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FOREWORD

This key phase report summarizes the first of a two year effort
by the University of Tennessee to develop techniques for verifying
resistance temperature detector (RTD) time response capability in-situ.
EPRI support for this project is motivated by requirements for check-
ing sensor time responses in nuclear plant safety systems and lack of
a practical means of doing so.

In the report three methods for verifying (RTD) response capa-
bilities are described: (1) loop current step response; (2) static
self-heating; and (3) noise analysis. Theory, application and initial
experimental results establish the strength and weaknesses of each method.

The Toop current step response (LCSR), which provides an equiva-
lent step response by transformation, is relatively simple to carry out.
Although this report (p. 52) states that the LCSR method will not work
for Rosemount 176 KF Temperature sensors, laboratory and in-plant
testing subsequent to preparation of this report indicates this conclu-
sion is in error. The problem has been traced to the software used in
digital reduction of the test data. Recent results suggest that esti-
mates of (63%) time constants for plunge test using the LCSR approach
are accurate to within approximately 0.1 sec.

The self-heating approach is the simplest of all methods but does
not provide an absolute measurement of RTD response. Moreover, the
measurement is static, providing no information as to variation in

sensor heat capacity.
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Noise analysis is completely passive and can be done on-line.
However, data processing and statistical estimation are complex procedures.
The technique may be Timited by inability to reliably distinguish between |
sensor and process dynamics.
Subsequent project work will seek to refine both the self-heating
and the loop current step response methods to facilitate plant appli-
cation by utility personnel., Test instrumentation design and test
procedures will be provided along with results from additional in-plant
tests at Westinghouse, Babcock and Wilcox, and Combustion Engineering
units. The in-plant data, augmented by laboratory calibrations, should
enable ready comparison and confirmation of field test results.
Two related projects concerned with sensor response time have
been undertaken by EPRI. The Nuclear Services Corporation has com-
pleted a project concerned with safety-related pressure transducers.
Results were published as EPRI report NP-267. A project with Babcock
and Wilcox Company is devoted exclusively to response verification of
pressure and temperature sensors using the process noise approach.
The work by Babcock and Wilcox is on-going and will be documented

by a final report when completed.

D.G, Cain
Project Manager
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ABSTRACT

This report provides interim results of Research Project 503-3,
concerned with in-situ resistance temperature detector (RTD) time
response verification. The report covers the theoretical bases,
laboratory experimentation, and limited in-plant testing of three
prospective methods. Sensors employed in this project represent
those which are presently employed in safety-related applications in

the field, namely Rosemount models 176KF, 177GY, and 104AFC.



ACKNOWLEDGEMENT

The help of a number of individuals and organizations is gratefully
acknowledged.

R. L. Shepard and R. M. Carroll of Oak Ridge National Laboratory
contributed significantly through their discussions and by arranging
for equipment loans.

Florida Power and Light and Duke Power Company permitted testing
in their nuclear power plants.

Combustion Engineering, Inc., Florida Power and Light Company,
and Duke Power Company provided platinum resistance thermometers for

laboratory testing.

vi




. TABLE OF CONTENTS

Page
1.0 INTRODUCTION . ¢ v v v v v v v v o vt v e e v e s o s o o s 1
1.1 Historical Background . . . . . . ¢ . ¢« ¢« v ¢ v « v o . 1
1.2 Objectives of This Research . . . . . . . . . . . . .. 1
1.3 Approaches for In-Situ Testing . . . . . . . . . . .. 2
2.0 RESISTANCE THERMOMETRY . . . . . ¢« . ¢ v v v v v o o v v o & 5
2,1 Material Requirements . . . . ¢ ¢ ¢ v ¢ ¢ ¢ o ¢« o v o 5
2.2 RID Characteristics . . . . « ¢« v ¢ v v o v v v 4 ¢ o 5
3.0 THE LOOP CURRENT STEP RESPONSE TRANSFORMATION . . . . . .. 16
3.1 Introduction . . . . ¢ ¢ v v v v o v v v v v v o v o 16

3.2 Mathematical Development of the LCSR Transformation . . 18

3.3 Steps in Implementing the LCSR Transformation . . . . . 29

3.4 Theoretical Considerations Regarding the LCSR
Transformation . . . ¢ o o ¢ ¢ ¢ ¢ v 6 v 0 o o 0 0 o 30

3.4.1 Homogeneous RTD Theory . . « « v ¢« ¢« v v ¢ « « & 30

3.4.2 Effect of Non-Homogenieties on Time Response . . 37

2.3 RTD Instrumentation . . . . . & ¢« ¢ ¢« ¢ o ¢ ¢ v ¢ o o & 16
3.4,3 Effect of the Number of Eigenvalues on

Solution Accuracy . . ¢« ¢« o v o ¢ o o o o o o o 41

4.0 LABORATORY FACILITIES . . . & v v o v v v o o o v o o o o 45

| 4.1 Laboratory Capability . . . « . + ¢« ¢« ¢ ¢ ¢ ¢ ¢« ¢ v o« & 45
’ 4.2 Equipment . . . & i .t i et o e e e e e s o e e e o e 45
4.3 Data Collection and Analysis . . . v ¢« ¢« o ¢« o o « o & 48

vii



5.0

6.0

7.0

THE LOOP CURRENT STEP RESPONSE TEST . . . . ¢ « ¢« o « ¢« « « &
5.1 Brief Description of the Testing Method . . . . . . . .
5.2 LCSR Test Procedure . . . . . « ¢ ¢ v v o v o v o o o &
5.3 Development of an Empirical Transformation Using
the LCSR . . . . . . . e e e e e e e e e e e e e
5.4 Laboratory Results from LCSR Tests . . . « ¢« ¢ ¢« ¢ « « &
5.5 In-Plant Results from LCSR Tests . . . . . . . . . . ..
5.6 ConCTusions . v ¢ v ¢ e v v v v et e e b e e e e e
THE SELF-HEATING TEST . . ¢ « ¢ v ¢ ¢ ¢ ¢« v o o v ¢ o o o o @
6.1 Brief Description of the Self-Heating Testing Method . .
6.2 Theory and Principle of the Self-Heating Method
6.3 Development of an Empirical Transformation Using the
Self-Heating Test . . . ¢« ¢« ¢ ¢ ¢« ¢ ¢ ¢ ¢ o o ¢ o o o o
6.4 Laboratory Results from Self-Heating Tests . . . . . . .
6.5 In-Plant Results from Self-Heating Tests . . . . . . . .
THE NOISE ANALYSIS APPROACH FOR SENSOR RESPONSE TIME
MEASUREMENT . . & ¢ v ¢ v v o v i v e i e v e e e v o s v o e
7.1 Introduction . . . . . . ¢« . ¢ . ¢« o . e e e e e e e
7.2 Time Series Models for Noise Analysis . . . . . « « . .
7.3 Estimation of an Optimal Autoregressive Model . . . . .
7.3.1 Estimation of AR Parameters . . . . . . . ¢« . . .
7.3.2 Optimal Order of an AR Model . . . . . . . . . .

7.3.3 Estimation of Power Spectrum . . . . ¢ « ¢« ¢ o &

viii

70
71




Page

7.4 Model Verification . . . . . « v ¢« ¢ o ¢ ¢ ¢ ¢ o o o & 92
7.4.1 Autocorrelation Verification Using Prediction
Error ¢ o ¢ ¢ ¢« ot i ettt e e e e e e e e 92
7.4.2 "Portmanteau" Lack of Fit Test . .. . . . .. 93
7.4.3 Bandwidth of Residual Power Spectrum . . . . . 93
7.5 Estimation of Response Characteristics . . . . . . . . 94
7.5.1 A First Order System . . ¢« ¢« ¢ ¢ ¢ ¢« ¢ « &« & & 94
7.5.2 Impulse and Step Responses from the Autoregressive
Model & & & 4 o v v o e e e e e e e e e e e e 95
7.5.3 Impulse Response Evaluation . . . . . . . . . . 96
7.5.4 Computation of Step Response . . . . . . . . . 99
7.6 Verification of the Method Using Simulated Systems . . a9
7.6.1 Second Order System with Equal Poles . . . . . 99
7.6.2 Second Order System with Unequal Poles . . . . 106
7.6.3 Fifth Order System . . . ¢« ¢ ¢ v & ¢« ¢« « « 106
7.7 Response Characteristics of an RTD at Millstone 2 . . 119
7.8 Concluding Remarks . . ¢« ¢« o« ¢« ¢ o o o o o o o o « o« 129
8.0 SUMMARY AND CONCLUSIONS . . v ¢« v ¢ + v ¢ o ¢ o o o o o o « 134
REFERENCES . & v v v e e e v e & o o o o o o o s o o o o o« oo+ 138

LEGAL NOTICE

This report was prepared by The University of Tennessee, as an account of work
sponsored by the Electric Power Research Institute, Inc. (EPRI). Neither EPRI,
members of EPRI, The University of Tennessee, nor any person acting on behalf
of either: (a) makes any warranty or representation, express or implied, with
respect to the accuracy, completeness, or usefulness of the information con-
tained in this report, or that the use of any information, apparatus, method,
or process disclosed in this report may not infringe privately owned rights;

or (b} assumes any liabilities with respect to the use of, or for damages

resulting from the use of, any information, apparatus, method, or process
’ disclosed in this report.

ix



1.0 INTRODUCTION

1.1 Historical Background

The response time has been considered an important property of
resistance temperature detectors (RTD's) since their early use for
industrial temperature measurement. Classically, the response was
measured prior to installation in the plant utilizing a measurement
that involved plunging the sensor into flowing water. The time constant
was usually defined as the time required to reach 63.2 per cent of the
final response following a step change in fluid temperature.

The Nuclear Regulatory Commission added a new dimension to sensor
response time measurement when it recommended that utilities operating
nuclear power plants make in-situ time response measurements of sensors
installed in the plant. This recommendation was promulgated in U. S.

Nuclear Regulatory Guide 1.118.

1.2 Objectives of This Research

The research reported herein has the objective of developing a method
for in-situ response time testing of platinum resistance thermometers of
the type used in modern pressurized water reactors. The test is only
required to show that the response time is Tess than a specified
maximum allowable value; but, of course, actual determination of the
response time is also acceptable. In addition, the testing method should
have these characteristics:

1. Technical acceptability so as to receive Nuclear Regulatory

Commission approval
2. Minimal cost for special equipment

3. Minimal complexity.
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1.3 Approaches for In-Situ Testing

Several methods are plausible for in-situ testing of resistance
temperature detectors (RTD's). The two broad categories are: (1) fluid
temperature perturbations external to the RTD, and (2) internal
perturbations of the RTD by ohmic heating in the sensing wire. Applicable
methods related to fluid temperature perturbations involve:

1. analysis of the fluctuations in the sensor output during normal

operation (noise analysis)
a. using time series analysis
b. using frequency domain analysis
c. using correlation function analysis(])
2. analysis of induced temperature fluctuations
a. using control rod motions to cause power changes and
concomitant temperature changes
b. using steam valve or feedwater valve perturbations to induce
primary fluid temperature changes

c. using special Tocal devices near the sensor such as fluid

injection ports or small electrical heating elements.
Those related to internal perturbations include the analysis of:
1. a transient sensor output induced by above-normal current that
causes ohmic heating of the sensor filament (usually called a
loop current step response test)(2’3)

2. the steady state measurement of temperature rise vs. ohmic heating

Tevel in the sensor filament (usually called a self heating test).
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In this report, the methods considered are:

1. noise analysis (using time series analysis)

2. the self-heating test

3. the loop current step response (LCSR) test.

These methods are used since they require no system modification and can
be accomplished with a modest investment for test equipment. Induced
fluid temperature perturbations are omitted because: (a) transients
induced with control rods, steam valves or feedwater valves involve test
complexity that is probably unnecessary for sensor response measurement
(though these methods may be useful for measuring lags due to by-pass
lines used for some sensor installations), and (b) special in-pipe
hardware would involve an expensive plant modification that is
unwarranted. Furthermore, testing by a remove-and-test procedure or a
simple periodic replacement is ruled out because these methods ignore
the important effects of the environment in the pipe where the measure-
ment is to be made.

Noise analysis is a well established diagnostic procedure. It is
used herein to identify the sensor dynamics so that an impulse response
can be obtained. Knowing the impuise response, one can readily
determine the step response. Consequently, the time constant associated
with a plunge test can be identified. Details relating to the application
of noise analysis for this research are given in Section 7.0.

The physical basis for the self-heating test is that the temperature
rise in a system with a given internal heat generation rate is inversely
proportional to the overall heat transfer coefficient. Thus, the slope
of the curve of temperature rise versus heat generation rate due to

ohmic heating in the sensor element (the self-heating curve) is inversely
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proportional to the heat transfer coefficient. A change in the slope of
the self-heating curve indicates a change in the heat transfer resistance.
A change in effective heat capacity of the RTD system would change the
response time, but would not change the slope of the self-heating curve.
However, only a change in the heat transfer resistance is considered
plausible. Additional details pertaining to the self-heating method

are given in Section 6.0.

The loop current step response (LCSR) test exploits the fact that
heat transfer resistances and heat capacities are independent of the
direction of heat flow. Thus, the same heat transfer characteristics
control the transient response following a change in ohmic heating in
the sensor that control the transient response following a change in
fluid temperature change. Of course, the transients are not the same
for both perturbations. For a fluid temperature change, the heat must
diffuse through the assembly to the sensing wire. For an ohmic heating
change, the heat is generated exactly at the point of measurement, then
it diffuses through the sensor assembly to the fluid.

Since the response to a fluid temperature change is desired and the
response to a change in ohmic heating is feasible in an installed RID,
there is a need to transform the ohmic heating transient into the transient
that would occur if the fluid temperature changes. This has been done
for the case of a step change in ohmic heating and is referred to as the

(4)

loop current step response transformation. The transformation may be
performed analytically for RTD's that meet two conditions necessary in

the theoretical development (predominately one-dimensional heat transfer

and a centrally located sensing wire). For sensors that do not meet these '
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conditions, empirical transformations obtained from laboratory results

may be used. Details of the LCSR method appear in Section 5.

2.0 RESISTANCE THERMOMETRY

2.1 Material Requirements

Resistance thermometry exploits the temperature dependence of metals
to monitor temperature. Desirable properties of materials for resistance

thermometry are:

—
.

large temperature coefficient of resistance
2. Tlinear curve of temperature vs. resistance
3. chemical inertness

4, ductility

5. mechanical strength.

Platinum is an excellent material to provide these characteristics, and

most industrial resistance thermometers use platinum wire as the sensing

element.

2.2 RTD Characteristics

An RTD usually consists of a fine platinum wire wound on a support
structure mounted inside a metal sheath (usually stainless steel) that
is back filled with magnesium oxide. The support structure is designed
to minimize stress on the wire because stress affects the sensor perfor-
mance. Magnesium oxide is used to provide electrical isolation of the
sensing wire from the sheath and to provide thermal coupling between
the wire and the sheatn. The magnesium oxide is compacted, often by
centrifuging after filling the sheath with magnesium oxide powder

during construction.
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RTD's may be designed for direct immersion into a fluid stream (wet
type) or for installation into a well in the stream (well type). To
improve the heat transmission in well-type sensors, a thermal bounding
material is often used in the gap between the sheath and the well.

The sensors found in pressurized water reactors manufactured by
different vendors are quite different. Table 2.1 gives specifications
on some of the commonly-used sensors. Figures 2.1 through 2.4 show these
sensors and X-rays to reveal their internal characteristics.

The resistance element is connected to lead wires that connect to
appropriate instrumentation. Sensors may be constructed with the lead
wire configurations shown in Figure 2.5. The multiple lead and dummy
wire configurations are used in measurement systems to compensate for
lead wire resistance to obtain accurate temperature measurements. RTD's
are made with single sensing elements per sheath and with dual elements
that allow two independent measurements with the same sensor.

The temperature coefficient of resistance of pure annealed
platinum wire is 0.003925 2MS/°¢ (0.002181 2MS/oF) . By selecting
the wire length and diameter, one can obtain various values of absolute
resistance at any temperature. Standard sensors have 100 ohms at 0°C
or 200 ohms at 0°C. Temperature coefficients depend on platinum purity,
and commercial sensors usually have slightly smaller temperature
coefficients than pure platinum. A pure platinum 100 ohm sensor would
have a temperature coefficient of 0.3925 ohms/°C (.2181 ohms/°F), and
a pure platinum 200 ohm sensor would have a temperature coefficient of
0.7850 ohms/°C (0.4361 ohms/°F). Temperature coefficients for commercial
sensors are typically 80 to 90 percent as large as for those with pure

platinum elements.




TABLE 2-1
Sensor Number of 2 Wire Resistance
Sensor Model Plants Wet Type Sheath Well Sensing Elements 3 Wire Dummy at 0°F
Manufacturer Number Where Used Or Well Type 0.D. 0.D. Per RTD or 4 Wire Wire? RO(Q)
REC* 177-GY B&W wet .335" --- 2 4 no 100
REC 177HW B&W well .290" 410" 2 4 no 100
REC 104-AFC C.E. well *ke.o 281" 1 2 yes 200
REC 176-KF  Westinghouse wet 375" --- 4 4 no 200

*Rosemount Engineering Company.

**Measurement not available.




Figure 2.la X-Ray of the Rosemount 177GY Sensor.



Figure 2.1b Picture of the Rosemount 177GY Sensor.




Figure 2.2a X-Ray of the Rosemount 177-HW Sensor.
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Figure 2.2b Picture of the Rosemount 177-HW Sensor.
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Figure 2.2a X-Ray of the Rosemount 177-KF Sensor
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Figure 2.3b Picture of the Rosemount 177-KF Sensor.



Figure 2.4 X-Ray of the Rosemount 104-AFC Sensor.
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a) 2 Wire

b) 3 Wire

e L

d) 2 Wire with Dummy

W\

Figure 2.5 Possible Lead Wire Configurations for RTDs.,
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2.3 RTD Instrumentation

The instrumentation used in resistance thermometry is usually a
bridge circuit as shown in Figure 2.6. Various special methods for
connecting multiple-wire RTD's are available, but all use the same basic
Wheatstone bridge circuit. If the two fixed resistors have the same
resistance, Ra’ then the RTD resistance can be determined by finding the
value for the variable resistance, Rd’ that nulls the voltage drop, AV.
If the bridge is used in the non-nulling mode then changes in the RTD
resistance are related to the voltage drop across the two arms of the
bridge by

v - RaRerp) Ry
(R*Ry) (R *Rprp)

Note that the voltage drop is approximately linearly related to the RTD

E. (2.1)

resistance for bridges in which the change in the sensor resistance is
small compared to the sum of the original RTD resistance and the fixed
resistance, Ra'

The voltage, E, used in normal applications is selected to give
insignificant ohmic heating in the RTD. The self heating effect is
quantified by the self heating coefficient expressed in ohms/mw. A
typical value is 8x10"3 ohms/mw for a 100 ohm sensor. For such a sensor
with a 2 ma sensing current, the heat generation rate is 0.4 mw. This
gives a resistance change of 3.2x10'3 ohms with a resulting temperature
measurement error of 8.15x10-3°c. Similar calculations show that a 50 ma

current would give a temperature increase of 5.62°C (10.1°F).

3.0 THE LOOP CURRENT STEP RESPONSE TRANSFORMATION

3.1 Introduction

The result of interest is the time constant associated with a

step change in fluid temperature external to the sensor. The time
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RTD

Figure 2.6 A Typical Bridge Circuit Used in Conjunction with an RTD,
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constant is defined to be the time required for the sensor output to
reach 63.2 percent of its final steady-state value after a step change
in fluid temperature. This time constant is usually obtained from a
plunge test in a laboratory environment. Since the plunge test cannot
be used to obtain the time constant of an installed RTD, the LCSR test
is proposed as one method to obtain an estimate of the desired plunge
test time constant.

A transformation is needed to convert LCSR data into a prediction
of the response that would occur following a fluid temperature step
change. The transformation may be developed using a general nodal
model for sensor heat transfer. The development is independent of the
number of nodes included in the model, so use of this approach does
not imply any restrictive assumptions. The following sections give some
details on RTD heat transfer that permit formulation of a transformation

and that define the conditions for validity of the transformation.

3.2 Mathematical Development of the LCSR Transformation

An analytical transformation for converting loop current step
response (LCSR) test results into plunge test results may be developed
using a general nodal model for sensor heat transfer. Consider first a
system with predominantly one-~dimensional heat transfer. In this case,
the nodal model may be represented schematically as shown in Figure 3.1.
The accuracy of such a model may be made as great as desired by using

‘enough nodes.
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i-1 i i+1

Figure 3.1 Schematic of a One-Dimensional Node-to-Node Heat Transfer
Model.
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The dynamic heat transfer equation for node i is: ‘
(MC) T (T, 1 = T,) == (T, = T...) +Q (3.1)
i dt R: 1 i-1 i Ry ~ 1 i+l i : 4
where Qi = heat generation rate in node i
Mi = mass of material in node i
Ci = specific heat capacity of material in node i
R, = heat transfer resistance for node i-1 to node i
T, = temperature of node 1i.

1 = L
TE T 24,041 Tia1 7 3,0 T T 30 T Y050 (3.2)

where

i i-1
1 1 1
a, . = (— + 5)
i,i (MCii Rio1 Ry
3 - 1
i, i+l MC). R,
i

o1
bi T Ty
The nodal equations may be applied to a series of nodes, starting
at the node closest to the center (i=1) and ending with the node

closest to the surface (i=N). The equations have the form:

|

T - Ty tayp Ty by

, dr, ‘
qo " Ty~ Tyt a3 T3+ by 0 ‘



where

where

3

Jo T 3p Tp - 33 T3t ag, Ty +byQy

dT,

&7 ANLN-1 TN-1 T AN TN T OnETE T By Qy

TF = fluid temperature.

These equations may be written in matrix form:

dX - 5 3 = =
T Ax+Bg+c TF
T] -a]] a12 0 0
Ty 351 "8y, dy3 0
T3 0 a3y -azg3 2y
X=1. A= .
b, 0 0 .. (Q]
0 b 0 . e Q
B = 2 a___ 2
0 0 by . 0,
bN*

(3.3)

T L T
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Laplace transformation gives:
[sI-A] X(s) = ¢ Tp(s) + B q(s). (3.4)

The Laplace transform solution for the response of any node, X;s May
be found using Cramer's rule. Let us consider several cases:

1--central node, no heat generation in any nodes, fluid temperature

perturbation, one dimensional heat transfer

_ __F(s)
T](S) = Tm—l" (3.5)
where
0 --a]2 0 0
0 (stapy) -a,3 0
0 ~33 (stagz) -ag
F(S) - 0 O "a34 (S+a44) s @
Cy,FTE(s) - : . A ne1 ST
(3.6)
This may be written
-a12 0 0
(s+a22) -259 0 .
_ ()| 232 (stagz) -ag,
F(S) = CN,F TF(S) (-]) .
“AN-1,N-1

(EL‘II'
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This determinant is for a matrix in lower triangular form (A1l elements
above the diagonal are zero). The determinant is given by the product
of the diagonals, all of which are constants. Therefore, for a fluid
temperature perturbation in a one-dimensional heat transfer system,

the response of the central node is characterized by a transfer
function with no zeroes. If the sensing element in an RTD is centrally
located, then this type of transfer function describes the response
characteristics of the sensor.

The transfer function may be written

T,(s) X
TF(S) ISI—A[
_ K
 (s=py) (s-p,) . L (3.8)
where
p; = poles (identical to eigenvalues of A).
For a unit step change in TF’ TF(s) = %3 and we may write:
Ty(s) = - (3.9)

s(s-p]) (s-pz) . ..
Inversion of this Laplace transform using the residue theorem gives:

Pyt

NS o3 B % R o I X I CRE % R
Pt

e
MR N (3.10)

Thus, we make the following important observation:
For an RTD with predominantly one dimensional heat

transfer and a centrally located sensing element,
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the poles alone (no zeroes) are adequate to

characterize the response to a fluid temperature

change.
The implication is that if one can identify the poles by some other test
(such as the LCSR), then he can construct the response to a fluid
temperature step.
2--non-central node, no heat generation in any nodes, fluid temperature
perturbation, one dimensional heat transfer.

This case may be analyzed for the response of any non-central node,
but for notational simplicity, let us consider the response of the

second node. In this case

Tols) = TE%%%T (3.171)

where
(5+a'”) 0 0 0
=31 0 ;a3 0
0 O (S+a33) "a34 s o e
F(S) = ° . 'Y e e e (3.]2)
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This may be written

(s+a]]) 0 0 0..
"1 T3 00
0 (s+a33) ;ag, 0. ..
F(s) = Gy g Te(s) (0B . N B ERE

Again, we observe that the matrix is triangular, but the diagonals
are not all constant. In this case, the transfer function will have
one zero. For the response of nodes further from the center, there
will be more zeroes. Thus, the poles alone are not adequate to
construct the response for an RTD if the sensing element is not
located at the center.

3--central node, heat generation in central node, constant fluid

temperature, one-dimensional heat transfer

_ _F(s)
T](S) = TsT-AT (3.14)
where
by @ -ayp, O 0

F(s) = _ . . o (3.15)




This may be written

(s+a22) ~a53 0 0 c ..
-332 (S+a33) "3.34 0 e o o

0
F(s) = b.l Q] ] . _ (3.16)

°

In this case, the matrix is not triangular, and the transfer function

will have zeroges.

T;(s) 1 (s=2q) (s-2,) . . . (s-2y)

|

|
The transfer function may be written: '

|

\

G B € I € ) * (3.17)
For a unit step change in Q](Q1(s) = %9, we obtain
1
K (s-z1) (s-zz) . .. (s-zM)
Ty(s) = s(s-py) (s-py) - . . (s-py) (3.18)
Inversion by the residue theorem gives:
p.t
a7 (7)o (g (py2y) (p]-z2> . (py-zpe
LI e i o s o E IV 2 B P
( -z, ) (Py-2,) « . . (py~zy) Pt
P2 2 %2 i A A (3.19)

* ) (p2 Pyl - (pz-pN)

Note that the response is determined by the zeroes as well as the poles.
However, the poles are the same as for the fluid temperature change
case. Thus, if we can identify the poles from a LCSR test, we can

construct the equivalent fluid perturbation response using Equation (3.10).
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4--central node, no heat generation in any nodes, fluid temperature
perturbation, multi-dimensional heat transfer,

In this case, there is branching in the heat transfer (see Figure 3.2).
This means that the temperature of a node may be influenced by more
than just two neighboring nodes as in the one-dimensional case. In
the one-dimensional case, all of the elements of the A matrix are on
the diagonal or in the position adjacent to the diagonal. In the
multi-dimensional case, coupling terms appear in other positions

(always symmetrically positioned around the diagonal). Thus F(s) may

be written
- *
0 a]z * . e W
"a32 (S+a33) "'a34 « o o
L] * * * ° ® °
F(s) = (3.20)
CN,FTF(S) . . . ..
where

* = possible new coupling terms.
In this case, the matrix is not triangular and zeroes can occur. This
means that the availability of the poles through some sort of measure-
ment is not sufficient for construction of the response to a fluid

temperature step.
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Figure 3.2 Schematic of a Multi-Dimensional Node-to-Node Heat Transfer
Model.
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‘ 3.3 Steps in Implementing the LCSR Transformation

The steps for obtaining the plunge test time constant are:

1. perform a LCSR test

2. identify the poles associated with the LCSR data

3. construct the step response for a fluid temperature perturbation

using Equation (3.10).

A key element is identification of the poles by analysis of the
LCSR transient data. This is a classical fitting problem that has
been investigated extensively in the past. Techniques such as
exponential peeling are widely used, but, in general, identification
of exponential coefficients from transient data is a difficult
numerical problem.

A computer program for the PDP-11 has been written that estimates
the poles then constructs an estimate of the plunge time constant.
This program 1is operational, but development is continuing to find
the most suitable pole-fitting procedure.

One method to help in the pole-fitting problem has been proposed
by Carroll of Oak Ridge National Laboratory. He observed that for
a centrally located sensor in a cylindrical sensor with small
surface heat transfer resistance compared to internal heat transfer

resistance, the following relation approximately defines the poles:

p, = pq[1 + (i-1) RI%. (3.21)

This relation is useful because it allows one to estimate higher poles
using fitted values for only two parameters (p] and R). Some of the

‘ limitations of this approach are discussed in Section 3.4.3.
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3.4 Theoretical Considerations Regarding the LCSR Transformation ‘

In this section, some restrictions on the LCSR transformation are
examined. First, the theory of the homogeneous RTD is presented and |
second, parametric effects on RTD time response are evaluated. Next,
the affect of the adiabatic inner surface assumption on RTD's that
have the filament near the outer surface is considered. Also, a homo-
geneous RTD is analyzed considering: (1) the error in the time constant due
to limiting the number of terms in the solution, and (2) the error in
the time constant due to errors in estimates of poles. These considera-
tions allow one to determine: (1) regions where the LCSR transformation
is valid, (2) constraints on the determination of the poles, and (3) error
estimates on the results of the LCSR method.

3.4.1 Homegeneous RTD Theory

In this section, solutions will be presented for two cases: (1) a
homogeneous RTD subjected to a step in heat generated in the filament,
and (2) a homogeneous RTD plunged into a fluid path. The temperature
data obtained from the first case may be transformed using the LCSR
transformation and the results of this transformation can then be
compared with the answer provided by the second analysis. The plunge
test is treated in most textbooks on conduction and is not derived
herein. The loop-current step response is derived to illustrate the
similarities and differences with the plunge test.

The solution given by Equation (3.22) is for the plunge test
considering: (1) a uniform homogeneous RTD, (2) the outer radius to be

R, (3) the filament located at R*, (4) the sensor at an initial
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temperature of T_, (5) a bath temperature of T, and (6) a surface heat
transfer coefficient of h.
T(t) =T, = M Zat/R?
——.I:;——:-—T-;—- = nZ] Bn JO(MH Y‘/R) e (3.22)

where

M) ey
AN G I

n

and
_ 2 J](Mn) T0

- 2 2
"M [9M) + 9 (M )]

B (3.23)

k

thermal conductivity

]

p = density
Cp = specific heat capacity.

The sensor response is obtained by evaluating Equation (3.22) at r = R*,
The solution for the temperature in the sensor prior to the start

of the LCSR test can be obtained from

4 4T 4 s(Rer)

e (3.24)
subject to boundary conditions
T;(r=0) is finite (3.25)
dT
-k —a?~(r=R) = h(Ti(R) -T.) (3.26)

where
Qo is the heat generation rate for t < 0

R* is the radial location of the filament.

*s is the Dirac delta function.




32

At time t = 0, the heat generation rate is changed to Qw.

as t » » the final temperature Tf may be obtained from

dT Q s(R* - r)
Cr—h=-=
dr dr 27R*

Note that

(3.27)

subject to the same boundary conditions as Ti' Thus, the temperature

varies from Ti to Tf as time goes from zero to infinity.

The solutions to these equations are

d *
Ty(r) = T, + o2 [ - HRYR (< e
Q
Tir) = T2 [ - AR (s
and
Q, *
Telr) = Tw+~2~;[;”];‘ﬁ‘&p‘(%&] (r < R%)
Te(r) =T, + 7%'[%5" &Eiflglq (r> R,

The transient is given as the solution to

Q(t) 8(R* - r) _ pC T
ot

%
2mR* K k

1 8 aT
rar (P gp) +

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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where Q(t) = Q_ for t > 0. By defining y = T - T; one obtains

13 (p 2Yy - oC 2
r ar ar k ot (3.33)

subject to boundary conditions

vy is finiteat r =0

- .-a-lp-= -
k = hy at r = R

Y= Ti -T.att=0.

f

The solution to (3.33) is

© -Mrzloct/R2
b= LGy dgMy T/R) e (3.34)

n=1

where again

M) ey
JO(Mn) M

(3.35)
n

and

-0  J.(M R*/R
Ch = Qoﬁk - 0; " 0 5 (3.36)
M, LI (M) + 9y (M )]
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was obtained from the orthogonality condition ‘

R —
I (Ti—Tf) JO(Mm r/R) 2xrdr =

R L2
Iy nz] C, JoM, r/R) J (M r/R) dr. (3.37)

Evaluating both series (Equations (3.22) and (3.34)) at r = R*,
one obtains for the plunge test response
-t
n

K e (3.38)

ne~18

n
and for the loop current step
-t

- o n
TLCS(t) - Tf = nZ] Ln e (3.39)

where A, = ana/RZ and is the same for both cases. The expansion
coefficients are given by

*
_ 2 T0 Jl(Mn) JO(Mn R*/R)

K =
n 2 2
Mn[JO (Mn) + 3, (Mn)]

(3.40)

and

L% m b g Ry

K 201 2rmn 2 ‘
n M “LI,°(M) + 3°(M )]

(3.41)

Note that all the Ln's have the same sign (determined by QO - Qm) whereas
the Kn's may be of the same sign (e.g., when R* = R) or may be of alternating
sign (when R* = 0). Note that the LCSR transformation produces alternating

signs.

One is now in a position to: (1) choose hR/k and R*/R and solve

Equation (3.38) for the plunge time constant Tpe (2) evaluate Equation ‘




35
(3.39) and use these temperatures to find the poles using a fitting
algorithm, (3) perform the LCSR transformation, and (4) compare the
results of the time constant obtained from this transformation with
these theoretical results. This then gives one the opportunity to
evaluate the entire LCSR procedure with data from a theoretical sensor
with a known plunge time constant.

The solutions presented in this section demonstrate that the two
principal parameters are R*/R (the ratio of sensor radius to outer
radius) and the Biot modulus, hR/k (the ratio of conductive resistance
to'convective resistance). For RTD's filled with Mg0, the Biot
modulus can vary from 33 (for water at 70°F and a velocity of 4 ft/sec)
to 200 for water at 500°F and 40 ft/sec velocity (typical reactor
conditions). Thus, the relative convection resistance is extremely small

and conduction is the principal heat transfer mechanism.

Figure 3.3 is a plot of the ratio of the plunge time constant at
selected radial positions to the vaiue at the center (obtained from
Equation (3.38)) for two values of Biot modulus. Note that for the
small Biot modulus, t is approximately independent of filament position,
while for a large Biot modulus, the time constant is strongly dependent
on filament position.

One result should be noted. The eigenvalues, Ays are functions of
hR/k only, and the LCSR transformation (see Section 3.2) uses only these
eigenvalues (poles) to determine the time constant. Thus, no matter
where the sensor is located, the transformation will produce a time
constant that presumes a central location. This appears to be a conser-

vative result since the transformation gives an estimate of the time
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Figure 3.3 Ratio of the Time Constant Evaluated at R*/R (t(R*/R)) to
the Time Constant Evaluated at 0/R Versus the Ratio of
Filament Radius to Sensor Radius.
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constant that is too large, however, analytical corrections should not
be made since the time constant for non-central filament depends on the
Biot modulus, and it is imperfectly known.

3.4.2 Effect of Non-Homogenieties on Time Response

One of the more probable causes of sensor degradation is cracking

of the Mg0 filler material and subsequent separation from the sensor.

Because analytical solutions to the multiregion non-uniform problem

are quite complex, a lumped parameter model is used to study these
effects. The RTD is divided into four Tumps: (1) an inner Mg0 solid
cylinder, (2) the filament, (3) an outer Mg0 cylinder, and (4) a steel
casing. Provision is made to insert a resistance, to simulate a gap:
(1) beiween the center cylinder and the filament, (2) between the
filament and the outer cylinder, and (3) between the outer Mg0 cylinder
and the case. The solution is then obtained: (1) with no gap, (2) with
a gap at each of the above mentioned positions, and (3) with no gap but
the surface heat transfer coefficient reduced a factor of ten.

The lumped parameter equations are

dT
1.1 .
dT. (T, - T.) (T, -T.,)
2 Uy -l 3= T2 .,
PoVly qE = e Q (3.43)
aTy (T, = Tg) Ty - Ty)
o.,v.C = + (3.44)
3°373 dt R23 R34
o v,C My _ (T3 - Ty) + (T5 - T (3.45)
14 0% Raa Res .




where T5 = fluid temperature

1 " by
Rys = 5= [+ an(=—) + ]
12 2m km r1m kar1

A r
1 2 1 3m
Ry = 2 [-2e + 1— an(=")]
2m karz km rs

1 23 1 3 1 "um
34 ?F-[E~7_'+ “—'ﬁn(;”—) + -—'%n(;g—)]

a3 km 3m ks

I Y R
Ras = 2 Lis e )+

15 C e e
r32 * r22 //r4 * ”32
Pim = T/ Y25 Tap = 5 s O =Y T

- 2 -
vy =T, v, = w(r2 -

2

2 -
vy = ﬂ(r3 - Ty ) vy = ﬂ(r4 - r3

k = thermal conductivity of the Mg0
k. = thermal conductivity of the air
k_ = thermal conductivity of the steel
Q = heat generation rate in the filament.

These equations are further simplified by setting Vos the filament volume,
equal to zero. This assumption appears physically reasonable because
the sensor is significantly smaller than other components, and it
simplifies the solution for the eigenvalues.

These equations are next solved in the following fashion: (1)

Equations (3.42) through (3.45) are written in the matrix form

it
a_E_AT.'.B (3.46)
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and (2) the eigenvalues of the A matrix found. These are the same
eigenvalues that would be found from analysis of a Toop current step
test. These eigenvalues (poles) are then used in the LCSR transformation
to obtain a time constant. Next, Equations (3.42) through (3.45) are
solved (using a forward difference technique) subject to initial condition
T =1 for all nodes and for T5 (set to zero). The solution procedes
until the filament temperature drops to e'] at which point the time reaches
the plunge time constant. This simulates: (1) an RTD plunged into a
bath, and (2) the results of a loop current step and LCSR transformation.
Table 3.1 presents the results for a 0.25" diameter RTD. Two
sensor locations, R* = 0 and R* = 0.8R, are presented and a gap 10 mils
thick is used. Note that for the case where the sensor is located at
the center, the plunge and the transformation give results which are the
same within the precision of the calculation, and that for the sensor
placed near the outside of the RTD, the transformation resuits are
always conservative. Similar calculations with different gap sizes and
different sensor locations yield equivalent results.
The results of this calculation together with that for the homo-
geneous sensor lead to the following conclusions:
1. The results of a loop current step test and subsequent LCSR
transformation are valid only for the case where the filament
is located at the center of the RTD.
2. It is not valid to use analytically derived factors to correct
the time constant for filament Tocation since the correction

factor is not constant.
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TABLE 3.1
R*/R =0
RTD Geometry Tp1unge “transformation
No Gap 7.1 6.85
Gap Inside Sensor 6.82 7.07
Gap Outside Sensor 6.90 6.90
Gap Inside Sheath 11.20 10.85
No Gap - h = h/10 8.26 7.95
R¥/R = 0.8
RTD Geometry "plunge Ttransformation
No Gap .68 7.63
Gap Inside Sensor 12 10.78
Gap Outside Sensor 3.40 10.11
Gap Inside Sheath 4,32 11.01
No Gap (h reduced b 1.93 8.60

factor of 10




41
3. The time constant obtained from the loop current step response
test and transformation may be used (uncorrected for geometry)
for all sensors and will produce conservative results. This
procedure may penalize some RTDs severely.

3.4.3 Effect of the Number of Eigenvalues on Solution Accuracy

In this section, the validity of the empirical expression of
Equation (3.21) used to estimate higher poles (eigenvalues) is examined.
This empirical expression, P, = P][l + (i -1) R]z, utilizes the first
two eigenvalues P] and P2 to obtain R, and then subsequent eigenvalues
are obtained from this expression. Table 3.2 presents the results
when this procedure is attempted on the eigenvalues produced in the
non-homogeneous calculation. Examination of the last two columns
clearly indicates that this procedure is invalid when the sensor is
non-homogeneous.

Since the above empirical expression for higher eigenvalues is
not valid, it is necessary to determine the number of eigenvalues which
must be obtained from the fit of the loop current step data. In order
to estimate this number, the following procedure is adopted:

1. Evaluate the plunge time constant from the homogeneous

solution.

2. Using eigenvalues from the homogeneous model, perform the

LCSR transformation with N eigenvalues and obtain a trans-
formation time constant.

3. Compare these results.
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TABLE 3.2
Case 1 ‘2 R *3 K1(1+2R)2 1
1 -.15 -8.5 6.5 -15.1 -48.6
2 -.15 -3.1 3.6 -15.1 -10.0
3 -.15 -6.3 5.5 -15.1 -21.6
4 -.09 -8.8 8.9 -15.0 -31.8
5 -.14 -1.8 2.6 -8.5 -5.33
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Table 3.3 presents the results of this computation for two Biot
numbers hR/k = 1 and hR/k = 100. Two items are noteworthy. First,
all predictions are too small and progressively increase to the true
value, and second, it requires approximately four terms to produce

an estimate within 10% of the true value for hR/k = 100.




TABLE 3.3 .
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hR/k = hR/k = 100 )
N Ttransform/Ttr‘_ue Ttransform/Ttrue
1 .84 .69
2 .93 .83
3 .95 .88
4 .97 91
5 .97 .93
10 .99 .96 1
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4.0 LABORATORY FACILITIES

4.1 Laboratory Capability

A Thermometry Laboratory was established at The University of Tennessee
to test the procedures and equipment for in-situ response time testing of
RTD's. One or more of each of the RTD models used in modern PWR's have been

available for testing in the Thermometry Laboratory.

4.2 Equipment

A brief description of available laboratory equipment follows:

1. A rotating tank (diameter = 22 inches, height = 13 inches) is
used for laboratory response time testing. The fluid velocity
varies from zero at the center of the tank to 4 feet/sec at the
edge. Most tests are performed in the region where the velocity
is about 3 feet/sec. The system is shown in Figure 4.1.

2. A bridge with capability of switching from one current level to
another was built (see Figure 4.2). The switching is by a
relay that can be switched manually or by computer control, The
adjustable balancing resistance is a seven element decade box.
The fixed resistors in the bridge are 500 ohm resistors rated
at 25 watts. This avoids error due to heating in the fixed
resistors when high currents are used.

3. Appropriate amplifiers are used for obtaining useful voltage
levels,

4, A strip chart recorder is used for recording transient data.

5. A PDP-11 computer system is available for transient data storage
and analysis. The computer, which is located in a separate room,

communicates with the instrumentation in the Thermometry Labora-

tory via a permanently installed data 1ink.
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Figure 4,1 Rotating Tank.
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Figure 4.2 Laboratory Testing Bridge Circuit Schematic.
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4.3 Data Collection and Analysis

The LCSR test can be run remotely from the computer room. A
computer program is available that causes the system to switch the
relay, digitize the transient data, and store it in the computer memory.
The transient data may be examined on a CRT display, then transferred
to a disk file if it is to be saved. Subsequently, the LCSR data on
the disk can be transformed to give an estimate of the response that
would occur after a fluid temperature step. This involves estimation
of the system poles using the LCSR data, then constructing the estimate

of the response to a fluid temperature step using Equation (3.10).

5.0 THE LOOP CURRENT STEP RESPONSE TEST

5.1 Brief Description of the Testing Method

During normal operation of a resistance temperature detector (RTD)
a small sensing current, typically 1-5 mA, is passed through the
resistance element, and fluid temperature changes are determined by
measuring the change in resistance of the element. The Loop Current
Step Response (LCSR) test procedure involves imposing a step change in
the sensing current from the steady state value of 1-5 mA to 20-60 mA.
This effectively increases the sensor internal temperature a few degrees
above ambient temperature through ohmic heating. After a steady state
condition is reached, the resistance heating is terminated by returning
the sensing current to its original steady state value. The sensor output

is monitored throughout the transient.



5.2 LCSR Test Procedure

The LCSR test is implemented by switching the supply voltage
from a lower value to a higher value. Figure 5.1 depicts a typical
signal measured during a LCSR test. If the bridge is exactly balanced

initially, Rd = RRTD' The initial voltage output is given by

(R;=Rprn) R
AV - [ d RTD a 0

" MRy (RRero7o Fo (5.1)

where the subscript, 0, denotes conditions during initial low current
operation.

When the current is stepped up, there should be an exponential
change in the voltage output as a function of time. The new steady

state condition is given by,

~

AV = C ARRTD EN (5.2)

where

C=- 4 (assumed ~ constant)
(Ry*Ry) (R Rpqp)

AV

change in AV

Ey

When the bridge voltage, E, is stepped down to its original value at t2,

i

voltage drop across the bridge.

the voltage output decays exponentially to its original value.

5.3 Development of an Empirical Transformation Using the LCSR

For cases when the assumptions apply, the analytical transformation

developed in Section 3 predicts the sensor response to a fluid temperature

step perturbation accurately. If either the analytical transformation
fails for a particular sensor, or the method for implementing it fails

because of difficulties in identifying the poles, another method is
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Figure 5.1 LCSR Test Result with RD = RRTD Initially.
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needed to interpret LCSR results. Because one of the objectives of
this research was to develop an in-situ test usable on all types of
sensors, an effort was made to discover an empirical correlation to be
used in cases where the analytical transformation does not apply.

Experimental results were investigated to determine whether a
unique relationship exists between the fluid temperature step response
and the response to a step increase in internal heating of the gensor.
The two parameters of interest were the time constants in the LCSR test
and in the plunge test. The LCSR time constant, TLCSR® is defined as the
time required for the sensor to attain 63.2% of its final output after a
step change in the internal heating in the sensor. The plunge test
time constant, Tp| » is defined as the time required by the sensor to
attain 63.2% of its final output following the plunging of the sensor
into a fluid at a temperature different from the original steady state
temperature before the plunge.

As previously mentioned, the time response of a sensor is
dependent upon the heat transfer propertiés and characteristics of its
environment. When the heat transfer resistance of a sensor increases,
it follows that the response time of the sensor will increase. Likewise,
when the heat transfer resistance of the sensor decreases, the response
time of the sensor will decrease. It is possible to simulate heat
transfer changes artifically in the sensor environment by placing
insulating material of varying thicknesses around the thermometer. LCSR
and plunge tests can be performed in the laboratory and the resulting

time constants measured.
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The tests may be repeated under many differing simulated heat transfer .

environments. The associated time constants measured at each configuration
constitute a point on an empirical curve. When the resulting points are
plotted, they yield an experimental correlation curve. From this empirical
relationship, it is possible to predict the fluid temperature step response
time constant given the LCSR time constant for a range of surface heat
transfer conditions. With this empirical transformation, it is possible

to conduct LCSR tests throughout the 1life of the plant, determine the

LCSR time constant, and verify whether fhe plunge test time constant has

changed by using this correlation.

5.4 Laboratory Results from LCSR Tests

LCSR tests were performed in the Thermometry Laboratory for PWR-type
RTD's. Figures 5.2 through 5.4 show LCSR data obtained for sensors in

flowing water (3 ft/sec) at room temperature.

The transformation was applied to LCSR data collected by the computer,

For laboratory work, the sensor may be subjected to actual plunge tests
to check the validity of the transformation. A typical plunge test
result is shown in Figure 5.5. The resuits of the transformation and
the actual plunge test results for one sensor appear in Figure 5.6.
The transformation gave good results for this sensor, but this was not
universally true for all sensors. The predictions for the 176KF sensor
were especially bad. *This is attributed to the sensor configuration,
which violates the assumption of a centrally located filament as

required for validity of the transformation.

*Refer to statement in report Summary, taking exception to this conclusion.
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Figure 5.2 Loop Current Step Response Test Data for a Sensor in
Water Flowing 3 ft/sec (Rosemount Model 176-KF).
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Figure 5.3 Loop Current Step Response Test Data in Water Flowing at 3 Ft/Sec
(Rosemount Model 104AFC),
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Figure 5.4 Loop Current Step Response Test Data in Yater Flowing at 3 Ft/Sec
(Rosemount Model 177-GY).
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Figure 5.5 A Typical Plunge Test Output. Sensor is Plunged From Air into a Moderately
Stirred Water Tank (Rosemount Model T04AFC).
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Figure 5.6 Transforrned Loop Current Step Response Test for Rosemount Model 104AFC.
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Numerous tests were performed to collect data to obtain an
empirical relation between the LCSR time constant and the plunge time
constant. For empirical correlation, it is necessary to obtain data
for the sensor with its characteristics altered so as to cause it to
have varying response characteristics. In the laboratory, this was
accomplished by augmenting the surface heat transfer resistance by
adding sections of adhesive tape or rubber tubing to the surface of the
RTD. Different values of resistance change were achieved by varying
the amount and position of material added at the surface. For each
configuration, three tests were performed: plunge test, LCSR test,
and self heating test (see Section 6.0).

Figures 5.7a, 5.7b, 5.8a, and 5.8b show the empirical correlations
for LCSR data. These could be used to convert in-plant LCSR test data

into the desired = needed for satisfying Nuclear Regulatory

plunge
Commission requirements if the following assumptions are valid:

1. Laboratory tests involving augmentation of surface heat
transfer resistance adequately simulate actual degradation
that might occur in an in-plant sensor.

2. Differences between temperature and fluid velocity conditions

in the laboratory and the plant have insignificant effects.

These questions are being explored in current work.
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Figure 5.7a An Empirical Correlation Between a Plunge Test Time Constant,

Tolunge® and a Loop Current Step Response Test Time Constant,

T CSR (Wide Range). The Correlation is for the Rosemount
Model 176-KF Sensor.
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Figure 5.7b An Empirical Correlation Between a Plunge Test Time Constant,
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(SR (Narrow Range). The Correlation is for Rosemount Model
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5.5 In-Plant Results from LCSR Tests

Loop current step response measurements have been performed in
two operating pressurized water reactors. Tests were performed at
Turkey Point (a 760 MWe Westinghouse plant that is owned and operated
by Florida Power and Light Company) and at Oconee Unit 3 (an 886 Mie
Babcock and Wilcox plant that is owned and operated by Duke Power
Company). Both tests were performed while the plants were operating
at full power.

The first in-plant test was performed at Turkey Point. Because of
instrumentation problems, the results were of poor quality. Subsequent
laboratory investigation revealed the cause of the problem. A voltmeter
that was connected across one of the fixed resistors in the bridge to
measure the current was responsible for the problem. The effect on
the data was a large spike immediately after the current switching
for the LCSR test. This is shown in Figure 5.9.

If one ignores the spike and assumes a smoother curve through the
section where the spike occurs, then he can obtain a transient suitable
for analysis. However, this questionable procedure serves more to find
out whether the estimate is in the expected range rather than to obtain
a reliable response time.

The smoothed data were used in the analytical transformation (see
Figure 5.10 for a smoothed response). It was expected that this
would not provide a correct response time because laboratory experience
had already shown that the analytical transformation does not apply
for Westinghouse sensors. Thus, the obviously incorrect response time

results ranging from 0.0113 to 10.84 seconds were not surprising. There
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is more confidence in the empirical correlation. The value obtained
for T csR Was 0.0142 second. The empirical transformation (see Figure

5.7) gives a time constant (t ) of 0.26 second. The time

plunge
constant measured for a similar sensor in the laboratory is 0.4

second. Thus, the results are in the same range, but the poor quality
of the test data makes it unwise to read very much into this result.

The second in-plant test was made at Oconee. This test benefitted
from lessons learned at Turkey Point and from progress made in the
laboratory after the Turkey Point tests. At Oconee, there were no
experimental difficulties. LCSR tests were performed on three different
RTDs (two in the cold legs and one in a hot leg), and two types: one
was a Rosemount model 177-GY (direct immersion type), and one was a
Rosemount model 177HW (well type). The LCSR transients were as
expected (see Figures 5.11 through 5.13). In these tests, the current
during the high-current phase of the test was 40 ma, giving a temperature
rise of about 12.6°F (177-GY) and 10.6°F (177-HW).

Data analysis has been delayed because the computer has been
unavailable and because the empirical correlation data for these sensors
have not yet been collected in the laboratory. A very preliminary

analytical transformation analysis gave an estimate of < of 6.2

plunge
seconds for the 177-GY. This is close to the plunge test result of
6.0 seconds that has been measured in the 1ab6ratory. In general,
the Oconee test data looks very good, and successful determination of

the time constant is anticipated.

5.6 Conclusions
The Toop current step response method appears to be a good candidate

for performing in-situ response time measurements in RTDs. The
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analytical transformation provides a method for interpreting the data

for sensors that satisfy the conditions for validity of the transformation.

For other sensors, an empirical transformation seems to be adequate.
Testing methods have been established through a great deal of laboratory
experience. In-plant test experience now indicates that the LCSR test

is suitable for measurements in the environment of an operating plant.
6.0 THE SELF-HEATING TEST

6.1 Brief Description of the Self-Heating Testing Method

The self-heating test exploits the dependence between temperature
rise in an RTD during steady state internal ohmic heating and the
sensor-to~fluid heat transfer resistance. This dependence makes
it possible to detect changes in heat transfer characteristics. The
temperature rise in the sensor is a function of both the heat generated
and the ability of the sensor to dissipate heat to its surroundings.

The normal sensing current passing through the resistance
element is usually 1-5 mA. During the self-heating test, the current
is incrementally increased from 1-5 mA to a significantly higher value
(20-100 mA). The electrical resistance of the element is measured
at steady state conditions for a set of points and the power generated
in the sensor is computed for each point.

The result is a curve that shows the change in resistance of the
sensing element as a function of the power generated in the sensor.
The resistance change is proportional to the change in temperature
of the resistance element. For elements made of platinum, the self-

heating curve is linear,
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6.2 Theory and Principle of the Self-Heating Method

The resistance measurement needed for a normal temperature measure-
ment involves the use of an electrical bridge circuit. A small
current passes through the RTD and the bridge resistors so that a
temperature change in the RTD is indicated by a voltage drop across
two arms of the bridge. The current used for normal measurements is
set at a small enough value (1 to 5 ma) to avoid significant ohmic
heating of the RTD and concomitant temperature measurement errors,
The self heating test involves increasing the current incrementally
to higher values (20 - 100 ma) in order to cause enough ohmic heating
to give a significant increase in the temperature of the sensing wire

in the RTD. The steady state heat transfer is defined by

Q = UA(T-e) (6.1)
where

Q = heat generation rate in the RTD

U = overall heat transfer coefficient

A = heat transfer area

T = sensor temperature

8 = fluid temperature.
If the fluid temperature remains constant, the temperature rise, AT,

is related to a change in heat generation rate, AQ, as follows:

. AQ
AT = A (6-2)

Since the resistance of an RTD is proportional to its temperature,

JWOL %B. (6.3)

[oned
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This motivates one to make steady state measurements of the RTD
resistance for several values of IZR power generated in the sensor.
The slope of the curve of AR vs. AQ is proportional to %K'
The response time(z) is proportional to the heat capacity of the
sensor and inversely proportional to UA. If it may be assumed that
the heat capacity of a sensor will not change after construction, the
response time, t, is related to the slope of the self-heating curve

as follows:

T o %% . (6.4)

That is, degradation of the response time could be detected by

measuring an increase in AR/AQ.

6.3 Development of an Empirical Transformation Using the Self-Heating Test

It is possible to simulate changes in the sensor heat transfer
resistance in laboratory tests. This is done by adding artificial heat
transfer resistance (such as adhesive tape or short sections of rubber
tubing) to the surface of the RID. In doing so, an empirical relation can
be obtained by performing plunge tests and self-heating tests on a set
of heat transfer configurations.

The plunge test time constant is computed along with the value of
the slope of the self-heating curve for various surface heat transfer
conditions obtainable in the laboratory. After installation in a reactor,
the fluid temperature step response can be predicted by: performing a
self-heating test in-situ, computing the value for AR/AQ for that
environment, and determining the corresponding plunge test time constant

from the empirical curve.
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6.4 Laboratory Results from Self-Heating Tests

Self-heating tests were performed in the Taboratory for PWR-type
RTD's. Results were obtained for bare sensors and for all of the
augmented surface resistance configurations used in developing the
LCSR empirical correlation (see Section 5.3).

Self heating curves for bare sensors are shown in Figures 6.1
through 6,3, Note the strong linearity of the relation., Curves such
as these (each involving twenty to thirty points for different
current levels) were obtained for each augmented surface resistance
configuration. The slope of the self heating curve was determined
for each case. Figures 6.4a, 6.4b, 6.5a, and 6.5b show the empirical
correlation between the slope of the self heating curve and the measured
plunge time constant. These curves make it possible to use an in-plant
self-heating test to provide the plunge test time constant provided
the following assumptions are satisfied (as with the LCSR empirical
transformation):

1. Laboratory tests involving augmentation of surface heat

transfer resistance adequately simulate actual degradation
in an in-plant sensor.

2. Differences between temperature and fluid velocity conditions

in the laboratory and the plant have insignificant effects.

The validity of these assumptions is being evaluated.

6.5 In-Plant Results from Self-Heating Tests

Self-heating tests were not performed at Turkey Point because this
test had not been conceived at the time of that test. However, the

self-heating tests were performed at Oconee for all three RTD's. The

measured self-heating curves are shown in Figures 6,6 through 6.8.
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According to information obtained from Oconee plant personnel,
sensors number 2 and 3 are Rosemount model 177GY and sensor number
1 is a Rosemount model 177-HW. Laboratory data for the self-heating
empirical correlations have not been obtained for these sensors, but
a single self-heating curve for a bare 177GY has been measured in
the laboratory. The results for the Oconee sensors and for the

laboratory results on a model 177GY are shown in Table 6.1.

TABLE 6.1

SELF-HEATING DATA FOR OCONEE SENSORS AND FOR ROSEMOUNT
177GY IN THE LABORATORY

Sensor Slope of Self Heating Curve
Oconee # 1 7.83x1073 Q/rw
Oconee # 2 7.66x107° Q/mw
Oconee # 3 6.37x107° Q/mw
Laboratory 1776Y 8.07x107° o/my

From this, it appears that the sensor specification obtained from
Oconee personnel was incorrect and that sensors number 1 and 2
are Rosemount 177GY. If this is true, the self-heating curve measured
at Oconee indicates that the model 177GY sensers in the plant have
nearly the same time constant as was observed for that sensor in the

laboratory (~6 seconds).
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7.0 THE NOISE ANALYSIS APPROACH FOR SENSOR RESPONSE TIME MEASUREMENT

7.1 Introduction

In this chapter, the sensor time response characteristics are
evaluated using a time series analysis of noise signals. The method
described in the following sections is based on the fact that the
response of a linear system due to background noise disturbance can
be modeled adequately by a finite order autoregressive (AR) model.

The optimal estimated model can also provide the power spectrum of the
time series without using Fourier transform methods.

In Section 7.2, the representation of the time series models is
described. The discussions are brief and the reader is referred to
appropriate references for details. The estimation of autoregressive
parameters using Yule-Walker equations and the determination of an
optimal model order are discussedin Section 7.3. Also, power spectrum
estimation through use of an autoregressive model is discussed in
Section 7.3. Verification procedures for model adequacy are given in
Section 7.4.

Section 7.5 describes how one can obtain the impulse response
and the step response of the dynamic system using the autoregressive

model. These techniques, based on the exact solution to a continuous
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system and a recursive estimation from the AR model, are tested

by simulating known systems of order two and five. These results are
presented in Section 7.6. Evaluation of the response time of RTD's
used in the Millstone 2 PWR from noise data is presented in Section

7.7. Concluding remarks are given in Section 7.8.

7.2 Time Series Models for Noise Analysis

Let {yk} be a sequence of measurements of a random, weakly
stationary process generated from a white noise disturbance {Vk}.

The Tinear prediction model of {yk} can be written as

Yp T

i sy, _; * 2 bV, .+ V. (7.1)

1 i=1 i k-1 k

He~1 8

An infinite representation Eq. (7.1) is not feasible and often may be
incorrect. A finite order autoregressive moving average (ARMA) model

)

is given by (see Box and Jenkins)(5

n m
Yy = izl CPV iz bV, s+ V. (7.2)

If the response Yy is to be represented only in terms of the past
and present disturbances, then the one-sided moving average

representation is
Yy = ) bsVy 5 * Vk’ (7.3)

Thus, we see that the space of observations generated by {Vi’ i < k}

is equal to that generated by {yiz i < k}. Accordingly, Yy can be
(6)

approximated by the autoregressive model
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n
Y= b3k T ke (7.4)

1

For stationarity of the process defined by Equation (7.4), it is
necessary that the roots of

0

a1D1 =0 (7.5)
i=]

1ie outside the unit circle.
These observations provide the basic arguments for the use and
applicability of autoregressive models both for power spectrum

estimation and evaluation of dynamic response characteristics.

7.3 Estimation of an Optimal Autoregressive Model

7.3.1 Estimation of AR Parameters

Let the time series under observation be a realization of the

autoregressive process defined by

n
Yy = 121 ay stV s k=12, ... (7.6)

Let {Vk} be a white noise sequence; that is, the Vk are uncorrelated

with statistics
- 24 _ 2
E[Vk] = 0 and E[Vk 1 =0¢" for all k. (7.7)

Define the autocovariance function of the stationary process {yk},

for lag k, as

: Since {yk} is a real process, the autocovariance function is symmetric,
® .

Y T Yoy for all k. (7.9)
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An important recurrence relation for the autocovariance function

of a stationary autoregressive process is found by multiplying

Equation (7.6) by Yii ‘to obtain

n
ook Yt 1‘21 Y iVt-k T Y-k Vi (7.10)

Taking the expected value in (7.10) and noting that 2 is independent
of A and E[Vt] = 0, we get

n
E[‘yt-k‘yt] = '2] a‘i E[“yt-'i‘yt-k]' (7-]1)
i=

Using definition (7.8), one obtains:

n
Ykz Z

L M v K0 (7.12)
‘I_

Dividing (7.12) by Yo the correlation at lag zero, one obtains the

normalized recursion relationship

n
o = L o 50 k>0 (7.13)
i=]
where
Py = Y/ ¥ 0g = 1. (7.14)

The correlations Y, are computed from the observed time series as

1 N-k . .
~ 1 N
.y.' = ‘y'i = 'N' [}:] ‘yk (7.]6)

e




89
where N is the number of measurements. If the data processing is made
in blocks, then N is the length of a biock. Equation (7.13) can be
written for k =1, 2, . . ., n giving
T B R L

Py = al o1 ¥ a et an n-2

Py =8 Py T Ao ot e oLt (7.17)

(1)

Equation (7.17) is called the Yule-Walker equations. The parameters

i=1,2, .. ., nare obtained by solving (7.17). Rewriting this

o = r~
p
1 ! P Pp-1 %
P
2 Py ] Pp2 2
°n o1 Pp-2 o 1 -an<‘ (7.18)
or o =P a. (7.19)

(7)

P is an nxn symmetric Toeplitz matrix. Taking the inverse, one
obtains the estimation

a =P op. (7.20)
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In practice, the order n is less than 20. (See the numerical results .

of Section 7.7.) It can be shown that the Yule-Walker estimate is

equivalent to the least square problem of %
N

n
min ) (y, - ) a. Yy, _:
a k=1 KogEp 1K

|
)2 (7.21) 1
as N -~ », The key point here is that the autoregressive parameters
are the same in a model for the normalized autocovariance function

and in a model for the raw data.

7.3.2 Optimal Order of an AR Model

It is necessary to obtain an estimate of the optimal AR order.
Akaike(8) obtained the following expression as the information
criterion, and the optimal order n* corresponds to the minimum value
of this criterion function

Information Criterion = - log(maximum likelihood function) + n.

As n increases, the first term decreases and an optimal order is
obtained. The first term is a function of the squared error, and the
addition of n takes care of the downward bias introduced in the
estimation of the criterion function. The 1ikelihood function can

be evaluated by approximating the distribution of white noise as a
Gaussian distribution. This restriction can in general be removed

by using the result obtained by Cainesgg)

that the strong consistency
of the maximum likelihood estimation for the Gaussian log-1ikelihood

is not dependent upon any Gaussian assumption concerning {Vk}.
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If the estimate é_is available, the joint probability density

for the Gaussian statistic may be used to find the Tikelihood

function L as

=

~

N ~ N
= (2n0%) {exp[- 1 Z (7.22)

G

where

kK=1,2, . . .5 N (7.23)

is defined as the prediction error associated with the noise sequence.

The noise variance is estimated from

A

N ;
- %_ Z 2 (7.24)

By varying the AR order n, an optimal value n* is obtained for which

the information criterion, IC, is a minimum:
IC = - log L + n. (7.25)

7.3.3 Estimation of Power Spectrum

With the knowledge of optimal autoregressive parameters, one can

obtain the estimate of the power spectrum of the observed noise signal.

~ 2
o

-
s, (f) = Y . || < o7 Hertz, (7.26)
ol " - 2 3 e-infle
k=1
where
T = sampling time, sec
f = frequency, Hertz
o 2 variance of background white noise.
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The power spectrum given by (7.26) will be periodic with folding ‘

frequency equal to 1/2T Hertz. Syy(f) obtained above is the smoothed

spectrum and shows the salient features contained in the signal.

7.4 Model Verification

The final and important step in constructing a model is to determine
whether the assumptions made in the analysis are satisfied within a
specified confidence level.

The major assumption in the model is that the background noise
is a white noise sequence. Such a noise process has the property
that the adjacent points of the series are not correlated. The
correlation function must have the characteristics of an impulse
function. The spectrum of the noise sequence must be flat within the
band Timited by the folding frequency. Several statistical tests are
enumerated below. For details, see references [5,10].

7.4.1 Autocorrelation Verification Using Prediction Error

If the parameters (a) of the AR model were known exactly, it is

(11)

shown by Anderson that the estimated autocorrelation ok(ﬁ) of the

noise sequence {V}, would be uncorrelated and distributed approximately

normally about zero with variance %-and, hence, have a standard error

of ;;7-. In the case when a is not exactly known, an estimate of the
N

noise seguence can be obtained using the prediction error

He~13

szyk"i]aiyk_i,k=1,2,...,N. (7.27)
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Knowing {yk} and a, estimates of Vk are obtained. The autocorrelation

is then determined and plotted. The standard error, —1—-, can be used

n /N
as an estimate of the deviation of pk(V). It is shown by Box and
Pierce(]z) that this value may underestimate the error in pk(Q) at low

lags, but can be employed as a good estimate of the error at moderate
or high lags. The whiteness of the noise is then checked by comparing
a given number of Ok(g) against a 95% confidence level given by 1429.
If less than 5% of the autocorrelation functions are within this
limit, then the whiteness criterion is satisfied.

7.4.2 "Portmanteau" Lack of Fit Test

Since taking the yk(G) individually and checking their boundedness
is similar to testing a random sequence, an indication is often needed
of whether or not the first few correlation functions taken as a whole
indicate inadequacy of the model. Given the first M correlation

functions from an AR(n) process, it is possible to show(]z) that
M 2A
Q=N kZ] v (V) (7.28)

is approximately Chi-squared distributed with (M-n) degrees of freedom
if the driving function is white. If the model is inadequate, the
average value of Q will be inflated.

7.4.3 Bandwidth of Residual Power Spectrum

If the noise sequence is pure white noise, its spectrum will be
flat in the band - %T‘i.f i_%Tu The flatness of the spectrum can
be checked by calculating the spectrum of the estimates of {Vk} as

follows:




N no.
a. Determine V| =y, - Z a; ¥y

21 1 kAT

~ ’l N_k A~ s

b. Determine vy, (V) = — V. V.,
k N G2y 1 ik

c. Calculate the Fourier transform of yk(Q) using the equation

M X
- 1
va(f) = kz \ Yy € 12“fkt, | £ < oF (7.29)

Since 0 is symmetric (7.29) becomes
M

)
k=1

1

S, (f) = Yo + 2 5T

vV Yy COS 2nftT , |f] <

(7.30)

With the knowledge of yk(Q), va(f) may be calculated and plotted.
Satisfaction of all the above three diagnostic checks assures the
appropriateness of the model and provides the needed confidence in

the results,

7.5 Estimation of Response Characteristics

In this section, the impulse and step response of dynamic systems
are derived using fitted autoregressive models,

7.5.1 A First Order System

The standard definition of the time constant is specified with

reference to a first order system. Consider the following system:

x + ax = u(t). (7.31)
The unit step response for this system with x(0) = 0 is given by

x(t) = £ (1 - e, (7.32)
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’ Letting t

x(-};) = -;— (1 - -l_—). (7.33)

— gives
a g

That is, when the time t = %3 the value of x(t) attains 0.632 of the
steady state value. The time required for the step response of a
stable first order system to attain 0.632 of the steady value

(r = %~sec) is generally called the time constant of the system,

We observe that a closed form expression similar to (7.33)
cannot be obtained for a system of order greater than one. However,
one can always define t as the time at which the response of the
system to a step input will achieve 0.632 of its steady state value.
Such a point on the response curve can be determined numerically.

7.5.2 Impulse and Step Responses from the Autoregressive Model

Consider the AR process determined for a given noise measurement
n

Yy = iZ] a:Y_q * Vk s k=1,2, ... (7.34)
The dynamics of (7.34) are obtained with the assumption that the driving
force is a white noise sequence. Hence, it is not valid to replace
Vk by the step input and evaluate the resulting response. However, the
above model completely represents the dynamics of the system in terms
of the AR parameters. Hence, the dynamic information (transient and

steady state) is given by the poles of the equivalent Z-transform. By

-we

analogy to a continuous system, one can obtain the impulse response

of (7.34) as an equivalent initial condition response.
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7.5.3 Impulse Response Evaluation '

Consider an nth order continuous system given by

dx + a d" + ra o paxt) = ult) (7.35)
dtn 1 dtn-i e s n-1 dt n * °

The unit impulse response of (7.35) is given by

X (t) = L7 [ — 1. (7.36)

+ S + ., ., . F s +
S a1 an_] an

Now, if one takes the Laplace transform of (7.35) with u(t) = 0

n-1
and all the initial condition equal to zero except 9—»3%492-, then

dt
one obtains

(n-1)
X(s) = — _x__(0) : (7.37)
s'ta; s +...ta g sta

The response to an initial condition of xn'](O) =1 is

- (n-1) gy =
xplt) = L ety L0 2 1) 3 (7.38)

s +as  f. . .ta gsta

Note that (7.36) and (7.38) are the same. In one case, the impulse
response is obtained using a unit impulse input; in the other a non-
zero initial condition on the (n-1)th derivative is used. A similar
scheme applied to the discrete AR model to derive the impulse
response is used.
A method which approximates the continuous case is obtained by :
using a differencing scheme. The derivatives are approximated as

follows
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i
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o
]
*®
~
i
—t

. (7.39)

By letting xn'] # 0 and all lower order differences equal to zero, the
impulse response can be evaluated recursively. Note that (7.34)

cannot be used directly. A new expression in terms of ass i=1, ¢ . 5 N,
and {yk, X]k’ xzk, c e es XE_]} is derived. The resulting response

has the form

1 2

- n-1
Ve A Yy PR X g A X et A X . (7.40)

The coefficients Ai are functions of AR parameters such that the
relationships (7.39) are satisfied. The appropriate initial condition
response is obtained by setting the initial value of xn'] = 1 and all
other terms in (7.40) equal to zero.

Computation of Ai is illustrated for a fourth order system. Consider

D VR (7.41)

I

i=1

Define the following:

T

X T Y ™ Y-
2 1 2

A A (7.42)
3 2

X" X 2




-3 T Vg1 T

Yoz = Yge3) + Yoz = Yy

1
= Wy =X Z(yk-1 - 2x

(7.44)

k1) = Yieg

1
k-1 T X g1 7 X e

Using (7.43) - (7.45) in (7.41) gives

1
(a +ap +ag+ay) y g - (ay+ 243+ 32y) xy

tlag + 3ay) X7y g -2y XYy

= Ay Y TR X k-1 + A x

a; *a, tagta, A2 = - (a2 + 2a

i

ag + 3a4, A4

(7.45)

(7.46)

(7.47)

vy
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It should be noted that results that agree quite well with results
obtained by the above procedure for setting initial conditions are
obtained by simply using (7.34) with Vi = 0 and y(initial) = 1.

Of course, this does not have the analytical basis of the above
method, and could not be relied upon universally.

7.5.4 Computation of Step Response

Once the impulse response is determined as outlined in (7.5.3),

the step response is derived by integrating the impulse response
x(t) = 15 x(v) de. (7.48)

A simple trapezoidal integration scheme is used to evaluate the step

response since the integrand is available only at sample points.

7.6 Verification of the Method Using Simulated Systems

In this section, the methods discussed above are illustrated for
three known systems.

7.6.1 Second Order System with Equal Poles

The following continuous system is considered:

6(s) = ——s (7.49)

(s+1)%
The response is generated by sampling a continuous response due to
an input to this system obtained from a random number generator at
At = 0.05 sec. A total of 4000 samples was used.

Figures 7.1 through 7.6 show the results.
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Results: The true system time constant is 2.1436 sec and the estimated

time constant is 2.2058 sec. The optimal autoregressive model is:

Yk = 1.8118 Y1 = 0.7295 Yoo ~ 0.08472 Yi-3 + Vk' (7.50)
7.6.2 Second Order System with Unequal Poles
6(s) = ! (7.51)
(s+1) (s+2) ° :

Optimal AR order = 4. Figures 7.7 through 7.12 give the results for
this case. The analysis was based on 4000 samples with a sampling
interval of .05 sec.

Results: The true system time constant is 1.5848 sec and the estimated

time constant is 1.6465 sec. The optimal autoregressive model is:
Yk = 2.1218 Yg-1 - 1.4159 Yo * 0.34375 Yk-3
- 0.05322 Yi-g4 * v, . (7.52)

k

7.6.3 Fifth Order System

1
6(s) = Ay 552y (s%3) (5#0) (5%5) (7.53)

Figures 7.13 through 7.18 show the results. The analysis was based
on 4000 samples with a sampling interval of 0.05 sec.
Results: The true system time constant is 2.4341 sec and the estimated

time constant is 2.3288 sec. The optimal autoregressive model is:

Y, = 1.3616 Y1 = 0.07813 Yo = 0.076424 Yi-3

k

- 0.07228 Yyes - 0.06207 Vg5 - 0.02872 Yi-6 (continued)
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-0.06673 Yo7 = 0.0186 Yi-g = 0.007828 Yk-9

-0.0354 7, o+ 0.08276 y, 1 * V. (7.54)

7.7 Response Characteristics of an RTD at Millstone 2

The results presented here are based on the RTD data obtained from
data collected from the hot Teg at the Millstone 2 PWR.

Figures 7.19 through 7.23 represent results similar to those
discussed in Section 7.6 for AR order = 11. The analysis is based on
4000 samples with a sampling interval of 0.125 sec. The estimated

time constant is 5.01 seconds. The optimal autoregressive model is:

Y © 0.93955 Y1~ 0.14417 Ypoo * 0.40174 Y-3

0.16557 y, _, + 0.11612 y, o - 0.06816 y, ¢
+0.07955 y, 5 - 0.16772 y, o + 0.03604 y, g

(7.55)

0.09963 y, ;o *+ 0.05784 y, 1, *+V,.

Model Validation: Verification of the AR model derived for the noise

analysis is made using the tests discussed in Section 7.4.

Figure 7.24 shows the plot of prediction error
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The variation in this estimate is within = 1.96 8 where the estimated
value of ; = 13.75. Less than 5% of the residual sequence is outside
this range.

Figure 7.25 shows the autocorrelation function of the prediction
error based on N = 4000. The +1.96//N bounds for a 95% confidence

level is

1.96 _ ¢.031.

.96
/N
From the figure, one can determine that the autocorrelation functions
1ie within this range, thus verifying the whiteness of the noise
disturbance.

The portmanteau test is applied for the first 60 correlation
functions. The xz—test index

60 -5
Q=N J v (V)" =59.79.
i=1

The x2 value for degrees of freedom M - n = 60 - 11 = 49 is obtained
from a table of percentage points of x2 values.
For 5% tail area, x249 = 66.26.
For 10% tail area, x249 = 61.98.
From the values of x2 for 90% and 95% levels, it is clear that the
value of Q on an average will lie within the Timits, thus satisfying
the "portmanteau" test.

The power spectrum of the estimated noise sequence was computed
and is shown in Figure 7.26; the flatness of this spectrum is a further

indication that the assumption of whiteness is valid. The verification
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of these tests provides confidence in the appropriateness of the
autoregressive model and the associated response characteristics.,

The comparison of the power spectrum obtained from direct FFT
shows that the break frequency obtained by the intersection of low
frequency and high frequency asymptotes coincides with the break
frequency of the AR spectrum and is equal to 0.05 Hz. The AR spectrum
is smooth and coincides with the overall spectrum obtained from FFT.
The FFT computed spectrum for the Millstone 2 hot leg RTD appears in
Figure 7.27.

It should be noted that the power spectral density for a Millstone
2 cold leg RTD shows strong evidence that the driving function is
not white. Figure 7.28 shows the spectrum of the cold leg RTD signal.
The result from a time series analysis gives a time constant, v = 2.5
sec, This is much smaller than the hot leg RTD response time of
t = 5,01 sec. The calculated spectrum of the residual noise is shown
in Figure 7.29. This indicates that the noise perturbation is not
white. It is possible that the non-whiteness is caused by the feedwater
controller and/or the primary pump. If the spectrum of the driving
function is significantly non-white in the bandpass of the sensor
dynamics, the method is invalid. Thus, it is assumed that the 2.5

second time constant obtained for the cold Teg RTD is invalid.

7.8 Concluding Remarks

In the preceding sections, it has been shown that the time series
obtained from systems driven by white noise can be successfully
modeled by an autoregressive process of appropriate order. The

computational requirement to find the AR(n) parameters is comparable
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to or better than other methods. For example, computations required

for Fast Fourier Transform (FFT) techniques and the Yule-Walker

equations are compared for a 10th order AR model as follows.

No. of multiplications for 10th order AR model = 10N.

No. of multiplications for FFT = 3N 1092 N.

where N is the block length. As N increases, the numberof multiplications
for FFT calculation increases as a nonlinear function of N.

The response characteristics derived in this chapter use digital
numerical computations requiring no assumptions, other than that of
white driving noise to construct the AR process. No geometric
constructions or approximations are necessary. Hence, the technique
developed can be adapted easily for on-line periodic checking of
sensor response characteristics in nuclear power plants.

Further experience with this method will be obtained in the near

future using noise data collected at the Oconee 3 plant for three

different RTD's.
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8. SUMMARY AND CONCLUSIONS

Three methods for measuring the response time of installed
platinum resistance thermometers have been developed. These methods
are: the loop current step response method, the self-heating method,
and the noise analysis method. They have been tested in the laboratory
and in two operating pressurized water reactors.

The Toop current step response (LCSR) method involves analysis
of the transient that occurs following a step increase in current
through the sensor filament. Currents of 40 to 60 ma give temperature
rises of 10 to 20 degrees Fahrenheit. These values are suitable for
in-plant testing and result in no deleterious effect on the sensor.

The analysis of the LCSR data to obtain the desired response
time for a fluid temperature step may be approached analytically or
empirically. The analytical transformation has been developed and
implemented, but has been found to have restricted utility because it
depends on two essential assumptions:

1) predominantly one-dimensional heat transfer

2) centrally located filament.

These assumptions appear to be satisfied for sensors for the type that
are common in PWR's manufactured by Combustion Engineering, Inc. and
Babcock and Wilcox Company, but not for those commonly found in
Westinghouse plants. Another problem with the analytical transforma-
tion is the accurate identification of the exponential coefficients
that govern the LCSR transient and which are essential for constructing

the estimate of the response time.
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‘ When the analytical transformation fails, it is possible to use an
empirical transformation. Sensor degradation is simulated in the
laboratory using artificial augmentation of the heat transfer
resistance at the surface of the sensor. Plunge tests and LCSR tests
are performed for a number of surface conditions, and a time constant
is obtained for each. A plot of the plunge time constant as a function
of the LCSR time constant provides an empirical correlation. For
in-plant applications, LCSR tests could be performed, the LCSR time
constant could be determined, and the plunge time constant could be
read from the curve. The method depends on the following:

1. simulated sensor degradation using augmented surface heat
transfer resistance adequately represents the degradation
that is plausible in an operating sensor,

2. measurements made at room temperature and at low flow rate in
the laboratory are suitable for establishing an empirical
relation that is valid at PWR operating temperature and
flow rate

3. experimental measurements of the LCSR time constant can be
made accurately enough to indicate small changes in the
plunge time constant.

The self-heating method involves measurement of the steady state
temperature (resistance) increase as a function of IZR power generated
in the sensor filament. Increased time constants resulting from
increased heat transfer resistance are indicated by a larger temperature

rise for a given power generation. Implementation of this method involves
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measurement of the slope of the self-heating curve (temperature rise
vs. power generation) to obtain an empirical relationship between the
plunge time constant and the slope of the self-heating curve. This
relationship may be generated in the laboratory using augmented
surface heat transfer resistances as with the LCSR empirical transfor-
mation. In-plant implementation could involve: (1) measurement of
the change in electrical resistance as a function of power generation
in the sensor filament, (2) evaluation of the slope of the self-
heating curve, and (3) using the empirical transformation curve to
estimate the plunge time constant. The method depends on the following:

1. simulated sensor degradation using augmented surface heat
transfer resistance adequately represents the degradation
that is plausible in an operating sensor,

2. measurements made at room temperature and at low flow rate
in the laboratory are suitable for establishing an empirical
relation that is valid at PWR operating temperature and
flow rate,

3. experimental measurements of the slope of the self-heating
curve can be made accurately enough to indicate small changes
in the plunge time constant,

4. change in the effective heat capacity (which is not revealed
by the self-heating test) is not a plausible degradation
mode for a platinum resistance thermometer.

A successful self-heating test was performed in an operating PWR,

suggesting that the measurement is experimentally feasible in operating

plants.
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The noise method involves analysis of the fluctuating part of the
signal that occurs in normal sensor outputs. A method based on time
series analysis has been developed and tested. It involves estimation
of the impulse response then integration of the impulse response to
obtain the step response. The time constant is simply read from the
step response curve. The only assumption in the method is that the
temperature fluctuations responsible for the fluctuating output is
completely random (white noise). Measurements in an operating reactor
indicate that this assumption is valid for a hot leg sensor, but not
for a cold leg sensor. The cold leg temperature fluctuations are
influenced by the steam generator and the primary pump.

In general, the work reported here shows that there are at least
three methods that can give the required response time. They differ in
terms of situations in which they are valid, complexity, and cost of
implementation. However, the limitations of each method are well
understood, and matching a testing method to a given plant appears to
be possible. Early applications should probably involve redundant
measurements using different methods, but experience should reduce

the need for this approach.
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