a t  

l e a s t  one zero eigcnvaluc , 13 

Obviously, the  proof of Theorem (6.1) rests on t h e  s teplength  
. . 



r u l e ,  wh i l e  t h e  proof of Theorem ( 6 . . 2 ) . r e s t s  o n . t h e  p a r t i c u l a r  choice  of 
. . 

t h e  descent  p a i r s .  Many choices  of s .,are poss ib l e .wh ich  s a t i s f y  (6.12).  
.: k 

Indeed, i f  4 i s  any sequence of symmetric p o s i t i v e  d e f i n i t e  m a t r i c e s  
* .  

such t h a t  11 , I I<~II  a r e  bounded independent ly of k ,  then  choosing s 
: k 

as t h e  s o l u t i o n  of 

w i l l  s a t i s f y  (6.12) . 
I n  s e c t i o n  3 we gave s e v e r a l  ways t o  choose t h e  d a t  an  i n d e f i -  

k 

n i t e  p o i n t  s o  t h a t  

The a d d i t i o n a l  requirements  t h a t  dk must s a t i s f y  a r e  obta ined  i f  we 

r e p l a c e  dk w i t h  ky(A )dk,  where y i s  a func t ion  such t h a t  y ( t k )  + 0 => 
Gk t 

t + 0, and where t h e  s i g n  i s  chosen t o  make gkdk 0. k 

The i t e r a t e s  should a l s o  reduce n a t u r a l l y  t o  ~ e w t o n ' s  i t e r a t i o n  

as soon a s  a reg ion  i s  found where t h e  Hessian i s  p o s i t i v e  d e f i n i t e .  

Indeed, t h e  main mot iva t ion  f o r  t h i s .  s t r a t e g y  i s  t o  o b t a i n  t h e  i t e r a t e s  
. , 

us ing  second d e r i v a t i v e  informat ion  which is based on t h e  t r u e  q u a d r a t i c  

model a t  each xk. Of course ;  i t  i s  expected t h a t  i n  p r a c t i c e  very  few 

i n d e f i n i t e  p o i n t s  w i l l  be  encountered dur ing  t h e  i t e r a t i v e  process .  I n  

f a c t ,  Theorem (6.2) i n d i c a t e s  t h a t  t h e  s t r a t e g y  w e  have presented  . . 

a c t i v e l y  seeks  a r eg ion  where t h e  Hessian ma t r ix  is p o s i t i v e  s e m i -  

d e f i n i t e .  I f ,  f o r  example, t h e  Hessian G(x) i s  nons ingular  whenever x 

i s  a c r i t i c a l  p o i n t  of f then  only f i n i t e l y  many of t h e  i t e r a t e s  can b e  

i n d e f i n i t e  p o i n t s .  

F i n a l l y ,  we s h a l l  sugges t  a way t o  o b t a i n  t h e  descen t  p a i r s  



(",dk) which satisfy all of t h e  requirements of Theorem (6.2) . In our 
t 

description we assume Gk = %Dk%.is the  inch-parlett factorization of 

the Hessian. Thus we have'omitted'exp1icit.representation of the per- 

mutations Q which will be present in practice. Given f and x which 
k 0 

satisfy the hypothesis of Theorem (6.2), for k=0,1,2,.. . define 
(6.14) ; Sk as t'he solution of 

where Dk = u k q :  I s  ~btained from D k by . .  first: 

obtaining the eipcnsystem Dk = U~A~U: of Dk and 

then replacing the diagonal elements of Ak 
j 

max (;Ix!~)~, En max , A  E) 9 

I 1 9  Ln J l< - i<n. - . 

where E is the relative machine precision. In the decomposition of Dk 

t we have UkUk =.Ii and A diagonal. Note that only O(n) arithmetic 
k .  

operations are required to obtain q. from Dk. 
(6.15) d is the solution to , k . . 

where, A is the most negative eigenvaiue and z 
Dk 

k 

the corresponding unit eigenvector o£ D k When Dk 

does not have a negative eigenvalue we take d k. = 0. 

The compactness ofL(xO) and the continuity of G imply that the 

elements of G and the components of . .  g k are uniforhly bounded. Thus 
k 

(sk,dk) satisfy the requirements of a descent pair as well as (6.12) 

and (6.13) due to the bound onthe condition numbersK2(\). 



The above choice. of (sk;dk) is .somewhat ad hoc and .we make no 
. . 

mathematical statements concerning the'.iiesirability of .this .choice. 

However, in the next chapter computati.ona1 results will.be reported 

which show that this specification of (sk,dk) works-reasonably well in, 

practice. We wish to emphasize that many other choices are possible. 

We have not addressed the problem of providing an initial step a 

to the univariate search. Many strategies for determining .the initial 

step are possible. However, we have not found a strategy with enough 

theoretical basis to recommend it over something very simple such as 

taking the initial step to be a = 1 each time. Note, however, that 

whatever strategy is chosen must eventually take a = 1 in order to retain 

the local quadratic rate of convergence enjoyed by Newton's.method. 

7. Conclusions 

The algorithm we have just described has the following informal 

description: 

Given xo E v 
for k=0,1,2,. . . 
I (1) Determine a descent pair (sk,dk) 

I (2) Determine a by SR(v ,n, B) k 

Step (1) involves evaluating and factoring the Hessian G Step (2) k ' 

involves the use of a univariate search that can satisfy SR(v,n,B). 

The importance of this iteration is that it represents a natural 

extension of previous theory to include second derivative information. 

It avoids saddle points and possesses a strong theoretical- convergence 



property. Finally, the iteration, even in this preliminary stage of 

development,.performs.well in practice. 



Chapter V 

. . Computational ~es'ults 

I. Introduction 

The purpose of this chapter is to present computational support 

of the theoretical results obtained in chapters 11, 111, and IV. The 

updating algorithm was tested for timing and accuracy on a large number 

of random updating problems. The optimization algorithm was tested on a a 

set of test problems which have been used extensively at Argonne 

National Laboratory for such purposes [5]. In addition to this, the 

algorithm was tested on some problems which demonstrate its behavior 

when many indefinite points are encountered during an iteration. 

2. Testing the Updating Algorithm 

There are two important criteria for testing an updating algo- 

rithm. The first criterion is that the updating algorithm actually 
. . 

should represent a computational savings over the alternative of forming 

the updated matrix and refactoring. The second criterion is that solu- 

tions nf  linear equations using the updating method should be reasonably 

close to solutions obtained by forming the updated matrix and 

refactoring. 

Timing the updating algorithm and comparing to the alternative 

is a straightforward task. In order to address the question ot accuracy 

one must decide what quantities should be measured and compared. For 

each update it seems reasonable to compare 

(2.1) II kc-b ll 1 Il b ll - 



with  

f o r  s e v e r a l  r i g h t  hand s i d e s  b. I n  (2.1) the  vec to r  x" is t h e  s o l u t i o n  
C 

obtained by forming and r e f a c t o r i n g  t h e  updated matrix.  I n  (2.2). the  

vec to r  x is  t h e  s o l u t i o n  obtained by us ing the  updating algorithm. The u  

q u a n t i t y  

should a l s o  be  computed. 

The q u a n t i t i e s  in (2.1) and (2 .2)  m P ; a s i i r ~  t h e  r e l a > t i v a  a t r s r  i n  

t h e  r e s i d u a l .  This  r e l a t i v e  r e s i d u a l  i n d i c a t e s  how c l o s e  the  computed 

solut iorl  is t o  s a t f s f y i n g  t h e  equation Ax = b r e l a t i v e  t o  t h e  s i z e  of 

t h e  r i g h t  hand s i d e  b. The quan t i ty  (2.3) measures how much t h e  answer . 

obtained by t h e  updating method has  devia ted  from the  answer obtained by 

computing and r e f a c t o r i n g  t h e  updated matrix. 

The process used t o . t e s t  t h e s e  c r i t e r i a  can most e a s i l y  be des- 

c r i h ~ d  by'maans of an informal algorithm. G f v e ~ ~  a dl~uension n, we seare 

with A = I t h e  nxn i d e n t i t y  matrix.  Then the  fol lowing i t e r a t i o n  i s  ' 

n . . 

c a r r i e d  out .  

(2.4) A := I 

f o r  k=0,1,2, ..., m 

I (1) z E 8 is  =h&sen. wi th  random components i n  ( -1 , l ) ;  

1 (2) o r R is  a .  random number i n  (-100,10d). 

w - Gt' 
(3.1) . CuGt = M U M A  by updating; 

U U U U  
m - t  - &  -t 

(3.2) QcAQ, = McDcMc by forming and fac to r ing ;  



for j=l,. ... ,5 
(4.1) b E R" is chosen with random components in 

(-50,50) ; 

(4.2) Solve Ax = b 

(i) Using (3.1) to compute xu; 

(ii) 'using (3..2) to compute x 
c ' 

(4.3) Compute 

(i) IIAxc-b 11 I 11 bll; 
(ii) II l l  I Il bll; 

- (iii) 11 xc-xu 11  1 1 1  b 11 ;  

The steps (3.1) and (3.2) of iteration .(2.4) were timed. These 

timings were averaged over the number m of updates. Thus the time . re- . 

quired by the updating algorithm can be compared 'to the time required. by 
N N 

the alternative of computing A and refactoring. The solution to Ax = b 

was computed for five different right hand sides after each update. This 

was done to increase the chances of obtaining a large residual 

1lA~~xu-b 1 I 11 bll . The quantities (2 .I), (2.2), and '(2.3) were averaged over 

all iterations and right hand sides.   he results are shown in tables 2 

and 3. 

Table 2 shows the above quantities for various values of the 

dimension n . 1n Table 2 UAVE is the average value of 11 ~x,-b 11 / 11 bll , CAVE 
is the average value of IIAxC-bll / llbll, and AVERR is the averaie value of 

11 xc-xu 11 / 1 1 ~ ~ 1 1  . The quantity CTIME is the average time to compute and 
- 

refactor A and UTIME is the average time to update the factorization. 



Table 2  

R e s u l t s  f o r  I n c r e a s i n g  Order 

The t imes shown h e r e  a r e  i n  microseconds. The important  t h ing  

t o  n o t e  i s  t h e  r e l a t . i onsh ip  of UTIME t o  CTIME as n  i n c r e a s e s .  To s e e  

t h a t  t h e  numbers are i n  t h e  c o r r e c t  p ropor t ion  one should compare n2 t o  
3 

UTIME and " t o  CTIME. Observe a l s o  t h a t  t h e r e  i s  roughly only a  one 6 

d i g i t  l o s s  of accuracy us ing  t h e  updat ing  a lgor i thm.  . F o r  each of t he  

r e s u l t s  i n  Table 2  we have taken m = 100 i n  (2 .4 ) .  

Table  3 shows t h e  r e s u l t s  of a p a r t i c u l a t  updat ing sBqu'exi~B 

computed by t h e  i t e r a t i o n  ( 2 . 4 ) .  I n  t h i s  example n  = 10. The updat ing 

process  was c a r r i e d  out  f o r  1000 updates .  The r e s u l t s  show every f i f t h  

update  s e l e c t e d  from t h e  qeginning,  middle,  and end of t h e s e  computa- 

t i o n s .  I n  Table  3 t h e  q u a n t i t i e s  a r e  n o t  averaged. UERR i s  

(1 Axu-b 11 / 11 bl , CERR i s  11 Ax,-b 11 / 11 b  1 1 ,  and XERR is 11 xC-xu 11 / 11 xC 11 f o r  only 

one r i g h t  hand s i d e .  UTIME and CTIME a r e  t h e  t imings  f o r  each i n d i -  

v i d u a l  update  i n  t h i s  ca se .  For t h e  e n t i r e  sequence, t h e  average 

q u a n t i t i e s  were UAVE = 2  x 10-I ', CAVE = 3 x 5, and AVERR = 1 x 10-I 3 .  



Table 3 

Resu l t s  of a Long Range of Updates 

beginning 

middle 

end 

T h e s e . r e s u l t s  i n d i c a t e  t h a t  t h e  e r r o r  a n a l y s i s  i n  Chapter I11 i s  

somewhat p e s s i m i s t i c .  I n  p a r t i c u l a r ,  Table 3 shows t h a t  ob ta in ing  t h e  

f a c t o r i z a t i o n  by t h e  updat ing  method does n o t  d e t e r i o r a t e  much even over  

a long range of updates .  The t imings show t h a t  t h e  o p e r a t i o n .  count 

UERR 

6 x 10'15 

7 x 10-l4 

3 x 10-l5 

1 x 10-l4 

1 lo-14 

5 x 

2 lo-13 

8 x 10-l4 

7 lo-14 

1 x 10-I 

7 x 

5 x 10-I 

lo-13 

2 x 1 0 - l ~  

1 x 10- l3  

g iven  i n  Chapter I1 was indeed a worst  c a s e  a n a l y s i s .  They i n d i c a t e  

t h a t  t h e  worst  case  r a r e l y  happens. This  i s  demonstrated i n  Table 3 

CERR 

4 X 10-l5 

3 x 10-l4 

7 x 10-l6 

5 x 10-I 

4 x 10-l5 

6 x 10-l6 

1 1 0 - l ~  

6 x 10-I 

1 10-l5 

4 x 10-l6 

3 x 10-l5 

3 x 10-l5 

1 lo- l5  

1 x 10-l5 

1 x 10-l5 

s i n c e  f o r  m a t r i c e s  of o r d e r  10  t h e  ope ra t ion  count p r e d i c t s  t h a t  t h e  

updat ing  a lgor i thm should r e q u i r e  a s  much work as t h e  a l t e r n a t i v e .  

XERR 

8 X 10-l6 

6 x 10-I 

3 X 10-I 

2 x 10-I 

2 x 10-l4 

5 X 10-l4 

7 x 1 0 - l ~  

4 X 10-l~ 

5 x 10-l4 

1 x 10-I 

2 X 10-l2 

5 x 10-I 

2 x 10-l2 

5 X 10-l3 

2 x 10-l3 

UTIME 

312 

313 

521 

417 

417 

312 

313 

208 

31.2 

312 

208 

312 

209 

209 

312 

CTIME 

1563 

1875 

1979 

2083 

1563 

1667 

1562 

1563 

1980 

1667 

1458 

1667 

1458 

1771 

1563 



One d isadvantage  of t h e  updat ing a lgor i thm i s  t h e  l e n g t h  of 

computer code necessary  t o  d e s c r i b e  t h e  a lgor i thm.   he t iming r e s u l t s  

i n d i c a t e  t h a t  i t  would be  a worthwhile p r o j e c t  t o  s e e  i f  t h e  l e n g t h  of 

code could  be  decreased;  perhaps a t  t h e  expense of i n c r e a s i n g  t h e  

o p e r a t i o n  count  s l i g h t l y .  

3.  Tes t ing  t h e  Modified Newton's Method 

The uncons t ra tned  op t imiza t ion  a lgor i thm descr ibed  i n  Chapter I V  

was tes ted  on some standard minimizatinn  problem^. Thc computer,iiiiple- 

mentat ion i s  s t i l l  under development. . Therefore ,  t h e  r e s u l t s  presented  

h e r e  a r e  t o  be regarded as an  i n d i c a t i o n  t h a t  t h e  method i s  promising. 

There are a auluber of p r a c t i c a l  cons ide ra t ions  t h a t  must be  s e t t l e d  

be fo re  t h i s  a lgo r i thm can b e  recommended f o r  gene ra l  use .  

.One of t h e  p r a c t i c a l  problems i s  t h e  choosing of t h e  descen t  

d i r e c t i o n  s a t  an  . i n d e f i n i t e  p o i n t .  W e  have descrdhed nnp way in 

Chapter I V ,  b u t  w e  f e e l  t h a t  o t h e r s  should be t r i e d .  Also, it i s  no t  

c l e a r  what t h e  s c a l i n g  of t h e  descent  d i r e c t i o n  s shou1.d he  r e l a t i v e  t o  

t he  d i r e c t i o n  of n e g a t i v e  cu rva tu re  d.  

Another problem i s  choosing t h e  i n i t i a l  s t e p  f o r  t h e  l i n e a r  

search  procedurc a t  an i n d e f i n i t e  p o h L .  Enough informat ion  i s  a v a i l -  

a b l e  a t  an  i n d e f i n i t e  p o i n t  t o  u s e  a cubic  polynomial t o  p r e d i c t  an  

i n i t i a l  s t e p .  To do t h i s ,  one i n t e r p o l a t e s  f ,  f ' ,  f" a t  x where t h e  

2 
d e r i v a t i v e s  a r e  taken a long  the curve  x+a s+ad. , T h e  r e s u l t i n g  cubic  

polynomial i s  then  r equ i r ed  t n  achieve  a decrease  d a t  i t s  l o c a l  minimum 
A 

a. The number A i s  t h e  amount of decrease  obta ined  on t h e  l a s t  i t e r a -  
. . 

t i o n .  Th i s  p roces s  uniquely d e f i n e s  a polynomial p. We then  have 



We a l s o  r e q u i r e  t h a t  t h e  i n i t i a l  s t e p  a s a t i s f y  .5 < a < 1. Thus we 
0 - 0 -  

A A A 

t ake  a  = a i f  .5 < a 5 1. Otherwise we t a k e  t h e  c l o s e s t  endpoint  t o  a .  0  - 

Obviously t h e r e  i s  l i t t l e  t h e o r e t i c a l  j u s t i f i c a t i o n  f o r  t h i s  choice  of 

aO, b u t  i t  does an  adequate  job when safeguarded as mentioned. 

F i n a l l y ,  t h e r e  i s  always t h e  t a s k  of choosing parameters .  For 

i n s t a n c e  w e  must s p e c i f y  p, n, and B f o r  t h e  s t e p l e n g t h  r u l e  SR(IJ ,~ ,B)  

( s e e  Chapter I V ) .  I n  a d d i t i o n  t o  t h i s  we must s p e c i f y  c r i t e r i a  f o r  

accep t ing  an i t e r a t e  a s  an  approximation t o  a l o c a l  minimum. This ,  df 

course,  r e q u i r e s  t h e  s p e c i f i c a t i o n  of o t h e r  parameters .  

-4 . I n  t h e  fo l lowing  examples we have taken p = 10  , TI = .9 ,  and 

6 f3 = 10 . An i t e r a t e  x is  accepted a s  an. approximation t o  a l o c a l  mini- 
k  

mum when 

( i )  The Hessian is p o s i t i v e  s e m i d e f i n i t e ,  

( i i )  I f - £  k .  k-1 I 

( i i i )  a k-1 11s k l  - 11 < (T+&) (l+l[xk\1 1 , 

Here E i s  t h e  r e l a t i v e  machine p r e c i s i o n .  The parameter  T i s  s p e c i f i e d  

by t h e  u s e r  b u t  d e f a u l t s  t o  10& i f  found t o  be sma l l e r  than  E.  For 

these .examples  T i s  given t h e  d e f a u l t  value!  These s topp ing  c r i t e r i a  

a r e  used i n ' t h e  G i l l  and Murray a lgor i thm.  W e  have adopted them i n  o rde r  

t o  o b t a i n  a  good comparison of t h e  two a lgor i thms.  These f u n c t i o n s  were 

used a s  t e s t  problems: 



Rosenbrock' s Problem; 

standard start: (-1.2,l.O). 

Powell's Function of,Four Variables; 

standard start: (3.0, -1.0, 0.0, 1.0). 

(3 .3j  Brown's Function wit11 Tro Global ~ i n i m a ;  

n = 2, 

standard start: , (O.'l, 2.0). 

(3.4)   ow ell' s Badly Scaled Furl~tiun of Two variables; 

standard start: (0.0, 1.0). . 

Box's Function; 

where 6 = i/10, 
i 

standard start: (0.0, 20.0, 20.0). 



(3.6) Wood's Function; 

standard start: (-3.0, -1.0, -3.0, -1.0). 

Penalty Function I; 

n 2 2 
2 -5 

f = A 1 (xi-1) + ~r.1 xi - 3 , where A = 10 , B = 1, 
i=l -I= 1 

standard start: xi = i, (for.1 - < i ln). 

13 
-XI Zi -X Z. -X5Zi f =  1 x e  - x4e 1 + x6e 2 

3 - yi) , 
i= 1 

-Z i -102 -4zi 
where y = e i 

- 5 e  i + 3 e  , 

z = (O.l)i, (for 12 i 5 131, i 

standard start: (1.0, 2.0, 1.0, 1.0, 1.0, 1.0). 

Brown's Badly Scaled Problem; 

n = 2, 

6 2 -6 2 2 
f = (xl-10 ) + (x2-2x10 ) + (x1x2-2) , 

standard start: (1.0, 1.0). 

(3.10) Beal's Function; 

where c = i.5, c = 2.25, c3 = 2.625, 1 2. 

standard start: (1.0, 1.0). 



(3.11) Rosenbrock's Cliff Function; 

standard start: (0.0, -1.0). 

(3.12) Cubic Function; 

i=l' 
4 2 2 4 where fl = xl, fi = f = 0.1~ (x 1 )  , f4 = (x2-1) , 
-- .. . 3  1 2- 

standard start: (2.0, -3.0, 3.0). 

L 
f = (x - 0.1136(~~+3~~)(1-~~)) 

1 
2 

+ (x2 + 7*5(2~~-~~)(1-~~)) 

standard start: (0.5, 0.5). 

Four Cluster Function; 

standard start: (0, 0). 



Table 4 shows the results of these tests on problems (3.1) - 
(3.15) with the starting point x taken to be the standard start.' The 

0 

results of the Gill and Murray algorithm on the same problems are also 

given in this table. For each problem the first entry is the result of 

the algorithm presented in Chapter IV and the second entry is the result 

of the Gill and Murray algbrithm. The quantities represented are: 

NITER = the number of Hessian evaluations, 

NFEV = the number of function evaluations, 

t 2 
9 s = Slsll 3 

POSDEF = T if the Hessian was found to be positive 

semidefinite at the solution, and F otherwise, 

NEGCNT = the number of indefinite points encountered 

during the iteration, 

FLAG = 0 means normal termination., 

1 means abnormal termination. 

(We note that for either algorithm an abnormal 

termination may have been indicated even though 

the approximation was clbse to the solution.) 



T a b l e  4 

R e s u l t s  of T e s t s  w i t h  S t a n d a r d  S t a r t s  



The a lgor i thm presented i n  Chapter I V  r e q u i r e s  t h e  c a l c u l a t i o n  

o f ' t h e  Hessian from an a n a l y t i c  express ion  i n  o rde r  f o r  t h e  underlying 

theory t o  be  v a l i d .  However, one may want t o  use  t h e  a lgor i thm wi th  a 

f i n i t e  d i f f e r e n c e  approximation t o  t h e  Hessian. I n  Table 5 t h e  r e s u l t s  
. . 

of us ing  such an approximation on problems (3.1) - (3.15) a r e  presented .  

The headings i n  t h i s  t a b l e  a r e  a s  i n  Table 4. Again we u s e  t h e  s tandard  

starts f o r  x It s h o u l d ' b e  noted t h a t  except  f o r  Powell ' s  Badly Scaled 
0 

Function (3.4) ,  t h e r e  i s  l i t t l e  d i f f e r e n c e  between t h e  behavior  of t h e  
. . 

a lgor i thm w i t h  f i n i t e  d i f f e r e n c e s  and wi th  a n a l y t i c  d e r i v a t i v e s .  

Table 5 

Resu l t s  from Using F i n i t e  Dif ferences  

The use  of s tandard  s t a r t i n g  p o i n t s  on t h e s e  t e s t  examples does 

n o t  f u l l y  r e v e a l  t h e  performance of t h i s  algori thm. Some of t h e  

f 

3.1  

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

3.10 

3 .11  

3.12 

3.13 

3.14 

3.15 

POSDEF 

T 

T 

T 

F 

T 

T 

T 

F 

T 

T 

T 

T 

T 

T 

T 

NITER 

2 1 

29 

8 

553 

14 

3 8 

34 

561 

11 

9 

3 4 

66 

8 

11 

6 

NEGCNT 

0 

0 

0 

546 

2 

1 

0 

5 61 

2 

2 

16  

0 

3 

1 

1 

FLAG 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

NFEV 

28 

3 0 

10 

1000 

18  

48 

43 

1000 

2 3 

11 

4 4 

67 

16 

12 

7 

g g 
t 

1 x 10-l8 

7 x 

3 x 

1 lo3  
3 

5 x 10-l7 

3 x 

8 x 

2 r 10 -1 9 

3 x 10-l9 

2 x 10- 

2 

3 x 10-l7 

2 x 

6 x 



s t anda rd  s t a r t s  a r e  i n  r eg ions  such t h a t  l i t t l e  o r  n o , n e g a t i v e  curva ture  

is  encountered dur ing  t h e  i t e r a t i o n .  I n  .order  t o  demonstrate how t h e  

a lgor i thm performs when many i n d e f i n i t e  p o i n t s  a r e  encountered, we 

inc lude  r e s u l t s  of t h e  a lgor i thm on problems (3.5) ,  (3 .8) ,  (3 .9) ,  and 

(3.13) w i t h  random s t a r t i n g  po in t s .  These r e s u l t s  a r e  presented  i n  

t a b l e s  6, 7 ,  8 and 9. I n  each t a b l e  t h e  r e s u l t s  from t e n  random s t a r t i n g  

p o i n t s  a r e  given. For each p o i n t  t h e r e  a r e  two e n t r i e s .  The f i r s t  i s  

'from t h e  algori t luu presented i n  Chapter I V  and t h e  second i s  t h e  r e s u l t  

from G i l l  and Murray's a lgor i thm on t h e  same problem. 

.Table  6 

Box's Function 



Table 7 

EXP 6 



Table 8 

Gottfried's Function 



Table 9 

Brown's Badly Scaled Problem 



Tests using random starts were made with the other functions as 

well. However, with the exception of problems (3.5), <3.8), (3.9), 

(3.10), and (3.13), the results shown in Table 4 were consistent wi.th 

results using random starts. On Beal's Function (3.10), the two algo- 

rithms behaved quite differently depending upon the starting point. The 
. . 

problem exhibited a lot of negative curvature. However,'one algorithm 

would do much better than the other on one starting point, but the oppo- 

site situation would occur o,n another starting point. 

We have compared these results with the results obtained by the 

algorithm of Gill and Murray [ll], and have found them to be competitive. 

This is encouraging . . since the Gill and Murray algorithm has undergone a 

thorough development and is one of the best codes available. 

The results shown here indicate that the method presented in 

Chapter IV is promising. Further development is needed in the practical 

problem areas discussed at the beginning of this section. However, the 

evidence so far indicates that a f i i l l y  developed algorirhm has'rhe 

potential of being a reliable and efficient method for unconstrained 

optimization. 



Appendix A 1  

K + K + 1  

J o i n  t h e  next  
1 x 1  b lock  t o  

form a 2 x 2  

GO TO PATH 1 

Pivo t  and 

K  and K  + 1 
K + K + 2  

'ob ta in ing  two 
1 x 1  biocks  

'Update t h e  
Kth column. 
K + K + 1  

GO TO ENTER 1 x 1  



PATH 3 CJ 
J o i n  

t h e  next  
2x2 block 

t o  form a 3 x 3  

F 

Do a Do a 

1x1 pivot 2x2 p ivot  
and and 

f a c t o r  f a c t o r  

P 

Update Update 
t h e  k-th t h e  K-th and 

column. ,, 
K + 1 - s t  columns 

K + K + 1  K + K + 2  

GO TO ENTER. 2x2 GO TO ENTFR Ix 1 

& 



Appendix A2 

S U S R O U T I Y F  S Y ~ ~ ~ J ? ? [ ' A ~ N L G ~ ~ ~ ~  S I G P A ~ Z ~ C H A K G E ~ C J ~ W  1 
D O U B L E  PRF.C!SIT:PI S I G M A  
I N T E G E R  bJpMLD 
OnlJALE PSECISIC. ' . I  A ( F ; L D * X I * Z ( N I r C H A N G E ( N J * W ~ N )  
I N T E G E R  Q ( N J  

C * * * * * * * * * * * * + * * * * * * t : O * f  ****?~***************************************** 
C  
C  T H I S  S U R R G U T I N E  C O Y P U T F S  THC U P C A T E D  S Y P P E T R I C  F A C T C f i I Z A T I O N  
C  CF 4 N  N  X  N S Y K i 4 F T R I C  K A T R I X  A  F O L L Z W E C  @Y A R A K K  CkE U P D A T E  
C  O F  THE FORM A + S I C M A * L L m  . I T  I S  A S S U N E D  T H A T  
C 
c OAQ*  = i.IC!.I* 
C  
C  W I T H  0 B L G C K  D I A G O N A L  C G N S I S T I U G  O F  1 X  1 A K D  2 X 2 D I A G O N A L  
c R L O C K S ~ '  AND M .CICCUPYING TIIF L O ~ E R  T R I A ~ C L E  C.F THE PHYSICAL 

: C A 9 R A Y  A .  T H E  3 L O C K  S T R U C T U R E  D F  D  I S  I N D I C P T E D  b Y  T H E  
C  A R R A Y  CHANGE. 
C C H A N G E ( K 1  = 1 I F  E N T R Y  K I S  A  1 X  1 B L O C K  
C . = 2 I F  E N T R Y  K I S  T H E  S T A R T  O F  A  2 X 2 H L C C K  
C  = T H E  D E T E P M I K A r l T  OF THE 2 X  '2 B L O C K  HHICI ;  
c S T A R T S  A T  E N T L Y  K-1.  
C  T H E  ARRAYS & * f i g  P I V O T  ARE G V E R N R I T T E N  W I T H  T H E  U P C A T E D  
C F A C T G R I  Z A T  I O N  
L . . 
C H C H m  = 3 ( A  t S I G k ? A * Z Z * ) C m  
c 
C  T H F  UPPER T 9 I A x C L E  C F  THE P H Y S I C A L  A R Z A Y  A  I S  N C T  A L T E R E D  
C I N  ANY KAVKEP.  T H U S  A  COPY OF T H E  O R I G I N P L  M A T R I X  A  P A Y  RE  
C STORED I N  14:  U P P E R  T R I A t d C L E  OF A I F  A  H A S  C I M E N S I O k S  
C  N  X  N t l .  T H E  V E C T O R  Z I S  N C T  A L T E R E D .  
c . b 

C  
C * * * * f  * * O f  9*t*6* 

C 
C  A .  I S  A  R.CCThNCULAR -AF.KAY CJHOSE L E A D I N G  D I K E N S I O N  I S  
C  NLD. T H I S  A Z R A Y  I S  b S S U P Z D  T O  C O N T A I h  T H E  SYF 'METQIC 
C  M A T R I  X  A I N  FAT.l ' [?REC FCRM A S  O E S C R I P E D  ESOVE. T H C  
C L O L i E q  TR!AP!GLE CF A CONTATPIS T H E  M A T N I X  41. THE B L O C K  
C D I A G O N A L  K 4 T R I X  !I I S  STORED I N  THE C O R G E S P O K C I R G  
C  B L O C K  D I O G C N A L  L O C A T I C N S  O F  T F E  A K R L Y  A. T P T S  TS 
C  P O S S I b L k  S I Y C E  I F  D ( I v J )  (I .rUE. J )  I S  . t ,CNZCRO 
C  T H E N  M ( I  9 J )  I S  ZEKCI- THEREF,OREr  T H E S E  L C l C A T I O N S  
C  AS W X L  A S  T t i E  D I A G O N A L  E N T R I P S  OF A  MAY R E  U S F C  TO 
C  TO S T O R F  @. 
C 
C N L D  T H E  L E A D I N G  D I t < E N S I O N  CF T H E  ARRAY A. 
C  
c N THE D I Y E N S I O ~  OF THF MATPIX A. 
C  
C S l G Y d  f H E  S C A L A R  D E S C R I B E D  ABOVE. 
L 
c 2 THE N DIVENSIONAL V E C T C R  IN THE UPDATI~UG FORHULA. 
c. 

x c CHdNGE T H E  N  D I M F h i S I O h i A L  A R P A Y  W H I C H  I N D I C A T E S  THE B L O C K  
1 c STRUCTlJRE OF T H E  B L O C K  D I A G O N A L  M A T R I X  C. T H E  
. c CONTENTS O F  T H E  ARRAY CHANCE ARE D E S C R I B E D  ABOVE. 
: C 
. C  0 A N  N G I H E N S 1 O N A . L  I N T E G F R  AP.RdY T H B T  I N D I C A T E S  THE 

C P I V O T  I N G  N E C E S S A R Y  T O  O R T A I N  T H E  F A C T O R  I L A T I O N .  
C 

C W AN N D I M E N S I O k A L  L I N E A R  WORK A R R A Y -  

- 
D O U S L E  P R E C I  S I O N  MAXNUN 

..PCIUULE q R F C I S I O N  ~ ~ ~ ~ r @ l 1 ~ 0 2 1 ~ i 1 3 l r 0 2 2 r 0 3 ' 2 r 0 3 3 r ~ l t ~ ~ t 0 3 r ~ l r ~ 0 r  
1 T * T l *  T Z r 9 E T V L  l t L 2  

I N T E G E R  Q l * Q 2 * 0 3 r I  ~ I O ~ I ~ ~ K ~ ~ K ~ K ~ ~ I ~ ~ K P ~ ~ K P ~ ~ K P ~ ~  J 



C THE PPOCE.Sf I V G  3 C G l N S  HERE 
C 

K P l = K + l  
K P Z = K + 2  
I F (  (K.LT.N).A'JD. (CHAblGE(KP11 .LT.O)' l  GO TO 1 1 5  

C 
c THE NEXT BLOCK IS A 1 x 1 BLOCK 
C 

T = k ( K )  
B l = S  1  Gl4A*T 
C l l = & ( K * K  ) + B l + T  
I F ( K P 1  .GTe W )  GO TG 2 0 2  
DO 1 0 2  J t K P l r Y  

W ( J ) m H ( J ) - A (  J 1 K ) * T  
1 0 2  Cf!KTIhUE . . 
2 0 2  CCINTINUE 
1 0 3  CONTINUE . 

C 
C ENTER 1 X 1 
C 

IF(K.LT.N) GO TO 104 
. A ( K 1 K ) = O l l  

C 
C THE D E C W P O S I T I O l j  I S  CIIVPLCTE . I F  K.=N 
c 

RETURN 
C 

1 0 4  U l = D A P S ( D l l )  
UO=DABS( 0 1 )  
I F ( ( U l . L T . ( 4 L ' b * U O ) )  .AND. ( U l * D A R S ( S I G M A )  e L E e  bCFA*UO*UOI)  

1 C.0 TO 1 0 6  
SIGMA='S.I GM4-8 l * t ) i / D l l  
0.1 = BllCll . 
A ( K * K l = D l l  

C 
C UPDATE THE K-TH C0LUP:N .OF M e  
C 

I F ( K P 1  .GT. N )  GO T 0  ' 2 0 5  . 
CO 1 0 5  J = Y P l r N  

A ( J * K ) = 4 ( J v K ) + B l * W ( J )  
1 0 5  CONTINUE-  
205 CONT I NU€ 

K-KP1 
CO TQ 101 

C , 

1 0 6  ' I ' ( (CHANGE(Kp.2 1 .LFo'O).AND.(KPZiLE.N) I GO TO 1 0 8  
C 
C A 2 X 2 BLOCK I S  FORMED EY C C Y R I N I N G  THE NEXT 1 X 1 BLOCK 

C W'ITH BLOCK K O  . . 

C 
B Z = W ( K P l  I 
T=O2 . . 
C21=02*8  1 
B2=SIGHA*B2 
0 2 Z ~ A ( K P l r K P l ) + B 2 * T  
L l = A ( K P l  r K )  
D 2 2 = 0 2 2 + L l * D 2 1  
92=B2+L 1 * 8 1  . . 
D 2 l , = D 2 l + L l * D 1 1  
C 2 2 = 0 2 2 + L l + D 2 1  

C 
C I N C L U D E  INFC!RMATI.ON FROM THE ( K + l ) - S T  COLUMN OF H. 
t 

I F  t K P 2  .GT. N)  GO TO 2 '07 



Do 1 0 7  J = K P 2 r M  
# ( J ) = W ( J )  - 4 ( J * K P l . ) * T  
A ( J * K ) = A (  J r K ) - A ( J * K f ' l ) W  

10 7 CO?JTINUE 
. 207 C r Y  T l NUE 

CO Tfl 1 1 7  
108 CONTINUE 

C 
c I F  THIS PCIRTICIN OF THE c~~~ IS REASHEO W F  AWE IN T P f  C A S E  OF 
C 1 X 1 'INGULAR ULOCK FOLLOUEU P Y  A 2  X 2  BLOCK. T H I S  2 X 2  
C ELOCK IS JOINED TO THF ,l X 1 'f!LOCK TO FORM A 3  X 3  H A T P I X  Do 

' C 
T l = W ( K P l  I 
T2=Wf K P 2  
RZ=SICMA*T l  
83=SIGHA*T2  
0 2 2 = A ( K P l r K P l  ) + b Z * T l  
C32=PCKP2*KP l  ) , t h 3 * T 1  ' 

0 3 3 = A f  K P Z * K P t ) + Y 3 * T 2  
D 2 1 = T l * B l  
D31=T2*Y 1 
L l = A ( K P l v K I  
1 2 = A ( K P 2  vK)  
T=L2*3  11 
C 3 3 = D 3 3 + L 2 v f Z . o ! ? 0 0 t 3 l + T )  
0 3 1 = 0 3 1 + T  
C 3 2 = 0 3 2 + L l * 0 3 1 + L 2 * 0 2 1  
T=L 1 * 9 l l  
D 2 2 = 0 2 2 + L l + (  2 . 0 0 0 + D 2 l + T )  
C 2 l = D Z l + T  
B 2 = C Z t L l * R l  
@3=l33+L2+81 
UP 3=K+ 3 

C 
C INCLUOE INFOP.MATI CN F R O M  THE I K + l ) - S T  AND l K + Z  )-ND COLUMNS 
C OF M. 
c 

I F  (K?3.GT.Pl) GO TO 2 0 9  
00 1 0 9  J x K P 3 r N  

W ( J ~ = W ( J ) - ( A ~ J ~ ~ P ~ ) ~ T ~ + A ( J * K P ~ ) * T ~ J  
A ( J ~ K ) = A ~ J r K ) - ~ i ~ ( J ~ K P l ) * L l + A I J ~ K P Z ) * L Z )  

1 0 9  CClNTI FIUE 
2 0 9  COIJTINUE 

U l= !4AXNUM(C l l  rD22 .033  tI1) 
UO=FIAXt.!UM(DZl r D 3 1  v D 3 2 1 I O )  
1' (U l .LT . (ALFA*UO) I  GO TO 1 1 2  

C 
C A 1 X 1 PIVOT W I L L  BE USED 
C 

C l = l  
0 2 = 2  
0 3 -  3  
CALL  P I V l X 1 ( D l l r 0 2 1 ~ 0 3 1 ~ ~ 2 2 v 0 3 2 ~ 0 3 3 * ~ I * ~ 2 * ~ 3 * C ~ A N G E * Q ~ *  

1 Q 2 r Q 3 r l  l v K * N )  
K l = K - L + Q l  
SIGI4A=SIGMA-D11*81*81 

C 
C UPCATE THE K-TH CCLUNN OF H 
C 

lF(KP3.GT.N) GO T O  210 
DO 110 J = K P 3 * N  

T=A(J.K) . , 
A(J.K)=AI ~ ~ ~ 1 1 .  

i lo . CONTINUE 
2 1 0  CON1 I NUE 

KY l = K -  1 



C 
C I N T E R C H A N G E  THE C O R h E S P O N C I K G  ROWS OF M r  
C 

I F  ( K ' . I l  .LT. 1)  GO T C  2 1 1  
Cfl  111 J = l r K M l  

T = A ( K r J I  
A ( K r J I z A ( K 1 r J )  
A ( K 1 r  J ) = T  

11 1 COILT I NO€ 
2 1  1 CONT l NUE 

I = ! J ( K I  
Q ( K l = Q ( K l I  
O I K l ) = I  

A ( K r K J = D l l  
A ( K P l r K l = 3 2 1  

.A[  K P 2 r K ) = D 3 1  
C l l = D 7 2  
C 2 2 = 0 3 3  
C 2 l = D 3 Z  
f!1=82 
R 2 = 0 3  

a K m K P . l  
K P  1 = K P 2  
J(Pl=)r.Q?*l 
GO T O  117 

1 1 2  C O N T I N U E  
C 
C A  2  X 2 P I V O T  W I L L  BE  USED 
i.. 

Q l = l  
Q2= 2  
Q3=3 
C A L L '  PIV2X2~0llrD2lr03lrC22rD32r033rB1rB2rB3rCHbNGErSIGY4~C1r 

1 Q2eQ3e 1 0 r K r N )  
K l = K - 1 + Q 1  
K Z = K - l + Q 2  
I = O ( K I  
4 ( K ) ' Q ( R i  l 
C I K l ) = T  
I = i 2 ( K P 1 )  
Q t K P l  l r O ( K Z )  
Q ( K 2 ) = 1  

C 
C UPOATE THE K-Th ANO (k+L)-ST C~'ILUF!~S CF W. 
C  

I F  I K P 3 e G T . N )  GO T O  2 1 3  
00 113 J = K P 3 r N  

T a A ( J r K )  
A ( J s V . ) - . h ( J s K l l  
A l d t K l ) - T  
T = A (  Jr  K P l  
A ( J r K P l I = A [ J r K Z )  
A (  J r K Z ) = T  
A ( J * K I = A ( J I K ) + D ~ ~ ~ A I J ~ K P ~ I + ~ ~ * ~ ~ J )  
A I J ' ~ K P ~ ) = A ( J ~ K P ~ ) + C ~ ~ * A ~ J ~ K P ~ I + S ~ * H ( J I  

113 C.ONT I NU€ 
213 CONT I N U €  

C 
C  I N T E R C t i A N G E  THE CORi (ESPI iND1 FtG ROUS OF. He 
C 

KM 1:K- 1 
Dfl  114 J r l r K M l  

T = A ( K r  J I  
A ( K I J I = A ( K ~ ~ J I .  
A ( K l r J l = T  
T = A ( K P l r J I  
A ( K P l r J ) = A [ K 2 r J I  
A ( K Z r J I = T  

114 COVT I N U F  



A ( K * K ) = D l l  
A ( K p l r K  )=621  
A ( K P l r K P . l ) = ! 2 2 2  
A ( K P Z r K ) = D 3 1  
b l K P 2 * K P l ) = D 3 2  
0 1  1 1 0 3 3  
8 1 = 0 3  
K = K P 2  
UP 1=K+ 1 
KP2=K+Z 
GO T'J 1 0 3  

. 1 1 5  C C N T I N U E  
C 
C THE' D I A G O N A L  .RLOCK. B E G I N N l N G  AT E N T R Y  K  IS 2 X 2 THF U P D A T E @  
C  D I A G G N A L  RLOCK O I S  REOIJ IREC TO S A T I S F Y  

C 1 F . T H I S  I S  K O 1  S A T I S F I E D  THE BLOCK I S  S P L I T  I N T O  T k C  1 X 1 BLOCKS. 
C 
C 

T l = W ( K I  
T Z = U ( K P l  1 
R l = S  I G Y A  *H( K I 

. R 2 = S I G M C * W (  K P L )  
D 1 1 = 4 ( K * K l t B L * h ( K I  
0 2 l = A ( K ? l ~ h  ) + B 2 + k ( K )  
D22=4(KPl~K?l)+B2*M(KPl) 
I F  (KP1.GE.Y) GO TO 117 
00 116 J = . K P Z t N  

W ( J I = ~ ( J ) - ( A ( J v K ) ' * T l  + P ( J , : K P l ) * T 2 )  
116 CCNTTNLJE 

. C  
117 C C K T I N U E  

C  
C  ENTER 2 X 2 
C THE 2  X 2 ELOCK W I L L  BE PROCESSED 
C 

11 = 0 .050  
U 1 = M A X N I J ~ ( O l l ~ O 2 2 r T l ~ I  1) 
I F  IUl.GE.(ALFA*DABS(021))) GO T O  119 

C  
C A 2  X 2  P I V O T  W I L L  B E  USED 
C  

C E T = 0 1 1 + 0 2 2 - D 2 1 * 0 2 1  . 
CHhFIGE ( K j =2 
C H 4 N G E l  K ? l ) = D E T  
b ( K * K I = C i l l  
A ( K P l r K ) = n 2 1  
A ( K P l r K P l l = @ 2 2  
I F  (KP1.EQ. $ 1 )  RETURN ' 

T 1 = ( 0 2 2 * R L - 9 Z l * H 2 I  /OET 
T 2 = ( - D Z l * B l + D l l * B Z ) / D ~ T  
I F  ( K P 2  .GT. N 1  GO TO 2 1 8  

C 
c U P 9 A T F  THE K-T t l  AtCD I K + l I - S T  COLUMNS CF P(. 

C 
OO 118 J = K P Z  * N  

T = U ( J )  
A(J*KI=A( J * K ) + T I ' * T  
A (  J * U P 1 ) = 4 (  J , K P l ) + T 2 * T  

1 1 8  CTJNTI!JUF 
21 8 C O N 1  I NUE 

S I G M A = S ~ ~ M ~ - ( T I * B ~ + ~ ~ * ~ ~ ~  
#-KPZ 
GO TC) 101 

119 C O V T I N U E  . 



C 
C A 1 X 1 P I V O T  \ # I L L  3 E  USED 
C  

I F  ( I l . N E . 2 )  GO T O  1 2 2  

C 
T = D L l  ' 
0 1 1 = 0 2 2  
022=T 
T=H 1 
P 1 = F 2  
@ 2 = T  
I = I ) ( K l  
C ( K I = Q ( K P l )  
Q ( K P l ) = I  
I F  (KP2.GT.N) GO T O  2 2 0  
00 1 2 0  J = K P 2 * K  

T = A ( J v K I  
A ( J I K I P ~ (  J q K P l )  
A (  J * K P l ) = T  

1 2 0  CCNTINUE 
220 CONT I PIWE 

K H l = K - 1  
1F [ K M l  . I  T. 1 1  G l l  T? 7 7 1  
3Cl 1 2 1  J m l * K H 1  

T = A ( K * J )  
A ( K *  J ) = P ( K P l * J J  
A f X P l r J ) = T  

12 1 CONT INUE 
2 2  1 CONTINUF 

C 
1 2 2  COKT I FlUE 

C  
C PROCESS THE THO 1 X 1 BLOCKS 
C 

C H A K G E ( K I = l  
C H A N G E ( K P l ) - l  
0 2 2 = 3 2 2 -  (02  l * D Z l  I / D l  1 
021=021/D11 
B 2 = D 2 - B l * 3 2 1  
H l = B l / D l l  
I F  (KP2. tT .N)  GC T O  2 2 3  

C 
C UPDATC TI1C.K-TI,! ,CCLUMt< UF M. 
C  

QO 1 2 3  JmKPZ9N 
A ( J * K I = A (  J,KI+G2l*A(J*KPlI+Rl*W(JJ 

123 CONTINUE 
223 COQT I VUE 

A ( K * K l = D L l  
A ( K P l r K I = D L l  
S I G M A P S I G M A - R l * C l l * B l  
d i l = o r z  
0 1 - R 2  
K=KP 1 
K P l = K P 2  
KP2-K+2  
GO TO 103 

END 



SUBRCUTI:4F 
1 0 1 . [ ; 2 ~ 0 3 *  I l i K v 6 4 )  

DOUOLE P R E C I S I O h J  O l l r C ~ 2 l r 0 3 1 * C 2 2 * 0 3 2 1 9 3 3 ~ B l ~ H 2 ~ I 3 3  
I V T E G E R  Q 1 * 0 2 * ! ! 3 t  I l * K t  F :  
COURLE P P f C l  S I G N  C H A V C L I N )  

C * 9 0 * * * 9 * 0 + $ * 0 t Z . . * a * * * 4 t : * 9 ~  * 1 : : Q * C ~ * L O b U O d 5 * * * 4 + ~ ~ * 4 * * ~ O t t : ~ * * ~ ~ * * * e * * * 4 *  

C 
C 
C T H I S  SUPvft.illlTII;E P E R F O P M S  A 1 X 1 P'IVOT. ' G I V E N  A 3 X 3 
C SYMMETRIC P A T R I X  l ) = l G ! J )  k t i1C.H S A T I S F I E S  THE i X 1 P I V Q T  
C CPITFQ I 4  W I T H  D (  I l t l l )  A S  T K F  P I V O T  ELEAENT.  TYE 3 X 3 K A T R I X  D 
C I S  PER!4UTEL!. T r l  B R I N G  L ( I 1 v I I  1 TT) THE ( 1 9 1 )  P O S I T I G I J  IrNC 
C THEN THE F I R S T  S T E P  O F  THE F P C T O P I Z A T I B N  I S  30IGE I N  PLACE. 
c 
C 
C B + * * * t * * + d t ~ * * 0 * * O Q 9 d r f : * f * * * Q * 4 * 1 i * e 8 8 9 * * * ~ * * * * * * * * * 4 * * * * * 9 5 * * * * * * * * a : *  

C 
DOUBLE P R E C I S I D N  T 
I N T F C E R  K P l  r K P 2  
KP l = K +  1 
K P 2 = K + 2  
GO TO 1 1 0 * 2 0 r 3 3 1 *  I 1  

C 
C T H 5  MAX ELEMENT I S  5 2 2  . 
c 

2 0  T = C l l  
01 1 = 0 2 2  
e 2 2 = r  

C 
T = C 3 2  . 
C 3 2 - 0 3 1  
C 3  1=T 

C 
T = F 2  
8 2 3 8 1  
B l = T  
C 1 = 2  
Q 2 = 1  

GO TIJ 10 
C 
C T H E  M A X  ELEMENT I S  G 3 3  
C 

30 T = C 1 1  
01 1 = D 3 3  
C!33=T 

C 
T = C 2 1  
8 2  ]=I392 
0 3 2 = T  

C 
T = R 1  
8 1 = 8 3  
8 3 = T  

C 
Q l = 3  
Q 3 = 1  . . 

C 
c T H E  WAX ELEt. lENT I S  011 

C 3 3 = 0 3 3 - ( @ 3 1 ~ 0 3 l ) / D l l  
O l = B l / D l l  
B Z = A 2 - 0 1 * D 7 1  
8 3 3 8 3 - 0  l * 3 3 1  
0 2 l = C 2 1 / ! 3 1 1  
0 3 1 = C 3 1 / 0 1 1  
C H A N G E ( K ) = l  e 

R E  TURN 
EN0 



. . 
S U B R O U T I N E  ~ 1 ~ ? ~ 2 ( 3 1 1 * ~ 2 1  ~ D 3 1 ~ G 2 2 ~ ~ 3 2 ~ 0 3 3 ~ ( 3 1 ~ 0 2 ~ 0 3 ~ C H ~ N G E ~ S l G k ? A ~  

1 3 1 ~ Q Z * Q J r I O r K * k I  
C q U ? L E  P R E C I S I O N  I?llr1;?1~O22j~O31rD32rO33rBlr62r03*SIt~A 
I i ' ITEGEP Q l r Q 2 * 0 3 r I O * l , t <  
DClUBLE P R E C I S I C F I  C H A N G € ( N )  

C o o s e a ~ : $ * * $ ? o * ~ o * * q 3 * s a 9 9 * * 8 * ~ * * ~ : 9 ~ 1 i ~ f $ 8 * * 0 * * ~ ~ * * * 4 ~ * * * * * # * * * * * ~ * * * * * * * ~ * *  
C 
L 
c THIS SUBROUTINF PEF.FOPMS A 2 x 2 PIVCT ON THE 3 x 3 M ~ T R I X  
C @ = ( C I J I .  THE M b X I M U M  O F F - [ ' I 6 G O h A L  E L E M F N T  1.S bt'.OUCHT TG THE 
C 1 2 r l I  P O S I T I O b i .  I T S  O R I G I N A L  L O C A T I C N  I S  I N D I C A T E D  bY 1 H E  
C V A R I A U L E  10: 

10x1 021 I S  THE M 4 X  E L E M E ~ T  
I O = 2  D31 I S  THE MAX k L C f l E N T  
I O = 3  0 3 2  I S  THE MAX E L E M E K T  

L 

C THE FIRST S T F P  O F  THE F A C T O F I Z A T I P N  C F  T P E  M A T R I X  ( D I J )  I S  
C C A R R I E D  O U T  I N  P L A C E  U S I N G  T H E  2 x 2  P I V O T .  
C 
~***********~************t**********O*I4***********~***4*****~?******** 

C 
INTXCCK KPli EPZ 

'CCURCE P R E C I S I O N .  S v T v C E T  
C 

. . KP l = K t l  
. K P 2 = K + 2  

GD T O  ( 1 0 ~ 2 0 , 3 0 I * I O  
2 0  C O k T I N U E  

C 
C . P 3 l  1.S T l i E  MA)( E L E M E N T .  
C 

T = C 2 2  
C 2 2 = 0 3 3  
C 3 ? = T  

C . .. 

T = 0 2 1  
C 2 1 = 0 3 1  
031=T , 

C' 
T='?Z 
f32=83 
8 3 = T  

C 
Q Z = 3  
03=2  

GO TI2 10 
30 C 9 N T  I N U E  

C 
C 032 I S  T l l C  FlAK CLCt,ICNT 
C 

T = O l l  
C l l - 0 2 2  
D 2 2 = 0 3 3  
D 3 3 = T  

c 
T = C 2 1  
C Z  1 = D 3 2  
C 3 2 = 0 3 1  
03 l= T 

8 3 = T  
c .  

C l = 2  
C 2 = 3  
0 3 =  1 

10 C O N 1  I NIJE - 



C 
c " 2 1  I S  THE K A X  FLEHCNT 
C TIIF: 2 X 2 PT VOT 1 S OUkF .HCPF 
C 

O c T = C l l * Q 2 2 - C 2 1 + 7 2 1  
1 = ( 0 ~ 2 * ~ 3 i - n 2 r * 3 3 2 )  / D E T  
S+(-CTL+031+ClL*?321/3ET 
R3-83- (  T * U l + S * 9 2  
D 3 3 = 9 3 3 - I  Te'.:31+So332) 
6 3  1 =T 
P 3 2 = S  
T= I D 2 2 * P l - D Z l * E Z  I / D E T  
S= ( - C 2 1 * B l + C l l ~ R 2  ) / P E T  
SI GYA=SIGMA- (T*BI +S*BZI 

. 8 1 - T  
R2=S 
CHANJE(KJ=2  
CHANCE(KP1 )=GET 
C.HANCE(KPZI = 1 
RETURN 
ENC 

COUBLF PHECI S I D N  FUNCTlON M A X R U M ( ' A ~ B ~ C *  I I 
GCUaLE PRECIS IQN A v R r C  
INTEGFR I 

C * + * + * * . * * * + * * * * * * * * * * * * * * * * * * * * * * f * * * * f * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C 
C T H I S  FUNCTIGQ FI!-JDS THE M A X I M U M  OF THE AESOLUTE VCLUFS O F '  Ar0.C 
C ANG I ? J C I C A T I S  K N l C H  O f  THE VALUES I S  SELECTEC EY SETT.ING 
C I = 1 9 2 9 3  RESPECTIVELY. 
C 
C**4********~h****$*;6**t*****t*C'**9**************************~********* 

POU3LC PREC I SIOi'l S I T  
I = 1 
1-GARS ( A I 
S-CABS ( B  I 
I F  (S.LE.7) GO 7 0  10 

T= s 
1-2 

10 CONTI'NUE 
S=CABS(CI  
I F  ( S . L E . 1 )  GO 10 2 0  

T= S 
1-3 

20 COkTINUE 
HAXrJUM=T 

RETURN 
E N D  



S U P R C U T I N E  S@LVF(  A ~ N L C ~ N ~ C H ~ ~ < G E ~ ~ J ~ X ~ I F A ~ L ) ,  
I N T F G E S  N * N L D * I F A I L  
3 O U S L E  .PRC:CISIT;bI A ( P . L C ; , K ) r X ( h ' ) * C H A N G F ( ? I I  
I N T E G F R  O I N )  

C * * 0 * * * * * B C * * b l C * * f * * * * * * 3 i ' * c * ~ : * 4 O * * * * t O + : * 4 * * * ~ * * * * * * * * * * * * * * t * 4 4 + : * * * * *  

C 
C  T H I S  SIJBROUT I N E  COI IP IJTES T H E  SCJLUTIGN TO A X  = B. 
c 
C  T H E  % A T P I X  A  I S  ASSUMEC TO B E  I N  THE F A C T n P E O  FORM 
c 
c U A Q '  = M D H *  
C 

. C  WHERE M I S  B L I J C K  U N I T .  L G i J E R  T R I A N G I J L C R  ANP D  I S  B L O C K  
C  O I A G O W A L  W I T H  1 x 1  A?!C 2x2 D I 4 G G N A L  BLOCKS.  I T  I S  
C  ASSIJNE'I T H A T  ' 4 9  D b ? E  C U T P U T  FRCIY T H E  P D U T I 1 4 E  SYMlJPC 
C AND 'THAT T H A T  T H E S E  - A R R A Y S  A F E  S T C P E ?  I F :  T H E  L P U E R  
C  T 9 T 1 W G L E  O F  b .  O N  I K P U T  T H E  ARRAY X C O N T A I N S  T H E  
C  R I G H T  l iAFl i3 S I D F  B A l Q n  O N  O U T P U T  X  C O N T A I N S  T H E  
C  S O L U T I O N  VECTOR. I i A I L  = 1 I F  THE S Y S T E M  I S  
C  S I N G U L A R  ( N O  S n L U T I C I U  I t !  T H I S  C A S E )  ' C T H E R W I S E  I F A I L  , 

C  I S  R E T U R N E D  H I T 1 1  Tt4E V A L U E  0 ( A  S O L U T I C N  \!AS OUTAINEC?). .  
C . . 

.C 
C*9**9*60*4**9*6  

C  
C  
c A THE A R R A Y  A IS R ~ C T A K G U L A K  WITH LEADIQL; CIVENSICN NLD. 

C T H E  SECOND P I M E F t S I Q N  ClUST R E  G R E A T E R  T P A N  OR EOIJAL  T O  N. 
C T H E  ARR4Y A  I S  A S S U K E U  TO H.AVE T H E  F A C T n R I Z 4 T I C N  nF T H E  
C M A T S I X  A  AS G E S C F . l l ? E E  I N  T H E  S U R R O U T I P i E  SYVUPD.  
C  
C  N L C  T H E  L E A D I N G  D I C E N S I C N  O F  T H E  A R R A Y  A. 
C  
C N T t i E  D I % E N S I G N  CF THE M A T R I X  A. 
C 
C C H A N G E  A N  N  O I I I F P I S I 0 F ; A L  V.ECTCR H H l C H  C O N T A I N S  A  D E S C F I 0 T I C " ' i  
c O F  T H E  !3LOCK S T R U C T l l F E  CIF 3, A N D  T H E  CETE?.;F(INA?iT 
I ui- EPCH ,?AL t ~ i , a ~ , u ~ n ~  ut v. j t t  I H ~  ' J u c u r ~ i t N l n l l c ! r !  t 1 . 1 ~  

C T H E  S l J C Q O U T I F l E  SYMUPG FOR A P G R E  C O M P L E T F  CFSC'F I P T I f l f :  
C  O F  T H E  C O N T E N T S  O F  CPbNGE. 
C 
C Q A N  hJ D I Y E N S I O t ~ ; & L  I I J T E G E R  b?.PAY W H I C H  C I ' N T A I N I  THE 
C  P I V O T I N G  U S i D  T O  O B T A I N  T H E  F A C T C R I Z A T I O N  O F  A -  
C 
C  X  A N  N O I M E N S I O E i C L  VECTCR. T H E  C O N T E N T S  O F  X A R E  
C O E S C R I B C D  C b U V E  
C 
C  I F A I L  A N  I N T E G C P  V A U I A e L E  T H A T  I N D I C A T E S  WEEK A I S  S I N G U L A R .  

C  T H E  C O N T E N T S  O F  I F P I L  A R E  D E S C P I B E D  A B C V E z  
C 
C 
~ + i * * * * * e * * * * * * * * * * ~ f * t + : * o ~ t e * * * * * * * * * d ~ l d * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * * *  
C 

D O U B L E  P 2 E C I S I O N  TIS 
I N T E G E P .  I I J ~ K ~ I P L , I P Z  
D O U B L E  P R E C T S I O N  H ( 5 0 1  
I F A I L  = 0 
C ~ O  10 J = l r N  

W(J) = X ( Q ( J ) )  
10 C O N T I N U E  

C 
C  B A C K S O L V S  THC LOWER T h l A N G U L A R  S Y S T E P  A N 0  I N V E R T  T H E  D I A G O N A L  
C B L C C K J  
C  

1 = 1  
20  I F  (I .GE. N )  G O  T O  60 

I P 1  = I + 1 
q I F  . ( C P A E ' G E ( I P l )  .GT. 01 GO T @  40 

I F  ( C H I N G E ( I P 1 )  .EQ. O D 0 1  GO TO 1000 



C 
C W.E HAVE 4 2  X 2 P I V O T  AT S T E P  '1 
C  

I P 2  = I + Z 
s = U ( I 1  
'T = k ' ( I P 1 1  
I F  ( I P 2  .GT. N l  GC TO , 1 3 0  
00 3 0  J = l P 2 , N  

N ( J 1  WIJI - ( S * A ( J * f )  + T * A ( J I I P I ) I  
30 CONTIP4OE 

1'30 C n K T  TFIUE 
k ( I I  = ( A ( T ? l r I P l l * S  - A ( I P l r I l * T l / C H A R C E ( I p l )  
W ( I P 1 l  = ( - A ( I ? l ~ I I * S  + A I I I I I * T I / C H A N G E ( I P ~ )  
I =  l P 2  , ' 

GO TO 2 0  
C 

40 CONTIPIUE 
C  
C UE H I V E  A  1 X 1 P I V O T  AT S T E P  I 

nn so J = IPIVN 
U ( J 1  = W ( J l  - A ( J * I ) * T  

5 0  CONTINUE 
I F  ( t ( 1 . T )  .'3. 0.000) GO TO 1000 
W ( 1 l  = W ( I I / A ( I * I J  
I = I P l  
GO T C  2 0  

C  
6 0 I = N  

C 
C I N V E R T  THE LAST  D I A G O k A L  BLOCK A N t  I N I T I C L I L E  
C FOR THE FORWARD S O L U T I C Y  
C  

I F  ( C H 4 N G F ( I l  . t T .  O.OCO1 CC TO 65 
I F  ( C H A N G F t I I  eCQ. OCO) GO TC 1000 

C 
C THE L A S T  BLOCK I S  2 X 2 
C  I T  HAS ALREACY BFEN I N V E R T E C  
C  

I P 1  = I - 1 
I = I - 2  
GO TO 70 

C  
65 CON1 INUE  

C 
C  THE L A S T  RLOCK I S  1 x 1 
C 

7 0  CONTIPIUE 
c 
C FORHARO SOLVE THE R E N P I N I N G  UPPER TR IANGULAR SYSTEM 
C 

I F  (I -LEO 0 )  GO TO 1001 . 
I F  ( C H A N G E ( 1 )  .GT. 0 .000J  GO TO 9 0  e .  

c 2 x 2 P ~ V Q T  
C 

1 P 2  = I P 1  
I P 1  = I 
1 - 1 - 1  
DO 8 0  J I P 2 r N  

W ( I P 1 1  = W l I P l )  - A ( J * I P l ) * W ( J )  
h ( 1 1 .  = H ( 1 1  - A ( J * I I * W ( J l  

8 0  CONTINUE 



1  = 1  
1  ' = I - 1  
GO TT! 70 

C 
C 1 X 1 P I V O T  
C 

90 00 1 0 0  J = I P l r N  
w ( 1 )  = % ( I )  - A . f J v I ) * W ( J I  

100 C OKT I NU€ 
I P l  = I 
I = I - 1  

C 
c 'THE HPTRIX  I S  SINGULAR 

R t  TURN 
C 

1001 CnNT INUE . . 
C . , 
c THIS'  IS THE NORVAL KETURPI . . . A' SOLUTION H A S  FOUNP 
C , . . , 

~ d . 1 1 0  J = l r r I  
- X ( Q ( J ) l  H (  J )  

110 CONTINUE 
RETURN 
, E N 0  
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