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A Relationship between the BFGS and Conjugate Gradient Algorithms

Larry Nazareth o . e

Abstract

Based upon analysis and numerical experience, the BFGS ‘algo-
rithm is currently considered to be one of the most effective
algorithms for finding a minimum of an unconstrained function,
f(x), x e R", However, when computer storage is at a premium,
the usual alternative is to use a Conjugate Gradient (CG) method.
In this paper we show that the two algorithms are related to omne
another in a particularly close way. Based upon these observations
a new family of algorithms is proposed.

1. Introduction

We first give a concise statement of the algorithms under consideration
and summarize briefly some of their well known properties. We then show,
in Section 2; an exact correspondence between the search vectors developed
by the BFGS and CG algorithms, when applied to quadratic functions. For
arbitrary differentiable functions we give an interpretation of the BFGS
algorithm as a CG algorithm with variable metric, chosen at each step from
the Broyden B-class. These observations then lead us to a family of algo-.
rithms termed Variable Storage Generalized Conjugate Gradient Methods, intro-
duced in Section 4.

The Conjugate Gradient Method [1] in a fixed metric defined by the posi-

tive definite symmetric matrix H and started from a given point x develops

l’
successive search directions dgG, iterates xj and gradients gj = Vf(xj)‘as

:

follows:
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The above follows the Hestenes-Stiefel formulation originally proposed

for solving linear systems and extended to non-linear optimization by

Fletcher & Reeves [2]. Various formulations of the algorithm (see [2], [3])

are equivalent when applied to quadratic functions, but differ for arbitrary -

functions. In the basic form of the CG algorithm, H is set to the identity,
and it is well known that using an arbitrary positive definite symmetric

1
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matrix H corresponds to applying the change of'variables y = H “x to the
basic algorithm.

Variable Metric Methods [4], [5] in Broyden's 8-class, started with a

positive definite symmetric matrix H and initial point x,, develop

successive positive definite and symmetric approximations H? to the inverse

B

Hessian, successive search direction dj’ and iterates xj as follows:
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where 8 >0

B B
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and x,,, = x, + A,d? with A, = min f(x,+ld?) .
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Particular cases afe giveﬁ by B = 0 (DFP), and B = l/yT HB y
j-1 i j-1 j=1"3-175-1
(BFGS). 1In the latter case (2) simplifies to
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The following properties of the conjugate gradient and variable metric

algorithms are well known.

When applied to quadratic functions Y(x) = a + bTx + %XTAX, with

A positive ‘definite and symmetric (A > 0), we have (i) termination in at
most n steps, (ii) search vectors are conjugate, (iii)'gngj =0, i# j,
(iv) the j'th direction lies in the subspace spanned by Hgl,...,ng,

-

(v) since there is no flexibility in choice of directions given the above
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conditions, d;g and d? must be linearly dependent, (vi) H?A(di,...,d?_l) =

(dB"'°’d§-l)’ (vii) provided premature termination does not occur
1

B - A
Hn+l AT

Furthermore, Dixon's Theorem demonstrates that for quite general con-
tinuously differentiable objective functions, the corresponding search
. 1 "
directions d? and d? developed by any two members of Broyden's B-class

(using the same starting point x, and initial approximation H) are linearly

1

dependent and successive iterates are identical, when line searches are

exact and unambiguously defined.

2. A Result for Quadratics

We now strengthen property (V) of Section 1 to show that for one member

of the B-class (the BFGS update), the search.vectors d?G and d?FGS

are pre-
cisely the same. This correspondence is, we feel, indicative of underlying

structure, and is developed further in Section 3, for arbitrary functions.

Lemma: When the CG and BFGS algorithms are applied to a quadratic function

¥(x) = a+ bTx + lXTAx, A > 0, using the same starting point x. and positive

2
definite symmetric H, then

1

CG _ ,BFGS

dj = dj j=1,2,...,n .
Proof
Fact 1: g§+lsj = 0. Further a well known result is that
. T .
gksj =0, k>3.
Fact 2: H?FGSgk = Hgk j < k‘f_n+l,' l<j<n.



DProof of Fact 2: This may be shown by induction on j.

BFGS

j-l_’ i.e.,

Assume true for H

BFGS

Hi ) 8 = Heys

Now combining (3), Fact 1 above, property (iii) of Section 1, and

the induction hypothesis we have

HBFGS - HBFGS

. .= "< k <n.
5 B T -1 Bk

Hg, ] b3

Since ngk = Hgk for 1 < k < n, the result follows by inductionuD

Reﬁurning to the proof of Lemma 1, we have

4BFCS _ _BFGS,

h h| k|

Using (3) and the fact that line searches are exact, we have

T BFGS
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Now from Facts 1 and 2 above, and property (iii) of Section 1, this
gives
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1

dgc using (1), and this is the desired result.



3. Interpretation of the BFGS Algorithm for Arbitrary Differentiable Functions -

We employ the following theorem due to Powell. This is pharaphrased

below, and forAthe proof'we refer the reader to [6].

Theorem: Let the variable.metric method of Section 1 be applied to a
differentiable function f(x), and assume that all line searches are exact

and that the Aj are chosen unambiguously. Let xl,...,xj be the sequence of
iterates and Hi""’Hg-l the sequence of matrices developed prior to the

j'th iteration, and assume that no search vector d? vanishes. Then, if

the choice of 8 corresponding to the BFGS update is used at iteratiom j,

BFGS

the matrix Hj obtained is independent of the parameter values B used

during previous iterationms.

Invoking this theorem, setting Bj-l = l/y? b

j-1 j-lyj-l in (2), and using

the fact that line searches are exact, we can state the BFGS algorithm as

follows:
BFGS
. T B
£F6S _ B Yi-1"5-184| ;BFCS )
i =183 T BFGS | j-1
§=1%5-1
énd '
= BFGS s BFGS) B .
Xi41 = xj + Ajdj where Aj = min f(xjfxdj . Hj is developed
from Hj—l using (2) and Xy and Hl are specified.

By comparing (4) and (1) we see that the BFGS algorithm may be inter-
preted as a CG algorithm for which the metric, instead of being fixed as

in (1), is updated at each step to be any member of the Broyden B-class.



This interpretation is of value because it motivates techniques for using
limited storage to improve the Conjugate Gradient Method, discussed in the

next section.

4. Variable Storage Generalized Conjugate Gradient Algorithms

Conjugate Gradient algorithms_requiré the‘Storage pf only a few vectors,
typically four. Variablé Metric Methods on the othér h;nd require O(nz)
storage. As Fletcher states ([7], p. 82) "practical experience with the
Fletcher-Reeves Conjugate Gradient method is that more iterations have
usually been required for convergence as against variable metric algorithms
- == a factor of two is typical. This has been ascribed to the fact that less
information is stored in the Fletcher~Reeves method about the behaviour of
the function." Therefore, by using more information about the function one
might hope to accelerate the convergence Qf the conjugate gradient method.

For example, in a problem with 10? variables; a user may not be able to provide
106/2 words of wbrkingAstorage, thus ruling out vgriable metric codes imple-
mented in the standard way. However, it may be quite feasible for him to
provide 2*105 words well abo&e the 4*103 words required by conjugate gradient
methods.

The observations made in earlier sections lead us to suggest the following
famiiy of algorithms which can exploit additional storage and form a continuum
' between the BFGS and CG methods.

The following algorithm describes the family in general terms. We also
expiain the possible options and discuss them. For a particulaf implementation

see [8].



On_Input

n dimension of problem.

%X - starting point,

S vector giving diagonal elements of initiai diagonal approximation to
inverse Hessian HO.' Note in particular that the symbol Hj repre-
sents the nxn Hessian inverse approximation at étep j. This is
not stored. Instead it is defined implicitly by storing vectors
and scalers defining the rank-1 or rank-2 updates at Step 5B below.

Step 1. Initialize

f1 « f(gi), 8 * g(xl), Iy * 0, go < 0, HO and Hl are diagonal
matrices defined by §, j « 0.
Step 2. Develop search direction .
T
oHo c+l
o VS S I
. '-—j
Comment. Relation (4) of Section 3 is used to define search
derivations. When j = 0 the multiplier for the second
term above is indefinite and is taken to be zero.
Step 3. Search

j « j+1 if g§dj > 0 then restart;
X, «x, +A.4.
=+l =3 33 _
where A, = min f(x. + ud.).
I B

Comment. For purposes of analysis line searches are taken to be
exact. In practice they wiil not be. In the usual CG
method, a fairly accurate line search is required. With
VSQCG algorithms we can expect this requirement to be

' somewhat relaxed.
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Step 4. Test for convergence.

Stop if convergence criterion is met.

Step 5. If available storage is exceeded.

Step 5A. then employ a Reset Option
Comment.  Possible reset options are Hj reset to the diagonal matrix
defined by § and goto Step 5B QE-Hj+l fixed at value of

approximation when storage ran out and goto Step 6.

Step 5B. else update Hj to Hj+l ujiggfa member of the B-class.
Comment. There are a number of options here -- what member of the
B-class to use, whether to employ projected vectors (see
[9]), and how frequently to perform the update, i.e.
whether to udpate whenever possible or every k iterations
where k is some fractiéh“of ﬁ'determined‘by the amount of

storage available. Note also that as discussed above, only

the vectors and scalars defining the update are stored.

i

' Step 6. If restart criterion not éatisfied then goto Step 2
else employ suitable restart option
Comment. Possible restart criteria are to restart as suggested by
Fletcher and Reeves [2] every n or n+l iterations or to
use techniques suggested by Powell [10]. The restart

option is also linked to the choice for the reset option.

Remarks
The amount of storage provided is optional. When minimal storage is
provided, so Step 5B is never executed, then the method is the standard

Conjugate Gradient Method. If n2 storage 1is provided and‘updating performed .
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at evefy iteration theﬁ it is the BFGS algorithm with resetting.

Also, one can easily show that, provided the élgorithm does not break
down due to instabilities associated with the update, that it has quadratic
termination. This is in contrast to the corregpbnding variable metric
algorithm, which holds the approximation Hk fixed at some stage k, when

k < n.

5. Concluding Remarks

The correspondence between methods proven in this paper requires that
line. searches be exact. Whether or not line searches are exacé, expression
(4) determines a family of generalized conjugate gradient algorithms,.

v elaborated upon in Section 4. Thé properties of such algorithms are currently

being investigated.

References

[1] Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients
for solving linear systems, J. Res. Natl. Bur. Stand., 49, 409-536.

[2] Fletcher, R. and Reeves, C. M. (1964). Function minimization by
conjugate gradients, Comput. J., 7, 149-154.

[3] Polak, E. (1971). Computational Methods in Optimization: a unified

_ apprbach, Academic Press.

[4] Davidon, W. C. (1959). Variable metric method for minimization,
AEC Research and Development Report, ANL-5990 (Rev.).

[5] Broyden, C. G. (1970). The.convergence of a class of double-rank
minimization algorithms, J. Inst. of Math. and Applics., 6, 76-90.

[6] Powell, M.J.D. (1972). Unconstrained minimization and extension for.
constraints, T.P. 495, U.K.A.E.A. Research Group, Atomic Energy Research

Establishment, Harwell, England.



-12-

" [7] Murray, W., Ed. (1972). Numerical methods for unconstrained optimiza-

tion, Academic Press, New York and London.

[8] Nazareth, L. (1977). WMinkit - An Optimization System, presented at
ORSA/TIMS Meeting, San Ffancisco, May, 1977.

[9] Davidon, W. C. (1975). Optimally Conditioned Optimization algorithms
without line searches, Math. Prog. 9, 1-30.

[10] Powell, M.J.D. (1975). Restart Procedures for the Conjugate Gradient
Method, C.S.S. 24, A.E.R.E., Harwell, England.





