Al:

ORNL/CSD/TM-15

HEATINGS—AnN IBM 360
Heat Conduction Program

W. D. Turner
D. C. Elrod
[. 1. Siman-Tov

OAK RIDGE NATIONAL LABORATORY

OPERATED BY UNION CARBIDE CORPORATION FOR THE ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available

original document.



Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
Price: Printed Copy $6.00; Microfiche $3.00

This report was prepared as an account of work sponsored by the United States
Government. Neither the United States nor the Energy Research and Development
Administration/United States Nuclear Regulatory Commission, nor any of their
employees, nor any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not infringe privately owned rights.



ORNL/CSD/TM-15

Contract No. W-7405 eng 26

COMPUTER SCIENCES DIVISION

HEATINGS -
AN IBM 360 HEAT CONDUCTION PROGRAM

W. D. Turner
D. C. Elrod
LI. Siman-Tov

NOTICE-
This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research and Development Administration, nor any of
. their employees, nor any of their contractors,
- subcontractors, or their employees, makes any
Date PubllShed’ MarCh 1977 warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

Performed for ERDA and for the U. S. Nuclear Regulatory Commission, Office
of Nuclear Reactor Regulation, under Interagency Agreement ERDA No.

40-545-75.

NOTICE

This document contains information of a preliminary nature. It is subject to
revision or correction and therefore does not represent a final report.

UNION CARBIDE CORPORATION, NUCLEAR DIVISION
operating the
Oak Ridge Gaseous Diffusion Plant Oak Ridge National Laboratory
Oak Ridge Y-12 Plant Paducah Gaseous Diffusion Plant
for the
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED






CONTENTS

LISt OF FIZUIES....c.eiitieieiieiete ettt sttt sttt et sbe et e b sae et e b eaeeee
LiSt OF TABLES. ... ettt ettt s
ADSITACT ...ttt b et sa e e n e sa et ene
. Introduction

2. Numerical Technique

2.1.  Statement of the Problem........c..cocciviiiiiiiiiiiiieceee e
2.2. Steady-State Heat CONAUCHION. ... ..cciririirierieieieeetee ettt eae e
2.3. Transient Heat ConduCtioN........ccoceriiiiiriieiiiieiee ettt
2.3.1.  Classical Explicit Procedure............cccceeciiiiirierciiniieiiesiiese e
2.3.2. Levy’s Modification to the Classical
EXPIICit ProCEAUIE......ccuiiiiiiiiieieciece ettt
2.3.3.  ImPplicit ProCEAUIEC.......ceoviiiiiieiieiieie sttt
2.3.4. Variable TIMe SteP SIZE......ccceeeieriiiriiieriieiierieeiieieesreeeestesreeseesseesseeaeenneas
2.4. Temperature-Dependent Thermal Properties.........ccoceviriererciininieieniiniese e
2.5. Boundary CONAItIONS........cceevierieriieniiriieiintieiesieetereeseeettetesitete st e seeseeebeeeesseetesreeneens
2.6. Change Of PRase@......cccoooiioiiiiiiiiiiiee ettt sttt
2.7, Initial TeMPETAUIES. .....c.eeicieerieieeriierieeteetterteeereeteesteessbeaseessaesssessseesseesssesssessesseens

3. INPUL DESCIIPIION.....ciiiiiiiiietiiieteett ettt ettt sttt et sbe et e bt e nees

3.1, General.....oiiiii
KW ST 3 () 1 1SRRI
3.3. Lattice Arrangement...........cocceeeeveeveecneeneennennnen.
3.4. Analytical and Tabular Functions.....................
3.5. Input Parameters.........ocoeeveeienieeeecieereeeeeie e
3.6. Card DesCription........ccceceeveerirreenieneenieneeeeneene
3.6.1. Card | - Title of Problem...................
3.6.2. Card 2 - Input Parameters.................
3.6.3. Card 3 - Input Parameters.................
3.6.4. Card 4 - Input Parameters.................
3.6.5. Card 5 - Input Parameters.................
3.6.6.  Region Data........cccoceevirinnieninienenees
3.6.7.  Material Data.........cccecevervenineeene
3.6.8.  Heat Generation Function Data..........
3.6.9.  Initial Temperature Function Data
3.6.10. Boundary Data..........ccceeervecvrciirnnnnn.
3.6.11. Lattice Description ..........ccceecvereverennnne
3.6.12. Analytical Function Data
3.6.13. Tabular Function Data.........................
3.6.14.  Output Times.....ccccevveeiervrrienieeienieneens
3.6.15. Node Numbers for Special Monitoring
of Temperatures...........cccevvverveecreeneenne



v

CONTENTS (Contd.)

3. Input Description (Contd.)

3.6.16 Initial Temperatures and Melting Ratios
3.6.17. Implicit Transient TechniqueParameters

3.6.18. Blank Card.......ccccoooiviniiiiiieieee
3.7. Problem Size LimitS.......ccccoroirireiieieieiriieeeesiee e
3.8.  Summary and Format of Input........cccceceviivinininninnieee,
/R O 1015570 LA B ISTSTe) 50 50 ) o HOS NSRRI
4.1, GeNETAL.c..iiiiiiiiiiiiiie s
42, Input RETUTM....cooiiiiiiiiiiiiriceieeeeeeee s
4.3, Temperature IMaP......cccoeeverirrierieeieeieieee ettt
4.4. Steady-State Temperature Distribution........c..ceccevveeveeveenieceennnns
4.5. Transient Temperature Distribution............ccoeceevvevvencieecieecnnennen.
4.6. Map of Melting Ratios for Change
of Phase Calculations...........cccevererieieienininieeesesieeeeeeeee e
4.7. Special Monitoring of Temperatures..........ccceccevereervenreereeneenncnn
ACKNOWIEAZMENLS. ......ooviiiiiiieieiieieeeteee ettt
RETEIENCES.....uiiviiiiieie e e e
Appendix A. Control CardsS........coceeveveriiiiinieieseeeseeeeee e
Appendix B. NOMENCIAtUTLE.........cccvveeiiiiieiiecie et
Appendix C. User-Supplied Subroutines............cccoeevveeivercveniiecieeneesiennenns
Appendix D. Sample Problem...........coceviriiiiniiiiiiiieeceeeee

Appendix E. FIoW Charts........coccooiiiininiiiiieeeceeeeteeeee e e

Page

44
46
48
48
49
53
53
53
53
53
54

54
54

55
57
61
67
71

75



LIST OF FIGURES

Figure Page
2.1 HEATINGS Nodal Description for
Three-Dimensional Problem...........c..coeociiiiiiiiiniiinnccceccneseseeeeeeenes 6
2.2 Surface-to-Surface Heat Transfer..........cccoiieniiiiiiinininiiccecccccee e 21
3.1 HEATINGS Region Description for Two-Dimensional,
Rectangular Model Composed of TwoMaterials..........ccecvverirereneneneneeeeee e 24
3.2 HEATINGS Region Description for Two-Dimensional,
Rectangular Model with Identification............cccvecvieeierieniieiieieeee e 25

3.3 HEATINGS Region Description for
Two-Dimensional, Rectangular Model with
Various Boundary Conditions..........ccccecieirireninenieienineneneniereieeeenesereneneneeneeneene 25

3.4 Region Description for Two-Dimensional,
Rectangular Model Involving Surface-to-Surface
Boundary Conditions, Incompatible withHEATINGS...........cccooviiviiniiiieeieeee e, 26

3.5 HEATINGS Region Description for Two-Dimensional,
Rectangular Model Involving Surface-

to-Surface Boundary Conditions............c.eeeveeriieriennieeiieniesrerieesieeeeseesreeeesseessessneas 26
3.6 Plot of a Sample Tabular FUNCHION.........cccoiiiieieiieieice e 43
A-l1 Format of JCL to Run HEATINGS at ORNL.......ccccceeiiniiiiiininiereneerie e 63
A-2 Format of JCL to Run HEATINGS at ORGDP.......c.cocooviiiniiiiiieeeeeeeee 63
A-3 Main Program for HEATINGS, 100 NOAES.....ccccoviriiriirieiirieeieneeeeieseeee e 64
A-4 Format of JCL to Run HEATINGS at ORNL when

FORTRAN is MOdifIed.....cccouiiiiiiiieieieeeeee ettt 65
C-1 Dummy User-Supplied Subroutine for

Boundary TemMPETature. .........cocvevuirierieiiieiiene ettt sttt sttt et st sbe s 72
C-2  Dummy User-Supplied Subroutine for

Volumetric Heat Generation Rate...........cccoviviiiiiiiininiiiiineeeeeeteee e 73
D-1 Two-Dimensional XY Test Problem Number 3for HEATINGS .........ccoceviiiinieenne 76
D-2 Time-Dependent Functions for Test Problem

Number 3 for HEATIINGS......coiiiiieeese ettt s 78
D-3 Input Data for Test Problem Number 3 for HEATINGS.........ccoooiiirineneieeeeeen 79
D-4 Input Data for Test Problem Number 4 for HEATINGS.........ccccooriiiininiinneenene 103

D-5 User-Supplied Subroutine HEATGN to Calculate Heat
Generation Rates for Test Problem Number 4
FOr HEATIINGS . ...ttt e e e e e e eate e e e e eaaeeeeeennaeeaeeas 105



V1

LIST OF FIGURES (Contd.)

Figure Page

D-6  User-Supplied Subroutine CONDTN to Calculate Anisotropic
Thermal Conductivity for Iron for Test Problem

Number 4 for HEATINGS.......ccioiiiiiiiiirniceeeeeeeecee ettt 106
E-l1 General Flow Chart for HEATINGS.......ccooiiiiiiieeeeeee et 108
E-2 Chart Indicating Routines Called by Subroutine THRMPR...........cccccceriiiinininnns 109
E-3 Chart Indicating Routines Called by Subroutine CALQLT........c.ccoveveiivierreeieerenne. 110
E-4 Chart Indicating Routines Called by Subroutine TRANO.........ccccccveviiriirervirieeienns 111
E-5 Chart Indicating Routines Called by Subroutine FUNCTN..........cccoeevevirriinieeieenen. 112

E-6 Chart Indicating Routines Called by Subroutine PREP.............cccoooviiiinininiiies 112



LIST OF TABLES

Table Page

2.1 Logic to Determine Whether co Should Be

Increased OF DECTEASEA. ......couiiiiuiiriiiieeiee ettt e 17
3.1 Dependence of INput Parameters.........c.coccveviiiiiieiieiienie e esieeee e ereeieesre e e e 29
3.2 A Cards Necessary to Describe the Function

L00SINSX F @XP(= BHK)ureeureeeeierieetietirtesie st et st et ettt et et e steeseen b e st esbesseetesbeensebeentesaeenes 42
3.3 T Cards Necessary to Describe the Sample Tabular

Function Depicted in Fig. 3.0. ..ottt 44
3.4 Problem Size LAMits.....cccooiiiiiiiniiiiieiiieieseee sttt sttt neen 48
3.5 Summary and Format of Input Data for HEATINGS.........ccccovevienieniieecieee e 51
D-1 Material Physical Properties for Test Problem

Number 3 for HEATIINGS.......oooiiiiieeeeeeeeteee ettt se e 75
D-2  Computer Output for Test Problem Number 3 for HEATINGS.........cccccoovviinenennn. 82
E-1 Summary of Subroutines and Entries in HEATINGS..........cccocevevivnnicnnencienene 113

Vil



HEATINGS -
AN IBM 360 HEAT CONDUCTION PROGRAM

W. D. Turner
D. C. Elrod
I. I. Siman-Tov

ABSTRACT

HEATINGS, a modification of the generalized heat conduction code
HEATINGS, is designed to solve steady-state and/or transient heat conduction
problems in one-, two-, or three-dimensional Cartesian or cylindrical coordinates or
one-dimensional spherical coordinates. The thermal conductivity, density, and specific
heat may be both spatially and temperature-dependent. The thermal conductivity
may be anisotropic. Materials may undergo a change of phase. Heat generation
rates may be dependent on time, temperature and position, and boundary
temperatures may be time-dependent. The boundary conditions, which may be
surface-to-boundary or surface-to-surface, may be fixed temperatures or any
combination of prescribed heat flux, forced convection, natural convection, and
radiation. The boundary condition parameters may be time- and/or
temperature-dependent. The mesh spacing can be variable along each axis. The code
is designed to allow a maximum of 100 regions, 50 materials, and 50 boundary
conditions. The maximum number of lattice points can be easily adjusted to fit the
problem and the computer storage requirements. The storage requirements on an
IBM 360 machine range from approximately 250K bytes for one lattice point to
1256K bytes for 6000 lattice points.

The point successive overrelaxation iterative method and a modification of the
“Aitken 8] extrapolation process” are used to solve the finite difference equations
which approximate the partial differential equations for a steady-state problem.

The transient problem may be solved using any one of several finite difference
schemes. These include an implicit technique which can range from Crank-Nicolson
to the Classical Implicit Procedure, an explicit method which is stable for a time
step of any size, and the Classical Explicit Procedure which involves the first
forward time difference. The solution of the system of equations arising from the
implicit technique is accomplished by point successive overrelaxation iteration, and
includes procedures to estimate the optimum acceleration parameter. The time step
size for implicit transient calculations may be varied as a function of the maximum
temperature change at a node. Transient problems involving materials with
change-of-phase capabilities cannot be solved using the implicit technique with this
version of HEATINGS.






1. INTRODUCTION

HEATINGS is the latest version of “The HEATING Program,” where HEATING is an
acronym for Heat Engineering and Transfer in Nine Geometries. HEATING was originally
developed by Liguori and Stephenson (Ref. 1) from Fowler and Volk’s generalized heat
conduction code, GHT (Ref. 2). Other modifications to HEATING have been reported
previously (Ref. 3 and 4).

HEATINGS, a modified version of HEATINGS (Ref. 4), has been stored on disks at the
Computing Centers at Oak Ridge National Laboratory (ORNL) and the Oak Ridge Gaseous
Diffusion Plant (ORGDP) and is available to users in Oak Ridge. This report, which is
designed as a user’s manual, discusses the capabilities of HEATINGS.

The major improvement in the code is the incorporation of an implicit scheme to solve
transient problems. Of the three basic algorithms which are available in HEATINGS to solve
transient problems, the implicit scheme is the recommended approach for most problems. This
scheme is written generally to include the Crank-Nicolson finite difference equations, the
classical implicit or backwards Euler finite difference equations, or a linear combination of the
two. The resulting system of equations is solved by the point successive overrelaxation iterative
method, and the technique includes procedures to estimate the optimum acceleration parameter
as a function of time. The time step size for the implicit transient calculations can be
controlled explicitly through the input data or implicitly by specifying the maximum
temperature change or maximum percent of relative change in temperature allowed at a node
over a time step. The temperature-dependent parameters may be reevaluated as a function of
the number of iterations for steady-state problems. Another modification allows selected
materials to undergo a change of phase. However, the implicit technique for transient problems
cannot be used for problems involving materials with change-of-phase capabilities with this
version of HEATINGS. Another feature which has been added to the code is the capability of
solving one-dimensional, spherical models. Among other improvements incorporated in the new
code are input and output modifications designed to facilitate data preparation and
interpretation of results. The input formats for the material parameters, the heat generation
rate functions and the initial temperature functions have been changed. The position-dependent
functions and the time-dependent functions have been deleted. Analytical and tabular functions
have been added to aid in the definition of input parameters. An option to allow the user to
write his own subroutines to evaluate many of the input parameters has been added to the
code. Thus, if an input parameter cannot be described with the built-in analytical or tabular
functions, then the user may easily supply his own algorithm to evaluate the parameter. This
concept is referred to as user-supplied subroutines. The boundary condition parameters may be
time- and/or temperature-dependent or if they are defined in user-supplied subroutines, they
can also be position-dependent. The thermal conductivity, density and heat capacity can also be
time-dependent if they are defined in user-supplied subroutines. For two- and three-dimensional
problems, the temperatures in each plane are printed in the form of a map which depicts the
material boundaries. This feature enables one to monitor the temperature distribution in a
plane with minimal effort. A nodal map accompanies the first temperature map which allows
one to readily locate a node and its temperature.

The numerical techniques for the steady-state and transient calculations are discussed in
Section 2. The use of the code to solve physical problems is presented in Section 3. An outline
of the input data is included in Section 3.8. An output description is presented in Section 4.

The appendices include information on the control cards necessary to use the code at
ORNL and ORGDP, nomenclature, information on the use of user-supplied subroutines, and
sample problems.

The user is cautioned that this code is not a black box which digests the input data and
automatically yields the correct solution to the physical problem. Care must be exercised in
correctly simulating the physical problem as well as in interpreting the results from the code.



For steady-state problems, one must experiment with the mesh spacing in order to gain
confidence in the numerical solution to a model of a physical problem. For instance, numerical
solutions must be obtained for several different mesh spacings, then these solutions must be
compared and the differences that are noted at points of interest must be acceptable. In
addition, one must also experiment with the convergence criterion. When the criterion is
satisfied, it only guarantees that the temperatures did not change more than a specified amount
over the previous iteration. This is sufficient for many problems, but it is possible to have a
problem which is converging so slowly that the convergence criterion is satisfied even though
the last iterate is a very poor estimate of the true solution to the model. Again, one must
make several calculations with different convergence criteria and compare the results before
obtaining confidence in the solution. For transient problems, one must experiment with the size
of the time increment as well as study the effects of varying the mesh spacing and convergence
criteria.



2. NUMERICAL TECHNIQUE

2.1. Statement of the Problem

The HEATINGS Program solves the steady-state or transient heat conduction problem in
either one, two, or three dimensions for either Cartesian or cylindrical coordinates or one
dimension (radial) for spherical coordinates. For illustrative purposes, the equations and the
discussion which follow are written for a three-dimensional problem in Cartesian coordinates.

First, the physical problem is approximated by a system of nodes each associated with a
small volume. In order to define the nodes, a system of orthogonal planes is superimposed on
the problem. The planes may be unequally spaced, but they must extend to the outer
boundaries of the problem. A typical, internal node, which is defined by the intersection of any
three planes is depicted in Fig. 2.1. Heat may flow from a node to each adjacent node along
paths which are parallel to each axis. Thus for a three-dimensional problem, heat may flow
from an internal node to each of its six neighboring nodes. The system of equations describing
the temperature distribution is derived by performing a heat balance about each node.

The finite difference heat balance equation for node o in Fig. 2.1 is

6
=P"+ 2 fKm(T" - T Q2.1
m=1

where Tm is the temperature of the mth node adjacent to node o at time t, OKm is the
conductance between nodes o and m, C0 is the heat capacitance of the material associated with
node o, and P" is the heat generation rate in the latter material at time t,. Since planes go
through the nodes and the material is homogeneous between any two successive planes along
any axis, a node may be composed of as many as eight different materials, and the heat flow
path between adjacent nodes may be composed of as many as four different materials
positioned in parallel. For a three-dimensional problem, one C, one P, and six K’s will be
associated with each internal node at a particular time, t,. These parameters are calculated as
follows for node o:

8

Co= X Cplp/V/ 22
I=]
8

Po 2 QW (2.3)
/=1

(2.4)



ORNL- DWG-71-9496

CUBE INCLUDING SIX ADJACENT NODES

(Yityi+,)/2

zk + zk+1)/2 [ 1]
( ) L ﬁl
~ | I

(yi +vi-/2

(X + Xj_j y2*h—— +Xi+,)/2

CUBE INCLUDING 'S ONLY

Fig. 2.1. HEATINGS Nodal Description for
Three-Dimensional Problem



where
Cpi = specific heat for region /,
pi — density for region /,
V; = volume of region /,
Q" = heat generation rate per unit volume in region / at time t,,,
Lm = distance between node o and adjacent node m,

kmY = thermal conductivity for region y between nodes o and m,

Aray = cross-sectional area, normal to heat flow path, of region y between
nodes o and m.

With reference to Fig. 2.1, the V/s and Amy’s are further defined, by using examples, as
follows:

v o= &H—x) M ) (@t - k)

) (2.5)

. "
A, = OPL=3) (k) = 2 2.6

Since nodes lying on a surface or nodes from one- or two-dimensional problems will not
necessarily have six neighbors, the general heat balance equation for node i having M,
neighbors can be written as

M,

LS SR VA
At = P2+ m|. (n, - T?) 27)

where <m is the mth neighbor of the ith node. By choosing the increments between lattice lines
small enough, the solution to the system of equations yields a practical approximation to the
appropriate differential equation.

2.2. Steady-State Heat Conduction

For a steady-state heat conduction problem, the heat balance equation reduces to

M,

P, + m2=1 ;KOCm (Tan =1 =0 Q.8

since the left-hand side of Eq. (2.7) is zero.

If there are I nodal points, then since Eq. (2.8) will be applied at each node, there will be
a system of I equations with I unknowns. The iterative technique which is used by HEATINGS
to solve the system of equations is outlined below. First, solve Eq. (2.8) for T,.



T, = (2.9)

Since the values of Ta are unknown, the temperature at node i'cannot be calculated directly
from Eq. (2.9). However, an iterative procedure based on Eq. (2.9) can be used to estimate the
steady-state temperature distribution. If an estimate to the temperature distribution exists, then
Eq. (2.9) can be applied at each node, and hopefully, a better estimate to the temperature
distribution will be obtained. Then, this new estimate can be used in Eq. (2.9) to produce an
even better estimate. This iterative process can be written as

M,-
p+ 2
=]
T Q.10
M

2 K
m:1 Oim

where the superscript (n) implies the nth iterate. Instead of using the results of Eq. (2.10) as
the (n+l)st iterate, assume that it only yields an estimate and denote it as T!"tl). Then define
the (n+1)st iterate to be

Q.11

where the relaxation factor, (3, is limited to 0 << /? << 2. Notice that when /3 > 1, the new
iterate is changed more than Eq. (2.10) specifies, and thus, the iterate is overrelaxed. Likewise,
when /? < 1, the iterate is underrelaxed. If Tlntl) is replaced by Eq. (2.10), then Eq. (2.11) can
be written as

M/
Pi + .

TAI = (1-3)TS1| + (3 = Q.12)
Mi

2 K
m=1

If the nodes are numbered along the x-axis from left to right, then along the y-axis from
bottom to top and finally along the z-axis from the smallest plane to the largest, then the rate
of convergence for the iterative procedure can be increased by using the most recent value of
the temperature in Eq. (2.12). This algorithm can be written as



L, M,
P+ SK,, T+ 2 K™
. . ALA
Tinfl) = (~fih% + p " m LA 2.13)
X K oy
m=1

where L, is defined so that ali < i < ai-j+i. Varga (Ref. 5) refers to this method as the point
successive overrelaxation iterative method. To increase the rate of convergence, an exponential
approximation for Eq. (2.13) is made based on the temperature change from one iteration to
the next. The algorithm based on this approximation is used instead of Eq. (2.13) to calculate
the new temperatures for nodes having relative temperature changes exceeding 10~3. However,
the algorithm is designed to bound the temperature change so that the new temperature cannot
be more than two times the old temperature. This prohibits the technique from diverging due
to a bad estimate of the initial temperature distribution. The exponential approximation
reduces to Eq. (2.13) for small temperature changes. Successive iterations are carried out by
HEATINGS until

1p(rtH) = ¢ (2.14)
max

where ¢ is the specified convergence criterion.

Another extrapolation procedure which is commonly used to increase the rate of
convergence in an iterative solution to a system of equations is the “Aitken 5] extrapolation
procedure.” Briefly, if T*"-1’, T(n), and T("t]) are the temperatures at a certain point at the n-Ist,
nth and n+lst iterations, respectively, and if

[Ty (2.15)
and
[T TI™I] > 0, (2.16)
then, a better estimate of the temperature is
Knew - lﬁr)‘("-*—lI \4_ [T (217)

[Tin) lh - "I+
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Actually, HEATINGS uses a modification of Aitken’s 8! method by calculating an
extrapolation factor, B, and approximating Eq. (2.17) at each node with

D) W) | g (i) M 2.18)

where T!"t+]) represents the n+lst iterate at node i before extrapolation.

A HEATINGS extrapolation cycle is defined as follows. The code completes 20 iterations
and checks to see if the maximum of the absolute values of the relative temperature changes
over an iteration has decreased monotonically over the last ten iterations. If not, the cycle
starts over. If so, the code will extrapolate only if the relative change in extrapolation factors
over two consecutive iterations is less than 5% and the maximum of the absolute values of the
relative temperature changes decreases monotonically over the same two iterations. The
extrapolation factor, B, which is the same for each node, is based on two maximum relative
temperature changes; between the n-Ist and the nth iterations and between the nth and the
n+lIst iterations.

The value of /5 in Eq. (2.13) which will produce the optimum convergence rate for all
points is difficult to obtain analytically for simple geometries and is practically impossible to
obtain for complex geometries. If an input value is not supplied for /3, then HEATINGS uses
the default value of 1.9. If the rate of convergence appears to be slow, then HEATINGS
reduces [3 by 0.1. The code determines whether or not the rate of convergence is slow in the
following manner. It was noted above that during an extrapolation cycle, the relative
temperature change over an iteration is monitored over ten consecutive iterations. If the relative
temperature changes do not decrease monotonically over these ten iterations, then the current
relative temperature change is compared with the one arising ten iterations earlier. If the
current relative temperature change is greater than two-thirds of the old one, then the SOR
technique is converging slowly. This process may be repeated until /? = 1.0. However, the code
will not increase /3.

2.3. Transient Heat Conduction

HEATINGS is designed to solve a transient problem by any one of several numerical
schemes. The first is the Classical Explicit Procedure (CEP) which involves the first forward
difference with respect to time and is thus stable only when the time step is smaller than the
stability criterion. Levy’s modification to the CEP is the second scheme, and it requires the
temperature distribution at two times to calculate the temperatures at the new time level. The
technique is stable for a time step of any size. The third procedure, which is written quite
generally, actually contains several implicit techniques which are stable for a time step of any
size. One can use the Crank-Nicolson heat balance equations, the Classical Implicit Procedure
(CIP) or backwards Euler heat balance equations or a linear combination of the two. The
resulting system of equations is solved by point successive overrelaxation iteration. Techniques
have been included in the code to approximate the optimum acceleration parameter for
problems involving constant thermal parameters as well as those whose effective thermal
conductances and capacitances vary with time or temperature. The implicit procedure in
HEATINGS has not been designed to solve problems involving materials which are allowed to
undergo a change of phase.

The implicit procedure using the Crank-Nicolson heat balance equation is the
recommended technique for solving transient problems. Levy’s modification to the CEP can be
a useful tool for obtaining the solution to problems. However, one must experiment with the
time step size before accepting the resulting solution.



The stability criterion for the CEP is a function of a temperature-dependent heat
generation rate or heat flux. This fact is not accounted for in HEATINGS. Also, Levy’s
modification to the CEP is based on a constant heat generation rate or heat flux with respect
to temperature. If one attempts to use one of the explicit transient algorithms along with a
temperature-dependent source or heat flux, then the code will write out a warning message
indicating that the time step allowed by HEATINGS may not yield a stable solution.

Equation (2.7) is the basic heat balance equation for transient problems. However, the
right-hand side is modified for all but the CEP.

2.3.1 Classical Explicit Procedure

For a transient heat conduction problem, the heat balance equation, Eq. (2.7), can be
solved for T"+l to give

M
At ’
V=V + C Pf+ 2 I,Kol.m (2.19)

s m=

Since Eq. (2.19) expresses the temperature of the ith node at the n—+lst time level in terms of
temperatures at the nth time level, it is an explicit technique, and the algorithm is known as
the Classical Explicit Procedure (CEP) or the Forward Difference Equation. HEATINGS uses
Eq. (2.19) to solve transient heat conduction problems. The numerical solution obtained by
using this technique is stable, provided the time step satisfies the following inequality (Ref. 6).

At sS G,

s . 220
2 K,,, ~ minimum forall nodes

'm=1

2.3.2 Levys Modification to the Classical Explicit Procedure

The limitation on the size of the time step as indicated in Eq. (2.20) means, in many
practical problems, a very high ratio of computer time to actual time. In some cases
computation costs become so high that the use of the algorithm defined by Eq. (2.19) becomes
impractical. Levy [Ref. 7] proposed a modified explicit method which is stable for any time
step desired. This method has been incorporated as an option in HEATINGS. The basic
equation used is

-M,

T - T?7 + 2 I'Kam (Ta,m cc TQ) + Pf + 27 [Tr) Tﬂ] (2.21)
m=



where

Z, = a factor for node i which will insure a stable solution
for any time step At.

If from Eq. (2.20), (Atmax); is the maximum time step allowed at node i for a stable
solution in the regular explicit method, then the factor Z, in Eq. (2.21) is defined as

0.,if At ,
(Atmax)j
Z, =
0.5 At i At > | .22
(AW*),- (Atmajr)i

Levy (Ref. 7) says that the accuracy is good if Z, is zero for somewhat over half of the
nodes. Of course, one must experiment with the size of the time step in order to obtain an
acceptable solution.

2.3.3 Implicit Procedure
a. Heat Balance Equation

If the right-hand side of Eq. (2.7) is evaluated at Wn instead of t,, then the scheme is
known as the Classical Implicit Procedure (CIP) or the backwards Euler procedure. If the
right-hand side of Eq. (2.7) is evaluated at Wn/2, then the algorithm is known as the
Crank-Nicolson (CN) procedure. A general algorithm which includes both the CN technique
and the CIP is

= pn+° + @[NAiiK-O<F<" =" h)] +

(2.23)

wa LI X0 Te-T)

where 0 ©~ | and where the superscript n+© implies that the parameter is evaluated at
time tnte. If O = 0.5, then Eq. (2.23) becomes the CN technique and if O = 1.0, the algorithm
is the CIP. When O is less than 0.5, the technique is no longer stable for any time step. Notice
that Eq. (2.23) reverts to Eq. (2.7) when O = 0. This algorithm has been incorporated into
HEATINGS for 0.5 ~ ~ 1.0.



b. Numerical Technique

If there are I nodes in the problem and if the heat balance equation, Eq. (2.23), is written
for each node, then there will be I equations and 1 unknowns, and the resulting system of
equations can be solved iteratively. The procedure that is used in HEATINGS is outlined
below. If Eq. (2.23) is rewritten so that the temperatures at tnti are on the left-hand side, then

the equation becomes

/M,
- °(mK Ts:  Te'™t@
At (2.24)
where
1n+0 rM
H, = V + P? + (1-0) 17) (2.25)
m—|
If we let
(2.26)

and if we delete the superscript, n+l, on the temperature, T, then Eq. (2.24) can be rewritten
as

ZlaKolm + DaTv = H’ (227)

where it is now understood that T, represents the temperature of node i at the new time level.
If Eq. (2.27) is solved for T,, then

> n+0
0 ( 2 ,Kam H,
m=l

D,

T, (2.28)
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Since the values of Tam are unknown, one cannot directly solve for the temperature at node i
However, if an estimate of the temperature distribution at the new time level exists, then
Eq. (2.28) can be solved at each node, and hopefully, one will have a better estimate for the
temperature distribution. The procedure can be repeated using this better estimate. This process
can be continued until the estimates have converged to the approximation of the temperature
distribution at the new time level. This algorithm can be written as

pdl) — (2.29)

where the superscript (n) on T, refers to the nth iterate of the temperature at node i at the
new time level.

Instead of using Eq. (2.29) in the iterative process, the technique can be refined further.
First, consider Eq. (2.29) as only an approximation to the (n+1)st iterate or

0 ( T«m) + H-
' = —25L ! L (2.30)
and then define the (n+1)st iterate as
+w [Trl  TIM (2.31)
or
Tintl) = (1-w) T, + w Tlutl) (2.32)

where 0 < co < 2. Thus, the change in temperature based on the value at the last iteration i
more (cu > 1) or less (to < 1) than the calculated value. Usually, the iterative procedure
converges faster when e 1, and thus, w is commonly referred to as the acceleration
parameter. Combining Eqgs. (2.30) and (2.32), one obtains
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CE*""0T-)
0 + H,

™) = (l-w) TI" + 5 (2.33)

If we always use the most recent iterates on the right-hand side of Eq. (2.33), then the
algorithm reduces to

y' Kn+0 jin).) + H
0 ~  ,Kam I (Xml
m=L,+]

™ =G - W) 1T + w
D,

(2.34)

where al+ < i < ar-i+i. It was pointed out in the previous section that this method is referred
to as the point successive overrelaxation iterative method. HEATINGS applies Eq. (2.34) to
each node until the convergence criteria have been met.

The convergence criteria are derived as follows. When the nth iteration has been
completed, substitute the nth iterates into Eq. (2.27) and denote the heat residual as

: © ntO
Rj'"=H +0 2 Kg (235)
m=1

Now normalize the heat residual by dividing by the right-hand side of Eq. (2.24) or

y R TOCX KA ey T
El m=] . (2.36)

HEATINGS uses two convergence criteria based on this normalized heat residual. They are

RV
(ffr) ~ * (2.37)

n' max
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and

(2.38)

The iterative procedure is started in the following manner. For the first time step, the
starting estimate is equal to the initial temperature distribution. Thereafter, the starting estimate
at tnti is determined by

fr =1+ o - Tr'xAw./Atn) (2.39)

¢. Temperature-Dependent Properties

For problems involving temperature-dependent thermal properties, the iterative procedure is
as follows. Initially, the thermal parameters are evaluated at the initial temperatures. Then, the
point successive overrelaxation iterative method as described above is applied to obtain the
temperature distribution at the new time level. However, since none of the thermal parameters
are updated during this procedure, the converged temperatures are only an estimate to the
temperature distribution. Thus, the thermal properties are reevaluated and the entire procedure
is repeated until the technique converges to the temperature distribution at the new time level.
This process contains two levels of iteration. The inner loop is the basic iterative process in the
point successive overrelaxation iterative method while the outer loop iterates on the thermal
parameters. Let T"'m denote the temperature of node i after the mth iteration on the outer loop
at time t,. Upon the completion of the mth outer loop, the temperature at which the thermal
parameters are evaluated is calculated as

fri=(1-Q1'+Cfr (2.40)

The temperature distribution has converged at time t, when the Li norm of the relativized
temperature difference over successive iterations is less than the prescribed value or

IIATr"1] sSej (2.41)

where

(2.42)
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d. Estimation of'the Optimum Acceleration Parameter

The rale of convergence of the point successive overrelaxation iterative method is strongly
dependent on the value of the acceleration parameter co. The optimum value of the parameter,
denoted as (of, is usually not known prior to the solution to a problem, and it is a function of
time for problems whose effective thermal conductances and capacitances vary with time or
temperature. Several techniques have been developed to estimate col for transient problems with
constant thermal properties. The method developed by Carrd (Ref. 8) has been incorporated
into HEATINGS. Briefly, this method consists of estimating col based on the behavior of a
norm of the residual vector during the iterative procedure. The estimates are computed as a
function of the iteration number until the process converges to a best estimate to the optimum
value. Thereafter, the code uses this converged value as the acceleration parameter.

It was observed that this process was not satisfactory for problems involving temperature-
and time-dependent conductances and capacitances, so an empirical process was developed and
added to HEATINGS to estimate co). For the initial time step co is equal to unity. The code
will attempt to update co every N” time steps relative to the last time co was changed. The
criteria which are applied to determine whether or not the current value of c is a good
estimate to co) are based on the number of iterations required for the inner iterative loop to
converge on the first pass through the outer iterative loop at some time step. When the code
determines that an attempt to update co should be made after completion of a particular time
step, then the number of iterations for this time step is compared to the number for the time
step immediately following the last modification to co. If the change in the number of iterations
is equal to or exceeds the criterion 1” (an input value), then ¢ is increased according to

"4l = 0/+ 0.1 (2.0 - co") (2.43)

where the superscript n refers to the value of co at time t, On each subsequent time step a
new estimate is made for col using an algorithm similar to Eq. (2.43). However, co may be
either increased or decreased according to Table 2.1. When the change in the number of
iterations for two consecutive time steps is less than the criterion (an input value), the code
assumes that it has a good estimate for col and it uses this value for the subsequent time steps
until it is time to attempt another co update. At this time, the entire procedure is repeated.

Table 2.1. Logic to Determine Whether co Should be
Increased or Decreased

Change in number of
iterations compared
to previous

time step Increase Decrease
Last
update resulted
in co being
Increased Decrease Increase

Decreased Increase Decrease
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2.3.4 Variable Time Step Size

The time step size can be varied in a number of ways during the implicit transient
calculations. First it can be controlled explicitly by specifying it as a constant size during the
entire calculation or during prescribed time intervals throughout the transient. The time step
size can also be varied explicitly by multiplying it by some prescribed factor after each time
step subject to maximum and minimum values which may or may not be specified.

Finally, it can be varied implicitly in two ways. One can specify the maximum temperature
change and the maximum percent of relative change in temperature allowed at a node over a
time step. The time step size is either decreased if one of the calculated maximum values
exceeds its respective criterion or is increased if both of the calculated maximum values is less
than their respective criteria. The size is increased or decreased in the following manner. If one
of the calculated values exceeds its respective criterion, then

fAi = min (095 * calculated value - TSFACT)

where TSFACT is an input value representing the factor which is multiplied by the old time
step size to obtain the new time step size. The factor 0.95 is to insure the decrease is large
enough since the maximum temperature change is not linear with the changing time step size.
The new time step size is then determined as

Atfiew  maX (Atmin, fAf * Atow)

where Atm,, is an input value representing the smallest time step size allowed and Atlw is the
current time step size. If one of the calculated values is less than its respective criterion, then

fAi = max (0.95 * calcSueTvalur, TO)

where the factor 0.95 is to insure the increase is not too large since the maximum temperature
change is not a linear function of the time step size. Then

fA, = min(fA(, TSFACT, 2.0)

where TSFACT was described above. The new time step size is then calculated as

Atnew  min(Atmaxi fA( * Mold)

where Atfmax is an input value representing the largest time step size allowed. If both options
are specified, the code uses the smaller of the two new time steps.

If the new time step size is smaller than the old one, the code rejects the temperature
distribution it has just calculated and returns to the old time level. It then calculates a new
temperature distribution at the new time level using the smaller time step size. If the code
reduces the time step size NREP (currently 10) times, it writes out a warning message, reduces
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the time step size to the minimum value, recalculates the temperature distribution using the
new time step size and moves ahead to the next time level.

If the new time step size is greater than or equal to the old one, ‘the code accepts the
temperature distribution it has just calculated and moves on to the next time level. If a time
step size has been reduced, the code will not allow it to be increased again untii NREDUC
(currently equal to 5) time steps have lapsed.

When the time step size is varied implicitly, the time step size and the associated criteria
can be greatly affected by discontinuities in the boundary conditions, time-dependent functions,
temperature-dependent functions, and especially the initial conditions. The user must be
selective in choosing input parameters for these cases. One approach would be to control the
time step size explicitly for short periods of time following these discontinuities. One may also
need to start out with a small time step size initially to smooth out the data.

As the transient calculations approach a printout time, the time step size is automatically
reduced to allow the temperature distribution to be printed out at the exact specified time. The
old time step size is saved so that calculations can resume using the old time step after the
printout.

2.4. Temperature-Dependent Thermal Properties

HEATINGS allows the thermal conductivity, k, the specific heat, Cp, and the density, p, to
vary with temperature. The code determines the conductivity of the material between two
nodes, i and j, by evaluating the temperature-dependent conductivity at an average of the
temperatures of the two nodes. This temperature is calculated as

'p(t-) . y(n-1)

2 (2.44)

after completion of the nth iteration for steady-state problems, as

) T~ +TTI

) (2.45)

after completion of the nth time step for transient problems involving one of the explicit
techniques, and as

N n+0 "n+0
nt0 T+ T (2.46)

during the calculation of the temperature distribution at time Wn for transient problems
involving the implicit procedure. The temperatures denoted as TT+0 in Eq. (2.46) are evaluated
according to Eq. (2.40). For transient problems, the specific heat and density are determined
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for node i by evaluating the respective temperature-dependent function at T" after completing
the nth time step using one of the explicit techniques and at T"+) as determined by Eq. (2.40)
during the calculation of the temperature distribution at time t,+ using the implicit procedure.
In addition, the thermal conductivity of a material can be anisotropic. See Section 3.6.7 for
details of how to utilize this option.

2.5. Boundary Conditions

HEATINGS possesses a variety of boundary conditions to enable the user to model his
physical problem as accurately as possible. In general, a boundary condition is applied along a
surface of a region and heat is transferred from a surface node to a boundary node or to the
corresponding node on the opposing parallel surface. Surface nodes are actually internal nodes
which are located on the edge of a region. Boundary nodes are dummy nodes and their
temperatures are not calculated by the code but are specified as input to the code. These
temperatures are only used to calculate the heat flow across a boundary surface. The boundary
conditions which can be applied over the surface of a region in the current version of
HEATINGS are listed below.

a. The temperature on the surface of a region can be specified as a constant or a
function of time.

b. The heat flux across the surface of a region can be specified directly as a constant or
a function of time and/or surface temperature.

u. The heat flux across the surface of a region can be specified indirectly by defining the
heat transfer mechanism to be forced convection, radiation and/or natural convection.

The numerical techniques used in calculating the temperatures of surface nodes associated
with a boundary condition are discussed below. The temperatures of nodes on surfaces whose
temperatures are specified are not calculated from Eq. (2.7). Instead, the surface node
temperature is set equal to the specified value. When a heat flux is specified across a surface,
then for each node on that surface, the specified heat flux is multiplied by its surface area
normal to the heat flow path associated with the boundary condition, and the result is added
to the heat generation term, P/, in Eq. (2.7). If the heat flux is temperature-dependent, then it
is evaluated at the average temperature of the related surface node and boundary node for
surface-to-boundary boundary conditions and the average temperature of opposing
surface-nodes for surface-to-surface boundary conditions. Simulation is not required for
insulated boundaries. Heat is simply not allowed to cross the surface.

The boundary conditions are classed as either surface-to-boundary (type 1), isothermal
(type 2), or surface-to-surface (type 3). Boundary conditions of the surface-to-boundary type are
used to define heat transfer between a surface node and a boundary node. The temperature of
the boundary node is specified and can be a function of time. Surface-to-surface boundary
conditions are used to define heat transfer between parallel surfaces. In this case, heat is
transferred between a node on one surface to the corresponding node on the opposing surface.
In other words, in Fig. 2.2, surface-to-surface boundary conditions could be utilized to describe
the heat transfer process between nodes | and 2, nodes 3 and 4, and nodes 5 and 6.
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Fig. 2.2. Surface-to-Surface Heat Transfer

For both surface-to-boundary and surface-to-surface boundary conditions, the leakage term
in Eq. (2.7) is calculated as follows:

[[KcITA- TH] = iKi(Ti — V) (2.47)

where K(, is the effective conductance from surface node i to boundary node b or the opposing

surface node b, and T* is either the temperature of boundary node b or the opposing surface
node b at time U. The effective conductance is calculated as

~Ki— hA (2.48)

where h is the effective heat transfer coefficient, and A is the surface arca, normal to the heat
flow path, of node i associated with the boundary condition.
The effective heat transfer coefficient is defined as

h = he + hr [err)) + (T*)] [Tr + Tr]

+ h,, [TF — TF lke 249
where
he is the heat transfer coefficient for forced convection,
hr is a coefficient (product of the gray body shape factor and Stefan-Boltzman

constant) for radiative heat transfer,

h, and he are, respectively, the coefficient and exponent for the term simulating the
effects of natural convective heat transfer or some other heat transfer process
such as boiling.
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The parameters h", hr, h,, and he must be specified by the user and can be time- and/or
temperature-dependent. When he, hr, h,, and he are temperature-dependent, they are evaluated
at the average temperature of the opposing surface-nodes for surface-to-surface boundary
conditions. For surface-to-boundary boundary conditions, he, h,, and he are evaluated at the
average temperature of the related surface node and boundary node, whereas hr is evaluated at
the temperature of the surface node. For surface-to-boundary boundary conditions, the
boundary temperature, 77, must also be supplied by the user. The temperatures are entered in
either °F or °C, and the code converts them to absolute degrees when a radiative boundary
condition exists. In computing the effective conductance for a surface-to-surface boundary
condition across a radial gap, the code uses the cross-sectional area at the smaller radius
bounding the gap. This isimportant forthe user to remember when he evaluates the radiation
shape factor in hr.

HEATINGS is designed so that, simultaneously, one may consider surface-to-surface heat
transfer across a region as well as conduction through the region. This is accomplished by
defining the region to contain a material as well as by defining surface-to-surface boundary
conditions across parallel surfaces of the region. Also, one may consider surface-to-surface heat
transfer across a gap as well as surface-to-boundary heat transfer along the edge of the gap.
This is done by defining the gap as a gap region (i.e.,, it does not have a material associated
with it) with surface-to-surface boundary conditions applied across parallel surfaces of the
region. Then surface-to-boundary boundary conditions are defined on the adjacent material
regions at the surfaces defining the edges of the gap. Note: A surface-to-boundary boundary
condition can be applied along the surface of a region only if there is no region adjacent to it
or the adjacent region is defined as a gap region. See Section 3.2 for an example.

2.6. Change of Phase

Selected materials are allowed to undergo a phase change during the transient calculations.
The following technique is used in calculating the temperatures of nodes composed of materials
which can have a change of phase. Let the melting ratio, XL, be the ratio of heat which has
been absorbed after the transition temperature has been reached to the total heat needed to
complete the phase change for a material in node i. Unless an input value is specified, the
initial melting ratio is calculated as

0.0, Tp << Tmelti
XL = (2.50)
1.0, TP ™ Tmelt.i
where
T? is the initial temperature of node i and

Tmeit.i is the smallest phase-change or transition temperature associated with node i.

If the melting ratio of a node is zero, its temperature is allowed to increase until it reaches the
transition temperature of the material associated with it. Then, the temperature of the node is
held at the transition temperature, and the material is allowed to change phase in the following
manner. The incremental melting ratio over the nth time step is calculated as
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(2.51)

where
Aqf is the net heat into node i during the nth time step,
Pim is the density of material m evaluated at T",
Hm is the latent heat of material m, and
Vyn  is the volume of material m associated with node i.

This incremental ratio is added to the current value of XI, at each time step until XI, exceeds
unity. Any excess heat remaining after a change of phase is used to change the temperature of
the node as follows:

(2.52)

for XI? >1.0 where C? is the heat capacitance of node i during the nth time step. Then, the
melting ratio is set to unity, and the temperature of the node is allowed to increase. Likewise,
if the melting ratio of a node is unity, its temperature is allowed to decrease until it reaches
the transition temperature of the material associated with it. Then, the temperature of the node
is held at the transition temperature, and the material is allowed to change phase in the
following manner. The incremental melting ratio, Eq. (2.51), is added to the current value of
XI, at each time step until XI, is less than zero. Any excess heat remaining after a change of
phase is used to change the temperature of the node as follows:

(2.53)

for XI? < 0.0. Then, the melting ratio is set to zero, and the temperature of the node is
allowed to decrease.

If a node is associated with more than one material which can change phase, then each
material is allowed to change phase independently. The materials are ordered by increasing
transition temperature. If the temperature of the node is increasing, then its temperature is not
allowed to exceed the lowest transition temperature until the melting ratio increases from zero
to unity. Once the melting ratio reaches unity, it is fixed there, and the temperature of the
node is allowed to increase until it reaches the second transition temperature. Then, the melting
ratio is set equal to zero, and the temperature of the node is not allowed to increase until the
melting ratio increases from zero to unity. Once the melting ratio reaches unity, the
temperature of the node is allowed to increase again. This process is repeated until each
material associated with the node changes phase. The logic is similar when the temperature of
the node is decreasing. However, the melting ratio of a node is set to zero when its
temperature is between transition temperatures of the materials associated with it.

It must be emphasized that this technique will allow changes of phase in both directions
for as many times as it may be needed.

2.7. Initial Temperatures
Unless it is explicitly specified, the initial temperature at a node is calculated as a

volume-average and a heat-content-average of the specified initial temperatures of the materials
associated with the node for steady-state and transient cases, respectively.
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3. INPUT DESCRIPTION

3.1. General

This section is designed to guide the user through the steps necessary to solve a heat
transfer problem with HEATINGS. First, a set of instructions is presented to aid the user in
representing the geometrical configurations of the problem with a lattice of points. Then, the
functions used by the code to define the material parameters are given. A detailed discussion of
the input cards is presented followed by a brief outline of the input data for the benefit of the
user who is familiar with the data preparation. In preparing the input data, any consistent set
of units may be used in the HEATINGS program except for problems involving radiation.
Then, all temperature units must be in either degrees Celsius or Fahrenheit. The units
associated with the algorithms which appear in user-supplied subroutines must be consistent
with those of the input data.

3.2. Regions

First, the configuration of the problem is approximated by dividing it into regions,
depending on the shape, material structure, indentations, cutouts, and other deviations from the
general geometry. In some cases, zoning into regions must be done in order to describe a
specific boundary condition or a material whose thermal conductivity, density, or specific heat
is a function of position. There are three basic rules governing region division:

(I) Boundary lines or planes must be parallel to the coordinate axes (two points, four
lines, or six planes are required to enclose a region in one-, two-, oOr
three-dimensional geometry, respectively).

(2) A region may contain at most one material (however, many regions may contain the
same material). A gap region does not contain a material.

(3) When a boundary condition is defined along the boundary of a region, it must apply
along the full length of the boundary line for two-dimensional problems and over all
of the boundary plane for three-dimensional problems.

Consider, for example, a case consisting of a simple rectangle in x - y geometry, half of
which contains one material, and the other half'a second material, as depicted in Fig. 3.1.

ORNL—DWG 76-10916
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MATERIAL 2

REGION | REGION 2

Fig. 3.1. HEATINGS Region Description for Two-Dimensional,
Rectangular Model Composed of Two Materials.
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This elementary case would require two regions (as indicated)—one for each material. If the
upper right corner of the rectangle is omitted as in Fig. 3.2, three regions are required as
shown.

ORNL—DWG 76-10915

MATERIAL |

MATERIAL 2

REGION |

Fig. 3.2. HEATINGS Region Description for
Two-Dimensional, Rectangular Model with Indentation.

The division of the right half of the rectangle into two regions accounts for the indented or
cutout upper right corner. Note that regions 2 and 3 of Fig. 3.2 contain the same material.

Now consider the case of Fig. 3.2, introducing boundary conditions as in Fig. 3.3. The left
boundary of the left-most rectangle now contains two different boundary types. Thus, in
accordance with the third basic rule, region zoning is performed to account for the different
boundary conditions, and an additional region is required.

ORNL DWG 76- 10917
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Fig. 3.3. HEATINGS Region Description for Two-Dimensional,
Rectangular Model with Various Boundary Conditions.
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To specify heat transfer between parallel surfaces, one defines a region whose boundaries
include the two parallel surfaces. Then, the boundary condition describing the heat transfer
process (type 3, see Section 3.6.10a) is applied along both of the surfaces of this region.
Although the regions adjoining the parallel surfaces involving the surface-to-surface heat
transfer may be composed of more than one material, they must be defined and must contain
a material. The region itself may or may not contain a material. In Fig. 3.4, surface-to-surface
heat transfer cannot be defined between the left and right boundaries of Region 3 since part of
the area adjoining the right boundary is undefined.

ORNL- DWG 76-10918
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Fig. 3.4. Region Description for Two-Dimensional, Rectangular
Model Involving Surface-to-Surface Boundary Conditions,
Incompatible with HEATINGS.

In Fig. 3.5 surface-to-surface boundary conditions can be applied along the left and right sides
of Region 3.
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Fig. 3.5. HEATINGS Region Description for Two-Dimensional,
Rectangular Model Involving Surface-to-Surface Boundary Conditions.
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If a surface-to-surface (type 3) boundary condition has been defined along a surface of a
region and a surface-to-boundary (type 1) boundary condition is desired along the same
surface, then the type | boundary condition must be applied along the surface of the adjoining
region. In Fig. 3.5, surface-to-surface boundary conditions can be applied along the left and
right sides of Region 3 while a surface-to-boundary boundary condition can be applied along
the left side of Region 4. This can be done only if Region 3 is a gap region. See Section 2.5
for more details.

3.3. Lattice Arrangement

The second requirement for describing the overall configuration is to construct a set of
lattice lines perpendicular to each axis and extending the entire length of the remaining
coordinates. The lattice lines are really points, lines, or planes for a one-, two-, or
three-dimensional problem, respectively. However, the phrase, lattice line, will be used for
illustrative purposes. The lattice is defined in the following manner. The lattice lines are divided
into two classes: gross lattice lines and fine lattice lines. A gross lattice line must be specified
at both region boundaries along each axis. Fine lattice lines, equally spaced, may appear
between two consecutive gross lattice lines to create a finer mesh. If unequal mesh spacing is
desired within a particular region, then gross lattice lines may appear within that region. A
nodal point is defined by each lattice point in one-dimensional problems, by each intersection
of two lattice lines appearing in a material region or on its boundary in two-dimensional
problems, and by every intersection of three lattice planes appearing in a material region or on
its boundary in three-dimensional problems. The points are numbered consecutively by the
program at the intersection of each X- (or R-), Y- (or 0-), and Z-plane starting with the planes
nearest the origin and changing the X- (or R-) plane most rapidly and the Z-plane least.
Temperatures are calculated at each such nodal point.

3.4. Analytical and Tabular Functions

The analytical and tabular functions are built-in functions which may be used to aid in the
description of some of the input parameters. An analytical function is defined by

F(v) — AFFA2VHA3VIHA4COS(ASV)+A6exp(A7v)+AS8sin(A9v)+Aio/n(Aiiv) . 3.1)

A tabular function is defined by a set of ordered pairs, (vi, G(vi)), (V2, G(v2)),..., (V,, G(V,,)),
where the first element of a pair is the independent variable and the second is the
corresponding value of the function. In order to evaluate the tabular function at some point,
the program.uses linear interpolation in the interval containing the point. The set of ordered
pairs must be chosen so that the independent variable is arranged in ascending order or

Vi<vi<vi<..<wvni<hu. (3.2)

If the function must be evaluated at some point outside of the defined domain of the function,
then

G(vi),v < vi
G(v) = 3.3)
G(v,,), v > v,
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3.5. Input Parameters

The input parameters included in Table 3.1 must be defined by a function having the
following form:

P(x,y,zt,T) = P0 * f(x,y,zt,T) , (3.4)

where P0 is a constant factor and f(x,y,zt,T) may be a product of analytical and tabular
functions, such as

f(x,y,z,t,T) = F,<x)-FXy)-Ft(z)-F/(t)-Fm(T) . (3.9)

In observing the definitions of the input parameters (see Table 3.1) which may be defined by
Eq. (3.4), it is noted that only the volumetric heat generation rate is a function of all the
independent variables. Thus, if any variable is omitted from the definition of the parameter,
then the corresponding factor is set equal to unity in Eq. (3.5). The constant factor, P0, is part
of the input data, and its value appears on the data card which is used to define the
parameter. If one of the input parameters is to be a function of position, time, or temperature,
then the appropriate index or indices, i,j, k, / or m, from Eq. (3.5) are entered on a data
card, too. If an index ispositive, then it defines the number of the analytical function for the
respective variable. If it is negative, then the absolute value of the index defines the number of
the tabular function for the respective variable. If any of the defined factors for a parameter
are omitted from the input data, then that particular factor is set equal to unity in Eq. (3.5). If
none of the factors are defined in the input, then that particular parameter is treated as a
constant. If the value of Pois zero oris left blank on the data card and if the data indicates
that the parameter is to bea functionofposition, time or temperature, then P0 is set equal to
unity in Eq. (3.4). If the value of Po is zero or is left blank and if the data indicates that the
parameter is not a function of position, time, or temperature, then Po is set equal to zero in
Eq. (3.4).

If the parameter cannot be defined by a product of analytical and tabular functions as
indicated in Eq. (3.5), then the user may supply his own subroutine to evaluate Eq. (3.4).
Table 3.1 contains each input parameter and the name of the corresponding subroutine which
must be supplied if the user wishes to create his own function. Table 3.1 also includes the
independent variables which may be used to define each parameter. For further details
involving user-supplied subroutines, see Appendix C.

If the thermal conductivity of a material is anisotropic, then it must be defined in
user-supplied subroutine CONDTN (see Section 3.6.7).

3.6. Card Description

A detailed description of the card input is presented below. Except for Card 1, the M
cards, and the deck composed of the IT cards, the input data are arranged on each card in
9-column fields. All integers must be right-adjusted, i.e., the last digit of each integer must
appear in a column which is a multiple of 9. Except for the IT cards, columns 73 through 80
of each card are reserved for identification to aid the user in the preparation and handling of
the data.

3.6.1. Card [ - Title of Problem
This card, which can contain alphanumeric characters in the first 72 columns, contains a

descriptive title for the problem. The card itself cannot be omitted although it may be left
blank.
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Function of

X)
X)
X)
X)

X)

(9]

(9]

(&9}

(&9

—

>

Related User-
Supplied Subroutine

CONDTN
DNSITY
CPHEAT
INITTP
HEATON
BNDTMP
CONVTN
RADITN
NATCON
NCONEX

BNFLUX

The x enclosed in parentheses, (x), indicates that although the parameter cannot be an
explicit function of the indicated variable using normal input data, this variable is
initialized in the respective user-supplied subroutine. Thus, the parameter can be a
function of the indicated variable if it is so defined in its respective user-supplied

subroutine.



3.6.2.

30

Card 2 - Input Parameters

All eight entries in this card are integers.

a.

Maximum CPU Time

When one submits a job to the computer, the maximum CPU time that the job is
expected to run is indicated on the CLASS card. If the CPU time exceeds this time,
then the job will be pulled by the system without printing out the current temperature
distribution. In order to prevent this, the maximum CPU time (seconds) for the IBM
360/91 at ORNL or IBM 360/195 at ORGDP is specified as the first entry in Card 2.
As a safety factor the code subtracts five seconds from this specified time. If the code
determines that the job is being run on the IBM 360/75, then it multiplies the number
in this entry by 5. After each iteration or time step, a check is made to see if the
CPU time exceeds the specified time. If so, it completes all of the output options
which are specified and attempts to read the data for the next problem, if any. This
time should be less than the CPU time specified on the CLASS card.

Type Geometry

The HEATINGS Program offers nine possible geometries (seven and eight are really
the same) which are members of either the cylindrical, the Cartesian or the spherical
coordinate system. These are listed below.

Cylindrical Rectangular Spherical
| R-0-Z 6 X-Y-Z 10 R

2 R0 7 XY

3 R-Z 8 X-Z

4 R 9 X

5 Z

One-, two-, or three-dimensional systems are allowed in either cylindrical or Cartesian
coordinates by entering the appropriate number (1-9, as indicated above) as the second
entry of Card 2. A one-dimensional model described in the radial, spherical coordinate
system is defined as a Type 10 geometry.

Total number of Regions

The total number of regions of the entire configuration is entered as the third entry. A
maximum of 100 regions is allowed.

Total Number of Materials

The fourth entry of this card contains the total number of different materials. There
can be a maximum of 50 materials.

Total Number of Materials with Change of Phase Capabilities

The total number of materials with change of phase capabilities is the fifth entry of
Card 2 (see Section 3.6.7). If phase changes are not considered in this problem, then
this entry must be left blank. There can be a maximum of five such materials.
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Total Number of Heat Generation Functions

The total number of different heat generation functions (a maximum of 20) is the
sixth entry of Card 2. This entry must be left blank if there are no heat generation
functions.

Total Number of Initial Temperature Functions

This entry (the seventh on Card 2) is the total number of different initial temperature
functions, up to a maximum of 25. If there are no initial temperature functions, this
entry must be left blank, and the program will assume that the initial temperature
distribution is zero degrees.

Total Number of Boundaries

The eighth entry of Card 2 is the total number (maximum of 50) of boundary
conditions. If there are no boundary conditions explicitly specified in the input data,
this entry must be left blank.

3.6.3 Card3 - Input Parameters

Each entry on this card is an integer.

a.

Gross Lattice Size

The first three entries of this card contain the total number of gross lattice lines in (1)
X or R direction, (2) Y or 0 direction, and (3) Z direction. If any dimension is
omitted, a zero is inserted in the appropriate entry for the total number of gross
lattice lines or the appropriate entry must be left blank. There can be a maximum of
50 gross lattice lines along each axis.

Total Number of Analytical Functions

The fourth entry is the total number of different analytical functions. There can be a
maximum of 25 of these functions. If there are no analytical functions, then this entry
must be left blank.

Total Number of Tabular Functions

The total number of tabular functions is the fifth entry of this card. There can be a
maximum of 25 functions. If there are no tabular functions, then this entry must be
left blank.

Temperature Units

For problems involving radiation, the temperature units must be either °F or °C.
Entry *6 is used only for problems involving radiation. It indicates that the units of
temperature are either in degrees Fahrenheit or degrees Celsius.

Entry 6 Temperature
0 or Blank °F
I C
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Three-Dimensional Output Map Flag

The seventh entry on this card is a flag which is only used for three-dimensional
problems. Normally, the temperature output map for three-dimensional problems is
printed for each XY or RO plane. If this entry is nonzero, then the temperature output
map will be printed for each XZ or RZ plane.

Updating Temperature-Dependent Properties

The eighth entry on this card specifies the number of iterations which are allowed
before the temperature-dependent thermal properties are reevaluated for steady-state
problems. Once the convergence criterion has been satisfied, the code continues to
iterate. However, the temperature-dependent thermal properties are now reevaluated
after every iteration until the convergence criterion is satisfied a second time. Some
nonlinear problems will converge in fewer iterations if the thermal properties are not
evaluated at each iteration, and certainly, the computing time per iteration will be less.
It is recommended that this parameter be on the order of 10 or 20. If it is blank or
zero, then the default value is unity for nonlinear problems.

Card 4 - Input Parameters

Each entry on this card is an integer.

a.

Transient Output
For transient problems, the output may be specified in either of two ways:

(1) The temperature distribution may be printed out at equally spaced times. To
specify this option, the first entry on Card 4 must contain the number of initial
time steps between outputs, and the second entry must be blank. For example, if
a value of 5 is entered, the temperature distribution will be printed at times
whose spacing is equal to five times the initial time step.

(2) The temperature distribution may be printed out at unequal time increments. To
choose this option, the first entry on Card 4 must be left blank and the second
entry must contain the number of times the temperature distribution will be
printed out. The actual output times will be entered on the O cards.

The temperature distribution is automatically printed out prior to the first time step
for transient calculations and prior to the first iteration for steady-state problems. In
addition, the temperature distribution may be printed out up to 100 times for each
transient portion of the problem. For steady-state-only calculations, the first and
second entries may be left blank.

Graphical Output

The third entry on Card 4 indicates whether or not graphical output is desired. At
times it is desirable to have plots of the temperature distribution to aid in the
interpretation of the results from HEATINGS. By entering a nonzero integer in this
field, a data set will be created which contains the temperature distributions along with
certain parameters which identify the problem. The absolute value of the integer
identifies the unit number on which the data set is to be created. If it is a positive
integer, a new data set is created. If it is negative, then the temperatures from this run
will be added to those from a previous run. The data set containing the temperatures
from the previous run will be read from the unit whose number is one less than the
absolute value of this entry (or one less than the unit number of the data set to be
created). This data set can then be used by a plotting package to create various plots
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to include temperatures versus time, temperature profiles and isothermal plots. If this
option is invoked, the user must supply a DD card to define the data set. The records
are variable in length. The longest and most frequently written record is 8(N + NBC)
bytes long where N is the number of nodes and NBC is the number of boundary
conditions. See Appendix A for a sample DD card.

Frequency of Output for Plots

This entry, the fourth on Card 4, specifies the number of time steps between each
output of the temperature distribution on the data set defined in Section 3.6.4(b). If
this entry is blank or zero and if the preceding entry is nonzero, then the temperature
distribution will be written on the data set each time that a normal printout as defined
in Section 3.6.4(a) occurs.

Special Monitoring of Temperatures

The user may wish to tabulate the temperatures of a few nodes as a function of the
number of iterations or time steps. In this way one can keep track of what is
happening at a few nodes of interest without getting excessive output by having to
print out the entire temperature distribution. This output option is in addition to the
standard output of the temperature distribution. To invoke this option, the number of
iterations between printouts for steady-state calculations or the number of time steps
between printouts for transient calculations is entered in the fifth field of Card 4. If
this entry is nonzero, the node numbers whose temperatures are to be printed out are
specified on the S cards. If this option is not desired, this entry is left blank.

Initial Temperature Input Unit

The sixth entry on this card specifies the unit number from which the explicitly
specified lattice-point initial temperatures are read. If the entry is a positive integer,
then it specifies the unit number from which the initial temperatures are read in
formatted form. The records vary in length with the maximum size being 80
characters. If it is a negative integer, then its absolute value specifies the unit number
from which the initial temperatures are read in unformatted form. If there are no
initial temperatures explicitly specified, then this entry is left blank. If the unit
specified is other than the standard card input, the user must insure that the
appropriate DD card has been supplied to describe the data set.

Final Temperature Output Unit

In addition to the normal output, the user may wish to have the final temperature
distribution saved in some manner to facilitate the restarting of the problem. If this
option is desired, the unit number on which the final temperature distribution is to be
written is entered on the seventh entry on Card 4. If the entry is a positive integer,
then it specifies the unit number on which the final temperature distribution is to be
written in formatted form. The records vary in length with the maximum size being 80
characters. If the entry is a negative integer, then its absolute value specifies the unit
number on which the final temperature distribution is to be written in unformatted
form. If the user does not wish to save the final temperature distribution, then this
entry must be left blank. If this entry is nonzero, the user must see that the
appropriate DD card has been supphed to correctly identify the specified unit (see
Appendix A).

As an example, if the user feels that he may wish to restart the problem at some
future date, he may enter the unit number for the standard card punch (7) as the
seventh entry on Card 4. Then, when the user actually restarts the problem, he will
enter the standard input unit (5) in entry 6 on Card 4. The punched output from the
previous run (the final temperature distribution) will be the IT deck in the current run.
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Problem Status Unit for Remote Users

This feature is designed to allow remote users to determine the status of their problem
without having to wait for normal computer turnaround. If a positive number is
entered in the eighth field of Card 4, then this designates the unit number on which
error messages and selected information concerning the status of the problem is
written. The user must supply the appropriate DD card to define the specified unit. As
an example, the user may wish to use this option to have information stored on his
PDP-10 file. It can then be printed out on a remote terminal. One can locate data
errors and resubmit the corrected problem without having to wait for the main listing
from the computer. Using this concept, one could possibly speed up turnaround time.

Card 5 - Input Parameters

Each entry on this card is a floating-point number except for entries 1, 2, and 6, which
are integers.

a.

Type of Problem

The first entry on Card 5 specifies the type of problem. It may be steady-state only,
transient only, or combinations of steady-state and transient calculations. The number
to be entered is in accordance with the following list:

I S-S only -1 trans. only

2 S-S, trans. -2 trans., S-S

3 S-S, trans., S-S -3 trans., S-S, trans.

4 S-S, trans., S-S, trans. -4 trans., S-S, trans., S-S

n S-S, trans., S-S, trans. -n trans., S-S, trans., S-S
S-S, etc. trans., etc.

If, for example, a 3 is entered, the program will first perform a steady-state calculation
at time zero; next the transient calculation; then a steady-state calculation at the final
transient time using the final transient temperatures as the initial guess for the
steady-state temperatures. Any number of combinations is allowable; however, machine
running time should be considered. (Note, careful consideration must be given to
formation of time-dependent and heat generation functions with a problem type which
uses more than one transient and one steady-state pass.)

Maximum Number of Steady-State Iterations Allowed

If the maximum number of steady-state iterations is reached, and the convergence
criterion is not satisfied, then the program will write “END STEADY-STATE
CALCULATIONS, CONVERGENCE NOT SATISFIED” on the printer and will
terminate the calculation and call for the next problem. Normally 200 to 500 iterations
are sufficient to converge to the solution. In the event that the convergence criterion is
not satisfied, one may wish to save the final temperature distribution in order to
restart the problem as discussed in Section 3.6.4(f). This entry is the second of Card 5
and is left blank for pure transient problems. If it is zero or blank for steady-state
problems, then a default of 500 is used.
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Steady-State Convergence Criterion

This entry, which contains the value of ¢ in Eq. (2.14), affects the steady-state type of
calculation and may be left blank for a transient-only problem. The steady-state
calculation will continue until the convergence criterion is met. Since the criterion
which insures convergence varies from case to case, the user must rely on his own
judgment and experience in determining the correct value for his particular problem. If
it is left blank for steady-state problems, the code assumes ¢ = 10-5. This is the third
entry of Card 3.

Steady-State Over-Relaxation Factor

The value of [see Eq. (2.13)] is the fourth entry on this card and its value must be
in the range | ™ /S < 2. This entry may be left blank for transient-only problems. If it
is left blank for steady-state problems, the code assumes that the initial value of p is
1.9.

Time Increment

This entry (the fifth on Card 5) contains the initial time increment, At [see Eq. (2.19)],
for transient problems that will be solved by one of the explicit techniques. For
transient problems which will be solved using the implicit procedure, this entry must
be left blank. For the Classical Explicit Procedure, the time increment must satisfy
certain criteria to insure stability [see Eq. (2.20)]. The HEATINGS Program calculates
the stability criterion and writes, “THE STABILITY CRITERION IS (the value of
criterion) FOR POINT (lattice point yielding the above value)”. If the input time
increment is less than or equal to the stability criterion, then the code writes, “THE
INPUT TIME INCREMENT SATISFIES THE STABILITY CRITERION,” and uses
the input value. If the input time increment is too large (but not more than a factor
of 10 too large), the program sets At equal to the calculated stability criterion and
writes, “THE INPUT TIME INCREMENT DOES NOT SATISFY THE STABILITY
CRITERION-THE TIME INCREMENT IS NOW = (value of At used in subsequent
calculations).” If the input At is too large by more than a factor of 10, the program
writes, “CASE DELETED-INPUT TIME INCREMENT EXCEEDS THE
STABILITY CRITERION BY MORE THAN A FACTOR OF 10,” and goes on to
the next problem. For steady-state-only problems, this entry may be left blank.

Levy's Explicit Method Option

The sixth entry (an integer) is the factor by which the stable time increment is
multiplied to form the time increment for Levy’s explicit method. If the entry is blank
or less than 2, then Levy’s method will not be used. If Levy’s explicit method is
specified, then the problem is not terminated if the input time increment is more than
an order of magnitude larger than the stability criterion as noted in Section 3.6.5(e).
Instead, the time increment is initially set equal to the stability criterion. HEATINGS
always executes 10 time increments using a stable time step prior to using Levy’s
explicit method. This entry may be left blank for steady-state-only (Type 1) problems.
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g. Initial Time

This entry affects both transient and steady-state problems. It indicates the initial time
for problems with a negative type and the time at which the time-dependent functions
are evaluated for problems whose types are greater than zero. For example, assume
that a type 4 problem is run. Let t0 represent the initial time (entry 7) and t/ represent
the final time (entry 8). Then, the time-dependent functions will be evaluated at t) for
the first steady-state calculation. The first transient calculation will begin at time t0,
using the results of the steady-state calculations as the initial temperatures, and will
stop at t/. The second steady-state calculation will then be performed, and the
time-dependent functions will be evaluated at t/. The results from the transient
calculation will be used as the first approximation to the steady-state temperature
distribution. Finally, the last transient calculation will begin at t/ and continue until
t/ + (V- t0). The value (t/ - tl) will be added to the output times from the first
transient calculation to obtain the output times for the second transient case. If entry
7 is left blank, then t) will be zero.

h.  Final Timefor Transient Calculation

The final time for the first transient calculation is specified as the eighth entry on
Card 5. For steady-state problems, this entry may be left blank.

3.6.6. Region Data (Cards Rl and R2)

Each region is described by two cards which must appear in pairs. The cards are repeated
for each region. The number of pairs of cards is the third entry on Card 2. There must be at
least one region for each problem.

a. Card Rl
(1) Region Number

This entry contains the number of the region to be described. Regions are to be
numbered consecutively beginning with number | up to a maximum of 100
regions. The region numbering system does not require that a region occupy any
particular zone in the overall configuration. In the example of Fig. 3.1, the
left-most region could be numbered Region 2, and the right-most region, Region
1. Refer to Section 3.2 for further details about regions. This entry is the first on
Card Rl and must be an integer.

(2) Material in Region

The second entry of this card indicates by an integer the number of the material
which occupies the region named in the first entry of this card. This entry is left
blank if the region does not contain a material (gap region).
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(3) Region Dimensions
Dimensions of the region boundaries are entered as floating-point numbers and
are arranged in the following order:
a) smaller dimension of X or R region boundary
b) larger dimension of X or R region boundary
c) smaller dimension of Y or @ region boundary
d) larger dimension of Y or O region boundary
e) smaller dimension of Z region boundary
f) larger dimension of Z region boundary
These dimensions are entered as the third through eighth entries, respectively. If
the problem is one- or two-dimensional, then the region dimensions for the
corresponding unnecessary coordinate or coordinates are omitted. The region
dimensions must be nonnegative. Although it is usually more convenient to place
the overall configuration at the origin in X-Y-Z geometry, it is not necessary to
do so; however, all dimensions are entered as their distance from the origin. In
R-0-Z geometry, R = 0.0 must be located at the origin with R increasing radially;
Z is not necessarily begun at the origin, but must extend upward; and 0 lines or
planes increase clockwise in order to be compatible with the X-Y-Z system.

b. R2 Card

This card must be included in conjunction with the appropriate Rl card, even if it is

blank.

(1) Initial Temperature of Region

2)

)

The initial temperature function number of the region specified by the first entry
of Card Rl is entered as an integer. If this entry is left blank, then the program
assumes that the initial temperature for the region is zero. This entry is left blank
for a gap region.

Heat Generation of Region

This entry contains the number (an integer) of the heat generation function
associated with the region given on the first card of this pair. If this entry is left
blank, then the code assumes that the region does not generate heat. This entry is
left blank for a gap region.

Boundary Numbers

The remaining entries of this card are the boundary numbers defining the
boundary conditions corresponding to the six boundaries of the region described
by the first card of this pair. These numbers are integers and are entered as
follows:

Each entry contains the boundary number of the region boundary appearing in
the corresponding entry of Card RIl. A boundary condition cannot be specified on
a boundary dividing two regions unless it is a type 3 boundary condition or
unless one of the regions is a gap region. For one- or two-dimensional cases,
region dimensions are not specified for the unnecessary coordinate or coordinates,
and the corresponding boundary numbers are left blank. The entry is also left
blank for boundaries which are insulated.
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3.6.7. Material Data (Cards M and PC)

A group of cards consisting of an M card and possibly a PC card is required to describe
each material. The total number of groups is the fourth entry on Card 2. There can be five
materials with change of phase capabilities, and they must be the first ones described on the M
cards. If the thermal conductivity of a material is anisotropic, then it is specified as being
temperature-dependent, and the associated temperature-dependent function is specified as being
user-supplied. The user then programs the anisotropic algorithm for that material in subroutine
CONDTN. The following labeled common must be added to subroutine CONDTN:

COMMON /THBSBC/ NBDTP, NDIR

The variable NDIR will contain a value of I, 2, or 3 indicating the thermal conductivity is to
be evaluated along the X (or R), Y (or 6) or Z axis, respectively. Both variables NBDTP and
NDIR are INTEGER*4.

a. Card M
(I) Material Number

The first entry, an integer, contains the number of the material which is to be
described. Materials are numbered consecutively (each different material has a
number) beginning with number | up to a maximum of 50 materials.

(2) Material Name

The second entry, which must begin in Column Il and may extend through
Column 18, contains the name of the material. This name, which may consist of
up to eight alphanumeric characters, is used to aid in identification of output
data.

(3) Constant Thermal Properties

Entries 3, 4, and 5 are floating-point numbers and respectively contain the
constant thermal conductivity, constant density, and constant specific heat of the
material. These entries correspond to the factor, PD, in Eq. (3.4). Since the density
and specific heat are not used in steady-state calculations, entries 4 and 5 may be
left blank for type | problems.

(4) Temperature-Dependent Thermal Properties

Entries 6, 7, and 8 (integers) identify the analytical or tabular functions describing
the thermal conductivity, density, and specific heat, respectively, as a function of
temperature. These entries correspond to subscript / in Eq. (3.5). Entries 7 and 3§
may be left blank for type | problems.

b. Card PC

For materials which can undergo a phase change, the phase-change or transition
temperature and the corresponding latent heat are entered as floating point numbers in
the first and second fields, respectively, of Card PC. The following conventions must
be adhered to in describing materials with change of phase capabilities: these materials
must be the first ones described on the M cards; there can be a maximum of five such
materials; and the PC card is omitted for those materials which do not undergo a
change of phase. The total number of materials which involve a change of phase is the
fifth entry on Card 2.
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3.6.8. Heat Generation Function Data (Card G)

Each different heat generation function is numbered, beginning with number I,
consecutively up to a maximum of 20 such functions. As indicated in Table 3.1, the heat
generation function associated with a region may be dependent on position, time and
temperature. Thus, the heat generation function data cards indicate the function number, the
volumetric heat generation rate [corresponds to P) in Eq. (3.4)], the time-dependent function
parameter, the temperature-dependent function parameter, the X- or R-dependent function
parameter, the Y- or O-dependent function parameter, and the Z-dependent function parameter,
arranged in that order, respectively. The parameters in entries 3 through 7 refer to analytical or
tabular functions defining /, m, i, j, and k, respectively, in Eq. (3.5). If the heat generation rate
per unit volume does not vary along an axis or if the problem is one- or two-dimensional,
then the position-dependent function parameter corresponding to that coordinate will be left
blank, and the associated function value will be set equal to 1.0. If the heat generation rate per
unit volume does not vary with time or temperature, then the time- or temperature-dependent
function parameter will be omitted and the associated function value or values will be set to
1.0. The first entry on this card is an integer, the second is a floating point number and the
remaining five are integers. The total number of cards is indicated by the sixth entry on
Card 2. The heat generation rate for a region may be positive (heat source) or negative (heat
sink). The G cards are omitted if entry 6 on Card 2 is blank or zero.

3.6.9. Initial Temperature Function Data (Card 1)

Each different initial temperature function is given a number. Beginning with number I,
the initial temperature functions are numbered consecutively up to a maximum of 25. Since the
initial temperature function associated with a region can be a function of position, then this
data card consists of five entries. All of them are integers except the second which is a floating
point number. The first entry contains the initial temperature function number. The second
entry contains the constant factor describing the initial temperature function. This term
corresponds to Po in Eq. (3.4). The remaining entries, which identify analytical or tabular
functions, contain the X- or R-, Y- or 6-, and Z-dependent function parameters corresponding
to the subscripts i, j, and k, respectively, in Eq. (3.5). If the problem is one- or
two-dimensional or if the initial temperature does not vary along a particular axis of the
region, then the position-dependent function parameter associated with the coordinate will be
left blank, and the corresponding function value will be set equal to 1.0. The total number of
cards is the seventh entry on Card 2, and if this entry is blank or zero, then the [ cards are
omitted, and the initial temperature distribution is assumed to be zero.

3.6.10. Boundary Data (Cards Bl, B2, B3, and B4)

Excluding insulated or contact type boundaries, each unique boundary is numbered
consecutively up to a maximum of 50. The Bl and B2 cards are omitted if the eighth entry on
Card 2 (this entry indicates the total number of boundary conditions specified) is blank or
Zero.

a. Card Bl
(1) The first entry on Card Bl is an integer and contains the boundary number.

(2) The second entry (an integer) indicates the type of boundary. HEATINGS offers
three boundary types which are numbered 1, 2, or 3, corresponding to the
following:
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I implies surface-to-boundary,
2 implies prescribed surface temperature, and
3 implies surface-to-surface.

If this entry is blank or zero, then no heat transfer connections will be made and
the boundary will be treated as an insulated boundary.

The third entry, a floating-point number, contains the boundary temperature, T*
[corresponds to Po in Eq. (3.4)]. This entry is left blank for a Type 3 boundary
condition.

Since the boundary temperature can be a function of time, the fourth entry on
this card contains the time-dependent parameter (an integer) which corresponds to
subscript / in Eq. (3.5). This parameter identifies an analytical or tabular function.
If the boundary temperature is independent of time or if the boundary type is 3,
then this entry will be left blank.

Card B2

Each entry on Card B2 is a floating-point number except Entry 6 which is an integer.
This card is left blank for a Type 2 boundary condition.

)

)
Q)

“4)

)

(6)

Entry | contains the heat transfer coefficient, he, for forced convection.
[Corresponds to PO in Eq. (3.4).]

Entry 2 contains the coefficient hr, for radiation. [Corresponds to PO in Eq. (3.4).]

Entry 3 contains the coefficient, h,,, for natural convection [Corresponds to PO in
Eq. (3.4).]

The fourth entiy contains the exponent, he, for natural convection (or other
nonlinear heat transfer process). [Corresponds to P0 in Eq. (3.4).]

The fifth entry contains the prescribed heat flux, h/; across the boundary.
[Corresponds to Po in Eq. (3.4).]

The time- and temperature-dependent parameter flag, an integer, is the sixth and
final entry on the B2 card. If any of the five preceding parameters are functions
of time or temperature, then additional information must be entered on B3
and/or B4 cards. The time- and temperature-dependent flag indicates whether or
not the B3 and B4 cards are present for this particular boundary condition. Its
value is determined according to the following table:

Entry Six Additional Cards
0 None
I B3 Only
2 B4 Only

3 B3 and B4
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c. Card B3

All five entries on Card B3 are integers. Each integer identifies the analytical or
tabular function that defines the time-dependent function associated with the respective
parameter on Card B2. Each entry corresponds to subscript / in Eq. (3.5). If an entry
is zero, then the associated parameter is not time-dependent.

d. Card B4

This card is just like Card B3 except each integer identifies the analytical or tabular
function that defines the temperature-dependent function associated with the respective
parameter on Card B2. Each entry corresponds to subscript m in Eq. (3.5).

In evaluating a particular parameter, the code uses Eq. (3.4) where Po is the appropriate
value from Card B2, F/(t) is the time-dependent function as defined by Card B3 and Fm(T) is
the temperature-dependent function as defined by Card B4.

The Bl and B2 cards must appear in pairs, and a pair is entered for each boundary. B3
and B4 cards, if any, must follow their respective Bl and B2 cards.

3.6.11 Lattice Description (Cards LI, NI, L2, N2, L3 and N3)

For each axis, gross lattice data are entered on two sets of cards, the first set specifying
the lattice dimensions and the second indicating the mesh division between gross lattice lines.
All of the numbers on the cards on the first set (L cards) are of the floating-point type and
are entered, by specifying all of the gross lattice dimensions in each direction, sequentially on
one or more cards. The cards of the second set (N cards) specify the number (an integer ™ 1)
of equal increments which are between the gross lattice lines whose dimensions are given on
the cards of the first set. In particular, an entry on an N card specifies the number of equal
increments between the gross lattice line in the corresponding entry on the related L card and
the gross lattice line immediately following it. This procedure is repeated for each coordinate.
For degenerate geometries, the corresponding unnecessary sets of cards must be omitted.

a. Card LI

The LI cards correspondto the Xor R coordinate, and the number of entries
corresponds to Entry | of Card 3. Ifthere are more than 8 entries, subsequent cards
are used.

b. Card NI

The NI cards correspond to the X or R coordinate. There will be one less entry here
than there are on the LI cards. Additional cards are used for more than eight entries.

c. CardlL2

The L2 cards correspondto the Yor 0 coordinate, and the number of entries
corresponds to Entry 2 of Card 3. If thereare more than eight entries, subsequent
cards are used.

d. Card N2

The N2 cards correspond to the Y or 0 coordinate. There will be one less entry here
than there are on the L2 cards. Additional cards are used for more than eight entries.



42

e. CardlL3

The L3 cards correspond to the Z, coordinate, and the number of entries corresponds
to Entry 3 of Card 3. If there are more than eight entries, subsequent cards are used.

f.  Card N3

The N3 cards correspond to the Z coordinate. There will be one less entry here than
there are on the L3 cards. Additional cards are used for more than eight entries.

3.6.12.  Analytical Function Data (Cards Al and A2)

Each analytical function, defined in Eq. (3.1), is described by an Al card and one or more
A2 cards.

a. Card Al

Each different analytical function is numbered, and there can be a maximum of 25
such functions. The first entry on Card Al is the unique analytical function number,
an integer. The second entry, also an integer, is the number of coefficients, A-, which
are on the A2 cards. If this entry is blank or zero, then the code assumes that a

user-supplied function will be supplied for the parameter which uses this particular
analytical function.

b. Card A2

The A2 cards contain from one to four ordered pairs, where each ordered pair is
defined as follows: the first element of an ordered pair consists of an integer i; the
second element consists of the value of the coefficient A,, The A2 cards will be
continued until each coefficient in the analytical function is defined. If the second
entry on Card Al is blank or zero, then the related A2 card is omitted.

As an example, the cards which are necessary to describe f(x) = 100sin5x + exp(-3x) are
presented in Table 3.2.

Table 3.2. A Cards Necessary to Describe the Function
100sin5x + exp(-3x).

Column 9 18 27 36 45 54 63 72 75

8 100.0 9 5.0 6 1.0 7 -3.0 A2



43

The total number of analytical functions is the fourth entry on Card 3. The A cards are
omitted if this entry is blank or zero.

3.6.13. Tabular Function Data (Cards T! and T2)

Each tabular function is numbered consecutively beginning with one up to a maximum of
25 functions. The tabular function is assumed to be a set of linearly connected points. The
function is described by specifying a set of ordered pairs. Each ordered pair contains an
independent variable and its functional value; viz., ti, G/(ti); t2, G/(t2); etc. A maximum of 25
points (pairs) is allowed, and linear interpolation is performed between the points by the
program. The values of t, must be entered in ascending order.

a. Card Tl

The first entry on the Tl card (an integer) is the tabular function number. The
number of points (an integer) is the second entry.

b. Card T2

The T2 card contains the first four ordered pairs, all floating point numbers. If there
are more than four ordered pairs in the function, they are entered on subsequent T2
cards.

Figure 3.6 is an example of an acceptable tabular function. The input for this example is
presented in Table 3.3.

ORNL DWG 76 10920

t

Fig. 3.6. P16t of a Sample Tabular Function
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Table 3.3. T Cards Necessary to Describe the Sample Tabular
Function Depicted in Fig. 3.6.

Column 9 18 27 36 45 54 63 72 Card

0.0 25.0 1.0 30.0 2.0 30.0 25 35.0 T2
35 35.0 4.0 30.0 4.5 30.0 55 20.0 T3

5.501 10.0 T4

The total number of tabular functions is the fifth entry of Card 3. The T cards are
omitted if this entry is blank or zero.

3.6.14.  Output Times (Card O)

Each entry on this card is a floating-point number. Since the second entry on Card 4
indicates the total number of output times which are to be read, the O cards are omitted if
this entry is blank or zero. The transient output times are entered in chronological order on
the O cards. There can be eight entries per card, and the O card is repeated as often as
necessary to describe the output array. The maximum number of output times is 100, not
counting the automatic printout which occurs prior to the initial time step.

3.6.15. Node Numbers for Special Monitoring of Temperatures (Card S)

As optional output, one may specify up to 20 nodes whose temperatures will be printed
out as a function of the number of iterations for steady-state calculations or the number of
time steps for transient calculations. The first entry on Card S contains the total number of
nodes whose temperatures are to be tabulated. The remaining fields contain the actual node
numbers. If more than seven nodes are specified, their numbers will appear on additional
cards. All entries on the S cards are integers. The frequency for printing out the temperatures
of such nodes appears as the fifth entry on Card 4, and the S card or cards are omitted if this
entry is blank or zero.

3.6.16. [Initial Temperatures and Melting Ratios

These cards (or card images) are generated as output by HEATINGS if a positive number
appears in Entry 7 on Card 4; and, generally, they are used only when restarting a job by
merely inserting the generated deck at this location in the original deck and resubmitting the
job. As noted in Section 3.6.4(e), one must enter the unit number of the card reader in the
sixth field of Card 4. Entry 6 on Card 4 specifies the unit on which these data are to be read.
If the unit specified is other than the standard card input, the user must insure that the
appropriate DD card has been supplied to describe the unit. If Entry 7 on Card 4 is nonzero,
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then the code generates these data at the end of a problem and writes it on the unit specified
in Entry 7. However, the user must insure that the appropriate DD card has been supplied to
correctly identify the unit specified on Entry 7. If Entry 6 on Card 4 is blank or zero, then
these cards are omitted.

Since the user may wish to explicitly specify the initial temperature or melting ratio at
some point or points, a description of these data is given below.

a.

Job Description (Card IT1)

This card image gives a descriptive title and can contain alphanumeric characters in
the first 72 columns. The card may be blank but it cannot be omitted.

Initial Time and Lattice Point Numbers (Card IT2)

The first entry, a floating point number which occupies the first ten columns on the
IT2 card, specifies the initial problem time. This value overrides the initial time which
appears on Entry 7 of Card 5. Normally, this deck will have been generated by the
code on a previous run. Thus, the code supplies this value as the time for which the
following temperature distribution and melting ratios occur. If the user generates the
IT deck, then he must insure that the initial problem time is entered here. The second
entry on the IT2 card is an integer and contains the total number of lattice points
whose initial temperatures are explicitly specified. It occupies columns 11 through 15
of Card IT2. The third entry, also an integer, contains the total number of nodes
whose initial melting ratios are explicitly specified. It also occupies a five-column field,
namely columns 16 through 20.

Lattice Point Temperatures (Card IT3)

The IT3 card can contain up to five pairs of numbers with each pair defined as
follows:

(I) The first member of the pair is a lattice point number. It is an integer and
occupies a five-column field.

(2) The second member is the initial temperature of the lattice point whose number
appears in the first member. It is a floating-point number and occupies a
ten-column field.

The number of pairs to be entered on the IT2 cards is specified on entry 2 of Card
IT2. Card IT3 is repeated until all pairs have been described. The temperatures
specified by this input data override the corresponding temperatures generated by the [
cards.

Lattice Point Initial Melting Ratios (Card IT4)

The IT4 card contains initial melting ratios for each node which is currently
undergoing a phase change. The format of the IT4 card is as follows:

(1) The first entry is the number of a node which is currently undergoing a phase
change. It is an integer and the field occupies the first five columns.

(2) The second entry is the material number currently undergoing a phase change for
the node which was defined in the previous field. This entry is an integer which
occupies the sixth through the tenth columns.
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(3) The third entry, a floating point number occupying the eleventh through the
twentieth columns, contains the initial melting ratio for the portion of the
material associated with the node defined on the first two entries of this card as
currently changing phase.

The total number of lattice points with initially specified melting ratios or the total
number of IT4 cards is the third entry on Card IT2.

3.6.17. Implicit Transient Technique Parameters

If this problem involves transient calculations (Entry | on Card 5 is not equal to 1) and if
the implicit technique is to be used to calculate estimates to the transient temperature
distribution, then the fifth entry (time step) of Card 5 must be left blank and additional data
must be supplied on the IP and TP cards. If it is anticipated that similar problems will be run
a large number of times such as ones arising in a parametric study, then it is recommended
that the variables on the IP and TP cards be optimized since it could significantly reduce the
overall computer time.

a. Card IP

This entire card or any of its entries may be left blank, and the default values will be
used. They are based on experiences with a few two-dimensional RZ models. They are
certainly not the best values that can be used for a given problem, but they are
probably good starting points. There are eight entries on this card. The first five are
floating point numbers, and the last three are integers.

(I) The first entry contains one of two convergence criteria which must be met in
order for the iterative technique to terminate successfully at each time step. This
convergence criterion corresponds to n in Eq. (2.37). The default is 10~5.

(2) The second entry contains the second convergence criterion which corresponds to
2 in Eq. (2.38). The default for this parameter is 10 } meaning the maximum
normalized residual must decrease by three orders of magnitude. It has been
found that for problems with an abnormally small’time step (one approximately

equal to the stability criterion or less) this criterion with = 10 ' may not be
satisfied. Increase the time step size, if possible. Otherwise, experiment with the
value of €2.

(3) The third entry contains the convergence criterion for problems involving
temperature-dependent parameters. This convergence criterion which corresponds
to e in Eq. (2.41) is used in addition to the first two. The default is 10

(4) This entry, the fourth, defines the implicit technique which will be used to solve
the- transient problem. It refers to O in Eq. (2.34) and must be chosen so that
05 sS 0 1.0. The default is 0.5.

(5) The fifth entry defines the initial value of the point successive overrelaxation
iteration acceleration parameter [cu in Eq. (2.34)]. It also defines the method that
will be used to update the acceleration parameter. If this entry is positive, then
the acceleration parameter will remain constant throughout the calculations and
will be equal to the value of this entry. If it is blank or zero, then the
acceleration parameter will be optimized empirically as a function of time. This
appears to be the best option for nonlinear problems. If it is negative, then the
acceleration parameter will be calculated using Carry’s technique (Ref. §). The
absolute value of this entry must be less than 2.0.
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(6) This entry, an integer, defines the number of time steps between attempts to
optimize the acceleration parameter empirically [referred to as in Section
2.3.3(d)], It is used only when entry 5 is zero or blank. The default value is 1.

(7) For the case when the acceleration parameter will be updated empirically (Entry 5
is blank or zero), then this entry, the seventh, defines the
change-in-number-of-iterations criterion [referred to as in Section 2.3.3(d)]
which must be met before the acceleration parameter will be updated. The default
is 5. For the case when the SOR acceleration parameter will be updated using
Carrd’s technique, then this entry defines the number of iterations between
updates. The default is 12.

(8) The last entry is the change-in-number-of-iterations criterion [referred to as in
Section 2.3.3(d)] which is used to determine when a good estimate to the
optimum acceleration parameter has been found. This entry is used only when the
acceleration parameter will be updated empirically (Entry 5 on this card is blank
or zero). The default is 2.

Card TP

When an implicit scheme is used to solve a transient problem, the time step may be
variable. This allows the time step to increase as the solution smooths out and to
decrease when some parameter varies rapidly with time. The information controlling
the value of the time step is contained on one or more of the TP cards. The size of
the time step is automatically adjusted in order to get printouts of the temperature
distribution at the specified time. If the size of the coefficients in the system of
equations varies by orders of magnitude (IO% or greater), it has been observed that
point-successive overrelaxation iteration may converge very slowly (it may appear to
not converge at all). This occurs when the grid spacing or thermal properties vary by
orders of magnitude over the problem. It can be observed by examining the stability
criterion table in the output. If this appears to be happening, either further subdivide
some of the larger nodes or combine some of the smaller ones. In some cases, it may
help to use a larger time step size. All seven entries are floating point numbers.

(1) The first entry is the initial time step.

(2) After the temperature distribution has been calculated, the current time step is
multiplied by a factor. The value of this factor is entered in the second field of
the TP card. The default value is 1.0. For many problems whose parameters vary
mildly with time and/or temperature, values between 1.0 and 13 have been
acceptable.

(3) The maximum value of the time step is the third entry. Once the time step
reaches this value, it is no longer increased. The default is 1050.

(4) The fourth entry contains the maximum time that the time step information on
this card applies. If the time reaches this value, then a new TP card is read. The
default is 1050

(5) The fifth entry contains the maximum temperature change allowed at a node over
a time step. The time step size is adjusted according to the procedure outlined in
Section 2.3.4. If this entry is blank or zero, then this feature is not invoked in
calculating the time step size.



48

(6) The sixth entry contains the maximum percent of relative temperature change

(7

allowed at a node from one time level to the next one. The time step size is
adjusted according to the procedure outlined in Section 2.3.4. If this entry is
blank or zero, then this feature is not invoked in calculating the time step size.

The seventh and final entry on this card contains the minimum value of the time
step. Once the time step size reaches this value, it is no longer decreased. The
default is one-tenth of the initial time step size.

3.6.18. Blank Card

If the

user wishes to solve several problems with one run, he merely inserts a blank card

between each problem deck.

3.7. Problem Size Limits

The problem size limits are summarized in Table 3-4.

Table 3.4. Problem Size Limits

Item Maximum Number

Analytical Functions 25
Boundary Conditions 50
Fine Lattice Lines Along Any Axis 100
Gross Lattice Lines Along Any Axis 50
Heat Generation Functions 20
Initial Temperature Functions 25
Lattice Points 1400
Materials 50
Materials with Change-of-Phase Capabilities 5
Number of Nodes in Special Temperature Table 20
Points Per Tabular Function 25
Printout Times 100
Regions 100
Surface-to-Surface Connectors 2000

Tabular Functions

25
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3.8.  Summary and Format of Input

The following table is a concentrated summary of the format and information needed to
prepare the input data deck. Except for the IT cards, columns 73 through 80 of each card are
reserved for identification, and the user may or may not choose to punch this information. The
table in this column gives proposed identification names for the cards and, in parentheses, the
reference sections in the report where more information can be found. The first line in each
format box includes the variable name actually used in the program and, in parentheses, the
format of that variable. The rest of the box includes a short explanation of the input in that
box. In some cards, where free space is available (e.g., G or | cards), additional notes have
been included to describe the way the input information will be used in the program itself.



Columns Columns
1-9 10-18
NGEOM (19)
MXCPU (19) Geometry type.
Maximum CPU time 1-R9Z 6-XYZ
for IBM 360/91 2-R0  7-XY
or IBM 360/195 3-RZ 8-XZ
in seconds. 4-R 9-X
5-Z 10-R(sphere)
IGT (19) JGT (19)

Total number

of gross lattice
lines in Y or §
direction.
(Entires in L2)
Maximum 50

Total number of
gross lattice
lines in X or R
direction.
(Entries in LI)

NFRINT (19)
Number of times
output will be
printed.
(Entries in 0

NDTA (19)
Number of time
steps between
printed outputs.
Next entry must

be blank. card), preceding
entry must be
blank. Maximum
100

NTYFE (19) NOITX (19)

Problem type
1 steady state;
-1 tremsient.
(See Section
3.6.5(a) for
other types)

steady state
iterations.
(Default, 500)

NOREG (19) MATL (19)
Region number. Region material
Maximum 100 number.  (Card M)

Leave blank for
gap region.

ITEM (19) l\'GE]‘f (19)
Region initial Region heat
temperature generation
function number. function number.
(Card 1) (Card G)

MAT (19) s MATNAM (A8)
Material number. , Material name.
Maximum 50 0

SLIM (D9-0) SLHM (D9.0)

Phase-change Latent heat.
or transition

temperature.

GENO (D9.0)
Volumetric heat
generation rate
if constant.

NGN (19)
Heat generation
function number.
Maximum 20

INTM (19)
Initial tempera-
ture function
number.

Maximum 25

TEMPIN (D9.0)
Initial tempera-
ture,

NBDTP (19)
Boundary number.
Maximum 50

NBYTYP (19)
Boundary type.
1-surface-to-
boundary
2-isothermal
3-surface-to-
surface

Maximum number of

if constant

Table 3.5

Columns
19-27

IOREGT (19)
lotal number
Df regions.
(Cards Rl & R2)
'Maximum 100

KGT (19)

fotal number of
gross lattice
.ines in Z
direction.
Entries in L3)
Maximum 50

TAPE (19)
ITAPE| is unit no
or plots. ITAPE"

implies no plots.|
TAPE < 0 implies
lot data will be '
dded to data from
revious run read
rom unit no.

ITAPE] - 1.

EPI (E9.0)
Steady state con-
convergence
criterion. c

(Default, 10"7)

RRIN (E9-0)
Smaller X or R
region dimension.

NBDIN (19)
Boundary condi-
tion on smaller
X or R.

(Card B)

CONDUC (D9.0)
Conductivity if
constant.

NOTE: This card

materials

NGNTM (19)
Time-dependent

. function number.

IIMR (19)

X- or R-
dependent func-
tion number.

BYTEMP (E9-0)
Boundary tempera-
ture. TQ

(Blank for type 3

Columns Columns Columns
28-36 57-Ji5 46-54
JOBDES(I), (18A4) Job Description
BTLT (19) IATSL (19) NGENFN (19)

total number
f materials.
Cards M)
teximum 50

0ANAT (19)
otal number of
malytical
"unctions.
Cards A)
Maximum 25

I0UTPT (19)

umber of time
teps between
utputs for plots
n unit number
ITAPE).
utput is at
ormal printouts.

BETA (E9*0)
Steady state over-
relaxation factor.
1.0S p < 2.0
(Default, 1.9)

RROT (E9.0)
Larger X or R
region dimension.

NBDOT (19)

otal number of
laterials with
hange of phase
apabilities.
Cards PC)
laximum 5

O0TBLT (19)

' otal number of
abular functions.
Cards T)
aximum 25

ns (19)>

umber of iter-
tions or time
steps between out-
ut for special

If blank.thonitoring of

temperatures.
(Card S)

ELTAT (E9.0)

rime increment

or transient
jroblem involving
axplicit technique
mlust be left blank
cor implicit
technique.

THLT (E9-0)

Smaller Y or 0
region dimension.

NBDLT (19)

Boundary condition Boundary condi-

on larger X or R.
(Card B)

DENSTY (D9.0)
Density if
constant. Leave
blank for steady
state only.

s only present for materials with change of phase capabil ities.

tion on smaller
Y or 0. (Card B)

SPHEAT (DD9-0)
Specific heat if
constant. Leave
blank for steady
state only.

Total number of
heat generation
functions.
[Cards G)

ilaximum 20

IDEGRE (19)
Temperature units.
[f *C, and radi-
ation is involved,
enter 1; otherwise,
leave blank.

Jin (19)
Unit number for
reading initial

temperature
distribution. Pos-
tive, formatted,

egative, unformat-
ted

Columns
55-65

HNTFN (19)
otal number of
nitial tempera-
ure functions.
Cards 1)
teximum 25

I0PLNE (19)
Three-dimensional
output map flag.
Blank implies XY
planes, non zero
implies XZ planes.

JOOT (19)

Unit number for
writing out final
temperature distri-
bution. “Positive,
formatted. Nega-
tive, unformatted.
(7 on IBM for

5 on IBM for cards) cards)

KTMFCT (19)
Factor by which
stable time incre-
ment is increased
if Levy's explicit
method is used.

THRT (E9.0)
Larger Y or 0
region dimension.

NBDRT (19)
Boundary condition
on larger Y or 0.
(Card B)

NCONTP (19)
Conductivity
temperature-
dependent function
number.

NOTE:

TIM (E9.0)
Initial time.
(See Section
3.6.5(g) for
more information)

ZZBK (E9.0)
Smaller Z
region dimension.

NBDBK

Boundary condi-
tion on smaller
Z. (Card B)

NDENTP (19)
Density
temperature-
dependent func-
tion number.
Leave blank for
steady state only.

Summary and Format of Input Data for HEATINGS

Columns
64-72

IBDTPT (19)
Fotal number of
boundary
conditions.
(Cards Bl & B2)
Maximum 50

MCOUNT(19)
Number ofiterations
between evaluation
of temperature-

dependent thermal
properties for

steady state cases
Cnpfault 1)-—- -

TERROR (19)
Problem status
unit for remote
users.

FTIME (E9.0)
Final time.

ZZFR (E9-0)
Larger Z
region dimension.

NBDFR (19)
Boundary condition
on larger Z.

(Card B)

NSPHT.P (19)
Specific heat
temperature-
dependent function
number. Leave
blank for steady
state only.

For the 6th through 8th entries, positive integer

implies analytical function and negative integer
implies tabular function.

md they must be the first ones described on the M cards.

NGNTP (19)
Temperature-
dependent
function number.

IIMTH (19)

Y- or 9-
dependent func-
tion number.

NBYTFN (19)
Time dependent
function
number (Z)

for boundary
temperature.

NGNR.(19)
X- or R-dependen
function number.

ITMZ (19)
Z-dependent
function
number.

NGNTH (19)
Y- or 0-
dependent
function number.

NOTE:

NGNZ (19)
Z-dependent
function number

There can only be five such

NOTE:
through 7th
entries, positive
integer implies

analytical functio

and negative
integer implies
tabular function.

For the 3rd, 4th and 5th entries, positive

integer implies analytical function, negative
integer implies tabular function.

Boundary temperature will be established as Tb(tJ™Q'T" (t) where
TA(t) is the /th analytical function for / > 0, and the (-/)th

tabular function for i < 0.

NOTE:

The heat flux will be established as: *

For the 3rd

(Blank for type 3

9" = hf + he6T + hr(JA - Tj) + hjoil e(4T)

BHCONV (E9.0)
Forced convective
heat transfer
coefficient,

h
c

NBHCIM (19)
Forced convective
heat transfer
coefficient
time-dependent
function.

NBHCTP (19)
Forced convective
heat transfer

BHRAD (E9.0)
Radiative coeffi-
cient. h F-u

cr= Stefan-Boltzmai
constant

F= Radiation shap
factor

NBHRTM (19)
Radiative
coefficient
time-dependent
function.

NBHRTP (19)
Radiative coeffi-
cient temperature

BHNAT (E9.0)
Natural convec-
tive coefficient.

NBHNTM (19)
Natural convec-
tive coefficient
time-dependent
function.

NBHNTP (19)
Natural convec-
tive coefficient

coefficient dependent
temperature- function.
dependent

function.

RG (E9-0) RG (E9.0)
Smallest X or R Next X or R

gross lattice
line dimension.

gross lattice
line dimension.

NDRG (19) NDRG (19)

Number of DIVI-

SIONS between

corresponding

X or R gross

line and the

following line.

THG (E9.0)

Y or 9

NLTHG (19)

Y or 9

7G (E9.0)

NDZG (19)

NANALT (19) NPARM (19)

Analytical Number of

function number.  coefficients in

Maximum 10 A2 cards.
Maximum 9

NPRM (19) A(NPRM) (E9-0)

Coefficient Coefficient

index, i.

NTABL (19) NTBFRS (19)

Tabular Number of pairs

function number.  in table.

Maxi i 25

ARG(l) (E9-0)
Independent
variable.

VAL(l) (E9.0)
Corresponding
function value.

FRTIME (E9.0) FRTIME (E9-0)
First time print’

out is desired. out is desired.

NDS(I) (19)

NSN (19
a9 Node number.

Total number o
nodes for special
monitoring of
temperatures.
Maximum 20

Columns Columns
1-10 11-15
INITEM (19)
Total number of
TIM(D10.0) lattice points

Initial time. with explicitly-

specified initial

temperatures.
Maximum 1750

Columns Columns
1-5 6-15
»(15) TI(N) (D10.0)
Lattice point Specified initial
number. temperature of
that point.
Columns Columns
1-5 6-15
MELMAT(N) (15)
N (15) Material number
Lattice point associated with
number. node N which is
currently changing
phase.
Columns Columns
1-9 1018

RESDUL (D9-0)
Convergence
criterion for
implicit solution
of transient
equation.
Corresponds to

el in Eq. (2.37).
(Default, 10°5)

REDUCE (D9.0)
Convergence
criterion for
implicit solution)
of transient
equation.
Corresponds to

e2 in E<l- (2.38).

(Inactive)

DELTAT (D9-0)
Initial time step
for implicit
solution of
transient equa-
tion .

TSFACT (D9.0)
Factor by which
the current time

(Default, 1.0)

Second time print-

step is multiplied (Defa;
at each time step.

temperature-
dependent
function.

RG (E9.0)

Next X or R
gross lattice
line dimension.

NDRG (19)

NOTE:

BHEXP (E9.0)

Natural convective Prescribed heat

exponent. he

NBHEIM (19)

Natural convective Prescribed heat

exponent time-
dependent
function.

NBHETP (19)
Natural convec-
tive exponent
temperature-
dependent
function.

Can be repeated for up to 50 gross lattice lines (but equal to

Must

Same as LI cards

Same as NI cards

Same as LI cards

as NI

where AT = Tl - Tg

BFLUX (E9-0) IBHFLG (19)

Parameter flag.

0-no additional
cards

1-B3 card only

2-B4 card only

3-B3 & B4 cards

flux (positive il
going to surface
hf

NBHETM (19) Positive integer implies analytical function.
Negative integer implies tabular function.

flux time-

dependent

function.

NBHFTP (19) Positive integer implies analytical function.

Prescribed heat

Negative

integer implies

tabular function.

flux temperature-

have one less entry than

cards except for Z

dependent
function.

except for Y

except for Y

except for Z

in L1 cards (maximum of 100 fine

or 6 direction.

or 9 direction.

direction

direction.

Al and A2 establish the mth analytical function in the form

entry one in Card 3).

lattice lines in each direction),

Fi.(V> = Am,l * A»,2V * A.,5vS + N cos (A.,5V) + Am,6exp (A«,7V) + A«,8sln (A»,9V) * An,10™ (A,,,UV)-

NPRM (19)
Coefficient
index, 1i.

NOTE:

ARG(2) (E9.0)
Independent
variable.

PRTIME (E9.0)
Third time print-
out is desired.

NDS(2) (19)
Node number.

Columns
16-20

INITX1 (19)
Total number of
lattice points
with explicitly
specified initial
melting ratios.
Maximum 1750

Columns
16-20

N (15)
Lattice point
number.

Columns
16-25

XI (N) (D10.0)
Specified initial
melting ratio for
point N for
material MELMAT(N)

Columns
19-27

ABSDIF (D9.0)
Convergence
criterion for
implicit solution
of transient
equation involv-
ing temperature-
dependent proper-
ties. Corresponds
to E in Eq.(2.41)
(Default 10-5)

TSMAX  (D9.0)

Maximum size of

time step.
ult, 10-,°)

A(NPRM) (E9.0)
Coefficient
value, A

VAL(2) (E9-0)
Corresponding
function value.

NOTE:

NOTE:

Can be repeated for up to 11 coefficients.

is left blank and Card A2 is omitted.

NOTE:

The code uses linear interpolation to obtain the value of this function.

Can be repeated for up to 25 pairs.

To indicate a user-supplied function, the second entry on Card Al

Can be repeated for up to 100 printout times (but equal to entry two in Card 4).

NOTE:

Node numbers can be repeated for i

Job Description, Format 184

NOTE:

NOTE:

Columns
21-50

TI(N) (D10.0)
Specified initial
temperature of
that point.

Columns
28-36

THETA (D9.0)

Parameter defining

different tech-
niques for transi-
ent equation.

0.5 § THETA § 1.0.
0.5 implies Crank-
Nicolson

1.0 implies Back-
wards Euler.
Corresponds to 9
in Eq. (2.34).
(Default, 0.5)

TSCHGE (D9.0)
Maximum time for
which this series
of time steps
applies.

When
the current
time exceeds

TSCHGE, another
TP card is
read.

Columns
H-75

Columns
31-35

Columns
36-45

INITX1 specified number of IT4 cards.

Columns
46-50

i a maximum of 20.

Columns Col
51-60 6

Can be repeated up to 1750 lattice points.

Columns
37-45

BETAT (D9.0)
Initial value for
SOR acceleration

parameter. Cor-
responds to u) in
Eq. (2.34). If
BETAT = 0, it will
be optimized
empirically. If
BETAT < 0, it will

be optimized using
Carre's technique.
If BETAT > 0, it
will be constant.
0 < |BETAT < 2

TPCGMX (D9.0)
Maximum temper-
ature charge
allowed at a
node over a
time step.

Columns
46-54

NUFBTA (19)
Number of time
steps between
attempted accel-
eration parameter
updates. Used
when BETAT = 0.
Corresponds to N
in Sec. 2.3.3(<l).
(Default, 1)

PTPCGM (DD9.0)
Maximum per-
centage of
relative change
in temperature
allowed at a
node over a
time step.

Blank card if additional problem follows.

Cards for additional problem if desired.

Columns
55-63

ITLRCO (19)

For BETAT = 0,
Number-of-itera-
tions criterion
which initiates
acceleration
parameter updates.
Corresponds to

in Sec. 2.3.3(<i).
(Default, 5)

For BETAT < 0,
Number of itera-
tions between SOR
acceleration param-
eter updates.
(Default, 12)

TSMIN (D9.0)
Minimum size of
time step.
(Default,
DELTA!/10)

INITEM specifies number of points entered on the IT3 cards.

lumns Columns
1-65 66-75
Columns
64-72

ITLRCI (19)
Number-of-itera-
tions criterion
to terminate
acceleration
parameter
updates. Cor-
responds to Jc

in Sec. 2.3.3(d)
(Default, 2)

Columns
75-80

Card 1
(3-6.1)

Card 2
(3-6.2)

Card 3
(5.6.3)

Card 4
(3.6.4)

Card 5
(3.6.5)

R1

R2

M

PC

G
(3.6.8)

(3.6.9)

Bl

B2

B3

B4

LI
3.6.11)

N1
3.6.11)

L2
3.6.11)

N2
(3.6.11)

L3
3.6.11)

N3
(3.6.11)

0

(3.6.14)

ITI
(5.6.16)

Columns
76-80

T2
(3.6.16)

Columns
76-80

T3
(3.6.16)

Columns
76-80

1T4
(3.6.16)

Columns
73-80

™
(5.6.17)

(5.6.18)

Vo
Vo

==

o
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4. OUTPUT DESCRIPTION

4.1. General

The HEATINGS Program automatically lists the input data and prints out the initial
temperature distribution for any type of problem. The final temperature distribution is printed
for steady-state problems, and the temperatures are presented as a function of time for
transient calculations. As indicated in Section 3.6.4(f), the final temperature distribution can be
written on a specified unit (e.g., the card punch). Information can also be written on a
specified unit and used by a plotting package to create various types of plots [see Section
3.6.4(b)],

42. Input Return

All of the input data are recapitulated in the output, appearing before the temperature
distributions. The format is best illustrated by example, and the reader is referred to the
sample problem. A table indicating the nodal connections for surface-to-surface heat transfer is
also included. A table containing each node and its corresponding stability criterion is
presented for transient problems.

43. Temperature Map

The temperatures for nodes in each plane are printed out in the form of a
two-dimensional map. For three-dimensional problems, the temperature output map is presented
for each XY or Rf> plane. However, one can specify that the map be presented for each XZ or
RZ plane instead. See Section 3.6.3(e) for details. The indices of both the gross grid lines and
the fine grid lines as well as the actual value of the fine grid lines are listed along the top for
the horizontal direction and along the left for the vertical direction. The temperatures are then
tabulated in a two-dimensional array. A matrix composed of the symbols and “I” for the
horizontal and vertical directions, respectively, is superimposed over the two-dimensional
temperature array. The symbols are used as a divider between materials. Thus, the user can
quickly and easily identify temperatures anywhere in the mesh. To facilitate the identification of
the temperature of each node, a map of the node numbers in each plane is printed out in the
same format immediately before the initial temperature distribution is depicted. The basic
features of this output option were taken from the package of heat transfer codes,
ORTHIS/ORTHAT (Ref. 9).

4.4. Steady-State Temperature Distribution

For the steady-state calculations, the program writes “STEADY STATE TEMPERATURE
DISTRIBUTION” and indicates the number of steady-state iterations completed and the time
at which the steady-state calculations were performed. The temperature distribution is then
presented in map form as discussed above. The maximum and minimum temperatures and the
nodes at which they occur are also listed. The boundary temperatures are then listed in a table
along with a message indicating the status of the calculation. The elapsed computer time,
measured in seconds from the start of the job, is also printed out.



54

4.5. Transient Temperature Distribution

For the transient calculation, the program writes “TRANSIENT TEMPERATURE
DISTRIBUTION” and indicates the number of time steps completed for each specified time
and the time at which the temperature distribution is written. The temperature distribution is
listed in the same manner as for steady-state problems.

4.6. Map of Melting Ratios for Change-of-Phase Calculations

For problems involving change of phase, a map of melting ratios is printed out after each
transient temperature distribution. The melting ratios for nodes in each plane are presented in
a map similar to the one for the temperature distribution. The melting ratios for materials
which cannot undergo a phase change are set to 1.0 x 10l which causes the value to be
printed out as asterisks on an IBM 360 system. Thus, it is easy to locate those nodes which
cannot change phase, i.e., none of the materials associated with them are allowed to undergo a
change of phase. If a node is associated with a material which can change phase, then the
melting ratio as described in Section 2.6 is printed out.

4.7. Special Monitoring of Temperatures

One may wish to follow the temperatures of a few of the nodes during the calculations.
As optional output, one may tabulate temperatures of specified nodes as a function of the
number of iterations for steady-state problems or the number of time steps for transient
problems. For more details on this option, see Section 3.6.4(d).
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APPENDIX A

CONTROL CARDS

A version of HEATINGS, which can be used to solve problems containing up to 1400
nodes, is stored on disks at the computing centers at ORNL and ORGDP. This appendix
discusses the Job Control Language (JCL) which is required to run this version of HEATINGS
along with modifications to the JCL which are necessary for some of the optional uses of the
code. This information will allow the user to solve most of his problems on the code. For
additional information concerning JCL, the user is referred to the Oak Ridge Programmer’s
Notebook.

The control cards, which are necessary to use this version of HEATINGS at ORNL and
ORGDP are presented in Figures A-l and A-2, respectively. The first and second control cards
are called the JOB statement and CLASS statement, respectively. The job name has a format
of UIDXX where UID is the userid assigned to the user by the Computer Sciences Division
(CSD) and the characters XX are any characters which make the job name unique. The
accounting field (cccc) contains a four- or five-digit CSD charge number. The
programmer-name field contains information necessary to route the job output back to the
user. Since the default on core size will be exceeded for this version of HEATINGS, a CLASS
card must be included. See the Oak Ridge Programmer’s Notebook for additional information
concerning the JOB and CLASS statements.

If a request to save the final temperature distribution is made by inserting a unit number
in the seventh entry on Card 4 (see Section 3.6.4(0), then a DD card describing the output
unit must appear before the

//GO.FTOSFOOI DD *
card. The following card
//GO.FT07F001 DD SYSOUT=B

would be a typical DD card for punching the final temperature distribution on cards on unit
7. The integer 7 would be entered in Entry 7 of Card 4 to define the unit number. If a unit
number other than 7 is specified, then the DCB parameters must be specified on the DD card.

If one wishes to save the output temperature distributions in order to generate various
plots with a plotting package, then a DD card describing the output data set must be inserted
just before the

//GO.FT05F001 DD *

card. If a data set involving 450 nodes and two boundary conditions is to be saved on tape,
then a typical DD card might be

//GO.FTOSFOO!I DD UNIT=TAPE9,DISP=OLD,VOL=SER=08,LABEL=(,NL),
// DCB=(RECFM=VBS,LRECL=3620,BLKSIZE=3624)

where 8§ is the wunit number which must be inserted in Entry 3 of Card 3. The
SPECIAL=TAPE parameter must be added to the CLASS card for a job which is to be run
at ORNL.

Two trivial modifications in HEATINGS will allow the code to solve problems containing
up to a maximum of 6000 nodes. The main program for HEATINGS is shown in Fig. A-3.
Let N be the maximum number of nodes which are desired for this case. The variable N must



62

be initialized in the INTEGER statement, and the variable CORE must be dimensioned 26
times N. The amount of core in K bytes required by HEATINGS is given roughly by the
equation

M = (250 + 0.208N) . (A-])

Thus, the code can be easily modified to fit into a specified amount of core or to solve a
problem with a specified number of nodes. However, when the number of nodes exceeds 1400,
the REGION parameter on the CLASS card and the REGION.GO parameter on the EXEC
card must be changed accordingly. The format of the JCL which is required to run
HEATINGS with the main program modified is presented in Fig. A"l. The modified MAIN
routine is inserted in the location indicated by the statement “(Enter FORTRAN Deck or
Decks Here).”

Estimates for the CPU time (in seconds) which is required for problems run on the IBM
360/91 are given by Egs. (A-2) and (A-3) for steady-state and explicit transient calculations,
respectively.

(CPU)ss = (1.0 x 10 J)(No. of Nodes)(No. of Iterations) (A-2)
(CPU), = (5.0 x 10”5)(No. of Nodes)(No. of Time Steps) (A-3)

For the implicit transient algorithm, the amount of CPU time per time step will be much
larger than that for one of the explicit techniques since the code must do a lot more
computation. However, one should be able to use a time step much larger than would be
required in the explicit technique, especially for later times in the transient. Frequently, the
implicit algorithm is more than an order of magnitude faster than the explicit algorithm in
solving a problem. Temperature-dependent thermal properties and/or boundary conditions can
increase the running time by up to an order of magnitude depending on how many nodes are
associated with the temperature-dependent parameters. Equations (A-2) and (A-3) were derived
empirically by examining a large number of cases which were run on the HEATING4 code, an
earlier version of HEATINGS. It is emphasized that these equations are merely estimates, and
the actual CPU time may be considerably different from the estimate depending on the options
which are used.
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//jobname JOB (cccce), programmer-name’

//#CLASS REGION=540K,CPUxx=yyyz,LINES=///

// EXEC FORTHLG,REGION.GO=540K,PARM.GO="EU=-r
//LKED.HEATINGS DD DISP=SHR,DSN=ONLINEA.WDTHF961.HEATINGS
//LKED.SYSIN DD *

INCLUDE HEATINGS

I*

//GO.FTOSFOOI DD *

(Insert Data Deck Here)
I*

11

Fig. A-L Format of JCL to Run HEATINGS at ORNL

//jobname JOB (cccc), programmer-name’
//#CLASS REGION=540K,CPU95=yyyz,LINES=///
// EXEC FORTHLG,REGION.GO=540K,PARM.GO="EU=-1'
//LKED.HEATINGS DD DISP=SHR,DSN=A.WDTHF961 .HEATINGS
//LKED.SYSIN DD *
INCLUDE HEATINGS
I*
//GO.FTOSFOOI DD *
(Insert Data Decks Here)
/*
17

Fig. A-2. Format of JCL to Run HEATINGS at ORGDP
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C ae=s

(o}

C

C = THE HEATING CODE WITH TEMPERATURE-DEPENDENT THERMAL PROPERTIES,
C = NON-LINEAR AND SURFACE-TO-SURFACE BOUNDARY CONDITIONS.

C = CHANGE-OF-PHASE CAPABILITIES, AND AN IMPLICIT TECHNIQUE FOR

Cc = THE SOLUTION OF TRANSIENT PROBLEMS.

C

C = DEVELOPED BY W.O. TURNER,

Cc = D.C. ELROD.

C = I.I. SIMAN-TOV.

C = UNION CARBIDE CORPORATION. NUCLEAR DIVISION.

c = P.O. BOX Y,

C = OAK RIDGE, TN 37830.

C = RCOM 17, BLOC 9104-3.

C PHONE 615-483-8611, EXT 3-5641 OR 3-3101.
g***4****************** ke 3k 3fe sfe sk sk sle sk sk sle sk sk sl sk 3k sl sk 3k sl sk ke sl sk sk ke sk sk sk sk s sk ke sk sk ke sk sk ke sk sk ke sk 3k ke sk ke sk sk ok
C* LET MAXPTS MAXIMUM NUMBER OF LATTICE POINTS.

C* IF ONE WISHES TO CHANGE THE MAXIMUM NUMBER OF LATTICE POINTS.
C* THEN THE FOLLOWING TWO STATEMENTS MUST BE MODIFIED AS

C* INDICATED.
(st st >t s > sk sk 3k 3k ok ke sk sk 3k 3k ok ok sk sk Sk 3k ke sk sk Sk Sk 3k ke sk sk Sk Sk 3k e sk sk Sk sk Sk e sk sk Sk sk Sk e sk sk sk Sk Sk o sk sk Sk Sk ke e sk sk Sk Sk 3k ke ok Sk Sk Sk ok ok ok
C* INTEGER N/MAXPTS/
C* RE AL* 8 CORE I2Z6MAXPTS)
INTEGER N/100/
RE AL*8 CORE 12600)
C**:’:******7’:*****:’:*****:’:*****'}:7’:*****:’:*****:’::’:*****:’:***********************
INTEGER*2 ICORE()
LOGICAL*! LCOREU)
EQUIVALENCE (COREI! )=ICOREI1 ) .LCOREI 1))
CALL HEATNS5(CORE_ICORE_LCORE.N>
STOP
END

Fig. A-3. Main Program for HEATINGS, 100 Nodes
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//jobname JOB (cccee), programmer-name’
//*CLASS REGION=540K,CPUxx=yyyz, LINES=///
// EXEC FORTHCLG,REGION.GO=540K,PARM.GO="EU=-r
//FORT.SYSIN DD *
(Enter FORTRAN Deck or Decks Here)
I*
//LKED.HEATINGS DD DISP=SHR,DSN=ONLINEA.WDTHF961. HEATINGS
//LKED.SYSIN DD *
INCLUDE HEATINGS
I*
//GO.FTOSFOOI DD *
Sl*nsert Data Deck Here)

7

Fig. A-4. Format of JCL to Run HEATINGS at ORNL
when FORTRAN is Modified






Symbol

F(v)
G(v)
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APPENDIX B

NOMENCLATURE

Description

Effective heat transfer coefficient
Film coefficient (forced convection)
Exponent for natural convection
Heat flux

Coefficient for natural convection
Coefficient for radiation

Thermal conductivity

Net heat flow into node i

Length along R-axis

Time

Time increment

Length along X-axis

Length along Y-axis

Length along Z-axis
Cross-sectional area normal to heat flow path

The | coefficient for the m'h
analytical function

Extrapolation factor used in
steady-state algorithm

Thermal capacitance of node i
Specific heat

See Eq. (2.26)

Analytical function

Tabular function

See Eq. (2.25)

Latent heat of material m

Total number of nodes whose temperatures
must be calculated

Effective thermal conductance between
nodes i and j

Typical Units

Btu/(hrft20 F)
Btu/(hr-ft2-°F)
Unitless
Btu/(hrftl)
Btu/ (hrft2-° F(l+lw)
Btu/(hrft2-°R4)
Btu/(hrft-°F)
Btu

ft

hr

hr

ft

ft

ft

ft)

Unitless

Btu/°F
Btu/(1b-°F)

Btu/lb

Btu/(hr°F)



Symbol

Tmc/i

X1,

am

ei
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€3

co
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NOMENCLATURE (Contd.)

Description

Length of heat flow path between two nodes

Number of nodes associated with node i whose
number is less than 1

Number of nodes connected to node 1
Power associated with node 1

Constant factor in definition of input
parameter (see Eq. (3.4))

Power density

Residual at node i in implicit transient
algorithm (see Eq. (2.35))

Temperature of node i

Transition temperature for a material
Volume

Melting ratio associated with node i

Factor used in Levy’s modification for
transient algorithm (see Eq. (2.22))

Number of m"' node connected to node i

Acceleration parameter for SOR iteration
method for steady-state algorithm

Convergence criterion for SOR iteration method
for steady-state algorithm (see Eq. (2.14))

Convergence criterion for SOR iteration
method for implicit transient algorithm
(see Eq. (2.37))

Convergence criterion for SOR iteration
method for implicit transient algorithm
(see Eq. (2.38))

Convergence criterion for temperature-dependent
iteration scheme for implicit transient
algorithm (see Eq. (2.41))

Density
Length along 6-axis

Parameter in implicit algorithm for
transient problems

Acceleration parameter for SOR iteration
method for implicit transient algorithm

Typical Units

ft

Btu/hr

Btu/(hrft3)
Btu/hr

°F
°F
ft)
Unitless

Unitless

Unitless

Unitless

Unitless

Unitless

Unitless

1b/ft}
Radians

Unitless

Unitless



Symbol

Subscripts

b

i

J
Superscripts
m

n

(n)
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NOMENCLATURE (Contd.)

Description Typical Units

Boundary index
The node under consideration

A neighbor node connected to node i

Tteration number
Time step number

Iteration number
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APPENDIX C

USER-SUPPLIED SUBROUTINES

Subroutines may be supplied by the user to evaluate any of the parameters listed in Table
3.1. Thus, if an input parameter cannot be defined by one of the built-in functions as described
in Section 3.5, it is quite simple for the user to add his own computational technique for
evaluating the parameter. The user-supplied subroutine is referenced by specifying the parameter
as an analytical function and by specifying no coefficients for the corresponding analytical
function (i.e., leave the second entry on the Al card blank and omit the related A2 card).
Since this analytical function is only a flag to tell the code to call the appropriate user-supplied
subroutine, the same analytical function can be specified for more than one parameter. The
computational technique is then programmed in the subroutine associated with the parameter
of interest (see Table 3.1), and the job is submitted to the computer according to the format
presented in Fig. A"

HEATINGS contains dummy subroutines for each of the parameters listed in Table 3.1. If
the user references one of the routines but fails to supply his own, then the code will write out
an error message and stop when that subroutine is called. Each user-supplied subroutine has
the same argument list. However, all five independent variables are not initialized for each
subroutine. Only the independent variables marked by an x in Table 3.1 are initialized when
each respective subroutine is called. Subroutine BNDTMP, a typical, dummy, user-supplied
subroutine, is shown in Fig. C-l. With the exception of HEATGN, all the other user-supplied
subroutines are basically the same as BNDTMP, the only differences being the variables which
are initialized (see Table 3.1) and the parameter which is being evaluated. Subroutine
HEATGN is shown in Fig. C-2.

If the thermal conductivity of a material is anisotropic, then it must be defined in
user-supplied CONDTN (see Section 3.6.7).
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SUBROUTINE BNDTMP(RVALUE.R.TH.,Z_TIH_TSN_VALUE.NUMBER.N)

sfe sfe sfe sfe sfe sfe s sfe s sfe sfe s e st st sk sk sk sk sk sk sk sk sk ke ke ke e st e ke sl sk sk sk sk sk sk sl sk sl sk sk sl sk Sl sk sk Sk ke ke e st st sk sk sk sk sk sk sk sk sk sk sk ok sk ok ok ok

WHEN IT IS REFERENCED. THIS SUBROUTINE MUST BE SUPPLIED BY THE USER TO
EVALUATE THE USER-SUPPLIED FUNCTION DEFINING THE BOUNDARY TEMPERATURE.
THIS PARAMETER MAY BE TIME-DEPENDENT.

THE VARIABLES IN THE ARGUMENT LIST ARE DEFINED IN THE FOLLOWING TABLE.
(Y) INDICATES THAT THE VARIABLE HAS BEEN DEFINED WHEN THIS SUBROUTINE
IS CALLED. IN) INDICATES IT HAS NOT BEEN DEFINED.

VARIABLE TYPE DEFINITION

RV ALUE REAL *8 VALUE OF THE USER-SUPPLIED FUNCTION
EVALUATING THE BOUNDARY TEMPERATURE (THIS
VALUE MUST BE COMPUTED BY THIS ROUTINE). (N)
NAME OF VARIABLE IN CALLING SEQUENCE -

TDUMC( D).

R REAL*S X OR R COORDINATE OF NODE N. (N)

TH REAL *8 Y OR THETA COORDINATE OF NODE N. (N)

z R EAL*8 Z COORDINATE OF NODE N. (N)

TIM REAL *8 TIME AT WHICH PARAMETER IS TO BE
EVALUATED. (YY)

TSN REAL* 8 TEMPERATURE AT WHICH PARAMETER IS TO BE
EVALUATED. <N)

VALUE REAL*8 CONSTANT VALUE OF THE PARAMETER WHICH

APPEARS ON ITS RESPECTIVE INPUT CARD (Bl) IF
IT IS NON-ZERO.

IF IT IS ZERO. VALUE CONTAINS 1.0. (Y)

NAME OF VARIABLE IN CALLING SEQUENCE -
BYTEMP! NBDTP) .

NUMBER INTEGER *4 INDEX OF PARAMETER BEING EVALUATED. (Y)
NAME OF VARIABLE IN CALLING SEQUENCE - NBDTP
N INTEGER *4 NODE NUMBER. (IN)

Sk Sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ke ke ke ke ke sk sfe sk sfe sfe sfe sfe sfe sfe sfe s sfe sfe s sfe s s sfe sfe s s s sfe s sk sk sk sk sk sk sk sk sk sk sk sk skoskosk sk sk sk sk sk sk sk skok
REAL*8 RVALUE.R.T H,Z. TIM, TSN,VALUE
COMMON /INOUT/ IN .10

INSERT ALGORITHM TC COMPUTE THE BOUNDARY TEMPERATURE FOR BOUNDARY
CONDITION +NUMBER* HERE .

WRITE ITO,9000)
9000 FORMAT!e] 3 3k e ok e st e e ke /

I « YOU HAVE CALLED SUBROUTINE BNDTMP WHICH IS A USER-SUPPLIED FUNC
2TION.=/
3 + HOWEVER. YOU HAVE NOT SUPPLIED THIS SUBROUTINE.*/

A + EITHER SUPPLY SUBROUTINE BNDTMP OR CORRECT THE INPUT DATA SO TH
SAT THIS SUBROUTINE IS NOT REFERENCED.¥)

STCP

END

Fig. C-1. Dummy User-Supplied Subroutine for Boundary Temperature
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SUBROUTINE HEATGN(RVALUE.R. TH.Z. TIM-TSN,VALUE.NUMBER.N)

NOTE:

[cNoNoNe N NN EcNoEeNo NN o No NN e NoNoNoNoNs o NoNoNo N NeNoNoNoNoNo oo N Ne o o NoNoNo N le!

st sfe st sk sk ke sk sfe ske ke ke s sk sfe sle ke Sk s sfe sfe sl ke ke ke ke ke sk ke ke ke sk g~ st sk sk (Sl sk sle sk sk sk sk sk sk sk ok sk Sk Sk ] ok sk sk sk sk sk sk ke ok sk g ok ok ok ok ok

WHEN IT IS REFERENCED. THIS SUBROUTINE MUST BE SUPPLIED BY THE USER TO
EVALUATE THE USER-SUPPLIED FUNCTION DEFINING THE VOLUMETRIC HEAT
GENERATION RATE. THIS PARAMETER MAY BE TIME-. TEMPERATURE- AND/OR
POSITION-DEPENDENT.

IF THE HEAT GENERATION RATE IS WRITTEN AS

Q = FCR.TH.Z.TSN) * G(TIM)
THEN THIS SUBROUTINE MAY BE CALLED FIRST TO CALCULATE THE
FACTOR F. THEN. THIS ROUTINE IS CALLED FROM THE SOLUTION
ALGORITHM TO UPDATE THE TIME-DEPENDENT FACTOR G OF
THE HEAT GENERATION RATE. WHEN THIS FACTOR IS UPDATED. ONLY
TIM. NUMBER. AND VALUE ARE DEFINED WHERE VALUE = 1.0.
IF NECESSARY. THE TWO CALLS MAY BE IDENTIFIED BY THE VALUE OF
N. IN THE FIRST CALL. N CONTAINS THE NUMBER OF THE NODE
WHOSE HEAT GENERATION RATE IS BEING EVALUATED. IN THE SECOND
CALL. N IS SET TO ZERO.

THE VARIABLES IN THE ARGUMENT LIST ARE DEFINED IN THE FOLLOWING TABLE.
(Y) INDICATES THAT THE VARIABLE HAS BEEN DEFINED WHEN THIS SUBROUTINE
IS CALLED. (N) INDICATES IT HAS NOT BEEN DEFINED.

VARIABLE TYPE DEFINIT ION
RVALUE REAL *8 VALUE OF THE USER-SUPPLIED FUNCTION

EVALUATING THE VOLUMETRIC HEAT GENERATION
RATE (THIS VALUE MUST BE COMPUTED BY THIS
ROUTINE). (N)

NAME OF VARIABLE IN CALLING SEQUENCE - GEN.

R REAL *8 X OR R COORDINATE OF NODE N. (Y)

TH REAL*8 Y OR THETA COORDINATE OF NODE N. (Y)

z REAL * 8 Z COORDINATE OF NODE N. <Y>

TIM REAL *8 TIME AT WHICH PARAMETER IS TO BE
EVALUATED. (Y)

TSN R EAL *8 TEMPERATURE AT WHICH PARAMETER IS TO BE
EVALUATED. (Y)

VALUE REAL *8 CONSTANT VALUE OF THE PARAMETER WHICH
APPEARS ON ITS RESPECTIVE INPUT CARD (G) IF
IT IS NON-ZERO.
IF IT IS ZERO. VALUE CONTAINS 1.0. (Y)
NAME OF VARIABLE IN CALLING SEQUENCE -
GENONNGN).

NUMBER INTEGER *A INDEX OF PARAMETER BEING EVALUATED. (Y)
NAME OF VARIABLE IN CALLING SEQUENCE - NGN.

N INTEGER** NODE NUMBER. (Y)

3k 3k sk sk sk sk sfe sfe s sk sk sk sk sk sk sk sk sk sfe s sk sk sk sk sk sk sk sk sk sfe s sk sk sk sk sk sk sk sk sk sfe sk sk sk sk sk sk sk sk sk sk sk sfe s sk sk sk sk sk sk sk sfe sfe sfe sk sk sk sk skosk

PEAL*8 RVALUE.R.TH.Z,TIM. TSN,VALUE
COMMON /INOUT/ IN . 10

Fig. C-2. Dummy User-Supplied Subroutine for Volumetric Heat Generation Rate
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=
o INSERT ALGORITHM TC COMPUTE THE VOLUMETRIC HEAT GENERATION RATE HERE.

=
WR ITE( 10,90 00 »

9000 FORIMAT ] u s sk Aok stk /
1« YOU HAVE CALLED SUBROUTINE HEATGN WHICH IS A USER-SUPPLIED FUNC

2 TICM. */

3 + HOWEVER, YOU HAVE NOT SUPPLIED THIS SUBROUTINE.*/

4 + EITHER SUPPLY SUBROUTINE HEATGN OR CORRECT THE INPUT DATA SO TH
SAT THIS SUBROUTINE IS NOT REFERENCED.¥*)

STCP

END

Fig. C-2 (Contd.)
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APPENDIX D

SAMPLE PROBLEM

An illustrated example was chosen for instructive purposes rather than representing a real
engineering problem. The problem was two-dimensional in X-Y coordinates and consisted of
three materials. Its configuration is shown in Fig. D-1. Numbers in circles represent regions
and numbers in square frames represent boundary conditions. The units used were Btu, °F, Ib,
inch, and min. The conditions of the problem were as follows:

Regions | to 6 consisted of material No. | (iron); regions 7 to 9 consisted of material No.
2 (stainless steel); and regions 10, 11, and 12 were an air gap between the two metals. The
physical properties of these materials are given in Table D-L

Table D-L. Material Physical Properties for Test Problem
Number 3 for HEATINGS

Property/ Material

Conductivity

Btu/(min-in-0F)

Density
Ib/in.}

Specific Heat
Btu/(Ib-° F)

Iron
(Material No. 1)

0.0296 at O°F
0.0264 at 752°F
0.0222 at 1832°F

0.2801

0.116

Stainless
(Material No. 2)

0.013 at O°F
0.015 at 752°F
0.025 at 1832°F

0.2824

0.11

Air
(Material No. 3)
1.82x10~5 at O°F
3.41x10~§ at 500°F

4.68x10~5 at 1000°F
5.75x10"s at 1500°F

5.00x10"s at O°F
2.39x10~5 at 500°F
1.57x10~5 at 1000°F
1.17x10~5 at 1500°F

0.25
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There was a uniform heat generation in regions | and 2 at the rate of 1.0 Btu/(min-in.})
which was time-dependent according to time function No. 2 given in Fig. D-2. The initial
temperature all over was 100°F. The boundary conditions on each of the faces are shown in
Fig. D-1, and they are numbered in square frames. Boundary condition No. | was in perfect
contact with a fluid at 200°F and was time-dependent according to time function No. | given
in Fig. D-2. Boundary condition No. 2 was radiation across an air gap (region 10) between the
two metals (emissivity ¢ = 0.8). Conduction and natural convection were neglected. Boundary
condition No. 3 was forced convection to a fluid at 68°F (one face of region 10 only). The
heat transfer coefficient was 0.006 Btu/(min-in2-0F). Boundary Condition No. 4 was combined
heat transfer by radiation and natural convection across an air gap (region 11) between the two
metals (emissivity ¢ = 0.8). Heat was also transferred by conduction through the air. The
natural convective heat transfer coefficient was given by

h = 2.56 x 10-5 AT0% Btu/(min-in2-°F). (D-)

Boundary condition No. 5 was a time-dependent heat flux from solar radiation given by
Eq. (D-2) and was cooled by radiation and natural convection to the open atmosphere (at
100°F). The rest of the boundaries were insulated.

hf = 0.03cos (1) (D_2)

Region 12 could not be described for surface-to-surface radiation or natural convection because
of lack of opposing surfaces. Conduction could have been taken into account but was neglected
in this case. It was desired to know the transient temperature distribution at 30 and 60 minutes
and the steady-state temperature distribution resulting from evaluating all time functions at 60
minutes. It was also desired to monitor the temperatures at points (1.0,1.5) (3.75,3.0), (2.75,4.0),
(5.5,4.0) and (5.5,6.75) after every 10 time steps or iterations. The maximum CPU time was
limited to 100 seconds.

The problem was run on HEATINGS using the input data given in Fig. D-3. The
transient calculations used the Crank-Nicolson Procedure with an initial time step size of 0.1
minutes which was increased 10% after each time step. The printed input and output are given
in Table D-2. The IBM 360/195 CPU time for the case was 10.1 seconds, of which the
60-minute transient calculations required about 7.4 seconds.

The following changes to the model were made to demonstrate some additional capabilities
of HEATINGS. Suppose that the initial temperature varied as a function of y according to the
following expression

T0(y) = 235 - 20y (D-3)

and the heat generation rate in region | was a sum of exponentials defined by the expression

3 .
a® 2 Cie ALt (D4)
iz
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12 24 36
TIME (min)

Fig. D-2 Time-Dependent Functions for Test Problem
Number 3 for HEATINGS
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100 .0
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2.75

3.0
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. 2801
. 2824

.0087266

3.5

116
1

3.75

4.0

Fig. D-3. Input Data for Test Problem Number 3 for HEATINGS
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0.0

0.0

0.0

0.0

0.0

0.0
30.0

D-05
O. 1

12.0

12.0

752.0

752.0

500.0

500.0

18
1.00-5

2.0

1.5

.0264

.0153

3.410-5

2.390-5

32

80

30.0
1832.0
1832.0
1000.0
1000.0

36

.0222

.025

4.680-5

1.570-5
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Fig. D-3 (Contd.)
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where the parameters were defined as

i Ca
i 0.5
2 0.3
3 0.2

81

0.0115525
0.0231049
0.0462098

and the heat generation rate in region 2 was a sum of exponentials defined by the expression

2

QNt) = 2 Cile AL (D-5)

where the parameters were defined as

i Ci2
i 0.6
2 0.4

=1

All

0.0115525
0.0462098

Furthermore, the thermal conductivity for iron was assumed to be anisotropic with the
conductivity along the Y-axis equal to twice that along the X-axis as presented in Table D-l.
The initial temperature was input to the code as an analytical function but the two heat
generation rates and the conductivity for iron must be defined by user-supplied subroutines.
The input data for this case is presented in Fig. D-4. Note that tabular function numbers 2
and 3 are part of the input data but are not used. The user-supplied subroutines for the heat
generation rate and the thermal conductivity for iron are presented in Figs. D-5 and D-6,

respectively.



HEATINGS.

Table D-2. Computer Output for Test Problem

Number 3 for HEATNGS

A MULT I-DINENSIONAL HEAT CONDUCTION CODE WITH TEMPERATURE-DEPENDENT THERMAL PROPERTIES.

NON-LINEAR AND SURFACE-TO-SURFACE BOUNDARY CONDITIONS AND CHANGE-OF-PHASE CAPABILITIES.

THIS VERSION OF THE CODE IS DESCRIBED
THE TRANSIENT SOLUTION CAN BE CALCULATED BY AN

THE ONE-DIMENSIONAL R SPHERICAL
BY SPECIFYING NGEOM = 10 1IN THE

HEATINGS WAS WRITTEN BY

W.D. TURNER
ELROD
SIMAN-TOV

D.C.
I. I.
COMPUTER SCIENCES DIVISION
UNION CARBIDE CORPORATION.
OAK RIDGE. TENNESSEE 37830

THIS VERSION OF HEATING CAN HANDLE A MAXIMUM OF

INPUT RETURN

DATE 11-30-76
TIME 14-04 .04

JOB DESCRIPTION—
THE PROBLEM WILL BE TERMINATED AFTER
GEOMETRY TYPE NUMBER

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

SINCE THIS PROBLEM

OF
OF
OF
OF
OF

OF
OF
OF
OF
OF

REGIONS 11
MATERIALS 3

HEAT GENERATION FUNCTIONS

INITIAL TEMPERATURE FUNCTIONS
DIFFERENT KINDS OF BOUNDARIES
THIS PROBLEM

ANALYTICYFUNCTIONS
TABULAR FUNCTIONS

NUCLEAR DIVISION

TEST PROBLEM

7 (OR XY

1
6

o

5

IN ORNL-TM-

IMPLICIT TECHNIQUE (CRANK-NICOLSON OR
BACKWARDS EULER) FOR PROBLEMS WITH MATERIALS WHICH ARENOT ALLOWED TO UNDERGO A PHASE CHANGE.
MODEL WAS ADDED NOV. 75. THIS MODEL MAY BE ACCESSED
INPUT DATA.

*3 FOR HEATINGS

7

100 LATTICE POINTS.

100 SECONDS

INVOLVES TEMPERATURE-DEPENDENT PROPERTIES.
POINTS IN GROSS X OR R LATTICE

POINTS IN GROSS Y OR THETA LATTICE
POINTS IN GROSS 2 LATTICE

INVOLVES RADIATION, 459.69 WILL BE ADDED TO

THE TEMPERATURES TO CONVERT THEM TO ABSOLUTE TEMPERATURES.

NUMBER OF TRANSIENT PRINTOUTS SPECIFIED
TEMPERATURES

PROBLEM TYPE NUMBER -2

STEADY STATE CONVERGENCE CRITERION
MAXIMUM NUMBER OF STEADY-STATE

NUMBER

INITIAL OVERRELAXATION

OF

TIME INCREMENT 0.0
INITIAL TIME 0.0

FINAL TIME

S .0000000D 01

ITERATIONS
ITERATIONS BETWEEN TEMPERATURE DEPENDENT
PARAMETER EVALUATIONS FOR STEADY STATE CALCULATIONS o

2
OF SELECTED NODES WILL BE MONITORED EVERY 10 ITERATIONS OR TIME STEPS.

1.0000000D-05
500

FACTOR (BETA) FOR STEADY STATE CALCULATIONS 1.90000000

00
K3



Table D-2 (Contd.)

SUMMARY OF REGION DATA

NUMBERS AND FCN NUMBER st sk sk >k she sfe sk ke ok sk ok sk sk ok ok ok sk sk ke sk ok sk ke sk sk sk ok ok DIMENSLIONS 51 o3 ok sk ske ske sk sk sk she ske sk she sk ke >k sk sle sk >k sk sk 5k >k sk 3k o ok >k — BOUNDARY NUMBERS
REG. MAIL INIT HEAT LEFT-X-OR RIGHT-X-OR LOHER-V-OP UPPER-Y-OR REAR-Z FRONT—Z LF-X RT-X LO-Y UP-Y RR -= FT-Z
NO. NO. TEMP GEN. INNER-P OUTER—R LEFT-THETA PIGHT-THETA IN-R OT-R LF-0O RT-0

i 1 1 1 .0000 2.0000 1.5000 6.7500 0.0 0.0 0 0 1 C o0 o

2 1 1 2.0000 5.5000 4.7500 6.7500 0.0 0.0 0 5 0 C o (0]

3 1 o 3.2500 3.7500 1.5000 2.2500 0.0 0.0 [0 3 0 0 0 o

4 1 ) 3.2500 3.7500 2 .2500 3 .0000 0.0 0.0 o (0] o C 0 o0

5 1 0 3.2500 4.5000 3.0000 3.5000 S22 o .o o o (0] (0] (0] [0}

6 1 o0 4 .5000 5.5000 3.0000 3.5000 0.0 0.0 0 o 3 C (0] o0

7 2 0 2.0000 2.7500 1.5000 4.0000 0.0 0.0 0 3 1 0 (0] [0}

8 2 (0] 2 .0000 2.7500 4.0000 4.7500 0.0 0.0 (0] 0 0 0 0 0

9 2 (0] 2.7500 5.5000 4.0000 4 . 7500 0.0 0.0 0 5 o 0 o o

10 o0 0 2.7500 3.2500 1.5000 3.5000 0. 0 0.0 2 2 0 0 (0] 0

11 3 0 3.2500 5.5000 3.5000 4 .0000 0.0 0.0 (0] (0] 4 4 G (0]



Table D-2 (Contd.)
kkckkkkkkEE QUMMARY  OF  MATERIAL — DATA % sk koo

MATER IAL MATERIAL

NUMBER NAME — TEMPERATURE-DEPENDENT FUNCTION NUMBERS —
CONDUCT 1V ITY DENSITY SPECIFIC HEA
1 IRON 0.0 2.801000 D-01 1 .1600000-01
-3 0 0
2 STAINLSS 0.0 2.824000 D—01 1.100000D-01
-4 0 0
3 AIR 0.0 S .2 2.5000000-01
-5 -6 0

FA kA KKK SUMMARY OF INITIAL TEMPERATURE DATA ks

NUMBER INITIAL POSITI ON-DEPENDENT FUNCTION NUMBERS
TEMPERATURE X OR R Y OR TH Z
1 1.000000 02 -« ™ «< > «< >

stk ok ok ke sk sk sk sk sk sk sk sk sk sk sk sk sk QUMMARY OF HEAT GENERATION PATE O ATA s sk sk sk sk sk sk ok ok e ok ok ok ok ok 3k 3k 3k

NUMBER POWER T IME—. TEMPERA(IrURE-. AND POSIT ION-DEPENDENT NUMBERS
DENS ITV TI ME TEMPIEPATURE X OP P Y OR TH z
1 1 .000000 00 -2 0 0 0 0

00
-u



sk sk kR ok ok SUMMARY

Table D-2 (Contd.)

OF BOUNDARY

AT A o ot o sk ske sk sk ske sk sk

GENERAL —  TEMPERATURE -HEAT TRANSFER COEFFICIENTS—
INFORMAT ION RELATED FUNCTION NUMBERS
NO - TYPE FCT TEMPERA TURE FORCED CONV R AD IAT ION NATURAL CONV EXPONENT FLUX
FLAG 6 TIME FCT ASSOC.
FCTS

2.000000 02 0.0 0.0 0.0 0.0 .0

0.0 0.0 1 .580000-13 0.0 0.0 0.0
6.80000D 01 & .00000D-03 0.0 0.0 0.0 0.0

0.0 0.0 1.58000D-13 2.560000-05 3.30000D-C1

00
cn
[.00000D 02 0.0 1-5800 0D-13 2.56000D-05 3-30000D—01 0.0
0 TIME 0 |
TEMP 0 0 0 0
GROSS LATTICES AND NUMBERS OF INCREMENTS
R CR X
i.000000 2.000000 2.750000 3.250000 3.750000 4.500000 5.500000
2 | |
THETA OR Y
1 .500000 2.250000 3.000000 3.500000 A_.000000 A+750000 6 .750000
LISTING OF ANALYTIC FUNCTIONS
F(V)= A() 4 A(2)*V & A(3)*V**2 4 A(4)*COS (A(S)*V) * A<6)*EXP<A< 7)*V ) * A<8)*SIN(A<9)*V) * ACI10>*LOG(A(I11)*V)
NO. AC D A< 21 A(3) AC4) A(5) A(6) A(7) A(8) A(9> A(C 10) A(CL11)
| 0.0 0.0 0.0 3.0000-02 8.727D-03 0.0 .0 0.0 0.0 0.0 0.0



TABLE OF

OUTPUT
NO.

1

2

LISTING

TABLE NUMBER

ARGUMENT
0.0
1.20000000D
1.800000000
2.40000000D

TABLE NUMBER

ARGUMENT
0.0
1.20000000D
3.00000000D

TABLE NUMBER

ARGUMENT
0.0
7.52000000D
1.832000000

TABLE NUMBER

ARGUMENT
C.0
7.5 2000000D
1.832000000

TABLE NUMBER

ARGUMENT
0.0
5.000000000
1.000000000
1.500000000

TABLE NUMBER

ARGUMENT
0.0
5.00000000D
1 .000000000
1.500000000

OUTPUT TIMES

OUTPUT

TIME

01
o1

01
01

02
)3

o

03

02
03
03

02
03
03

IOUTPUT

IMO.

3.000000 o1
6.000000 01

Table D-2 (Contd.)

QF TABULAR  FUNCTIONS

NUMBER OF PAIRS

VALUE
1.000000000 00
2.000000000 00
2.000000000 00
3.000000000 00

NUMBER OF PAIRS

VALUE
1.000000000 00
1 .500000000 00
1.125000000 00

NUMBER OF PAIRS

VALUE
2.960000000-02
2.640000000-02
2.220000000-02

NUMBER OF PAIRS

VALUE
1.300000000-02
1.530000000-02
2.500000000-02

NUMBER OF PAIRS

VALUE
1.820000000-05
3.410000000-05
4.680000000-05
5.750000000-05

NUMBER OF PAIRS

VALUE
5 .000000000-05
2.390000000-05
1.570000000-05
1.170000000-05

OUTPUT
TIME

TEMPERATURES OF THE FOLLOWING NODES WILL BE MONITORED

EVERY 10 ITERATIONS OR TIME STEPS.
NUMBER NODE
2 18
3 32
36

76

OUTPUT
NO.

OUTP UT
T IMF

OUTPUT
NO.

OUTPUT
TIME



FINE LATTICE * X OR R.

I 1+ 000000

e 3. 750000
i i+ 500000
6 4. 750000

THIS PROBLEM CONTA INS

Y OR THETA.

N

76 NODES.

AND Z

1 .500000
4.500000

2.250000
5.250000

Table D-2 (Contd.

o]

2.000000
5.500000

3.000000
5. 750000

2.750000

3.500000
6.250000

3.250000

< .0CoCcoC
6.750000



Table D-2 (Contd.)

SURFACE-TO-SURFACE CONNECTIONS

NUMBER NODE TO NODE
1 4 5
2 10 11
3 16 17
4 24 25
5 25 33
6 26 34
7 27 35
8 28 36
THE INITIAL TIME STEP = 1.000000D-01

AFTER EACH TIME STEP THE TIME STEP SIZE WILL BE MULTIPLIED BY A FACTOR
OF 1*1 COGOOD 00 SUBJECT TO ANY CONDITIONS WHICH MAY FOLLOW.

THE MINIMUM TIME STEP ALLOWED IS 1.000000D-02



1

13
19
25
31
37
a3
49
55
61
67
73

0 .0

9+63780-02
8.35270-02
1.OOOOD-O1
6.94470-02
1.39630-01
8 .35270-02
1.81650-01
6.96060-02
8.35270-02
6.96060-02
1.04410-01
6.96060-02

14
20
26
32
38
44
50
s6
62
68
74

0.0

9.63780-02
8.35270-02
1.02900-01
8.34000-02
2.33590-01
8.35270-02
1.96160-01
8.35270-02
8.35270-02
6. 96060-02
1.1 1290-01
8.35270-02

Table D-2 (Contd.)

TABILITY CRITERION FOR EACH NODE

15
21

33
39
45
51

57
63

69
75

0.0

1 .65090-01
1.39630-01
6.96060-02
1-04220-01
2.01710-01
1-18190-01
6.96060-02
1.04410-01
6.96060-02
8.35270-02
6.96060-02
1.04410-01

4

10
16
22
28
34
40
a6
52
58
64
70
76

0.0

2.80070-01
2.30840-01
6.96060-02
1.11160-01
2.61630-01
1 .39630-01
6.96060-02
1.11290-01
8.35270-02
8.35270-02
6 .96060-02
1.11 290-01

11

17
23
29
35
41
a7
53
59
65
71

9.62510-02
9.62510-02
8.34320-02
1.13400-01
8.35270-02
3.73280-01
1.13400-01
8.35270-02
6.96060-02
1.04410-01
6.9606D-02
8.35270-02

12

18
24
30
36
a2
a8
54
60
66
72

8.99730-02
9.30650-02
8. 79240-02
1.82830-01
8.35270-02
4.16610-01
1.39630-01
8.35270-02
6.96060-02
1-11290-01
8.35270-02
8.35270-02



Table D-2 (Contd.)

THE STABILITY CRITERION IS 6.9447A47D-02 FOR POINT 25
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£ a»

;p io

GRID
DISTANCE
1.50
2.25
3. 00
3.50
4.00
4.75
5.25
5.75
6.25
6. 75

Table D-2 (Contd.)

MAP OF THE

2 3 4
1 1 1
3 4 5
1.50 2.00 2.75 3.25
8 91 101 111
14 151 161 171
22 231 241 o X S
30 311 [ 3o T 33
38 39 ST S — 4%
46 47 48 49
54 55 56 57
62 63 64 65
_______ P

NODE NUMBERS

5 6
1 1
6 7
3.75 4.50
121 0
18+ -*9
______ e* -27
-35-m-
______ 411 -43
50 51
58 59
66 67
R 3 F— iy 4 Yo—



SRIO

FINE GRID

D ISTANCE
1.50
2.25
3.00
3.50
4.00
4.75
5.25
5.75
6.25
6.75

0" ® N oL A LW N—

THE MAXIMUM

MAX. TEMP. APPEARS AT NODES

THE MINIMUM

MIN. TEMP.

Table D-2 (Contd.)

TRANSIENT TEMPERATURE DISTRIBUTION AFTER 0 TIME STEPS.
1 2 3 4 5 6 7
1 1 1 I I 1 I
1 2 3 4 5 6 7 8
1.00 1.50 2.00 2.75 3.25 3.75 4.50 5.50
1001I00—-i00-sO0— —+60400— —+66*06- —+60*00- —+06*00- ——eve——__ 010
100100 100.00 100100 100100 100100 100100 0.0 010
100100 100. 00 100100 100100 100100 100*00-—+00-.00-- —+00100
100100 100.0c 100100 100100 100*00-—Fee-.ee-— +00-.00—-*66100
100100 100.00 100100 100*00- ——+00*06- —Fee-.ee——+66.60— -FOOIOO
100100 100.00 100+00——+66T66-—F66-.ce- —Fee-.ee- —+00.00— -+O0I00O
100100 100.00 100.00 100.00 100.00 100.00 100 .00 100100
100100 1 00 .00 100 .00 100 .00 100.00 1 00.00 100.00 100100
100100 100.00 100.00 100.00 100.00 100.00 100.00 100100
100106— -+06w00— —FOOvOO——Foo0”oe- —Fee-.ee-—+00.00— -+00100
TEMPERATURES ON NUMBERED BOUNDARIES
BOUNDARY NUMBER TEMPERATURE
200.000000
2 0.0
3 68 .000000
4 .
5 100.000000
THE CURRENT TIME STEP (DELTAT) = 9.090909090-02
ELAPSED CPU TIME IS 0.31 SECONDS
TEMPERATURE IS - 1.00000D 02 4—0.11
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49 50
TEMPERATURE IS |GOOD 02 (4—0-1)
APPEARS AT NODES 1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45

46 47 48 49 50

VO
10



Table D-2 (Contd.)

THE IMPLICIT PROCEDURE WILL BE USED TO CALCULATE THE TRANSIENT TEMPERATURE DISTRIBUTION.

MAXIMUM NORMALIZED HEAT RESIDUAL CONVERGENCE CRITERION = 1.000000-05
(CORRESPONDS TO EPSILON SUB 1)
REDUCT ICN IN NORMALIZED HEAT RESIDUAL CONVERGENCE CRITERION = 1.0000CD-03

(CORRESPONDS TO EPSILON SUB 2)

AVERAGE LI NORM OF RELATIVE TEMPERATURE DIFFERENCE CONVERGENCE CRITERION
FOR TEMPERATURE DEPENDENT PROPERTIES = 1.00000D-05

(CORR ESPCNOS TO EPSILON SUB 3)

THETA (O.5 FOR CRANK-NICOLSON.,1.0 FOR CLASSICAL IMPLICIT) = 5.00000D-01

THE SOR ACCELERATION PARAMETER (BETA) WILL BE OPTIMIZED EMPIRICALLY.

BETA = 1 +00000D 0O

A BETA UPDATE WILL BE ATTEMPTED EVERY 1 TIME STEPS.

NUMBER —OF—IT ERAT ICNS TOLERANCE FOR BETA UPDATE CALCULATIONS. OUTER LOOP = 5
NUMBER —O F—ITERATIONS TOLERANCE FOP BETA UPDATE CALCULATIONS. INNER LOOP = 2

PER CENT CHANGE IN BETA UPDATE CALCULATIONS = 10

VO
Cco



THE FOLLCKING TABLE
A LINE

NO TIME

TIME

NO ITER

MAX HEAT RESIDUAL

BETA
IL.I NORM OF TEMP DIFF

RHO I ITERAT TION)

RHOI JACOBI )

NO ITER

ILLIT NCRM OF TEMP DIFF

NODE

MAX TEMP CHANGE

NODE
MAX PERCENT TEMP CHANGE

Table D-2 (Contd.)

IS PRINTED OUT FOR INFORMATION PURPOSES DURING THE IMPLICIT TRANSIENT CALCULAT I.ONS.
IS PRINTED EACH TIME THE
EACH TIME STEP.
ITERATIVE PROCESS.

INNER LOOP CONVERGES. A LINE IS ALSO PRINTED AFTER THE VERY FIRST ITERATION FOR

THUS. ONE CAN DETERMINE HOW MUCH THE MAXIMUM NORMALIZED HEAT RESIDUAL DECREASES DURING THE
ENTRIES IN EACH COLUMN APE DESCRIBED BELOW:

NUMBER OF TIME STEPS.

TIME AT WHICH TEMPERATURE DISTRIBUTION IS BEING CALCULATED.

NUMBER OF ITERATIONS REQUIRED FOR INNER ILINEAR) LOOP TO CONVERGE.

THE MAXIMUM NORMALIZED HEAT RESIDUAL AFTER THE NUMBER OF ITERATIONS

INDICATED IN THE PREVIOUS COLUMN (COMPARES TO EPSILON SUB 1).

CURRENT VALUE OF THE SOR ACCELERATION PARAMETER.

THE LI NORM OF THE TEMPERATURE DIFFERENCE OVER THE CURRENT ITERATION FOR INNER
(LINEAR) LOOP. THIS COLUMN AND THE NEXT TWO ARE USED ONLY WHEN THE OPTIMUM
ACCELERATION PARAMETER IS BEING ESTIMATED USING CARRE'S TECHNIQUE.

SPECTRAL RADIUS FOR THE SOR ITERATION MATRIX.

SQUARE OF SPECTRAL RADIUS FOR THE JACOBI ITERATION MATRIX.

NUMBER OF ITERATIONS COMPLETED FOR OUTER (NON-LINEAR) LOOP.

THE AVERAGE LI NORM OF THE RELATIVE TEMPERATURE DIFFERENCE OVER THE CURRENT

ITERATION FOR OUTER (INON-LINEAR) LOOP. NON-ZERO FOR NON-LINEAR PROBLEMS ONLY.
(COMPARES TO EPSILON SUB 3) IU
NODE NUMBER.

MAXIMUM TEMPERATURE CHANGE AT A NODE OVER THE CURRENT TIME STEP.
OCCURRED AT THE NODE SHOWN IN THE PREVIOUS COLUMN.

NODE NUMBER.

MAXIMUM PERCENTAGE OF RELATIVE CHANGE IN TEMPERATURE AT A NODE OVER THE CURRENT
TIME STEP. THIS CHANGE OCCURRED AT THE NODE SHOWN IN THE PREVIOUS COLUMN.

THIS CHANGE



NO
TIME

OO0 PETAIAANDA NN BB B WWRN NN — —— —

10
10
10

TIME

1.000000-01
1.000000-01
1.000000-01
1.000000-01
2.100000-01
2.100000-01
2.100000-01
3.310000-01
3.310000-01
3.3 10000-01
4.641000-01

4.641000—

01

4.641000-01
6+105100-01
6.105100-01
6.105100-01
7.715610-01
7.715610-01
7.715610-01
9.487170-01
9.48717D-01
9.487170-01

1.143590
1.143590
1-143590
1.357950
1 .357950
1.357950
1.593740
1.593740
1.593740

NUMBER  OF

TIME

11
1
11

12
12
12
13
13
13
14
14
14
15
15
15
16
16
16
17
17
17
18
18
18
19

STEPS

00
00
00
00
00
00
00
00
00

NO

ITER

TIME

e U

— N — O — U —— G — — e — W —

10 1.59370 0OC

1.853120
1.853120
1.853120
2.138430
2.138430
2.138430
2.452270
2.452270
2.452270
2.797500
2.797500
2. 79750D
3.177250
3.17725D
3.177250
3.594970
3.594970
3.594970
4.054470
4.054470
4.054470
4.559920
4.559920
4 .559920
5.1 15910

00
00
00
00
00
00
00
00
00
00
00
00
00

1
6
1
1
6
1
1
7
1
1
e
i
i
9
1
1
9
2
|
0
2
1
0
2
1

MAX HEAT BETA
RESIDUAL
5.598330-03 |+ 000000
8.451280-04 1000000
2.399060-06 | .000000
6.741860-07 | «00000D
1.915410-03 | 100000
3.248410-07 |+ 100000
1.922840-07 1 . 100000
2.148280-03 | . 100000
6.410100-07 | . 100000
5.770340-07 | .100000
| .567030-03 | +100000
2.011100-07 1.100000
3.751540-07 |« 10000D
1-347680-03 | +10000D
5.237040-07 |+ 100000
3.833340-07 | .100000
1+ 166340-03 |+ 100000
6.715550-07 | » 100000
3.802470-07 1 .100000
| .008240-03 | . 10000D
4.261050-07 | +100000
3.809790-07 | * 100000
8.705630-04 | +100000
6.0431 00-07 | » 100000
3.706290-07 | + 100000
7.516550-04 . 100000
1.246670-07 | « 100000
3.736840-07 | +100000
6 .497550-04 | » 100000
2.196070-07 | +100000
3.553480-07 |+ 100000
===—TLaal ==
1 2.265620 02
5.635180-04 | .100000
3.123090-07 | 100000
3.394530-07 |+ 100000
5.339950-04 |+ 100000
4.476360-07 | .100000
3.611990-07 1| . 100000
5.173970-04 | .100000
3.256990-07 1|+ 100000
3.738260-07 |+ 100000
4.961710-04 | .100000
2.570870-07 1|+ 100000
3.891860-07 | .100000
4.707940-04 1 + 100000
2 .235660-07 | .100000
4.100140-07 1. 100000
4.413760-04 | +100000
4.386040-07 1 .100000
2.211130-07 |+ 100000
4.091110-04 1 .100000
3.851370-07 . 100000
2.262700-07 | .100000
3.913320-04 . 190000
1 .955790-07 | .190000
2.716490-07 * 190000
4.707480-04 | .190000

18

9.

Table D-2 (Contd.)

LI NORM OF RHO RHO NO
TEMP OIFF ( ITERATION) (JACOBI I TER
0.0 .

<o

o — —_ o=

o —

1
2

OPO0200200020200202900000020000°0

000000000000 000000000000000000

OCO000000002000000200020000°2000

000000 00000000000 0000000000

COOO0O0C0000000020000°20°020000°0

000000000 cd000c0c0cP000c20
o

TABLE FOR SPECIAL MONITORING OF

HEHER H

478830 01 32 1+219350 02 36 204180

1
2

2

SO0P020000°20202000000°0°20°
0000000000000 00000000000
©O002000200000020°0000000
0000000000000 20000000

©O2020000000020000000000°
000000000000 000 0000000

LI NORM OF NODE

TEMP DIFF

1.218170-02

2.156460-06

9.526390-03
3.938870-06

5.348900-04
1.263320-07

4.251750-04
1.044120-07

3.743460-04
8.956520-08

3.351830-04
9.538100-08

3.053720-04
1.051670-07

2.740050-04
1.195750-07

2.514120-04
9.892270-08

2.359430-04
1.014730-07

TEMPERATURE S
== NODE NUMBERS AND TEMPERATURES ==

7

7

-

N

02 76 1.475730

2.202340-04
1.043000-07

2. 106900-04
1.139710-07

2.087490-04
1.080710-07

2.116820-04
1.090700-07

2.183380-04
1.108660-07

2.241130-04
1.525420-07

2.287310-04
1.596140-07

2.323900-04
1.593740-07

29

69

69

69

69

69

69

MAX TEMP

CHANGE

9.776210

1.563410

1.265540

1.049260

9.032270

8.047270

7.427150

7.486180

7.600640

7.764370

02

8.148060

8.663650

9.438120

1.040970

1.148600

1.267280

1.397800

1.541240

00

01

01

00

00

00

00

00

00

00

00

00

01

0l

NODE

N

N

-

©

21

29

69

69

69

69

69

69

MAX PERCENT
TEMP CHANGE

1.746720

2.745390

2.162950

1.755330

1.484960

1.323570

1.241940

1.240020

1.243560

1.271380

1.324550

1.404830

1.510430

1.641130

1.781570

1.931240

2.089780

2.257070

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00



Table D-2 (Contd.)

00 0 4,002670-07 | .190000 00 0.0 0.0 © o 1 2.352800-04
0o 2 3,663620-07 1.190000 0C 0,0 0.0 0.0 2 1.931640-07 69 1.699070 01 69 2.433290
1 5.647630-04 | «190000 00 0.0 0.0 0.0
gg 1 3,282650-07 1+190000 00 0.0 0.0 0.0 1 2.383000-04
2 5.339840-07 1+190000 oc 0.0 0.0 0.0 2 2.215870-07 69 1.873180 01 69 2.618900
27! >C 1 2,954580 02 18 8.654450 01 32 2.230190 02 36 2.206960 02 76 2.62632D 02

00 1 6.761470-04 1 190000 00 0.0 © o 0.0
00 1 6.257270-07 | 190000 CO 0.0 0.0 0.0 1 2.423270-04
00 3 .3.925510-07 | 190000 00 0.0 0.0 0.0 2 3.133560-07 69 2.065860 01 69 2.814580
00 1 8.077410-04 1 190000 00 0.0 © o 0.0
00 12 5.610710-07 1 190000 00 0.0 0.0 0.0 1 2.491050-04
00 3 6.101010-07 | 190000 00 0.0 0.0 0.0 2 3.752840-07 69 2.279800 01 73 3.033920
00 1 9.639230-04 | 190000 00 0.0 0.0 0.0
00 13 5.433480-07 1 190000 00 0.0 0.0 0.0 1 2.610240-04
3 9.485790-07 1 190000 00 0.0 0.0 0.0 2 4.599380-07 72 2.519230 01 74 3 .274540
§§ 1 1.150520-03 | 190000 oc 0.0 0.0 0.0
13 1.021880-06 | 190000 00 0.0 0.0 0.0 | 2.777880-04
00 4 9.093210-07 | 190000 00 0.0 0.0 0.0 2 6.554950-07 74 2.797730 01 75 3.525820
1 1.374860-03 | 190000 00 0.0 0.0 0.0
14 1.062150-06 I 190000 00 0.0 0.0 0.0 1 3.029300-04
5 7.950720-07 | 190000 00 0.0 0.0 0.0 2 8.426570-07 74 3.109530 01 75 3.788930
1 1.650410-03 | 190000 00 0.0 0.0 0.0
15 1.324980-06 1 190000 00 0.0 0.0 0.0 1 3.360060-04
5 1.302580-06 | 190000 00 0.0 0.0 0.0 2 1.064110-06 74 3.454340 01 75 4.057240
1 2.167830-03 | 271000 00 0.0 0.0 0.0
13 1.558560-06 | 271000 oc 0.0 0.0 0.0 1 5.098180-04
5 1.491890-06 | 271000 00 0.0 0.0 0.0 2 1.320930-06 74 3.835060 01 75 4.328580
1 2.141810-02 | 343900 00 0.0 0.0 0.0
12 7.0881 90-06 1 343900 00 0.0 0.0 0.0 1 3.137920-03
4 6.828620-06 | 343900 00 0.0 0.0 0.0 2 9.844240-06 74 4.071280 0! 43 4.404450
1 1.800260-02 | 343900 00 0.0 0.0 0.0
14 6.438740-06 | 343900 00 0.0 0.0 0.0 1 3.286740-03
6 7.840380-06 | 343900 00 0.0 0.0 0.0 2 1.325610-05
I 4.680240-06 1 343900 00 0.0 0.0 0.0 3 1.618840-07 74 4. 174890 01 35 4.431310
| I 7.851480-03 | 343900 00 0.0 0.0 0.0
1 15 6.596250-06 | 343900 00 0.0 0.0 0.0 1 3.109780-03
g | 8 5.848310-06 | 343900 00 0.0 0.0 0.0 2 1.793640-05
| 1 2.674890-06 | 343900 00 0.0 0.0 0.0 3 1.171230-07 75 4.245980 01 35 4.324530
>44 01 I 4.000C00 02 181. 10518D 02 32 4 737220 02 36 5.175060 02 76 5.816800 02
l1 I 6.170390-03 1.343900 oc 0.0 0.0 0.0
17 4.871640-06 1+343900 00 0.0 0.0 0.0 1 3.461820-03
9 5.669250-06 | 343900 00 0.0 0.0 0.0 2 2.285930-05
1 4.545240-06 |+343900 00 0.0 0.0 0.0 3 1.502260-07 75 4.249460 01 35 4.135030
I 8.242180-02 1.343900 00 0.0 0.0 0.0
18 6.770460-06 |.343900 00 0.0 0.0 0.0 1 7.886190-03
9 6.129910-06 1.343900 00 0.0 0.0 0.0 2 4.628550-05
IW I 9.621680-06 1 +343900 00 0.0 0.0 0.0 3 2.477190-07 75 4.160240 01 7 4.070810
1 4.882190-02 1.343900 00 0.0 0.0 0.0
19 8.206780-06 | 343900 00 0.0 0.0 0.0 1 4.796920-03
) 10 6.060380-06 |+343900 00 0.0 0.0 0.0 2 3.743970-05
2 5.570330-06 t .343900 00 0.0 0.0 0.0 3 4.701960-07 7 5.868490 01 7 6.215420



sk sk ok

34
34
34
34
35
35
35
35
36
36
36
36
37
37
37
37

TABLE

2.48477D
2.454770
2454770
2.454770
2.710240
2.710240
2.710240
2.710240
2.655120
2.055120
2.655120
2.655120
3.000000
3-00000D
3.000000
3.000000

I MUST BE EVALUATED FOR 2.454766990 01
THE VALUE OF THE FUNCTION WILL BE

01
01
01
01
o1
01
o1
01
o1
o1
01
01
o1
01
o1
01

17
10
2

B O W —

— ke — 0w —

3.039950-02
7.231520-06
5.1 876 0006
6.906510—-06
112409001
9.446220-06
6.644910-06
8.220760-06
2.329640-02
7+541170-06
5.300510-06
6.450470-06
7.091720-03
7.025630-06
5.966470-06
3.6609*0-06

1.409510
1.409510
1.409510
1.409510
1.466560
1466560
1.468560
1.468560
1.521700
1.521700
1.521700
1.521700
1.521700
1.521700
1.521700
1.521700

00
00
00
00
00
00
00
00

0.0
0.0

Table D-2 (Contd.)

3,»00000000D 00 FOR ALL

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

ARGUMENTS GREATER THAN

0.0

W

2.400000000

3.731450-03
5.372740-05
7.422690-07

9.014740-03
1.362310-04
1.933220-06

)
3.042300-03
3.097140-05
2.931620-07

1.664970-03
1.568200-05
2.132750-07

01

45

69

69

5.394680

4.005340

2.014300

1.763410

01

01

01

01

31

69

69

5.379460

3.518650

1.609740

1.386910

00

00

00

00
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Table D-2 (Contd.)

TRANSIENT TEMPERATURE DISTRIBUTION AFTER 37 TIME STEPS. TIME
1 4 5 6 7
I I I I I
I 2 5 6 7 8
D ISTANCE 1.00 1.50 3.25 3. 75 4.50 5. 50
1 .50 600T0«~ —660400— - 600400-— *57496— -ASK* S Ao e (037 0 N—— 010
>.25 627183 621.92 164151 161118 0.0 o10
3. 00 65S160 652.08 179164 179%46-— 474-»47 — - 466134
3. 50 688151 682.05 187%49  _*85_»87 — 484-.70— 47511 1
4.00 721185 717.88 674%32-— 785%44 748 %96 T7A6*S6— -734192
a.7s 771 144 770.70 769464 _769-.04-—777-.90 — —783-»53———783*94 — _770118
s.25 79617 1 796.51 800 .09 802.16 800.36 786492
5 .75 814188 814.84 816.11 816.12 812.61 798176
6.25 825178 825.77 825.68 824.67 820.14 805187
6.75 829144-— ccOrnd-e— -«29-»3e— —629-.30— — 686»67— -687-»54-— 888*68— -808125
TEMPERATURES ON NUMBERED BOUNDARIES
BOUNDARY NUMBER TEMPERATURE
| 600 .000000
2 0.0
3 68.000000
4 0.0
5 100.000000
THE CURRENT TIME STEP (DELTAT) = 1.44878158D 00
ELAPSED CPU TIME 5.45 SECONDS
MAXIMUM TEMPERATURE IS 8.29406D 02 (+-0. 1)
TEMP. APPEARS AT NODES 70 71
MINIMUM TEMPERATURE IS 1.52544D 02 “@a-0. 1>
TEMP. APPEARS AT NODES

3.00000D 01

8



TEMP CHANGE

MAX TEMP NODE MAX PERCENT
CHANGE

LI NORM OF NODE
TEMP DIFF

NO
ITER

RHO

(JACOB])

RHO

Table D-2 (Contd.)

TEMP DIFF (1TERATION)

LI _NORM OF

BETA

MAX HEAT
RES I DUAL

NO

ITER
2 MUST BE EVALUA
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TABLE FOR SPECIAL MONITORING OF TEMPERATURES
32 7.353670 02
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Table D-2 (Contd.)

TRANSIENT TEMPERATURE DISTRIBUTION AFTER 45 TIME STEPS, TIME = 6.00000D 01

GROSS GRID 1 2 3 4 5 6 7
1 1 1 1 1 1 1
FI NE GRID 1 2 3 4 5 6 7 8
DISTANCE 1.00 1.50 2. 00 2.75 3.25 3.75 4.50 5.50
1 1 1.50 cooice— -&«(-»&O-—69»*9-9-—680-490- —€-49*73- —€+4*49-— —— ©) (= mmmmeem 810
2 2 2.25 661176 655.57 635100 537137 232107 227104 0.0 010
3 3 3.00 728164 720.73 695105 578115 258137 258**7  _ese-**6— -€35*%97
4 4 3.50 780161 774.08 752188 654138 270%*66- —866-.7TE—-€6+»79—-€58122
5 5 4. 00 835174 832.30 822J64 800*73-—67g*£8- —S97-.56—-905x50—-884170
6 6 4.75 912175 912.85 914*%89-—92* »n4E-—936-»69——946-»€9—-947-r€9—-9L£L5177
7 5. 25 951134 951.80 953.56 959.07 965.69 969.85 967.52 946102
8 5.75 978188 979.31 980.65 o84.23 986.96 987.84 982.77 960139
9 6.25 995133 995.67 996.65 998.89 999.80 998.96 992 21 969104
7 10 6.75 1000179— —+89%594__*e93_ 7e--FO04-.€9--4-09-€»7 +—-995x40—-97%*193

TEMPERATURES ON NUMBERED BOUNDARIES

BOUNDARY NUMBER TEMPERATURE
| 600,000000
2 0.0
3 68.000000
4 0.0
5 100.000000
THE CURRENT TIME STEP (DELTAT! = 4.158627860 00
ELAPSED CPU TIME IS 7.40 SECONDS
THE MAXIMUM TEMPERATURE IS - 1.00409D 03 (+-0.1)
MAX TEMP. APPEARS AT NODES - 73
THE MINIMUM TEMPERATURE IS - 2.11493D 02 (+0.1)
MIN. TEMP. APPEARS AT NODES 6

THE TRANSIENT CALCULATIONS HAVE BEEN COMPLETED.

FINAL TIME IS 6.000000 01

NUMBER OF TIME STEPS COMPLETED 45

/¢]



BEGIN THE STEADY STATE CALCULATIONS
NUMBER OF

ITERATIONS CONVERGENCE NODE
5 6.26798D-03 44
10 3.27042D—-03 32
NUMBER OF TIME
ITERATICHS
10 6*00000 01 1 6.00000D
15 2.49038D-03 5
20 -9. 177830-04 74
20 6.00000 01 1 6 .O0000D
25 -7.835350-04 25
30 -5.009040 -04 17
30 6.00000 01 I 6.000000
35 1. 530240-04 36
40 1 .449230-04 33
40 6.00000 01 1 6.00000D
45 1.136290-04 37
50 -4.035540-05 76
50 6.00000 01 I 6 .00000D
55 -3.473370-05 72
60 -2.698910-05 5
60 6.00000 01 1 6 .00000D
65 -7.31851D-06

02

02

02

02

02

02

Table D-2 (Contd.)

TEMPERATURE

9.478680 02
8.257440 02

18 2.750470

2.382220 02
1.048480 03
18 2.849770

2.966290 02
2.807560 02
18 2.805110

9.185140 02
9.069000 02
18 2.806090

9.470710 02
1.010570 03
18 2.811260

1.046060 03
2.376330 02

02

02

02

02

02

BETA REDUCED TO

18 2.810060

2.37586D 02

02

EXTRAPOLATION
FACTOR

-9.550580 00
6.161810 00

TABLE FOR SPECIAL

32 8.257440

4.893420 01
3.433570 01
32 8.363020

1.623720 01
5.132470 00
32 8.310580

-5.260050-01
2.077990 01
32 8.309830

-6.564720 01
-4.423260-01
32 8.317650

-1.276090 01
1.737170 01
1.800
32 8.315890

I.54156D 00

02

02

02

02

02

02

ANDI

36 9.179660 02

36 9.231190 02

36 9.187690 02

36 9.191700 02

36 9.196390 02

36 9.193820 02

76

76

76

76

76

76

MONITORING OF TEMPERATURE S
TEMPERATURES

1.012 790

1.012700

1.009210

1.010360

1.010570

1.010370

03

03

03

03

03

03



Table D-2 (Contd.)

STEADY STATE TEMPERATURE DISTRIBUTION AFTER 65 ITERATIONS* TIME = 6.0000CD 01

GROSS GRID 1 2 3 4 5 6 7
1 I 1 1 1 1 1
FI NE GRID 1 2 3 4 5 6 7 8
DISTANCE 1.00 1.50 2.00 2.75 3.25 3.75 4 .50 5.50
1 1 1.50 600iex— b« Few-—6««F«8- —237*59- __€28*54— —meemmv O*O e 910
2 2 2.25 67011 1 663.85 643107 544120 251J60 246107 0.0 010
3 3 3.00 745156 737.57 711155 592161 281109 280*97-—27+%94 -255194
4 4 3.50 803111 796.58 775135 675153 294**66-—292*%6+-—284*82 —-27+174
5 5 4.00 863150 860.19 850198 831*%*55-—987*37-—934*%87-—942*%22  _O9+9137
6 6 4.75 94711 2 947.39 949*88-—9S*-*95___9745»58---984*89- —985*75 _96+198
7 5.25 988196 989.55 991 .68 998.12 1005.39 1009.85 1007.09 983119
8 5.75 1018181 10 19.32 1020.90 1025.05 1028.05 1028.96 1 023.20 998127
9 6.25 1036163 1037.03 1038.18 1040.76 1041.76 1040 .79 1033.18 1007135
7 10 6.75 1042155--*«4B-»9%— *849-»89--+e45-»94- _*846-»35--+944*78- -+936*56— +9+9139
TEMPERATURES ON NUMBERED BOUNDARIES
BOUNDARY NUMBER TEMPERATURE
1 600.000000
2 0.0
3 68.000000
4 0.0
5 100.000000
ELAPSED CPU TIME IS 10.08 SECONDS
THE MAXIMUM TEMPERATURE IS - 1.04635D 03 I+-0.1)
MAX TEMP. APPEARS AT NODES - 73
THE MINIMUM TEMPERATURE IS - 2.28538D 02 <e-0.1)
MIN TEMP. APPEARS AT NODES - 6

THE STEADY STATE CALCULATIONS HAVE BEEN COMPLETED.

NUMBER OF ITERATIONS COMPLETED 65
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TEST PROBLEM *4 FOR HEATINGS

100 7 11 3
7 7
2
-2
1 | 1.0 2.0
1 1
2 1 2.0 5.5
1 2 5
3 1 3.25 3.75
1 3
4 1 3.25 3.75
1
c 1 3.25 4.5
1
e 1 4.5 5.5
i
7 2 2.0 2 .75
1 3
6 2 2.0 2.75
1
9 2 2.75 5.5
1 5
10 2.75 3.25
1 2 2
11 3 3.25 5.5
|
| IRON * 2801
2 STAINLSS . 2824
3 AIR
1 1.0 3
2 1.0 3
1 2
1 2 200.0 1
2 3
1.580-13
3 | 68.0
6_0D-3
4 3
1.580-13 2 .560-05 0.33
c 1 1 00.0
1.580-13 2.560-05 0.33
1.0 2.0 2.75 3.25
2 1 | 1
1.E 2.25 3.0 3.5
| 1 1 1
1 2
4 0.03 5 .0087266

Fig. D-4.

3.5

116
1l

4.5

4.75

Input Data for Test Problem Number 4 for HEATINGS

60 .

CAR 02
CARD3
CARD4
CARDS
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30.0

1.0D—-05
0.t

235.C 2
4
1.0 12.0
3
1.0 12.0
3
.0296 752.0
3
013 752.0
4
1.82D—5 500 .0
4
5.0D5 500.0
60.0
1 18
1 .00-3 1.00-5

1.1

—20.0

2.0

1.5

. 0264

.0153

3.41D-5

2.390-5

32

104

30.0

1832.0

1832.0

1000.0

1000.0

36

2.0

1.125

.0222

.0 25

4.680-5

1.570-5

76

Fig. D-4 (Contd.)

24.0

1500.0

1500.0

5.750-5

1.170-5
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A2
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T2
T1
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T2
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SUBROUTINE HEATGN <RVALUE.,P. TH_.Z_TIM_TSN_VALUE_NUMBER.N)
sfe sk sl sk sk s sk st sl sk sl sk sl sk e sk e sk sl sl sl sk ke ke e st e sk sk sl Sl Sk ke ke e sl sk sk sk sl sk ke ke sk sk sk sk sl sk e st st sk sk sl sk S sk ke e e ke sk sk sk Sk Sk ke ke ke
THIS USER-SUPPLIED ROUTINE IS DESIGNED TO CALCULATE THE TWO
HEAT GENERATION RATES AS A SUM OF EXPONENTIALS FOR SAMPLE
PROBLEM NUMBER A IN THE HEATINGS USEP*S MANUAL* ORNL/CSO/TM-15.
sfe >k sl sk sl sk sk sk sk sk sl s sk sk i Sk ke ke e st st st st st sk sk sk sk sl sk sl sk sl sk sk sk sl sk sl S sk Sk ke ke ke ke e e st st st ke ke sk sk sk sk sk sk sk sk sk sk sk sl sk sk sk ok ok
IMPLICIT REAL*8 (A-H.O-2)
LOGICAL MESSAG
DIMENS ION NPQRJ.C3»2)*XLAMDA<3.2)
DATA NP/3» 2/ . C/0O.5DO.0O.3D0.0.2D0.0.6D0O.,0.400/
I . XLAMDA/1 .1 55250-2,2.310490-2,A.62098D-2, 1.15525D-2
2 . A.620980-2/
DATA MESSAG/.FALSE./

C ON THE FIRST CALL TO THIS SUBROUTINE, MESSAG IS INITIALIZED TO
FALSE CAUSING THE FOLLOWING MESSAGE TO BE PRINTED OUT. ON
SUBSEQUENT CALLS, THE WRITE STATEMENT IS BYPASSED.

IF(MESSAG)GO TO 10
MESSAG=TRUE.
WRITE!6.1000)

1000 FORMAT(cO***** JF THE INPUT DATA SPECIFIES THE FIRST TWO HEAT GENE

1IRATION RATES AS USER-SUPPLIED FUNCTIONS.*/

oNoNoNeNe!

a0

2 . ww##x THIS ROUTINE WILL EVALUATE THEM AS SUMS OF EXPONENTIALS A
3CCCRDING TO THE FOLLOWING EXPRESSION.*/

4 =Q****x Q(TIM) = SUMIC(ID*EXP<-XLAMOAI!I>*TIM))=/

5 *Q***** WHERE C! I) AND XL AMD A!I) ARE DEFINED AS*/

6 *Q**#** FUNCTION NO. I CI1) XLAMOA I1)*)

DO 5 J=1.2

K=NP!'J)

5 WPITE16.1010)J=!'1.C!'IL.))_ XL AMOAI!1L,J)_I=1.,K)
1010  FORMAT!-0* , I12 ,11 O,1P2015.6/1=- *,122.2015.6))

10 IFINUMBER.LT.1 .OR. NUMBER.GT.2>=GO TO 900
K=NP!NUMBER)
SUM=0,0D0
DC 20 1=1.K
20 SUM=SUMCI INUMBER)*DEXP! — XLAMDA! I_NUMBER)*TIM)
RVALUE=SUM
RETURN
900 WR ITE16.9005)NUMB ER
9005 FORMAT!*Q***** THIS ROUTINE IS TRYING TO EVALUATE HEAT GENERATION
IFURCTICN NUMBER*. 1 10.+ AS A USER-SUPPLIED FUNCTION. =/« Gk3¥¥** HOWEV
2ER , THIS FUNCTION HAS NOT BEEN DEFINED HERE, SO THE CALCULATIONS W
3 ILL BE TERMINATED.*)
ST CP
END

Fig. D-5. User-Supplied Subroutine HEATGN to Calculate Heat
Generation Rates for Test Problem Number 4 for HEATINGS
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SUBROUTINE CONDTN <P VALUE.R « TH »Z » TIM,TSN.VALUE.NUMBER.N)

sfe ke sl sk 3 sk ke st 3t st st sk sk sl sk sle sk sl sk sl s sk sk sl s sk ke ke ke st st st sk s sk sk sk sl sk sk sk sle sk sl sk sl sk Sk ke ke sk e st st sk st st st sk sk sk sk sk sk sk sk sk sk Sk ke

THIS USER-SUPPLIED ROUTINE IS DESIGNED TO CALCULATE THE ANISOTROPIC
THERMAL CONDUCTIVITY FOR A MATERIAL WITH THE CONDUCTIVITY ALONG THE
Y-AXIS EQUAL TO TWICE THAT ALONG THE X-AXIS AS GIVEN IN TABULAR
FUNCTICN NUMBER #3.

DESIGNED FOR SAMPLE PROBLEM NUMBER 4 IN THE HEATINGS USER'S MANUAL.
OPNL/CSD/TM-15.

sfe sk sfe sk 3k ke e sk sk sk sl sk sk sk e ke sk sl sl sk sk ke ke st sk sle sk sk sk sk ke st sk sk sk sk sk sk ke e sk sk sk sk sk sk sk e ke sk sl sk sk sk sk ke ke ke sk sk sk sk s sk ke ke ke sk sk ok

1000

10

900
9005

IMPLICIT REAL*8 (A-H.O-Z2)
COMMON /THBSBC/ NBDTP.NDIR
LOGICAL MESSAG

DATA MESSAG/.FALSE_/

ON THE FIRST CALL TO THIS SUBROUTINE, MESSAG WILL BE FALSE
WHICH WILL CAUSE THE FOLLOWING MESSAGE TO BE PRINTED OUT.
ON SUSEQUENT CALLS, THE WRITE STATEMENT WILL BE BYPASSED.
IF(IMESSAG)GO TO 10
ME SSAG=TRUE.
WP ITE(6. 100 0 >NUMBER
FORMAT('O***** THE INPUT DATA SPECIFIES THE THERMAL CONDUCTIVITY 0
IF MATER IAL=-_.13.- TO BE A USER—-SUPPLI ED SUBROUTINE.”/
2+ x¥FFxx THIS ROUTINE WILL EVALUATE THE TEMPERATURE-DEPENDENT THERM
3AL CONDUCTIVITY'/s ***** AJONG THE X-AXIS ACCORDING TO TABULAR FUN
4CTICN NUMBER 33 _"/" ***** THE CONDUCTIVITY ALONG THE Y-AXIS WILL BE
5 TWICE THAT ALONG THE X-AXIS.")
IFCNUMBER.NE.l1 )GO TO 900
CALL TABLE( -3 .VALUE.TSN_RVALUE_.N, NUMBER)
IF(NDIR. EQ . 2)RVALUE=2. 0DO*R VALUE
RETURN
WR I TE (6>»>9005)N UMB ER
FORMAT('O***** CONDTN IS TRYING TO EVALUATE THE THERMAL CONDUCTIVI
1 TY FOR MATERIAL NUMBER'19,” AS A USER-SUPPLIED SUBROUTINE.”/
2# ##*xx+x HOWEVER, THIS PARAMETER HAS NOT BEEN DEFINED HERE. SO THE
3CALCULATIONS WILL BE TERMINATED.")
STOP
END

Fig. D-6  User-Supplied Subroutine CONDTN to Calculate Anisotropic
Thermal Conductivity for Iron for Test Problem
Number 4 for HEATINGS
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APPENDIX E

GENERAL FLOW CHARTS FOR HEATINGS

This appendix is designed to give a general idea of how the subroutines in HEATINGS
are interconnected. The overall flow of the HEATINGS code is depicted in Fig. E-l1. The call
to subroutine INPUT causes most of the input data to be read and printed out in tabular
form. Many variables and arrays are also initialized. The call to subroutine POINTS generates
the nodal connections, initializes the temperatures and calculates the thermal conductances,
capacitances and heat generation rates. The call to subroutine CALQLT then calculates the
temperature distribution according to the method chosen and writes out the results. The
routines called from subroutines THRMPR and CALQLT are depicted in greater detail in
Figs. E-2 through E-6. Entry points are listed below names of subroutines. Table E-1 lists
names of subroutines and entry points in alphabetical order along with a brief description of
the purpose of each routine, a list of subroutines which references it, and a list of subroutines
and entry points that are called by the routine.



ORNL-DWG 76-10921

MAIN
HEATNS
NPUT POINTS CALQLT
INPUT |
REGION PRETAB PREANA
SSBDCN THRMPR
TYPEBC SSNODE

Fig. E-l. General Flow Chart of HEATINGS



ORNL DWG 76-10922

THRMPR

THRMI
BDCOND SURBC FUNCTN
FUNCTN FUNCTN

Fig. E-2. Chart Indicating Routines Called by Subroutine THRMPR
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ORNL- DWG 76- 10923

CALQLT

TRANO

THRM

FUNCTN

PREP

PLOTOU

TPMNTR

TRANIM

Fig. E-3. Chart Indicating Routines Called by Subroutine CALQLT
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ORNL -DWG 76-10924

TRANO

TRANIM

TMSTEP
UDTS

FUNCTN
THRMI

ADJUST

INGRES DECRES
PREP
PLOTOU

TPMNTR

Fig. E-4. Chart Indicating Routines Called by Subroutine TRANO
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ORNL-DWG 76-10925

FUNCTN

TABLE ANALYT

USER-SUPPLIED
SUBROUTINES

Fig. E-5. Chart Indicating Routines Called by Subroutine FUNCTN

ORNL DWG 76-10926

PREP

PLOTIN
PLOTOU

TMPOUT

TPRNGE

Fig. E-6. Chart Indicating Routines Called by Subroutine PREP



ADJUST

ANALYT

BDCOND

CALQLT

DECRES

FUNCTN

HEATNS

INGRES

INPUT

INPUT1
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Table E-L Summary of Subroutines and Entries in HEATINGS

Adjusts the time step size for the implicit transient calculations based on any
constraints on the maximum temperature change or maximum percentage of
relative change in temperature at a node from one time level to the next.
Requires that calculations continue at next time level with larger time step size or
be repeated for this time level with smaller time step size. Called from TRANO.
Calls INGRES and DECRES.

Entry in subroutine PREANA. Calculates value of a parameter according to
built-in analytical function. May call user-supplied subroutine to evaluate a
parameter. Called from FUNCTN. Calls user-supplied subroutines.

Calculates effective conductance from a surface node to a boundary node
according to the associated boundary condition. Called from THRMPR. Calls
FUNCTN.

Controls flow of calculational techniques after variables have been initialized.
Contains steady-state and explicit transient algorithms. Calls routine for implicit
transient algorithm where appropriate. Called from HEATNS. Calls FUNCTN,
PLOTOU, PREP, THRMI, TPMNTR, TRANIM, and TRANO. Calls
ORNL-dependent system routine ICLOCK.

Attempts to decrease time step size for implicit transient calculations proportional
to how much the temperature change or percentage of relative change in
temperature exceeds the criterion. Called from ADJUST.

Computes value of a parameter which can be time-, temperature-, and/or
position-dependent. Value of parameter is product of functions of the independent
variables-time, temperature, X or R, Y or 6, and Z. Called from BDCOND,
CALQLT, SURBC, THRMPR, and TRANO. Calls ANALYT and TABLE.

Locates position of each array which is variably dimensioned as a function of the
maximum number of nodes. Controls overall flow of calculations. Called from
MAIN. Calls CALQLT, INPUT, and POINTS.

Attempts to increase time step size for implicit transient calculations proportional
to how much the temperature change or percentage of relative change in
temperature is less than the criterion. Called from ADJUST.

First of two routines which reads the input data and prints it in tabular form.
Generates fine grid lines. Called from HEATNS. Calls INPUTI1. Calls
ORNL-dependent systems routines ICLOCK, IDAY, MODEL, and TIME.

Second of two routines which reads the input data and prints it in tabular form.
(IT card images are read in subroutine THRMPR. Input data for implicit
technique for transient problems are read in subroutines TRANO and TMSTEP.)
Calculates factors (G arrays) which are a function of the grid spacing. Locates
fine grid lines bounding each region. Called from INPUT. Calls PREANA,
PRETAB, and REGION.



MAIN

PLOTIN

PLOTOU

POINTS

PREANA

PREP

PRETAB

REGION

SSBDCN

SURBC

TABLE

THRMPR

THRM1
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Table E-1 (Contd.)

Allocates core for arrays which are variably dimensioned as a function of
maximum number of nodes. Calls HEATNS.

Creates data set containing identification as well as the temperature distribution
as a function of time to be used by the code HEATPLOT to generate various
plots. Called from PREP. Entry PLOTOU called from CALQLT, PREP, and
TRANO.

Entry in subroutine PLOTIN. Writes temperature distribution on data set at
current time. Called from CALQLT, PREP and TRANO.

Generates array identifying neighbors of each node. Model may have cutouts and
indentations but axes must be orthogonal. Called from HEATNS. Calls SSBDCN
and THRMPR.

Calculates value of a parameter according to built-in analytical function. May call
user-supplied subroutines to evaluate a parameter. This call actually initializes
routine. Entry ANALYT actually performs calculations. Called from INPUTI.
Entry ANALYT called from FUNCTN. Calls user-supplied subroutines.

Serves as an interface between routines which calculate temperature distribution
and subroutine TMPOUT which prints out the temperature distribution in a map.
Locates temperatures in a plane and passes them to TMPOUT. Called from
CALQLT and TRANO. Calls PLOTIN, PLOTOU, and TMPOUT and
TPRNGE. Calls ORNL-dependent systems routine ICLOCK.

Computes value of a parameter by linear interpolation from a table of data. This
call actually initializes routine. Entry TABLE actually computes value. Called
from INPUT 1. Entry TABLE called from FUNCTN.

Locates fine grid line nearest a region boudary if a fine grid line does not lie on
the region boudary. Called from INPUTI.

Locates region boundaries which require surface-to-surface heat transfer. Then,
connects each node on one surface with the corresponding node on the opposing
surface. Called from POINTS. Calls SSNODE and TYPEBC.

Calculates effective conductance from corresponding nodes on parallel surfaces
according to the associated surface-to-surface boundary condition. Called from
THRMPR. Calls FUNCTN.

Entry in subroutine PRETAB. Calculates value of a parameter by linear
interpolation from a table of data. Called from FUNCTN.

Calculates the initial temperature, the effective thermal conductance, the heat
generation rate and the effective thermal capacitance at each node. Also reads
explicitly specified initial temperatures and melting ratios. Called from POINTS.
Entry THRM1 called from CALQLT and TRANO. Calls BDCOND, FUNCTN,
and SURBC.

Entry in subroutine THRMPR. Updates the effective thermal conductance, the
heat generation rate and the effective thermal capacitance at each node as a
function of temperature. Called from CALQLT and TRANO. Calls BDCOND,
FUNCTN, and SURBC.



TMPOUT

TMSTEP

TPMNTR

TPRNGE

TRANIM

TRANO

TYPEBC

UDTS

Table E-1 (Contd.)

Prints nodal temperatures from a plane in the form of a map indicating material
boundaries and grid lines. Called from PREP. Calls ORNL-dependent systems
routines ICOMPA and INTBCD.

Initializes, reads, prints and calculates time step information for the implicit
algorithm for transient problems. Called from TRANO. Entry UDTS called from
TRANO.

Prints temperatures of selected nodes as a function of number of iterations or
time steps. Used for special monitoring of the temperature development. Called
from CALQLT and TRANO.

Determines maximum and minimum temperatures in the distribution and the
nodes where these temperatures occur. Prints this information in tabular form.
Called from PREP.

Entry in subroutine TRANO. Computes the transient temperature distribution
using an implicit algorithm. Called from CALQLT. Calls ADJUST, FUNCTN,
PLOTOU, PREP, THRMI1, TMSTEP, TPMNTR, and UDTS. Calls
ORNL-dependent system routine ICLOCK.

Initializes and reads data for implicit transient calculations. Entry TRANIM
computes the transient temperature distribution using a linear combination of the
Crank-Nicolson and the backwards FEuler procedures. Resulting system of
equations is solved by SOR with the acceleration parameter optimized. Called
from CALQLT. Entry TRANIM called from CALQLT. Calls ADJUST,
FUNCTN, PLOTOU, PREP, THRMI1, TMSTEP, TPMNTR, and UDTS. Calls
ORNL-dependent system routine ICLOCK.

Determines if there are any surface-to-surface boundary conditions in a particular
region along a particular axis. Called from SSBDCN.

Entry in subroutine TMSTEP. Reads, prints and calculates time step for the
implicit algorithm for transient problems. Called from TRANO.
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