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'Itienty-four people part icipated in the ISABEU~Cryogenic Sys- 

tem Workshop which was held on June 2 and 3, 1976. K. 
The magnet cooling system for  ISABKUE, as described in the new 

proposal, u t i l i z e s  supercr i t ical  helium as  the refr igeraut  instead 

of pool-boiliug helium as i n  e a r l i e r  proposals. This new and more 

cost-effective system waa described in de t a i l  with discussion of the 

design parameters fo r  the refr igerator  i t s e l f ,  turbomachinery re- 

&ired and the  refr igerant  dis t r ibut ion system. The tes t ing and 

prototype development program for ISABELLE cryogenic system components- 

was a l s o  reviewed. A small cryogenic turboc&ressort&andar sys- ' . 
8 , >'. 

tem is now on order fo r  tes8ting with an UASEUE half-cel l  (2 dipoles +!&:,! 
and 1 quadrupole>. ~ . . . - ..I.<. , , - .- 

b. - 
r, ' ' :  

Ihe main output of the workshop is a chacldiet of points which . , 
'il. 

should be reviewed as :he y#&El&E desggn proceeds. . .: -. 
., . . L. 
:. -*<, 
.i . ,  ? 

1 F  The f i r s t  morning was spent i n  a detailed description of the mag-; 

net cooling system which i s  sununarized in the new (May 1976) ISABELLE ~. 

proposal!. A sutmary of t h i s  material follows: . .. 
. , L  . 

Estimated Heat Loads r.. , - 8 f~ ': 
8 ,  ~~ : -  , ~ ,  

The magnets (see Fig. 1) to  be used i n  ISABELLE are  of the 
. .  . 

"warm bore" and "cold iron" type. The magnet vessel, which contains ' . 
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the'  i r o n  core a s  wel l  a s  the  superconducting ' c o i l ,  surrounds the  beam 

pipe 'which is  a t  room temperature. . I n  the vacuum annulus r a d i a l l y  

outward from the magnet ves se l  is loca ted  a hea t  sh i e ld .  This s h i e l d  

encloses the outs ide  of t h e  magnet vesse l  and three  tubes. . One tube 

c a r r i e s  the helium r e f r i g e r a n t  which cools' the  hea t  s h i e l d .  The 

o the r  two tubes a r e  r e f r i g e r a n t  supply and r e t u r n  headers which a r e  

continuous completely around the r ing .  A 'mul t i layer  insulat ion.  sys- 

tem is us=d ins ide  and outs ide  of the hea t  s h i e l d  and between the 

warm beam tube a i d  ' t h e  i n s ide  w a l l  of the magnet vesse l .  
. . . . 

Each d ipole  magnet (with a nominal length  of 4.15 m) con t r ibu te s .  

' ' 12.70 W t o  the  hea t  .load. Each qiadrupole magnet ' (with a nominal 

length  of  1.5 m). contr ibutes ,  6.54 W. These lo s ses  do no t  include 

. . : magnet power lead  lo s ses  which have been considered separa te ly .  . . 
. . . . 

Where there  a r e  long gaps (pr imari ly  a t  the experimental h a l l s .  . ' 

where the  beams i n t e r s e c t )  i n  the magnet la t t ic . ,  i t  i s  neCessary 

t o  t r anspor t  the r e f r i g e r a n t  i n  t r ans fe r  l i nes :  A supply header . . 
and a r e tu rn  header a r e  ca r r i ed  through these regions i n  a common 

vacuum enclosure.  A hea t  s h i e l d  surrounding the  supply header i s  

a t tached t o  . the r e tu rn  header i n  order  t o  minimize the l o s s  t o  the 

re f r igeranf  supply. About 1440 m of such l i n e  i s  required.  

The main magnet cu r r en t  leads  a r e  = a t = d ' a t  4000 A and one ' p a i r  

'is required i n  each oc tan t  of each r ing ,  i . e . ,  the magnets of each 

oc tan t  a r e  powered i n  s e r i e s .  The main r e f r i g e r a t i o n  load from 

magnet cur ren t  leads  comes, not from these l eads ,  but  from the 

"protect ive leads" which a r e  i n s t a l l e d  with one lead  a t  each dipole .  

These leads 'do no t  normally car ry  any cu r ren t  but  a r e  only ,used to  

,shunt cu r r en t  around a magnet which has quenched during the s h o r t  

period of time required t o  br ing the main'magnet cu r r en t  t o  zero. 

Thus, they "protect" the quenched magnet from overheating due t o  

r e s i s t i v e  heat ing.  These "protective" leads cont r ibu te  almost ha l f  

of the t o t a l  l ead  l o s s .  . . 



The estimated hea t  loads a r e  l i s t e d  i n  Table I. The loads a r e  

divided i n t o  two groups, primary and secondary. Those i n  the primary 

column a r e  hea t  l o s ses  which cause a temperature r i s e  in the helium 

r e f r i g e r a n t  as it passes through the magnets. The hea t  loads i n  the 

secondary column a r e  those which cause the temperature of  the r e f r i g -  

e r a n t  t o  r i s e  a f t e r  i t  has passed through the  magnets, i . e .  i t  is the  

hea t  s h i e l d  and support hea t  i n t e r cep t  cool ing load.  The lead  flow 

is,  of course,  the helium flow required f o r  the gas-cooled magnet 

cur ren t  leads.  

Design Heat ~ o a d  and Temperatures 

Protons a r e  acce lera ted  i n  ISABELLE from t h e i r  i n j e c t i o n  energy 

of 30 GeV to  the design operat ing energy of 200 GeV. This accelera-  

. . t i o n  cycle  occurs, only inf requent ly ,  .perhaps 'once per  day. During . 

. . the acce l e ra t ion  cycle  addi t iona l  l o s ses  a r e  'imposed o n  the  system 

due t o  magnetization lo s ses ,  eddy cur ren ts ,  e t c .  and beam rad ia t ion  
. . 

heat ing due t o  p a r t i c l e s  which a r e  " lost"  o r  escape from the beam' 

-during the accelerat io 'n  cycle .  

These lo s ses  have been estimated t o  be l e s s  .than 2 W per  meter 
2 

of magnet length  during the 100 second acce l e ra t idn  cycle.  R.P. Shut t  . , 

has ca lcu la ted  the e f f e c t  of t h i s  hea t  load on the magnet c o i l  tem- 
.. . 

,pera ture .  The conclusion t h a t  can be drawn from these ca l cu la t ions  - 
. is  t h a t  the  temperature of ' the magnets before the acce lera t ion  cyc le  

should be a t  i e a s t  0.2 K below the magnet design temperature of 4.5 K. 

For t h i s  reason, the s teady s t a t e  design temperature f o r  the r e f r i g -  

e r a t i o n  system is chosen a t  4.3 K. 

On the  bas i s  of our  p a s t  experience, and t h a t  of o the r s ,  i t  is 

c l e a r  t h a t  the r e f r i g e r a t o r  capaci ty i n s t a l l e d  must be s u b s t a n t i a l l y  

g rea t e r  than the load i f  the system is t o  perform r e l i a b l y .  We have 

chosen to  mult iply our estimated hea t  load by a f a c t o r  of 1.5 i n  

order  t o  a r r i v e  , a t  the 'hea t  load which i s  used t o  s i z e  the r e f r ige ra to r . '  

2 .  R.P. Shut t ,  ISA Technical Note No. 8 (1976). 



TABLE I. ISABELLE Estimated Steady-State Heat Load 

Primary Secondary Total  Lead ' 
Load Load Load Flow 
Cw) m> (W) g/ s 

4.15 m Dipole 

Supports 0.05 4.95 5 .OO 
Vacuum Tank/Inne r 

Vessel 0.16 4.22 4.38 
Beam ~ u b e /  1 m e r  
Vessel 2.06 2.06 

Connecting Piping 0.90 0.55 1.45 
Total  /Magne t 3.17 9.72 12.89 
Total1528 Magnets 1674 5132 6806 

1.5 m Quad 

Supports 0.03 2.97 3.00 
Vacuum Tank/Inner 

Vessel 0.11 1.63 1.74 
Beam Tube/Inner . 
Vessel 1.05 1.05 

Comect ingPip ing  0.95 0.58 1.53 
To t a1 /Magne t 2.14 5.18 7.32 
~ o t a 1 / 3 6 8  Magnets 788 i906 2694 

3.0 m Quad 

Supports 0.04 3 -96 4.00 
Vacuum Tank/Inner 

Vessel 0.21 3.14 3.35 
Beam ~ u b e / I n n e r  
Vessel 2.10 2.10 

Connecting Piping 0.95 0.58 1.53 
Total /Magnet 3.30 7.68 10.98 
Total164 Magnets 21 1 492 703 

Magnet Power Leads 

Main Current 153.6 153.6 7;68 
Quad Main Correc- 
t ion 92.8 92.8 4.64 

Other Correction 163.2 163.2 8.16 
Protec t ive  614.4 614.4 18.40 
Inser t ion  Quads 153.6 153.6 307.2 - 15.36 
TO t a l /A l l  Power 
Leads 1177 154 1331 54.2 

Transfer Lines - 5 - 573 578 - - 
ISABELLE Total  3855 8257 12112 54.2 



Table I1 summarizes t h e  des ign  h e a t  l o a d s  and temperatures  used' 

iri t h e  r e f r i g e r a t o r  des ign.  

TABLE 11. ' Design Heat Loids  and ~ & n ~ e i a t u r e s  ' . 

Primary Load 5200 W 

. Secondary Load . . 12000 W 

Lead. Flow 8 1  g / sec  

Maximum Magnet ~ e m i e r a t u r e  ' 4 . 5  K 

Maximum Steady-Sta te  Magnet ~ e m p e r a t u r e  4.3 K 

, . R e f r i g e r a t o r  Design 

Only a s i n g l e  r e f r i g e r a t o r  is proposed f o r  ISABELLE. S u f f i c i e n t  

d i s t ances  can be covered, u s i n g  t h e  d t s t r i b u t i o n  system envisaged and 

without undue p r e s s u r e  drop o r  o t h e r  p e n a l t i e s ,  s o  t h a t  a l l  the  

r e f r i g e r a t i o n  can be supp l ied  from a s i n g l e  po in t .  More than one 

s m a l l e r  r e f r i g e r a t o r  could have been used a t  t h i s  p o i n t ,  b u t  a s i n g l e  

u n i t  was chosen p r i m a r i l y  on t h e  b a s i s  o f  r e l i a b i l i t y  and c o s t  con- 

s i d e r a t i o n s .  

The magnets i n  ISABELLE are designed t o  be  cooled w i t h . r e f r i g -  

e r a n t  a t  an  e l e v a t e d  p r e s s u r e ,  1 5  a tm,a t  t h e  i n l e t .  Because t h i s  

type o f  system i s  nonisothermal ,  i t  i s  d e s i r a b l e  t o  e n t e r  t h e  magnets 

t o  he cooled a t  a low temperature.  .This.  reduces t h e  m a s s  f low r a t e  

r e q u i r e d  t o  remove. a given amount o f  h e a t  below a f i x e d  temperature  

l e v e l  and /or  a l lows more magnets t o  be cooled '  i n  s e r i e s  be fore  t h e  

k i m u m  d e s i r e d  temperature i s  reached. We have s t u d i e d  s e v e r a l  

systems which could  be used t o  produce t h e  d e s i r e d  l o w  temperature.  

The system chosen f o r  u s e ' w i t h  1SABEZ;tE u t i l i z e s  a turbocorn- 

p.ressor t o  lower t h e  p r e s s u r e  of t h e  subcoole r  h e a t  exchanger' bath .  

This  system i s  shown schemat ica l ly  i n  Fig.  2 and a T-.S diagram of  

t h e  c y c l e  i s  shown i n  Fig .  3. A turbocompressor/expander o p e r a t i n g  

a t  t h i s  temperature and p r e s s u r e  range has  n o t ,  t o  d a t e ,  been r e p o r t e d  

i n  the  l i t e r a t u r e .  BNL, t h e r e f o r e ,  ob ta ined  t h e '  s e r v i c e s  o f  a turbo- 

machinery c o n s u l t a n t ,  Create ,  Inc . ,  t o  perform a f e a s i b i l i t y  s tudy  o f  
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the requirements f o r  t h i s  system. They reported favorably and BNL 

is now proceeding toward a f i n a l  design and subsequent procurement 

of a prototype subcooler system of t h i s  type. . . 

Other than '  the subcooler,  the r e f r i g e r a t o r  required f o r  ISABELLE 
I .  

, w i l l  be of c o ~ v e b t i o n d l  .design. . Liquid n i t rogen  w i l l  ' n o t  be used f o r  

precoolihg: The uge of l i q u i d  n i t rogen  during cooldown was s tudied  

and i t  w a s  concluded t h a t  it w a s  no t  required a s  a reasonable cool- 

' d o h  t k e  (12-14 days) could be obtained without i t s  use. 
. . 

Refrigerat ion Dis t r ibu t ion  and Control 
. , 

A s impl i f ied  flow schematic f o r  the r e f r i g e r a t i o n  d i s t r i b u t i o n  

system f o r  one of the two ISABELLE r ings '  is shown i n  Fig. 4. ''A 

supply header and a r e tu rn  header run completely around the r ing .  
. . 

. The flow f o r  s e r i e s  cooling of the magnets i n  each oc tan t  i s  routed 

from the supply header, ,through the. magnets t o  be cooled, r e tu rns  

through the hea t  s h i e l d  cooling tube around those. same magnets and 

then flows through the  r e t u r n  header t o  the r e f r i g e r a t o r .  Not shown 

on t h i s  schematic is the f a c t  t h a t  t he  8 quadrupole magnets i n  the 

i n s e r t i o n  sec t ion  a r e  not  i n  s e r i e s  with the r e s t  of the magnets in 

. . the oc tan t .  This was done t o  avoid the  add i t i ona l  t r a n s f e r  l i n e s  

required t o  arrange f o r  them t o  be in s e r i e s  with the o the r  52 mag- 

ne ts  i n  t h e i r .  oc tan t .  Also not  s h o m . i s  a w a r m  r e t u r n  l i n e  t o  the 

~ + ~ r e s s o r s .  This r e tu rn  is f o r  the power lead  cooling flow which 

.is taken from the main r e f r i g e r a n t  stream a s  required.  

The system is  being designed t o  accept  a flow r a t e  of 117 g/sec 

f o r  each oc tan t .  With t h i s  flow r a t e ,  the expected pressure drop i n  

the supply header ( for  the oc t an t  f u r t h e s t  from the r e f r i g e r a t o r )  is 

0.2 atm. The pressure drop through the magnets is  ca lcu la ted  a t  0.3 

atm. The expected pressure drop i n  the r e t u r n  header is  0.2 atm. 

This pressure drop is  recognized a s  one of the i n e f f i c i e n c i e s  in the 

system and every e f f o r t ,  cons is ten t  with good design of t he  ove ra l l  

magnet l re f r igera tor  system, t o  reduce i t  w i l l  be made. The pressure 

drop, a s  now ca lcu la ted ,  i s  f e l t  t o  be acceptable and is regarded a s  
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an upper l i m i t .  'For a zero pressure drop d i s t r i b u t i o n  system the 

flow requirements would be reduced by 8.3%. 

The superconducting magnet c o i l s  have fiberglass-epoxy bands 

in s ide  and outs ide of them. The bands a r e  2.5 cm wide and a r e  spaced 

2.5 cm apar t .  These bands a r e  s l o t t e d  so t h a t  the r e f r i g e r a n t  can 

flow along the length  of the c o i l .  There a r e  a l s o  s l o t s  i n  the  out- 

s i d e  of i r o n  core t o  car ry  the superconducting bus bars  which con- 

nec t  the magnets i n  s e r i e s  a s  well '  a s  instrumentat ion wiring. The 

flow through these s l o t i c a n  be adjusted by r e s t r i c t i n g  the flow 

passage a s  desired.  Some of the flow (perhaps as  much a s  50%). w i l l  

be allowed t o  go through these passages. This permits a lower over- 

a l l  p ressure .  drop. Because the fiows recombine t o  pass from ode 

magnet t o ,  the next,  the increased temperature rise i n  a given c o i l  

i s  no t  4 problem u n t i l  the  l a s t  magnet (assuming l e s s  than 50'% is 

bypassed through the i ron  core s l o t s ) .  . A s l i g h t  increase  i n ,  flow 

r a t e  would br ing t h i s  l a s t  magnet below the  required maximum tempera- 

tu re .  The reduced pressure  drop should more than compensate f o r  the 
. . 

I increased flow. 'The increased flow a rea  and hea t  exchange, a r e a  pre- 

. . sented ,by the  i ron  core bypass a l s o  permits f a s t e r  cooldown times. 

Because so  many magnets a r e  i n  s e r i e s ,  only a r e l a t i v e l y  few 

d i s t r i b u t i o n  cont ro ls  a r e  required.  The 16 main o c t a n t  cont ro l  loops 

and the loops required f o r  t he  i n s e r t i o n  sec t ion  quadrupoles w i l l  be 

i n  p a r a l l e l .  The temperature a t  the o u t l e t  of each loop w i l l  be mea- 

sured and used a s  the cont ro l  po in t  f o r  a modulating valve. A cont ro l  

system w i l l  monitor the supply header pressure  and increase  flow t o  

each loop i n  proportion t o  i t s  hea t  load u n t i l  the e n t i r e  capaci ty of 

the r e f r i g e r a t o r  is u t i l i z e d .  This would uniformly d r ive  the tempera- 

t u r e  of a l l  the  ISABELLE magnets t o  the lowest temperature a t t a i n a b l e  

under the given load condit ions.  The gas re turn ing  t o  the r e f r i g e r a t o r  

a s  wel l  as the magnets may be below design temperature. A hea t e r  w i l l  

be i n s t a l l e d  i n  the r e tu rn  l i n e  so  t h a t  the temperature of the gas 

en t e r ing  the turboexpander i n  s e r i e s  with the load can be r a i s e d  t b  

i ts  optimum operat ing temperature when t h a t  temperature i s  too low. 



Redundant Components 

As a s i n g l e  r e f r i g e r a t o r  i s  to  be used f o r  ISABELLE, i t  is very 

important t h a t  i t  be a s  r e l i a b l e  a s  possible .  Toward t h i s  end, the 

following components ( a t  l e a s t )  w i l l  be completely redundant (see 

Fig. 2): 

Heat Exchangers 1 and 2 (HXl and HX2), 

, Turboexpander 1, 

Turboexpander 2. 

Turbomachinew . . 

Following t h i s  desc r ip t ion  of the ISABELLE r e f  r i g e r a t i o n  sys tem, 

. Larry young of Creare, Inc . gave a summary of the  design work h i s  
. . 

f i rm had done f o r  turbomachinery which could meet the requirements f o r  

, . the subcboler i n  the cycle. 

Most of the i n t e r e s t  of the group focused on the small  prototype ~ 
I expander/compressor u n i t  which BNL now has on order .  The small s i z e  

I (the expander wheel i s  0.200 inch diameter and the compressor is 

0.320 inch diameter) of t h i s  equipment presents  minia tur iza t ion  prob- 

lems which Creare f e e l s  can be overcome. Spec i f i c  problems were 

discussed: (1) Tolerance stack-up, (2) leakage of warm bearings gas 

i n t o  the cryogenic stream, (3) mechanical i n t e g r i t y  of the wheel 

which has blade thicknesses of  0.004 t o  0.006 inches,  ( 4 )  contamina- 

t i o n  of process stream, and (5). expense. This u n i t  i s  designed t o  

G t c h  the  capab i l i t y  (200 W) of the  r e f r i g e r a t o r  cu r r en t ly  used f o r  

t e s t i n g  in the  ISABELLE Division. One suggestion was t o  design the 

u n i t  f o r  one of the  l a r g e r  Bn r e f r i g e r a t o r s  (700 W o r  1100 W ) .  

The group toured the  cryogenic f a c i l i t i e s  of the ISABELLE Divi- 

~ s ion and v i s i t e d  the Superconduc t i n g  Transmiss ion  Line screw com- 
I pressor  t e s t  f a c i l i t y  and t h e i r  r e f r i g e r a t o r  i n s t a l l a t i o n .  
: 

A l i s t  of po in ts  which should be checked a s  the  ISABELLE design 

proceeds was generated. Many of the poin ts  have been subjec t  t o  some 

study dlready c~urple te  01: p a r t i d l  a r ~ a w e i s  ULI L l ~ e s e  p u l u ~ s  are 

already forthcoming. 



~ u a a e s  ted'  rea as of Engineering Study 
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F. Es tab l i sh  Maximum Helium Loss Ra tehsage  Allowable 

1. .Component des ign requirements 

Nons teady-S t a t e  Operation 

A. Cryogenic Sys tem Purge Procedure 

B. Cooldown 

1. Liquid he1 ium s torage  des i r a b i l  i t y  

2. Cooldown r a t e  thermal s t r e s s  l i m i t a t i o n s  

3.  Warmup/cooldown of s i n g l e  oc t an t  f o r  r e p a i r s  

C. Quench Behavior and Propagation Pa t t e rns  

D. Warmup Method 

E. Fa i lu re  Mode Analysis 

1. Protec t ive  diodes - on-l ine diagnost ics? 

F. Gas Recovery System operat ion 

Magne t lcryogenic Sys tem . In t e r f ace  

A .  Review of S u i t a b i l i t y  of Mater ia l s  Used a t  Cryogenic 
~ e m ~ e r a t u r e s  

B. Possible  Cooldown Weight Reduction by "Holes" i n  
Laminations 



C. Multilayer Cryogenic Insulation System Evaluation 

1. ~ s & b l i s h  apparent thermal conductivity as installed 

2. Pumpdawn times 

3. Cost effectiveness. 




