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CREEP DEFORMATION AND RUPTURE BEHAVIOR OF TYPE 30Lk/3G8
STAINIESS STEEL STRUCTURAL WELIMENTS

W. J. NcAfee M. Richardson
W. K. Sartory

The creep deformstion and rupture of type 304/308 stain-
ss steel structural weldments st 593°C (110C°F) was experi-
investigated tc study the comparative behavior of the
and weld metal constituents. The tests were con-
in support of (RNL's program to develop high-tewmperature
design methods applicable to ligquii-metal fast
treeder reactor (IMFBR) system components that operate in the
crezp range. The specimens used were thin-walled, right cir-
cular cylinders capped with either flat or hemispherical heads
ani tested under intermal gas pressure., Circumferential welds
were locsted in different regions of the cylinder or head and,
with one exception, were geometrically duplicated by all base
metal regions in campenion specimens. Results s»= jresented on
the comparative deformation and rupture behavior ot selected
points in the base metal and weldment regions of the different
specimens and on the overall surface strains for relected speci-

i

Key words: Weldments, creep-rupture, high-tecnerature
design, pressurized cylinders, stainleas steel, IMFUR, struc-
tural tests.

1. INTRODUCTION

The extensive use of welded stainless stee)l pressure vessels and
piping at temperatures within the creep range roquires an increased under-
standing of the time-dependent deformation and -ailure behavior of weld-
ments. A weldment in this context is consider-: to be the depssited weld
and a region of base metal around the weld wheise behavior is influenced by
the presence of the weld, The properties of ssliments vary widely' due to
differences in weld procedures, weld metals, and weld geometries. The de-
sign rules® for nuclear camponsnts fsbricated from austenitic stainless
steels to operate a% temperatures above L27°C (800°F) permit the use of



base metal properties in weld design but reguire that permanent deforam-
tion be limited to one-helf thet allowed for base metal. Such rules do
., not account for metallurgical discontimuities nor for gemmetric discon-
timities that mxy be introduced through differences in inelastic defor-
mation behevior of the base and well metal.

This report presents the results of a series of creep-rupture tests
of type 304/308 stainless steel weldments. The primary ohjective of these
tests vas t0 study the camparative deformation and failure bebavior of the
weld and base metal constituents of structural weldments. In additiom,
the basic specimen configuration, a capped right circular-cylindrical
shell, is one simple structure geosetry being used in develomment and ver-
ification of inelastic structurel amlysis methods.>

The specimens tested were fabricated using material from the highly
characterized Osk Ridge Natiomal Laborstory (ORHL) reference heat (heat
9T2796) of type 30i4 stainless steel. The welds were deposited in multiple
passes using bare cype 308 stainless steel wire and the tungrten arc (TIG)
welding process.

The tests were conducted in air at 593°C (1100°F). Two series of -
tests were run: series 1 wvas intended to be short-term tests and had rup-
ture times from 35 to 408 hr; series 2 was designed and tested to achieve
longer lifetimes and had rupture times from 475 to 9712 hr.

A pattern of scribe lines on the cylinder and cap of each specimen
establi.hed a refervnce grid from vhich comparative sets of dimensioml
measurenents wvere made. At specified times throughout the test lifetimes,
each specimen was depressurized, cooled, and removed from the furnace for
dimensional inspection. The dimensional measurements were made at the
radial and axial locations of the nodes of the reference grid. The nodal
locations vere used to des~ribe, through least-squares fitting, mathemati-
cal surfaces that depicted .he deformed gecmetry of the specimen., Inside
and outside surfucs strains were calculated by utilizing the strain-dis-
placenent relationships of contimum mechanics and the equations of thin-
shell analysis applied to the mathematical descriptions of the deformed
surfaces.

Section 2 of this report describes the design and fabrication of the
test specimens. Section 3 discusses the test facility, test procedures,



and test histories. Section I presents the deformation data and the tech-
‘ques used to convert these data to total inelastic strain. Section 5

is & samary of results and the subsequent conclusiont=. An appendix is

included that contains experisental surface estrain distributions for se-

lected times in the lives of different specimens.



2. TEST SPECIMENS

2.1 Test Specimen Design and Fabrication

Two s2ries of specimens were preparecd for testing. These were desig-
nated as the weldment creep-rupture 1 (WCR-1) series and the weldment
creep-rupture® (WCR-2) series. The WCR-1 series was intended to investi-
gate weldment deformetion and failure for times of 1000 hr ar less. In
addition, the informetion and experience gained from testing this series
of specimens were to provide guidance in the design of WCR-2 series spec-
imens. The WCR-2 series specimens were to be essentially of the same
configuration as WCKR-1 specimens L=t were to be tested under conditions
yielding failure times of approximately 8000 hr. For the WCR-1 specimeus,
the von Mises effectiv: stress was used as the failure criterion. This
was based on thc results of Anderson et al.,* which indicated that at
593°C (1100°F) pressurized tube failure data on annealed type 304 stain-
less steel correlated better with the von Mises rather than the maximum
principal stress failure criterion. However, the failure results from
WCR-1 specimens correlsted best with the maximum principel stress faiiure
criterion. Thus, this criterion was used in the design of the WCR-2 spec-
imens.

In each series of specimens, the intent was to investigate the com-
parative behavior of base metal and deposited weld metal subjected to dif-
ferent stress or strain fields., The specimens were thus to have welds
located in different areas where each weldment was duplicated by an un-
welded "comtrol,"” generally as part of another specimen.

2.1.1 WCR-1 specimens

The basic specimen configuration to be tested was & thin-walled right
circular cylinder with a flat head. The nominal diameter was chosen to
utilize product forms from the ORNL reference heat (heut 9T2796) of type
304 stainless steel. These product forms were llli-mm-diem (L4,.500-in.) bar
and 102-mm (4-in.) sched-160 pipe, The chemical compositionsS’® of these
two product forus, as determined by ladle, check, ani ORNL analyses, are
given in Table 1.



Table 1. Chemical composition (vt %) of product forms of type
304 stainless steel (*eat 9T2796) used for WCR-1 specimens

102-mm
Ladl 11)i-mm-diam baxr sched-160 pipe
Element amalysis

Vendor a ORNL Vendor ORNL

anmalysis analysis apalysis analysis
C 0.048 HA 0.039 0.046 0.039
Mn l1.22 HA 1.31 1.23 1.32
P 0.028 ) 1] 0.028 0.026 0.028
s 0.015 .7 % 0.014 0.020 0.01%4
si 0.48 " 0.50 0.h2
.21 9.7 FA 9.64 9.58 9.6h
Cr 18.60 RA 18.54 18.57 18.54
Mo 0.32 NA 0.32 RA 0.32
R NA NA 0.027 NA 0.027
Cu 0.24 NA NA 0.30
Sn 0.015 NA XA NA
Ti 0.010 A RA >0.01
Co 0.18 A NA 0.20

8RA = not available.

The basic specimen wall thickness was set ags 5.08 mm (0.200 in.).
This dimension was established as a compromise between several factors.

A thin wall was desirable for the tubular structure to behave as a thin
shell and required less internal pressure to achieve the high stress lev-
els required, However, a wall of s.gn’ficant thicknegs was desirabl . g5
that a camposite weld structure, that is, & weld composed of several weld-
ing passes, would be tested, The possibility of premature failure through
undetected microscopic flaws in the weld would thus be minimized.

With the nominal wall thickness fixed, elastic analyses were performed
using different head-to-thickness ratios to investigate the general stress
magnitudes and distributions in the cylinder, head, and cylinder-to-head
Junction region. The model used for these calculations was a right circular

i
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cylinder with a circumferential weld at the cylinder midpoint. The cyl-
inder was closed at one end with a flat head and was built in ot the other
end. The results of these calculations were used as a basis for selecting
the hesd-to-cylinder thickness ratio such that the calculated maximum ef-
fective elastic stress in the center regiom of the Lead was comparable to
the effective elastic stress in the membrane region of the cylinder. Ko
exact comparison could be made since the stresses in the head varied with
radial position. The calculated stress distribution in the cylinder was
used as & basis for adjusting the specimen length to provide a region of
membrane stress between the circumferential weld and each end of the cyi-
inder. These regions of membrane stress were intended to isolate each
discontimity region fram the influence of other regions. The above anal-
yses indicated that a head-to-cylinder thickness ratio of 2:1 would yield
camparable maximm elastic stresses in the head and cylinder and that a
length of 2 to 3 diameters between discontimuities would be sufficient
spacing to provide undisturbed membrane regiomns.

Test welds were to be located in three different test areas of the
structures. The first area was circumferentially in the membrane region
of the cylinder which would be typical of a pipe butt weld. For the in-
ternal pressure loading only, the applied membrane stress field had a 2:1
biaxiality ratio. The second area was the junction region between the
head and cylinder. The weld in this regic: was intended to be in a field
of high bending stress. Also, due to the bending and the constraint of
the head, the maximum strain would be in the axial direction transverse
to the weld. The third test area was in the head of the specimen; the
intent was to locate a test weld in a stress field that would approach a
1:1 biaxiality ratio. The weld would be subjected to bending stresses
parallel and transverse to the weld direction.

The WCR-1 series congisted of three specimens; these are shown in
Fig. 1, along with the locations of each test weld. Specimen 1-Ml had a
weld in the cylinder-to-head junction region with no welds in the membrane
stress region of the cylinder. The cylinder thus served as the control
for the circumferential pipe butt weld. The cylinder was mechined from
pipe, and the flat head was machined from bar stock. Specimen 2-Ml had a
pipe butt weld in the cylinder; the upper half of the specimen was machined
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Fig. 1. WCR-1 specimens showing test weld locations.

from solid bar stock, and the lower cylinder region was made of pipe.
The upper part of this specimen served as a control for the behavior of
the weld in the cylinder-to-head junction region and for the weld in the
head. Specimen 3-Ml had & circumferential weld in the head and a pipe

|
\



butt weld in the cylinder. The upper part of this specimen wvas machined
from solid bar stock. A 38.1-rm-dism (i 1/2-in.) plug was removed from
the center of the head, the edges of plug and head were machined to the
correct geometry, and the plug was wvelded back into the head to yield the
desired circumferential weld in the head. The lower part of this speci-
men vas made of pipe material.

To comtrol the geometric variables that affect weld behavior, the
specimens were machined smooth after welding to remove the drawdown of
the weld region and the surface discontimuity of the weld head. Also,
the specimens were annesled prior to welding using the ORNL :1eference
anneal.”

To prevent excess distortion during welding and to provide adequate
material for machining of the final specimen gecmetry, sections thicker
than thoge proposed for the final specimens were required. The cylindri-
cal sections of the specimens were machined to a .).2-sm (0.400-in.)
thickness, and the heads were mechined to a 11 h-sm (0.450-in.) thickness.
The weld surfaces were prepared in this machining step. The specimen
parts were amealed in argon using the reference anneal. Figure 2 shows
a specimen, L-M2, from the secomd series of specimens that typifies this
stage of preparation. The weld surfaces were cleaned by steel brushing
and the parts were welded together irto the required sssemblies.

These welded specimens were machined to the final dimensions and
configuration. I{ was found that the amount of drawdown in ‘he head weld
of specimen 3-Ml and in the pipe butt weld of specimens 2-M1 and 3-ML re-
quired removing more material than was originally anticipated. While this
did not modify the basic specimen geometry, it did cause minor changes in
dimensions. The final specimen wall thicknegg became 4.52 mm (0.178 in.),
the head thickness was 7.62 mm (0.300 in.), and the outside dismeter was
0.103 m (4,050 in,)., After finish machining, the outside surfaces of the
specimens were lightly polished, and circumferential scribe lines approxi-
mately 0.025 mm (0.001 in.) deep were machined at specified locations on
the cylinder and head., These lines, which are vigible in Pig. 3, were
used as part of a reference grid for making dimensional measurements.

The axial spacing of the lims on the cylinder was nominally 25.4 m=

1
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(1 in.) but weas reduced to 6.35 mm (1/k in.) in regioms, such as the cyl-
inder-to-head junction region, where variatiops in the strain distribu-
tion were expected. The scribe lines on the head were concentric circles
with their center being the geametric center of the head. The diameters
of these circles ranged from 12.7 mm (1/2 in.) to 88.9 mm (3 1/2 in.) in
12.7-m (1/2-in.) increments. These lines were used in data acquisition,
as discussed in detail in Sectiom 4.

The radicgraphic inspection of the pipe butt weld of epecimen 2-ML.
revealed deposits of high-density material in the root pass of the weld.
These deposits were tentatively identified as boron, and ¥he size and
mmber were bases for the weld failing to pass the required inspection.
buring the subsequent weld removal, weld surface preparation, and reweld-
ing, it was pecessary to remove a region of base metal on each side of
the weld, along with the weld. Thus, the final overszll lengih of speci-
men 2-Ml was about 25.4 mm (1 in.) shorter than the other two specimens.
This was not considered to be a problem since there was 2n adequate region
of membrane stress between the pipe butt weld and each end of the speci-
men,

A schematic of an assembled specimen is shown in Fig. L. A carbon
steel core was ussd for inside filler, and the specimen was closed using

ORWL - DWG 74 -5646€

PRESSURIZATION LINE

CLOSURE CAP —.

TEST WELD
(TYPICAL) —~

“FILLER PLUG

Fig. b, Schematic of & typical weldment creep-rupture assembly.
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a fairly heavy cylindrical cap. The core was machined to a 1.27-mm (0.05-
in.) clearance with all inside surfaces of the specimen and displaced ap-
proximately 80% of the gas volume. The closure cap was designed to pro-
vide a relatively rigid base for the cylindrical section of the test -pec-
jmen. This cap was ms’e of type 304 stainless steel and was welded =0
the specimen using the same weld rod and welding procedure that was used
for the test welds. The cap also served to support the speci~en core
through a threaded connection as shown in Fig. L and to properly align
the care with the specimen such that contact of the two was prevented.
Two 2.33-mm-diam (3/32-in.) holes with centers on a 6l-mm-diam (2.4-in.)
circle were drilled axially through the cap. The ocuter end of each hole
was machined for autoclave fittings. One of these fittings was zommected
to the pressurizstion line, while the other was attached to a short length
of high-pressure tubing that extended outside the furnace and ended in a
valre. This line was used for venting the specimen during gas purging
and pressure release. Due to problems encountered in meintaining the
integrity of the sgeals between the pressure tubing and the specimen, the
autoclave fittings were later removed and the tubing was welded directly
to the specimen. A 12,7-mm-diam (1/2-in.), 22.2-mm (7/8-in.) deep hole
was drilled and tapped in the center of the outside end nf the cap, and

a threaded rod, by which the gcpecimen was suspended in the furnace, was
screwed into this hole., These details are shown in Fig. L.

Axial reference lines approximately 25.4 mm (1 in.) long were scribed
at 60° increments around the circumference of the closure cap. The lines
were not scribed along the entire length of the specimen since there was
a possibility that such axial scribe marks on the test section would serve
as stregs raisers that might lead to premature specimen failure. These
lines were identified as A-F using metal indentation stamps in order to
provide permanent markings for reference purposes. These axial seribe
lines, in conjunction with the circumferential scribe lines on the speci-
men, were used as part of the grli for data acquisition which is discussed
in detail in Section 4.

2.1.2 WCR-2 specimens

The second series of weldment creep-rupture specimens (WCK-2) were
essentially the same geometrically as the first series. By allowing more
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material during the intermediate machining steps, the restrictions on
specimen diameter and thickness caused by weld drawdown were overcomc.

The nominal dimensions of the WCR-2 specimens were: diameter, 0.102 m

(k in.); wall thickness, 5.08 mm (0.2 in.); and hesd thickness, 10.2 mm
(0.% in.). A L.8-mm (3/16-in.) radius fillet was added to smooth the tran-
sition from the cylinder to the head. The same scheme of product form
usage and weld location as for the WCR-1 specimens was used. To ref .ct
this contimity, the WCR-2 specimens were given the saae mambers a3 the
geometrically similar WCR-1 specimens and subsequetly the specimens were
referred to as -M1L {model 1) or -M2 (model 2) specimens, respectively.

An additional specimen, a cylinder with a hemispherical cap, was
introduced into the second series of tests. This specimen had two cir-
cumferential welds in the cylinder and one in the head. The weld in the
head region would be subjected to equal biaxial elastic stresses in a
comparatively uniform stress field. The thickness of the hemispherical
section, which was machined fram solid bar stock, was 2.92 mm /0.115 in.)
to yield the initial elastic maximumn principal stress in the cap the same
as that in the 5.08-mm-thick (0.2-in.) cylinder region.

Figure 5 shows the set of WCR-2 specimens prior to testing. The lo-
cations of the test welds are indicated by the arrows, Note that, as with
WCR-1 specimens, the surfaces were scribed to yield reference points for
dimensional measurements.

2.2 Description of Test Welds

The type of weld used for this set of specimens was selected on the
basis of current (current at time of test program initiation) thinking
for the Fast-Flux Test Facility (FFTF' pipe welds. For type 304 stainless
steel pipe, type 308 stainless steel alloy weld rod and TIG welding pro-
cess was 1O be used. The pipe would be mill annealed and no postweld
heat treatment would be applied. "he exact chemistry of the weld rod and
rod coating had not been selected.

It was thus decided to use a high-quality weld procedure and bare
type 308 stainless steel weld rod. The weld specification used was ORNL
Welding Procedure Specification WPE-302, which, for the weld geametries
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used, is qualified to RDT P6-5 and is for the TIG process. These speci-
fications require dye-penetrant and 100% radiographic inspection.

The weld geametries were of two types as shown in Fig. €. The sin-
gle-U geametry was used fur the plug-to-bead weld of specimens 3-Ml, 3-M2,
and h-42, The single-V gecmetry was used for all other welds, including
the specimen closure w=1d. The weld rod used wes bare type 308 stainless
steel in 1.59-mm (1/16-1n.) and 2.38-sm (3/32-in.) dismeters. This rod
was all from the same hest (Unibreze Corp. heat I3806031-C). The vendor-
supplied chemistry and an ORNL amlysis is giver in Table 2.

ORNL-0WG 72-6428A

GROOVE TYPE GROOVE DIMENSIONS THICKNESS
( G \r B (deg) G (deg) AF (1n) RO (m) | R ) {inl]
‘l ° 0010 { + *? 0100
- * .
4525|9025 | 000 | L to
7 0.300
RO~ b- Lgpr
SINGLE-V ‘
Yf
—-e
J ' o062 | . .0 0094 | 0375
r 202251405 +0.016 % ! +0.016 to
I -0 “es | O 1.0
rRo—f b— Log¢
SINGLE-U |

Fig. 6. Weld geometries used for weldment creep-rupture specimens.



used for test welds of WCR-2 specimens
Analysis (wt %)
Element .

Vendor ORML
c 0.07 0.026
Mn 1.0-2.0 2.10
P 0.03 0.029
s 0.03 0.0078
St 0.25-0.60 0.3C
i 9.5-11.0 11.98
Cr 20.0-22.0 19.67
Mo A 0.048
N NA 0.032
Cu NA 0.06
B NA 0.0005
Ti NA 0.005
b NA 0.0003

"MA = not available.
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3. TEST PROCEDURES AND TEST HISTORIES

3.1 Description of Test Pacllity

A special test facility was set up to study the creep-rupture behav-
ior of these weldments. Four identical test stands were prepared using
a camon safety enclosure as shown in Fig. 7. A schematic of a single
test stand is shown in Fig. 8. The furmaces were cylindrical, electri-
cally heated muffle furnaces with a 0.3-m-diam (12-in.) by 0.81-m-long
(32-in.) cavity. When mn powered these furnaces have a temperature
range fram roam temperature to 1010°C (1850°F). A steel liner composed
of a 0.22-m (8 1/2-1n.) sched-80 pipe with a pipe cap welded to one end
was used to protect the furnace wall and heater elements fram the poten-
tial damege of rupturing specimens.

Temperature control was provided by Brown Electronik recorder-con-
trollers, which are pneumatic-type comtrollers with both manus? and auto-
matic control festures. The instrument output comtrolled a pneumatically
driven variable furnace power supply to maintain the specimen at the re-
quired set point. Since the furnace wvas greatly overpowered, the con-
troller tended to cycle approximately *2.8°C (5°F) throughout the test
period. Twelve thermcouples* were used; two were mounted in parallel near
furnece midheight for temperature control, and ten were installei at 50.8-
mm (2-in.) increments along the vertical axis of the specimen. In pre-
liminary tests of the furnace system, the readings from these thermocou-
ples indicated that the temperature dropped off rather sharply at each
end of the furnace such that the desired uniform distribution was not es-
tablished. Trimming heaters were thus installed at the top and bvottom
ends of the furnace cavity. These small mamually adjusted heaters were
used to balance the heat load to maintain a uniform heat distribution
along the vertical axis of the specimer.

The specimens were pressurized through a comoon manifold system con-
nected to a 17.9-MPa (2600-psig) supply of bottled argon gas. Figure 9

*Chromel-Alumel, type K, 3.2-mm-diam (1/8-in.), 304 stainless steel
sheathed, 0.75% accuracy.
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Fig. 7. Test stands and safety enclosure used for weldment creep-
rupture studies.
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Fig. 9. Argon
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shows the gas supply system, which includes: (a) a gas bottle and regu-
lator; (b) a Grove flow comtrol valve, regulating and relief type; and
(c) a Heise gage, which wes used to calibrate the pressure transducers.
Figure 10 shows the manifold takeoff used to supply each specimen. Auto-
clave block valves were used to adjust the gas flow rate, a dial pressure
indicator provided on-site monitoring of specimen pressure, and a Baldwin
SR-4 pressure cell provided remote measurement of specimen pressure.

Figure 11 shows the control panel for the system and the cebinet
(door open) housing the on-site data-gathering box. Signals from the
pressure transducer and the thermocouples were passed through this sys-
tem to a central processing complex where printouts of temperature and
pressure vs time were prepared,

3.2 Test Procedure and Histories

The initial part of each test run was devoted to checkirg and sta-
bilization of system parameters. For the initial loading of an undefcrmed
specimen, the specimen was purged slowly with argon (essentially atmo-
spheric pressure) as the heat was applied. WVuen the furnace reached nom-
inal temperature, the mamual trimming heaters were adjusted to establish
a uniforam temperature distribution along the length of the specimen. The
time required for this varied but was usually 2k to 36 hr. With the tem-
perature stabilized, the pressure was applied in predetermined stages from
zero to full load. The specimen was held briefly at each stage primarily
to check for continuing leaktightness of the system. The hold time at
each pressure level was minimized in order to bring the specimen to full
load as quickly as possible. The total loading time usually was 10 to 30
mnin, Time zero was measured from the point where full load was reached,
after wvhich the pressure was held constant for the remainder of the test.
A typical histogram is shown in Fig. 12 for specimen 2B-Ml, which ruptured
after 181 hr at full pressure. The test duration was determined either
by rupture or by achieving a specified time in test where the specimen was
unloaded, cooled, and removed from the furnace for dimensional insgpection.

The loading procedure was alightly different for a test that wis a
resumption of one that had been irterrupted for dimensional ingpection.



Fg. 10. DInMdividual pressura adjustment and measurement system for
each weldment creep-rupture specimen.
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. "Fig. 11. Control panel und data acquisition system for weldment
creep-rupture tests. ;
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The specimen was first pressurized at room temperature to approximately
half the test pressure. This pressure was held constant during furnace
heatup, system checkout, and stabilization, at which time full pressure
was applied and the test was continued. This technique, recammended by
Yaggee et al.,® vas intended to retain the microstructure corresponding
to the accrued strain history prior to interruption of the test.

In the following discussion of test histories, it will be helpful
to refer to Table 3, which summarizes specimen types, test conditions,
and failures.

3.2.1 Specimen 1-M1

The test for this specimen was the most straightforward one of the
first series of specimens. The specimen was pressurized to 16.6 MPa
(2410 psig) for LO8 hr, at which time rupture occurred by a long axial
crack in the cylindrical region of the specimen (see Fig. 13).

3.2.2 Specimen 2-Ml

This specimen was tested at 16.6 MPa (2410 psig) for 35 hr, when
failure occurred by complete separation of the flat head from the cylin-
der (see Fig. 14). There was evidence that the filler core had contacted
the specimen cap and put an axial thrust on the cap. This would have
csused the specimen to fail in a shorter time period than if loaded by
pressure alone. The specimen was thus rebuilt by (a) removing the rup-
tured end back to near midcylinder length; (b) reducing the length of the
filler core bty 13 mm (0.5 in.); (c) machining a new cylinder and head (an
integral piece) from bar stock; and (d) welding this to the existing
specimen. This specimen, designated specimen 2A-Ml, was returned tc test.
After 88 hr, failure occurred by head-to-cylinder separation as with 2-Ml,
The ruptured ar2a of specimen 2A-M1l was sealed by welding a flat circular
disk to the cylinder., This specimen, designated specimen 2B-Ml, was
tested for an additional 123 hr before failure occurred by an axial crack:
in the cylinder portion of the original specimen 2-M1 ({,e., this section
falled after a time in test of 304 hr), The type of failure is shown in
Fig, 15.




Table 3.

P

Summary of weldment creep-rupture specimen histories

A

-

TYPE 1 TYPE 2

NOMINAL DIMENSIONS L = 051 m (200}, R - 51 mm (20 w)
A, B, AND C DENOTE TYPICAL WELD LOCATIONS

PIPE: 102 mm (4 in.) SCHED 160 BAR 114 mm (4 1°'2 in.) diam
TEST TEMPERATURE 593°C {1100°F)

[+
Material

Specimen Weld Test weld Pressure Tine Feilure .

No. e Cection 1 Section 2 Section 3 locations locations (MPa/psig) (hr) ure mod
1-M1 1 Pipe Pipe Bar B, B 16.6/2410 408  Axial crack
2-M1L 1 Pipe Bar Bar A A 16.6/2L10 35  Circumferential crack
l2a-M1) 1 Pipe Bar Bar A, C c 16.6/2410 68 Circumferential crack
(2B-M1) 1 Pipe Bar a A, B None 16.6/2410 181 Axial crack
3-M 1 Pipe Bar Bar A, C A, C 16.6/2410 43 Circumferential crack
(3A-M1) 1 Pipe Bar e A, B A 16.6/2L10 153  Axisl crack
1-M2 1 Pipe Pipe Bar B B 1k.1/2040 U475 Pinhole leak
{1A-M2) 1 Pipe Pipe a B None 14,1/2040 3576  Axial crack
M2 1 Pipe Pipe Bar A A 1h.1/20k0 3996  xial crack
3-M2 1 Pipe Bar Bar A, C A, C 14.1/2040 9712  Axisl crack
4- 2 Pipe Pipe Bar A, C A, C 14.1/2400 1136  Pinhole leak

%rlate material used for closure only, not reference heat.
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3.2.3 Specimen 3-ML

Smecimen 3-ML was pressurized to 16.6 MPa (2h10 prig) and failed
after 43 hr by camplete separation of the head from the cylinder (as with
specimen 2-M1). On this specimen, contact between the filler core and
the specimen cap also may have occurred. The 43-hr failure point, as
with the 35-hr failure point for specimen 2-Ml, was thus not recorded as
valid creep-rupture data. Repair was made by welding a flat circular
disk to the end of the cylinder, and this specimen, specimen 3A-Ml, failed
after 153 hr by an axial crack in the cylinder. The total test time at
failure was 196 hr.

3.2.4 Specimen 1-M2

This specimen was tested at 14.1 MPa (2040 psig) for 475 hr, at which
time pressure was lost due to development of a pinhole leak in the head-
to-cylinder weld region. The specimen was repaired by removal of about
25.45 mn (1 in.) of the end of the specimer and welding a flat circuiar
disk to the end of the cylinder. The resuiting modified specimen, desig-
nated specimen 1A-M2, was returned to test. The test was interrupted for
dimensional inspections at total test times of 1000 and 2000 hr. Failure
occurred at a total test time of 35/6 hr by an axial crack in the cylindri-
cal portion of the specimen (see Fig. 16).

3.2.5 Specimen 2-M2

This specimen, pressurized to 1h4.1 MPa (2040 psig), was tested as
planned with interruptions for dimensiopal inspectiors after total test
times of 500, 1500, and 2000 hr. Failure occurred at 399¢ hr, when a
series of amall axial cracks developed iz the cylinder similar to those
shown i Pigs, 16 and 17.

3.2.6 Specimen 3-M2

This specimen, tested at a pressure of 14.1 MPa (2040 psig), was in-
terrupted for dimensional inspections at 500, 1000, 2000, 4000, and 8000
hr total test time. The specimer. failed at 9712 hr through a very fine
pattern of cracks in the cylinder as shown in Fig. 17.
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Fig. 16. Failed weldment of creep-rupture specimen lA-M2. (a) Over-
all view; (b) closeur.
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* 1070 1203-77
FAILURE REGION

{2)

Fig. 17. Failed weldment of creep-rupture specimen 3-M2, (a) Over-
¥ a1l view; (b) closeup showing pattern of snall cracks in failure region,




3.2.7 Specimen L-M2

This specimen, like the first series of weidment specimens, was
tested at 16.6 MPa (2410 psig). The test was interrupted at 500 and 1000
hr, and failure occurred at 1136 hr. However, this is not considered a
valid failure point since it occirred during a temperature excursion
caused by & malfunction of the temperature controller.
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L. DEFORMATION DATA AND ANALYSIS

4.1 Defarmation Data

Measurements of strains and/or deformations at these test tempera-
tures present many difficulties. It was thus decided that acceptable de-
formation results could be obtained by making comparative sets of dimen-
sional measurements at room temperature for discrete time: throughout the
life of a specimen. To provide a datum, the specimens were scribed with
circumferential lines on the cylinder and cap and with axial lines each
60° around the circumference of the closure cap. The latter lines de-
fined the 2nds of six radii formed by three planes passing through the
longitudinal axis of the cylinder. These scribe lines are visible in
Fig. 3.

The dimensional measurerents were made using a highly sophisticated
machine that normally is used for making dimensional ingpections of com-
plex structural parts. This machine has a rotating index table and a sen-
sitive surface probe with precise x-y-z movemenc.

The specimen was mounted in an upright position (i.e., closure cap
down) on the indexing table with the longitudinal axis of the specimen in
line with the geametric center of the table. The radial displacement of
the probe was measured from the center of the table, and its heigh: wes
referenced to the top surface of the table. The table was rotated to
align the probe with one of the six scribe lines on the closure cap. Then
the probe was moved vertically up the surface of the specimen and across
the head with a measurement of height and radial displacement being made
at each circumferential scribe line, This procedure was repeated for
each of the six scribe line positions (i.e., at 60° intervals) around the
circunference of the specimen closure cap., The resulting set of measure-
ments of heights and radii were used in comparison to similar dimensional
measurements for the original undeformed specimen to compuie the displace-
ment of specific points on the specimen surface. These displacements y~:re
used to calcilate the total inelastic strain, 53 will be discussed in Sub-
section 4.2,
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One limitation on this procedure was that it was assumed that the
deformations wouid be essentially axisymmetric. This proved to be ac-
ceptable, although sigrificant circumferential displacement occurred in
cases where the specimen failed through a long axial crack (see Fig. 12).
This displacement, however, was concentrated in the rupture region vhere
the specimens were distorted que to the failure. The distortion thus
placed limits on the reliability of the camputed strains in the rupture
region,

4.2 Analysis of Deformation Data

The method used for converting the deformation data into strains was
to identify material particles on the surface of the specimen by consid-
ering the specimen to be in a hypothetical reference state in which its
geametry was a perfect cylinder, flat head, or hemisphere depending on
the region or type of the specimen being considered. The surface strains
were calculated based on the deviation of the actual surface, obtained
from the dimensional measurements, from this hypothetical perfect surface.

For the cylindrical region of th: specimen, a cylindrical coordinate
system was then set up and each particle was identified by the reference
coordinates (6, z). The deformed location of a pariicle was given by its
Cartesian coordinates (x, y, z), and the undeformed iocation was given by
the Cartesian coordinates (x, y, z). To irterpolate between measured
points, the fcllowing series was used:

x(9, z) = P;(z) + P,(z) cos § + P,(z) sin @ + P,(z) cos 26
1 Pg(z) sin 26 + P4(z) cos 36 ,

where P,,...,P, are pclynomial splire functions. The spline functions
are continuous and have two continuous derivatives across the scribe
rings. Interpolation equations of the same form were used for y, z, X,
¥ z

For a hemispherical cap the reference state was a perfect hemisphere,
and the interpolation equation was
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x(9, 7) = P,(cos ) + sin 7 P,(cos £) cos &
+ sin @ P 'cos ) sin 8 + sin® 7 P (cos 7) cos 20
+ sin® ¥ P_(cos ¥) sin 26 + sin® 7 P (cos ?) cos 38,
vhere 7 is the reference angle measured from the pole.

For a flat head, the reference state was a flat disk, and the inter-
polation function was

x(r, @) = P.(T%) + rF,(r?) cos 8 + rP,(r?) sin @
+ TPPo(7?) cos 28 + T2P_(TP) sin 28 + PP, (T?) cos 39 .
The form of the head equations was chosen so as to force the defcrmation

to be analytic at the center point.
Using index notation, the strain tensor is defined as

X, X, OX, oX
e -1 i_i_ 7373
an "2\=- = = =}’
JX OX_ ox_ ax
m n m n
where:
Xy %, Xp TV Rg - %,
X) =X X5 =Y, X3 =2,
X, =T, X = 6, X5 = z for a cylinder or flat head,
X, =T, X, = 6, X5 = # for a hemisphere.

Because it follows the conventions of tensor analysis which emphasize
simplicity of transformation, the strain tensor €n does not reduce to
engineering strain in the infinitesimal limit. The alternative strain
measure

e =1 ‘ dxi_uxj x5 x ®x %1 %
= - -— -—— -— - -— — -— ,
W 2 5% ox O% ox 0X OX_ X %
m n m n m m N

n

(no sumation on m, n)
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sametimes referred to as the "physical components” of the tensor, is not
itself a tensor but does reduce to engineering strain (except for a fac-
tor of 2 in shear) and is therefore easier to imterpret.

The above discussion is descriptive of the displacement field for
the exterral surface of the specimen. Assuming that the thin-shell geom-
etry relations are valid, it is also possible to calculate the strain
field on the imnner surface of the specimen. To accomplish this, the fol-
lowing shell analys:is was incorporated into the computer program uzed for
data reductionm. '

Let ii (ay, ap), 1 =1, 2, 3, denote the global Cartesian coordinates
of the measured location of a point on the outer surface of the specimen
before deformation and let Xy (a;, o) be the corresponding coordinates
after deformation, where a;, a, are the local reference coordinates on
the outer surface:

ay ay
Cylinder ] Z
Flat head T [
Hemispherical head z ]

All the barred coordinates refer to an idesl reference state of the spec-
imen.

A vector normal to the outer surface after deformation is given by
the Cartesian coordinate components:

O

u, = R
o, aaa da, oy
a"a ox, Oxy %,
u, = — - R
i o, 8012 a0, 0oy
ox, ox; Ox; Ox,
113

ooy du,  dap o,

and similerly for the normal vector before deformation. The compcuents
of a normal vector of unit length are given vy
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v1=u1//uf+u§+u§,

etc. Then, assuming that a line segwent initially normal to the octer
surface, and embedded in the material, remains straight and normal after
deformation and neglecting changes in wall thickness due to deformation,
that is, the Kirchhoff-Love hypothesis of thin-shell theory, the inside
surface strain tensor ir given (using the summation and range conventions)

where h is the constant wall thickness.

The physical components of the inr - surface strain can then be cal-
culated in the same vay as for the cuter surface. The approximations
above greatly simplify the numerical calculations. They are consistert
with a large-deflection, small-strain, thin-shell approximation for ntand-
ing. The outside surface strains, however, are valid for large deflec-
tion and large strain since they are based on the measured deformation
of the specimen. Results fram these calculations are discussed in the
next section,
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5. TEST RESULTS AND CONCLUSIONS

5.1 Deformation Behavior of Specimens

Calculation of strains for the first series of specimens was made
more difficult by the amount of distortion the material underwent at fail-
ure. In particular, the flat heads of specimens 2-M1 and 3-M1l were badly
warped during rupture. In the regions away trom the failure area and in
the second series of specimens, where failure generally occurred by small
cracks, the calculated strains were much more consistent.

In order to make camparisons of the general behavior of weldments and
base metal, two approaches were used. PFirst, selected points on the outer
surface of the cylindrical part of the specimens were observed with re-
spect to their time-dependent bzhavior. Points were chosen in all base
metal regions, membrane stress only, and at the center of the deposited
welds. The strains at these selected points, calculated from “.ae defor-
mation measurements, indicate the general time-dependent behavior of the
weld and base metals.

Results for the first series of specimens are summarized in Table L.
The rupture strains, which are outside surface strains, were taken at
points away from the actual fallure area and should be indicative of the
circumferential strain just prior to failure. Comparesble results for the
second series of specimens are shown in Table 5 and Fig. 18. In both
cases, the strains reported are the total inelastic outside surface strain
and therefore include the loading strains.

The deformation response of the second series of specimens, Fig. 18,
indicates reasonably consistent comparative creep behavior between the
specimens tested. 1o trend curves are included over the time range 0 to
500 hr since both plastic loading strain and creep occurred in an unde-
fined (for these tests) ay. As may be seen in Tables 4 and 5 and Fig.
18, the pipe material exhibited greater total inelastic strain than the
ber material. This is consistent with product-form characterization re-
sults,® which show the pipe material to have a lower initial yielid poiat
and slightly higher minimum creep rates than the bar material for stress
levels camparable to these weldment .pecimens. This creep rate behavior
is shown in Fig. 19.
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Table 4. Comparison of weld-base material behavior in
the cylinder region of WCR-1 specimens

Temperature 593°C (1100°F)
Internal pressure 1.66 MPa {2410 psi)
Axial stress 90.9 MPa (13,180 psi)
Circumferential stress 181.8 MPa (26,370 psi)
Effective stress (von Mises) 157.2 MPa (22,800 psi)
Total inelastic c&r-$
Specimen :ej.:: cumferential strain” (%) Coxments on
No. (hr) Bar . Sipe At failure mode
stock stock weld
1-M 108 10.0° Axial crack in cylinder
2-M1 35 2.1 2.8 0.6 Circumferential crack be-

tween head and cylinder;
upper half (head end) of
specimen replaced

2A-M1 123 NA NA RA Circumferentiasl crack be-
tween head and cylinder;

flat head repaired by

welding

ZB-M1 304 .7 6.4 2.9 Axial crack in cylinder;
failed section tested
269 hr

3-ML K3 NA NA M Circumferential crack be-

tween head and cylinder;
flat head repeired by
welding

¢ 1.5 Axial crack in cylinder

3A-M1 200 h.1 6.9

A = not available,

Pspecimens without a flat heel/cylinder weld had the flat-head
end machined from solid bar stock.

“Rupture strain.

The deformation of the base metal was much greater than thet of the
comparably located weldments. During the first 2000 hr of testing of the
second series of specimens, no clearly defined deformation behavior of the
weldments was established. The fact that decreases in previously measured
strain levels or negative strains are shown for the weldments may be at-




Table 5. Comparison of weld—-base metal material behavior
in cylinder region of WCR-2 specimens

Total test time (hr)

a
Specimen Material Stress 500 1000 1500 2000 L4000 8000 97L2

No.
MPa ksl Average circm.(‘.‘;?ntial strain

»

e

o)
o

1-M2 Base metal (pipe) 117.2 17.0
1A-M2  Bage metal (pipe) 117.2 17.0 1.99 2.47 3.67°

2-M2 Base metal (pipe) 11l7.2 17.0 1.48 2.01 2.% 17.05
Base metal (bar) 117.2 17.0 1.04 1.52 1.67 1.79
Weld 17.2 17.0 0.21 0.17 0.30 0.29
3-M2 Base metal (pipe) 117.2 17.0 1.57 2.20 2.57 3.35 k432 5.2°
Bage metal (bar) 117.2 17.0 0.98 1,74 1.87 2.4 3.01L 3.0%
Weld 17.2 17.0 -0.23 0.27 -0.01 0.24 0.37 o.n1
L¥2  Base metal (pipe) 136.5 19.8  1l.9b  2.56 7.987
Base metal (bar) 136.5 19.8 1.73 1.91 6.30
Weld 136.5 19.8 0.29 0.27 2.30
Weld 136.5 19.8 0.32 0.23 2.4

T

&Elastically calculated von Mises stress.
Yraken at 475 ar.

CFailure strain at 3576 hr.

d}‘ailure strain at 3996 hr.

®Failure strain at 9712 hr.

fStm:!.n after temperature increase (1136 hr).
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CIRCUMFERENTIAL STRAIN (%)
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Fig. 18,

in weldment creep-rupture series 2 specimens.

Camparative deformation behavior of weld and base met:ls
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Fig. 19. Minimumm creep rate and time to rupture for 0.l1lh-m-diam
(4 1/2-in.) bar and 0.102-m (4-in.) sched-L4O pipe of type 304 stainless
steel (reference heat 9T2796).

tributed to several sources. The accuracy with which the deformation mea-
surements were made woulc definitely be a contributing factor. For very
smail deformations, as in the weld area, small absolute errors in measure-
ments could produce scatter in the final calculated strains., The possi-
bility also exists that relaxation of the residual stresses in the weld-
ment could lead to a decrease in specimen diameter at the weld location.
Another likely candidate for producing decreases in strain is the precip-
itation of carbides from the highly stressed weldment at elevated tempera-
ture.!° This precipitation with its associated volume decrease could ac-
count in part for the weldment deformation behavior observed.

Although the weldments in the membrane regions of the cylinderc did
not undergo much strain, these weldments were capable of susteining large
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deformations with no loss of integrity. Welds in the cylinder-to-head
Junction regions and in the heads of tne specimens were subjected to large
bending strains as is shown in Fig. 20. Failure of this specimen (fail-
ure is discussed in the next subsection) was in the base metal in the
cylinder-to-head junction region.

The inside and outside surface strains for a number of different
cases were calculated using the approach discussed in Subsec*Zon 4.2.
These results are contained in the appendix to this raport.

5.2 PFaiure Behavior of Specimens

Failure of these specimens as well as the overall deformation behav-
ior was of interest. The rupture lives of these specimens is shown in
Fig. 21. The data are only for failures in the membrane regions of the
cylinders for which the biaxial stress ratio was 2:1. Failures that oc-
curred in the head-to-cylinder junction regions of the specimens are not
shown due to the complexity of the stress fie:: at these discontinuities.
Two sets of symbols are used in Fig. 21, one representing data correlated
on the basis of von Mises effective stress and one representing data cor-
related on the basis of maximum princivel stress. The maximum principal
stress gave better agreement with the uniaxial trend line over the full
range of test conditioms.

All the specimen failures originated ian the base metal. In the head-
to-cylinder junction region, the weldment was much stronger than a geo-
metrically comparable all-base-metal junction region. This is exhibited
rather graphically in Fig. 22, which is a cross-sectional micrograph show-
ing the cylinder wall, weldment, and head of specimen 1-Ml., This spzei-
men failed by rupture of the cylinder after LO8 hr (see Fig. 13). For
some period of this time the weld was cracked as shown in Fig., 22, yet
continued to function as a pressure boundary. In specimens 2-Ml, 2A-Ml,
and 3-Ml, failure occurred in this region, which was all-base metal, with-
in 35 to 88 hr, respectively (see Fig. 1k, typical).

Figure 23 shows the head-to-cylinder junction region of specimen 1-M2,
which failed after 475 hr. A crack developed in the base metal and propa-
gated into the weld. As can be seen, the weld underwent a significant
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i CYLINDER
WALL

Al

Fig. 22. Cross section of head-to-cylinder junction region in spec-
imen 1-ML after 408 hr at 593°C (1100°F).
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- Fig. 23. Head-to-cylinder junction region in specimen 1l-M2 after
475 hr at 593°C (1100°F). (a) Cross section of weldment; (b) view rhow-
ing developed crack in junction region.
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amount of deformation before pressure loss througn a pinhole leak. In
both specimens 1-Ml and 1-M2, the cracks extended a complete 360° around
the inside of the junction region.

5.3 Conclivsions and Summary

The number of tests conducted was not sufficient to yield what one
would consider to be a so'nd statistical sample <o far as rupture behav-
ior is concerned. However, the information obtained is valuable in an
assessment of the structural response of weldments sutjected to toth
short- and long-term steady-state creep.

In assessing the res:lts of these tests, several points ae impor-
tant with respect Lo the comparative behavior of the base metal and weld-
ments.

1. The rupture life of the specimen was determined by the tase metal
and not by the weldments.

2. The weldments were capable of undergoing large strains without
apparent damage through cracking or tearing.

3. 7The weldments possessed superior resistance to cracxk growth as
compared to the base metal,

L. For the test conditions, the maximum principal stress gave a
better correlation between the uniaxial and biaxial failure data.
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Fig. Al6-e. Surface strain distribution for specimen L-M2 along the
axial referenc: plane, 6 = 240, at 1000 hr (1 in. = 2,54 cm).
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Fig. Al6-f. Surface strain distribution for specimen L-M2 along the
axial reference plane, v = 300°, at 1000 hr (1 in. = 2.54 cm),



