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FOREWORD

This key phase report summarizes the first of a two year effort 

by the University of Tennessee to develop techniques for verifying 

resistance temperature detector (RTD) time response capability in-situ. 

EPRI support for this project is motivated by requirements for check­

ing sensor time responses in nuclear plant safety systems and lack of 

a practical means of doing so.

In the report three methods for verifying (RTD) response capa- 

btittles are described^ (1} loop current step response; (2) static

self-heating; and [31 noise analysis. Theory, application and initial 

experimental results establish the strength and weaknesses of each method.

The loop current step response [LCSR), which provides an equiva­

lent step response by transformation, is relatively simple to carry out. 

Although this report [p. 52] states that the LCSR method will not work 

for Rosemount 176 KF Temperature sensors, laboratory and in-plant 

testing subsequent to preparation of this report indicates this conclu­

sion is in error. The problem has been traced to the software used in 

digital reduction of the test data. Recent results suggest that esti­

mates of [63%] time constants for piunge test using the LCSR approach 

are accurate to within approximately 0.1 sec.

The self-heating approach is the simplest of all methods but does 

not provide an absolute measurement of RTD response. Moreover, the 

measurement is static, providing no information as to variation in 

sensor heat capacity.
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Noise analysis is completely passive and can be done on-line.

However, data processing and statistical estimation are complex procedures. 

The technique may be 1imited by inability to reliably distinguish between 

sensor and process dynamics.

Subsequent project work will seek to refine both the self-heating 

and the loop current step response methods to facilitate plant appli­

cation by utility personnel. Test instrumentation design and test 

procedures will be provided along with results from additional in-plant 

tests at Westinghouse, Babcock and Wilcox, and Combustion Engineering 

units. The in-plant data, augmented by laboratory calibrations, should 

enable ready comparison and confirmation of field test results.

Two related projects concerned with sensor response time have 

been undertaken by EPRI. The Nuclear Services Corporation has com­

pleted a project concerned with safety-related pressure transducers.

Results were published as EPRI report NP-267. A project with Babcock 

and Wilcox Company is devoted exclusively to response verification of 

pressure and temperature sensors using the process noise approach.

The work by Babcock and Wi1 cox is on-going and will be documented 

by a final report when completed.

D.G, Cain 
Project Manager
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ABSTRACT

This report provides interim results of Research Project 503-3, 

concerned with in-situ resistance temperature detector (RTD) time 

response verification. The report covers the theoretical bases,

1aboratory experimentation, and limited in-plant testing of three 

prospective methods. Sensors employed in this project represent 

those which are presently employed in safety-related applications in 

the field, namely Rosemount models 176KF, 177GY, and 104AFC.

v



ACKNOWLEDGEMENT

The help of a number of individuals and organizations is gratefully 

acknowledged.

R. L. Shepard and R„ M0 Carroll of Oak Ridge National Laboratory 

contributed significantly through their discussions and by arranging 

for equipment loans„

Florida Power and Light and Duke Power Company permitted testing 

in their nuclear power plants.

Combustion Engineering, Inc., Florida Power and Light Company, 

and Duke Power Company provided platinum resistance thermometers for 

laboratory testing.

vi



TABLE OF CONTENTS

Page

1.0 INTRODUCTION.......................................... .......................................................... 1

1.1 Historical Background ... a ....... 0 ................. 1

1.2 Objectives of This Research ......................................................... 1

1.3 Approaches for In-Situ Testing . ............................................ 2

2.0 RESISTANCE THERMOMETRY ............................................................................... 5

2J Material Requirements...............................................  5

2o2 RTD Characteristics...........................................   5

2.3 RTD Instrumentation . .  .......................... .... ..................... .... . 16

3.0 THE LOOP CURRENT STEP RESPONSE TRANSFORMATION..................................16

3.1 Introduction „ ... .o .... ................................................. 16

3.2 Mathematical Development of the LCSR Transformation . . 18

3.3 Steps in Implementing the LCSR Transformation . . „ . . 29

3.4 Theoretical Considerations Regarding the LCSR

Transformation..................... .......................... . . . . . 30

3.4.1 Homogeneous RTD Theory........................  30

3.4„2 Effect of Non-Homogenieties on Time Response . . 37

3.4.3 Effect of the Number of Eigenvalues on

Sol ution Accuracy . ... ................................... . . 41

4.0 LABORATORY FACILITIES ..........................    45

4.1 Laboratory Capability ..... ............................... .... 45

4.2 Equipment........................................ .................................. . . . . . 45

4.3 Data Collection and Analysis.........................  48

vi i



5.0 THE LOOP CURRENT STEP RESPONSE TEST.................................... 48

5.1 Brief Description of the Testing Method ............................... 48

5.2 LCSR Test Procedure.......................... 49

5.3 Development of an Empirical Transformation Using

the LCSR ........................ 40

5.4 Laboratory Results from LCSR Tests ............................................ 52

5.5 In-Plant Results from LCSR Tests ................................................  63

5.6 Conclusions................................................................................................ 66

6.0 THE SELF-HEATING TEST.........................................................................................70

6.1 Brief Description of the Self-Heating Testing Method . . 70

6.2 Theory and Principle of the Self-Heating Method .... 71

6.3 Development of an Empirical Transformation Using the

Self-Heating Test................................................................................... 72

6.4 Laboratory Results from Self-Heating Tests ........................... 73

6.5 In-Plant Results from Self-Heating Tests ............................... 73

7.0 THE NOISE ANALYSIS APPROACH FOR SENSOR RESPONSE TIME

MEASUREMENT............................................................................................................. 85

7.1 Introduction...................... .... .............................. '................................ 85

7.2 Time Series Models for Noise Analysis ................................... 86

7.3 Estimation of an Optimal Autoregressive Model .................. 87

7.3.1 Estimation of AR Parameters................................................87

7.3.2 Optimal Order of an AR Model............................................90

7.3.3 Estimation of Power Spectrum ........................................ 91

Page

viii



7.4 Model Verification . . 92

Page

7.4.1 Autocorrelation Verification Using Prediction

Error .............. 92

7.4.2 "Portmanteau" Lack of Fit Test................. 93

7.4.3 Bandwidth of Residual Power Spectrum ................. 93

7.5 Estimation of Response Characteristics .................................... 94

7.5.1 A First Order System....................................... 94

7.5.2 Impulse and Step Responses from the Autoregressive

Model . . . . . . . . . . . . . . . . . . .. . 95

7.5.3 Impulse Response Evaluation ....................................... 96

7.5.4 Computation of Step Response...................... 99

7.6 Verification of the Method Using Simulated Systems . . 99

7.6.1 Second Order System with Equal Poles ..... 99

7.6.2 Second Order System with Unequal Poles .... 106

7.6.3 Fifth Order System ......................................................... 106

7.7 Response Characteristics of an RTD at Millstone 2 . . 119

7.8 Concluding Remarks................... .... .................................................... 129

8.0 SUMMARY AND CONCLUSIONS.....................................................   134

REFERENCES...................................................................................................................... 138

LEGAL NOTICE

This report was prepared by The University of Tennessee, as an account of work 
sponsored by the Electric Power Research Institute, Inc. (EPRI). Neither EPRI, 
members of EPRI, The University of Tennessee, nor any person acting on behalf 
of either: (a) makes any warranty or representation, express or implied, with
respect to the accuracy, completeness, or usefulness of the information con­
tained in this report, or that the use of any information, apparatus, method, 
or process disclosed in this report may not infringe privately owned rights; 
or (b) assumes any liabilities with respect to the use of, or for damages 
resulting from the use of, any information, apparatus, method, or process 
disclosed in this report.

ix



1.0 INTRODUCTION

1.1 Historical Background

The response time has been considered an important property of 

resi stance temperature detectors (RTD's) since their early use for 

industrial temperature measurement. Classically, the response was 

measured prior to installation in the plant utilizing a measurement 

that involved plunging the sensor into flowing water. The time constant 

was usually defined as the time required to reach 63.2 per cent of the 

final response following a step change in fluid temperature.

The Nuclear Regulatory Commission added a new dimension to sensor 

response time measurement when it recommended that utilities operating 

nuclear power plants make in-situ time response measurements of sensors 

installed in the plant. This recommendation was promulgated in U. S. 

Nuclear Regulatory Guide 1.118.

1.2 Objectives of This Research

The research reported herein has the objective of developing a method 

for in-situ response time testing of platinum resistance thermometers of 

the type used in modern pressurized water reactors. The test is only 

required to show that the response time is less than a specified 

maximum allowable value; but, of course, actual determination of the 

response time is also acceptable. In addition, the testing method should 

have these characteristics:

1. Technical acceptability so as to receive Nuclear Regulatory 

Commission approval

2. Minimal cost for special equipment

3. Minimal complexity.

1
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1.3 Approaches for In-Situ Testing

Several methods are plausible for in-situ testing of resistance 

temperature detectors (RTD's). The two broad categories are: (1) fluid

temperature perturbations external to the RTD, and (2) internal 

perturbations of the RTD by ohmic heating in the sensing wire. Applicable 

methods related to fluid temperature perturbations involve:

1. analysis of the fluctuations in the sensor output during normal 

operation (noise analysis)

a. using time series analysis

b. using frequency domain analysis

c. using correlation function analysis^

2. analysis of induced temperature fluctuations

a. using control rod motions to cause power changes and 

concomitant temperature changes

b. using steam valve or feedwater valve perturbations to induce 

primary fluid temperature changes

c. using special local devices near the sensor such as fluid 

injection ports or small electrical heating elements.

Those related to internal perturbations include the analysis of:

1. a transient sensor output induced by above-normal current that

causes ohmic heating of the sensor filament (usually called a

(2 3)loop current step response test)' 5 '

2. the steady state measurement of temperature rise vs. ohmic heating 

level in the sensor filament (usually called a self heating test).
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In this reports the methods considered are:

1. noise analysis (using time series analysis)

2. the self-heating test

3. the loop current step response (LCSR) test.

These methods are used since they require no system modification and can 

be accomplished with a modest investment for test equipment. Induced 

fluid temperature perturbations are omitted because: (a) transients

induced with control rods, steam valves or feedwater valves involve test 

complexity that is probably unnecessary for sensor response measurement 

(though these methods may be useful for measuring lags due to by-pass 

1 ines used for some sensor installations), and (b) special in-pipe 

hardware would involve an expensive plant modification that is 

unwarranted. Furthermore, testing by a remove-and-test procedure or a 

simple periodic replacement is ruled out because these methods ignore 

the important effects of the environment in the pipe where the measure­

ment is to be made.

Noise analysis is a well established diagnostic procedure. It is 

used herein to identify the sensor dynamics so that an impulse response 

can be obtained. Knowing the impulse response, one can readily 

determine the step response. Consequently, the time constant associated 

with a plunge test can be identified. Details relating to the application 

of noise analysis for this research are given in Section 7.0.

The physical basis for the self-heating test is that the temperature 

rise in a system with a given internal heat generation rate is inversely 

proportional to the overall heat transfer coefficient. Thus, the slope 

of the curve of temperature rise versus heat generation rate due to 

ohmic heating in the sensor element (the self-heating curve) is inversely
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proportional to the heat transfer coefficient. A change in the slope of 

the self-heating curve indicates a change in the heat transfer resistance.

A change in effective heat capacity of the RTD system would change the 

response time, but would not change the slope of the self-heating curve. 

However, only a change in the heat transfer resistance is considered 

plausible. Additional details pertaining to the self-heating method 

are given in Section 6.0.

The loop current step response (LCSR) test exploits the fact that 

heat transfer resistances and heat capacities are independent of the 

directi on of heat flow. Thus, the same heat transfer characteristics 

control the transient response following a change in ohmic heating in 

the sensor that control the transient response following a change in 

fluid temperature change. Of course, the transients are not the same 

for both perturbations. For a f1uid temperature change, the heat must 

diffuse through the assembly to the sensing wire. For an ohmic heating 

change, the heat is generated exactly at the point of measurement, then 

it diffuses through the sensor assembly to the fluid.

Since the response to a fluid temperature change is desired and the

response to a change in ohmic heating is feasible in an installed RTD,

there is a need to transform the ohmic heating transient into the transient

that would occur if the fluid temperature changes. This has been done

for the case of a step change in ohmic heating and is referred to as the

(4)loop current step response transformation. The transformation may be 

performed analytically for RTD's that meet two conditions necessary in 

the theoretical development (predominately one-dimensional heat transfer 

and a centrally located sensing wire). For sensors that do not meet these
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conditions, empirical transformations obtained from laboratory results 

may be used. Details of the LCSR method appear in Section 5.

2.0 RESISTANCE THERMOMETRY

2.1 Material Requirements

Resistance thermometry exploits the temperature dependence of metals 

to monitor temperature. Desirable properties of materials for resistance 

thermometry are:

1. large temperature coefficient of resistance

2. linear curve of temperature vs. resistance

3. chemical inertness

4. ductility

5. mechanical strength.

Platinum is an excellent material to provide these characteristics, and 

most industrial resistance thermometers use piatinum wire as the sensing 

element.

2.2 RTD Characteristics

An RTD usually consists of a fine platinum wire wound on a support 

structure mounted inside a metal sheath (usually stainless steel) that 

is back filled with magnesium oxide. The support structure is designed 

to minimize stress on the wire because stress affects the sensor perfor­

mance. Magnesium oxide is used to provide electrical isolation of the 

sensing wire from the sheath and to provide thermal coupling between 

the wire and the sheatn. The magnesium oxide is compacted, often by 

centrifuging after filling the sheath with magnesium oxide powder 

during construction.
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RTD's may be designed for direct immersion into a fluid stream (wet 

type) or for installation into a well in the stream (well type). To 

improve the heat transmission in well-type sensors, a thermal bounding 

material is often used in the gap between the sheath and the well.

The sensors found in pressurized water reactors manufactured by 

different vendors are quite different. Table 2.1 gives specifications 

on some of the commonly-used sensors. Figures 2.1 through 2.4 show these 

sensors and X-rays to reveal their internal characteristics.

The resistance element is connected to lead wires that connect to 

appropriate instrumentation. Sensors may be constructed with the lead 

wire configurations shown in Figure 2.5. The multiple lead and dummy 

wire configurations are used in measurement systems to compensate for 

lead wire resistance to obtain accurate temperature measurements. RTD's 

are made with single sensing elements per sheath and with dual elements 

that allow two independent measurements with the same sensor.

The temperature coefficient of resistance of pure annealed 

platinum wire is 0.003925 ^|/°C (0.002181 ^|/0F). By selecting 

the wire length and diameter, one can obtain various values of absolute 

resistance at any temperature. Standard sensors have 100 ohms at 0°C 

or 200 ohms at 0°C. Temperature coefficients depend on platinum purity, 

and commercial sensors usually have siightly smaller temperature 

coefficients than pure piatinum. A pure platinum 100 ohm sensor would 

have a temperature coefficient of 0.3925 ohms/°C (.2181 ohms/°F), and 

a pure platinum 200 ohm sensor would have a temperature coefficient of

0.7850 ohms/°C (0.4361 ohms/°F). Temperature coefficients for commercial 

sensors are typically 80 to 90 percent as large as for those with pure 

platinum elements.



TABLE 2-1

Sensor
Manufacturer

Model
Number

Plants 
Where Used

Wet Type
Or Well Type

Sensor
Sheath

O.D.
Well
O.D.

Number of 2
Sensing Elements 3 

Per RTD or

Wire
Wire
4 Wire

Dummy
Wire?

Resistance 
at 0°F 
R0(fl)

REC* 177-GY B&W wet .335" ___ 2 4 no 100

REC 177HW B&W wel 1 .290" .410" 2 4 no 100

REC 104-AFC C.E. well **.__ .281" 1 2 yes 200

REC 176-KF Westinghouse wet .375" 4 4 no 200

*Rosemount Engineering Company. 

^Measurement not available.
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Figure 2.1a X-Ray of the Rosemount 177GY Sensor.
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Figure 2.1b Picture of the Rosemount 177GY Sensor.



Figure 2.2a X-Ray of the Rosemount 177-HW Sensor.
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Figure 2.2b Picture of the Rosemount 177-HW Sensor.
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Figure 2.3a X-Ray of the Rosemount 177-KF Sensor
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Figure 2.3b Picture of the Rosemount 177-KF Sensor.
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Figure 2.4 X-Ray of the Rosemount 104-AFC Sensor.
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a) 2 Wire

A/W

b) 3 Wire

c) 4 Wire

d) 2 Wire with Dummy

Figure 2=,5 Possible Lead Wire Configurations for RIDs,
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2.3 RID Instrumentation

The instrumentation used in resistance thermometry is usually a 

bridge circuit as shown in Figure 2.6. Various special methods for 

connecting multiple-wire RTD's are available, but all use the same basic 

Wheatstone bridge circuit. If the two fixed resistors have the same 

resistance, R , then the RID resistance can be determined by finding the 

value for the variable resistance, that nulls the voltage drop, AV. 

If the bridge is used in the non-nulling mode then changes in the RID 

resistance are related to the voltage drop across the two arms of the 

bridge by

^Rd"RRTD^Ra (2.1)
(Ra+Rd) (Ra+RRJD^

Note that the voltage drop is approximately 1inearly related to the RID

resistance for bridges in which the change in the sensor resistance is

small compared to the sum of the original RID resistance and the fixed

resistance, R .a

The voltage, E, used in normal applications is selected to give 

insignificant ohmic heating in the RTD. The self heating effect is 

quantified by the self heating coefficient expressed in ohms/mw. A
_3

typical value is 8x10 ohms/mw for a 100 ohm sensor. For such a sensor 

with a 2 ma sensing current, the heat generation rate is 0.4 mw. This
_3

gives a resistance change of 3.2x10 ohms with a resulting temperature
_3

measurement error of 8.15x10 °C. Similar calculations show that a 50 ma

current would give a temperature increase of 5.62°C (10.1°F).

3.0 THE LOOP CURRENT STEP RESPONSE TRANSFORMATION

3.1 Introduction

The result of interest is the time constant associated with a 

step change in fluid temperature external to the sensor. The time
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Figure 2.6 A Typical Bridge Circuit Used in Conjunction with an RTD0
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constant is defined to be the time required for the sensor output to 

reach 63.2 percent of its final steady-state value after a step change 

in fluid temperature. This time constant is usually obtained from a 

plunge test in a laboratory environment. Since the plunge test cannot 

be used to obtain the time constant of an installed RTD, the LCSR test 

is proposed as one method to obtain an estimate of the desired plunge 

test time constant.

A transformation is needed to convert LCSR data into a prediction 

of the response that would occur following a fluid temperature step 

change. The transformation may be developed using a general nodal 

model for sensor heat transfer. The development is independent of the 

number of nodes included in the model, so use of this approach does 

not imply any restrictive assumptions. The following sections give some 

detai1s on RTD heat transfer that permit formulation of a transformation 

and that define the conditions for validity of the transformation.

3.2 Mathematical Development of the LCSR Transformation

An analytical transformation for converting loop current step 

response (LCSR) test results into plunge test results may be developed 

using a general nodal model for sensor heat transfer. Consider first a 

system with predominantly one-dimensional heat transfer. In this case, 

the nodal model may be represented schematically as shown in Figure 3.1. 

The accuracy of such a model may be made as great as desired by using 

enough nodes.
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*i-l li+]

Figure 3.1 Schematic of a One-Dimensional Node-to-Node Heat Transfer 
Model.
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The dynamic heat transfer equation for node i is:

(HC)i ar" s~7 (Ti-i -Ti> -i7(Ti +qi

where = heat generation rate in node i 

= mass of material in node i 

C.. = specific heat capacity of material in node i 

R.. = heat transfer resistance for node i-1 to node i 

T.j = temperature of node i.

Dividing through by (MC)^ and defining constants gives 

dTi
Hr" ai,i-l Ti-1 - aM Ti + ai,i+1 Ti+1 + blqi

where

1
ai J-l " (MC)i R._1

a = f JL_ +
i,i IMC)T R.}

a - 1
ai ,i+l (MC)i R.

, 1 
bi ~ ImcTT •

The nodal equations may be applied to a series of nodes, starting 

at the node closest to the center (i=l) and ending with the node 

closest to the surface (i=N). The equations have the form:

dTl
dt“ = "all T1 +a12T2+bl Q1 

dT2
dt " a21 T1 " a22 T2 + a23 T3 + b2 Q2

(3.1)

(3.2)
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a33 T3 + a34 T4 + b3 Q3

aN,N-l TN-1 " aN,N TN + CN,FTF + bN QN

where

Tp = fluid temperature.

These equations may be written in matrix form: 

^~=Ax + Bq + cTp

where

(3.3)

aN,N-l " aN,N
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Laplace transformation gives:

[sI-A] x(s) = c Tf(s) + B q(s). (3.4)

The Laplace transform solution for the response of any node, , may 

be found using Cramer's rule. Let us consider several cases:

1 —central node, no heat generation in any nodes, fluid temperature 

perturbation, one dimensional heat transfer

F(s)Tl(s) . (3.5)

where

F(s)

-a,o 0 0

(s+a22) "a23 0

(s+aoo) -a,

(s+a44)

CN,FTF^s^

This may be written

”aN,N-l ^S+aN,N)

(3.6)

F(s) = CN>F Tf(s) (-1)
(N+F)

"a-.

(s+agg) -a23 0 . . .

"a32 ^s+a33^ “a34 * ’ *

-aN-l,N-1 (3



This determinant is for a matrix in lower triangular form (All elements 

above the diagonal are zero). The determinant is given by the product 

of the diagonals, all of which are constants. Therefore, for a f 1 uid 

temperature perturbation in a one-dimensional heat transfer system, 

the response of the central node is characterized by a transfer 

function with no zeroes. If the sensing element in an RTD is centrally 

located, then this type of transfer function describes the response 

characteristics of the sensor.

The transfer function may be written

23

Vs) _ K
TpTsT " TsI^Af

(s-p-j) (s-p2)
(3.8)

where

p.j = poles (identical to eigenvalues of A).

For a unit step change in Tp, Tp(s) = 1, and we may write:

r (s) = _________K ........ ...................
lr s(s-p-j) (s-p2) . . . * (3.9)

Inversion of this Laplace transform using the residue theorem gives:

1
p]t

T (t) = K[r----- r-7------r
1 ' L(-P1) (-Pp

P2t

(p^l (p^P'i^ •

Tp^T (Pi) (p^pP • • •

(3.10)

Thus, we make the following important observation:

For an RTD with predominantly one dimensional heat 

transfer and a centrally located sensing element.
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the poles alone (no zeroes) are adequate to 

characterize the response to a fluid temperature 

change.

The implication is that if one can identify the poles by some other test 

(such as the LCSR), then he can construct the response to a fluid 

temperature step.

2—non-central node, no heat generation in any nodes, fluid temperature 

perturbation, one dimensional heat transfer.

This case may be analyzed for the response of any non-central node, 

but for notational simplicity, let us consider the response of the

(3.11)

(3.12)

second node. In this case

I2(s)

where

F(s)
0=A[

(s+a-n)

F(s)

0

0

0

0

-a.

0

0

(s+a33) -a.

cn,fVs^
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This may be written

F(s) = CNjF IF(s) (-1)(2+N) (3.13)

Again, we observe that the matrix is triangular, but the diagonals 

are not all constant. In this case, the transfer function will have 

one zero. For the response of nodes further from the center, there 

will be more zeroes. Thus, the poles alone are not adequate to 

construct the response for an RTD if the sensing element is not 

located at the center.

3—central node, heat generation in central node, constant fluid 

temperature, one-dimensional heat transfer

(3.14)

where

b-j Q-j -a-| 2 0

0 (s+a22) “^23

0 "a32 (s+a33^

0

0

F(s) (3.15)
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This may be written

F(s) bl ^1

(s+a22) "a23 0 0 ...

"a32 (s+a33) -a34 0 ...

• 
o “a43 ^s+a44^

0 •

“a45 * * •

• • • •

• •

» •

• e • •

• • • •

(3.16)

In this case, the matrix is not triangular, and the transfer function 

will have zeroes.

The transfer function may be written:

T-j(s) -i (s-z-j) (s-z2) . . . (s-zM) 

q|(s) " K (s-p-j) (s-p2) ... (S"PN) ’

For a unit step change in (Q^(s) = j), we obtain

K1 (s-z-j) (s-z2) . . . (s-zM)

T1^S^ ” s(s-p-j) (s-p2) . . . (s-pN) . *

(3.17)

(3.18)

Inversion by the residue theorem gives:

T-j (t)
(“Z-j ) (-Z2) ... (-Z^)

•..* • rp^r

(P-j“^1) (Pi-z2) ... (Pi”^[^)® 

(p-j) (P-| ”P2) • • '• (P-] _P^)

P^t

(Pg-z-j) (p2-z2) . . . (p2-zm) P2t

ipp Tpppp • • rr^pp (3.19)

Note that the response is determined by the zeroes as well as the poles. 

However, the poles are the same as for the fluid temperature change 

case. Thus, if we can identify the poles from a LCSR test, we can 

construct the equivalent fluid perturbation response using Equation (3.10).



4--central node, no heat generation in any nodes, fluid temperature
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perturbation, multi-dimensional heat transfer.

In this case, there is branching in the heat transfer (see Figure 3.2). 

This means that the temperature of a node may be influenced by more 

than just two neighboring nodes as in the one-dimensional case. In 

the one-dimensional case, all of the elements of the A matrix are on 

the diagonal or in the position adjacent to the diagonal. In the 

multi-dimensional case, coupling terms appear in other positions 

(always symmetrically positioned around the diagonal). Thus F(s) may 

be written

0

0

F(s) =

(s+a22) "a23 *

"a32 (s+a33^ “a34

(3.20)

cn,fVs) * • • • * *

where

* = possible new coupling terms.

In this case, the matrix is not triangular and zeroes can occur. This 

means that the availability of the poles through some sort of measure­

ment is not sufficient for construction of the response to a fluid 

temperature step.



i

Figure 3.2 Schematic of a Multi-Dimensional Node-to-Node Heat Transfer 
Model„
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3.3 Steps in Implementing the LCSR Transformation

The steps for obtaining the plunge test time constant are:

1. perform a LCSR test

2. identify the poles associated with the LCSR data

3. construct the step response for a fluid temperature perturbation 

using Equation (3.10).

A key element is identification of the poles by analysis of the 

LCSR transient data. This is a classical fitting problem that has 

been investigated extensively in the past. Techniques such as 

exponential peeling are widely used, but, in general, identification 

of exponential coefficients from transient data is a difficult 

numerical problem.

A computer program for the PDP-11 has been written that estimates 

the poles then constructs an estimate of the plunge time constant.

This program is operational, but development is continuing to find 

the most suitable pole-fitting procedure.

One method to help in the pole-fitting problem has been proposed 

by Carroll of Oak Ridge National Laboratory. He observed that for 

a centrally located sensor in a cylindrical sensor with small 

surface heat transfer resistance compared to internal heat transfer 

resistance, the following relation approximately defines the poles:

P, = P,[l + 0-1) R]2. (3-21>

This relation is useful because it allows one to estimate higher poles 

using fitted values for only two parameters (p-j and R). Some of the 

1 imitations of this approach are discussed in Section 3.4.3.
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3.4 Theoretical Considerations Regarding the LCSR Transformation

In this section, some restrictions on the LCSR transformation are 

examined. First, the theory of the homogeneous RTD is presented and 

second, parametric effects on RTD time response are evaluated. Next, 

the affect of the adiabatic inner surface assumption on RTD's that 

have the filament near the outer surface is considered. Also, a homo­

geneous RTD is analyzed considering: (1) the error in the time constant due

to 1imiting the number of terms in the solution, and (2) the error in 

the time constant due to errors in estimates of poles. These considera­

tions allow one to determine: (1) regions where the LCSR transformation

is valid, (2) constraints on the determination of the poles, and (3) error 

estimates on the results of the LCSR method.

3.4.1 Homegeneous RTD Theory

In this section, solutions will be presented for two cases: (1) a 

homogeneous RTD subjected to a step in heat generated in the filament, 

and (2) a homogeneous RTD plunged into a fluid path. The temperature 

data obtained from the first case may be transformed using the LCSR 

transformation and the results of this transformation can then be 

compared with the answer provided by the second analysis. The plunge 

test is treated in most textbooks on conduction and is not derived 

herein. The loop-current step response is derived to illustrate the 

similarities and differences with the plunge test.

The solution given by Equation (3.22) is for the piunge test 

considering: (1) a uniform homogeneous RTD, (2) the outer radius to be

R, (3) the filament located at R*, (4) the sensor at an initial
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temperature of T0» (5) a bath temperature of and (6) a surface heat 

transfer coefficient of h.

T(t)

vT. J B 0„(H r/R) e n 
n=l " 0 n

2 2 
NL at/FT

(3.22)

where

_ hR/k

W Mn

and

To

Mn[002(Hn) + J, (Mn)]
(3.23)

k = thermal conductivity 

p = density

0^ = specific heat capacity.

The sensor response is obtained by evaluating Equation (3.22) at r = R*.

The solution for the temperature in the sensor prior to the start 

of the LCSR test can be obtained from

l;L dTi siR*-r) *
r dr r dr 2irR*

subject to boundary conditions 

T^(r=0) is finite 

dT.
- k -gl (r=R) = h(T.(R) - Tj

where

Q0 is the heat generation rate for t < 0 

R* is the radial location of the filament.

(3.24)

(3.25)

(3.26)

*6 is the Dirac delta function.
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At time t = 0, the heat generation rate is changed to Q^. 

as t « the final temperature may be obtained from

i d dTf> . i 6<R* - r>
r dr dr^ " 2-rrR*

subject to the same boundary conditions as T^.. Thus, the 

varies from to as time goes from zero to infinity. 

The solutions to these equations are

Ti (r)
0 1

T + _° rL_ 
00 2tt ^Rh

^0 1
T (r) = T + — F— 
livn - 2tt LRh

£n(R*/R)
•]

&n(r/R)
■]

(r < R*)

(r > R*)

and

Tf(r) t + ri_ ^n(R*/R)-1 
~ Ztt LRh _ k J

Tf(r) T + rl- Mll/Rlq
2ir LRh k J

(r < R*)

(r > R*).

The transient is given as the solution to

il\ + Q(t) S(R* - r) = Pi 91 
r 9r drJ 2irR* K k dt

Note that

(3.27)

temperature

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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where Q(t) = for t _> 0. By defining ij; = I - one obtains

subject to boundary conditions 

ip is finite at r = 0

-k-|^-=hi|jatr = R 
3r r

\l> = T. - at t = 0.

The solution to (3.33) is

1_ 3_ / 3j{^% _ pC dji
r 3r 3r' k 3t (3.33)

* - ^ Cn J0(Mn r/R) 6n=l
(3.34)

where again

W _ hR/k (3.35)

and

_ 0o - Qoo J0(Mn R*/R)__________ _

n Mn2[J02(Mn) + Jl2(Mn)]

(3.36)



was obtained from the orthogonality condition
34

/o (T.-Tf) J0(Mm r/R) 27rrdr =

^ ^ Cn J0(Mn J0(Mm dr' (3.37)

Evaluating both series (Equations (3.22) and (3.34)) at r = R*, 

one obtains for the plunge test response

TD(t) - Tf = l K e ^ (3.38)
p T n-l n

and for the loop current step

“ -At

TLCS(t) ‘ Tf = £ Ln e " (3-39>

2 2
where An = a/R and is the same for both cases. The expansion 

coefficients are given by

" 'VVf'V + Jl2<Mn):I

L = Vis J02(Mn R*/R)

" ^ Mn2W02(Mn) + Jl2(Mn)]

(3.40)

(3.41)

Note that all the IVs have the same sign (determined by - Qj whereas 

the Kn's may be of the same sign (e.g., when R* = R) or may be of alternating 

sign (when R* = 0). Note that the LCSR transformation produces alternating 

signs.

One is now in a position to: (1) choose hR/k and R*/R and solve

Equation (3.38) for the plunge time constant t , (2) evaluate Equation
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(3.39) and use these temperatures to find the poles using a fitting 

algorithm, (3) perform the LCSR transformation, and (4) compare the 

results of the time constant obtained from this transformation with 

these theoretical results. This then gives one the opportunity to 

evaluate the entire LCSR procedure with data from a theoretical sensor 

with a known plunge time constant.

The solutions presented in this section demonstrate that the two 

principal parameters are R*/R (the ratio of sensor radius to outer 

radius) and the Biot modulus, hR/k (the ratio of conductive resistance 

to convective resistance). For RTD's filled with MgO, the Biot 

modulus can vary from 33 (for water at 70°F and a velocity of 4 ft/sec) 

to 200 for water at 500°F and 40 ft/sec velocity (typical reactor 

conditions). Thus, the relative convection resistance is extremely small 

and conduction is the principal heat transfer mechanism.

Figure 3.3 is a plot of the ratio of the plunge time constant at 

selected radial positions to the value at the center (obtained from 

Equation (3.38)) for two values of Biot modulus. Note that for the 

small Biot modulus, x is approximately independent of filament position, 

while for a large Biot modulus, the time constant is strongly dependent 

on filament position.

One result should be noted. The eigenvalues, , are functions of 

hR/k only, and the LCSR transformation (see Section 3.2) uses only these 

eigenvalues (poles) to determine the time constant. Thus, no matter 

where the sensor is located, the transformation will produce a time 

constant that presumes a central location. This appears to be a conser­

vative result since the transformation gives an estimate of the time
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t(R*/R)
^To/rT

® Calculated Points

0.1 0.2 0.4 0.5 0.6 0.7

Figure 3.3 Ratio of the Time Constant Evaluated at R*/R (x(R*/R)) to 
the Time Constant Evaluated at 0/R Versus the Ratio of 
Filament Radius to Sensor Radius.
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constant that is too large, however, analytical corrections should not 

be made since the time constant for non-central filament depends on the 

Biot modulus, and it is imperfectly known.

3.4.2 Effect of Non-Homogenieties on Time Response

One of the more probable causes of sensor degradation is cracking 

of the MgO filler material and subsequent separation from the sensor. 

Because analytical solutions to the multi region non-uniform problem 

are quite complex, a lumped parameter model is used to study these 

effects. The RTD is divided into four lumps: (1) an inner MgO solid

cylinder, (2) the filament, (3) an outer MgO cylinder, and (4) a steel 

casing. Provision is made to insert a resistance, to simulate a gap:

(1) between the center cylinder and the filament, (2) between the 

filament and the outer cylinder, and (3) between the outer MgO cylinder 

and the case. The solution is then obtained: (1) with no gap, (2) with 

a gap at each of the above mentioned positions, and (3) with no gap but 

the surface heat transfer coefficient reduced a factor of ten.

The lumped parameter equations are

(3.43)

(3.42)

dT3 . <T2 - T3> . (T4 - V (3.44)

dT4 . <T3 - V . (T5 - V (3.45)
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where Tg = fluid temperature

R12=k%“(^)+^

1 rA3 ,1 x , 1 _/um^^
2^ [M:T k" +a 3 m 3m s 3

R45 - k t «.(^) - t-] 
s urn u

rlm = rl/'2' r3m

„ 2 x 2 
3 r2

» r4m
r4 +r3

2 2 2 
V1 = 7rr] 5 v2 = 1T(r2 “ rl ^

2 2 2 2 
v3 = ^^3 “ r2 v4 = ^^4 “ r3 )

= thermal conductivity of the MgO 

ka = thermal conductivity of the air 

kg = thermal conductivity of the steel 

Q = heat generation rate in the filament.

These equations are further simplified by setting the filament volume, 

equal to zero. This assumption appears physically reasonable because 

the sensor is significantly smaller than other components, and it 

simplifies the solution for the eigenvalues.

These equations are next solved in the following fashion: (1)

Equations (3.42) through (3.45) are written in the matrix form

S = rT + § (3.46)
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and (2) the eigenvalues of the A matrix found. These are the same 

eigenvalues that would be found from analysis of a loop current step 

test. These eigenvalues (poles) are then used in the LCSR transformation 

to obtain a time constant. Next, Equations (3.42) through (3.45) are 

solved (using a forward difference technique) subject to initial condition 

T = 1 for all nodes and for T^ (set to zero). The solution precedes 

until the filament temperature drops to e"^ at which point the time reaches 

the plunge time constant. This simulates: (1) an RTD plunged into a

bath, and (2) the results of a loop current step and LCSR transformation.

Table 3.1 presents the results for a 0.25" diameter RTD. Two 

sensor locations, R* = 0 and R* = 0.8R, are presented and a gap 10 mils 

thick is used. Note that for the case where the sensor is located at 

the center, the plunge and the transformation give results which are the 

same within the precision of the calculation, and that for the sensor 

placed near the outside of the RTD, the transformation results are 

always conservative. Similar calculations with different gap sizes and 

different sensor locations yield equivalent results.

The results of this calculation together with that for the homo­

geneous sensor lead to the following conclusions:

1. The results of a loop current step test and subsequent LCSR 

transformation are valid only for the case where the filament 

is located at the center of the RTD.

2. It is not valid to use analytically derived factors to correct 

the time constant for filament location since the correction

factor is not constant.
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TABLE 3.1

R*/R = 0

RTD Geometry Tplunge transformation

No Gap 7.11 6.85

Gap Inside Sensor 6.82 7.07

Gap Outside Sensor 6.90 6.90

Gap Inside Sheath 11.20 10.85

No Gap - h = h/10 8.26 7.95

R*/R =0.8

RTD Geometry Tplunqe transformation

No Gap .68 7.63

Gap Inside Sensor .12 10.78

Gap Outside Sensor 3.40 10.11

Gap Inside Sheath 4.32 11.01

No Gap (h reduced bv 
factor of 10)

1.93 8.60
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3. The time constant obtained from the loop current step response 

test and transformation may be used (uncorrected for geometry) 

for all sensors and will produce conservative results. This 

procedure may penalize some RTDs severely.

3.4.3 Effect of the Number of Eigenvalues on Solution Accuracy

In this section, the validity of the empirical expression of 

Equation (3.21) used to estimate higher poles (eigenvalues) is examined. 

This empirical expression, P^. = P-j[1 + (i - 1) R]^, utilizes the first 

two eigenvalues P-j and ?£ to obtain R, and then subsequent eigenvalues 

are obtained from this expression. Table 3.2 presents the results 

when this procedure is attempted on the eigenvalues produced in the 

non-homogeneous calculation. Examination of the last two columns 

clearly indicates that this procedure is invalid when the sensor is 

non-homogeneous.

Since the above empirical expression for higher eigenvalues is 

not valid, it is necessary to determine the number of eigenvalues which 

must be obtained from the fit of the loop current step data. In order 

to estimate this number, the following procedure is adopted:

1. Evaluate the plunge time constant from the homogeneous 

solution.

2. Using eigenvalues from the homogeneous model, perform the 

LCSR transformation with N eigenvalues and obtain a trans­

formation time constant.

3. Compare these results.
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TABLE 3.2

Case X2 R X3 A-j (1+2R)2

1 -.15 -8.5 6.5 -15.1 -48.6

2 -.15 -3.1 3.6 -15.1 -10.0

3 -.15 -6.3 5.5 -15.1 -21.6

4 -.09 -8.8 8.9 -15.0 -31.8

5 -.14 -1.8 2.6 -8.5 -5.33



Table 3.3 presents the results of this computation for two Biot 

numbers hR/k = 1 and hR/k =100. Two items are noteworthy. First, 

all predictions are too small and progressively increase to the true 

value, and second, it requires approximately four terms to produce 

an estimate within 10% of the true value for hR/k =100.

43
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TABLE 3.3

hR/k = 1 hR/k = 100

N Ttransforn/Ttrue Ttransforn/Ttrue

1 .84 .69

2 .93 .83

3 .95

C
O

C
O

4 .97 .91

5 .97 .93

10 .99 .96
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4.0 LABORATORY FACILITIES

4.1 Laboratory Capability

A Thermometry Laboratory was established at The University of Tennessee 

to test the procedures and equipment for in-situ response time testing of 

RTD's. One or more of each of the RTD models used in modern PWR's have been 

available for testing in the Thermometry Laboratory.

4.2 Equipment

A brief description of available laboratory equipment fol1ows:

1. A rotating tank (diameter = 22 inches, height = 13 inches) is

used for laboratory response time testing. The fluid velocity 

varies from zero at the center of the tank to 4 feet/sec at the 

edge. Most tests are performed in the region where the velocity 

is about 3 feet/sec. The system is shown in Figure 4.1.

2. A bridge with capability of switching from one current level to 

another was built (see Figure 4.2). The switching is by a 

relay that can be switched manually or by computer control. The 

adjustable balancing resistance is a seven element decade box.

The fixed resistors in the bridge are 500 ohm resistors rated

at 25 watts. This avoids error due to heating in the fixed 

resistors when high currents are used.

3. Appropriate amp!ifiers are used for obtaining useful voltage 

levels.

4. A strip chart recorder is used for recording transient data.

5. A PDP-11 computer system is available for transient data storage 

and analysis. The computer, which is located in a separate room, 

communicates with the instrumentation in the Thermometry Labora­

tory via a permanently installed data link.
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Figure 4.1 Rotating Tank.
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Switching
Circuit

Figure 4.2 Laboratory Testing Bridge Circuit Schematic.
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4.3 Data Collection and Analysis

The LCSR test can be run remotely from the computer room. A 

computer program is available that causes the system to switch the 

relay, digitize the transient data, and store it in the computer memory. 

The transient data may be examined on a CRT display, then transferred 

to a disk file if it is to be saved. Subsequently, the LCSR data on 

the disk can be transformed to give an estimate of the response that 

would occur after a fluid temperature step. This involves estimation 

of the system poles using the LCSR data, then constructing the estimate 

of the response to a fluid temperature step using Equation (3.10).

5.0 THE LOOP CURRENT STEP RESPONSE TEST

5.1 Brief Description of the Testing Method

During normal operation of a resistance temperature detector (RTD) 

a small sensing current, typically 1-5 mA, is passed through the 

resistance element, and fluid temperature changes are determined by 

measuring the change in resistance of the element. The Loop Current 

Step Response (LCSR) test procedure involves imposing a step change in 

the sensing current from the steady state value of 1-5 mA to 20-60 mA.

This effectively increases the sensor internal temperature a few degrees 

above ambient temperature through ohmic heating. After a steady state 

condition is reached, the resistance heating is terminated by returning 

the sensing current to its original steady state value. The sensor output 

is monitored throughout the transient.
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5.2 LCSR Test Procedure

The LCSR test is implemented by switching the supply voltage 

from a lower value to a higher value. Figure 5.1 depicts a typical 

signal measured during a LCSR test. If the bridge is exactly balanced 

initially, R^ = Rrjq* The initial voltage output is given by

(Rd"RRTD) Ra
L/d +d ^ (d xD fin (5.1)

0

where the subscript, 0, denotes conditions during initial low current 

operation.

When the current is stepped up, there should be an exponential 

change in the voltage output as a function of time. The new steady 

state condition is given by.

C aRRTD en

where

" '< W'VW

aV = change in AV

(5.2)

(assumed ~ constant)

= voltage drop across the bridge.

When the bridge voltage, E, is stepped down to its original value at tg* 

the voltage output decays exponentially to its original value.

5.3 Development of an Empirical Transformation Using the LCSR

For cases when the assumptions apply, the analytical transformation 

developed in Section 3 predicts the sensor response to a fluid temperature 

step perturbation accurately. If either the analytical transformation 

fails for a particular sensor, or the method for implementing it fails 

because of difficulties in identifying the poles, another method is



Figure 5.1 LCSR Test Result with R, Initially.



needed to interpret LCSR results. Because one of the objectives of 

this research was to develop an in-situ test usable on all types of 

sensors, an effort was made to discover an empirical correlation to be 

used in cases where the analytical transformation does not apply.

Experimental results were investigated to determine whether a 

unique relationship exists between the fl uid temperature step response 

and the response to a step increase in internal heating of the sensor.

The two parameters of interest were the time constants in the LCSR test 

and in the plunge test. The LCSR time constant, xLCSR, is defined as the 

time required for the sensor to attain 63.2% of its final output after a 

step change in the internal heating in the sensor. The plunge test 

time constant, Tp^, is defined as the time required by the sensor to 

attain 63.2% of its final output following the piunging of the sensor 

into a fluid at a temperature different from the original steady state 

temperature before the plunge.

As previously mentioned, the time response of a sensor is 

dependent upon the heat transfer properties and characteristics of its 

environment. When the heat transfer resistance of a sensor increases, 

it follows that the response time of the sensor will increase. Likewise, 

when the heat transfer resistance of the sensor decreases, the response 

time of the sensor will decrease. It is possible to simulate heat 

transfer changes artifically in the sensor environment by placing 

insulating material of varying thicknesses around the thermometer. LCSR 

and plunge tests can be performed in the laboratory and the resulting 

time constants measured.

51
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The tests may be repeated under many differing simulated heat transfer 

environments. The associated time constants measured at each configuration 

constitute a point on an empirical curve. When the resulting points are 

plotted, they yield an experimental correlation curve. From this empirical 

relationship, it is possible to predict the fluid temperature step response 

time constant given the LCSR time constant for a range of surface heat 

transfer conditions. With this empirical transformation, it is possible 

to conduct LCSR tests throughout the life of the plant, determine the 

LCSR time constant, and verify whether the plunge test time constant has 

changed by using this correlation.

5.4 Laboratory Results from LCSR Tests

LCSR tests were performed in the Thermometry Laboratory for PWR-type 

RTD's. Figures 5.2 through 5.4 show LCSR data obtained for sensors in 

flowing water (3 ft/sec) at room temperature.

The transformation was applied to LCSR data collected by the computer. 

For laboratory work, the sensor may be subjected to actual piunge tests 

to check the validity of the transformation. A typical plunge test 

result is shown in Figure 5.5. The results of the transformation and 

the actual plunge test results for one sensor appear in Figure 5.6.

The transformation gave good results for this sensor, but this was not 

universally true for all sensors. The predictions for the 176KF sensor 

were especially bad. *This is attributed to the sensor configuration, 

which violates the assumption of a centrally located filament as 

required for validity of the transformation.

*Refer to statement in report Summary, taking exception to this conclusion.
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Figure 5.2 Loop Current Step Response Test Data for a Sensor in 
Water Flowing 3 ft/sec (Rosemount Model 176-KF).
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Figure 5.3 Loop Current Step Response Test Data in Water Flowing at 3 Ft/Sec 
(Rosemount Model 104AFC).
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Figure 5.4 Loop Current Step Response Test Data in 'later Flowing at 3 Ft/Sec 
(Rosemount Model 177-GY).
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Figure 5.5 A Typical Plunge Test Output. Sensor is Plunged From Air into a Moderately 
Stirred Water Tank (Rosemount Model 104AFC).
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Figure 5.6 Transformed Loop Current Step Response Test for Rosemount Model 104AFC. 
Note: A Heat Transfer Fluid (Neverseize) was Used in the Well.
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Numerous tests were performed to collect data to obtain an 

empirical relation between the LCSR time constant and the plunge time 

constant,. For empirical correlation, it is necessary to obtain data 

for the sensor with its characteristics altered so as to cause it to 

have varying response characteristics. In the laboratory, this was 

accomplished by augmenting the surface heat transfer resistance by 

adding sections of adhesive tape or rubber tubing to the surface of the 

RTDo Different values of resistance change were achieved by varying 

the amount and position of material added at the surface. For each 

configuration, three tests were performed: plunge test, LCSR test,

and self heating test (see Section 6„0)„

Figures 5.7a, 5.7b, 5.8a, and 5.8b show the empirical correlations 

for LCSR data. These could be used to convert in-plant LCSR test data 

into the desired Tp.|unge needed for satisfying Nuclear Regulatory 

Commission requirements if the following assumptions are valid:

1. Laboratory tests involving augmentation of surface heat 

transfer resistance adequately simulate actual degradation 

that might occur in an in-plant sensor.

2. Differences between temperature and fluid velocity conditions 

in the laboratory and the plant have insignificant effects.

These questions are being explored in current work.
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Figure 5„7a An Empirical Correlation Between a Plunge Test Time Constant, 
Tplunge’ and a Loop Current Step Response Test Time Constant,

XLCSR (^lde Range). The Correlation is for the Rosemount

Model 176-KF Sensor.
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Figure 5.7b An Empirical Correlation Between a Plunge Test Time Constant, 
Tplunge* anc* a Loop Current Step Response Test Time Constant, i

(Narrow Range)» The Correlation is for Rosemount Modeli r<;p 
176-KF Sensor
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63

5.5 In-Plant Results from LCSR Tests

Loop current step response measurements have been performed in 

two operating pressurized water reactors. Tests were performed at 

Turkey Point (a 760 MWe Westinghouse plant that is owned and operated 

by Florida Power and Light Company) and at Oconee Unit 3 (an 886 MWe 

Babcock and Wilcox pi ant that is owned and operated by Duke Power 

Company). Both tests were performed while the plants were operating 

at full power.

The first in-plant test was performed at Turkey Point. Because of 

instrumentation problems, the results were of poor quality. Subsequent 

laboratory investigation revealed the cause of the problem. A voltmeter 

that was connected across one of the fixed resistors in the bridge to 

measure the current was responsible for the problem. The effect on 

the data was a large spike immediately after the current switching 

for the LCSR test. This is shown in Figure 5.9.

If one ignores the spike and assumes a smoother curve through the 

section where the spike occurs, then he can obtain a transient suitable 

for analysis. However, this questionable procedure serves more to find 

out whether the estimate is in the expected range rather than to obtain 

a reliable response time.

The smoothed data were used in the analytical transformation (see 

Figure 5.10 for a smoothed response). It was expected that this 

would not provide a correct response time because laboratory experience 

had already shown that the analytical transformation does not apply 

for Westinghouse sensors. Thus, the obviously incorrect response time 

results ranging from 0.0113 to 10.84 seconds were not surprising. There
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for was 0.0142 second. The empirical transformation (see Figure

5.7) gives a time constant (Tpiunge^ 0*26 second. The time 

constant measured for a similar sensor in the laboratory is 0.4 

second. Thus, the results are in the same range, but the poor quality 

of the test data makes it unwise to read very much into this result.

The second in-plant test was made at Oconee. This test benefitted 

from lessons learned at Turkey Point and from progress made in the 

laboratory after the Turkey Point tests. At Oconee, there were no 

experimental difficulties. LCSR tests were performed on three different 

RTDs (two in the cold legs and one in a hot leg), and two types: one

was a Rosemount model 177-GY (direct immersion type), and one was a 

Rosemount model 177HW (well type). The LCSR transients were as 

expected (see Figures 5.11 through 5.13). In these tests, the current 

during the high-current phase of the test was 40 ma, giving a temperature 

rise of about 12.6°F (177-GY) and 10.6°F (177-HW).

Data analysis has been delayed because the computer has been 

unavailable and because the empirical correlation data for these sensors 

have not yet been collected in the laboratory. A very preliminary 

analytical transformation analysis gave an estimate of Tpiunge °f 6.2 

seconds for the 177-GY. This is close to the piunge test result of

6.0 seconds that has been measured in the laboratory. In general, 

the Oconee test data looks very good, and successful determination of 

the time constant is anticipated.

5.6 Conclusions

The loop current step response method appears to be a good candidate 

for performing in-situ response time measurements in RTDs. The
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analytical transformation provides a method for interpreting the data 

for sensors that satisfy the conditions for validity of the transformation. 

For other sensors, an empirical transformation seems to be adequate.

Testing methods have been established through a great deal of laboratory 

experience. In-plant test experience now indicates that the LCSR test 

is suitable for measurements in the environment of an operating plant.

6.0 THE SELF-HEATING TEST

6.1 Brief Description of the Self-Heating Testing Method

The self-heating test exploits the dependence between temperature 

rise in an RTD during steady state internal ohmic heating and the 

sensor-to-fluid heat transfer resistance. This dependence makes 

it possible to detect changes in heat transfer characteristics. The 

temperature rise in the sensor is a function of both the heat generated 

and the ability of the sensor to dissipate heat to its surroundings.

The normal sensing current passing through the resistance 

element is usually 1-5 mA. During the self-heating test, the current 

is incrementally increased from 1-5 mA to a significantly higher value 

(20-100 mA). The electrical resistance of the element is measured 

at steady state conditions for a set of points and the power generated 

in the sensor is computed for each point.

The result is a curve that shows the change in resistance of the 

sensing element as a function of the power generated in the sensor.

The resistance change is proportional to the change in temperature 

of the resistance element. For elements made of platinum, the self­

heating curve is linear.
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6.2 Theory and Principle of the Self-Heating Method

The resistance measurement needed for a normal temperature measure­

ment involves the use of an electrical bridge circuit. A small 

current passes through the RTD and the bridge resistors so that a 

temperature change in the RTD is indicated by a voltage drop across 

two arms of the bridge. The current used for normal measurements is 

set at a small enough value (1 to 5 ma) to avoid significant ohmic 

heating of the RTD and concomitant temperature measurement errors.

The self heating test involves increasing the current incrementally 

to higher values (20 - 100 ma) in order to cause enough ohmic heating 

to give a significant increase in the temperature of the sensing wire 

in the RTD. The steady state heat transfer is defined by

where

Q = heat generation rate in the RTD 

U = overall heat transfer coefficient 

A = heat transfer area 

T = sensor temperature 

e = fluid temperature.

If the fluid temperature remains constant, the temperature rise, AT,, 

is related to a change in heat generation rate, aQ, as follows:

Since the resistance of an RTD is proportional to its temperature.

Q = UA(T-e) (6.1)

(6.2)

1 AR
Da a aq •

(6.3)
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This motivates one to make steady state measurements of the RTD

2resistance for several values of I R power generated in the sensor.

The slope of the curve of AR vs. aQ is proportional to -g^-.
(2)

The response timev is proportional to the heat capacity of the 

sensor and inversely proportional to UA. If it may be assumed that 

the heat capacity of a sensor will not change after construction, the 

response time, x, is related to the slope of the self-heating curve 

as follows:

AR
't a aq *

That is, degradation of the response time could be detected by 

measuring an increase in aR/aQ.

(6.4)

6.3 Development of an Empirical Transformation Using the Self-Heating Test

It is possible to simulate changes in the sensor heat transfer 

resistance in laboratory tests. This is done by adding artificial heat 

transfer resistance (such as adhesive tape or short sections of rubber 

tubing) to the surface of the RTD. In doing so, an empirical relation can 

be obtained by performing plunge tests and self-heating tests on a set 

of heat transfer configurations.

The piunge test time constant is computed along with the value of 

the slope of the self-heating curve for various surface heat transfer 

conditions obtainable in the laboratory. After installation in a reactor, 

the fluid temperature step response can be predicted by: performing a

self-heating test in-situ, computing the value for aR/aQ for that 

environment, and determining the corresponding plunge test time constant 

from the empirical curve.
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6.4 Laboratory Results from Self-Heating Tests

Self-heating tests were performed in the laboratory for PWR-type 

RTD1s. Results were obtained for bare sensors and for all of the 

augmented surface resistance configurations used in developing the 

LCSR empirical correlation (see Section 5.3).

Self heating curves for bare sensors are shown in Figures 6.1 

through 6.3. Note the strong linearity of the relation. Curves such 

as these (each involving twenty to thirty points for different 

current levels) were obtained for each augmented surface resistance 

configuration. The slope of the self heating curve was determined 

for each case. Figures 6.4a, 6.4b, 6.5a, and 6.5b show the empirical 

correlation between the slope of the self heating curve and the measured 

plunge time constant. These curves make it possible to use an in-plant 

self-heating test to provide the piunge test time constant provided 

the following assumptions are satisfied (as with the LCSR empirical 

transformation):

1. Laboratory tests involving augmentation of surface heat 

transfer resistance adequately simulate actual degradation 

in an in-plant sensor.

2. Differences between temperature and fluid velocity conditions 

in the laboratory and the plant have insignificant effects.

The validity of these assumptions is being evaluated.

6.5 In-Plant Results from Self-Heating Tests

Self-heating tests were not performed at Turkey Point because this 

test had not been conceived at the time of that test. However, the 

self-heating tests were performed at Oconee for all three RTD's. The 

measured self-heating curves are shown in Figures 6.6 through 6.8.
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Figure 6.6 Self-Heating Curve for Oconee Sensor No. 1.
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Figure 6.7 Self-Heating Curve for Oconee Sensor No. 2.
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Figure 6.8 Self-Heating Curve for Oconee Sensor No. 3.
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According to information obtained from Oconee pi ant personnel, 

sensors number 2 and 3 are Rosemount model 177GY and sensor number 

lisa Rosemount model 177-HW„ Laboratory data for the self-heating 

empirical correlations have not been obtained for these sensors, but 

a single self-heating curve for a bare 177GY has been measured in 

the laboratoryo The results for the Oconee sensors and for the 

laboratory results on a model 177GY are shown in Table 601»

TABLE 6.1

SELF-HEATING DATA FOR OCONEE SENSORS AND FOR ROSEMOUNT 
177GY IN THE LABORATORY

Sensor Slope of Self Heating Curve

Oconee # 1 7.83x10~3 ft/mw

Oconee # 2 7.66xl0"3 9,/rm

Oconee # 3 6.37xl0"3 Q/mw

Laboratory 177GY 8.07xl0“3 9,/m

From this, it appears that the sensor specification obtained from 

Oconee personnel was incorrect and that sensors number 1 and 2 

are Rosemount 177GY. If this is true, the self-heating curve measured 

at Oconee indicates that the model 177GY sensors in the pi ant have 

nearly the same time constant as was observed for that sensor in the 

laboratory (~6 seconds).
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7.0 THE NOISE ANALYSIS APPROACH FOR SENSOR RESPONSE TIME MEASUREMENT

7.1 Introduction

In this chapter, the sensor time response characteristics are 

evaluated using a time series analysis of noise signals. The method 

described in the following sections is based on the fact that the 

response of a linear system due to background noise disturbance can 

be modeled adequately by a finite order autoregressive (AR) model.

The optimal estimated model can also provide the power spectrum of the 

time series without using Fourier transform methods.

In Section 7.2, the representation of the time series models is 

described. The discussions are brief and the reader is referred to 

appropriate references for details. The estimation of autoregressive 

parameters using Yule-Walker equations and the determination of an 

optimal model order are discussed in Section 7.3. Also, power spectrum 

estimation through use of an autoregressive model is discussed in 

Section 7.3. Verification procedures for model adequacy are given in 

Section 7.4.

Section 7.5 describes how one can obtain the impulse response 

and the step response of the dynamic system using the autoregressive 

model. These techniques, based on the exact solution to a continuous
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system and a recursive estimation from the AR model, are tested 

by simulating known systems of order two and five. These results are 

presented in Section 7.6. Evaluation of the response time of RTD's 

used in the Mi 11 stone 2 PWR from noise data is presented in Section 

7.7. Concluding remarks are given in Section 7.8.

7.2 Time Series Models for Noise Analysis

Let {y^} be a sequence of measurements of a random, weakly 

stationary process generated from a white noise disturbance {V^}.

The 1 inear prediction model of {y^} can be written as

oo 00

yk = aiyK-i * ^ biVk-i + V (7J)

An infinite representation Eq. (7.1) is not feasible and often may be

incorrect. A finite order autoregressive moving average (ARMA) model

(5)is given by (see Box and Jenkins) 

n m
Y a.y, . + y b.V. . + V, . • S rk-i .(s i k-i k i=l i=l

(7.2)

If the response y^ is to be represented only in terms of the past 

and present disturbances, then the one-sided moving average 

representation is

■ j, biVi+ V <7-3>
Thus, we see that the space of observations generated by {V.., i £ k}

is equal to that generated by {y^: i <_ k}. Accordingly, y^ can be

(6)
approximated by the autoregressive modelv '
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yk " aiyk-1 + Vk- <7-4>

For stationarity of the process defined by Equation (7.4), it is 

necessary that the roots of

1 - l a.D1 = 0 (7.5)
i=l 1

lie outside the unit circle.

These observations provide the basic arguments for the use and 

applicability of autoregressive models both for power spectrum 

estimation and evaluation of dynamic response characteristics.

7.3 Estimation of an Optimal Autoregressive Model 

7.3.1 Estimation of AR Parameters

Let the time series under observation be a realization of the 

autoregressive process defined by 

n
yk = Vk-i + Vk ’ k = 2, . . . (7.6)

Let {V^} be a white noise sequence^ that is, the are uncorrelated 

with statistics

E[Vk] = 0 and E[Vk2] = a2 for all k. (7.7)

Define the autocovariance function of the stationary process {yk}, 

for lag k, as

\ * E[ytyt+k]- (7-8)

Since {yk> is a real process, the autocovariance function is symmetric, 

and

Yk = Y~k for al1 k. (7.9)
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An important recurrence relation for the autocovariance function 

of a stationary autoregressive process is found by multiplying 

Equation (7.6) by y^_k to obtain

yt-k Vt-iyt-k+ yt-k V
(7.10)

Taking the expected value in (7.10) and noting that y+_|< is independent 

of yt and E[Vt] = 0, we get

^t-k1^ = Si E[yt-iyt-k]- (7'11)

Using definition (7.8), one obtains:

Yk = l a. Yk_i , k > 0. (7.12)
i=l

Dividing (7.12) by yQ3 the correlation at lag zero, one obtains the 

normalized recursion relationship

pk = J, aipk-i’ k > 0

where

pk = Yk/Yo’ po 1.

(7.13)

(7.14)

The correlations Yk are computed from the observed time series as

1 N-k „ „

N yi yi+k
(7.15)

1 N

yi = yi “ I ^ y
(7.16)
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where N is the number of measurements. If the data processing is made 

in blocks, then N is the length of a block. Equation (7.13) can be 

written for k = 1, 2, . . ., n giving

p-j = a-! + a2 p-j + . . . + an Pn_1

p2 = al P1 + a2 + • • * + an pn-2

‘1 pn-l
+ a 2 pn-2 + a (7.17)

Equation (7.17) is called the Yule-Walker equations.^ ^ The parameters 

a^, i = 1, 2, . . ., n are obtained by solving (7.17). Rewriting this 

in matrix notation, we obtain:

- r " |
P1 1 P1 ... pn_i al

p2 pl 1 ... Pn_2
* • • • • •

a2

• • • • • • • .

pn

• • a • • •

pn-l pn-2 ... 1 a n (7.18)

or p_ = P a_. (7.19)

P is an nxn symmetric Toeplitz matrix (7) Taking the inverse, one

obtains the estimation
A -1 
a = P 1 £_. (7.20)
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In practice, the order n is less than 20. (See the numerical results 

of Section 7.7.) It can be shown that the Yule-Walker estimate is 

equivalent to the least square problem of

min l (yk - l a. yk J2 (7.21)
a k=l K i=l 1 K 1

as N The key point here is that the autoregressive parameters

are the same in a model for the normalized autocovariance function

and in a model for the raw data.

7.3.2 Optimal Order of an AR Model

It is necessary to obtain an estimate of the optimal AR order.

(8)Akaikev ' obtained the following expression as the information 

criterion, and the optimal order n* corresponds to the minimum value 

of this criterion function

Information Criterion = - log(maximum 1ikelihood function) + n.

As n increases, the first term decreases and an optimal order is

obtained. The first term is a function of the squared error, and the

addition of n takes care of the downward bias introduced in the

estimation of the criterion function. The 1ikelihood function can

be evaluated by approximating the distribution of white noise as a

Gaussian distribution. This restriction can in general be removed

(9)by using the result obtained by Caines,' that the strong consistency 

of the maximum 1ikelihood estimation for the Gaussian log-1ikelihood 

is not dependent upon any Gaussian assumption concerning {Vk>.



If the estimate a_ is available, the joint probability density 

for the Gaussian statistic may be used to find the likelihood 

function L as
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L = (Ztto2)2 (exp[- -i- l V 2]} (7.22)
2 a k=l K

where

^ n ^
Vk = Yk - X aiyk_i , k = 1, 2, . . N (7.23)

i =1

is defined as the prediction error associated with the noise sequence. 

The noise variance is estimated from

"2a zz 1
N

N
l

k=l
(7.24)

By varying the AR order n, an optimal value n* is obtained for which 

the information criterion, IC, is a minimum:

IC = - log L + n. (7.25)

7.3.3 Estimation of Power Spectrum

With the knowledge of optimal autoregressive parameters, one can 

obtain the estimate of the power spectrum of the observed noise signal.

a 2 T

S (f) = ------------ ---------- ---- o , |f | < if Hertz, (7.26)
yy n v 2 Q-i27rfkT| <£l

n ” 1 ak e
k-1 K

where

T = sampling time, sec 

f = frequency. Hertz

variance of background white noise.
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The power spectrum given by (7.26) will be periodic with folding 

frequency equal to 1/2T Hertz. S^(f) obtained above is the smoothed 

spectrum and shows the salient features contained in the signal.

7.4 Model Verification

The final and important step in constructing a model is to determine 

whether the assumptions made in the analysis are satisfied within a 

specified confidence level.

The major assumption in the model is that the background noise 

is a white noise sequence. Such a noise process has the property 

that the adjacent points of the series are not correlated. The 

correlation function must have the characteristics of an impulse 

function. The spectrum of the noise sequence must be flat within the 

band 1imi ted by the folding frequency. Several statistical tests are 

enumerated below. For details, see references [5,10].

7.4.1 Autocorrelation Verification Using Prediction Error

If the parameters (a) of the AR model were known exactly, it is 

shown by Anderson'1 J that the estimated autocorrelation p^(V) of the 

noise sequence {V}, would be uncorrelated and distributed approximately 

normally about zero with variance ^ and, hence, have a standard error 

of . In the case when <i is not exactly known, an estimate of the
Sn

noise sequence can be obtained using the prediction error 

n „

Vk = yk " X ai yk-i ’ k = 1 ’ 2’ * * •’1 - I
N. (7.27)
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Knowing {y^} and a_, estimates of are obtained. The autocorrelation

is then determined and plotted. The standard error, —J— , can be used
/N

as an estimate of the deviation of p^V). It is shown by Box and

(12)Pierce' that this value may underestimate the error in p^(V) at low 

lags, but can be employed as a good estimate of the error at moderate 

or high lags. The whiteness of the noise is then checked by comparing

a given number of p. (V) against a 95% confidence level given by ..
/N"

If less than 5% of the autocorrelation functions are within this 

1imit, then the whiteness criterion is satisfied.

7.4.2 ‘'Portmanteau11 Lack of Fit Test

Since taking the y^V) individually and checking their boundedness

is similar to testing a random sequence, an indication is often needed

of whether or not the first few correlation functions taken as a whole

indicate inadequacy of the model. Given the first M correlation

(12)functions from an AR(n) process, it is possible to show ' that

M 9 .
Q = N I y/(V) (7.28)

k=l K

is approximately Chi-squared distributed with (M-n) degrees of freedom 

if the driving function is white. If the model is inadequate, the 

average value of Q will be inflated.

7.4.3 Bandwidth of Residual Power Spectrum

If the noise sequence is pure white noise, its spectrum will be 

flat in the band - -gy £ f £ . The flatness of the spectrum can

be checked by calculating the spectrum of the estimates of {V^} as

follows:
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a. Determine Vk = yk - l a. yk_,
1=1

•, N-k , .
b. Determine Yk(V) = tt l V. V.+k

i=l

A

c. Calculate the Fourier transform of Yk(V) using the equation

Svv(f) - I if I < ip (7.29)
vv k=-M K ^

Since Yk is symmetric (7.29) becomes

M i
Svv(f) = Y0 + 2 l Yk cos 27rftT , |f| < ^ (7.30)

k—1
A

With the knowledge of Yk(V)» $vv(f) may be calculated and plotted.

Satisfaction of all the above three diagnostic checks assures the 

appropriateness of the model and provides the needed confidence in 

the results.

7.5 Estimation of Response Characteristics

In this section, the impulse and step response of dynamic systems 

are derived using fitted autoregressive models.

7.5.1 A First Order System

The standard definition of the time constant is specified with 

reference to a first order system. Consider the following system:

x + ax = u(t). (7.31)

The unit step response for this system with x(0) = 0 is given by 

x(t) - 1 (1 - e'at). (7.32)
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Letting t

4>

gives

(1 - i). (7.33)

That is, when the time t = the value of x(t) attains 0.632 of thea
steady state value. The time required for the step response of a 

stable first order system to attain 0..632 of the steady value 

(x = ~ sec) is generally called the time constant of the system.a
We observe that a closed form expression similar to (7.33) 

cannot be obtained for a system of order greater than one. However, 

one can always define t as the time at which the response of the 

system to a step input will achieve 0.632 of its steady state value.

Such a point on the response curve can be determined numerically.

7.5.2 Impulse and Step Responses from the Autoregressive Model

Consider the AR process determined for a given noise measurement 

n
yk = aiyk_i + vk > k = 1, 2, . . . (7.34)

The dynamics of (7.34) are obtained with the assumption that the driving 

force is a white noise sequence. Hence, it is not valid to replace 

by the step input and evaluate the resulting response. However, the 

above model completely represents the dynamics of the system in terms 

of the AR parameters. Hence, the dynamic information (transient and 

steady state) is given by the poles of the equivalent Z-transform. By 

analogy to a continuous system, one can obtain the impulse response 

of (7.34) as an equivalent initial condition response.
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Consider an nth order continuous system given by

,n .n-1
4JS. + a, -----J- + .
dtn 1 + Vi df + v(t) = u(t) (7.35)

The unit impulse response of (7.35) is given by

XjU) = L-[-
s +

n-1 + . . . + a , s +n-1 n

(7.36)

Now, if one takes the Laplace transform of (7.35) with u(t) = 0
^n-1 /q\

and all the initial condition equal to zero except -—, then
dtn"

one obtains

X(s) x(n“1)(0)

s11 + a-| s11"1 + . . . + an_-| s + an
(7.37)

n-1The response to an initial condition of x (0) = 1 is

(n-1),,J.\ , -1 r (XU 7 (0) = 1 )x (t) = L [—-----V n_1 7------- L
'K"' - Ls" + + . . . + a •> s + a n-1 n

-]• (7.38)

Note that (7.36) and (7.38) are the same. In one case, the impulse 

response is obtained using a unit impulse input; in the other a non­

zero initial condition on the (n-1)th derivative is used. A similar 

scheme applied to the discrete AR model to derive the impulse 

response is used.

A method which approximates the continuous case is obtained by 

using a differencing scheme. The derivatives are approximated as 

follows
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1

2
yk “ yk-l

1 1 
xk " x k-1

xn-1
k (7.39)

By letting x11-^ f 0 and all lower order differences equal to zero, the 

impulse response can be evaluated recursively. Note that (7.34)

cannot be used directly. A new expression in terms of a^, i = 1, . . ., n,

12 n 1and {y^, x x^^, . . ., x^” } is derived. The resulting response 

has the form

yk = A1 yk-l + A2 Xk-1 + A3 xk-l + * * ' + An Xk-T ^7*40^

The coefficients are functions of AR parameters such that the

relationships (7.39) are satisfied. The appropriate initial condition

n 1
response is obtained by setting the initial value of xn" = 1 and all 

other terms in (7.40) equal to zero.

Computation of A^. is illustrated for a fourth order system. Consider

Jk “ 91 y|<-1' <7'41)

Define the following:

2 _ 1 2
x k x k " x k-1 (7.42)
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x k-1 yk-l “ yk-2

yk-2 = yk-l " x k-1

x k-1 " x k-1 “ x k-2 k-1 ^yk-2 " yk-3^

xlk-l “ (yk-l ‘ xlk-l} +yk-'

yk-3 yk-l " 2x k-1 + x k-1

3 _ 2 2
( k-1 x k-1 " x k-2

= x2 - (x1 - x1 )x k-1 lx k-2 x k-3;

= x k-1 " ^yk-2 " yk-3^ + yk-3 " yk-4 

= x k-1 " ^yk-l " x k-1^ + 2^yk-l " 2x1k-1 + z 

yk-4 = yk-l “ 3x1 k-1 + 3x2k-l “ x3k-T

Using (7.43) - (7.45) in (7.41) gives

yk = (al + a2 + a3 + a4) yk-l “ (a2 + 2a3 + 3a4} x1k 

+ + 3a^) x ^_i - x ^_-j.

Thus,
1 2

y, = A. y, + A0 x , + A0 x . . . . 3Jk l ^k-l 2 k-l 3 k-l + x ^

A] = al + a2 + a3 + a4> A2 = - (a2 + 2a3 + 3a^) 

A3 = a3 + 3a4, A4 = - a4.

(7.43)

(7.44)

k-l^ " yk-4 

(7.45)

l

(7.46)

(7.47)
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It should be noted that results that agree quite well with results 

obtained by the above procedure for setting initial conditions are 

obtained by simply using (7.34) with = 0 and y(initial) = 1.

Of course, this does not have the analytical basis of the above 

method, and could not be relied upon universally.

7.5.4 Computation of Step Response

Once the impulse response is determined as outlined in (7.5.3), 

the step response is derived by integrating the impulse response

A simple trapezoidal integration scheme is used to evaluate the step 

response since the integrand is available only at sample points.

7.6 Verification of the Method Using Simulated Systems

In this section, the methods discussed above are illustrated for 

three known systems.

7.6.1 Second Order System with Equal Poles

The following continuous system is considered:

The response is generated by sampling a continuous response due to 

an input to this system obtained from a random number generator at 

At = 0.05 sec. A total of 4000 samples was used.

x(t) = /q Xj(t) dx. (7.48)

(7.49)

Figures 7.1 through 7.6 show the results.
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Figure 7.2 Autocorrelation Function for Data of Figure 7.1.
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Figure 7.3 Power Spectrum Obtained Using AR (n=3) Parameters for Signal
of Figure 7.1.
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Figure 705 Impulse Response Calculated using AR (n=3) Parameters for
the Signal of Figure 7.1.
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Figure 7.6 Step Response Calculated Using the AR (n=3) Parameters
for the Data of Figure 7.1.
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Results: The true system time constant is 2.1436 sec and the estimated

time constant is 2.2058 sec. The optimal autoregressive model is:

Yk = 1.8118 yk_1 - 0.7295 yk_2 - 0.08472 yk_3 + Vk. (7.50)

7.6.2 Second Order System with Unequal Poles

S(s) = (s+x^Xs+z) • (7.51)

Optimal AR order = 4. Figures 7.7 through 7.12 give the results for 

this case. The analysis was based on 4000 samples with a sampling 

interval of .05 sec.

Results: The true system time constant is 1.5848 sec and the estimated

time constant is 1.6465 sec. The optimal autoregressive model is:

Yk = 2.1218 yR_1 - 1.4159 yk_2 + 0.34375 yk_3 

- 0.05322 yk_4 + Vk> (7.52)

7.6.3 Fifth Order System

G(s) - (s+i) (s+2) (s+3) (s+4) (s+5) (7.53)

Figures 7.13 through 7.18 show the results. The analysis was based 

on 4000 samples with a sampling interval of 0.05 sec.

Results: The true system time constant is 2.4341 sec and the estimated

time constant is 2.3288 sec. The optimal autoregressive model is:

Yk = 1.3616 y|<_1 - 0.07813 yk_2 - 0.076424 yR_3

- 0.07228 yk_4 - 0.06207 yk_5 - 0.02872 yk_g (continued)
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Figure 7.7 Output Noise Signal for a Second Order System with Transfer 
Function -j

= (s+2y .G(s)
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Figure 7„8 Autocorrelation Function for Data of Figure 7.7.
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Figure 7.9 Power Spectrum Obtained Using AR(n=4) Parameters for Signal
of Figure 1J.
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Figure 7.11 Impulse Response Calculated Using the AR (n=4) Parameter
for the Data of Figure 7„7.
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Figure 7.12 Step Response Calculated Using the AR (n=4) Parameters for
the Data of Figure 1.1.
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coi

Figure 7J3 Output Noise Signal for a 5th Order System with 
Poles (Equation (7o53)).

Distinct
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Figure 7.14 Autocorrelation Function for Data of Figure 7.13.
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Figure 7.15 Power Spectrum Obtained Using AR (n=ll) Parameters for
Signal of Figure 7.13.
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Figure 7.16 True Step Response for System with G(s)
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Figure 7.17 Impulse Response Calculated Using the AR (n=ll) Parameter
for the Data of Figure 7.13.
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Figure 7.18 Step Response Calculated Using the AR (n=ll) Parameters
for the Data of Figure 7.13.
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-0.06673 y^_-j - 0.0186 y^g - 0.007828 g

-0.0354 7k_10 + 0.08276 y^^ + Vk. (7.54)

7.7 Response Characteristics of an RID at Millstone 2

The results presented here are based on the RID data obtained from 

data collected from the hot leg at the Millstone 2 PWR.

Figures 7.19 through 7.23 represent results similar to those 

discussed in Section 7.6 for AR order = 11. The analysis is based on 

4000 samples with a sampling interval of 0.125 sec. The estimated 

time constant is 5.01 seconds. The optimal autoregressive model is:

Model Validation: Verification of the AR model derived for the noise

analysis is made using the tests discussed in Section 7.4.

Figure 7.24 shows the plot of prediction error

yk = 0.93955 yk_1 - 0.14417 yk_2 + 0.40174 yk_3

- 0.16557 yk_4 + 0.11612 yk_5 - 0.06816 yk_6

+ 0.07955 yR 7 - 0.16772 yk g + 0.03604 yk g

- 0.09963 yk_ig + 0.05784 yk_i-| + Vk« (7.55)
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Figure 7.19 Output Noise RID Data from Millstone 2
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Figure 7.20 Autocorrelation Function for Data of Figure 7.19.
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Figure 7.21 Power Spectrum Obtained Using AR (N=ll) Parameters for 
Signal of Figure 7„19.
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Figure 7.22 Impulse Response Calculated Using the AR (n=ll) Parameters
for the Data of Figure 7.10.
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Figure 7.23 Step Response Calculated Using the AR (n=ll) Parameters 
for the Data of Figure 7.19„
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Figure 7.24 Prediction Error for Mill stone 2 Data
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The variation in this estimate is within ± 1.96 a where the estimated 

value of a = 13.75. Less than 5% of the residual sequence is outside 

this range.

Figure 7.25 shows the autocorrelation function of the prediction 

error based on N = 4000. The ±1.96//N bounds for a 95% confidence

1evel is

/N

From the figure, one can determine that the autocorrelation functions 

lie within this range, thus verifying the whiteness of the noise 

disturbance.

The portmanteau test is applied for the first 60 correlation
p

functions. The x -test index 

60 . 9
Q = N l yJVr = 59.79. 

i=l K

2
The x value for degrees of freedom M - n = 60 - 11 = 49 is obtained

2
from a table of percentage points of x values.

For 5% tail area, x^g = 66.26.

For 10% tail area, x^g = 61.98.

2
From the values of x for 90% and 95% levels, it is clear that the 

value of Q on an average will 1ie within the 1imits, thus satisfying 

the "portmanteau" test.

The power spectrum of the estimated noise sequence was computed 

and is shown in Figure 7.26; the flatness of this spectrum is a further 

indication that the assumption of whiteness is valid. The verification
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Figure 7„25 Autocorrelation Function of the Prediction Error for the
Millstone 2 Data.
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Figure 7.26 Power Spectrum of the Estimated Noise Sequence for the 
Millstone 2 Data.



129

of these tests provides confidence in the appropriateness of the 

autoregressive model and the associated response characteristics.

The comparison of the power spectrum obtained from direct FFT 

shows that the break frequency obtained by the intersection of low 

frequency and high frequency asymptotes coincides with the break 

frequency of the AR spectrum and is equal to 0.05 Hz. The AR spectrum 

is smooth and coincides with the overal1 spectrum obtained from FFT.

The FFT computed spectrum for the Millstone 2 hot leg RTD appears in 

Figure 7.27.

It should be noted that the power spectral density for a Mi 11 stone 

2 cold leg RTD shows strong evidence that the driving function is 

not white. Figure 7.28 shows the spectrum of the cold leg RTD signal. 

The result from a time series analysis gives a time constant, x = 2.5 

sec. This is much smal1er than the hot leg RTD response time of 

x = 5.01 sec. The calculated spectrum of the residual noise is shown 

in Figure 7.29. This indicates that the noise perturbation is not 

white. It is possible that the non-whiteness is caused by the feedwater 

controller and/or the primary pump. If the spectrum of the driving 

function is significantly non-white in the bandpass of the sensor 

dynamics, the method is invalid. Thus, it is assumed that the 2.5 

second time constant obtained for the cold leg RTD is invalid.

7.8 Concluding Remarks

In the preceding sections, it has been shown that the time series 

obtained from systems driven by white noise can be successfully 

modeled by an autoregressive process of appropriate order. The 

computational requirement to find the AR(n) parameters is comparable
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to or better than other methods. For example, computations required 

for Fast Fourier Transform (FFT) techniques and the Yule-Walker 

equations are compared for a 10th order AR model as follows.

No. of multiplications for 10th order AR model = ION.

No. of multi piications for FFT = 3N logg N.

where N is the block length. As N increases, the number of multiplications 

for FFT calculation increases as a nonlinear function of N.

The response characteristics derived in this chapter use digital 

numerical computations requiring no assumptions, other than that of 

white driving noise to construct the AR process. No geometric 

constructions or approximations are necessary. Hence, the technique 

developed can be adapted easily for on-line periodic checking of 

sensor response characteristics in nuclear power plants.

Further experience with this method will be obtained in the near 

future using noise data collected at the Oconee 3 plant for three 

different RTD's.
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8. SUMMARY AND CONCLUSIONS

Three methods for measuring the response time of installed 

platinum resistance thermometers have been developed. These methods 

are: the loop current step response method, the self-heating method,

and the noise analysis method. They have been tested in the laboratory 

and in two operating pressurized water reactors.

The loop current step response (LCSR) method involves analysis 

of the transient that occurs following a step increase in current 

through the sensor filament. Currents of 40 to 60 ma give temperature 

rises of 10 to 20 degrees Fahrenheit. These values are suitable for 

in-plant testing and result in no deleterious effect on the sensor.

The analysis of the LCSR data to obtain the desired response 

time for a fluid temperature step may be approached analytically or 

empirically. The analytical transformation has been developed and 

implemented, but has been found to have restricted uti1ity because it 

depends on two essential assumptions:

1) predominantly one-dimensional heat transfer

2) centrally located filament.

These assumptions appear to be satisfied for sensors for the type that 

are common in PWR's manufactured by Combustion Engineering, Inc. and 

Babcock and Wilcox Company, but not for those commonly found in 

Westinghouse plants. Another problem with the analytical transforma­

tion is the accurate identification of the exponential coefficients 

that govern the LCSR transient and which are essential for constructing 

the estimate of the response time.
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When the analytical transformation fails, it is possible to use an 

empirical transformation. Sensor degradation is simulated in the 

laboratory using artificial augmentation of the heat transfer 

resistance at the surface of the sensor. Plunge tests and LCSR tests 

are performed for a number of surface conditions, and a time constant 

is obtained for each. A plot of the piunge time constant as a function 

of the LCSR time constant provides an empirical correlation. For 

in-plant applications, LCSR tests could be performed, the LCSR time 

constant could be determined, and the plunge time constant could be 

read from the curve. The method depends on the following:

1. simulated sensor degradation using augmented surface heat 

transfer resistance adequately represents the degradation 

that is plausible in an operating sensor,

2. measurements made at room temperature and at low flow rate in 

the laboratory are suitable for establishing an empirical 

relation that is valid at PWR operating temperature and

flow rate

3. experimental measurements of the LCSR time constant can be 

made accurately enough to indicate smal1 changes in the 

plunge time constant.

The self-heating method involves measurement of the steady state 

temperature (resistance) increase as a function of I R power generated 

in the sensor filament. Increased time constants resulting from 

increased heat transfer resi stance are indicated by a 1arger temperature 

rise for a given power generation. Imp!ementation of this method involves
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measurement of the slope of the self-heating curve (temperature rise 

vs. power generation) to obtain an empirical relationship between the 

plunge time constant and the slope of the self-heating curve. This 

relationship may be generated in the laboratory using augmented 

surface heat transfer resistances as with the LCSR empirical transfor­

mation. In-plant implementation could involve: (1) measurement of

the change in electrical resistance as a function of power generation 

in the sensor filament, (2) evaluation of the slope of the self­

heating curve, and (3) using the empirical transformation curve to 

estimate the plunge time constant. The method depends on the following:

1. simulated sensor degradation using augmented surface heat 

transfer resistance adequately represents the degradation 

that is plausible in an operating sensor,

2. measurements made at room temperature and at low flow rate 

in the laboratory are suitable for establishing an empirical 

relation that is valid at PWR operating temperature and 

flow rate,

3. experimental measurements of the slope of the self-heating 

curve can be made accurately enough to indicate small changes 

in the piunge time constant,

4. change in the effective heat capacity (which is not revealed 

by the self-heating test) is not a plausible degradation 

mode for a platinum resistance thermometer.

A successful self-heating test was performed in an operating PWR, 

suggesting that the measurement is experimentally feasible in operating 

plants.
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The noise method involves analysis of the fluctuating part of the 

signal that occurs in normal sensor outputs. A method based on time 

series analysis has been developed and tested. It involves estimation 

of the impulse response then integration of the impulse response to 

obtain the step response. The time constant is simply read from the 

step response curve. The only assumption in the method is that the 

temperature fluctuations responsible for the fluctuating output is 

completely random (white noise). Measurements in an operating reactor 

indicate that this assumption is valid for a hot leg sensor, but not 

for a cold leg sensor. The cold leg temperature fluctuations are 

influenced by the steam generator and the primary pump.

In general, the work reported here shows that there are at least 

three methods that can give the required response time. They differ in 

terms of situations in which they are valid, complexity, and cost of 

implementation. However, the limitations of each method are well 

understood, and matching a testing method to a given plant appears to 

be possible. Early applications should probably involve redundant 

measurements using different methods, but experience should reduce 

the need for this approach.
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