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APPENDIX 5
MATERIAL 5
MANUAL METAL ARC (MMA) WELDMENT IN A533B-1 BASE

AND

HEAT AFFECTED ZONE MATERIAL FOR MMA WELD AND A533B-1 BASE




MATERIAL TYPE 5
MMA WELD, HAZ IN A533B-1

INTRODUCTION

Nine heats of manual arc welded A533B-1 steel were studied, namely,
ETI heats 9 to 12 (I to L) and CE heats 12 to 16 (L to P). A brief des-
cription of the various heats is given in Table 5.1. More details on the
ETI heats are given in reference 13, and for the CE heats in reference 12.
The test results extracted from the data bank are listed at the end of

this section.

TENSILE TESTS RESULTS

The 2-in. gage section tensile test results are illustrated in Figures
5.1 to 5.15 together with plots of the cubic polynomials that were fitted
to the data. The curve fit coefficients and the statistical data for each
curve are summarized in Table 5.2. The figures are divided as follows:
Figures 5.1 to 5.5 correspond to MMA weld longitudinal (direction of weld)
properties with J (i.e., property) values ranging from 2 to 6. Figures
5.6 to 5.10 correspond to MMA weld transverse (perpendicular to weld)
properties with J again ranging from 2 to 6. Finally Figures 5.11 to
5.15 correspond to heat affected zone (HAZ) properties with J similarly
ranging from 2 to 6. ©Note that the heat-affected zone samples are a
combination of weld metal, HAZ, and base metal in the gage section; this
combination often means that the property measured is that of the weakest
element, generally the base material. Also, the CE samples used a 2-in.
gage section while the ETI samples had a 1l-in. gage section for this

material.

CHARPY V-NOTCH RESULTS

Impact Energy

The Charpy V-notch energy results for material 5 were curve fitted
using the tanh analysis and -the resultant statistical parameters are given

in Table 5.3. The deviations of the various statistical parameters in




Table 5.3 from the mean values are given in Table 5.4: The tanh curve fits
for the manual metal arc weld data are shown in Figures 5.16 to 5.25. Note
that CE measured the MMA weld impact properties in both the longitudinal and
transverse orientation. The tanh curve fits for the MMA heat affected zone
(HAZ) data are shown in Figures 5.26 to 5.28. The T0 values for CE heat M

(longitudinal, 231351) is high, and the variance for CE heat L (HAZ, 231253)

is large due to one outlying data point in the transition region (Figure 5.26).

Lateral Expansion

The statistical parameters related to the tanh fit of the lateral ex-
pansion data are given in Table 5.5, and the associated deviations of these
parameters are given in Table 5.6. The lateral expansion data for the MMA
welds are plotted in Figures 5.29 to 5.38, and the data for the HAZ are
plotted in Figures 5.39 to 5.41. The TO value for ETI weld metal heat 1
(25952) is high as is the C value for CE heat L (231253). Again, the var-

iance is high for CE heat L (231253)
Percent Shear

Table 5.7 summarizes the curve fit parameters obtained from a tanh fit
of the percent shear data. The deviation of these parameters from the mean
values is given in Table 5.8. The percent shear results are shown graphically
for the MMA weld and HAZ materials in Figures 5.42 to 5.51 and Figures 5.52
to 5.54, respectively. ETI heat I (25952) has high values of A and TO’
and CE heat L (231253) again shows a large variance.

Summary of Charpy Impact Test Data

A review of the variance statistics reveals that data set 231253 (CE
heat L, HAZ) exhibited a substantial deviation from the mean values. The CE
HAZ heat impact energy data (Table 5.4) had a normalized deviation for var-
iance of 3.14, 2.11 for lateral expansion (Table 5.6) and 2.54 for percent
shear (Table 5.8). A check of the corresponding figures (5.26, 5.39, and 5.52)

reveals that one of the data points exhibits an exceptionally large deviation

from the tanh curve. ‘




A comparison of the transition temperature corresponding to the lower

knee of the Charpy curves (TO ~ C) with RT and NDTT is given in Table

NDT
5.9. There appears to be little correlation between these various meas-

urements of the ductile-brittle transition temperature. Note the large

difference between the TO - C and RTNDT or NDTT values for data set

251253 (ETI heat L, HAZ).

INSTRUMENTED PRECRACKED CHARPY RESULTS

K
®

Dynamic Fracture Toughness KId’ Kd

The tanh curve fit coefficients and the statistical parameters for
material 5 data are summarized in Table 5.10, and their deviations from
mean values are given in Table 5.11. The data sets for the MMA weld are
plotted in Figures 5.55 to 5.60. The data sets for the HAZ heats are

shown in Figures 5.61 to 5.63.
Normalized Energy, W/A

The statistical parameters obtained by fitting the normalized energy
data with the tanh curve are given in Table 5.12. A further analysis of
these parameters is given in Table 5.13. The W/A data for the MMA welds
are shown in Figures 5.64 to 5.69. The W/A data for the HAZ materials

are shown in Figures 5.70 to 5.72.
Summary of Precracked Charpy Results

An examination of the statistics again reveals the large variance

associated with CE heat L. The TO - C values for the precracked Charpy

data are compared with RTNDT and NDTT in Table 5.14. The T0 - C values

from the W/A curves seem to correlate fairly well with the NDTT. The

*
1d° Kd data for all the heats of material 5 have been

summarized and compared to the K

precracked Charpy K

IR curve in Figures 5.73 (MMA weld) and

5.74 (HAZ). Note that for manual metal arc weldments in A533B-1, ETI

heat K (11) and CE heat M (13) fall below the KIR curve. Also, CE heat

N (14) falls right on the lower portion of the Kpg curve.



Figures 5.75 and 5.76 summarize the normalized energy data for the

MMA welds and HAZ materials, respectively.

STATIC COMPACT AND DYNAMIC ONE-INCH AND FOUR~INCH FRACTURE TOUGHNESS RESULTS

The results for static 1-in. and 2-in. compact fracture tests (test
types 5 and 11), dynamic one-inch and four-inch compact tests (test types
8 and 7), and dynamic one-inch bend tests (test type 6) for material 5
are illustrated in Figures 5.77 to 5.85. The number of tests were very
limited and tanh curve fits were not made. The static fracture toughness
data for the MMA welds and HAZ are summarized and compared to the KIR
curve in Figures 5.86 and 5.87, respectively. The static fracture toughness
falls well above the KIR curve, as would be expected. The dynamic toughness
data from the 1l-in. and 4-in. fracture tests are summarized in Figures

5.88 ~ 5.91 compared to the KIR curve.

EFFECT OF ERROR CODES

The static and dynamic fracture toughness results for material 5 were
statistically analyzed with and without the data points which did not meet
the EPRI procedures. Tanh curve fits to the total data and acceptable data
only are shown in Figures 5.92 - 5.95. The influence of the error code
data on shelf properties and variance was determined. Both the overall
variance and the variance in the transition temperature region (T0 * SOOF)
were compared. A summary of the error code analysis is given in Table 5.15.
The variance ratio (F) was calculated for the static and dynamic fracture
toughness results. The ratios shown in Table 5.15 had a high probability
of occurring by chance, and it is concluded that the effect of the error

codes on the data was not significant.




Summary of MMA Weld and HAZ Materials in A533B-1 (Material 5)

Table 5.1.
WELDING

TEST LABORATORY HEAT CODE CONDITIONS NDTT (OF)
CE (Weld) M (13) -70
N (14) ~-70
0 (15) (Ref. 12) -60
P (16) -80
ETI (Weld) I (9) =50
K (11) (Ref. 13) ~50
CE (HAZ) L (12) (Ref. 12) -70
ETI (HAZ) J (10) -40
L (12) (Ref. 13) -50

RT

NDT

~-70
~-70
-60
-80

-10
-40

~40

(°F)

COMMENTS

E8018-C3 Electrode

{E8018—NM Electrode

heat CA base metal

heat EH base metal

heat EF base metal

-6



Table 5.2. Summary of Statistical Parameters for Tensile Data on MMA Welds and HAZ in A533B-1 Base
Varignce, Degrees of Standard

Property Material A B I D s Fresdom Degiation
-2 _5 _8
Yield Stress CE Weld (L) 7.382X10 -5.865X107;  5.876X10, 2.424X10”, 13.99 20 3.74
ETI weld (T) 7.842X10 -5.899X10_, 1.439X10_, -1.415X10 ; 14.01 8 3.74
CE & ETI  HAz 6.782X10 -6.779X10 1.824X10 -1.566X10" 23.72 14 4.87
_2 _5 R
Ultimate Weld (L) 8.835X10 -6.182X10_, 9.078X10_y 4.788X10_g 3.01 20 1.73
Tensile Weld (T) 9.349X10 -7.255X10_, 1.345X10_4 -5.144X10_g 4.95 8 2.22
Strength HAZ 9.228X10 -7.819X10 1.297X10 -1.674X10 16.64 14 4.08
22 _6 _8
Uniform Weld (L) 1.287X10 -1.311X10_» -9.818X10_5 5.161X10_g 0.49 19 0.7
Elongation Weld (T) 9.596X10 -1.542X10_, 3.368X10_5 -2.228X10_g 0.60 8 0.77
HAZ 1.104X10 -1.437X10 -1.455X10 5.859X10 1.84 13 1.36
_2 _5 _7
Total Weld (L) 3.131X10 -1.137X10_, -6.387X10_s 1.298X10 4 1.7 20 1.30
Elongation Weld (T) 2.274X10 -1.379X10_5 7.258X10_s -9.891X10_g 11.60 8 3.41
HAZ 2.692X10 -9.375X10 -3.788X10 6.898X10 4.74 14 2.18
.2 b _7
Reduction Weld (L) 7.374X10 2.111X107,  -1.195X107, 1.191X107, 6.58 20 2.57
In Area Weld (T) 6.044X10 -1.370X10_, 2.086X10_5 -3.058X10_- 111.62 8 10.57
HAZ 6.771X10 -1.409X10 6.294X10 -2.107X10 25.63 14 5.06

9-¢



Table 5.3.

Tanh Fit Parameters for Charpy Impact Energy Data (MMA, HAZ, A533B-1)

Table 5.4.

Deviation

of Charpy Impact Energy Curve Fit Parameters from
(MMA, HAZ, A533B-1)

Mean Values



Table 5.4. (continued)
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Table 5.4. (continued




Table 5.4. (continued)

VARIANCE

Table 5.5. Tanh Fit Parameters for Charpy Impact Lateral Expansion
Data (MMA, HAZ, A533B-1)
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Table 5.6. Deviation of Charpy Impact Lateral Expansion Curve Fit Parameters
from Mean value (MMA, HAZ, A533B-1)
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Table 5.6. (continued)
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Table 5.6. (continued)

VARIANCE
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Table 5.7. Tanh Fit Parameters for Charpy Impact Percent Shear Data
(MMA, HAZ, A533B-1)

Table 5.8. Deviation of Charpy Impact Percent Shear Curve Fit Parameters from Mean
Values (MMA, HAZ, A533B-1)

| >=
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Table 5.8. (continued)




Table 5.8. (continued)




Table 5.8. (continued)
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Table 5.9. Comparison of T, - C from TImpact Test Measurements with RTyp7 and NDTT‘
(MMA, HAZ, A533B-1)

T, - C °r)
IMPACT LATERAL PERCENT
KEY ENERGY EXPANSION SHEAR RTy (°F) NDIT (°F)
25952 -34 —49 -19 ~10 -50
231253 ~156 -126 ~49 ~40 -70
231351 -106 -69 -70 — -70
231352 -65 -61 -73 ~70 -70
231551 -137 -78 -89 — -60
231552 -72 -70 -52 -60 -60
231651 -92 -92 -74 —_— -80
231652 -95 -74 -52 _80 -80
251053 -51 -61 -100 ~40 -40
251152 -52 ~41 -81 40 -50
251253 ~109 -115 -122 -50 -50
2231451 -91 -76 -65 —_ -70
2231452 -69 -45 -56 -70 -70
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Table 5.10. Tanh Fit Parameters for Precracked Charpy Toughness
Data (MMA, HAZ, A533B-1)
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Table 5.11. Deviation of Precracked Charpy Fracture Toughness Curve Fit+
Parameters from Mean Values (MMA, HAZ, A533B-1)
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Table 5.11. (continued)
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Table 5.11. (continued)
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Table 5.12. Tanh Fit Parameters from Precracked Charpy W/A Data
(MMA, HAZ, A533B-1)

Table 5.13. Deviation of Precracked Charpy W/A Curve Fit Parameters from Mean Values
(MMA, HAZ, A533B-1)




Table 5.13. (continued)
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Table 5.13. (continued)
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Table 5.14. Comparison of Precracked Charpy Transition Behavior with NDTT
and RT (MMA, HAZ, A533B-1)

NDT
Ty - C °r)

KEY K., K W/A RT (°F) NDTT (°F)
e 1d° “d e NDT

35952 ~10 -32 -10 ~50
331253 ~57 -99 -40 ~70
331352 ~36 -69 ~70 ~70
331552 ~30 -48 -60 -60
331652 ~48 -58 -80 ~-80
351053 -6 -47 -40 ~40
351152 68 -29 ~40 ~50
351253 -78 -53 -50 ~50
3231452 -12 -51 -70 ~70




Table 5.15. Summary of Error Code Analysis for Material 5 (MMA, HAZ, A533B-1)

INCLUDES NO. OF SHELF(Ft-Lb) VARIANCE VARIANCE RATIO F
TEST TYPE  ERROR CODES POINTS LOWER UPPER  OVERALL TRANSITION REGION  OVERALL TRANSITION REGION

Static (5) Yes 42 7 -- 6364 6530
0.85 .07

No 34 41 -- 7462 6129

Dynamic (6,7,8) Yes 42 28 -- 7975 16927
1.10 .31

No 35 76 -- 7222 12957

LT-S
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Figure 5.18 Charpy V-Notch Dial Energy for CE Heat N (L)
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Figure 5.32 Charpy V-Notch Lateral Expansion for CE Heat N (T)
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Figure 5.34 Charpy V-Notch Lateral Expansion for CE Heat 0 (T)
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‘“ Figure 5.35 Charpy V-Notch Lateral Expansion for CE Heat P (L)
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Figure 5.36 Charpy V-Notch Lateral Expansion for CE Heat P (T)
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Figure 5.38 Charpy V-Notch Lateral Expansion for ETI Heat K (T)
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Figure 5.44 Charpy V-Notch Percent Shear for CE Heat N (L)
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Figure 5.45 Charpy V-Notch Percent Shear for CE Heat N (T)
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Figure 5.46 Charpy V-Notch Percent Shear

for CE Heat 0 (L)

/
4+ a3 / a o] o]
[ -
4 52 / .
/
- Bu / ¢
[ .
£ 1 m [
Ll
- g
—
zZ T4
St
o &
a- v
- 4
CE HEAT 0 -
] MMA WELD (A533B-1) LONGITUDINAL
/ KEYWORDS 2 3 |8 & |
/ = Y -
+ TA= ~17.82 C= 71.54 A= S@B.36 B= 47.71
1 e \ - ~ , TEMPERATURE, DEG. F , . .
|
-15R -s@ Y| 5@ 258 3sa 4@ LYY |



a3

-+ o) o] 0] 0] o]
4 om
41 88
x 1 7@
Ll
T lJ
o g8
= 21 &0
o 4
wm
a. w
-l EB L
£
CE HEAT 0
1l yg MMA WELD (A533B-1)
KEYWORDS 2 3 I8 § 2
= Y
4+ 3@ TA= ~|6.92 ¢« 34,82 A= 5|.74 B= Y5.5%
- zn
4 12
a— . - TEMPERATURE, DEG. F ) )
~-|sP -5 £y Y 25p 3sp ysp ss@

Figure 5.47 Charpy V-Notch Percent Shear for CE Heat 0 (T)



PERCENT SHEAR

RESPONSE

B ° c}
(9]
1
~J
9]
CE HEAT P
MMA WELD (A533B-1)  LONGITUDINAL
KEYWORDS 2 3 IB X |
J= Y
TA= <21.18 (= K3.27 A= 48 .84 B= 4g.894
) TEMPERRTURE, DEB. F - N )
-i50 ~-5a Y (1Y 25a 3sa 45a 55@

Figure 5.48 Chorpy V-Notch Percent Shear for CE Heat P (L)




+ 2B B [l o
4 98
4+ B8
= | 7m
‘(:‘/::)J L
= %.. B8
S B
] [+ 4
“ 1 sa
CE HEAT P
| yp MMA WELD (A533B-1)
KEYWORDS 2 3 |B &K 2
= Y
4 3@ TA= ~]7,.33 (Cw 34.86 A= 82.33 Bw HE.71
1l 2zm
+ 12
) . . . TEMPERATURE, DEE. F ) ) ) .
Ll §-Y ) -5n Y ] {s| 258 3sn H5H gsa

“Figure 5.49 Charpy V-Notch Percent Shear for CE Heat P (T)

9.~¢



ETI

HERAT |
MMR RELD (RAS338-1)

KEYRORDS 2 K 8 K 2 .= Y
TA= 4K .H9YH (= BY.8A A= Y. 4H B= Y5 22

LL-S

4 10
4+ oA
4 8ma
+4 A
- Bu

£l so

e o4

un

2| up

v

[+ A

tJ

a.
4 38
4 24
4 A

-|8A

158 257 3sn 4@ 558
TEMPERATURE, DOEB. F

Figure 5.50 Charpy V-Notch Percent Shear for ETI Heat I (T)




8/-G

Figure 5.51 Charpy V-Notch Percent Shear for ETI Heat K (T)
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Figure 5.54 Charpy V-Notch Percent Shear for ETI Heat L (HAZ)
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APPENDIX 6

MATERIAL 6

MANUAL METAL ARC WELDMENT IN A508-2 BASE METAL



MATERIAL TYPE 6
MMA WELD IN A508-2

INTRODUCTION

Five heats of manual metal arc welded A508-2, (heats A-D and K) were
studied by Babcock and Wilcox. A description of each heat is given in
Table 6.1. The results are encoded in the data bank extract shown at
the end of this section. A complete description of the test program

performed on material 6 is given in reference 11.

TENSILE TESTS RESULTS

The 1.25-in. gage section tensile test results on the MMA weld in
A508-2 are shown graphically in Figures 6.1 to 6.5. Cubic polynomial
equations were fitted to the data. The statistical data and curve fit
coefficients are summarized in Table 6.2. Heat K (11) had generally lower

yield and ultimate tensile strengths than the other heats.

CHARPY V-NOTCH RESULTS

Impact Energy

The impact energy results for material 6 are shown graphically in
Figures 6.6 to 6.15. A tanh curve was fitted to each set of data; the
coefficients and statistics are summarized in Table 6.3. Each quantity
shown in Table 6.3 was examined separately. The results are shown in
Table 6.4. The EPRI test matrix required the determination of the Charpy
V-notch properties of the base metal and heat affected zone associated
with each weld. The A508-2 base metal was characterized as material 2.

The properties of the HAZ material are included here.

The HAZ material for heat C (data set 22363) had an abnormally high
variance in the transition temperature range. This high variance was due
to the odd behavior of this material in the upper shelf region. The fitted

curve passed through the center of the shelf data, at a position in good




agreement with the other curves. However, other points scattered in a
range of about *60 ft-1b about this level. One high point was included
in the end portion of the transition range. The A and B values for HAZ
material heat K (221163) were abnormal as indicated in Figure 6.15. Heat

B HAZ material (22263) had a significantly higher TO than the mean value.

Lateral Expansion

The data were analyzed as described above. The statistics are summar-
ized in Tables 6.5 and 6.6, and the data are shown graphically in Figures
6.16 to 6.25. The main feature of note is the high A value for data set
221163 (HAZ for heat K), indicating (since B was in line with the other
heats) that the lower shelf, A - B, was high. As before, the T. value for

0
heat B, HAZ (data set 22263) was appreciably higher than the other heats.

Percent Shear

The percent shear results are shown in Figures 6.26 to 6.35. The
data are summarized as before in Tables 6.7 and 6.8. The lower shelf was
high (high A value and low B), again due to the paucity of data points,
for heat K HAZ (data set 221163). The only other noteworthy feature was
the unusual property scatter of heat C HAZ (data set 22363), as shown by

the exceptionally high variance value, Table 6.8.
Summary of Charpy Impact Test Data

The ductile-brittle transition temperature estimated from the Charpy

V-notch curves, T, - C, is shown compared to RT and NDTT in Table 6.9.

0 NDT

There is reasonable agreement between the percent shear values and RTNDT'

INSTRUMENTED PRECRACKED CHARPY RESULTS

*

Dynamic Fracture Toughness, KId’ Kd

The elastic and elastic-plastic fracture toughness results for material

6 are shown in Figures 6.36 to 6.40. The properties of the curves are

summarized in Table 6.10, and analyzed in detail in Table 6.11. None of

the heats were significantly different from the others.
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Normalized Energy, W/A

The W/A results are shown in Figures 6.41 to 6.45. The curve-fit
statistics are summarized in Tables 6.12 and 6.13. As for the K values,
none of the data sets differed significantly from the mean for all of the

heats.
Summary of Precracked Charpy Results

Table 6.14 shows the TO - C values for the fracture toughness and

the W/A curves, compared to RTNDT and NDTT. In contrast to the percent shear
data, there was poor correlation. The TO - C results for W/A were in
slightly better agreement with RTNDT and NDTT than those for K.

The instrumented precracked Charpy data are summarized in Figures
6.46 and 6.47. The fracture toughness results are compared to the KIR

curve in Figure 6.46. There were some points below the KIR curve in
the lower shelf region, but in the transition range the data were well

above KIR’ The W/A data are shown in Figure 6.47.
STATIC AND DYNAMIC COMPACT FRACTURE TOUGHNESS RESULTS

The static one-inch compact data (test type 5) and the dynamic one-
inch and four-inch compact data (test types 8 and 7, respectively) are
shown in Figures 6.48 to 6.52. The large dynamic compact specimen for
heat D was three inches thick (test type 10) rather than four inches. As
before the data is shown without a tanh curve fit due to the limited data
for each heat. The static test data are summarized in Figure 6.53, and the
dynamic compact data are summarized in Figure 6.54. Note the one point to

the right of the K curve in Figure 6.54.

IR

EFFECT OF ERROR CODES

The static and dynamic fracture toughness results for material 6 were
statistically analyzed with and without the data points which did not meet
the EPRI procedures. Tanh curve fits to the total data and acceptable data

only are shown in Figures 6.55 to 6.58. The influence of the error code
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data on shelf properties and variance was determined. Both the overall
variance and the variance in the transition temperature region (TO * SOOF)
were compared. A summary of the error code analysis is given in Table 6.15.
The variance ratio (F) was calculated for the static and dynamic fracture
toughness results. The ratios shown in Table 6.15 had a high probability
of occurring by chance, and it is concluded that the effect of the error

codes on the data was not significant.



Table 6.1. Summary of MMA Weld Materials in A508-2 (Material 6)

TEST LABORATORY HEAT CODE cgfxlﬁlrjggbxs NDTT (°F) RTpr (°r) COMMENTS
A (1) -100 -100 E8015-C3 Electrode
B (2) ~40 -40 E8018-C3 "
B&W c (3) (Ref. 11) ~80 ~80 E8015-C3 "
D (4) -90 ~90 E8018-C3 "
K (11) -80 ~80 E8015-C3 "

<=9




Table 6.2. Summary of the Regression Analysis of the Tensile Test Data (MMA Weld, A508-2)
Varignce, Degrees of Standard

Property A B C D - Fregdom Devgation

_2 b -7
Yield Stress 7.938X10 -6.512X10 1.74 X10 -1.932X10 26.73 26 5.45
Ultimate _2 m 8
Tensile Stress 9.284X10 -6.67 X10 1.119X10 -4.739X10 35.49 26 5.96
Uniform 2 _6 _8
Elongation 1.367X10 -1.457X10 -9.151X10 4.391X10 1.30 26 1.14

5

Reduction

-2 =5 .8
In Area 2.81 X10 -1.363X10 ~1.055X10"" 3.261X10 2.22 26 1.49




Energy Data (MMA, HAZ, A508-2)

Table 6.4. Deviation of Charpy Impact Energy Curve Fit Parameters from Mean
Values (MMA, HAZ, A508-2)

A




Table 6.4. (continued)

B
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Table 6.4. (continued)




Table 6.4. (continued)

VARIANCE

Table 6.5. Tanh Fit Parameters for Charpy Impact Lateral Expansion Data
(MMA, HAZ, A508-2)
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‘ Table 6.6. Deviation of Charpy Impact Lateral Expansion Curve Fit Parameters
From Mean Values (MMA, HAZ, A508-2)
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Table 6.6. (continued)
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Table 6.6. (continued)

VARIANCE
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Table 6.7. Tanh Fit Parameters for Charpy Impact Percent Shear Data
(MMA, HAZ, A508-2§

Table 6.8. Deviation of Charpy Impact Percent Shear Curve Fit Parameters
From Mean Values (MMA, HAZ, A508-2)




Table 6.8. (continued)

6-15
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Table 6.8. (continued)




Table 6.8. (continued)

Table 6.9. Comparison of T0
and NDTT

6~17

VARTANCE

o
Ty - C (°F)
IMPACT LATERAL PERCENT
KEY ENERGY EXPANSION SHEAR
22162 -119 -143 -72
22163 -116 -80 -40
22262 -83 -71 -36
22263 -21 -38 ~-11
22362 -127 -100 -78
22363 -134 -118 -115
22462 -82 -63 -50
22463 -156 -190 -177
221162 -123 -86 -66
221163 -23 -168 -54

- C from Impact Test Measurements with RT
(MMA, HA7. A508-2)

NDT
RTypr(°F) NDTT (°F)
~100 -100
-40 -40
-80 -80
-60 -90
-80 -80
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Table 6.10. Tanh Fit Parameters for Precracked Charpy Toughness Data '
(MMA, HAZ, A508-2)

Table 6.11. Deviation of Precracked Charpy Fracture Toughness Curve Fit Parameters
From Mean Values (MMA, A508-2)
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‘ Table 6.11 (continued)
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Table 6.11 (continued)

VARIANCE
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Table 6.12. Tanh Fit Parameters for Precracked Charpy W/A Data (MMA, A508-2)

P g LR

Table 6.13. Deviation of Precracked Charpy W/A Curve Fit Parameters
From Mean Values (MMA A508-2)




Table 6.13. (continued)
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. Table 6.13. (continued)

VARIANCE




Table 6.14.

KEY
32162
32262
32362
32462
321162

6-24

Comparison of Precracked Charpy Transition Behavior with

NDTT and RTyyr (MMA, HAZ, A508-2)
_ 0

Ty - C (°F)

Kies Ko W/A RT. - (°F) NDTT (°F)
1d> Kd NDT
_73 71 -100 -100

33 -15 -40 -70

_46 -86 -80 -80
_27 71 -60 -90

-45 -122 -80 -80




Table 6.15.  Summary of Error Code Analysis for Material 6 (MMA, A508-2)

INCLUDES NO. OF SHELF(Ft-Lb) VARIANCE VARIANCE RATIO F
TEST TYPE ERROR CODES POINTS LOWER UPPER  OVERALL TRANSITION REGION OVERALL TRANSITION REGION
Static (5) Yes 25 67 306 3503 6235
0.987 1.763
No 17 48 312 3548 5361
Dynamic (7,8,10) Yes 30 59 258 3818 3750
1.450 1.383
No 25 13 320 2634 2712

$¢~-9
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APPENDIX 7

MATERIAL 7

SUBMERGED ARC WELDMENT (SA) IN A533B-1 BASE METAL

AND

HEAT AFFECTED ZONE MATERIAL FOR SA WELD AND A533B-1 BASE




MATERIAL TYPE 7
SA WELD, HAZ IN A533B-1

INTRODUCTION

Five heats of submerged arc welded A533B-1 were studied by Combustion
Engineering, Inc. at their Windsor and Chattanooga laboratories. A
brief description of the heats is given in Table 7.1. The extracted data
bank entries for this material are appended to this section. More details

on Material 7 can be found in reference 12.
TENSILE TESTS RESULTS

The 2-in. gage section tensile test results are shown in Figures
7.1 to 7.10. The coefficients for the cubic polynomials fitted to the test
data are summarized in Table 7.2. Note that the heat affected zone material,
heat I (9), exhibited substantially less strength and ductility than the sub-
merged arc weldments. In fact, the HAZ properties are almost identical
to the base metal properties (see material 1, CE heat A). This behavior
is most likely due to the fact that the two-inch gage section of the
tensile samples was a combination of weld metal, HAZ, and base metal; the

samples broke at the weakest link -- the base metal.

CHARPY V-NOTCH RESULTS
Impact Energy

The impact energy test results for the SA weld and HAZ material are
summarized in Figures 7.11 to 7.19. The curve-fit results are extracted
and analyzed in Tables 7.3 and 7.4, respectively. The data set 223772
(CE Windsor, heat G transverse) had an abnormally high B value, indicating
that the upper shelf was high (159 ft-1b compared to the mean of 131

ft-1b). The same heat had an unusually low T Heat I (23973) had a high

0"
variance probably indicative of HAZ material.

Lateral Expansion

The statistical parameters related to the tanh fit of the lateral



expansion data are given in Table 7.5, and the associated deviations of
these parameters from the mean values are given in Table 7.6. The curve
fits are shown in Figures 7.20 to 7.28. The results for heat I HAZ
material (data 23973) had an abnormally low B value, indicating a low

upper shelf (75 mils compared to 83 mils, the mean for all results). The
TO value for heat G (data set 223772) was again low, agreeing with the
impact energy data set. Heat H (data set 23871) had a high variance, shown
in Table 7.6. This was caused by a single outlying data point,

Figure 7.22.
Percent Shear

The results are shown in Figures 7.29 to 7.37. The results of the
curve fitting procedure are summarized in Table 7.7. Each parameter has
been analyzed in Table 7.8. The only significant feature noted in this
analysis was that heat I HAZ material (data set 23973) had an abnormally
high variance. This was again caused by a single outlying data point,

Figure 7.37.
Summary of Charpy Impact Test Data

The quantity T, - C for the impact energy, lateral expansion, and

0

percent shear results is compared to RTNDT and NDTT in Table 7.9. Apart

from the heat I HAZ material (data set 23973), the TO - C results for

impact energy and lateral expansion agreed quite well. There was little

agreement between any of the T, - C quantities and RT or NDTT.

0 NDT

INSTRUMENTED PRECRACKED CHARPY RESULTS

*
K

Dynamic Fracture Toughness, KId’ 4

The dynamic fracture toughness test measurements for the precracked
Charpy test are shown in Figures 7.38 to 7.42. The results of the curve
fit procedure are shown in Table 7.10 and analyzed in detail in Table 7.11.

There were no outlying results.




7-3

Normalized Energy, W/A

Figures 7.43 to 7.47 summarize the test results. The curve parameters
are listed in Table 7.12 and analyzed in Table 7.13. Again, there were no

significant outlying sets.
Summary of Precracked Charpy Results

The precracked Charpy toughness results are summarized in Figure 7.48.
Temperatures were normalized by RTNDT and the KIR curve was added. The

KIR curve falls inside the 3¢ limit for the transition data. The W/A

data points are plotted together in Figure 7.49, normalized to RTNDT' The

values of TO - C are compared to RTNDT and NDTT in Table 7.14. There

was fair agreement between the W/A results for T0 - C and RTNDT or NDTT.
STATIC AND DYNAMIC COMPACT FRACTURE TOUGHNESS RESULTS

The static one-inch and two-inch compact (test types 5 and 11) and
the dynamic compact (test types 7 and 8) results for the SA weld and HAZ
materials are shown in Figures 7.50 to 7.54. Because there were few data

points, the data are shown without curve-fitting. All the results are
summarized by loading rate in Figures 7.55 and 7.56 and compared to the KIR
curve. The K curve lies below the data for both static and dynamic loading

IR
rates.

EFFECT OF ERROR CODES

The static and dynamic fracture toughness results for material 7 were
statistically analyzed with and without the data points which did not meet
the EPRI procedures. Tanh curve fits to the total data and acceptable data
only are shown in Figures 7.57 to 7.60. The influence of the error code
data on shelf properties and variance was determined. Both the overall
variance and the variance in the transition temperature region (TO * SOOF)
were compared. A summary of the error code analysis is given in Table 7.15.

The variance ratio (F) was calculated for the static and dynamic fracture
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toughness results. The ratios shown in Table 7.15 had a high probability
of occurring by chance, and it is concluded that the effect of the error

codes on the data was not significant.




Table 7.1. Summary of SA Weld and HAZ Materials in A533B-1 (Material 7)

WELDING o
TEST LABORATORY HEAT CODE CONDITIONS NDTT ( F) RTNDT (OF) COMMENTS
G (7) -70 -70
CE (Weld) H (8) =70 =70 Linde 0091 Flux
J (10) (Ref. 12) -70 -70
K (11) -70 -70
CE (HAZ) I (9 -40 -40 Heat CA base metal

$-L




Property

Yield Stress

Ultimate
Tensile Stress

Uniform
ETongation

Total
Elongation

Reduction
In Area

Table 7.2.

Material

Weld (L)
HAZ

Weld (L)
HAZ

Weld (L)
HAZ

Weld (L)
HAZ

Weld (L)
HAZ

Summary of the Regression

8
6

NN

o1 o

A

. 187X10
.607X10

.585X10
.059X10

.037X10
.874X10

.756X10
.161X10

.844X10
.576X10

-6.
-8.

-6.
-9.

-1.
-1.

-2.
-1.

1.
1.

B
2
137X107, 1
092X10™" 2.
=2
821107, 1
104x107° 1.
2
511X107, 2
976X107 2
_2
145X107, 2
224X10" 8
_2
915X107, -6.
351X107° 2.

Analysis

¢

_b
.760X107,

346X10°

_n
.271X107,

728X10°

.5
.685X10 5
.093X10

-6
.698X10 5
.846X10

_5
563X107,
777X10

the Tensile Test Data (SA, HAZ, A533B-1)
Variance Degrees of Standard
Freedom Deviation
D o2 ¢ o
_7
-1.995X10 , 4.07 20 2.02
-2.118X10 0.14 2 0.37
-8
6.257X10_4 2.60 20 1.61
-4.309X10 0'27, 2 0.52
_9
-7.526X10_4 0.24 20 0.49
2.322X10 0.02 1 0.14
_8
4.374X10_, 0.70 20 0.84
-1.181X10 2.09 2 1.45
_8
3.594X10_; 7.22 20 2.69
-5.132X10 6.16 2 2.48

9~L
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‘ / Table 7.3. Tanh Fit Paraméters for Charpy Impact Energy Data
SA, HAZ, A533B-1)

Table 7.4.. Deviation of Charpy Impact Energy Curve Fit Parameters from Mean
values (SA, HAZ, A533B-1)




Table 7.4. (continued)

Table 7.5. Tanh Fit Parameters for Charpy Impact Lateral Expansion Data

7-10

VARIANCE

(SA. HAZ, A533B-1)
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Table 7.6. Deviation of Charpy Impact Lateral Expansion Curve Fit Parameters
From Mean Values (SA, HAZ, A533B-1)
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Table 7.6. (continued)
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Table 7.6. (continued)

VARTANCE,
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Table 7.7. Tanh Fit Parameters for Charpy Impact Percent Shear Data ‘
(SA, HAZ A533B-1)

Table 7.8. Deviation of Charpy Impact Percent Shear Curve Fit Parameters from
From Mean Values (SA, HAZ, A533B-1)




Table

7.8. (continued)
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Table 7.8.

7-16

(continued) ‘

¢




Table 7.8. (continued)

Table 7.9.

KEY

23871
23872
223771
223772
231071
231072
231171
231172
23973

Comparison of To - C from Impact Test Measurements with
and NDTT (SA, HAZ, A533B-1)

RT

7-17

VARIANCE

NDT
Ty - € (°F)

IMPACT LATERAL PERCENT -
ENERGY  EXPANSION SHEAR

-73 -47 -90

_94 -85 ~106 -70
-55 -57 71 40
-138 -143 115

~80 -87 ~96

71 _81 _52 -40
-53 _58 ~90 70
-85 _84 _56

-106 -37 _18 ~70
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Table 7.10. Tanh Fit Parameters for Precracked Charpy Toughness Data
(SA, HAZ, A533B-1)

Table 7.11. Deviation of Precracked Charpy Fracture Toughness Curve Fit Parameters
From Mean Values (SA, HAZ, A533B-1)




Table 7.11 (continued)
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Table 7.11. (continued)
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. Table 7.11. (continued)

VARIANCE

Table 7.12. Tanh Fit Parameters for Precracked Charpy W/A Data (SA,HAZ, A533B-1)
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Table 7.13. Deviation of Precracked Charpy W/A Curve Fit Parameters from ‘
Mean Values (SA, HAZ, A533B-1)




Table 7.13. (continued)
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Table 7.13. (continued)

VARIANCE




Table 7.14

KEY

33872
323772
331072
331172
33973

Comparison of Precracked Charpy Transition Behavior with
SA, HAZ, A533B-1)

NDTT and RTNDT (
0

0 -C ( F)

*
1d> "d W/A
-71 -69
-21 -56
-9 -50
15 -30
-54 -58

7-25

NDTT (°F)

-70
-70
-70
-70
-40




Table 7.15. Summary of Error Code Analysis for Material 7 (SA, HAZ, A533B-1)

INCLUDES NO. OF

SHELF (Ft-Lb) VARIANCE

LOWER UPPER

VARIANCE RATIO F
OVERALL TRANSITION REGION OVERALL TRANSITION REGION

TEST TYPE ERROR CODES POINTS
Static (5,11) Yes 30
No 24
Dynamic (7, 8) Yes 32
No 25

3919

0.774
2732
2506

0.901
2614

1.434

0.959

~l
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Figure 7.35. Charpy V-Notch Percent Shear for CE Heat K (L)
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APPENDIX 8

MATERIAL 8

SUBMERGED ARC WELDMENT IN A508-2 BASE METAL




MATERIAL TYPE 8
SA WELD IN A508-2

INTRODUCTION

Five heats of submerged arc weldments in A508-2, (heats A - D and K)
were studied by Babcock and Wilcox. The various heats are described in
Table 8.1. The results were encoded in the data bank, and the listing
for material type 8 is given at the end of this section. The test program

performed on material 8 is described in reference 11.
TENSTLE TESTS RESULTS

The 1.25-inch gage section results are shown graphically in Figures
8.1 to 8.5. The statistical data and curve fit coefficients for cubic

polynomial equations fitted to the data are shown in Table 8.2.
CHARPY V-NOTCH RESULTS
Impact Energy

The impact energy results for the submerged arc weldments and assoc-
iated HAZ materials are shown graphically in Figures 8.6 to 8.15. The
results of tanh curve fits to each data set are summarized in Table 8.3
and examined in detail in Table 8.4. Note the high TO for heat K (HAZ)
and the high variance for heat A (HAZ).

Lateral Expansion

The data are summarized in the curves shown in Figures 8.16 to 8.25.
The curve fit properties are summarized in Table 8.5. Each property has

been analyzed in detail in Table 8.6. There were no deviant data sets.
Percent Shear

Figures 8.26 to 8.35 show the percent shear data. The curve fit
results are summarized in Tables 8.7 and 8.8. Apart from heat K weld

material (data set 221182), which had a somewhat larger than normal PHI
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value (and heat D weld had a high value of variance), none of the results

differed noticeably from the others.

Summary of Charpy Impact Test Data

The TO - C values from the various Charpy measurements are compared
to RTNDT and NDTT in Table 8.9. There was no evidence of a correlation
between T0 — C obtained from Charpy V-notch data and RTNDT or NDTT.

INSTRUMENTED PRECRACKED CHARPY RESULTS

o,

KI:

Dynamic Fracture Toughness, KId’ d

The data sets are shown in Figures 8.36 to 8.40. The results for the
curve fit procedure are summarized in Table 8.10. Each parameter has been
examined in detail, and the results are summarized in Table 8.11. There

were no outlying results.

Normalized Energy, W/A

The normalized energy data are shown in Figures 8.41 to 8.45. Results

of the curve fit analysis are summarized in Table 8.12, and reviewed in

detail in Table 8.13. As before, there were no outlying data sets.
Summary of Precracked Charpy Results

T and NDTT data, and the TO - C results are summarized in

Table 8.14. Again there is little agreement between the various measure-

The RTND

ments. The fracture toughness data are combined in Figure 8.46. The
data fall close to the KIR curve with one point lying slightly below the

limit. The W/A data are combined and referenced to RTNDT in Figure 8.47.

STATIC AND DYNAMIC COMPACT FRACTURE TOUGHNESS RESULTS

The test type 5, 7, 8, and 10 data are shown graphically in Figures
8.48 to 8.52. There were too few data points to perform a curve fit.
The compact fracture test data are summarized by rate in Figures 8.53

and 8.54. There was counsiderable scatter in the data.




EFFECT OF ERROR CODES

The static and dynamic fracture toughness results for material 8 were
statistically analyzed with and without the data points which did not meet
the EPRI procedures. Tanh curve fits to the total data and acceptable data
only are shown in Figures 8.55 to 8.58. The influence of the error code
data on shelf properties and variance was determined. Both the overall
variance and the variance in the transition temperature region (TO + 50°F)
were compared. A summary of the error code analysis is given in Table 8.15.
The variance ratio (F) was calculated for the static and dynamic fracture
toughness results. The ratios shown in Table 8.15 had a high probability
of occurring by chance, and it is concluded that the effect of the error

codes on the data was not significant.



Table 8.1.

TEST LABORATORY

Summary of SA Weld Materials in A508-2 (Material

HEAT CODE

A (1)
B (2)
Cc (3)
D (4)
K (11)

WELDING

CONDITIONS

(Ref. 11)

NDTT (°F)

(°F)

RTypr

15
-80
-60

COMMENTS

Linde 80 Flux
Linde 0091 Flux
Linde 0091 Flux
Linde 80 Flux
Linde 80 Flux

-8




Table 8.2. Summary of the Regression Analysis of the Tensile Test Data (SA, A508-2)

Variance, Degrees of Standard

2 . »

Property A B C D s Fregdom Dev1gt10n

_2 b -7
Yield Stress 7.679X10 -6.257X10 1.542X10 -1.579X10 43.8 26 6.62
Ultimate 2 5 8
Tensile Stress 9.411X10 -6.716X10 8.844X10 -1.692X10 20.82 26 4.56
Uniform _2 _6 _8
Elongation 1.29X10 -1.483X10 -1.141X10 3.104X10 1.95 26 1.4
Total _2 _6 _8
Elongation 2.672X10 -1.6X10 -8.155X10 3.308X10 2.27 26 1.51
Reduction

_3 .5 -8
In Area 6.67X10 7.760X10 -6.127X10 5.975X10 23.68 26 4.87

¢-8
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Table 8.3. Tanh Fit Parameters for Charpy Impact Energy Data (SA, A508-2)

Table 8.4. Deviation of Charpy Impact Energy Curve Fit Parameters from Mean
Values (SA, A508-2)




Table 8.4. (continued)
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Table 8.4. (continued)




Table 8.4. (continued)

VARIANCE

Table 8.5. Tanh Fit Parameters for Charpy Impact Lateral Expansion Data
(SA, A508-2)
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Table 8.6. Deviation of Charpy Impact Lateral Expansion Curve Fit Parameters f*
Mean Values (SA, A508-2)




Table 8.6. (continued)
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Table 8.6. (continued)

PHI

VARIANCE
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Table 8.7. Tanh Fit Parameters for Charpy Impact Percent Shear Data (SA, A508-2)

Table 8.8. Deviation of Charpy Impact Percent Shear Curve Fit Parameters from
Mean Values (SA, A508-2)




8=14

' Table 8.8.(continued)




Table 8.8. (continued)
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Table 8.8. (continued)

VARIANCE

Table 8.9. Comparison of Tg - C from Impact Test Measurements with RT

and NDTT (SA, A508-2) NDT
Ty = € (°F)
IMPACT LATERAL PERCENT  pp (opy .

KEY ENERGY EXPANSION SHEAR NDT NDTT(°F)
22182 -150 _97 -68 15 _30
22183 2122 130 -87
22282 -80 _52 -65 -80 -80
22283 2130 _108 -84
22382 138 . _88 -96 ~60 ~60
22383 -127 ~90 72
22082 134 RN 13 0 0
22483 _125 ~136 ~109
221182 -53 -90 -20 0 -50

221183 -53 -76 -74
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‘ Table 8.10. Tanh Fit Parameters for Precracked Charpy Toughness Data
(SA, A508-2)

Table 8.11. Deviation of Precracked Charpy Fracture Toughness Curve Fit Parameters
from Mean Values (SA, A508-2)




Table 8.11. (continued)
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’ Table 8.11. (continued)
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Table 8.13. (continued) ‘
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‘ Table 8.13. (continued)

VARIANCE
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Table 8.14. Comparison of Precracked Charpy Transition Behavior with

NDTT and RTNDT (SA, A508-2)
0
Ty - C (°F)
*

KEY “10> %4 W/A
32182 57 -83
32282 -18 -57
32382 -50 -88
32482 34 -21

321182 -40 -49




. Table 8.15.

Summary of Error Code Analysis for Material 8 (SA, A508-2)

INCLUDES NO. OF SHELF(Ft-Lb) VARIANCE VARIANCE RATIOQ F
TEST TYPE ERROR CODES POINTS LOWER UPPER OVERALL TRANSITION REGION  OVERALL TRANSITION REGION
Static (5) Yes 25 3 -- 5666 8200
0.85 .64
No 20 19 -- 6660 4992
Dynamic (7,8,10) Yes 30 9 - 5664 12511
0.94 17
No 25 37 -- 5995 10668

GZ¢-8
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