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A Relationship between the BFGS and Conjugate Gradient Algorithms 

-by 
') 

Larry Nazareth 

Abstract 

Based upon analysis and numerical experience, the BFGS ·algo­
rithm is currently considered to be one of the most effective 
algorithms for finding a minimum of an unconstrained function, 
f(x), x E ~n. However, when computer storage is at a premium, 
the usual alternative is to use a Conjugate Gradient (CG) method. 
In this paper we show that the two algorithms are related to one 
another in a particularly close way. Based upon these observations 
a new family of algorithms is proposed. 

1. Introduction 

We first give a concise statement of the algorithms under consideration 

and summarize briefly some of their well known properties. We then show, 

in Section 2, an exact ~orrespondence.between the search vectors developed 

by the BFGS and CG algorithms, when applied to quadratic functions. For 

arbitrary differentiable functions we give an interpretation of the BFGS 

algorithm as a CG algorithm with variable metric, chosen at ea·ch step from 

the Broyden 8-class. These observations then lead us to a family of algo-. 

rithms termed Variable Storage Generalized Conjugate Gradient Methods, intro-

duced in Section 4. 

The Conjugate Gradient Method [1] in a fixed metric defined by the posi-

tive definite symmetric matrix H and started from a given point x
1

, develops 

successive search directions dCG iterates x and gradients g. = Vf(x.) as 
j ' j J J . 

follows: 
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dec = -Hg 
1 1 

dec y. lHg. ec 
= ,- 1 j > 1 j -Hgj + T ec dj-1 ~T j 

yj-ldj-1 
·(1) 

xj+l = x. + A .d~C·; where Aj = min f(x.+Ad~C) 
J J J A J J 

and yj-1 ~ (gj-gj-1) . 

The above follows the Hestenes-Stiefel formulation originally proposed 

for solving linear systems and extended to non-linear optimization by 

Fletcher & Reeves [2]. Various formulations of the algorithm (see [2], [3]) 

are equivalent when applied to quadratic functions, but differ for arbitrary 

functions. In the basic form of the ec algorithm, H is. set to the identity, 

and it is well known that using an arbitrary positive definite symmetric 

-~ matrix H corresponds to applying the change of variables y = H x to the 

basic algorithm. 

Variable Metric Methods [4], [5] in Broyden's S-class, started with a 

positive definite symmetric mC~.tr:i.x H and initial point x1 , develop 

successive positive definite and symmetric approximations H~ to the 
J 

Hessian, successive search direction d~, and iterates x. as follows: 
J J 

~ =.H 

R~ = H~_1 
B T 

H. ly. ly. lH. 1 ,_ ,_ ,_ ,_ + 
T l3 

yj lH. ly. 1 - J- J-

T 
s. ls. 1 ,_ ,_ 

T 
s. lY. 1 J- J-

( B _8 )(B _B )T· + B· 1 H. 1Y· 1 e. 1s. 1 H. 1Y. 1 e. 1s. 1 J- J- J- J- J- J- J- J- J-
j > 1 

'-

inverse 

(2) 
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with A. = min 
J A 

B f(x.+Ad.) 
J J 

Particular cases are given by 8. 1 = 0 (DFP), and 8. 1 J- J-

(BFGS). In the latter case (2) simplifies to 

~ 'r BFGS j .H~FGS HBFGS + 1 . yj lH. 1 y. 1 T - ]- ,_ 
= 1 + T s. ls. 1 J j-1 T J- J-

s. ly. 1 s. lY. 1 J- J- J- J-

1 ( T BFGS BFGS T ) 
T 

sj-lyj-1 
s. ly. lH. 1 +H. 1 Y~ ls. 1 J- J- J- J- J- J-

d~FGS = HBFGS 
J - j gj 

The following properties of the conjugate gradient and variable metric 

algorithms are well known. 

When applied to quadratic functions ~(x) T 1 T 
= a + b x + ~ Ax, with 

A positive·definite and symmetric (A> 0), we have (i) termination in at 

most n steps, (ii) search vectors are conjugate, (iii) g~Hgj = 0, i j j, 

(iv) the j'th direction lies in the subspace spanned by Hg
1

, .•• ,Hgj, 

(3) 

(v) since there is no flexibility in choice -of directions given the above 

,; 
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cg S · · 8 S S 
conditions, d. and d. must be linearly dependent, (vi) H.A(d

1
, ... ,d. 

1
) = 

J J J J-
a a (d1 , ••• ,dj_1), (vii) provided premature termination does not occur 

a _ -1 
Hn+l - A . 

Furthermore, Dixon's Theorem demonstrates that for quite general con-

tinuously differentiable objective functions, the corresponding search 

s' s" directions d. and d. developed by any two members of Broyden's S-class 
J J 

(using the same starting point x
1 

and initial approximation H) are linearly 

dependent and successive iterates are identical, when line searches are 

exact and unambiguously defined. 

2. A Result for Quadratics 

We now strengthen property (v) of Section 1 to show that for one member 

CG BFGS of the S-class (the BFGS update), the search.vectors d. and d. are pre-
J J 

cisely the same. This correspondence is, we feel, indicative of underlying 

structure, and is developed further in Section 3, for arbitrary functions. 

Lemma: When the CG and BFGS algorithms are applied to a quadratic function 

T 1 T 
~(x) = a + b x + 2x Ax, A > 0, using the same starting point x1 and positive 

definite symme~ric H, then 

Proof 

Fact 1: 

Fact 2: 

T 
gj+l sj = o. 

T 
gksj = 0, 

llBFGS = 
J gk 

j=l,2, ••• ,n 

Further a well known result is that 

k > j . 

j < k ~ n+l, < n 
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Dproof of Fact 2: This may be shown by induction on j. 

BFGS Assume true for H. 
1 

, i.e., 
J-

HBFGSg · = 
j-1 k 

j-1 < k < n 

Now combining (3), Fact 1 above, property (iii) of Section 1, and 

t:he induction hypothesis we have 

j < k < n 

Since H1gk = Hgk for 1 ~ k ~ n, the result follows by induction.0 

Returning to the proof of Lemma 1, we have 

= HBFGSg 
- j j 

Using (3) and the fact that line searches are exact, we have 

t 
T HBFGS j 

. dBFGS = -HBFGS + yj-1 j-1 gj dBFGS 
j j-1 gj T dBFGS . j-1 

yj-1 j-1 

Now from Facts 1 and 2 above, and property (iii) of Se.ction 1, this 

gives 

= -Hg. 
J 

~ y~-1Hgj.j BFGS 
+ T BFGS dj-1 

y. ld. 1 J- J-

T . 
y. 1Hg. CG + 1- J d using property (v) of Section 1. 

T CG j-1 
y. ld. 1 J- J-

using (1), and this is the desired result. 
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3. Interpretation of the BFGS Algorithm for Arbitrary Differentiable Functions 

We employ the following theorem due to Powell. This is pharaphrased 

below, and for the proof we refer the reader to [6]. 

Theorem: Let the variable·.metric method of Section 1 be applied to a 

differentiable function f(x), and assume that all line searches are exact 

and that the A. are chosen unambiguously. Let x
1

, ..• ,x. be the sequence of 
J . J 

iterates and H~, •.• ,H~-l the sequence of matrices developed prior to the 

j'th iteration, and assume that no search vector de vanishes. Then, if 
j 

the choice of S corresponding to the BFGS update is used at iteration j, 

the matrix H~FGS obtained is independent of the parameter values 8 used 
J 

during previous iterations. 

Invoking this theorem, setting 8. 1 = 1/y: 1H~ 1y. 1 in (2), and using 
J- J- J- J-

the fact that line searches are exact, we can state the BFGS algorithm as 

follows: 

d~FGS = -Hlgl 

d~FGS 8 + ~~-lH~-1 g~ dBFGS = -H .. lg. 
J J- J T dBFGS J-1 

yj-1 j-1 

and 

X - x +' dBFGS where '. = m1"n f(x.+'dB.FGS). j+l - j 1\j j . 1\J A J · 1\ J 

a from Hj-l using (2) and x1 and H1 are specified. 

H~ is developed 
J 

(4) 

By comparing (4) and (1) we see that the BFGS.algorithm may be inter-

preted as a CG algorithm for which the metric, instead of being fixed as 

in· (1), is updated at each step to be any member of the Broyden 8-class. 
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This interpretation is of value because it motivates techniques for using 

limited storage to improve the Conjugate Gradient Method, discussed in the 

next section. 

4. Variable Storage Generalized Conjugate Gradient Algorithms 

Conjugate Gradient algorithms.require the storage of only a few vectors, 

typically four. Variable Metric Methods on the oth~r hand require O(n2) 

storage. As Fletcher states ([7], p. 82) "practical experience with the 

Fletcher-Reeves Conjugate .Gradient method is that more iterations have 

usually been required for convergence as against variable metric algorithms 

-- a factor of two is typical. This has been ascribed to the fact that less 

information is stored in the Fletcher-Reeves method about the behaviour of 

the function." Therefore, by using more information about the function one 

might hope to accelerate the convergence of the conjugate gradient met):lod. 

For example, it). a problem with 103 variables·, a user may not be able to provide 

6 . 
10 /2 words of working storage, thus ruling out variable metric codes imple-

mented in the standard way. However, it may be quite feasible for him to 

5 . 3 
provide 2*10 words well above the 4*10 words required by conjugate gradient 

methods. 

The observations made in earlier sections lead us to suggest the following 

family of algorithms which can exploit additional storage and form a continuum 

between the BFGS and CG methods. 

The following algorithm describes the family in general terms. We also 

explain the possible options and discuss them. For a particular implementation 

see [8]. 
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On Input 

n dimension of problem. 

x
1 

starting point. 

o vector giving diagonal elements of initial diagonal approximation to 

inverse Hessian H
0

• · Note in particular that the symbol Hj repre­

sents the nxn Hessian inverse approximation at step j. This is 

not stored. Instead it is defined implicitly by storing vectors 

and scalers defining the rank-1 or rank-2 updates at Step 5B below. 

Step 1. Initialize 

matrices defined by!, j + 0. 

Step 2. Develop search direction 

+ . . ~~Hj~+~ ~. + 1 -H . g . + 1 + T d · 
J J'J Y._j~ J 

Comment. Relation (4) of Section 3 is used to define search 

derivations. When j = 0 the multiplier for the second 

term above is indefinite and is taken to be zero. 

SteE 3. Search 

if 
T 

0 them j + j+l g.d. > restart; 
J J 

~+1 + ~ + A..d. 
J-:J 

where A.. = min f(x. + ~d.). 
J 

~ 
J J 

Comment. For purposes of analysis line searches are taken to be 

exact. In practice they will not be. In the usual CG 

method, a fairly accurate line search is required. With 

VSGCG algorithms we can expect this requirement to be 

somewhat relaxed. 
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Step 4. Test for convergence. 

Stop if convergence criterion is met. 

Step 5. !£available storage is exceeded. 

Step SA. then employ a Reset Option 

Comment •. Possible reset options are H. reset to the diagonal matrix 
J 

defined by o and goto Step SB or Hj+l fixed at value of 

approximation when storage ran out and goto Step 6. 

Step SB. else update H. to H.+l usin~a member of the a-class. 
J J 7 . 

Comment. There are a number of options here -- what member of the 

a-class to use, whether to employ projected vectors (see 

[9]), and how frequently to perform the update, i.e. 

whether to udpate whenever possible or every k iterations 

where k is some fraction·- of n determined. by the amount of 

storage available. Note also that as discussed above, only 

the vectors and scalars defining the update are stored. 

Step 6. If restart criterion not satisfied then goto Step 2 

else employ suitable restart option 

Comment. Possible restart criteria are to restart as suggested by 

Fletcher and Reeves [2] every n or n+l iterations or to 

use techniques suggested by Powell [10]. The restart 
' 

option is also linked to the choice for the reset option. 

Remarks 

The amount of storage provided is optional. When minimal storage is 

provided, so Step SB is never execut~d, then the method is the standard 

Conjugate Gradient Method. 2 If n storage is· provided and updating performed 
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at every iteration then it is the BFGS algorithm with resetting. 

Also, one can easily show that, provided the algorithm does not break 

down due to instabilities associated with the update, that it has quadratic 

termination. This is in contrast to the corresponding variable metric 

algorithm, which holds the approximation Hk fixed at some stage k, when 

k < n. 

5. Concluding Remarks 

The correspondence between.methods proven in this paper requires that 

/ 
line. searches be exact. Whether or not line searches are exact, expression 

(4) determines a family of generalized conjugate gradient algorithms,. 

elaborated upon in Section 4. The properties of such algorithms are currently 

being investigated. 
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