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HEATINGS -

AN IBM 360 HEAT CONDUCTION PROGRAM

W. D. Turner 
D. C. Elrod 

I. I. Siman-Tov

T
ABSTRACT

HEATINGS, a modification of the generalized heat conduction code 
HEATINGS, is designed to solve steady-state and/or transient heat conduction 
problems in one-, two-, or three-dimensional Cartesian or cylindrical coordinates or 
one-dimensional spherical coordinates. The thermal conductivity, density, and specific 
heat may be both spatially and temperature-dependent. The thermal conductivity 
may be anisotropic. Materials may undergo a change of phase. Heat generation 
rates may be dependent on time, temperature and position, and boundary 
temperatures may be time-dependent. The boundary conditions, which may be 
surface-to-boundary or surface-to-surface, may be fixed temperatures or any 
combination of prescribed heat flux, forced convection, natural convection, and 
radiation. The boundary condition parameters may be time- and/or 
temperature-dependent. The mesh spacing can be variable along each axis. The code 
is designed to allow a maximum of 100 regions, 50 materials, and 50 boundary 
conditions. The maximum number of lattice points can be easily adjusted to fit the 
problem and the computer storage requirements. The storage requirements on an 
IBM 360 machine range from approximately 250K bytes for one lattice point to 
1256K bytes for 6000 lattice points.

The point successive overrelaxation iterative method and a modification of the 
“Aitken 82 extrapolation process” are used to solve the finite difference equations 
which approximate the partial differential equations for a steady-state problem.

The transient problem may be solved using any one of several finite difference 
schemes. These include an implicit technique which can range from Crank-Nicolson 
to the Classical Implicit Procedure, an explicit method which is stable for a time 
step of any size, and the Classical Explicit Procedure which involves the first 
forward time difference. The solution of the system of equations arising from the 
implicit technique is accomplished by point successive overrelaxation iteration, and 
includes procedures to estimate the optimum acceleration parameter. The time step 
size for implicit transient calculations may be varied as a function of the maximum 
temperature change at a node. Transient problems involving materials with 
change-of-phase capabilities cannot be solved using the implicit technique with this 
version of HEATINGS.
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1. INTRODUCTION

HEATINGS is the latest version of “The HEATING Program,” where HEATING is an 
acronym for Heat Engineering and Transfer in Nine Geometries. HEATING was originally 
developed by Liguori and Stephenson (Ref. 1) from Fowler and Volk’s generalized heat 
conduction code, GHT (Ref. 2). Other modifications to HEATING have been reported 
previously (Ref. 3 and 4).

HEATINGS, a modified version of HEATINGS (Ref. 4), has been stored on disks at the 
Computing Centers at Oak Ridge National Laboratory (ORNL) and the Oak Ridge Gaseous 
Diffusion Plant (ORGDP) and is available to users in Oak Ridge. This report, which is 
designed as a user’s manual, discusses the capabilities of HEATINGS.

The major improvement in the code is the incorporation of an implicit scheme to solve 
transient problems. Of the three basic algorithms which are available in HEATINGS to solve 
transient problems, the implicit scheme is the recommended approach for most problems. This 
scheme is written generally to include the Crank-Nicolson finite difference equations, the 
classical implicit or backwards Euler finite difference equations, or a linear combination of the 
two. The resulting system of equations is solved by the point successive overrelaxation iterative 
method, and the technique includes procedures to estimate the optimum acceleration parameter 
as a function of time. The time step size for the implicit transient calculations can be 
controlled explicitly through the input data or implicitly by specifying the maximum 
temperature change or maximum percent of relative change in temperature allowed at a node 
over a time step. The temperature-dependent parameters may be reevaluated as a function of 
the number of iterations for steady-state problems. Another modification allows selected 
materials to undergo a change of phase. However, the implicit technique for transient problems 
cannot be used for problems involving materials with change-of-phase capabilities with this 
version of HEATINGS. Another feature which has been added to the code is the capability of 
solving one-dimensional, spherical models. Among other improvements incorporated in the new 
code are input and output modifications designed to facilitate data preparation and 
interpretation of results. The input formats for the material parameters, the heat generation 
rate functions and the initial temperature functions have been changed. The position-dependent 
functions and the time-dependent functions have been deleted. Analytical and tabular functions 
have been added to aid in the definition of input parameters. An option to allow the user to 
write his own subroutines to evaluate many of the input parameters has been added to the 
code. Thus, if an input parameter cannot be described with the built-in analytical or tabular 
functions, then the user may easily supply his own algorithm to evaluate the parameter. This 
concept is referred to as user-supplied subroutines. The boundary condition parameters may be 
time- and/or temperature-dependent or if they are defined in user-supplied subroutines, they 
can also be position-dependent. The thermal conductivity, density and heat capacity can also be 
time-dependent if they are defined in user-supplied subroutines. For two- and three-dimensional 
problems, the temperatures in each plane are printed in the form of a map which depicts the 
material boundaries. This feature enables one to monitor the temperature distribution in a 
plane with minimal effort. A nodal map accompanies the first temperature map which allows 
one to readily locate a node and its temperature.

The numerical techniques for the steady-state and transient calculations are discussed in 
Section 2. The use of the code to solve physical problems is presented in Section 3. An outline 
of the input data is included in Section 3.8. An output description is presented in Section 4.

The appendices include information on the control cards necessary to use the code at 
ORNL and ORGDP, nomenclature, information on the use of user-supplied subroutines, and 
sample problems.

The user is cautioned that this code is not a black box which digests the input data and 
automatically yields the correct solution to the physical problem. Care must be exercised in 
correctly simulating the physical problem as well as in interpreting the results from the code.
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For steady-state problems, one must experiment with the mesh spacing in order to gain 
confidence in the numerical solution to a model of a physical problem. For instance, numerical 
solutions must be obtained for several different mesh spacings, then these solutions must be 
compared and the differences that are noted at points of interest must be acceptable. In 
addition, one must also experiment with the convergence criterion. When the criterion is 
satisfied, it only guarantees that the temperatures did not change more than a specified amount 
over the previous iteration. This is sufficient for many problems, but it is possible to have a 
problem which is converging so slowly that the convergence criterion is satisfied even though 
the last iterate is a very poor estimate of the true solution to the model. Again, one must 
make several calculations with different convergence criteria and compare the results before 
obtaining confidence in the solution. For transient problems, one must experiment with the size 
of the time increment as well as study the effects of varying the mesh spacing and convergence 
criteria.

V
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2. NUMERICAL TECHNIQUE

2.1. Statement of the Problem

The HEATINGS Program solves the steady-state or transient heat conduction problem in 
either one, two, or three dimensions for either Cartesian or cylindrical coordinates or one 
dimension (radial) for spherical coordinates. For illustrative purposes, the equations and the 
discussion which follow are written for a three-dimensional problem in Cartesian coordinates.

First, the physical problem is approximated by a system of nodes each associated with a 
small volume. In order to define the nodes, a system of orthogonal planes is superimposed on 
the problem. The planes may be unequally spaced, but they must extend to the outer 
boundaries of the problem. A typical, internal node, which is defined by the intersection of any 
three planes is depicted in Fig. 2.1. Heat may flow from a node to each adjacent node along 
paths which are parallel to each axis. Thus for a three-dimensional problem, heat may flow 
from an internal node to each of its six neighboring nodes. The system of equations describing 
the temperature distribution is derived by performing a heat balance about each node.

The finite difference heat balance equation for node o in Fig. 2.1 is

6
= P" + 2 flKm(T" - T”) (2.1)

m=l

where Tm is the temperature of the mth node adjacent to node o at time t„, 0Km is the 
conductance between nodes o and m, C0 is the heat capacitance of the material associated with 
node o, and P" is the heat generation rate in the latter material at time t„. Since planes go 
through the nodes and the material is homogeneous between any two successive planes along 
any axis, a node may be composed of as many as eight different materials, and the heat flow 
path between adjacent nodes may be composed of as many as four different materials 
positioned in parallel. For a three-dimensional problem, one C, one P, and six K’s will be 
associated with each internal node at a particular time, t„. These parameters are calculated as 
follows for node o:

8
Co= X Cp/p/V/ (2.2)

1=1

8
Pa io 2 Q?V/ 

/=1
(2.3)

X
(2.4)
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where

Cpi = specific heat for region /, 

pi — density for region /,

V; = volume of region /,

Q" = heat generation rate per unit volume in region / at time t„,

Lm = distance between node o and adjacent node m,

kmY = thermal conductivity for region y between nodes o and m,

Aray = cross-sectional area, normal to heat flow path, of region y between 
nodes o and m.

With reference to Fig. 2.1, the V/s and Amy’s are further defined, by using examples, as 
follows:

V, = (x,-+i - x/) (y/+i yj) (z/c+i - zk) 
2 (2.5)

A,., =_ (y/>i ~ yj) (zk+\ - zk)
(2.6)

Since nodes lying on a surface or nodes from one- or two-dimensional problems will not 
necessarily have six neighbors, the general heat balance equation for node i having M, 
neighbors can be written as

t Tf T7
At = P? +

M,
m|, (n, - T?)

(2.7)

where <xm is the mth neighbor of the ith node. By choosing the increments between lattice lines 
small enough, the solution to the system of equations yields a practical approximation to the 
appropriate differential equation.

2.2. Steady-State Heat Conduction

For a steady-state heat conduction problem, the heat balance equation reduces to

P, +
M,
2

m=l
;K OCm (T«m ~ T‘) = 0

(2.8)

since the left-hand side of Eq. (2.7) is zero.
If there are I nodal points, then since Eq. (2.8) will be applied at each node, there will be 

a system of I equations with I unknowns. The iterative technique which is used by HEATINGS 
to solve the system of equations is outlined below. First, solve Eq. (2.8) for T,.
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M,

T, =
P, + 2 ,Ka, 

m=l
Tam

M,
2

m=l
<Kn m

(2.9)

V

Since the values of Ta are unknown, the temperature at node i 'cannot be calculated directly 
from Eq. (2.9). However, an iterative procedure based on Eq. (2.9) can be used to estimate the 
steady-state temperature distribution. If an estimate to the temperature distribution exists, then 
Eq. (2.9) can be applied at each node, and hopefully, a better estimate to the temperature 
distribution will be obtained. Then, this new estimate can be used in Eq. (2.9) to produce an 
even better estimate. This iterative process can be written as

t! n+l)

M,-
2

m=l
p'+

M
2 ,-K 

m=l Oim

(2.10)

where the superscript (n) implies the nth iterate. Instead of using the results of Eq. (2.10) as 
the (n+l)st iterate, assume that it only yields an estimate and denote it as T!"+1). Then define 
the (n+l)st iterate to be

(2.11)

where the relaxation factor, (3, is limited to 0 < /? < 2. Notice that when /3 > 1, the new 
iterate is changed more than Eq. (2.10) specifies, and thus, the iterate is overrelaxed. Likewise, 
when /? < 1, the iterate is underrelaxed. If T!n+1) is replaced by Eq. (2.10), then Eq. (2.11) can 
be written as

T^11 = (1—/3)TSn| + (3
Pi +

M/

m=l
Mi
2

m=l
,K

(2.12)

If the nodes are numbered along the x-axis from left to right, then along the y-axis from 
bottom to top and finally along the z-axis from the smallest plane to the largest, then the rate 
of convergence for the iterative procedure can be increased by using the most recent value of 
the temperature in Eq. (2.12). This algorithm can be written as
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Tinfl) = (\~fi)vr + p(n)

L, M,
P'+ S,K„„T'"'+ ? .K^T™

m—I m^L^l
M,
X /K

m=l Otm

(2.13)

where L, is defined so that aLi < i < ai-j+i. Varga (Ref. 5) refers to this method as the point 
successive overrelaxation iterative method. To increase the rate of convergence, an exponential 
approximation for Eq. (2.13) is made based on the temperature change from one iteration to 
the next. The algorithm based on this approximation is used instead of Eq. (2.13) to calculate 
the new temperatures for nodes having relative temperature changes exceeding 10~3. However, 
the algorithm is designed to bound the temperature change so that the new temperature cannot 
be more than two times the old temperature. This prohibits the technique from diverging due 
to a bad estimate of the initial temperature distribution. The exponential approximation 
reduces to Eq. (2.13) for small temperature changes. Successive iterations are carried out by 
HEATINGS until

rp(rt+l) < e

max
(2.14)

where e is the specified convergence criterion.
Another extrapolation procedure which is commonly used to increase the rate of 

convergence in an iterative solution to a system of equations is the “Aitken 52 extrapolation 
procedure.” Briefly, if T*"-1’, T(n), and T("+1) are the temperatures at a certain point at the n-lst, 
nth and n+lst iterations, respectively, and if

[T■(itM) T1”’] | (2.15)

and

[T (n+l) T1"”11] > 0, (2.16)

then, a better estimate of the temperature is

[T
[Tin) 1 h - i’-j'1(n+l)

T’ --- T*"+1l 4-
A new l i (2.17)
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Actually, HEATINGS uses a modification of Aitken’s 82 method by calculating an 
extrapolation factor, B, and approximating Eq. (2.17) at each node with

-p(rt+l) _ 'J'j/l+l) _|_ g |-rp(/I+l) _ 'J'Mj (2.18)

where t!"+1) represents the n+lst iterate at node i before extrapolation.
A HEATINGS extrapolation cycle is defined as follows. The code completes 20 iterations 

and checks to see if the maximum of the absolute values of the relative temperature changes 
over an iteration has decreased monotonically over the last ten iterations. If not, the cycle 
starts over. If so, the code will extrapolate only if the relative change in extrapolation factors 
over two consecutive iterations is less than 5% and the maximum of the absolute values of the 
relative temperature changes decreases monotonically over the same two iterations. The 
extrapolation factor, B, which is the same for each node, is based on two maximum relative 
temperature changes; between the n-lst and the nth iterations and between the nth and the 
n+lst iterations.

The value of /3 in Eq. (2.13) which will produce the optimum convergence rate for all 
points is difficult to obtain analytically for simple geometries and is practically impossible to 
obtain for complex geometries. If an input value is not supplied for /3, then HEATINGS uses 
the default value of 1.9. If the rate of convergence appears to be slow, then HEATINGS 
reduces [3 by 0.1. The code determines whether or not the rate of convergence is slow in the 
following manner. It was noted above that during an extrapolation cycle, the relative 
temperature change over an iteration is monitored over ten consecutive iterations. If the relative 
temperature changes do not decrease monotonically over these ten iterations, then the current ,
relative temperature change is compared with the one arising ten iterations earlier. If the
current relative temperature change is greater than two-thirds of the old one, then the SOR
technique is converging slowly. This process may be repeated until /? = 1.0. However, the code ;
will not increase /3.

2.3. Transient Heat Conduction

HEATINGS is designed to solve a transient problem by any one of several numerical 
schemes. The first is the Classical Explicit Procedure (CEP) which involves the first forward 
difference with respect to time and is thus stable only when the time step is smaller than the 
stability criterion. Levy’s modification to the CEP is the second scheme, and it requires the 
temperature distribution at two times to calculate the temperatures at the new time level. The 
technique is stable for a time step of any size. The third procedure, which is written quite 
generally, actually contains several implicit techniques which are stable for a time step of any 
size. One can use the Crank-Nicolson heat balance equations, the Classical Implicit Procedure 
(CIP) or backwards Euler heat balance equations or a linear combination of the two. The 
resulting system of equations is solved by point successive overrelaxation iteration. Techniques 
have been included in the code to approximate the optimum acceleration parameter for 
problems involving constant thermal parameters as well as those whose effective thermal 
conductances and capacitances vary with time or temperature. The implicit procedure in 
HEATINGS has not been designed to solve problems involving materials which are allowed to 
undergo a change of phase.

The implicit procedure using the Crank-Nicolson heat balance equation is the 
recommended technique for solving transient problems. Levy’s modification to the CEP can be 
a useful tool for obtaining the solution to problems. However, one must experiment with the 
time step size before accepting the resulting solution.
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The stability criterion for the CEP is a function of a temperature-dependent heat 
generation rate or heat flux. This fact is not accounted for in HEATINGS. Also, Levy’s 
modification to the CEP is based on a constant heat generation rate or heat flux with respect 
to temperature. If one attempts to use one of the explicit transient algorithms along with a 
temperature-dependent source or heat flux, then the code will write out a warning message 
indicating that the time step allowed by HEATINGS may not yield a stable solution.

Equation (2.7) is the basic heat balance equation for transient problems. However, the 
right-hand side is modified for all but the CEP.

2.3.1 Classical Explicit Procedure

For a transient heat conduction problem, the heat balance equation, Eq. (2.7), can be 
solved for T"+1 to give

V+'= V +
At
C, Pf

M,
+ 2 ,K 

m=l Oim (2.19)

Since Eq. (2.19) expresses the temperature of the ith node at the n+lst time level in terms of 
temperatures at the nth time level, it is an explicit technique, and the algorithm is known as 
the Classical Explicit Procedure (CEP) or the Forward Difference Equation. HEATINGS uses 
Eq. (2.19) to solve transient heat conduction problems. The numerical solution obtained by 
using this technique is stable, provided the time step satisfies the following inequality (Ref. 6).

K At sS C,
M,
2

'm=i
,K Oim minimum for all nodes

(2.20)

2.3.2 Levy’s Modification to the Classical Explicit Procedure

The limitation on the size of the time step as indicated in Eq. (2.20) means, in many 
practical problems, a very high ratio of computer time to actual time. In some cases 
computation costs become so high that the use of the algorithm defined by Eq. (2.19) becomes 
impractical. Levy [Ref. 7] proposed a modified explicit method which is stable for any time 
step desired. This method has been incorporated as an option in HEATINGS. The basic 
equation used is

T">72+1 __ T? +
-M,

2
m=l -Kam (Tam “ T?) + PfOim + Z, [T? Tf1] | (2.21)
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where

Z, = a factor for node i which will insure a stable solution 
for any time step At.

If from Eq. (2.20), (Atmax); is the maximum time step allowed at node i for a stable 
solution in the regular explicit method, then the factor Z, in Eq. (2.21) is defined as

Z, =

0,if At
(Atmax)j

0.5 At
(AW*),-

1

if At
( Atmajr)i

> 1 (2.22)

P

Levy (Ref. 7) says that the accuracy is good if Z, is zero for somewhat over half of the 
nodes. Of course, one must experiment with the size of the time step in order to obtain an 
acceptable solution.

2.3.3 Implicit Procedure

a. Heat Balance Equation

If the right-hand side of Eq. (2.7) is evaluated at Wn instead of t„, then the scheme is 
known as the Classical Implicit Procedure (CIP) or the backwards Euler procedure. If the 
right-hand side of Eq. (2.7) is evaluated at Wn/2, then the algorithm is known as the 
Crank-Nicolson (CN) procedure. A general algorithm which includes both the CN technique 
and the CIP is

*

9[miiK”-0<T“"~'irl)]= pn+° + @ | J ,Kn+V« - TT) I +

(l-@) [j x”t0 <T«.- T’)J
(2.23)

where 0 ^ ^ 1 and where the superscript n+© implies that the parameter is evaluated at
time tn+e. If 0 = 0.5, then Eq. (2.23) becomes the CN technique and if 0 = 1.0, the algorithm 
is the CIP. When 0 is less than 0.5, the technique is no longer stable for any time step. Notice 
that Eq. (2.23) reverts to Eq. (2.7) when 0 = 0. This algorithm has been incorporated into 
HEATINGS for 0.5 ^ ^ 1.0.
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b. Numerical Technique

If there are I nodes in the problem and if the heat balance equation, Eq. (2.23), is written 
for each node, then there will be I equations and I unknowns, and the resulting system of 
equations can be solved iteratively. The procedure that is used in HEATINGS is outlined 
below. If Eq. (2.23) is rewritten so that the temperatures at tn+i are on the left-hand side, then 
the equation becomes

/M,- °(mi ts:
+

rc"+@
At (2.24)

where

rn+0 r M'
H, = V + P? + (1-0) 17)m—1

(2.25)

If we let

(2.26)

and if we delete the superscript, n+l, on the temperature, T, then Eq. (2.24) can be rewritten 
as

M,
2 ,K 

(m=l
n+0
Oim + D,T, = H, (2.27)

where it is now understood that T, represents the temperature of node i at the new time level. 
If Eq. (2.27) is solved for T„ then

T,
0 (

M,
2 ,K 

m=l
n+0am H,

D, (2.28)
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Since the values of Tam are unknown, one cannot directly solve for the temperature at node i. 
However, if an estimate of the temperature distribution at the new time level exists, then 
Eq. (2.28) can be solved at each node, and hopefully, one will have a better estimate for the 
temperature distribution. The procedure can be repeated using this better estimate. This process 
can be continued until the estimates have converged to the approximation of the temperature 
distribution at the new time level. This algorithm can be written as

0
rp(/2+l) —

' M,
2 ,•]

, m=l
.n+0

Ta + H,

D,

►

(2.29)

where the superscript (n) on T, refers to the nth iterate of the temperature at node i at the 
new time level.

Instead of using Eq. (2.29) in the iterative process, the technique can be refined further. 
First, consider Eq. (2.29) as only an approximation to the (n+l)st iterate or

0 ( T«m) + H-
fr1* = —25L_!----------------- L-----------  (2.30)

and then define the (n+l)st iterate as

+ w [Tr11 Tl"’] (2.31)

or

Tin+1) = (1-w) T,(n> + w Tln+1) (2.32)

where 0 < co < 2. Thus, the change in temperature based on the value at the last iteration i. 
more (cu > 1) or less (to < 1) than the calculated value. Usually, the iterative procedure 
converges faster when eo ^ 1, and thus, w is commonly referred to as the acceleration 
parameter. Combining Eqs. (2.30) and (2.32), one obtains
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T!"+1) = (l-w) Tl”' +
0
(I*"0 T-)

+ H,

D,
(2.33)

If we always use the most recent iterates on the right-hand side of Eq. (2.33), then the 
algorithm reduces to

0
t!'*1’ = (i - w) tT’ + w

y' Kn+0 jin)
^ ,Kam 1 (Xml

m=L,+ l

.) + H

D,
(2.34)

where aL± < i < ar-i+i. It was pointed out in the previous section that this method is referred 
to as the point successive overrelaxation iterative method. HEATINGS applies Eq. (2.34) to 
each node until the convergence criteria have been met.

The convergence criteria are derived as follows. When the nth iteration has been 
completed, substitute the nth iterates into Eq. (2.27) and denote the heat residual as

Rj"1 = H, + 0
M,
2 ,K 

m=l
n+©
Oim (2.35)

Now normalize the heat residual by dividing by the right-hand side of Eq. (2.24) or

RiM
H, + 0 ( X .K^0 

m=l
-r(«)
L(Xm ) - D, T;(n)

H, H,
(2.36)

HEATING5 uses two convergence criteria based on this normalized heat residual. They are

R W
(ff-) ^ * (2.37)
n‘ max
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and

(2.38)

The iterative procedure is started in the following manner. For the first time step, the 
starting estimate is equal to the initial temperature distribution. Thereafter, the starting estimate 
at tn+i is determined by

fr1 = t? + (V - Tr'xAw./Atn) (2.39)

c. Temperature-Dependent Properties

For problems involving temperature-dependent thermal properties, the iterative procedure is 
as follows. Initially, the thermal parameters are evaluated at the initial temperatures. Then, the 
point successive overrelaxation iterative method as described above is applied to obtain the 
temperature distribution at the new time level. However, since none of the thermal parameters 
are updated during this procedure, the converged temperatures are only an estimate to the 
temperature distribution. Thus, the thermal properties are reevaluated and the entire procedure .
is repeated until the technique converges to the temperature distribution at the new time level.
This process contains two levels of iteration. The inner loop is the basic iterative process in the
point successive overrelaxation iterative method while the outer loop iterates on the thermal +
parameters. Let T"’m denote the temperature of node i after the mth iteration on the outer loop
at time t„. Upon the completion of the mth outer loop, the temperature at which the thermal
parameters are evaluated is calculated as

fr0 = (i - q)t" + © fr (2.40)

The temperature distribution has converged at time t„ when the Li norm of the relativized 
temperature difference over successive iterations is less than the prescribed value or

||Ar”'1|1 sSej (2.41)

where

V
(2.42)
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d. Estimation of the Optimum Acceleration Parameter

The rale of convergence of the point successive overrelaxation iterative method is strongly 
dependent on the value of the acceleration parameter co. The optimum value of the parameter, 
denoted as (o0, is usually not known prior to the solution to a problem, and it is a function of 
time for problems whose effective thermal conductances and capacitances vary with time or 
temperature. Several techniques have been developed to estimate co0 for transient problems with 
constant thermal properties. The method developed by Carrd (Ref. 8) has been incorporated 
into HEATINGS. Briefly, this method consists of estimating co0 based on the behavior of a 
norm of the residual vector during the iterative procedure. The estimates are computed as a 
function of the iteration number until the process converges to a best estimate to the optimum 
value. Thereafter, the code uses this converged value as the acceleration parameter.

It was observed that this process was not satisfactory for problems involving temperature- 
and time-dependent conductances and capacitances, so an empirical process was developed and 
added to HEATINGS to estimate co0. For the initial time step co is equal to unity. The code 
will attempt to update co every N^ time steps relative to the last time co was changed. The 
criteria which are applied to determine whether or not the current value of co is a good 
estimate to co0 are based on the number of iterations required for the inner iterative loop to 
converge on the first pass through the outer iterative loop at some time step. When the code 
determines that an attempt to update co should be made after completion of a particular time 
step, then the number of iterations for this time step is compared to the number for the time 
step immediately following the last modification to co. If the change in the number of iterations 
is equal to or exceeds the criterion 1^ (an input value), then co is increased according to

co"41 = 0/+ 0.1 (2.0 - co") (2.43)

where the superscript n refers to the value of co at time t„. On each subsequent time step a 
new estimate is made for co0 using an algorithm similar to Eq. (2.43). However, co may be 
either increased or decreased according to Table 2.1. When the change in the number of 
iterations for two consecutive time steps is less than the criterion (an input value), the code 
assumes that it has a good estimate for co0 and it uses this value for the subsequent time steps 
until it is time to attempt another co update. At this time, the entire procedure is repeated.

Table 2.1. Logic to Determine Whether co Should be 
Increased or Decreased

Change in number of 
iterations compared 

to previous 
time step Increase Decrease

Last
update resulted 

in co being

Increased Decrease Increase
Decreased Increase Decrease
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2.3.4 Variable Time Step Size

The time step size can be varied in a number of ways during the implicit transient 
calculations. First it can be controlled explicitly by specifying it as a constant size during the 
entire calculation or during prescribed time intervals throughout the transient. The time step 
size can also be varied explicitly by multiplying it by some prescribed factor after each time 
step subject to maximum and minimum values which may or may not be specified.

Finally, it can be varied implicitly in two ways. One can specify the maximum temperature 
change and the maximum percent of relative change in temperature allowed at a node over a 
time step. The time step size is either decreased if one of the calculated maximum values 
exceeds its respective criterion or is increased if both of the calculated maximum values is less 
than their respective criteria. The size is increased or decreased in the following manner. If one 
of the calculated values exceeds its respective criterion, then

fAi = min (0.95 * calculated value ? TSFACT)

where TSFACT is an input value representing the factor which is multiplied by the old time 
step size to obtain the new time step size. The factor 0.95 is to insure the decrease is large 
enough since the maximum temperature change is not linear with the changing time step size. 
The new time step size is then determined as

At/iew maX (Atmin, f A t * Atow)

where Atm,„ is an input value representing the smallest time step size allowed and AtDw is the 
current time step size. If one of the calculated values is less than its respective criterion, then

fAi = max (0.95 * calcSueTvalur, TO)

where the factor 0.95 is to insure the increase is not too large since the maximum temperature 
change is not a linear function of the time step size. Then

f A, = min(f A(, TSFACT, 2.0)

where TSFACT was described above. The new time step size is then calculated as

Atnew min(At maxi fA( * Mold)

where Atmax is an input value representing the largest time step size allowed. If both options 
are specified, the code uses the smaller of the two new time steps.

If the new time step size is smaller than the old one, the code rejects the temperature 
distribution it has just calculated and returns to the old time level. It then calculates a new 
temperature distribution at the new time level using the smaller time step size. If the code 
reduces the time step size NREP (currently 10) times, it writes out a warning message, reduces
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the time step size to the minimum value, recalculates the temperature distribution using the 
new time step size and moves ahead to the next time level.

If the new time step size is greater than or equal to the old one, ‘the code accepts the 
temperature distribution it has just calculated and moves on to the next time level. If a time 
step size has been reduced, the code will not allow it to be increased again until NREDUC 
(currently equal to 5) time steps have lapsed.

When the time step size is varied implicitly, the time step size and the associated criteria 
can be greatly affected by discontinuities in the boundary conditions, time-dependent functions, 
temperature-dependent functions, and especially the initial conditions. The user must be 
selective in choosing input parameters for these cases. One approach would be to control the 
time step size explicitly for short periods of time following these discontinuities. One may also 
need to start out with a small time step size initially to smooth out the data.

As the transient calculations approach a printout time, the time step size is automatically 
reduced to allow the temperature distribution to be printed out at the exact specified time. The 
old time step size is saved so that calculations can resume using the old time step after the 
printout.

2.4. Temperature-Dependent Thermal Properties

HEATINGS allows the thermal conductivity, k, the specific heat, Cp, and the density, p, to 
vary with temperature. The code determines the conductivity of the material between two 
nodes, i and j, by evaluating the temperature-dependent conductivity at an average of the 
temperatures of the two nodes. This temperature is calculated as

'p(rt-l) _j_ y(n-l)

2 (2.44)

after completion of the nth iteration for steady-state problems, as

'-p/2 _ T”~‘ +TT1
2 (2.45)

after completion of the nth time step for transient problems involving one of the explicit 
techniques, and as

^n+0 ^n+0 ^n+0
T, + Tj

2
(2.46)

during the calculation of the temperature distribution at time Wn for transient problems 
involving the implicit procedure. The temperatures denoted as TT+0 in Eq. (2.46) are evaluated 
according to Eq. (2.40). For transient problems, the specific heat and density are determined
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for node i by evaluating the respective temperature-dependent function at T" after completing 
the nth time step using one of the explicit techniques and at T"+0 as determined by Eq. (2.40) 
during the calculation of the temperature distribution at time t„+i using the implicit procedure. 
In addition, the thermal conductivity of a material can be anisotropic. See Section 3.6.7 for 
details of how to utilize this option.

2.5. Boundary Conditions

HEATINGS possesses a variety of boundary conditions to enable the user to model his 
physical problem as accurately as possible. In general, a boundary condition is applied along a 
surface of a region and heat is transferred from a surface node to a boundary node or to the 
corresponding node on the opposing parallel surface. Surface nodes are actually internal nodes 
which are located on the edge of a region. Boundary nodes are dummy nodes and their 
temperatures are not calculated by the code but are specified as input to the code. These 
temperatures are only used to calculate the heat flow across a boundary surface. The boundary 
conditions which can be applied over the surface of a region in the current version of 
HEATINGS are listed below.

a. The temperature on the surface of a region can be specified as a constant or a 
function of time.

b. The heat flux across the surface of a region can be specified directly as a constant or 
a function of time and/or surface temperature.

u. The heat flux across the surface of a region can be specified indirectly by defining the 
heat transfer mechanism to be forced convection, radiation and/or natural convection.

The numerical techniques used in calculating the temperatures of surface nodes associated 
with a boundary condition are discussed below. The temperatures of nodes on surfaces whose 
temperatures are specified are not calculated from Eq. (2.7). Instead, the surface node 
temperature is set equal to the specified value. When a heat flux is specified across a surface, 
then for each node on that surface, the specified heat flux is multiplied by its surface area 
normal to the heat flow path associated with the boundary condition, and the result is added 
to the heat generation term, P/, in Eq. (2.7). If the heat flux is temperature-dependent, then it 
is evaluated at the average temperature of the related surface node and boundary node for 
surface-to-boundary boundary conditions and the average temperature of opposing 
surface-nodes for surface-to-surface boundary conditions. Simulation is not required for 
insulated boundaries. Heat is simply not allowed to cross the surface.

The boundary conditions are classed as either surface-to-boundary (type 1), isothermal 
(type 2), or surface-to-surface (type 3). Boundary conditions of the surface-to-boundary type are 
used to define heat transfer between a surface node and a boundary node. The temperature of 
the boundary node is specified and can be a function of time. Surface-to-surface boundary 
conditions are used to define heat transfer between parallel surfaces. In this case, heat is 
transferred between a node on one surface to the corresponding node on the opposing surface. 
In other words, in Fig. 2.2, surface-to-surface boundary conditions could be utilized to describe 
the heat transfer process between nodes 1 and 2, nodes 3 and 4, and nodes 5 and 6.
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Fig. 2.2. Surface-to-Surface Heat Transfer

For both surface-to-boundary and surface-to-surface boundary conditions, the leakage term 
in Eq. (2.7) is calculated as follows:

['KcJT^- Tf)] = iKi(Ti - V) (2.47)

where ,K(, is the effective conductance from surface node i to boundary node b or the opposing 
surface node b, and T* is either the temperature of boundary node b or the opposing surface 
node b at time U. The effective conductance is calculated as

,-Ki — hA (2.48)

where h is the effective heat transfer coefficient, and A is the surface area, normal to the heat 
flow path, of node i associated with the boundary condition.

The effective heat transfer coefficient is defined as

h = hc + hr [err)2 + (T*)2] [Tr + Tr]

+ h„ |TF - TF \he (2.49)

where

hc is the heat transfer coefficient for forced convection,

hr is a coefficient (product of the gray body shape factor and Stefan-Boltzman
constant) for radiative heat transfer,

h„ and he are, respectively, the coefficient and exponent for the term simulating the
effects of natural convective heat transfer or some other heat transfer process
such as boiling.
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The parameters h^, hr, h„, and he must be specified by the user and can be time- and/or 
temperature-dependent. When he, hr, h„, and he are temperature-dependent, they are evaluated 
at the average temperature of the opposing surface-nodes for surface-to-surface boundary 
conditions. For surface-to-boundary boundary conditions, hc, h„, and he are evaluated at the 
average temperature of the related surface node and boundary node, whereas hr is evaluated at 
the temperature of the surface node. For surface-to-boundary boundary conditions, the 
boundary temperature, T?,, must also be supplied by the user. The temperatures are entered in
either °F or °C, and the code converts them to absolute degrees when a radiative boundary
condition exists. In computing the effective conductance for a surface-to-surface boundary 
condition across a radial gap, the code uses the cross-sectional area at the smaller radius
bounding the gap. This is important for the user to remember when he evaluates the radiation
shape factor in hr.

HEATINGS is designed so that, simultaneously, one may consider surface-to-surface heat 
transfer across a region as well as conduction through the region. This is accomplished by 
defining the region to contain a material as well as by defining surface-to-surface boundary 
conditions across parallel surfaces of the region. Also, one may consider surface-to-surface heat 
transfer across a gap as well as surface-to-boundary heat transfer along the edge of the gap. 
This is done by defining the gap as a gap region (i.e., it does not have a material associated 
with it) with surface-to-surface boundary conditions applied across parallel surfaces of the 
region. Then surface-to-boundary boundary conditions are defined on the adjacent material 
regions at the surfaces defining the edges of the gap. Note: A surface-to-boundary boundary 
condition can be applied along the surface of a region only if there is no region adjacent to it 
or the adjacent region is defined as a gap region. See Section 3.2 for an example.

2.6. Change of Phase

Selected materials are allowed to undergo a phase change during the transient calculations. 
The following technique is used in calculating the temperatures of nodes composed of materials 
which can have a change of phase. Let the melting ratio, XL, be the ratio of heat which has 
been absorbed after the transition temperature has been reached to the total heat needed to 
complete the phase change for a material in node i. Unless an input value is specified, the 
initial melting ratio is calculated as

XL =
0.0,

1.0,

T,p < Tmelt, i

TP ^ Tmelt.i
(2.50)

where

T? is the initial temperature of node i and

Tmeit.i is the smallest phase-change or transition temperature associated with node i.

If the melting ratio of a node is zero, its temperature is allowed to increase until it reaches the 
transition temperature of the material associated with it. Then, the temperature of the node is 
held at the transition temperature, and the material is allowed to change phase in the following 
manner. The incremental melting ratio over the nth time step is calculated as
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(2.51)

where

Aqf is the net heat into node i during the nth time step,

Pi,m is the density of material m evaluated at T",

Hm is the latent heat of material m, and

V;>m is the volume of material m associated with node i.

This incremental ratio is added to the current value of XI, at each time step until XI, exceeds 
unity. Any excess heat remaining after a change of phase is used to change the temperature of 
the node as follows:

(2.52)

for XI? >1.0 where C? is the heat capacitance of node i during the nth time step. Then, the 
melting ratio is set to unity, and the temperature of the node is allowed to increase. Likewise, 
if the melting ratio of a node is unity, its temperature is allowed to decrease until it reaches 
the transition temperature of the material associated with it. Then, the temperature of the node 
is held at the transition temperature, and the material is allowed to change phase in the 
following manner. The incremental melting ratio, Eq. (2.51), is added to the current value of 
XI, at each time step until XI, is less than zero. Any excess heat remaining after a change of 
phase is used to change the temperature of the node as follows:

(2.53)

for XI? < 0.0. Then, the melting ratio is set to zero, and the temperature of the node is 
allowed to decrease.

If a node is associated with more than one material which can change phase, then each 
material is allowed to change phase independently. The materials are ordered by increasing 
transition temperature. If the temperature of the node is increasing, then its temperature is not 
allowed to exceed the lowest transition temperature until the melting ratio increases from zero 
to unity. Once the melting ratio reaches unity, it is fixed there, and the temperature of the 
node is allowed to increase until it reaches the second transition temperature. Then, the melting 
ratio is set equal to zero, and the temperature of the node is not allowed to increase until the 
melting ratio increases from zero to unity. Once the melting ratio reaches unity, the 
temperature of the node is allowed to increase again. This process is repeated until each 
material associated with the node changes phase. The logic is similar when the temperature of 
the node is decreasing. However, the melting ratio of a node is set to zero when its 
temperature is between transition temperatures of the materials associated with it.

It must be emphasized that this technique will allow changes of phase in both directions 
for as many times as it may be needed.

2.7. Initial Temperatures

Unless it is explicitly specified, the initial temperature at a node is calculated as a 
volume-average and a heat-content-average of the specified initial temperatures of the materials 
associated with the node for steady-state and transient cases, respectively.
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3. INPUT DESCRIPTION

3.1. General

This section is designed to guide the user through the steps necessary to solve a heat 
transfer problem with HEATINGS. First, a set of instructions is presented to aid the user in 
representing the geometrical configurations of the problem with a lattice of points. Then, the 
functions used by the code to define the material parameters are given. A detailed discussion of 
the input cards is presented followed by a brief outline of the input data for the benefit of the 
user who is familiar with the data preparation. In preparing the input data, any consistent set 
of units may be used in the HEATINGS program except for problems involving radiation. 
Then, all temperature units must be in either degrees Celsius or Fahrenheit. The units 
associated with the algorithms which appear in user-supplied subroutines must be consistent 
with those of the input data.

3.2. Regions

First, the configuration of the problem is approximated by dividing it into regions, 
depending on the shape, material structure, indentations, cutouts, and other deviations from the 
general geometry. In some cases, zoning into regions must be done in order to describe a 
specific boundary condition or a material whose thermal conductivity, density, or specific heat 
is a function of position. There are three basic rules governing region division:

(1) Boundary lines or planes must be parallel to the coordinate axes (two points, four 
lines, or six planes are required to enclose a region in one-, two-, or 
three-dimensional geometry, respectively).

(2) A region may contain at most one material (however, many regions may contain the 
same material). A gap region does not contain a material.

(3) When a boundary condition is defined along the boundary of a region, it must apply 
along the full length of the boundary line for two-dimensional problems and over all 
of the boundary plane for three-dimensional problems.

Consider, for example, a case consisting of a simple rectangle in x - y geometry, half of 
which contains one material, and the other half a second material, as depicted in Fig. 3.1.

ORNL—DWG 76-10916

□ MATERIAL 1 

MATERIAL 2

REGION 1 REGION 2

Fig. 3.1. HEATINGS Region Description for Two-Dimensional,
Rectangular Model Composed of Two Materials.
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This elementary case would require two regions (as indicated)—one for each material. If the 
upper right corner of the rectangle is omitted as in Fig. 3.2, three regions are required as 
shown.

ORNL—DWG 76-10915

MATERIAL 1

MATERIAL 2

REGION 1

Fig. 3.2. HEATINGS Region Description for 
Two-Dimensional, Rectangular Model with Indentation.

The division of the right half of the rectangle into two regions accounts for the indented or 
cutout upper right corner. Note that regions 2 and 3 of Fig. 3.2 contain the same material.

Now consider the case of Fig. 3.2, introducing boundary conditions as in Fig. 3.3. The left 
boundary of the left-most rectangle now contains two different boundary types. Thus, in 
accordance with the third basic rule, region zoning is performed to account for the different 
boundary conditions, and an additional region is required.

ORNL DWG 76- 10917

CONSTANT TEMPERATURE

INSULATED

REGION 1

REGION 2

x
FILM COEFFICIENT

n MATERIAL 1 

Y//A MATERIAL 2

Fig. 3.3. HEATINGS Region Description for Two-Dimensional,
Rectangular Model with Various Boundary Conditions.
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To specify heat transfer between parallel surfaces, one defines a region whose boundaries 
include the two parallel surfaces. Then, the boundary condition describing the heat transfer 
process (type 3, see Section 3.6.10a) is applied along both of the surfaces of this region. 
Although the regions adjoining the parallel surfaces involving the surface-to-surface heat 
transfer may be composed of more than one material, they must be defined and must contain 
a material. The region itself may or may not contain a material. In Fig. 3.4, surface-to-surface 
heat transfer cannot be defined between the left and right boundaries of Region 3 since part of 
the area adjoining the right boundary is undefined.

ORNL- DWG 76-10918

material 1

WZA MATERIAL 2 

£5551 MATERIAL 3 

□ GAP

Fig. 3.4. Region Description for Two-Dimensional, Rectangular 
Model Involving Surface-to-Surface Boundary Conditions, 

Incompatible with HEATINGS.

In Fig. 3.5 surface-to-surface boundary conditions can be applied along the left and right sides 
of Region 3.

region i

REGION 3

ORNL DWG 76 10919

material i 

MATERIAL 2 

w MATERIAL 3

I 1 gap

Fig. 3.5. HEATINGS Region Description for Two-Dimensional,
Rectangular Model Involving Surface-to-Surface Boundary Conditions.
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If a surface-to-surface (type 3) boundary condition has been defined along a surface of a 
region and a surface-to-boundary (type 1) boundary condition is desired along the same 
surface, then the type 1 boundary condition must be applied along the surface of the adjoining 
region. In Fig. 3.5, surface-to-surface boundary conditions can be applied along the left and 
right sides of Region 3 while a surface-to-boundary boundary condition can be applied along 
the left side of Region 4. This can be done only if Region 3 is a gap region. See Section 2.5 
for more details.

3.3. Lattice Arrangement

The second requirement for describing the overall configuration is to construct a set of 
lattice lines perpendicular to each axis and extending the entire length of the remaining 
coordinates. The lattice lines are really points, lines, or planes for a one-, two-, or 
three-dimensional problem, respectively. However, the phrase, lattice line, will be used for 
illustrative purposes. The lattice is defined in the following manner. The lattice lines are divided 
into two classes: gross lattice lines and fine lattice lines. A gross lattice line must be specified 
at both region boundaries along each axis. Fine lattice lines, equally spaced, may appear 
between two consecutive gross lattice lines to create a finer mesh. If unequal mesh spacing is 
desired within a particular region, then gross lattice lines may appear within that region. A 
nodal point is defined by each lattice point in one-dimensional problems, by each intersection 
of two lattice lines appearing in a material region or on its boundary in two-dimensional 
problems, and by every intersection of three lattice planes appearing in a material region or on 
its boundary in three-dimensional problems. The points are numbered consecutively by the 
program at the intersection of each X- (or R-), Y- (or 0-), and Z-plane starting with the planes 
nearest the origin and changing the X- (or R-) plane most rapidly and the Z-plane least. 
Temperatures are calculated at each such nodal point.

3.4. Analytical and Tabular Functions

The analytical and tabular functions are built-in functions which may be used to aid in the 
description of some of the input parameters. An analytical function is defined by

F(v) — Ai+A2V+A3V2+A4Cos(A5v)+A6exp(A7v)+A8sin(A9v)+Aio/n(Aiiv) . (3.1)

A tabular function is defined by a set of ordered pairs, (vi, G(vi)), (V2, G(v2)),..., (v„, G(v„)), 
where the first element of a pair is the independent variable and the second is the 
corresponding value of the function. In order to evaluate the tabular function at some point, 
the program.uses linear interpolation in the interval containing the point. The set of ordered 
pairs must be chosen so that the independent variable is arranged in ascending order or

Vi < v2 < v3 < ... < vn_i < \n . (3.2)

If the function must be evaluated at some point outside of the defined domain of the function, 
then

G(vi), v < vi
(3.3)G(v) =

G(v„), v > v,
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3.5. Input Parameters

The input parameters included in Table 3.1 must be defined by a function having the 
following form:

P(x,y,z,t,T) = P0 • f(x,y,z,t,T) , (3.4)

where P0 is a constant factor and f(x,y,z,t,T) may be a product of analytical and tabular 
functions, such as

f(x,y,z,t,T) = F,<x)-FXy)-Ft(z)-F/(t)-Fm(T) . (3.5)

In observing the definitions of the input parameters (see Table 3.1) which may be defined by 
Eq. (3.4), it is noted that only the volumetric heat generation rate is a function of all the 
independent variables. Thus, if any variable is omitted from the definition of the parameter, 
then the corresponding factor is set equal to unity in Eq. (3.5). The constant factor, P0, is part 
of the input data, and its value appears on the data card which is used to define the 
parameter. If one of the input parameters is to be a function of position, time, or temperature, 
then the appropriate index or indices, i, j, k, / or m, from Eq. (3.5) are entered on a data
card, too. If an index is positive, then it defines the number of the analytical function for the
respective variable. If it is negative, then the absolute value of the index defines the number of 
the tabular function for the respective variable. If any of the defined factors for a parameter 
are omitted from the input data, then that particular factor is set equal to unity in Eq. (3.5). If 
none of the factors are defined in the input, then that particular parameter is treated as a 
constant. If the value of Po is zero or is left blank on the data card and if the data indicates
that the parameter is to be a function of position, time or temperature, then P0 is set equal to
unity in Eq. (3.4). If the value of Po is zero or is left blank and if the data indicates that the 
parameter is not a function of position, time, or temperature, then Po is set equal to zero in 
Eq. (3.4).

If the parameter cannot be defined by a product of analytical and tabular functions as 
indicated in Eq. (3.5), then the user may supply his own subroutine to evaluate Eq. (3.4). 
Table 3.1 contains each input parameter and the name of the corresponding subroutine which 
must be supplied if the user wishes to create his own function. Table 3.1 also includes the 
independent variables which may be used to define each parameter. For further details 
involving user-supplied subroutines, see Appendix C.

If the thermal conductivity of a material is anisotropic, then it must be defined in 
user-supplied subroutine CONDTN (see Section 3.6.7).

3.6. Card Description

A detailed description of the card input is presented below. Except for Card 1, the M 
cards, and the deck composed of the IT cards, the input data are arranged on each card in 
9-column fields. All integers must be right-adjusted, i.e., the last digit of each integer must 
appear in a column which is a multiple of 9. Except for the IT cards, columns 73 through 80 
of each card are reserved for identification to aid the user in the preparation and handling of 
the data.

3.6.1. Card l - Title of Problem

This card, which can contain alphanumeric characters in the first 72 columns, contains a 
descriptive title for the problem. The card itself cannot be omitted although it may be left 
blank.
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Table 3.1. Dependence of Input Parameters

Parameter

Function of
Related User- 

Supplied SubroutineX y z t T

k (X) X CONDTN

P (X) X DNS IT Y

cP (X) X CPHEAT

T0 X X X (X) INITTP

Q X X X X X HEATON

Tb X BNDTMP

hc (X) (X) (X) X X CONVTN

hr (X) (X) (X) X X RADITN

h„ (X) (X) (X) X X NATCON

he (X) (X) (X) X X NCONEX

h/ (X) (X) (X) X X BNFLUX

NOTE: The x enclosed in parentheses, (x), indicates that although the parameter cannot be an 
explicit function of the indicated variable using normal input data, this variable is 
initialized in the respective user-supplied subroutine. Thus, the parameter can be a 
function of the indicated variable if it is so defined in its respective user-supplied 
subroutine.
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3.6.2. Card 2 - Input Parameters

All eight entries in this card are integers.

a. Maximum CPU Time

When one submits a job to the computer, the maximum CPU time that the job is 
expected to run is indicated on the CLASS card. If the CPU time exceeds this time, 
then the job will be pulled by the system without printing out the current temperature 
distribution. In order to prevent this, the maximum CPU time (seconds) for the IBM 
360/91 at ORNL or IBM 360/195 at ORGDP is specified as the first entry in Card 2. 
As a safety factor the code subtracts five seconds from this specified time. If the code 
determines that the job is being run on the IBM 360/75, then it multiplies the number 
in this entry by 5. After each iteration or time step, a check is made to see if the 
CPU time exceeds the specified time. If so, it completes all of the output options 
which are specified and attempts to read the data for the next problem, if any. This 
time should be less than the CPU time specified on the CLASS card.

b. Type Geometry

The HEATINGS Program offers nine possible geometries (seven and eight are really 
the same) which are members of either the cylindrical, the Cartesian or the spherical 
coordinate system. These are listed below.

Cylindrical Rectangular Spherical

1 R-0-Z 6 X-Y-Z 10 R

2 R-0 7 X-Y

3 R-Z 8 X-Z

4 R 9 X

5 Z

One-, two-, or three-dimensional systems are allowed in either cylindrical or Cartesian 
coordinates by entering the appropriate number (1-9, as indicated above) as the second 
entry of Card 2. A one-dimensional model described in the radial, spherical coordinate 
system is defined as a Type 10 geometry.

c. Total number of Regions

The total number of regions of the entire configuration is entered as the third entry. A 
maximum of 100 regions is allowed.

d. Total Number of Materials

The fourth entry of this card contains the total number of different materials. There 
can be a maximum of 50 materials.

e. Total Number of Materials with Change of Phase Capabilities

The total number of materials with change of phase capabilities is the fifth entry of 
Card 2 (see Section 3.6.7). If phase changes are not considered in this problem, then 
this entry must be left blank. There can be a maximum of five such materials.
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f. Total Number of Heat Generation Functions

The total number of different heat generation functions (a maximum of 20) is the 
sixth entry of Card 2. This entry must be left blank if there are no heat generation 
functions.

g. Total Number of Initial Temperature Functions

This entry (the seventh on Card 2) is the total number of different initial temperature 
functions, up to a maximum of 25. If there are no initial temperature functions, this 
entry must be left blank, and the program will assume that the initial temperature 
distribution is zero degrees.

h. Total Number of Boundaries

The eighth entry of Card 2 is the total number (maximum of 50) of boundary 
conditions. If there are no boundary conditions explicitly specified in the input data, 
this entry must be left blank.

3.6.3 Card 3 - Input Parameters

Each entry on this card is an integer.

a. Gross Lattice Size

The first three entries of this card contain the total number of gross lattice lines in (1) 
X or R direction, (2) Y or 0 direction, and (3) Z direction. If any dimension is 
omitted, a zero is inserted in the appropriate entry for the total number of gross 
lattice lines or the appropriate entry must be left blank. There can be a maximum of 
50 gross lattice lines along each axis.

b. Total Number of Analytical Functions

The fourth entry is the total number of different analytical functions. There can be a 
maximum of 25 of these functions. If there are no analytical functions, then this entry 
must be left blank.

c. Total Number of Tabular Functions

The total number of tabular functions is the fifth entry of this card. There can be a 
maximum of 25 functions. If there are no tabular functions, then this entry must be 
left blank.

d. Temperature Units

For problems involving radiation, the temperature units must be either °F or °C. 
Entry *6 is used only for problems involving radiation. It indicates that the units of 
temperature are either in degrees Fahrenheit or degrees Celsius.

Entry 6 Temperature

0 or Blank °F

1 C
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e. Three-Dimensional Output Map Flag

The seventh entry on this card is a flag which is only used for three-dimensional 
problems. Normally, the temperature output map for three-dimensional problems is 
printed for each XY or R0 plane. If this entry is nonzero, then the temperature output 
map will be printed for each XZ or RZ plane.

f. Updating Temperature-Dependent Properties

The eighth entry on this card specifies the number of iterations which are allowed 
before the temperature-dependent thermal properties are reevaluated for steady-state 
problems. Once the convergence criterion has been satisfied, the code continues to 
iterate. However, the temperature-dependent thermal properties are now reevaluated 
after every iteration until the convergence criterion is satisfied a second time. Some 
nonlinear problems will converge in fewer iterations if the thermal properties are not 
evaluated at each iteration, and certainly, the computing time per iteration will be less. 
It is recommended that this parameter be on the order of 10 or 20. If it is blank or 
zero, then the default value is unity for nonlinear problems.

3.6.4. Card 4 - Input Parameters

Each entry on this card is an integer.

a. Transient Output

For transient problems, the output may be specified in either of two ways:

(1) The temperature distribution may be printed out at equally spaced times. To 
specify this option, the first entry on Card 4 must contain the number of initial 
time steps between outputs, and the second entry must be blank. For example, if 
a value of 5 is entered, the temperature distribution will be printed at times 
whose spacing is equal to five times the initial time step.

(2) The temperature distribution may be printed out at unequal time increments. To 
choose this option, the first entry on Card 4 must be left blank and the second 
entry must contain the number of times the temperature distribution will be 
printed out. The actual output times will be entered on the O cards.

The temperature distribution is automatically printed out prior to the first time step 
for transient calculations and prior to the first iteration for steady-state problems. In 
addition, the temperature distribution may be printed out up to 100 times for each 
transient portion of the problem. For steady-state-only calculations, the first and 
second entries may be left blank.

b. Graphical Output

The third entry on Card 4 indicates whether or not graphical output is desired. At 
times it is desirable to have plots of the temperature distribution to aid in the 
interpretation of the results from HEATINGS. By entering a nonzero integer in this 
field, a data set will be created which contains the temperature distributions along with 
certain parameters which identify the problem. The absolute value of the integer 
identifies the unit number on which the data set is to be created. If it is a positive 
integer, a new data set is created. If it is negative, then the temperatures from this run 
will be added to those from a previous run. The data set containing the temperatures 
from the previous run will be read from the unit whose number is one less than the 
absolute value of this entry (or one less than the unit number of the data set to be 
created). This data set can then be used by a plotting package to create various plots
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to include temperatures versus time, temperature profiles and isothermal plots. If this 
option is invoked, the user must supply a DD card to define the data set. The records 
are variable in length. The longest and most frequently written record is 8(N + NBC) 
bytes long where N is the number of nodes and NBC is the number of boundary 
conditions. See Appendix A for a sample DD card.

c. Frequency of Output for Plots

This entry, the fourth on Card 4, specifies the number of time steps between each 
output of the temperature distribution on the data set defined in Section 3.6.4(b). If 
this entry is blank or zero and if the preceding entry is nonzero, then the temperature 
distribution will be written on the data set each time that a normal printout as defined 
in Section 3.6.4(a) occurs.

d. Special Monitoring of Temperatures

The user may wish to tabulate the temperatures of a few nodes as a function of the 
number of iterations or time steps. In this way one can keep track of what is 
happening at a few nodes of interest without getting excessive output by having to 
print out the entire temperature distribution. This output option is in addition to the 
standard output of the temperature distribution. To invoke this option, the number of 
iterations between printouts for steady-state calculations or the number of time steps 
between printouts for transient calculations is entered in the fifth field of Card 4. If 
this entry is nonzero, the node numbers whose temperatures are to be printed out are 
specified on the S cards. If this option is not desired, this entry is left blank.

e. Initial Temperature Input Unit

The sixth entry on this card specifies the unit number from which the explicitly 
specified lattice-point initial temperatures are read. If the entry is a positive integer, 
then it specifies the unit number from which the initial temperatures are read in 
formatted form. The records vary in length with the maximum size being 80 
characters. If it is a negative integer, then its absolute value specifies the unit number 
from which the initial temperatures are read in unformatted form. If there are no 
initial temperatures explicitly specified, then this entry is left blank. If the unit 
specified is other than the standard card input, the user must insure that the 
appropriate DD card has been supplied to describe the data set.

f. Final Temperature Output Unit

In addition to the normal output, the user may wish to have the final temperature 
distribution saved in some manner to facilitate the restarting of the problem. If this 
option is desired, the unit number on which the final temperature distribution is to be 
written is entered on the seventh entry on Card 4. If the entry is a positive integer, 
then it specifies the unit number on which the final temperature distribution is to be 
written in formatted form. The records vary in length with the maximum size being 80 
characters. If the entry is a negative integer, then its absolute value specifies the unit 
number on which the final temperature distribution is to be written in unformatted 
form. If the user does not wish to save the final temperature distribution, then this 
entry must be left blank. If this entry is nonzero, the user must see that the 
appropriate DD card has been supphed to correctly identify the specified unit (see 
Appendix A).

As an example, if the user feels that he may wish to restart the problem at some 
future date, he may enter the unit number for the standard card punch (7) as the 
seventh entry on Card 4. Then, when the user actually restarts the problem, he will 
enter the standard input unit (5) in entry 6 on Card 4. The punched output from the 
previous run (the final temperature distribution) will be the IT deck in the current run.
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g. Problem Status Unit for Remote Users

This feature is designed to allow remote users to determine the status of their problem 
without having to wait for normal computer turnaround. If a positive number is 
entered in the eighth field of Card 4, then this designates the unit number on which 
error messages and selected information concerning the status of the problem is 
written. The user must supply the appropriate DD card to define the specified unit. As 
an example, the user may wish to use this option to have information stored on his 
PDP-10 file. It can then be printed out on a remote terminal. One can locate data 
errors and resubmit the corrected problem without having to wait for the main listing 
from the computer. Using this concept, one could possibly speed up turnaround time.

3.6.5. Card 5 - Input Parameters

Each entry on this card is a floating-point number except for entries 1, 2, and 6, which 
are integers.

a. Type of Problem

The first entry on Card 5 specifies the type of problem. It may be steady-state only, 
transient only, or combinations of steady-state and transient calculations. The number 
to be entered is in accordance with the following list:

1 S-S only

2 S-S, trans.

3 S-S, trans., S-S

4 S-S, trans., S-S, trans.

-1 trans. only 

-2 trans., S-S 

-3 trans., S-S, trans.

-4 trans., S-S, trans., S-S

-n trans., S-S, trans., S-S 
trans., etc.

n S-S, trans., S-S, trans. 
S-S, etc.

If, for example, a 3 is entered, the program will first perform a steady-state calculation 
at time zero; next the transient calculation; then a steady-state calculation at the final 
transient time using the final transient temperatures as the initial guess for the 
steady-state temperatures. Any number of combinations is allowable; however, machine 
running time should be considered. (Note, careful consideration must be given to 
formation of time-dependent and heat generation functions with a problem type which 
uses more than one transient and one steady-state pass.)

b. Maximum Number of Steady-State Iterations Allowed

If the maximum number of steady-state iterations is reached, and the convergence 
criterion is not satisfied, then the program will write “END STEADY-STATE 
CALCULATIONS, CONVERGENCE NOT SATISFIED” on the printer and will 
terminate the calculation and call for the next problem. Normally 200 to 500 iterations 
are sufficient to converge to the solution. In the event that the convergence criterion is 
not satisfied, one may wish to save the final temperature distribution in order to 
restart the problem as discussed in Section 3.6.4(f). This entry is the second of Card 5 
and is left blank for pure transient problems. If it is zero or blank for steady-state 
problems, then a default of 500 is used.
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c. Steady-State Convergence Criterion

This entry, which contains the value of e in Eq. (2.14), affects the steady-state type of 
calculation and may be left blank for a transient-only problem. The steady-state 
calculation will continue until the convergence criterion is met. Since the criterion 
which insures convergence varies from case to case, the user must rely on his own 
judgment and experience in determining the correct value for his particular problem. If 
it is left blank for steady-state problems, the code assumes e = 10-5. This is the third 
entry of Card 5.

d. Steady-State Over-Relaxation Factor

The value of [see Eq. (2.13)] is the fourth entry on this card and its value must be 
in the range 1 ^ /S < 2. This entry may be left blank for transient-only problems. If it 
is left blank for steady-state problems, the code assumes that the initial value of p is 
1.9.

e. Time Increment

This entry (the fifth on Card 5) contains the initial time increment, At [see Eq. (2.19)], 
for transient problems that will be solved by one of the explicit techniques. For 
transient problems which will be solved using the implicit procedure, this entry must 
be left blank. For the Classical Explicit Procedure, the time increment must satisfy 
certain criteria to insure stability [see Eq. (2.20)]. The HEATINGS Program calculates 
the stability criterion and writes, “THE STABILITY CRITERION IS (the value of 
criterion) FOR POINT (lattice point yielding the above value)”. If the input time 
increment is less than or equal to the stability criterion, then the code writes, “THE 
INPUT TIME INCREMENT SATISFIES THE STABILITY CRITERION,” and uses 
the input value. If the input time increment is too large (but not more than a factor 
of 10 too large), the program sets At equal to the calculated stability criterion and 
writes, “THE INPUT TIME INCREMENT DOES NOT SATISFY THE STABILITY 
CRITERION-THE TIME INCREMENT IS NOW = (value of At used in subsequent 
calculations).” If the input At is too large by more than a factor of 10, the program 
writes, “CASE DELETED-INPUT TIME INCREMENT EXCEEDS THE 
STABILITY CRITERION BY MORE THAN A FACTOR OF 10,” and goes on to 
the next problem. For steady-state-only problems, this entry may be left blank.

f. Levy’s Explicit Method Option

The sixth entry (an integer) is the factor by which the stable time increment is 
multiplied to form the time increment for Levy’s explicit method. If the entry is blank 
or less than 2, then Levy’s method will not be used. If Levy’s explicit method is 
specified, then the problem is not terminated if the input time increment is more than 
an order of magnitude larger than the stability criterion as noted in Section 3.6.5(e). 
Instead, the time increment is initially set equal to the stability criterion. HEATINGS 
always executes 10 time increments using a stable time step prior to using Levy’s 
explicit method. This entry may be left blank for steady-state-only (Type 1) problems.
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g. Initial Time

This entry affects both transient and steady-state problems. It indicates the initial time 
for problems with a negative type and the time at which the time-dependent functions 
are evaluated for problems whose types are greater than zero. For example, assume 
that a type 4 problem is run. Let t0 represent the initial time (entry 7) and t/ represent 
the final time (entry 8). Then, the time-dependent functions will be evaluated at t0 for 
the first steady-state calculation. The first transient calculation will begin at time t0, 
using the results of the steady-state calculations as the initial temperatures, and will 
stop at t/. The second steady-state calculation will then be performed, and the 
time-dependent functions will be evaluated at t/. The results from the transient 
calculation will be used as the first approximation to the steady-state temperature 
distribution. Finally, the last transient calculation will begin at t/ and continue until 
t/ + (V - t0). The value (t/ - t0) will be added to the output times from the first 
transient calculation to obtain the output times for the second transient case. If entry 
7 is left blank, then t0 will be zero.

h. Final Time for Transient Calculation

The final time for the first transient calculation is specified as the eighth entry on 
Card 5. For steady-state problems, this entry may be left blank.

3.6.6. Region Data (Cards Rl and R2)

Each region is described by two cards which must appear in pairs. The cards are repeated 
for each region. The number of pairs of cards is the third entry on Card 2. There must be at 
least one region for each problem.

a. Card Rl

(1) Region Number

This entry contains the number of the region to be described. Regions are to be 
numbered consecutively beginning with number 1 up to a maximum of 100 
regions. The region numbering system does not require that a region occupy any 
particular zone in the overall configuration. In the example of Fig. 3.1, the 
left-most region could be numbered Region 2, and the right-most region, Region
1. Refer to Section 3.2 for further details about regions. This entry is the first on 
Card Rl and must be an integer.

(2) Material in Region

The second entry of this card indicates by an integer the number of the material 
which occupies the region named in the first entry of this card. This entry is left 
blank if the region does not contain a material (gap region).
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(3) Region Dimensions

Dimensions of the region boundaries are entered as floating-point numbers and 
are arranged in the following order:

a) smaller dimension of X or R region boundary
b) larger dimension of X or R region boundary
c) smaller dimension of Y or @ region boundary
d) larger dimension of Y or 0 region boundary
e) smaller dimension of Z region boundary
f) larger dimension of Z region boundary

These dimensions are entered as the third through eighth entries, respectively. If 
the problem is one- or two-dimensional, then the region dimensions for the 
corresponding unnecessary coordinate or coordinates are omitted. The region 
dimensions must be nonnegative. Although it is usually more convenient to place 
the overall configuration at the origin in X-Y-Z geometry, it is not necessary to 
do so; however, all dimensions are entered as their distance from the origin. In 
R-0-Z geometry, R = 0.0 must be located at the origin with R increasing radially; 
Z is not necessarily begun at the origin, but must extend upward; and 0 lines or 
planes increase clockwise in order to be compatible with the X-Y-Z system.

b. R2 Card

This card must be included in conjunction with the appropriate Rl card, even if it is 
blank.

(1) Initial Temperature of Region

The initial temperature function number of the region specified by the first entry 
of Card Rl is entered as an integer. If this entry is left blank, then the program 
assumes that the initial temperature for the region is zero. This entry is left blank 
for a gap region.

(2) Heat Generation of Region

This entry contains the number (an integer) of the heat generation function 
associated with the region given on the first card of this pair. If this entry is left 
blank, then the code assumes that the region does not generate heat. This entry is 
left blank for a gap region.

(3) Boundary Numbers

The remaining entries of this card are the boundary numbers defining the 
boundary conditions corresponding to the six boundaries of the region described 
by the first card of this pair. These numbers are integers and are entered as 
follows:

Each entry contains the boundary number of the region boundary appearing in 
the corresponding entry of Card Rl. A boundary condition cannot be specified on 
a boundary dividing two regions unless it is a type 3 boundary condition or 
unless one of the regions is a gap region. For one- or two-dimensional cases, 
region dimensions are not specified for the unnecessary coordinate or coordinates, 
and the corresponding boundary numbers are left blank. The entry is also left 
blank for boundaries which are insulated.
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3.6.7. Material Data (Cards M and PC)

A group of cards consisting of an M card and possibly a PC card is required to describe 
each material. The total number of groups is the fourth entry on Card 2. There can be five 
materials with change of phase capabilities, and they must be the first ones described on the M 
cards. If the thermal conductivity of a material is anisotropic, then it is specified as being 
temperature-dependent, and the associated temperature-dependent function is specified as being 
user-supplied. The user then programs the anisotropic algorithm for that material in subroutine 
CONDTN. The following labeled common must be added to subroutine CONDTN:

COMMON /THBSBC/ NBDTP, NDIR

The variable NDIR will contain a value of 1, 2, or 3 indicating the thermal conductivity is to 
be evaluated along the X (or R), Y (or 6) or Z axis, respectively. Both variables NBDTP and 
NDIR are INTEGER*4.

a. Card M

(1) Material Number

The first entry, an integer, contains the number of the material which is to be 
described. Materials are numbered consecutively (each different material has a 
number) beginning with number 1 up to a maximum of 50 materials.

(2) Material Name

The second entry, which must begin in Column 11 and may extend through 
Column 18, contains the name of the material. This name, which may consist of 
up to eight alphanumeric characters, is used to aid in identification of output 
data.

(3) Constant Thermal Properties

Entries 3, 4, and 5 are floating-point numbers and respectively contain the 
constant thermal conductivity, constant density, and constant specific heat of the 
material. These entries correspond to the factor, PD, in Eq. (3.4). Since the density 
and specific heat are not used in steady-state calculations, entries 4 and 5 may be 
left blank for type 1 problems.

(4) Temperature-Dependent Thermal Properties

Entries 6, 7, and 8 (integers) identify the analytical or tabular functions describing 
the thermal conductivity, density, and specific heat, respectively, as a function of 
temperature. These entries correspond to subscript / in Eq. (3.5). Entries 7 and 8 
may be left blank for type 1 problems.

b. Card PC

For materials which can undergo a phase change, the phase-change or transition 
temperature and the corresponding latent heat are entered as floating point numbers in 
the first and second fields, respectively, of Card PC. The following conventions must 
be adhered to in describing materials with change of phase capabilities: these materials 
must be the first ones described on the M cards; there can be a maximum of five such 
materials; and the PC card is omitted for those materials which do not undergo a 
change of phase. The total number of materials which involve a change of phase is the 
fifth entry on Card 2.
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3.6.8. Heat Generation Function Data (Card G)

Each different heat generation function is numbered, beginning with number 1, 
consecutively up to a maximum of 20 such functions. As indicated in Table 3.1, the heat 
generation function associated with a region may be dependent on position, time and 
temperature. Thus, the heat generation function data cards indicate the function number, the 
volumetric heat generation rate [corresponds to P0 in Eq. (3.4)], the time-dependent function 
parameter, the temperature-dependent function parameter, the X- or R-dependent function 
parameter, the Y- or 0-dependent function parameter, and the Z-dependent function parameter, 
arranged in that order, respectively. The parameters in entries 3 through 7 refer to analytical or 
tabular functions defining /, m, i, j, and k, respectively, in Eq. (3.5). If the heat generation rate 
per unit volume does not vary along an axis or if the problem is one- or two-dimensional, 
then the position-dependent function parameter corresponding to that coordinate will be left 
blank, and the associated function value will be set equal to 1.0. If the heat generation rate per 
unit volume does not vary with time or temperature, then the time- or temperature-dependent 
function parameter will be omitted and the associated function value or values will be set to
1.0. The first entry on this card is an integer, the second is a floating point number and the 
remaining five are integers. The total number of cards is indicated by the sixth entry on 
Card 2. The heat generation rate for a region may be positive (heat source) or negative (heat 
sink). The G cards are omitted if entry 6 on Card 2 is blank or zero.

3.6.9. Initial Temperature Function Data (Card I)

Each different initial temperature function is given a number. Beginning with number 1, 
the initial temperature functions are numbered consecutively up to a maximum of 25. Since the 
initial temperature function associated with a region can be a function of position, then this 
data card consists of five entries. All of them are integers except the second which is a floating 
point number. The first entry contains the initial temperature function number. The second 
entry contains the constant factor describing the initial temperature function. This term 
corresponds to Po in Eq. (3.4). The remaining entries, which identify analytical or tabular 
functions, contain the X- or R-, Y- or 6-, and Z-dependent function parameters corresponding 
to the subscripts i, j, and k, respectively, in Eq. (3.5). If the problem is one- or 
two-dimensional or if the initial temperature does not vary along a particular axis of the 
region, then the position-dependent function parameter associated with the coordinate will be 
left blank, and the corresponding function value will be set equal to 1.0. The total number of 
cards is the seventh entry on Card 2, and if this entry is blank or zero, then the I cards are 
omitted, and the initial temperature distribution is assumed to be zero.

3.6.10. Boundary Data (Cards Bl, B2, B3, and B4)

Excluding insulated or contact type boundaries, each unique boundary is numbered 
consecutively up to a maximum of 50. The Bl and B2 cards are omitted if the eighth entry on 
Card 2 (this entry indicates the total number of boundary conditions specified) is blank or 
zero.

a. Card Bl

(1) The first entry on Card Bl is an integer and contains the boundary number.

(2) The second entry (an integer) indicates the type of boundary. HEATINGS offers 
three boundary types which are numbered 1, 2, or 3, corresponding to the 
following:
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1 implies surface-to-boundary,
2 implies prescribed surface temperature, and
3 implies surface-to-surface.

If this entry is blank or zero, then no heat transfer connections will be made and
the boundary will be treated as an insulated boundary.

(3) The third entry, a floating-point number, contains the boundary temperature, T* 
[corresponds to Po in Eq. (3.4)]. This entry is left blank for a Type 3 boundary 
condition.

(4) Since the boundary temperature can be a function of time, the fourth entry on 
this card contains the time-dependent parameter (an integer) which corresponds to 
subscript / in Eq. (3.5). This parameter identifies an analytical or tabular function. 
If the boundary temperature is independent of time or if the boundary type is 3, 
then this entry will be left blank.

b. Card B2

Each entry on Card B2 is a floating-point number except Entry 6 which is an integer. 
This card is left blank for a Type 2 boundary condition.

(1) Entry 1 contains the heat transfer coefficient, hc, for forced convection. 
[Corresponds to P0 in Eq. (3.4).]

(2) Entry 2 contains the coefficient hr, for radiation. [Corresponds to P0 in Eq. (3.4).]

(3) Entry 3 contains the coefficient, h„, for natural convection [Corresponds to P0 in 
Eq. (3.4).]

(4) The fourth entiy contains the exponent, he, for natural convection (or other 
nonlinear heat transfer process). [Corresponds to P0 in Eq. (3.4).]

(5) The fifth entry contains the prescribed heat flux, h/, across the boundary. 
[Corresponds to Po in Eq. (3.4).]

(6) The time- and temperature-dependent parameter flag, an integer, is the sixth and 
final entry on the B2 card. If any of the five preceding parameters are functions 
of time or temperature, then additional information must be entered on B3 
and/or B4 cards. The time- and temperature-dependent flag indicates whether or 
not the B3 and B4 cards are present for this particular boundary condition. Its 
value is determined according to the following table:

Entry Six 

0

Additional Cards

None

1 B3 Only 

B4 Only 

B3 and B4

2

3
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c. Card B3

All five entries on Card B3 are integers. Each integer identifies the analytical or 
tabular function that defines the time-dependent function associated with the respective 
parameter on Card B2. Each entry corresponds to subscript / in Eq. (3.5). If an entry 
is zero, then the associated parameter is not time-dependent.

d. Card B4

This card is just like Card B3 except each integer identifies the analytical or tabular 
function that defines the temperature-dependent function associated with the respective 
parameter on Card B2. Each entry corresponds to subscript m in Eq. (3.5).

In evaluating a particular parameter, the code uses Eq. (3.4) where Po is the appropriate 
value from Card B2, F/(t) is the time-dependent function as defined by Card B3 and Fm(T) is 
the temperature-dependent function as defined by Card B4.

The Bl and B2 cards must appear in pairs, and a pair is entered for each boundary. B3 
and B4 cards, if any, must follow their respective Bl and B2 cards.

3.6.11 Lattice Description (Cards LI, Nl, L2, N2, L3 and N3)

For each axis, gross lattice data are entered on two sets of cards, the first set specifying 
the lattice dimensions and the second indicating the mesh division between gross lattice lines. 
All of the numbers on the cards on the first set (L cards) are of the floating-point type and 
are entered, by specifying all of the gross lattice dimensions in each direction, sequentially on 
one or more cards. The cards of the second set (N cards) specify the number (an integer ^ 1) 
of equal increments which are between the gross lattice lines whose dimensions are given on 
the cards of the first set. In particular, an entry on an N card specifies the number of equal 
increments between the gross lattice line in the corresponding entry on the related L card and 
the gross lattice line immediately following it. This procedure is repeated for each coordinate. 
For degenerate geometries, the corresponding unnecessary sets of cards must be omitted.

a. Card LI

The LI cards correspond to the X or R coordinate, and the number of entries
corresponds to Entry 1 of Card 3. If there are more than 8 entries, subsequent cards
are used.

b. Card Nl

The Nl cards correspond to the X or R coordinate. There will be one less entry here 
than there are on the LI cards. Additional cards are used for more than eight entries.

c. Card L2

The L2 cards correspond to the Y or 0 coordinate, and the number of entries
corresponds to Entry 2 of Card 3. If there are more than eight entries, subsequent
cards are used.

d. Card N2

The N2 cards correspond to the Y or 0 coordinate. There will be one less entry here 
than there are on the L2 cards. Additional cards are used for more than eight entries.
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e. Card L3

The L3 cards correspond to the Z, coordinate, and the number of entries corresponds 
to Entry 3 of Card 3. If there are more than eight entries, subsequent cards are used.

f. Card N3

The N3 cards correspond to the Z coordinate. There will be one less entry here than 
there are on the L3 cards. Additional cards are used for more than eight entries.

3.6.12. Analytical Function Data (Cards Al and A2)

Each analytical function, defined in Eq. (3.1), is described by an Al card and one or more 
A2 cards.

a. Card Al

Each different analytical function is numbered, and there can be a maximum of 25 
such functions. The first entry on Card Al is the unique analytical function number, 
an integer. The second entry, also an integer, is the number of coefficients, A,-, which 
are on the A2 cards. If this entry is blank or zero, then the code assumes that a 
user-supplied function will be supplied for the parameter which uses this particular 
analytical function.

b. Card A2

The A2 cards contain from one to four ordered pairs, where each ordered pair is 
defined as follows: the first element of an ordered pair consists of an integer i; the 
second element consists of the value of the coefficient A,. The A2 cards will be 
continued until each coefficient in the analytical function is defined. If the second 
entry on Card Al is blank or zero, then the related A2 card is omitted.

As an example, the cards which are necessary to describe f(x) = 100sin5x + exp(-3x) are 
presented in Table 3.2.

Table 3.2. A Cards Necessary to Describe the Function 
100sin5x + exp(-3x).

Column 9 18 27 36 45 54 63 72 75

1 4 Al

8 100.0 9 5.0 6 1.0 7 -3.0 A2
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The total number of analytical functions is the fourth entry on Card 3. The A cards are 
omitted if this entry is blank or zero.

3.6.13. Tabular Function Data (Cards Tl and T2)

Each tabular function is numbered consecutively beginning with one up to a maximum of 
25 functions. The tabular function is assumed to be a set of linearly connected points. The 
function is described by specifying a set of ordered pairs. Each ordered pair contains an 
independent variable and its functional value; viz., ti, G/(ti); t2, G/(t2); etc. A maximum of 25 
points (pairs) is allowed, and linear interpolation is performed between the points by the 
program. The values of t, must be entered in ascending order.

a. Card Tl

The first entry on the Tl card (an integer) is the tabular function number. The 
number of points (an integer) is the second entry.

b. Card T2

The T2 card contains the first four ordered pairs, all floating point numbers. If there 
are more than four ordered pairs in the function, they are entered on subsequent T2 
cards.

Figure 3.6 is an example of an acceptable tabular function. The input for this example is 
presented in Table 3.3.

ORNL DWG 76 10920

t

Fig. 3.6. P16t of a Sample Tabular Function
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Table 3.3. T Cards Necessary to Describe the Sample Tabular 
Function Depicted in Fig. 3.6.

Column 9 18 27 36 45 54 63 72 Card

1 9 Tl

0.0 25.0 1.0 30.0 2.0 30.0 2.5 35.0 T2

3.5 35.0 4.0 30.0 4.5 30.0 5.5 20.0 T3

5.501 10.0 T4

The total number of tabular functions is the fifth entry of Card 3. The T cards are
omitted if this entry is blank or zero.

3.6.14. Output Times (Card O)

Each entry on this card is a floating-point number. Since the second entry on Card 4 
indicates the total number of output times which are to be read, the O cards are omitted if 
this entry is blank or zero. The transient output times are entered in chronological order on 
the O cards. There can be eight entries per card, and the O card is repeated as often as 
necessary to describe the output array. The maximum number of output times is 100, not 
counting the automatic printout which occurs prior to the initial time step.

3.6.15. Node Numbers for Special Monitoring of Temperatures (Card S)

As optional output, one may specify up to 20 nodes whose temperatures will be printed 
out as a function of the number of iterations for steady-state calculations or the number of 
time steps for transient calculations. The first entry on Card S contains the total number of 
nodes whose temperatures are to be tabulated. The remaining fields contain the actual node 
numbers. If more than seven nodes are specified, their numbers will appear on additional 
cards. All entries on the S cards are integers. The frequency for printing out the temperatures 
of such nodes appears as the fifth entry on Card 4, and the S card or cards are omitted if this 
entry is blank or zero.

3.6.16. Initial Temperatures and Melting Ratios

These cards (or card images) are generated as output by HEATINGS if a positive number 
appears in Entry 7 on Card 4; and, generally, they are used only when restarting a job by 
merely inserting the generated deck at this location in the original deck and resubmitting the 
job. As noted in Section 3.6.4(e), one must enter the unit number of the card reader in the 
sixth field of Card 4. Entry 6 on Card 4 specifies the unit on which these data are to be read. 
If the unit specified is other than the standard card input, the user must insure that the 
appropriate DD card has been supplied to describe the unit. If Entry 7 on Card 4 is nonzero,
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then the code generates these data at the end of a problem and writes it on the unit specified 
in Entry 7. However, the user must insure that the appropriate DD card has been supplied to 
correctly identify the unit specified on Entry 7. If Entry 6 on Card 4 is blank or zero, then 
these cards are omitted.

Since the user may wish to explicitly specify the initial temperature or melting ratio at 
some point or points, a description of these data is given below.

a. Job Description (Card IT1)

This card image gives a descriptive title and can contain alphanumeric characters in 
the first 72 columns. The card may be blank but it cannot be omitted.

b. Initial Time and Lattice Point Numbers (Card IT2)

The first entry, a floating point number which occupies the first ten columns on the 
IT2 card, specifies the initial problem time. This value overrides the initial time which 
appears on Entry 7 of Card 5. Normally, this deck will have been generated by the 
code on a previous run. Thus, the code supplies this value as the time for which the 
following temperature distribution and melting ratios occur. If the user generates the 
IT deck, then he must insure that the initial problem time is entered here. The second 
entry on the IT2 card is an integer and contains the total number of lattice points 
whose initial temperatures are explicitly specified. It occupies columns 11 through 15 
of Card IT2. The third entry, also an integer, contains the total number of nodes 
whose initial melting ratios are explicitly specified. It also occupies a five-column field, 
namely columns 16 through 20.

c. Lattice Point Temperatures (Card IT3)

The IT3 card can contain up to five pairs of numbers with each pair defined as 
follows:

(1) The first member of the pair is a lattice point number. It is an integer and 
occupies a five-column field.

(2) The second member is the initial temperature of the lattice point whose number 
appears in the first member. It is a floating-point number and occupies a 
ten-column field.

The number of pairs to be entered on the IT2 cards is specified on entry 2 of Card 
IT2. Card IT3 is repeated until all pairs have been described. The temperatures 
specified by this input data override the corresponding temperatures generated by the I 
cards.

d. Lattice Point Initial Melting Ratios (Card IT4)

The IT4 card contains initial melting ratios for each node which is currently 
undergoing a phase change. The format of the IT4 card is as follows:

(1) The first entry is the number of a node which is currently undergoing a phase 
change. It is an integer and the field occupies the first five columns.

(2) The second entry is the material number currently undergoing a phase change for 
the node which was defined in the previous field. This entry is an integer which 
occupies the sixth through the tenth columns.
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(3) The third entry, a floating point number occupying the eleventh through the 
twentieth columns, contains the initial melting ratio for the portion of the 
material associated with the node defined on the first two entries of this card as 
currently changing phase.

The total number of lattice points with initially specified melting ratios or the total 
number of IT4 cards is the third entry on Card IT2.

3.6.17. Implicit Transient Technique Parameters

If this problem involves transient calculations (Entry 1 on Card 5 is not equal to 1) and if 
the implicit technique is to be used to calculate estimates to the transient temperature 
distribution, then the fifth entry (time step) of Card 5 must be left blank and additional data 
must be supplied on the IP and TP cards. If it is anticipated that similar problems will be run 
a large number of times such as ones arising in a parametric study, then it is recommended 
that the variables on the IP and TP cards be optimized since it could significantly reduce the 
overall computer time.

a. Card IP

This entire card or any of its entries may be left blank, and the default values will be 
used. They are based on experiences with a few two-dimensional RZ models. They are 
certainly not the best values that can be used for a given problem, but they are 
probably good starting points. There are eight entries on this card. The first five are 
floating point numbers, and the last three are integers.

(1) The first entry contains one of two convergence criteria which must be met in 
order for the iterative technique to terminate successfully at each time step. This 
convergence criterion corresponds to n in Eq. (2.37). The default is 10~5.

(2) The second entry contains the second convergence criterion which corresponds to 
£2 in Eq. (2.38). The default for this parameter is 10 3 meaning the maximum 
normalized residual must decrease by three orders of magnitude. It has been 
found that for problems with an abnormally small’time step (one approximately 
equal to the stability criterion or less) this criterion with = 10 ’ may not be 
satisfied. Increase the time step size, if possible. Otherwise, experiment with the 
value of €2.

(3) The third entry contains the convergence criterion for problems involving 
temperature-dependent parameters. This convergence criterion which corresponds 
to e5 in Eq. (2.41) is used in addition to the first two. The default is 10“5.

(4) This entry, the fourth, defines the implicit technique which will be used to solve
the- transient problem. It refers to 0 in Eq. (2.34) and must be chosen so that 
0.5 sS 0 1.0. The default is 0.5.

(5) The fifth entry defines the initial value of the point successive overrelaxation 
iteration acceleration parameter [cu in Eq. (2.34)]. It also defines the method that 
will be used to update the acceleration parameter. If this entry is positive, then 
the acceleration parameter will remain constant throughout the calculations and 
will be equal to the value of this entry. If it is blank or zero, then the 
acceleration parameter will be optimized empirically as a function of time. This 
appears to be the best option for nonlinear problems. If it is negative, then the 
acceleration parameter will be calculated using Carry’s technique (Ref. 8). The 
absolute value of this entry must be less than 2.0.
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(6) This entry, an integer, defines the number of time steps between attempts to 
optimize the acceleration parameter empirically [referred to as in Section 
2.3.3(d)], It is used only when entry 5 is zero or blank. The default value is 1.

(7) For the case when the acceleration parameter will be updated empirically (Entry 5 
is blank or zero), then this entry, the seventh, defines the 
change-in-number-of-iterations criterion [referred to as in Section 2.3.3(d)] 
which must be met before the acceleration parameter will be updated. The default 
is 5. For the case when the SOR acceleration parameter will be updated using 
Carrd’s technique, then this entry defines the number of iterations between 
updates. The default is 12.

(8) The last entry is the change-in-number-of-iterations criterion [referred to as in 
Section 2.3.3(d)] which is used to determine when a good estimate to the 
optimum acceleration parameter has been found. This entry is used only when the 
acceleration parameter will be updated empirically (Entry 5 on this card is blank 
or zero). The default is 2.

b. Card TP

When an implicit scheme is used to solve a transient problem, the time step may be 
variable. This allows the time step to increase as the solution smooths out and to 
decrease when some parameter varies rapidly with time. The information controlling 
the value of the time step is contained on one or more of the TP cards. The size of 
the time step is automatically adjusted in order to get printouts of the temperature 
distribution at the specified time. If the size of the coefficients in the system of 
equations varies by orders of magnitude (I04 5 or greater), it has been observed that 
point-successive overrelaxation iteration may converge very slowly (it may appear to 
not converge at all). This occurs when the grid spacing or thermal properties vary by 
orders of magnitude over the problem. It can be observed by examining the stability 
criterion table in the output. If this appears to be happening, either further subdivide 
some of the larger nodes or combine some of the smaller ones. In some cases, it may 
help to use a larger time step size. All seven entries are floating point numbers.

(1) The first entry is the initial time step.

(2) After the temperature distribution has been calculated, the current time step is 
multiplied by a factor. The value of this factor is entered in the second field of 
the TP card. The default value is 1.0. For many problems whose parameters vary 
mildly with time and/or temperature, values between 1.0 and 1.3 have been 
acceptable.

(3) The maximum value of the time step is the third entry. Once the time step 
reaches this value, it is no longer increased. The default is 1050.

(4) The fourth entry contains the maximum time that the time step information on 
this card applies. If the time reaches this value, then a new TP card is read. The 
default is 1050

(5) The fifth entry contains the maximum temperature change allowed at a node over 
a time step. The time step size is adjusted according to the procedure outlined in 
Section 2.3.4. If this entry is blank or zero, then this feature is not invoked in 
calculating the time step size.
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(6) The sixth entry contains the maximum percent of relative temperature change 
allowed at a node from one time level to the next one. The time step size is 
adjusted according to the procedure outlined in Section 2.3.4. If this entry is 
blank or zero, then this feature is not invoked in calculating the time step size.

(7) The seventh and final entry on this card contains the minimum value of the time 
step. Once the time step size reaches this value, it is no longer decreased. The 
default is one-tenth of the initial time step size.

3.6.18. Blank Card

If the user wishes to solve several problems with one run, he merely inserts a blank card 
between each problem deck.

3.7. Problem Size Limits

The problem size limits are summarized in Table 3-4.

Table 3.4. Problem Size Limits

Item Maximum Number

Analytical Functions 25

Boundary Conditions 50

Fine Lattice Lines Along Any Axis 100

Gross Lattice Lines Along Any Axis 50

Heat Generation Functions 20

Initial Temperature Functions 25

Lattice Points 1400

Materials 50

Materials with Change-of-Phase Capabilities 5

Number of Nodes in Special Temperature Table 20

Points Per Tabular Function 25

Printout Times 100

Regions 100

Surface-to-Surface Connectors 2000

Tabular Functions 25
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3.8. Summary and Format of Input

The following table is a concentrated summary of the format and information needed to 
prepare the input data deck. Except for the IT cards, columns 73 through 80 of each card are 
reserved for identification, and the user may or may not choose to punch this information. The 
table in this column gives proposed identification names for the cards and, in parentheses, the 
reference sections in the report where more information can be found. The first line in each 
format box includes the variable name actually used in the program and, in parentheses, the 
format of that variable. The rest of the box includes a short explanation of the input in that 
box. In some cards, where free space is available (e.g., G or I cards), additional notes have 
been included to describe the way the input information will be used in the program itself.



Table 3.5 Summary and Format of Input Data for HEATING5

Columns
1-9

Columns
10-18

Columns
19-27

Columns
28-36

Columns
57-Ji5

Columns
46-54

Columns
55-65

Columns
64-72

Columns
75-80

JOBDES(l), (l8A4) Job Description
Card 1
(3-6.1)

MXCPU (19)
Maximum CPU time 
for IBM 360/91 
or IBM 360/195 
in seconds.

NGEOM (19)
Geometry type.
1- R9Z 6-XYZ
2- R0 7-XY
3- RZ 8-XZ
4- R 9-X
5- Z 10-R(sphere)

I0REGT (19) 
lotal number
Df regions.
(Cards R1 & R2) 
'Maximum 100

BTLT (19)
total number 
f materials.
Cards M) 
teximum 50

IATSL (19) 
otal number of 
laterials with 
hange of phase 
apabilities.
Cards PC) 
laximum 5

NGENFN (19)
Total number of 
heat generation 
functions.
[Cards G) 
ilaximum 20

HNTFN (19) 
otal number of 
nitial tempera- 
ure functions. 
Cards l) 

teximum 25

IBDTPT (19)
Fotal number of
boundary
conditions.
(Cards Bl & B2) 
Maximum 50

Card 2 
(3-6.2)

IGT (19)
Total number of 
gross lattice 
lines in X or R 
direction.
(Entries in Ll)

JGT (19)
Total number 
of gross lattice 
lines in Y or 8 
direction.
(Entires in L2) 

Maximum 50

KGT (19) 
fotal number of 
gross lattice 
.ines in Z 
direction.
Entries in L3) 

Maximum 50

0ANAT (19) 
otal number of '
malytical 1
"unctions.
Cards A)

Maximum 25

0TBLT (19) 
otal number of 
abular functions. 
Cards T) 
aximum 25

IDEGRE (19) 
Temperature units.
[f *C, and radi­
ation is involved, 
enter 1; otherwise, 
leave blank.

I0PLNE (19) 
Three-dimensional 
output map flag. 
Blank implies XY 
planes, non zero 
implies XZ planes.

MC0UNT(19)
Number of iterations 
between evaluation 
of temperature- 
dependent thermal 
properties for 
steady state cases 
Cnpfault 1)------------

Card 3
(5.6.3)

NDTA (19)
Number of time 
steps between 
printed outputs. 
Next entry must 
be blank.

NFRINT (19)
Number of times 
output will be 
printed.
(Entries in 0 
card), preceding 
entry must be 
blank. Maximum
100

TAPE (19)
ITAPE| is unit no 
or plots. ITAPE" 
implies no plots.1 

TAPE < 0 implies 
lot data will be ' 
dded to data from 
revious run read 
rom unit no.
ITAPE] - 1.

I0UTPT (19) 
umber of time 
teps between 
utputs for plots 
n unit number 
ITAPE). If blank,t 
utput is at 
ormal printouts.

ns (19) >
umber of iter- 
tions or time 

steps between out- 
ut for special 

nonitoring of 
temperatures.
(Card S)

Jin (19)
Unit number for 
reading initial 
temperature 
distribution. Pos- 
tive, formatted, 
egative, unformat­
ted .
5 on IBM for cards)

J0OT (19)
Unit number for 
writing out final 
temperature distri­
bution. ^Positive, 
formatted. Nega­
tive, unformatted. 
(7 on IBM for 
cards)

TERROR (19)
Problem status 
unit for remote 
users.

Card 4 
(3.6.4)

NTYFE (19)
Problem type
1 steady state;
-1 tremsient.
(See Section 
3.6.5(a) for 
other types)

N0ITX (19)
Maximum number of 
steady state 
iterations. 
(Default, 500)

EPI (E9.0)
Steady state con- 
convergence 
criterion. _c 
(Default, IO"7)

BETA (E9*0)
Steady state over­
relaxation factor. 
1.0 S p < 2.0 
(Default, 1.9)

ELTAT (E9.0) 
rime increment 
or transient 

jroblem involving 
axplicit technique 
■lust be left blank 
:or implicit 
technique.

KTMFCT (19)
Factor by which 
stable time incre­
ment is increased 
if Levy's explicit 
method is used.

TIM (E9.0)
Initial time.
(See Section 
3.6.5(g) for
more information)

FTIME (E9.0)
Final time.

Card 5
(3.6.5)

NOREG (19)
Region number. 
Maximum 100

MATL (19)
Region material 
number. (Card M) 
Leave blank for 
gap region.

RRIN (E9-0)
Smaller X or R 
region dimension.

RR0T (E9.0)
Larger X or R 
region dimension.

THLT (E9-0)
Smaller Y or 0 
region dimension.

THRT (E9.0)
Larger Y or 0 
region dimension.

ZZBK (E9.0)
Smaller Z 
region dimension.

ZZFR (E9-0)
Larger Z
region dimension.

R1
VO
VO

V

ITEM (19)
Region initial 
temperature 
function number. 
(Card l)

NGEN (19)
Region heat 
generation 
function number. 
(Card G)

NBDIN (19)
Boundary condi­
tion on smaller
X or R.
(Card B)

NBDOT (19)
Boundary condition 
on larger X or R. 
(Card B)

NBDLT (19)
Boundary condi­
tion on smaller
Y or 0. (Card B)

NBDRT (19)
Boundary condition 
on larger Y or 0. 
(Card B)

NBDBK
Boundary condi­
tion on smaller
Z. (Card B)

NBDFR (19)
Boundary condition 
on larger Z.
(Card B)

R2 •o01
I

MAT (19)
Material number. 
Maximum 50

S
m
0

MATNAM (A8) 
Material name.

C0NDUC (D9.0) 
Conductivity if 
constant.

DENSTY (D9.0) 
Density if 
constant. Leave 
blank for steady 
state only.

SPHEAT (D9-0) 
Specific heat if 
constant. Leave 
blank for steady 
state only.

NC0NTP (19) 
Conductivity 
temperature- 
dependent function 
number.

NDENTP (19)
Density 
temperature- 
dependent func­
tion number.
Leave blank for 
steady state only.

NSPHT.P (19)
Specific heat 
temperature- 
dependent function 
number. Leave 
blank for steady 
state only.

M

NOTE: For the 6th through 8th entries, positive integer 
implies analytical function and negative integer 
implies tabular function.

SLIM (D9-0)
Phase-change 
or transition 
temperature.

SLHM (D9.0)
Latent heat.

NOTE: This card 
materials

s only present for materials with change of phase capabil 
md they must be the first ones described on the M cards.

ities. There can only be five such PC

NGN (19)
Heat generation 
function number. 
Maximum 20

GEN0 (D9.0) 
Volumetric heat 
generation rate, 
if constant.

NGNTM (19) 
Time-dependent 
function number.

NGNTP (19) 
Temperature- 
dependent 
function number.

NGNR.(19)
X- or R-dependen 
function number.

NGNTH (19)
Y- or 0- 
dependent 
function number.

NGNZ (19) 
Z-dependent 
function number

NOTE: For the 3rd 
through 7th 
entries, positive 
integer implies 
analytical functio 
and negative 
integer implies 
tabular function.

G
(3.6.8)

INTM (19)
Initial tempera­
ture function 
number.
Maximum 25

TEMPIN (D9.0) 
Initial tempera­
ture, if constant

IIMR (19)
X- or R- 
dependent func­
tion number.

IIMTH (19)
Y- or 9- 
dependent func­
tion number.

ITMZ (19) 
Z-dependent 
function 
number.

NOTE: For the 3rd, 4th and 5th entries, positive
integer implies analytical function, negative 
integer implies tabular function.

(3.6.9)

NBDTP (19) 
Boundary number. 
Maximum 50

NBYTYP (19) 
Boundary type.
1- surface-to- 

boundary
2- isothermal
3- surface-to- 

surface

BYTEMP (E9-0) 
Boundary tempera­
ture . Tq 
(Blank for type 3

NBYTFN (19)
Time dependent 
function 
number (Z) 
for boundary 
temperature.
(Blank for type 3

Boundary temperature will be established as Tb(t J^q'T^ (t) where
T^(t) is the /th analytical function for / > 0, and the (-/)th 

tabular function for i < 0.
NOTE: The heat flux will be established as: ^

9" = hf + hc6T + hr(IA - Tj) + hjoil e(4T) 

where AT = T1 - Tg

Bl

BHC0NV (E9.0) 
Forced convective 
heat transfer 
coefficient, 
hc

BHRAD (E9.0) 
Radiative coeffi­
cient. h = F-cr r
cr= Stefan-Boltzmai 

constant
F= Radiation shap 

factor

BHNAT (E9.0) 
Natural convec­
tive coefficient.

BHEXP (E9.0) 
Natural convective 
exponent. he

BFLUX (E9-0) 
Prescribed heat 
flux (positive il 
going to surface 
hf

IBHFLG (19) 
Parameter flag.
0- no additional 

cards
1- B3 card only
2- B4 card only
3- B3 & B4 cards

B2

0
VO

■O01

NBHCIM (19)
Forced convective 
heat transfer 
coefficient 
time-dependent 
function.

NBHRTM (19)
Radiative
coefficient
time-dependent
function.

NBHNTM (19) 
Natural convec­
tive coefficient 
time-dependent 
function.

NBHEIM (19) 
Natural convective 
exponent time- 
dependent 
function.

NBHETM (19) 
Prescribed heat 
flux time- 
dependent 
function.

Positive integer implies analytical function.
Negative integer implies tabular function.

B3
f

O

NBHCTP (19)
Forced convective
heat transfer
coefficient
temperature-
dependent
function.

NBHRTP (19) 
Radiative coeffi­
cient temperature 
dependent 
function.

NBHNTP (19) 
Natural convec­
tive coefficient 
temperature- 
dependent 
function.

NBHETP (19) 
Natural convec­
tive exponent 
temperature- 
dependent 
function.

NBHFTP (19) 
Prescribed heat 
flux temperature- 
dependent 
function.

Positive integer implies analytical function.
Negative integer implies tabular function.

B4

RG (E9-0) 
Smallest X or R 
gross lattice 
line dimension.

RG (E9.0)
Next X or R 
gross lattice 
line dimension.

RG (E9.0)
Next X or R 
gross lattice 
line dimension.

Can be repeated for up to 50 gross lattice lines (but equal to entry one in Card 3). Ll
(3.6.11)

NDRG (19)
Number of DIVI­
SIONS between 
corresponding
X or R gross 
line and the 
following line.

NDRG (19) NDRG (19) Must have one less entry than in Ll cards (maximum of 100 fine lattice lines in each direction ). Nl
(3.6.11)

THG (E9.0) 
Y or 9

Same as LI cards except for Y or 6 direction.

NLTHG (19) 
Y or 9

Same as Nl cards except for Y or 9 direction.

ZG (E9.0) Same as LI cards except for Z direction

NDZG (19) as Nl cards except for Z direction.

NANALT (19) 
Analytical 
function number. 
Maximum 10

NPARM (19) 
Number of 
coefficients in 
A2 cards. 
Maximum 9

NPRM (19) 
Coefficient 
index, i.

A(NPRM) (E9-0) 
Coefficient

NTABL (19) 
Tabular
function number. 
Maximum 20

NTBFRS (19) 
Number of pairs 
in table. 
Maximum 25

ARG(l) (E9-0) 
Independent 
variable.

VAL(l) (E9.0) 
Corresponding 
function value.

FRTIME (E9.0)
First time print' 
out is desired.

FRTIME (E9-0) 
Second time print­
out is desired.

NOTE: Al and A2 establish the mth analytical function in the form

Fi.(V> = Am,l * A»,2V * A.,5vS + Vcos (A.,5V) + Am,6exp (A«,7V) + A«,8sln (A»,9V) * An,lo'” (A„,UV)-

NPRM (19) 
Coefficient 
index, i.

A(NPRM) (E9.0) 
Coefficient 
value, A

NOTE: Can be repeated for up to 11 coefficients.

NOTE: To indicate a user-supplied function, the second entry on Card Al 
is left blank and Card A2 is omitted.

NOTE: The code uses linear interpolation to obtain the value of this function.

ARG(2) (E9.0)
Independent
variable.

VAL(2) (E9-0) 
Corresponding 
function value.

PRTIME (E9.0) 
Third time print­
out is desired.

NOTE: Can be repeated for up to 25 pairs.

L2
(3.6.11)

N2
(3.6.11)

L3
(3.6.11)

N3
(3.6.11)

Can be repeated for up to 100 printout times (but equal to entry two in Card 4). 0
(3.6.14)

NSN (19)
Total number o 
nodes for special 
monitoring of 
temperatures. 
Maximum 20

NDS(l) (19) 
Node number.

NDS(2) (19) 
Node number.

NOTE: Node numbers can be repeated for i i a maximum of 20.

Job Description, Format 18a4 IT1
(5.6.16)

Columns
1-10

Columns
11-15

Columns
16-20

Columns
H-75

Columns
76-80

TIM(D10.0) 
Initial time.

INITEM (19)
Total number of 
lattice points 
with explicitly- 
specified initial 
temperatures. 
Maximum 1750

INITX1 (19)
Total number of 
lattice points 
with explicitly 
specified initial 
melting ratios. 
Maximum 1750

NOTE: INITEM specifies number of points entered on the IT3 cards. 

NOTE: INITX1 specified number of IT4 cards.

IT2
(3.6.16)

Columns
1-5

Columns
6-15

Columns
16-20

Columns
21-50

Columns
31-35

Columns Columns Columns Columns
36-45 46-50 51-60 61-65

Columns
66-75

Columns
76-80

»(15)
Lattice point 
number.

Tl(N) (D10.0) 
Specified initial 
temperature of 
that point.

N (15)
Lattice point 
number.

T1(N) (D10.0) 
Specified initial 
temperature of 
that point.

Can be repeated up to 1750 lattice points. IT3
(3.6.16)

Columns
1-5

Columns
6-15

Columns
16-25

Columns
76-80

N (15)
Lattice point 
number.

MELMAT(N) (15) 
Material number 
associated with 
node N which is 
currently changing 
phase.

XI (N) (D10.0) 
Specified initial 
melting ratio for 
point N for 
material MELMAT(N)

IT4
(3.6.16)

Columns
1-9

Columns
1018

Columns
19-27

Columns
28-36

Columns
37-45

Columns
46-54

Columns
55-63

Columns
64-72

Columns
73-80

RESDUL (D9-0) 
Convergence 
criterion for 
implicit solution 
of transient 
equation. 
Corresponds to 
e1 in Eq. (2.37). 
(Default, 10“5)

REDUCE (D9.0) 
Convergence 
criterion for 
implicit solution) 
of transient 
equation. 
Corresponds to 
e2 in E<1- (2.38).
(Inactive)

ABSDIF (D9.0) 
Convergence 
criterion for 
implicit solution 
of transient 
equation involv­
ing temperature- 
dependent proper­
ties. Corresponds 
to E in Eq.(2.41) 
(Default 10-5)

THETA (D9.0) 
Parameter defining 
different tech­
niques for transi­
ent equation.
0.5 § THETA § 1.0. 
0.5 implies Crank- 
Nicolson
1.0 implies Back­
wards Euler. 
Corresponds to 9 
in Eq. (2.34). 
(Default, 0.5)

BETAT (D9.0) 
Initial value for 
SOR acceleration 
parameter. Cor­
responds to u) in 
Eq. (2.34). If 
BETAT = 0, it will 
be optimized 
empirically. If 
BETAT < 0, it will 
be optimized using 
Carre's technique. 
If BETAT > 0, it 
will be constant.
0 < |betat| < 2

NUFBTA (19)
Number of time 
steps between 
attempted accel­
eration parameter 
updates. Used 
when BETAT = 0. 
Corresponds to N , 
in Sec. 2.3.3(<l). 
(Default, 1)

ITLRC0 (19)
For BETAT = 0, 
Number-of-itera­
tions criterion 
which initiates 
acceleration 
parameter updates. 
Corresponds to 

in Sec. 2.3.3(<i). 
(Default, 5)
For BETAT < 0, 
Number of itera­
tions between SOR 
acceleration param­
eter updates. 
(Default, 12)

ITLRCI (19) 
Number-of-itera- 
tions criterion 
to terminate 
acceleration 
parameter 
updates. Cor­
responds to Jco
in Sec. 2.3.3(d) 
(Default, 2)

DELTAT (D9-0) 
Initial time step 
for implicit 
solution of 
transient equa­
tion .

TSFACT (D9.0) 
Factor by which 
the current time 
step is multiplied 
at each time step. 
(Default, 1.0)

TSMAX (D9.0) 
Maximum size of 
time step. 
(Default, 10-,°)

TSCHGE (D9.0) 
Maximum time for 
which this series 
of time steps 
applies. When 
the current 
time exceeds 
TSCHGE, another 
TP card is 
read.

TPCGMX (D9.0) 
Maximum temper­
ature charge 
allowed at a 
node over a 
time step.

PTPCGM (D9.0) 
Maximum per­
centage of 
relative change 
in temperature 
allowed at a 
node over a 
time step.

TSMIN (D9.0) 
Minimum size of 
time step. 
(Default, 
DELTA!/10)

Blank card if additional problem follows.

TP
(5.6.17)

(5.6.18)

Cards for additional problem if desired.
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4. OUTPUT DESCRIPTION

4.1. General

The HEATINGS Program automatically lists the input data and prints out the initial 
temperature distribution for any type of problem. The final temperature distribution is printed 
for steady-state problems, and the temperatures are presented as a function of time for 
transient calculations. As indicated in Section 3.6.4(f), the final temperature distribution can be 
written on a specified unit (e.g., the card punch). Information can also be written on a 
specified unit and used by a plotting package to create various types of plots [see Section 
3.6.4(b)],

4.2. Input Return

All of the input data are recapitulated in the output, appearing before the temperature 
distributions. The format is best illustrated by example, and the reader is referred to the 
sample problem. A table indicating the nodal connections for surface-to-surface heat transfer is 
also included. A table containing each node and its corresponding stability criterion is 
presented for transient problems.

4.3. Temperature Map

The temperatures for nodes in each plane are printed out in the form of a 
two-dimensional map. For three-dimensional problems, the temperature output map is presented 
for each XY or Rf> plane. However, one can specify that the map be presented for each XZ or 
RZ plane instead. See Section 3.6.3(e) for details. The indices of both the gross grid lines and 
the fine grid lines as well as the actual value of the fine grid lines are listed along the top for 
the horizontal direction and along the left for the vertical direction. The temperatures are then 
tabulated in a two-dimensional array. A matrix composed of the symbols and “I” for the 
horizontal and vertical directions, respectively, is superimposed over the two-dimensional 
temperature array. The symbols are used as a divider between materials. Thus, the user can 
quickly and easily identify temperatures anywhere in the mesh. To facilitate the identification of 
the temperature of each node, a map of the node numbers in each plane is printed out in the 
same format immediately before the initial temperature distribution is depicted. The basic 
features of this output option were taken from the package of heat transfer codes, 
ORTHIS/ORTHAT (Ref. 9).

4.4. Steady-State Temperature Distribution

For the steady-state calculations, the program writes “STEADY STATE TEMPERATURE 
DISTRIBUTION” and indicates the number of steady-state iterations completed and the time 
at which the steady-state calculations were performed. The temperature distribution is then 
presented in map form as discussed above. The maximum and minimum temperatures and the 
nodes at which they occur are also listed. The boundary temperatures are then listed in a table 
along with a message indicating the status of the calculation. The elapsed computer time, 
measured in seconds from the start of the job, is also printed out.
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4.5. Transient Temperature Distribution

For the transient calculation, the program writes “TRANSIENT TEMPERATURE 
DISTRIBUTION” and indicates the number of time steps completed for each specified time 
and the time at which the temperature distribution is written. The temperature distribution is 
listed in the same manner as for steady-state problems.

4.6. Map of Melting Ratios for Change-of-Phase Calculations

For problems involving change of phase, a map of melting ratios is printed out after each 
transient temperature distribution. The melting ratios for nodes in each plane are presented in 
a map similar to the one for the temperature distribution. The melting ratios for materials 
which cannot undergo a phase change are set to 1.0 x 10lu which causes the value to be 
printed out as asterisks on an IBM 360 system. Thus, it is easy to locate those nodes which 
cannot change phase, i.e., none of the materials associated with them are allowed to undergo a 
change of phase. If a node is associated with a material which can change phase, then the 
melting ratio as described in Section 2.6 is printed out.

4.7. Special Monitoring of Temperatures

One may wish to follow the temperatures of a few of the nodes during the calculations. 
As optional output, one may tabulate temperatures of specified nodes as a function of the 
number of iterations for steady-state problems or the number of time steps for transient 
problems. For more details on this option, see Section 3.6.4(d).
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APPENDIX A

CONTROL CARDS

A version of HEATINGS, which can be used to solve problems containing up to 1400 
nodes, is stored on disks at the computing centers at ORNL and ORGDP. This appendix 
discusses the Job Control Language (JCL) which is required to run this version of HEATINGS 
along with modifications to the JCL which are necessary for some of the optional uses of the 
code. This information will allow the user to solve most of his problems on the code. For 
additional information concerning JCL, the user is referred to the Oak Ridge Programmer’s 
Notebook.

The control cards, which are necessary to use this version of HEATINGS at ORNL and 
ORGDP are presented in Figures A-l and A-2, respectively. The first and second control cards 
are called the JOB statement and CLASS statement, respectively. The job name has a format 
of UIDXX where UID is the userid assigned to the user by the Computer Sciences Division 
(CSD) and the characters XX are any characters which make the job name unique. The 
accounting field (cccc) contains a four- or five-digit CSD charge number. The 
programmer-name field contains information necessary to route the job output back to the 
user. Since the default on core size will be exceeded for this version of HEATINGS, a CLASS 
card must be included. See the Oak Ridge Programmer’s Notebook for additional information 
concerning the JOB and CLASS statements.

If a request to save the final temperature distribution is made by inserting a unit number 
in the seventh entry on Card 4 (see Section 3.6.4(0), then a DD card describing the output 
unit must appear before the

//GO.FTOSFOOl DD * 

card. The following card

//GO.FT07F001 DD SYSOUT=B

would be a typical DD card for punching the final temperature distribution on cards on unit 
7. The integer 7 would be entered in Entry 7 of Card 4 to define the unit number. If a unit 
number other than 7 is specified, then the DCB parameters must be specified on the DD card.

If one wishes to save the output temperature distributions in order to generate various 
plots with a plotting package, then a DD card describing the output data set must be inserted 
just before the

//GO.FT05F001 DD *

card. If a data set involving 450 nodes and two boundary conditions is to be saved on tape, 
then a typical DD card might be

//GO.FTOSFOOl DD UNIT=TAPE9,DISP=OLD,VOL=SER=08,LABEL=(,NL),

/ / DCB=(RECFM=VBS,LRECL=3620,BLKSIZE=3624)

where 8 is the unit number which must be inserted in Entry 3 of Card 3. The 
SPECIAL=TAPE parameter must be added to the CLASS card for a job which is to be run 
at ORNL.

Two trivial modifications in HEATINGS will allow the code to solve problems containing 
up to a maximum of 6000 nodes. The main program for HEATINGS is shown in Fig. A-3. 
Let N be the maximum number of nodes which are desired for this case. The variable N must
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be initialized in the INTEGER statement, and the variable CORE must be dimensioned 26 
times N. The amount of core in K bytes required by HEATINGS is given roughly by the 
equation

M = (250 + 0.208N) . (A-l)

Thus, the code can be easily modified to fit into a specified amount of core or to solve a 
problem with a specified number of nodes. However, when the number of nodes exceeds 1400, 
the REGION parameter on the CLASS card and the REGION.GO parameter on the EXEC 
card must be changed accordingly. The format of the JCL which is required to run 
HEATINGS with the main program modified is presented in Fig. A^l. The modified MAIN 
routine is inserted in the location indicated by the statement “(Enter FORTRAN Deck or 
Decks Here).”

Estimates for the CPU time (in seconds) which is required for problems run on the IBM 
360/91 are given by Eqs. (A-2) and (A-3) for steady-state and explicit transient calculations, 
respectively.

(CPU)ss = (1.0 x 10 J)(No. of Nodes)(No. of Iterations) (A-2)

(CPU), = (5.0 x 10”5)(No. of Nodes)(No. of Time Steps) (A-3)

For the implicit transient algorithm, the amount of CPU time per time step will be much 
larger than that for one of the explicit techniques since the code must do a lot more 
computation. However, one should be able to use a time step much larger than would be 
required in the explicit technique, especially for later times in the transient. Frequently, the 
implicit algorithm is more than an order of magnitude faster than the explicit algorithm in 
solving a problem. Temperature-dependent thermal properties and/or boundary conditions can 
increase the running time by up to an order of magnitude depending on how many nodes are 
associated with the temperature-dependent parameters. Equations (A-2) and (A-3) were derived 
empirically by examining a large number of cases which were run on the HEATING4 code, an 
earlier version of HEATINGS. It is emphasized that these equations are merely estimates, and 
the actual CPU time may be considerably different from the estimate depending on the options 
which are used.
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//jobname JOB (ccccc),‘programmer-name’
//♦CLASS REGION=540K,CPUxx=yyyz,LINES=///
// EXEC FORTHLG,REGION.GO=540K,PARM.GO=‘EU=-r 
//LKED.HEATING5 DD DISP=SHR,DSN=ONLINEA.WDTHF961.HEATINGS 
//LKED.SYSIN DD *
INCLUDE HEATINGS

I*
//GO.FTOSFOOl DD *
(Insert Data Deck Here)
I*
11

Fig. A-L Format of JCL to Run HEATINGS at ORNL

//jobname JOB (cccc),‘programmer-name’
//♦CLASS REGION=540K,CPU95=yyyz,LINES=///
/ / EXEC FORTHLG,REGION.GO=540K,PARM.GO=‘EU=-1’
//LKED.HEATINGS DD DISP=SHR,DSN=A.WDTHF961 .HEATINGS 
//LKED.SYSIN DD *

INCLUDE HEATINGS 
I*
//GO.FTOSFOOl DD *
(Insert Data Decks Here)
/*
II

Fig. A-2. Format of JCL to Run HEATINGS at ORGDP
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

ae=s:

•= THE HEATING CODE WITH TEMPERATURE-DEPENDENT THERMAL PROPERTIES, 
= NON-LINEAR AND SURFACE-TO-SURFACE BOUNDARY CONDITIONS.
= CHANGE-OF-PHASE CAPABILITIES, AND AN IMPLICIT TECHNIQUE FOR 
= THE SOLUTION OF TRANSIENT PROBLEMS.

= DEVELOPED BY W.O. TURNER,
= D.C. ELROD.
= I.I. SIMAN-TOV.
= UNION CARBIDE CORPORATION. NUCLEAR DIVISION. 
= P.O. BOX Y,
= OAK RIDGE, TN 37830.
= RCOM 17, BLOC 9104-3.
= PHONE 615-483-8611, EXT 3-5641 OR 3-3101.

C***4****************** *************************************************
C* LET MAXPTS = MAXIMUM NUMBER OF LATTICE POINTS.
C* IF ONE WISHES TO CHANGE THE MAXIMUM NUMBER OF LATTICE POINTS.
C* THEN THE FOLLOWING TWO STATEMENTS MUST BE MODIFIED AS
C* INDICATED.
C***********************************************************************
C* INTEGER N/MAXPTS/
C* RE AL* 8 CORE I26MAXPTS)

INTEGER N/100/
RE AL* 8 CORE 12600)

C***********************************************************************
INTEGER*2 ICORE(l)
LOGICAL*! LCOREU)
EQUIVALENCE (CORE I 1 )•ICOREll ) .LCOREI 1)) 
CALL HEATN5(CORE,ICORE,LCORE.N>
STOP
END

Fig. A-3. Main Program for HEATINGS, 100 Nodes
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//jobname JOB (ccccc),‘programmer-name’
/ / *CLASS REGION=540K,CPUxx=yyyz,LINES=///
// EXEC FORTHCLG,REGION.GO=540K,PARM.GO=‘EU=-r 
//FORT.SYSIN DD *
(Enter FORTRAN Deck or Decks Here)
I*
//LKED.HEATINGS DD DISP=SHR,DSN=ONLINEA.WDTHF961.HEATINGS 
//LKED.SYSIN DD *
INCLUDE HEATINGS

I*
//GO.FTOSFOOl DD *
(Insert Data Deck Here)
I*
II

Fig. A-4. Format of JCL to Run HEATINGS at ORNL 
when FORTRAN is Modified
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APPENDIX B 

NOMENCLATURE

Symbol

h

hc

he

h/
h„

hr

k

Aq,

r

t

At

x

y

z

A

Am,, or A,

B

C,

CP

D, 

F(v) 

G(v) 

H, 

Hm

I

-K;

Description

Effective heat transfer coefficient 

Film coefficient (forced convection)

Exponent for natural convection 

Heat flux

Coefficient for natural convection 

Coefficient for radiation 

Thermal conductivity 

Net heat flow into node i 

Length along R-axis 

Time

Time increment 

Length along X-axis 

Length along Y-axis 

Length along Z-axis

Cross-sectional area normal to heat flow path

The \,h coefficient for the m'h 
analytical function

Extrapolation factor used in 
steady-state algorithm

Thermal capacitance of node i

Specific heat

See Eq. (2.26)

Analytical function

Tabular function

See Eq. (2.25)

Latent heat of material m

Total number of nodes whose temperatures 
must be calculated

Effective thermal conductance between 
nodes i and j

Typical Units

Btu/(hrft2-0 F) 

Btu/(hr-ft2-°F) 

Unitless 

Btu/(hrft2)

Btu/ (hrft2-° F(1+lw) 

Btu/(hrft2-°R4) 

Btu/(hrft-°F)

Btu

ft

hr

hr

ft

ft

ft

ft2

Unitless

Btu/°F

Btu/(lb-°F)

Btu/lb

Btu/(hr°F)
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NOMENCLATURE (Contd.)

Symbol Description Typical Units

L

L,

M,

P,

Q

R,

T,
Tmc/i

V

XI,

z

am

13

e

ei

62

€3

P
0

0

CO

Length of heat flow path between two nodes ft

Number of nodes associated with node i whose
number is less than i

Number of nodes connected to node i

Power associated with node i Btu/hr

Constant factor in definition of input 
parameter (see Eq. (3.4))

Power density Btu/(hrft3)

Residual at node i in implicit transient Btu/hr
algorithm (see Eq. (2.35))

Temperature of node i °F

Transition temperature for a material °F

Volume ft3

Melting ratio associated with node i Unitless

Factor used in Levy’s modification for Unitless
transient algorithm (see Eq. (2.22))

Number of m"' node connected to node i

Acceleration parameter for SOR iteration Unitless
method for steady-state algorithm

Convergence criterion for SOR iteration method Unitless
for steady-state algorithm (see Eq. (2.14))

Convergence criterion for SOR iteration Unitless
method for implicit transient algorithm 
(see Eq. (2.37))

Convergence criterion for SOR iteration Unitless
method for implicit transient algorithm 
(see Eq. (2.38))

Convergence criterion for temperature-dependent Unitless
iteration scheme for implicit transient 
algorithm (see Eq. (2.41))

Density lb/ft3

Length along 6-axis Radians

Parameter in implicit algorithm for Unitless
transient problems

Acceleration parameter for SOR iteration Unitless
method for implicit transient algorithm
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NOMENCLATURE (Contd.)

Symbol Description Typical Units

Subscripts

b Boundary index

i The node under consideration

j
Superscripts

A neighbor node connected to node i

m Iteration number

n Time step number

(n) Iteration number
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APPENDIX C

USER-SUPPLIED SUBROUTINES

Subroutines may be supplied by the user to evaluate any of the parameters listed in Table 
3.1. Thus, if an input parameter cannot be defined by one of the built-in functions as described 
in Section 3.5, it is quite simple for the user to add his own computational technique for 
evaluating the parameter. The user-supplied subroutine is referenced by specifying the parameter 
as an analytical function and by specifying no coefficients for the corresponding analytical 
function (i.e., leave the second entry on the A1 card blank and omit the related A2 card). 
Since this analytical function is only a flag to tell the code to call the appropriate user-supplied 
subroutine, the same analytical function can be specified for more than one parameter. The 
computational technique is then programmed in the subroutine associated with the parameter 
of interest (see Table 3.1), and the job is submitted to the computer according to the format 
presented in Fig. A^l.

HEATINGS contains dummy subroutines for each of the parameters listed in Table 3.1. If 
the user references one of the routines but fails to supply his own, then the code will write out 
an error message and stop when that subroutine is called. Each user-supplied subroutine has 
the same argument list. However, all five independent variables are not initialized for each 
subroutine. Only the independent variables marked by an x in Table 3.1 are initialized when 
each respective subroutine is called. Subroutine BNDTMP, a typical, dummy, user-supplied 
subroutine, is shown in Fig. C-l. With the exception of HEATGN, all the other user-supplied 
subroutines are basically the same as BNDTMP, the only differences being the variables which 
are initialized (see Table 3.1) and the parameter which is being evaluated. Subroutine 
HEATGN is shown in Fig. C-2.

If the thermal conductivity of a material is anisotropic, then it must be defined in 
user-supplied CONDTN (see Section 3.6.7).
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SUBROUTINE BNDTMP(RVALUE.R.TH,Z,TIH.TSN.VALUE.NUMBER.N)
C *************** *******************************************************
C
C WHEN IT IS REFERENCED. THIS SUBROUTINE MUST BE SUPPLIED BY THE USER TO 
C EVALUATE THE USER-SUPPLIED FUNCTION DEFINING THE BOUNDARY TEMPERATURE. 
C THIS PARAMETER MAY BE TIME-DEPENDENT.
C THE VARIABLES IN THE ARGUMENT LIST ARE DEFINED IN THE FOLLOWING TABLE. 
C (Y) INDICATES THAT THE VARIABLE HAS BEEN DEFINED WHEN THIS SUBROUTINE 
C IS CALLED. IN) INDICATES IT HAS NOT BEEN DEFINED.
C
c VARIABLE TYPE DEFINITION
c RV ALUE REAL *8 VALUE OF THE USER-SUPPLI ED FUNCTION
c EVALUATING THE BOUNDARY TEMPERATURE (THIS
c VALUE MUST BE COMPUTED BY THIS ROUTINE). (N)
c NAME OF VARIABLE IN CALLING SEQUENCE ----
c TDUM(I).
c R REAL*8 X OR R COORDINATE OF NODE N. (N)
c TH REAL *8 Y OR THETA COORDINATE OF NODE N. (N)
c Z R EAL*8 Z COORDINATE OF NODE N. (N)
c TIM REAL *8 TIME AT WHICH PARAMETER IS TO BE
c EVALUATED. (Y)
c TSN R EAL* 8 TEMPERATURE AT WHICH PARAMETER IS TO BE
c EVALUATED. <N)
c VALUE REAL*8 CONSTANT VALUE OF THE PARAMETER WHICH
c APPEARS ON ITS RESPECTIVE INPUT CARD (Bl) IF
c IT IS NON-ZERO.
c IF IT IS ZERO. VALUE CONTAINS 1.0. (Y)
c NAME OF VARIABLE IN CALLING SEQUENCE ----
c BYTEMP! NBDTP) .
c NUMBER INTEGER *4 INDEX OF PARAMETER BEING EVALUATED. (Y)
c NAME OF VARIABLE IN CALLING SEQUENCE - NBDTP
c N INTEGER *4 NODE NUMBER. (N)
c
c ********************************************************************** 

REAL*8 RVALUE.R.T H,Z.TIM,TSN,VALUE 
COMMON /INOUT/ IN ,10 

C
C INSERT ALGORITHM TC COMPUTE THE BOUNDARY TEMPERATURE FOR BOUNDARY 
C CONDITION •NUMBER* HERE .
C

WRITE II0,9000)
9000 FORMAT!•1***********/

I • YOU HAVE CALLED SUBROUTINE BNDTMP WHICH IS A USER-SUPPLIED FUNC 
2TION.•/
3 • HOWEVER. YOU HAVE NOT SUPPLIED THIS SUBROUTINE.*/
A • EITHER SUPPLY SUBROUTINE BNDTMP OR CORRECT THE INPUT DATA SO TH 
SAT THIS SUBROUTINE IS NOT REFERENCED.*)

STCP
END

Fig. C-l. Dummy User-Supplied Subroutine for Boundary Temperature
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SUBROUTINE HEATGN(RVALUE.R.TH.Z.TIM•TSN,VALUE.NUMBER.N)
C **** ***************** **********4>***«**********«****4i********««**4i*****
C
C WHEN IT IS REFERENCED. THIS SUBROUTINE MUST BE SUPPLIED BY THE USER TO 
C EVALUATE THE USER-SUPPLIED FUNCTION DEFINING THE VOLUMETRIC HEAT 
C GENERATION RATE. THIS PARAMETER MAY BE TIME-. TEMPERATURE- AND/OR 
C POSITION-DEPENDENT.
C
c note: if the heat generation rate is written as

C Q = FCR.TH.Z.TSN) * G(TIM)
C THEN THIS SUBROUTINE MAY BE CALLED FIRST TO CALCULATE THE
C FACTOR F. THEN. THIS ROUTINE IS CALLED FROM THE SOLUTION
C ALGORITHM TO UPDATE THE TIME-DEPENDENT FACTOR G OF
C THE HEAT GENERATION RATE. WHEN THIS FACTOR IS UPDATED. ONLY
C TIM. NUMBER. AND VALUE ARE DEFINED WHERE VALUE = 1.0.
C IF NECESSARY. THE TWO CALLS MAY BE IDENTIFIED BY THE VALUE OF
C N. IN THE FIRST CALL. N CONTAINS THE NUMBER OF THE NODE
C WHOSE HEAT GENERATION RATE IS BEING EVALUATED. IN THE SECOND
C CALL. N IS SET TO ZERO.
C
C THE VARIABLES IN THE ARGUMENT LIST ARE DEFINED IN THE FOLLOWING TABLE. 
C (Y) INDICATES THAT THE VARIABLE HAS BEEN DEFINED WHEN THIS SUBROUTINE 
C IS CALLED. (N) INDICATES IT HAS NOT BEEN DEFINED.
C
C VARIABLE TYPE
C RVALUE REAL *8
C 
C
c 
c
c R REAL *8
C TH REAL*8
C Z REAL * 8
C TIM R E AL *8
C
C TSN R EAL *8
C
C VALUE REAL *8
C 
C
c 
c 
c
C NUMBER INTEGER *A
C
C N INTEGER**
C
c **********************************************************************  

PEAL*8 RVALUE.R.TH.Z,TIM.TSN,VALUE 
COMMON /INOUT/ IN . 10

DEFINIT ION
VALUE OF THE USER-SUPPLIED FUNCTION 
EVALUATING THE VOLUMETRIC HEAT GENERATION 
RATE (THIS VALUE MUST BE COMPUTED BY THIS 
ROUTINE). (N)
NAME OF VARIABLE IN CALLING SEQUENCE - GEN. 
X OR R COORDINATE OF NODE N. (Y)
Y OR THETA COORDINATE OF NODE N. (Y)
Z COORDINATE OF NODE N. <Y>
TIME AT WHICH PARAMETER IS TO BE 
EVALUATED. (Y)
TEMPERATURE AT WHICH PARAMETER IS TO BE 
EVALUATED. (Y)
CONSTANT VALUE OF THE PARAMETER WHICH 
APPEARS ON ITS RESPECTIVE INPUT CARD (G) IF 
IT IS NON-ZERO.
IF IT IS ZERO. VALUE CONTAINS 1.0. (Y)
NAME OF VARIABLE IN CALLING SEQUENCE ----
GENO(NGN).
INDEX OF PARAMETER BEING EVALUATED. (Y)
NAME OF VARIABLE IN CALLING SEQUENCE - NGN. 
NODE NUMBER. (Y)

Fig. C-2. Dummy User-Supplied Subroutine for Volumetric Heat Generation Rate
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INSERT ALGORITHM TC COMPUTE THE VOLUMETRIC HEAT GENERATION RATE HERE.

WR ITE( 10,90 00 »
9000 FORMAT!*I***********/

1 • YOU HAVE CALLED SUBROUTINE HEATGN WHICH IS A USER-SUPPLIED FUNC
2 TI CM . */
3 • HOWEVER, YOU HAVE NOT SUPPLIED THIS SUBROUTINE.*/
4 • EITHER SUPPLY SUBROUTINE HEATGN OR CORRECT THE INPUT DATA SO TH 
SAT THIS SUBROUTINE IS NOT REFERENCED.*)

STCP
END

Fig. C-2 (Contd.)
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APPENDIX D

SAMPLE PROBLEM

An illustrated example was chosen for instructive purposes rather than representing a real 
engineering problem. The problem was two-dimensional in X-Y coordinates and consisted of 
three materials. Its configuration is shown in Fig. D-l. Numbers in circles represent regions 
and numbers in square frames represent boundary conditions. The units used were Btu, °F, lb, 
inch, and min. The conditions of the problem were as follows:

Regions 1 to 6 consisted of material No. 1 (iron); regions 7 to 9 consisted of material No. 
2 (stainless steel); and regions 10, 11, and 12 were an air gap between the two metals. The 
physical properties of these materials are given in Table D-L

Table D-L Material Physical Properties for Test Problem 
Number 3 for HEATINGS

Property/ Material Iron
(Material No. 1)

Stainless 
(Material No. 2)

Air
(Material No. 3)

Conductivity 0.0296 at 0°F 0.013 at 0°F 1.82xl0~5 at 0°F

Btu/(min-in-0F) 0.0264 at 752° F 0.015 at 752° F 3.41xl0~5 at 500°F

0.0222 at 1832°F 0.025 at 1832°F 4.68xl0~5 at 1000°F

5.75xlO"5 at 1500°F

Density

lb/in.3

0.2801 0.2824 5.00xl0"5 at 0°F

2.39xl0~5 at 500°F

1.57xl0~5 at 1000°F

1.17xl0~5 at 1500°F

Specific Heat

Btu/(lb-° F)

0.116 0.11 0.25
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ORNL-DWG 70-13719R

6.75

4.75

4.0 

3.5

3.0

2.25

15

10

DU CONVECTION [3 
^^L

10 2.0 2.75 3.25 3.75 4.5
x (in.)

5.5

Fig. D-l Two-Dimensional XY Test Problem Number 3 
for HEATINGS
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There was a uniform heat generation in regions 1 and 2 at the rate of 1.0 Btu/(min-in.3) 
which was time-dependent according to time function No. 2 given in Fig. D-2. The initial 
temperature all over was 100° F. The boundary conditions on each of the faces are shown in 
Fig. D-l, and they are numbered in square frames. Boundary condition No. 1 was in perfect 
contact with a fluid at 200° F and was time-dependent according to time function No. 1 given 
in Fig. D-2. Boundary condition No. 2 was radiation across an air gap (region 10) between the 
two metals (emissivity e = 0.8). Conduction and natural convection were neglected. Boundary 
condition No. 3 was forced convection to a fluid at 68° F (one face of region 10 only). The 
heat transfer coefficient was 0.006 Btu/(min-in2-0F). Boundary Condition No. 4 was combined 
heat transfer by radiation and natural convection across an air gap (region 11) between the two 
metals (emissivity e = 0.8). Heat was also transferred by conduction through the air. The 
natural convective heat transfer coefficient was given by

h = 2.56 x 10-5 AT0'33 Btu/(min-in2-°F). (D-l)

Boundary condition No. 5 was a time-dependent heat flux from solar radiation given by 
Eq. (D-2) and was cooled by radiation and natural convection to the open atmosphere (at 
100°F). The rest of the boundaries were insulated.

hf = 0.03cos (^t) (D_2)

Region 12 could not be described for surface-to-surface radiation or natural convection because 
of lack of opposing surfaces. Conduction could have been taken into account but was neglected 
in this case. It was desired to know the transient temperature distribution at 30 and 60 minutes 
and the steady-state temperature distribution resulting from evaluating all time functions at 60 
minutes. It was also desired to monitor the temperatures at points (1.0,1.5) (3.75,3.0), (2.75,4.0), 
(5.5,4.0) and (5.5,6.75) after every 10 time steps or iterations. The maximum CPU time was 
limited to 100 seconds.

The problem was run on HEATINGS using the input data given in Fig. D-3. The 
transient calculations used the Crank-Nicolson Procedure with an initial time step size of 0.1 
minutes which was increased 10% after each time step. The printed input and output are given 
in Table D-2. The IBM 360/195 CPU time for the case was 10.1 seconds, of which the 
60-minute transient calculations required about 7.4 seconds.

The following changes to the model were made to demonstrate some additional capabilities 
of HEATINGS. Suppose that the initial temperature varied as a function of y according to the 
following expression

T0(y) = 235 - 20y (D-3)

and the heat generation rate in region 1 was a sum of exponentials defined by the expression

Q.(t)

3
2 C,ie 

i=l
Ai,t (D4)
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0 12 24 36 48 60
TIME (min)

Fig. D-2 Time-Dependent Functions for Test Problem 
Number 3 for HEATINGS
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TEST PROBLEM *3 FOR HEATINGS
00 7 1 1 3 1 1 5 CAR 02

7 7 1 6 CAR03
2 1 0 CARD4

-2 60.0 CAROS
1 1 1.0 2.0 1 .5 6 .75 R1
1 1 1 R2
2 1 2.0 5.5 4.75 6.75 R1
1 1 5 R2
3 i 3.25 3.75 1.5 2. 25 R1
I 3 R2
4 1 3. 25 3. 75 2.25 3.0 R1
1 R2
5 1 3.25 4. 5 3. 0 3.5 R1
1 R2
6 1 4. 5 5.5 3.0 3 .5 Rl
1 3 R2
7 2 2.0 2.75 1 .5 4.0 Rl
1 3 1 R2
8 2 2.0 2.75 4.0 4.75 Rl
1 R2
9 2 2.75 5.5 4.0 4. 75 Rl
1 5 R2

JO 2.75 3.25 1.5 3.5 Rl
1 2 2 R2

1 1 3 3.25 5. 5 3. 5 4.0 Rl
1 4 4 R2
1 IRON . 2801 .116 -3 M
2 STAINLSS . 2824 . 1 1 -4 M
3 AIR 0 .25 -5 -6 M
1 1.0 -2 G
1 100. 0 I
1 2 200.0 - 1 81

B2
2 3 Bl

1.580-13 B2
3 1 68.0 Bl

i-3 82
4 3 Bl

1.580-13 2.560-05 0. 33 B2
5 1 100 .0 81

1.580-13 2.560-05 0.33 1 B2
1 83

.0 2.0 2.75 3.25 3.75 4.5 5. 5 LI
2 1 1 1 1 1 N1

.5 2.25 3.0 3.5 4.0 4.75 6.75 L2
1 1 1 1 1 4 N2
1 2 At
4 0.03 5 .0087266 A2
1 4 T1

Fig. D-3. Input Data for Test Problem Number 3 for HEATINGS
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0.0 1.0 12.0
2 3

0.0 1. 0 12.0
3 3

0.0 . 0296 752.0
4 3

0.0 .013 752.0
c 4

0.0 1 .820-5 500.0
e 4

0 .0 5.0 0-5 500.0
30.0 60. 0

5 1 18
D-0 5 1.00-3 1.00-5

0. 1 1 . 1

2. 0 1 8. 0 2.0

1.5 30.0 1 .125

.0264 1832.0 .0222

.0153 1832.0 .025

3.410-5 1000.0 4.680-5

2.390-5 1000.0 1.570-5

32 36 76

24.0 3.0 T2
TI
T2
Tl
T2
Tt
T2
TI

1500.0 5.750-5 T2
TI

1500.0 1.170-5 T2
0
s

IP
TP

Fig. D-3 (Contd.)
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where the parameters were defined as

i Ca Aii

i 0.5 0.0115525

2 0.3 0.0231049

3 0.2 0.0462098

and the heat generation rate in region 2 was a sum of exponentials defined by the expression

2
Q2(t) = 2 Ci2e A2,t (D-5)

i=l

where the parameters were defined as

i Ci2 A2l

i 0.6 0.0115525

2 0.4 0.0462098

Furthermore, the thermal conductivity for iron was assumed to be anisotropic with the 
conductivity along the Y-axis equal to twice that along the X-axis as presented in Table D-l. 
The initial temperature was input to the code as an analytical function but the two heat 
generation rates and the conductivity for iron must be defined by user-supplied subroutines. 
The input data for this case is presented in Fig. D-4. Note that tabular function numbers 2 
and 3 are part of the input data but are not used. The user-supplied subroutines for the heat 
generation rate and the thermal conductivity for iron are presented in Figs. D-5 and D-6, 
respectively.



Table D-2. Computer Output for Test Problem 
Number 3 for HEATNG5

HEATINGS. A MULT I-DINENSI0NAL HEAT CONDUCTION CODE WITH TEMPERATURE-DEPENDENT THERMAL PROPERTIES.
NON-LINEAR AND SURFACE-TO-SURFACE BOUNDARY CONDITIONS AND CHANGE-OF-PHASE CAPABILITIES.
THIS VERSION OF THE CODE IS DESCRIBED IN ORNL-TM-
THE TRANSIENT SOLUTION CAN BE CALCULATED BY AN IMPLICIT TECHNIQUE (CRANK-NICOLSON OR 
BACKWARDS EULER) FOR PROBLEMS WITH MATERIALS WHICH ARENOT ALLOWED TO UNDERGO A PHASE CHANGE.

THE ONE-DIMENSIONAL R SPHERICAL MODEL WAS ADDED NOV. 75. THIS MODEL MAY BE ACCESSED 
BY SPECIFYING NGEOM = 10 IN THE INPUT DATA.
HEATINGS WAS WRITTEN BY

W.D. TURNER
D.C. ELROD
I. I. SIMAN-TOV
COMPUTER SCIENCES DIVISION
UNION CARBIDE CORPORATION. NUCLEAR DIVISION 
OAK RIDGE. TENNESSEE 37830

THIS VERSION OF HEATING CAN HANDLE A MAXIMUM OF 100 LATTICE POINTS.

INPUT RETURN 

DATE 11-30-76
TIME 1 4 • 0 4 .0 4 00

K3

JOB DESCRIPTION— TEST PROBLEM *3 FOR HEATINGS
THE PROBLEM WILL BE TERMINATED AFTER 100 SECONDS
GEOMETRY TYPE NUMBER 7 (OR XY )
NUMBER OF REGIONS 11
NUMBER OF MATERIALS 3
NUMBER OF HEAT GENERATION FUNCTIONS 1
NUMBER OF INITIAL TEMPERATURE FUNCTIONS 1
NUMBER OF DIFFERENT KINDS OF BOUNDARIES 5
THIS PROBLEM INVOLVES TEMPERATURE-DEPENDENT PROPERTIES.
NUMBER OF POINTS IN GROSS X OR R LATTICE 7
NUMBER OF POINTS IN GROSS Y OR THETA LATTICE 7
NUMBER OF POINTS IN GROSS 2 LATTICE 0
NUMBER OF ANALYTIC'FUNCTIONS 1
NUMBER OF TABULAR FUNCTIONS 6
SINCE THIS PROBLEM INVOLVES RADIATION, 459.69 WILL BE ADDED TO 
THE TEMPERATURES TO CONVERT THEM TO ABSOLUTE TEMPERATURES.
NUMBER OF TRANSIENT PRINTOUTS SPECIFIED 2
TEMPERATURES OF SELECTED NODES WILL BE MONITORED EVERY 10 ITERATIONS OR TIME STEPS.

PROBLEM TYPE NUMBER -2
STEADY STATE CONVERGENCE CRITERION 1.0000000D-05 
MAXIMUM NUMBER OF STEADY-STATE ITERATIONS 500 
NUMBER OF ITERATIONS BETWEEN TEMPERATURE DEPENDENT 
PARAMETER EVALUATIONS FOR STEADY STATE CALCULATIONS 0
INITIAL OVERRELAXATION FACTOR (BETA) FOR STEADY STATE CALCULATIONS 1.90000000
TIME INCREMENT 0.0
INITIAL TIME 0.0
FINAL TIME 6.0000000D 01



Table D-2 (Contd.)

SUMMARY OF REGION DATA
NUMBERS AND FCN NUMBER **************************** DIMENSIONS ***************************** ------- boundary NUMBERS
REG. MAIL INIT HEAT LEFT-X-OR RIGHT-X-OR LOHER-V-OP UPPER-Y-OR REAR-Z FRONT—Z LF-X RT-X LO-Y UP-Y RR-z FT-Z

NO. NO. TEMP GEN. INNER-P OUTER—R LEFT-THETA PIGHT-THET A IN-R OT-R LF-0 RT-0
i 1 1 1 .0000 2.0000 1.5000 6.7500 0. 0 0.0 0 0 1 C 0 0
2 1 1 2.0000 5.5000 4.7500 6.7500 0 .0 0 .0 0 5 0 C 0 0
3 1 0 3.2500 3.7500 1.5000 2.2500 0.0 0.0 0 3 0 0 0 0
4 1 0 3.2500 3.7500 2 .2500 3 .0000 0.0 0. 0 0 0 0 c 0 0
5 1 0 3.2500 4.5000 3.0000 3.5000

o«o o • o 0 0 0 0 0 0
6 1 0 4 .5000 5.5000 3.0000 3.5000 0.0 0.0 0 0 3 c 0 0
7 2 0 2.0000 2.7500 1.5000 4.0000 0 .0 0.0 0 3 1 0 0 0
8 2 0 2 .0000 2.7500 4.0000 4.7500 0.0 0. 0 0 0 0 0 0 0
9 2 0 2.7500 5.5000 4.0000 4 .7500 0 .0 0.0 0 5 0 0 0 0

10 0 0 2.7500 3.2500 1.5000 3.5000 0. 0 0.0 2 2 0 0 0 0
11 3 0 3.2500 5.5000 3.5000 4 .0000 0.0 0.0 0 0 4 4 G 0

00
OJ



Table D-2 (Contd.)

********** SUMMARY OF MATERIAL DATA **********

MATER IAL MATERIAL
NUMBER NAME — TEMPERATURE-DEPENDENT FUNCTION NUMBERS —

CONDUCT IV ITY DENSITY SPECIFIC HEA
1 IRON 0.0 2.801000 D-01 1 .1600000-01

-3 0 0
2 STAINLSS 0.0 2.824000 D—01 1.100000D-01

-4 0 0
3 AIR 0 .0

o•o

2.5000000-01
-5 -6 0

********** SUMMARY OF INITIAL TEMPERATURE DATA **********

NUMBER INITIAL POSITI ON-DEPENDENT FUNCTION NUMBERS
TEMPERATURE X OR R Y OR TH Z

l 1.000000 02 000

****************** SUMMARY OF HEAT GENERATION PATE O ATA ******************

NUMBER POWER T IME—. TEMPERA(IrURE-. AND POSIT ION-DEPENDENT NUMBERS
DENS IT V TI ME TEMPIEPATURE X OP P Y OR TH Z

1 1 .000000 00 -2 0 0 0 0

00-u



Table D-2 (Contd.)

NO.
1

**********SUMMARY OF BOUNDARY DATA**********

-------------------GENERAL-------------

NO • TYPE FCT
FLAG

— TEMPERATURE — 
INFORMAT ION

TEMPERA TURE 
6 TIME FCT

2.000000 02
-1

ASSOC. 
FCT S

FORCED CONV «

0.0

0.0 0.0

-HEAT TRANSFER COEFFICIENTS— 
RELATED FUNCTION NUMBERS

R AD IAT ION

0. 0

NATURAL CONV EXPONENT

0.0

I .580000-13 0 .0

0 .0

0 .0

FLUX

C .0

0.0

6.80000D 01 
0

0.0

I .00000D 02 
0 TIME

TEMP

6.00000D-03

0 .0

0 .0 
0 
0

0 .0 0 .0 0.0

1.58000D-13 2.560000-05 3.30000D-C1

l•5800 0D-13 
0

2.56000D-05 
0 
0

3•30000 D —01 
0 
0

0.0

0 .0
1
0

00cn

GROSS LATTICES AND NUMBERS OF INCREMENTS

R CR X
i.000000

2

THETA OR Y 
I .500000 

1

2.000000
1

2.250000
1

2.750000 
1

3.000000
1

3.250000
1

3.500000 
1

3.750000
1

A.000000
1

4.500000
1

A•750000
4

5.500000

6 .750000

LISTING OF ANALYTIC FUNCTIONS

F(V)= A(l) 4- A( 2 )*V ♦ A( 3 ) * V**2 4 A ( 4 ) *COS (A(5)*V) * A< 6 ) *EXP < A< 7 ) *V ) * A < 8 ) *S I N( A < 9) * V ) * A C 1 0 > *LOG ( A ( 1 1 ) * V )

A ( 1)
0.0

A< 21
0 .0

A ( 3)
0.0

A C 4 ) A ( 5 ) A ( 6 )
3 .0 000— 0 2 8.727D-03 0.0

A ( 7 )
0.0

A ( 8 )
0.0

A ( 9 >
0.0

A ( 10)
0 .0

A ( 1 1 )
0 .0
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LISTING QF TABULAR FUNCTIONS

TABLE NUMBER 1 NUMBER OF PAIRS -

ARGUMENT VALUE
0.0 1.000000000 00
1.20000000D 01 2.000000000 00
1 .800000000 01 2.000000000 00
2. 4 0000000D 01 3.000000000 00

TABLE NUMBER 2 NUMBER OF PAIRS -

ARGUMENT VALUE
0.0 1.000000000 00
1 .20000000 D 01 1 .500000000 00
3. 00000000D 01 1.125000000 00

TABLE NUMBER 3 NUMBER OF PAIRS -

ARGUMENT VALUE
0.0 2.960000000-02
7.52000000D 02 2.640000000-02
1 .832000000 03 2.220000000-02

TABLE NUMBER 4 NUMBER OF PAIRS -

ARGUMENT VALUE
C. 0 1.300000000-02
7.5 2000000D 02 1.530000000-02
1.832000000 03 2.500000000-02

TABLE NUMBER 5 NUMBER OF PAIRS -

ARGUMENT VALUE
0.0 1.820000000-05
5.000000000 02 3.410000000-05
1.000000000 03 4.680000000-05
1 .500000000 03 5.750000000-05

TABLE NUMBER 6 NUMBER OF PAIRS -

ARGUMENT VALUE
0.0 5 .000000000-05
5.00000000D 02 2.390000000-05
1 .000000000 03 1.570000000-05
1.500000000 03 1.170000000-05

TABLE OF OUTPUT TIMES

OUTPUT OUT PUT 1OUTPUT OUTPUT OUTPUT
NO. TIME 1MO. TIME NO.

1 3.000000 01
2 6.000000 01

TEMPERATURES OF THE FOLLOWING 
EVERY 10 ITERATIONS OR TIME
NUMBER

1
2
3

NODE
I

18
32
36
76

NODES WILL 
STEPS.

BE MONITORED

OUTP UT 
T IMF

OUTPUT OUTPUT
NO. TIME

00

A
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FINE LATTICE * X OR R. Y OR THETA. AND Z

I 1 • 000000 2 1 .500000 3 2.000000
e 3. 750000 7 4.500000 8 5.500000

i i • 500000 2 2.250000 3 3.000000
6 4. 750000 7 5.250000 8 5. 750000

THIS PROBLEM CONTA INS 76 NODES.

2.750000 3.2500005

3.500000 5
6.250000 10

4.0C0C0C 
6.750000
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SURFACE-TO-SURFACE CONNECTIONS

NUMBER NODE TO NODE
1 4 5
2 10 1 1
3 16 17
4 24 25
5 25 33
6 26 34
7 27 35
8 28 36

THE INITIAL TIME STEP = 1.000000D-01

AFTER EACH TIME STEP THE TIME STEP SIZE WILL BE MULTIPLIED BY A FACTOR 
OF 1 * 1 CO GOOD 00 SUBJECT TO ANY CONDITIONS WHICH MAY FOLLOW.

THE MINIMUM TIME STEP ALLOWED IS 1.000000D-02 oo
00
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1 0 .0 2 0.0
7 9 • 63780— 02 8 9.63780-02

13 8.35270-02 14 8.35270-02
19 l.OOOOD-Ol 20 1.02900-01
25 6.94470-02 26 8.34000-02
31 1.39630-01 32 2.33590-01
37 8 .35270-02 38 8.35270-02
43 1.81650-01 44 1.96160-01
49 6.96060-02 50 8.35270-02
55 8.35270-02 56 8.35270-02
61 6.96060-02 62 6. 96060-02
67 1.04410-01 68 1.1 1290-01
73 6.96060-02 74 8.35270-02

TABILITY CRITERION FOR EACH NODE

3 0. 0 4 0.0
9 1 .65090-0 l 10 2.80070-01

1 5 1.39630-01 1 6 2.30840-01
2 1 6.96060-02 22 6.96060-02
27 1•04220-01 28 1 .11160-01
33 2.01710-01 34 2.61630-01
39 1•18190-01 40 1 .39630-01
45 6.96060-02 46 6.96060-02
51 1.04410-01 52 1.11290-0l
57 6.96060-02 58 8.35270-02
63 8.35270-02 64 8.35270-02
69 6.96060-02 70 6 .96060-02
75 l .044 1 0-0 1 76 1.11 290-0 1

5 9.62510-02 6 8.99730-02
1 1 9.62510-02 1 2 9.30650-02
17 8.34320-02 1 8 8. 792 40-02
23 1.13400-01 24 1.82830-01
29 8.35270-02 30 8.35270-02
35 3.73280-01 36 4.166 1 0-01
41 1.13400-0l 42 1.39630-01
47 8.35270-02 48 8.35270-02
53 6.96060-02 54 6.96060-02
59 1.04410-01 60 1•11290-01
65 6.9606D-02 66 8.35270-02
71 8.35270-02 72 8.35270-02
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THE STABILITY CRITERION IS 6.9447A47D-02 FOR POINT 25

VOO
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MAP OF THE NODE NUMBERS

1
2
3
4
5
6

10

;p io 1 2 3 4 5 6 7
I I I I I I I

GRID 1 2 3 4 5 6 7 8
DISTANCE 1 .0 0 1.50 2.00 2. 75 3.25 3. 75 4.50 5.50

1.50 11---------
2.25 7 I 8 91 101 1 1 I 121 0 0 I
3. 00 131 1 4 151 161 171 18+----------- -*9-------------- — 091
3. 50 211 22 231 241 25*------ ------ e*--------------- -27-------------- -091
4.00 291 30 311 32*------ ------ 33*------- -35-------------- -361
4. 75 371 38 39*--------- — 49--------- ------ 4*--------- ------ 4fi--------------- -43-------------- -441
5. 25 451 46 47 48 49 50 51 521
5.75 531 54 55 56 57 58 59 601
6.25 611 62 63 64 65 66 67 681
6. 75 691--------- ---------------------- —------------—--------- -------*3--------- ------ ?4-------------- -75-------------- -761
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FINE

1
2
3
4
5
6 
7

TRANSIENT TEMPERATURE DISTRIBUTION AFTER 0 TIME STEPS.
;rio 1 2 3 4 5 6 7

1 I I I I I I
1 GRID 1 2 3 4 5 6 7 8
D ISTANCE l .0 0 1.50 2.00 2.75 3.25 3. 75 4.50 5.50

1 .50 lOOIOO—-iOO-sOO— -+60400— -+66*06-—+60*00- —+06*00----------eve--------------010
2.25 100100 100.00 100100 100100 100100 100100 0 .0 010
3.00 100100 100. 00 100100 100100 100100 100*00-— +00-.00-- -+00100
3.50 100100 100.oc 100100 100100 100*00-—Fee-.ee-— +00-.00—-*66100
4.00 100100 100.00 100100 100*00- —+00*06- —Fee-.ee— —+66.60— -FOOIOO
4.75 100100 100.00 100+00— —+66t66-—F66-.ee- —Fee-.ee- —+00.00— -+OOIOO
5.25 100100 100.00 100.00 100.00 100.00 100.00 100 .00 100100
5.75 100100 1 00 .00 100 .00 100 .00 100.00 1 00.00 100.00 1 00100
6.25 100100 100.00 100.00 100.00 100.00 100.00 100.00 100100
6. 75 l00106— -+06w00— —FOOvOO— —Foo^oe- —Fee-.ee-—+00.00— -+00100

TEMPERATURES ON NUMBERED BOUNDARIES

BOUNDARY NUMBER 
1 
2
3
4
5

THE CURRENT TIME STEP

TEMPERATURE
200.000000

0.0
68 .000000

0. 0
100.000000

(DELTAT) = 9.090909090-02

ELAPSED CPU TIME IS 0.31 SECONDS

THE MAXIMUM TEMPERATURE IS - 1.00000D 02 (4—0.11

MAX. TEMP. APPEARS AT NODES

THE MINIMUM TEMPERATURE IS 

MIN. TEMP. APPEARS AT NODES

1 2 3 4 5
6 7 8 9 10

11 1 2 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
4 1 42 43 44 45
46 47 48 49 50

1 GOOD 02 ( 4—0 • 1 )

1 2 3 4 5
6 7 8 9 10

1 1 1 2 13 14 1 5
1 6 17 1 8 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49 50

VOro
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THE IMPLICIT PROCEDURE WILL BE USED TO CALCULATE THE TRANSIENT TEMPERATURE DISTRIBUTION.
MAXIMUM NORMALIZED HEAT RESIDUAL CONVERGENCE CRITERION = 1 .000000-05
(CORRESPONDS TO EPSILON SUB 1)
RE DUCT IC N IN NORMALIZED HEAT RESIDUAL CONVERGENCE CRITERION = 1.0000CD-03
(CORRESPONDS TO EPSILON SUB 2)
AVERAGE LI NORM OF RELATIVE TEMPERATURE DIFFERENCE CONVERGENCE CRITERION 
FOR TEMPERATURE DEPENDENT PROPERTIES = 1.00000D-05 
(CORR E SPCNOS TO EPSILON SUB 3)
THETA (0.5 FOR CRANK-NICOLSON,1.0 FOR CLASSICAL IMPLICIT) = 5.00000D-01

THE SOR ACCELERATION PARAMETER (BETA) WILL BE OPTIMIZED EMPIRICALLY.
BETA = 1 • 00000D 00
A BETA UPDATE WILL BE ATTEMPTED EVERY 1 TIME STEPS.
NUMBER —OF—IT ERAT ICN S TOLERANCE FOR BETA UPDATE CALCULATIONS. OUTER LOOP = 5
NUMBER —O F— IT ER AT I ON S TOLERANCE FOP BETA UPDATE CALCULATIONS. INNER LOOP = 2
PER CENT CHANGE IN BETA UPDATE CALCULATIONS = 10

VO
CO
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THE FOLLCKING TABLE IS PRINTED OUT FOR INFORMATION PURPOSES DURING THE IMPLICIT TRANSIENT C ALCULAT I.ONS.

A LINE IS PRINTED EACH TIME THE INNER LOOP CONVERGES. A LINE IS ALSO PRINTED AFTER THE VERY FIRST ITERATION FOR 

EACH TIME STEP. THUS. ONE CAN DETERMINE HOW MUCH THE MAXIMUM NORMALIZED HEAT RESIDUAL DECREASES DURING THE 

ITERATIVE PROCESS. ENTRIES IN EACH COLUMN APE DESCRIBED BELOW:

NO TIME 

TIME 

NO ITER

MAX HEAT RESIDUAL 

BETA

LI NORM OF TEMP DIFF

R HO I ITERAT ION)
RHOI JACOBI )
NO ITER

LI NCRM OF TEMP DIFF

NODE

MAX TEMP CHANGE 

NODE

MAX PERCENT TEMP CHANGE

NUMBER OF TIME STEPS.

TIME AT WHICH TEMPERATURE DISTRIBUTION IS BEING CALCULATED.

NUMBER OF ITERATIONS REQUIRED FOR INNER ILINEAR) LOOP TO CONVERGE.

THE MAXIMUM NORMALIZED HEAT RESIDUAL AFTER THE NUMBER OF ITERATIONS 

INDICATED IN THE PREVIOUS COLUMN (COMPARES TO EPSILON SUB 1).

CURRENT VALUE OF THE SOR ACCELERATION PARAMETER.

THE LI NORM OF THE TEMPERATURE DIFFERENCE OVER THE CURRENT ITERATION FOR INNER 

(LINEAR) LOOP. THIS COLUMN AND THE NEXT TWO ARE USED ONLY WHEN THE OPTIMUM 

ACCELERATION PARAMETER IS BEING ESTIMATED USING CARRE'S TECHNIQUE.

SPECTRAL RADIUS FOR THE SOR ITERATION MATRIX.
SQUARE OF SPECTRAL RADIUS FOR THE JACOBI ITERATION MATRIX.

NUMBER OF ITERATIONS COMPLETED FOR OUTER (NON-LINEAR) LOOP.

THE AVERAGE LI NORM OF THE RELATIVE TEMPERATURE DIFFERENCE OVER THE CURRENT 

ITERATION FOR OUTER (NON-LINEAR) LOOP. NON-ZERO FOR NON-LINEAR PROBLEMS ONLY. 
(COMPARES TO EPSILON SUB 3)

NODE NUMBER.

MAXIMUM TEMPERATURE CHANGE AT A NODE OVER THE CURRENT TIME STEP. THIS CHANGE 
OCCURRED AT THE NODE SHOWN IN THE PREVIOUS COLUMN.

NODE NUMBER.

MAXIMUM PERCENTAGE OF RELATIVE CHANGE IN TEMPERATURE AT A NODE OVER THE CURRENT 

TIME STEP. THIS CHANGE OCCURRED AT THE NODE SHOWN IN THE PREVIOUS COLUMN.

■U
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NO TIME NO MAX HEAT BETA LI NORM OF RHO RHO NO LI NORM OF NODE MAX TEMP NODE MAX PERCENT

TIME ITER RESIDUAL TEMP 0 IFF ( ITERATION) ( JACOBI I TER TEMP DIFF CHANGE TEMP CHANGE
1 1.000000-01 0 5.598330-03 1 • 000000 00 0.0 0.0 0 .0
I l.000000-01 1 8.451280-04 1 • 00 0 00 0 00 0 .0 0.0 0. 0
I 1 .000000-01 5 2.399060-06 1 .000000 00 0.0 0.0 0 .0 1 1.218170-02
1 1.000000-01 2 6.741860-07 1 •OOOOOD 00 0.0 0.0 0. 0 2 2.156460-06 7 9 .776210 00 7 1.746720 00
2 2.100000-01 1 1.915410-03 1 •100000 00 0.0 0 .0 0.0
2 2.100000-01 5 3.248410-07 1 • 100000 00 0.0 0.0 0.0 1 9 .526390-03
2 2.100000-01 3 1.922840-07 1 . 10000 0 00 0 .0 0.0 0.0 2 3.938870-06 7 1.563410 01 7 2 .745390 00
3 3.310000-01 1 2.1482 80-03 1 . 100000 00 0.0 0.0 0 .0
3 3.310000-01 5 6.410100-07 1 . 100000 00 0.0 0.0 0. 0 1 5.348900-04
3 3.3 10000-01 1 5.770340-07 1 .100000 00 0.0 0 .0 0 .0 2 l .263320-07 7 1.265540 01 7 2.162950 00
4 4.641000-01 1 1 .567030-03 1 •100000 00 0.0 0.0 0. 0
4 4.641000— 01 « 2.011100-07 1 .100000 00 0.0 0.0 0 .0 1 4.251750-04
4 4.641000-01 1 3 .751540-07 1 • 10000D 00 0.0 0.0 0. 0 2 l .044120-07 7 1.049260 0 1 7 1.755330 00
5 6•105100-01 l 1•347680-03 1 •10000D 00 0 .0 0 .0 0.0
5 6.105100-01 5 5.237040-07 1 • 100000 00 0.0 0. 0 0.0 1 3 .743460-04
5 6.105100-01 1 3.833340-07 1 .100000 00 0 .0 0.0 0.0 2 8.956520-08 7 9.032270 00 7 1 .484960 00
6 7.715610-01 1 1• 166340-03 1 • 100000 00 0.0 0.0 0 .0
6 7.715610-01 5 6.715550-07 1 • 100000 00 0.0 0.0 0. 0 1 3.351830-04
6 7.715610-01 1 3.802470-07 1 .100000 00 0 .0 0.0 0.0 2 9.538100-08 7 8.047270 00 9 1.323570 00
7 9.487170-01 1 1 .008240-03 1 . 10000D 00 0.0 0.0 0. 0
7 9.48717D-01 5 4.261050-07 1 •100000 00 0 .0 0 .0 0.0 1 3.053720-04
7 9.487170-01 1 3.809790-07 1 • 100000 00 0.0 0.0 0. 0 2 1.051670-07 9 7 .427150 00 13 1.241940 00
8 1.143590 00 1 8.705630-04 1 •100000 00 0.0 0.0 0.0
8 1.143590 00 5 6 .0431 00-07 1 • 100000 00 0.0 0. 0 0.0 1 2 .740050-04
8 1•143590 00 1 3.706290-07 1 • 100000 00 0 .0 0.0 0.0 2 1.195750-07 1 3 7.486180 00 L3 1 .240020 00
9 1.357950 00 1 7.516550-04 1 . 100000 00 0. 0 0.0 0 .0
9 1 .357950 00 6 1.246670-07 1 • 100000 00 0.0 0.0 0. 0 1 2.514120-04
9 1.357950 00 1 3.736840-07 1 •100000 00 0 .0 0.0 0.0 2 9.892270-08 13 7.600640 00 1 3 1 .243560 00

10 1.593740 00 1 6 .497550-04 1 • 100000 00 0.0 0.0 0. 0
10 1.593740 00 6 2.196070-07 1 •100000 00 0 .0 0.0 0.0 1 2.359430-04
10 1.593740 00 1 3.553480-07 1 • 100000 00 0.0 0. 0 0.0 2 1 .014730-07 13 7.764370 00 21 1.271380 00

TABLE FOR SPECIAL MONITORING OF TEMPERATURE S
NUMBER OF TIME =========== = H II II H II It :=== IIIIIIIIII ======== NODE NUMBERS AND TEMPERATURES ======= =
TIME STEPS

10 1.59370 OC l 2.265620 02 18 9. 478830 01 32 l •219350 02 36 • 20 4180 02 76 1.475730 02

1 1 1.853120 00 1 5.635180-04 1 .100000 00 0 .0 0 .0 0.0
1 1 1 .853120 00 6 3.123090-07 1 •100000 00 0.0 0.0 0.0 1 2 .202340-04
11 1.853120 00 1 3.394530-07 1 • 100000 00 0 .0 0.0 0.0 2 l.043000-07 2 1 8.148060 00 2 1 1 .324550 00
12 2.138430 00 1 5.339950-04 1 • 100000 00 0.0 0. 0 0.0
12 2.138430 00 6 4 .476360-0 7 1 .100000 00 0 .0 0.0 0.0 1 2. 106900-04
12 2.138430 00 1 3.611990-07 1 . lOOOOO 00 0.0 0.0 0.0 2 1 .139710-07 29 8.663650 00 29 1.404830 00
13 2.452270 00 1 5.173970-04 1 .100000 00 0.0 0.0 0. 0
13 2.452270 00 7 3.256990-07 1 • 100000 00 0.0 0.0 0 .0 1 2.087490-04
13 2.452270 00 1 3.738260-07 1 • 100000 00 0.0 oo 0. 0 2 1.080710-07 69 9 .438120 00 69 1 .510430 00
14 2.797500 00 1 4.961710-04 1 .100000 00 0.0 0.0 0 .0
14 2.797500 00 e 2 .570870-07 1 • 100000 00 0.0 0.0 0.0 1 2.116820-04
14 2. 7975OD 00 i 3.891860-07 1 .100000 00 0 .0 0 .0 0.0 2 1.090700-07 69 1.040970 01 69 1 .641130 00
15 3.177250 00 i 4.707940-04 1 • 100000 00 0.0 0. 0 0.0
15 3.17725D 00 9 2 .235660-07 1 .100000 CO 0 .0 0.0 0.0 1 2.183380-04
15 3.177250 00 1 4.100140-07 1 . 100000 00 0.0 0.0 0.0 2 1.108660-07 69 1.148600 0 1 69 1.781570 00
16 3.594970 00 1 4.413760-04 1 •100000 00 0 .0 0.0 0. 0
16 3.594970 00 9 4.386040-07 1 .100000 00 0.0 0.0 0 .0 1 2.241130-04
16 3.594970 00 2 2.211130-0 7 1 • 100 000 00 0.0 0.0 0. 0 2 1.525420-07 69 1 .267280 0 1 69 1 .931240 00
17 4.054470 00 1 4.091110-04 1 .100000 00 0.0 0.0 0.0
17 4 .054470 00 1 0 3 .851370-0 7 . 100000 00 0.0 0.0 0.0 1 2.287310-04
17 4.054470 00 2 2.262700-07 1 .100000 00 0 .0 0 .0 0 .0 2 1.596140-07 69 1.397800 01 69 2.089780 00
18 4.559920 00 1 3.913320-04 . 190000 00 0.0 0.0 0.0
18 4.559920 00 1 0 1 .955790-07 1 .190000 00 0 .0 0 .0 0.0 1 2.323900-04
18 4 .5 599 20 0 0 2 2.716490-07 • 190000 00 0.0 0.0 0.0 2 1 .593740-07 69 1.541240 C 1 69 2.257070 00
19 5.1 15910 00 1 4.707480-04 1 .190000 00 0 .0 0.0 0. 0
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0 4,002670-07 1 .190000 00 0.0 0.0 oo

1 2.352800-04
2 3,663620-07 1 . 190000 OC 0,0 0.0 0. 0 2 1 .931640-07 69 1 .699070 0 1 69 2.433290 00
1 5.647630-04 1 •190000 00 0.0 0.0 0.0
1 3,282650-07 1 • 190000 00 0.0 0. 0 0.0 1 2.383000-04
2 5.339840-07 1 •190000 oc 0 .0 0 .0 0.0 2 2.215870-07 69 1.873180 01 69 2.618900 00

>C 1 2,954580 02 18 8. 654450 01 32 2.230190 02 36 2.206960 02 76 2.62632D 02

1 6.761470-04 I 190000 00 0.0 oo

0 .0
1 6.257270-07 1 190000 CO 0.0 0.0 0.0 1 2.423270-04
3 3.925510-07 1 190000 00 0.0 0 .0 0 .0 2 3.133560-07 69 2.065860 01 69 2.814580 00
1 8 .077410-04 1 190000 00 0.0 oo 0.0

12 5.610710-07 1 190000 00 0 .0 0.0 0.0 1 2.491050-04
3 6.101010-07 1 190000 00 0.0 0.0 0 .0 2 3.752840-07 69 2.279800 01 73 3.033920 00
1 9.639230-04 1 190000 00 0 .0 0.0 0.0

13 5.433480-07 1 190000 00 0.0 0.0 0 .0 1 2.610240-04
3 9.485790-07 1 190000 00 0 .0 0.0 0.0 2 4.599380-07 72 2.519230 01 74 3 .274540 00
1 1.150520-03 1 190000 oc 0.0 0.0 0 .0

13 1 .021880-06 1 190000 00 0.0 0.0 0. 0 1 2.777880-04
4 9.093210-07 1 190000 00 0 .0 0 .0 0.0 2 6.554950-07 74 2.797730 01 75 3.525820 00
1 1 .374860-03 1 190000 00 0. 0 0. 0 0.0

14 1 .062150-06 I 190000 00 0 .0 0.0 0.0 1 3.029300-04
5 7.950720-07 1 190000 00 0.0 0.0 0 .0 2 8.426570-07 74 3. 109530 01 75 3.788930 00
1 1 .6504 10-03 1 190000 00 0 .0 0.0 0. 0

15 1.32 49 80-0 6 1 190000 00 0.0 0.0 0 .0 1 3.360060-04
5 1 .302580-06 1 190000 00 0 .0 o.O 0.0 2 1.064110-06 74 3.454340 01 75 4.057240 00
1 2.167830-03 1 271000 00 0.0 0.0 0 .0

l 3 1.558560-06 1 271000 oc 0.0 0.0 0. 0 1 5.098180-04
5 1.491890-06 1 271000 00 0 .0 0 .0 0 .0 2 1.320930-06 74 3.835060 01 75 4.328580 00
1 2.141810-02 1 343900 00 0. 0 0. 0 0.0

12 7.0881 90-06 1 343900 00 0 .0 0.0 0.0 1 3.137920-03
4 6.828620-06 1 343900 00 0.0 0.0 0 .0 2 9.844240-06 74 4.071280 0 1 43 4.404450 00
1 1.800260-02 1 343900 00 0.0 0.0 0. 0

14 6.438740-06 1 343900 00 0.0 0.0 0 .0 1 3.286740-03
6 7.840380-06 1 343900 00 0.0 0.0 0.0 2 1.325610-05
1 4.680240-06 1 343900 00 0.0 0 .0 0 .0 3 1 .618840-07 74 4. 174890 01 35 4.431310 00
1 7.851480-03 1 343900 00 0.0 0. 0 0.0

1 5 6.596250-06 1 343900 00 0.0 0.0 0.0 1 3. 109780-03
8 5.848310-06 1 343900 00 0.0 0.0 0 .0 2 l .793640-05
1 2.674890-06 1 343900 00 0 .0 0.0 0.0 3 1.171230-07 75 4.245980 01 35 4 .324530 00

01 1 4.000 COO 02 181. 10518D 02 32 4 737220 02 36 5.17 5060 02 76 5.816800 02

1 6.170390-03 1 .343900 oc 0.0 0.0 0 .0
1 7 4.8716 40-0 6 1 • 343900 00 0.0 0.0 0 .0 1 3.461820-03
9 5.669250-06 1 •343900 00 0 .0 0.0 0. 0 2 2.285930-05
1 4.545240-06 1 • 343900 00 0.0 0.0 0 .0 3 1 .502260-07 75 4.249460 0 1 35 4.135030 00
1 8.242180-02 1 .343900 00 0.0 0.0 0. 0

18 6.770460-06 1 .343900 00 0.0 0.0 0 .0 1 7.886190-03
9 6.1299 10-0 6 1 .343900 00 0.0 0. 0 0.0 2 4.628550-05
1 9.621680-06 1 •343900 00 0 .0 0 .0 0 .0 3 2.477190-07 75 4.160240 01 7 4.070810 00
1 4.882190-02 1 .343900 00 0.0 0.0 0 .0

19 8.206780-06 1 •343900 00 0 .0 0.0 0. 0 1 4.796920-03
10 6.060380-06 1 •343900 00 0.0 0.0 0 .0 2 3.743970-05

2 5.570330-06 t .343900 00 0 .0 0.0 0. 0 3 4.701960-07 7 5.868490 01 7 6 .215420 00
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***** TABLE 1 MUST BE EVALUATED FOR 2.454766990 01
THE VALUE OF THE FUNCTION WILL BE 3,»00000000D 00 FOR ALL ARGUMENTS GREATER THAN 2.400000000 01

34 2.4S477D 01 1 3.039950-02 1.409510 00 0.0 0.0 0.0
34 2.454770 01 17 7.231520-06 1.409510 00 0.0 0.0 0.0 1 3.731450-03
34 2•454770 01 10 5.1 876 00—0 6 1.409510 00 0 .0 0.0 0.0 2 5.372740-05
34 2.454770 0 1 2 6.906510—06 1.409510 00 0.0 0.0 0.0 3 7.422690-07 7 5.394680 01 7 5.379460 00
35 2.710240 01 1 1•124090—01 1 .466560 00 0.0 0.0 0. 0
35 2.710240 01 15 9.446220-06 1•466560 00 0.0 0.0 0 .0 1 9.014740-03
35 2.710240 01 10 6.644910-06 1.468560 00 0.0 0.0 0.0 2 1.362310-04
35 2.710240 01 4 8.220760-06 1.468560 00 0.0 0.0 0 .0 3 1.933220-06 45 4.005340 01 31 3.518650 00
36 2.655120 01 1 2.329640-02 1.521700 00 0.0 0.0 0. 0 ,
36 2.055120 01 1 5 7•541170—06 1.521700 00 0 .0 0 .0 0.0 1 3.042300-03
36 2.655120 01 6 5.300510-06 1.521700 00 0.0 0.0 0.0 2 3.097140-05
36 2.655120 01 1 6.450470-06 1.521700 00 0 .0 0.0 0.0 3 2.931620-07 69 2.014300 01 69 1 .609740 00
37 3.000000 01 1 7.091720-03 1.521700 00 0.0 0.0 0.0
37 3•OOOOOD 01 14 7.025630-06 1 .521700 00 0 .0 0.0 0. 0 1 1.664970-03
37 3.000000 01 8 5.966470-06 1.521700 00 0.0 0.0 0 .0 2 1.568200-05
37 3.000000 01 1 3.6609*0-06 1.521700 00 0.0 0.0 0.0 3 2.132750-07 69 1.763410 01 69 1.386910 00

VO■<J
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Table D-2 (Contd.)

GROSS

FIN

1 1 
2 2
3 3
4 4
5 5
6 6 

7

7 10

TRANSIENT TEMPERATURE DISTRIBUTION AFTER 37 TIME STEPS.
GR ID 1 2 3 4 5 6 7

I I I I I I I
E GRID 1 2 3 4 5 6 7 8

D ISTANCE 1 .0 0 1 .50 2.00 2.75 3.25 3. 75 4. 50 5. 50

1 .50 600I0«-—— -660400— -600400-—*57496—-458*54------------ OvO-------- -------- 010

2.25 627183 621.92 602134 509192 164151 161118 0 .0 010
3. 00 65SI60 652.08 627186 519151 179164 179*46- — 474-»47 — -466134

3. 50 688151 682.05 661126 568127 187*49— — *85-»87— —484-.70—-475111

4.00 721185 717.88 706128 674*32- —785*44— —748-»96 — —746*56—-734192
4. 75 771 144 770.70 769464— -769-.04- — 777-.90 — —783-»53— —783*94— -770118

5.25 79617 1 796.51 796.29 796.90 800 .09 802.16 800.36 786492

5 .75 814188 814.84 814.82 815.24 816.11 816.12 812.61 798176
6.25 825178 825.77 825.76 825.83 825.68 824.67 820.14 805187
6.75 829144-—ee9»4-e— -«29-»3e— — 629-.30 — -----686»67— -687-»54------888*68— -808125

TIME 3.OOOOOD 01

TEMPERATURES ON NUMBERED BOUNDARIES

BOUNDARY NUMBER 
1 
2
3
4
5

TEMPERATURE 
600 .000000 

0.0
68.000000
0.0

100.000000

THE CURRENT TIME STEP (DELTAT) = 1.44878158D 00

ELAPSED CPU TIME IS 5.45 SECONDS

THE MAXIMUM TEMPERATURE IS - 8.29406D 02 (+-0. 1 )

MAX. TEMP. APPEARS AT NODES - 69 70 71

THE MINIMUM TEMPERATURE IS - 1.52544D 02 (4-0. 1 >

MIN. TEMP. APPEARS AT NODES _ 6

vooo



Table D-2 (Contd.)

10 TIME NO MAX HEAT BE TA LI NORM OF RHO RHO NO LI NORM OF NODE MAX TEMP NODE MAX PERCENT
[ ME ITER RES I DUAL TEMP DIFF C I TERATI ON) (JACOBI) ITER TEMP DIFF CHANGE TEMP CHANGE
»***> 'TABLE 2 MUST BE EVALUATED FOR 3.140512180 01

THE VALUE OF THE FUNCTION MILL BE 1 • 125000000 00 FOR ALL ARGUMENTS GREATER THAN 3.00000000 0 01
38 3.2E102D 01 1 9.822540-03 l.521700 00 0 .0 0 .0 0.0
38 3.281020 0 1 1 7 6.810890-06 1.521700 00 0.0 0.0 0.0 1 2 .629190-03
38 3.28102D 0 1 1 2 3.919810-06 1 .521700 00 0 .0 0.0 0. 0 2 5.733130-05
38 3.281020 01 2 9.493450-06 1.521700 00 0.0 0.0 0 .0 3 7.056570-07 73 2.987670 01 73 2.318620 00
39 3.590150 01 1 1 .099390-0 2 1.521700 00 0.0 0.0 0.0
39 3.*90150 01 18 5.564440-06 1.521 700 00 0.0 0 .0 0 .0 1 2.614590-03
39 3.590150 0 1 12 6 .679440-06 1.521700 00 0.0 0. 0 0. 0 2 7.342460-05
39 3.*90150 01 3 7.1663 30-0 6 1.521700 00 0 .0 0 .0 0 .0 3 1.160720-06 74 2.864460 01 74 2.1749 2 0 00
♦ 0 3.930190 01 1 1 .373680-0 2 1.521700 00 0.0 0. 0 0.0
40 3. 9301 90 01 1 8 6.913980-06 1.521700 00 0 .0 0 .0 0.0 1 2.689260-03
40 3 .930190 0 1 13 9.59 26 00-0 6 1•521700 00 0.0 0. 0 0.0 2 8 .082990-05
40 3•930190 0 1 3 8.123800-06 1 .521700 00 0 .0 0.0 0. 0 3 1 .446210-06 74 2.669380 01 74 1 .983660 00

TABLE FOR SPECIAL MONITORING OF TEMPERATURES 
NUMBER OF TIME ====================================== NODE NUMBERS AND TEMPERATURES =======
TIME STEPS

40 3.93020 01 1 6.000000 02 181 2. 153920 02 32 7.353670 02 36 8.088550 02 76 8.883910 02
41 4.304230 01 1 1 • 4323 30-02 1. 52 1 7 00 00 0.0 0.0 0 .0
41 4.304230 01 1 7 6.698890-06 1 .521 700 00 0 .0 0.0 0. 0 1 2.720970-03
41 4.304230 0 1 14 9•144620-06 1.521700 00 0.0 0. 0 0.0 2 9.753060-05
41 4.304230 01 4 9.149040-06 l.521700 00 0 .0 0.0 0. 0 3 1 .958220-06 74 2.440170 0 1 74 1 .778060 00
42 4.7 15680 01 1 1•451200-02 1.521 700 00 0.0 0.0 0 .0
42 4 .715680 01 1 8 8 .6951 20-06 1 .521700 00 0.0 0. 0 o o 1 2.731770-03 #
42 4.715680 01 1 5 5.5160 10-06 1.521 7 00 00 0 .0 0.0 0.0 2 1.059900-04
42 4 .7 15680 0 1 5 9.315500-06 1.521700 00 0.0 0. 0 0.0 3 2.439570-06 73 2.182940 C 1 74 1•562180 00
43 5. 168270 01 1 1.433200-02 1.521700 00 0 .0 0.0 0.0
43 5.168270 01 20 8.032750-06 1.521700 00 0.0 0.0 0 .0 1 2.685110-03
43 5.168270 0 1 1 5 7.309280-06 1.521700 00 0 .0 0.0 0. 0 2 1.166680-04
43 5•168270 0 1 6 6.332510-06 1.521700 00 0.0 0.0 0.0 3 2 .9651 10-06 73 1.907080 0 1 25 1.370490 00
44 5.584140 0 1 1 1.230020-02 1 .569530 00 0 .0 0.0 0. 0
44 5.584140 01 19 7.312110-06 1•569530 00 0.0 0.0 0 .0 1 2.012410-03
44 5 . 584 1 40 01 15 7.181240-06 1.569530 00 0.0 0. 0 0. 0 2 8.300870-05
44 5.584140 01 5 8.806890-0 6 1.569530 00 0 .0 0.0 0.0 3 2.033030-06 73 1.382880 01 25 1 .012280 00
45 6 .OOOOOD 0 1 1 9.235410-03 1 .569530 00 0.0 0.0 0.0
45 6.000000 01 1 9 5.482750-06 1 .569530 00 0 .0 0.0 0.0 1 1.537240-03
45 6.000000 01 1 « 5.608840-06 1.569530 00 0.0 0.0 0 .0 2 6.486950-05
45 6 .OOOOOD 0 1 4 8.790090-06 1 .569530 00 0.0 0.0 0. 0 3 1.528640-06 73 l .100840 01 25 8.178800-01



Table D-2 (Contd.)

TRANSIENT TEMPERATURE DISTRIBUTION AFTER 45 TIME STEPS, TIME = 6.OOOOOD 01
GROSS GRID 1 2 3 4 5 6 7

I I I I I I I
FI NE GRID 1 2 3 4 5 6 7 8

DISTANCE 1.00 1.50 2. 00 2.75 3.25 3.75 4.50 5.50
1 1 1.50 eooiee— -&««-»&©-—69»*9-9-—680-490- —€-49*73- —€+4*49---- ------ ©»«------- -------810
2 2 2.25 66 1 176 655.57 635100 537137 232107 227104 0 .0 010
3 3 3.00 728164 720.73 695105 578115 258137 258**7— -ese-**6— -€35*97
4 4 3.50 780161 774.08 752188 654138 270*66- —866-.7E —-€6+»79— -€58122
5 5 4. 00 835174 832.30 822J64 800*73- —67g*£8- — S97-.56—-905x50— -884170
6 6 4.75 912175 912.85 914*89-—92*-»4E-—936-»69— —946-»€9—-947-r€9—-9£5I77

7 5. 25 951134 951.80 953.56 959.07 965.69 969.85 967.52 946102
8 5.75 978188 979.31 980.65 984.23 986.96 987.84 982.77 960139
9 . 6.25 995133 995.67 996.65 998.89 999.80 998.96 992 .21 969104

7 1 0 6.75 1000179— -+89*»94--*e93-,7e--F004-.e9- -4-09-€»7 + —-995x40— -97*193

TEMPERATURES ON NUMBERED BOUNDARIES

THE

MAX

BOUNDARY NUMBER 
1 
2
3
4
5

THE CURRENT TIME STEP 

ELAPSED CPU TIME IS 

MAXIMUM TEMPERATURE IS - 1.00409D

TEMP. APPEARS AT NODES - 73

TEMPERATURE
600,000000

0.0
68.000000

0 .0
100.000000

(DELTAT! = 4.158627860 00 

7.40 SECONDS 

03 (+-0.1)

oo

THE MINIMUM TEMPERATURE IS - 2.11493D 02 (+—0. 1 )

MIN. TEMP. APPEARS AT NODES 6

THE TRANSIENT CALCULATIONS HAVE BEEN COMPLETED.

FINAL TIME IS 6.000000 01

NUMBER OF TIME STEPS COMPLETED 45



Table D-2 (Contd.)

BEGIN THE STEADY STATE CALCULATIONS
NUMBER OF EXTRAPOLATION
ITERATIONS CONVERGENCE NODE TEMPERATURE FACTOR

5 6.26798D-03 44 9.478680 02 -9.550580 00
10 3. 27042D —03 32 8.257440 02 6.161810 00

TABLE FOR SPECIAL MONITORING OF TEMPERATURE S
NUMBER OF TIME ============ ANDi TEMPERATURES == =

ITERATICHS
10 6*00000 01 1 6.OOOOOD 02 18 2.750470 02 32 8.257440 02 36 9.179660 02 76 1.012 790 03

15 2.49038D-03 5 2.382220 02 4.893420 01
20 -9. 177830-04 74 1.048480 03 3.433570 01

20 6.00000 01 1 6 .OOOOOD 02 18 2.849770 02 32 8.363020 02 36 9.231190 02 76 1.012700 03

25 -7.835350-04 25 2.966290 02 1.623720 01
30 -5. 00 9 0 40 - 04 17 2.807560 02 5.132470 00

30 6.00000 01 1 6.000000 02 18 2.805110 02 32 8.310580 02 36 9. 187690 02 76 1 .009210 03

35 1. 530240-04 36 9.185140 02 -5.260050-01
40 1 .449230-04 33 9.069000 02 2.077990 01

40 6.00000 01 1 6.OOOOOD 02 18 2.806090 02 32 8.309830 02 36 9.191700 02 76 1.010360 03

45 1.136290-04 37 9.470710 02 -6.564720 01
50 -4.035540-05 76 1.010570 03 -4.423260-01

50 6.00000 01 1 6 .OOOOOD 02 18 2.811260 02 32 8.317650 02 36 9.196390 02 76 1.010570 03

55 -3.473370-05 72 1.046060 03 -1.276090 01
60 -2.698910-05 5 2.376330 02 1.737170 01

BETA REDUCED TO 1.800
60 6.00000 01 1 6 .OOOOOD 02 18 2.810060 02 32 8.315890 02 36 9.193820 02 76 1.010370 03

65 -7.31851D-06 2.37586D 02 I.54156D 00



Table D-2 (Contd.)

STEADY STATE TEMPERATURE DISTRIBUTION AFTER 65 ITERATIONS* TIME = 6.0000CD 01
GROSS GRID 1 2 3 4 5 6 7

I I I I I I I
FI NE GRID 1 2 3 4 5 6 7 8

DISTANCE 1.00 1.50 2.00 2. 75 3.25 3.75 4 .50 5.50
1 1 1.50 600ie«-———-6««*e«-----6««*«8- —237*59-—€28*54- ---------9*9------- -------910
2 2 2.25 67 011 1 663.85 643107 544120 251J60 246107 0.0 010
3 3 3.00 745156 737.57 711155 592161 281109 280*97-—27+*94—-255194
4 4 3.50 803111 796.58 775135 675153 294*66- —292*6+-—284*82—-27+174
5 5 4.00 863150 860.19 850198 831*55-—987*37- —934*87-—942*22— -9+9137
6 6 4.75 94711 2 947.39 949*88-—9S*-*95- —974»58- ----984*89- —985*75—-96+198

7 5.25 988196 989.55 991 .68 998.12 1005.39 1009.85 1007.09 983119
8 5.75 1018181 10 19.32 1020.90 1025.05 1028.05 1028.96 1 023.20 998127
9 6.25 1036163 1037.03 1038.18 1040.76 1041.76 1 040 .79 1033.18 1007135

7 10 6. 75 1042155--*«4B-»9*— *849-»89--+e45-»94- -*846-»35--+944*78- -+936*56— +9+9139

TEMPERATURES ON NUMBERED BOUNDARIES

THE

MAX

THE

MIN

BOUNDARY NUMBER 
1 
2
3
4
5

TEMPERATURE
600.000000

0.0
68.000000

0 .0
100.000000

ELAPSED CPU TIME IS 10.08 SECONDS 

MAXIMUM TEMPERATURE IS - 1.04635D 03 I+-0.1)

TEMP. APPEARS AT NODES - 73

MINIMUM TEMPERATURE IS - 2.28538D 02 <♦-0.1)

TEMP. APPEARS AT NODES - 6

THE STEADY STATE CALCULATIONS HAVE BEEN COMPLETED.

oto

NUMBER OF ITERATIONS COMPLETED 65
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TEST PROBLEM *4 FOR HEATINGS
100 7 1 1 3 2 1 5 CAR 02

7 7 3 6 CARD3
2 10 CARD4

-2 60 .0 CARDS
1 1 1 .0 2 .0 1.5 6.75 R1
1 1 1 R2
2 1 2.0 5.5 4.75 6.75 R1
1 2 5 R2
3 1 3.25 3.75 1.5 2. 25 R1
1 3 R2
4 1 3.25 3.75 2.25 3. 0 R1
1 R 2
c 1 3. 25 4. 5 3. 0 3.5 R1
1 R2
e 1 4. 5 5.5 3.0 3 .5 R 1
i 3 R2
7 2 2 .0 2 .75 1 .5 4.0 R 1
1 3 1 R2
6 2 2.0 2 .75 4.0 4.75 R 1
1 R2
9 2 2.75 5.5 4 .0 4.75 R 1
1 5 R2

10 2.75 3.25 l . 5 3.5 R1
1 2 2 R2

1 1 3 3.25 5. 5 3. 5 4.0 R1
1 4 4 R2
1 IRON * 2801 .116 3 M
2 STA1NLSS . 2824 . 1 1 -4 M
3 AIR 0 .25 -5 -6 M
1 1.0 3 G
2 1.0 3 G
1 2 I
1 2 200.0 - 1 81

82
2 3 81

1.580-13 82
3 1 68.0 81

6.OD-3 82
4 3 81

1 .580-13 2 .56 0-05 0.33 82
c l 1 00.0 8 1

1 .580-13 2.560-05 0.33 1 82
1 83

1 .0 2.0 2.75 3. 25 3. 75 4.5 5 .5 LI
2 1 1 1 1 1 N1

1 . E 2.25 3.0 3.5 4.0 4.75 6.75 L2
1 1 1 1 1 4 N2
1 2 A 1
4 0.03 5 .0087266 A2

Fig. D-4. Input Data for Test Problem Number 4 for HEATINGS
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2 2 A 1
1 235. C 2 -20. 0 A2
3 A1
1 4 ri

0.0 1.0 12.0 2. 0 1 8. 0 2.0 24.0 3.0 T 2
2 3 T1

0.0 1.0 12.0 1.5 30.0 1.125 T 2
3 3 T1c•o

.0296 752. 0 . 0264 1832.0 .0222 T 2
4 3 T1

0.0 .013 752.0 .0153 1832.0 .0 25 T2
c 4 T1

0.0 1.82D—5 500 .0 3.41D-5 1000.0 4.680-5 1500.0 5.750-5 T2
e 4 T 1

0.0 5.0D5 500.0 2. 390 -5 1000.0 1.570-5 1500.0 1.170-5 T 2
3 0.0 60.0 □

c 1 18 32 36 76 S
1.0 D —05 1 .0 0-3 1.00-5 IP

0 . t 1 . 1 TP

«

>

*•

Fig. D-4 (Contd.)
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SUBROUTINE HEATGN <RVALUE,P.TH.Z,TIM,TSN,VALUE,NUMBER.N)
C ********************************************************************** 
C THIS USER-SUPPLIED ROUTINE IS DESIGNED TO CALCULATE THE TWO
C HEAT GENERATION RATES AS A SUM OF EXPONENTIALS FOR SAMPLE
C PROBLEM NUMBER A IN THE HEATINGS USEP*S MANUAL* ORNL/CSO/TM-15.
C ********************************************************************** 

IMPLICIT RE AL* 8 (A-H.O-Z)
LOGICAL MESSAG
DIMENS ION NP(2J.C(3»2)*XLAMDA<3.2)
DATA NP/3» 2/ . C/O.5DO,0.3D0.0.2D0.0.6DO,0.400/

1 . XLAMDA/1 .1 55250-2,2.310490-2,A.62098D-2, 1.15525D-2
2 . A.620980-2/

DATA MESSAG/.FALSE./
C ON THE FIRST CALL TO THIS SUBROUTINE, MESSAG IS INITIALIZED TO
C FALSE CAUSING THE FOLLOWING MESSAGE TO BE PRINTED OUT. ON
C SUBSEQUENT CALLS, THE WRITE STATEMENT IS BYPASSED.

IF(MESSAG)GO TO 10 
MESSAG=.TRUE.
WRITE!6.1000)

1000 FORMAT(‘O***** IF THE INPUT DATA SPECIFIES THE FIRST TWO HEAT GENE 
1RATION RATES AS USER-SUPPLIED FUNCTIONS.*/
2 • ***** THIS ROUTINE WILL EVALUATE THEM AS SUMS OF EXPONENTIALS A
3CCCRDING TO THE FOLLOWING EXPRESSION.*/
4 >0***** Q(TIM) = SUM!C(I)*EXP<-XLAMOA!I>*TIM))•/
5 * 0 ** * ** WHERE C! I) AND XL AMD A!I) ARE DEFINED AS*/
6 *0***** FUNCTION NO. I C1 I ) XLAMOA II)*)

DO 5 J=1.2
K=NP!J)

5 WPITE16.1010)J•!I.C!I,J),XLAMOA!I,J).I=1,K)
1010 FORMAT!•0* , II2 ,11 0,1P2015.6/1• *,122,2015.6))

C
10 IFINUMBER.LT.1 .OR. NUMBER.GT.2>GO TO 900 

K=NP!NUMBER)
SUM=0,0D0 
DC 20 1=1,K

20 SUM= SUM♦CI I.NUMBER)*DEXP! — XLAMDA! I,NUMBER)*TIM)
RVALUE=SUM 
RETURN

900 WR ITE16.9005)NUMB ER
9005 FORMAT!*0***** THIS ROUTINE IS TRYING TO EVALUATE HEAT GENERATION 

IFUhCTICN NUMBER*. I 10. • AS A U SER-SUPPL I ED FUNCTION. •/• ***** HOWEV 
2ER , THIS FUNCTION HAS NOT BEEN DEFINED HERE, SO THE CALCULATIONS W
3 ILL BE TERMINATED.*)

ST CP
END

Fig. D-5. User-Supplied Subroutine HEATGN to Calculate Heat 
Generation Rates for Test Problem Number 4 for HEATINGS
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«

SUBROUTINE CONDTN <P VALUE.R « TH »Z » TIM,TSN.VALUE.NUMBER.N»
C **** ******************************************************************
C THIS USER-SUPPLIED ROUTINE IS DESIGNED TO CALCULATE THE ANISOTROPIC 
C THERMAL CONDUCTIVITY FOR A MATERIAL WITH THE CONDUCTIVITY ALONG THE 
C Y-AXIS EQUAL TO TWICE THAT ALONG THE X-AXIS AS GIVEN IN TABULAR 
C FUNCTICN NUMBER #3.
C DESIGNED FOR SAMPLE PROBLEM NUMBER 4 IN THE HEATINGS USER'S MANUAL.
C OPNL/CSD/TM-15.
C ********************************************************************** 

IMPLICIT RE AL * 8 (A-H.O-Z)
COMMON /THBSBC/ NBDTP.NDIR
LOGICAL MESSAG
DATA MESSAG/.FALSE./

C
C ON THE FIRST CALL TO THIS SUBROUTINE, MESSAG WILL BE FALSE
C WHICH WILL CAUSE THE FOLLOWING MESSAGE TO BE PRINTED OUT.
C ON SUSEQUENT CALLS, THE WRITE STATEMENT WILL BE BYPASSED.

IF(MESSAG)GO TO 10 
ME SSAG=.TRUE.
WP ITE(6. 100 0 >NUMBER

1000 FORMAT('0***** THE INPUT DATA SPECIFIES THE THERMAL CONDUCTIVITY 0 
IF MATER IAL•.I 3. • TO BE A USER-SUPPLI ED SUBROUTINE.'/
2• ***** THIS ROUTINE WILL EVALUATE THE TEMPERATURE-DEPENDENT THERM
3AL CONDUCTIVITY'/• ***** ALONG THE X-AXIS ACCORDING TO TABULAR FUN 
4CTICN NUMBER 3.'/' ***** THE CONDUCTIVITY ALONG THE Y-AXIS WILL BE 
5 TWICE THAT ALONG THE X-AXIS.')

10 IFCNUMBER.NE.l )GO TO 900
CALL TABLE( -3 .VALUE.TSN,RVALUE.N, NU MBER)
IF(NDIR. EQ . 2)RVALUE=2. 0D0*R VALUE 
RETURN

900 WR I TE (6»9005)N UMB ER
9005 FORMAT('0***** CONDTN IS TRYING TO EVALUATE THE THERMAL CONDUCTIVI 

1 TY FOR MATERIAL NUMBER'.19,' AS A USER-SUPPLIED SUBROUTINE.'/
2* ***** HOWEVER, THIS PARAMETER HAS NOT BEEN DEFINED HERE. SO THE
3CALCULATIONS WILL BE TERMINATED.')

STOP
END

Fig. D-6 User-Supplied Subroutine CONDTN to Calculate Anisotropic 
Thermal Conductivity for Iron for Test Problem 

Number 4 for HEATINGS
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APPENDIX E

GENERAL FLOW CHARTS FOR HEATINGS

9

This appendix is designed to give a general idea of how the subroutines in HEATINGS 
are interconnected. The overall flow of the HEATINGS code is depicted in Fig. E-l. The call 
to subroutine INPUT causes most of the input data to be read and printed out in tabular 
form. Many variables and arrays are also initialized. The call to subroutine POINTS generates 
the nodal connections, initializes the temperatures and calculates the thermal conductances, 
capacitances and heat generation rates. The call to subroutine CALQLT then calculates the 
temperature distribution according to the method chosen and writes out the results. The 
routines called from subroutines THRMPR and CALQLT are depicted in greater detail in 
Figs. E-2 through E-6. Entry points are listed below names of subroutines. Table E-l lists 
names of subroutines and entry points in alphabetical order along with a brief description of 
the purpose of each routine, a list of subroutines which references it, and a list of subroutines 
and entry points that are called by the routine.

4



ORNL-DWG 76-10921

PREANA

INPUT 1

PRETAB

TYPEBC

REGION

NPUT

HEATN5

SSNODE

CALQLT

SSBDCN THRMPR

POINTS

MAIN

Fig. E-l. General Flow Chart of HEATINGS

0



ORNL DWG 76-10922

SURBC FUNCTNBDCOND

FUNCTNFUNCTN

THRMPR

THRMI

o

Fig. E-2. Chart Indicating Routines Called by Subroutine THRMPR
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«

ORNL- DWG 76- 10923

TH RM

FUNCTN

TRANO

PREP

TPMNTR

PLOTOU

TRANIM

CALQLT

Fig. E-3. Chart Indicating Routines Called by Subroutine CALQLT
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J

ORNL -DWG 76-10924

TPMNTR

INGRES DECRES

ADJUST

PREP

THRMI

FUNCTN

PLOTOU

TMSTEP

UDTS

TRANIM

TRANO

Fig. E-4. Chart Indicating Routines Called by Subroutine TRANO

-«



112

ORNL-DWG 76-10925

TABLE ANALYT

FUNCTN

USER-SUPPLIED
SUBROUTINES

Fig. E-5. Chart Indicating Routines Called by Subroutine FUNCTN

I

ORNL DWG 76-10926

TMPOUT

TPRNGE

PREP

PLOTOU

PLOTIN
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ADJUST
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BDCOND
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HEATN5

INGRES

INPUT

INPUT1

Table E-L Summary of Subroutines and Entries in HEATINGS

Adjusts the time step size for the implicit transient calculations based on any 
constraints on the maximum temperature change or maximum percentage of 
relative change in temperature at a node from one time level to the next. 
Requires that calculations continue at next time level with larger time step size or 
be repeated for this time level with smaller time step size. Called from TRANO. 
Calls INGRES and DECRES.

Entry in subroutine PREANA. Calculates value of a parameter according to 
built-in analytical function. May call user-supplied subroutine to evaluate a 
parameter. Called from FUNCTN. Calls user-supplied subroutines.

Calculates effective conductance from a surface node to a boundary node 
according to the associated boundary condition. Called from THRMPR. Calls 
FUNCTN.

Controls flow of calculational techniques after variables have been initialized. 
Contains steady-state and explicit transient algorithms. Calls routine for implicit 
transient algorithm where appropriate. Called from HEATN5. Calls FUNCTN, 
PLOTOU, PREP, THRMI, TPMNTR, TRANIM, and TRANO. Calls 
ORNL-dependent system routine ICLOCK.

Attempts to decrease time step size for implicit transient calculations proportional 
to how much the temperature change or percentage of relative change in
temperature exceeds the criterion. Called from ADJUST.

Computes value of a parameter which can be time-, temperature-, and/or 
position-dependent. Value of parameter is product of functions of the independent 
variables-time, temperature, X or R, Y or 6, and Z. Called from BDCOND, 
CALQLT, SURBC, THRMPR, and TRANO. Calls ANALYT and TABLE.

- Locates position of each array which is variably dimensioned as a function of the 
maximum number of nodes. Controls overall flow of calculations. Called from 
MAIN. Calls CALQLT, INPUT, and POINTS.

- Attempts to increase time step size for implicit transient calculations proportional
to how much the temperature change or percentage of relative change in
temperature is less than the criterion. Called from ADJUST.

- First of two routines which reads the input data and prints it in tabular form.
Generates fine grid lines. Called from HEATN5. Calls INPUT1. Calls
ORNL-dependent systems routines ICLOCK, IDAY, MODEL, and TIME.

- Second of two routines which reads the input data and prints it in tabular form.
(IT card images are read in subroutine THRMPR. Input data for implicit 
technique for transient problems are read in subroutines TRANO and TMSTEP.) 
Calculates factors (G arrays) which are a function of the grid spacing. Locates 
fine grid lines bounding each region. Called from INPUT. Calls PREANA,
PRETAB, and REGION.
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Table E-l (Contd.)

Allocates core for arrays which are variably dimensioned as a function of 
maximum number of nodes. Calls HEATN5.

Creates data set containing identification as well as the temperature distribution 
as a function of time to be used by the code HEATPLOT to generate various 
plots. Called from PREP. Entry PLOTOU called from CALQLT, PREP, and 
TRANO.

Entry in subroutine PLOTIN. Writes temperature distribution on data set at 
current time. Called from CALQLT, PREP and TRANO.

Generates array identifying neighbors of each node. Model may have cutouts and 
indentations but axes must be orthogonal. Called from HEATN5. Calls SSBDCN 
and THRMPR.

Calculates value of a parameter according to built-in analytical function. May call 
user-supplied subroutines to evaluate a parameter. This call actually initializes 
routine. Entry ANALYT actually performs calculations. Called from 1NPUT1. 
Entry ANALYT called from FUNCTN. Calls user-supplied subroutines.

Serves as an interface between routines which calculate temperature distribution 
and subroutine TMPOUT which prints out the temperature distribution in a map. 
Locates temperatures in a plane and passes them to TMPOUT. Called from 
CALQLT and TRANO. Calls PLOTIN, PLOTOU, and TMPOUT and 
TPRNGE. Calls ORNL-dependent systems routine ICLOCK.

Computes value of a parameter by linear interpolation from a table of data. This 
call actually initializes routine. Entry TABLE actually computes value. Called 
from INPUT 1. Entry TABLE called from FUNCTN.

Locates fine grid line nearest a region boudary if a fine grid line does not lie on 
the region boudary. Called from INPUT1.

Locates region boundaries which require surface-to-surface heat transfer. Then, 
connects each node on one surface with the corresponding node on the opposing 
surface. Called from POINTS. Calls SSNODE and TYPEBC.

Calculates effective conductance from corresponding nodes on parallel surfaces 
according to the associated surface-to-surface boundary condition. Called from 
THRMPR. Calls FUNCTN.

Entry in subroutine PRETAB. Calculates value of a parameter by linear 
interpolation from a table of data. Called from FUNCTN.

Calculates the initial temperature, the effective thermal conductance, the heat 
generation rate and the effective thermal capacitance at each node. Also reads 
explicitly specified initial temperatures and melting ratios. Called from POINTS. 
Entry THRM1 called from CALQLT and TRANO. Calls BDCOND, FUNCTN, 
and SURBC.

Entry in subroutine THRMPR. Updates the effective thermal conductance, the 
heat generation rate and the effective thermal capacitance at each node as a 
function of temperature. Called from CALQLT and TRANO. Calls BDCOND, 
FUNCTN, and SURBC.

THRM1
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TMPOUT - Prints nodal temperatures from a plane in the form of a map indicating material 
boundaries and grid lines. Called from PREP. Calls ORNL-dependent systems 
routines ICOMPA and INTBCD.

TMSTEP - Initializes, reads, prints and calculates time step information for the implicit 
algorithm for transient problems. Called from TRANO. Entry UDTS called from 
TRANO.

TPMNTR - Prints temperatures of selected nodes as a function of number of iterations or 
time steps. Used for special monitoring of the temperature development. Called 
from CALQLT and TRANO.

TPRNGE - Determines maximum and minimum temperatures in the distribution and the 
nodes where these temperatures occur. Prints this information in tabular form. 
Called from PREP.

TRAN1M - Entry in subroutine TRANO. Computes the transient temperature distribution 
using an implicit algorithm. Called from CALQLT. Calls ADJUST, FUNCTN, 
PLOTOU, PREP, THRM1, TMSTEP, TPMNTR, and UDTS. Calls 
ORNL-dependent system routine ICLOCK.

TRANO - Initializes and reads data for implicit transient calculations. Entry TRANIM 
computes the transient temperature distribution using a linear combination of the 
Crank-Nicolson and the backwards Euler procedures. Resulting system of 
equations is solved by SOR with the acceleration parameter optimized. Called 
from CALQLT. Entry TRANIM called from CALQLT. Calls ADJUST, 
FUNCTN, PLOTOU, PREP, THRM1, TMSTEP, TPMNTR, and UDTS. Calls 
ORNL-dependent system routine ICLOCK.

TYPEBC - Determines if there are any surface-to-surface boundary conditions in a particular 
region along a particular axis. Called from SSBDCN.

UDTS - Entry in subroutine TMSTEP. Reads, prints and calculates time step for the 
implicit algorithm for transient problems. Called from TRANO.
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