

11F

BNWL-2282

UC-78

High Burn-Up Plutonium Isotopic Compositions Recommended for Use in Shielding Analysis

by
M. G. Zimmerman

June 1977

**Prepared for the Energy Research
and Development Administration
under Contract EY-76-C-06-1830**

 Battelle
Pacific Northwest Laboratories

BNWL-2282

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

PACIFIC NORTHWEST LABORATORY
operated by
BATTELLE
for the
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
Under Contract EY-76-C-06-1830

Printed in the United States of America.
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151

Price: Printed Copy \$____*: Microfiche \$3.00

*Pages	NTIS Selling Price
001-025	\$4.50
026-050	\$5.00
051-075	\$5.50
076-100	\$6.00
101-125	\$6.50
126-150	\$7.00
151-175	\$7.75
176-200	\$8.50
201-225	\$8.75
226-250	\$9.00
251-275	\$10.00
276-300	\$10.25

BNWL-2282
UC-78

3 3679 00062 8711

HIGH BURN-UP PLUTONIUM ISOTOPIC COMPOSITIONS
RECOMMENDED FOR USE IN SHIELDING ANALYSIS

by
M. G. Zimmerman

June 1977

BATTELLE
Pacific Northwest Laboratories
Richland, Washington 99352

ACKNOWLEDGMENT

This report summarizes a study conducted by Battelle, Pacific Northwest Laboratories for the U.S. Energy Research and Development Agency under Contract No. E(45-1)-1830. The author wishes to thank E. T. Merrill and C. M. Heeb for their technical contributions to the data used, C. L. Brown for his assistance in preparing the report, and John Church, E.I. duPont de Nemours & Co., SRL, for his review and helpful suggestions regarding applicability to the industry.

SUMMARY

Isotopic compositions for plutonium generated and recycled in LWR's have been estimated for use in shielding calculations. The values were obtained by averaging isotopic values from many sources in the literature. These isotopic values should provide the basis for a reasonable prediction of exposure rates from the range of LWR fuel expected in the future. The isotopic compositions given are meant to be used for shielding calculations, and the values are not necessarily applicable to other forms of analysis, such as inventory assessment or criticality safety. Final results are presented in Table 1.

TABLE 1. High Burn-Up Plutonium Isotopic Compositions Recommended For Use In Shielding Analysis

<u>Isotope</u>	<u>Composition, wt%, At End of Cycle</u>				
	<u>Equilibrium Uranium Cycle</u>	<u>First Pu Recycle</u>	<u>Second Pu Recycle</u>	<u>Third Pu Recycle</u>	<u>Fourth Pu Recycle</u>
Pu-236	0.08 ppm	0.06 ppm	0.06 ppm	0.06 ppm	0.06 ppm
Pu-238	2.	2.5	3.5	4.	5.
Pu-239	57.	43.	37.2	29.	26.
Pu-240	24.	28.5	30.2	29.	26.
Pu-241	12.	16.	16.1	19.	19.
Pu-242	5.	10.	13.	19.	24.

These compositions provide a resource for shielding and dose rate analysis of new facilities that will fabricate and process high-burnup plutonium fuel.

TABLE OF CONTENTS

ACKNOWLEDGMENT.	ii
SUMMARY	iii
LIST OF TABLES.	v
LIST OF FIGURES	v
INTRODUCTION.	1
DISCUSSION.	1
PLUTONIUM ISOTOPE PRODUCTION	2
RADIATION AND SHIELDING CHARACTERISTICS OF PLUTONIUM ISOTOPES	3
REPORTED PLUTONIUM ISOTOPIC COMPOSITIONS FOR UO_2 AND $Pu-UO_2$ FUELS	8
REFERENCES.	16



LIST OF TABLES

1	High Burn-Up Plutonium Isotopic Compositions Recommended For Use In Shielding Analysis.	iii
2	Neutron Yields From α, n Reactions and Spontaneous Fission. .	3
3	Gamma Spectra and Yields	4
4	Half-Lives of Plutonium and Daughters Which Contribute Significantly to Radiation Exposure.	5
5	Mean Isotopic Compositions From Plutonium Recycle.	8
6	Average Composition of Plutonium Available For Recycle . . .	9
7	Plutonium Isotopic Compositions Discharged From The Uranium Cycle.	10
8	Plutonium Isotopic Composition Discharged From The First Plutonium Recycle.	11
9	Plutonium Isotopic Composition Discharged From The Second Plutonium Recycle.	12
10	Plutonium Isotopic Compositions From The Third Plutonium Recycle.	13
11	Ratio of Individual Plutonium Isotopes to Pu-239 in Dis- charged LWR Fuel	14

LIST OF FIGURES

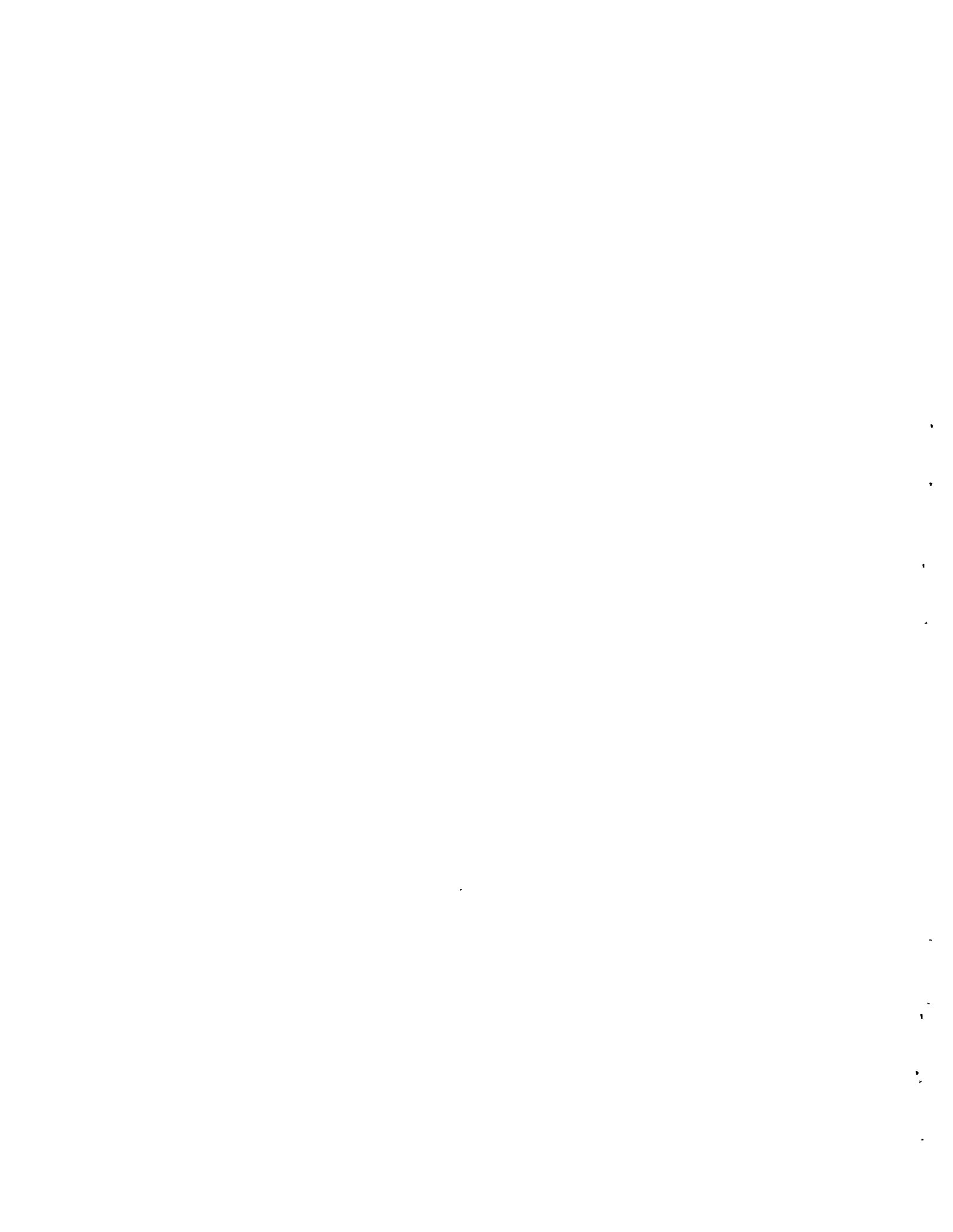
1	Actual and Simplified Transmutation Paths Used in the Zodiac Program	17
2	Plutonium Isotopic Decay Daughters	18

HIGH BURN-UP PLUTONIUM ISOTOPIC COMPOSITIONS
RECOMMENDED FOR USE IN SHIELDING ANALYSIS

M. G. Zimmerman
Battelle-Pacific Northwest Laboratories

INTRODUCTION

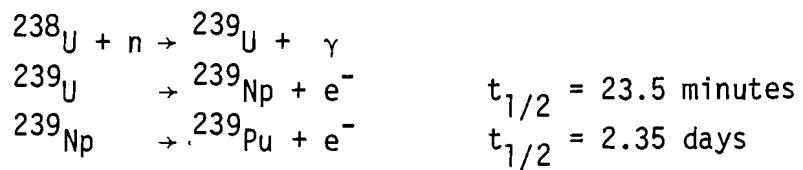
The purpose of this report is to provide a set of reference isotopic compositions for plutonium that can be used in shielding and dose rate calculations for new, near-future plutonium plants. It is anticipated that as more data become available, these compositions may be adjusted slightly.

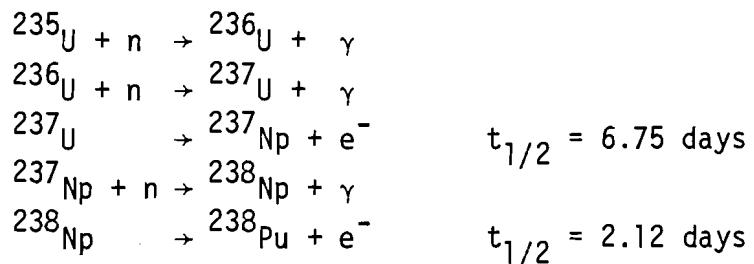

DISCUSSION

In order to select a reasonable and conservative plutonium isotopic content for use in shielding calculations several factors must be considered. These are:

- Burnup and radiation history of the fuel
- Time after reprocessing
- Shield material and thicknesses expected to be used
- Chemical form of the plutonium

The burnup and irradiation history of the nuclear fuel determines the actual plutonium isotopic composition at discharge. The relative contribution to radiation exposure of each plutonium isotope will be determined by the shielding material and thickness. Radiation exposure and shielding needs will be increased by the buildin as a function of time of certain daughter isotopes of plutonium such as Am-241 and U-237. The chemical form of the plutonium will determine the number of (α, n) reactions and hence the total neutron source.


The important assumption is the ratio of Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242 isotopes in the plutonium. Each of these isotopes have different radiation characteristics. The percentage of each in any given plutonium is determined by the characteristics and duration in the reactor where the plutonium was produced. Once the spent fuel (and plutonium) is


discharged from the reactor, however, the plutonium isotopic ratios are essentially fixed. Knowing these approximate ratios is important in shielding and dose rate analysis. Details of these considerations are given below.

PLUTONIUM ISOTOPE PRODUCTION

The plutonium isotopes are produced by neutron absorption and subsequent radionuclide decay of U-235 and U-238. The major process is that for U-238 shown below:

This process occurs when U-238 absorbs a neutron with less energy than necessary to fission the U-238 isotope. A similar process occurs less frequently with U-235

Other isotopes of plutonium usually present are Pu-240, Pu-241 and Pu-242. These are formed by neutron absorption in Pu-239. The possible neutron absorptions and decays causing buildup of plutonium isotopes and other transuranic isotopes is shown in Figure 1.⁽¹⁾ The isotope Pu-236 is also produced to a small extent.

The various amounts of plutonium isotopes produced by these reactions are dependent on the cross-sections involved; and the effective cross-sections are determined by the neutron spectra. Therefore, the plutonium isotopic composition at discharge is determined by the burnup history and fuel parameters and the beginning plutonium isotopic composition of the fuel.

As the plutonium is recycled the relative isotopic production trends will continue. The trend consists of a reduction in Pu-239 fraction, little change in the fraction of Pu-240 and Pu-241 and an increase in the fraction of the other isotopes.

Only Pu-239 and Pu-241 are fissile. The relative fraction of fissile plutonium (Pu-239 + Pu-241) decreases with each recycle. Because of this, a greater amount of plutonium must be added to a given core for each recycle to achieve the same burnup. This means that eventually it becomes uneconomical to recycle the plutonium. At this point the plutonium is either discarded or used in LMFBR's. *Our estimate is that plutonium will not be recycled beyond four times.*

RADIATION AND SHIELDING CHARACTERISTICS OF PLUTONIUM ISOTOPES

In order to estimate reasonably conservative isotopic compositions it is necessary to consider the shielding problems associated with the different isotopes. The neutron and gamma yields for the different plutonium isotopes are shown in Tables 2 and 3. ⁽²⁾

TABLE 2. Neutron Yields From α, n Reactions and Spontaneous Fission

Isotope	n/sec gram of Pu					
	PuO ₂	PuF ₄	PuC	PuBe ^(a)	Pu(NO ₃) ₃ ^(b)	Spontaneous Fission
Pu-236	-	-	-	-	-	3.7×10^4
Pu-238	1.34×10^4	2.04×10^6	1.49×10^4	4.38×10^7	2.7×10^4	2.62×10^3
Pu-239	38	6.35×10^3	37.3	1.36×10^5	76	.03
Pu-240	1.45×10^2	2.35×10^4	137.8	5.02×10^5	2.9×10^2	1.02×10^3
Pu-241	-	-	-	-	-	-
Pu-242	2.13	2.83×10^2	-	-	4.2	1.7×10^3
Am-241	2.68×10^3	4.08×10^5	2.98×10^3	8.76×10^6	5.46×10^3	-

(a) Estimated from Reference 13.

(b) A rough estimate indicates an approximate doubling of (α, n) yields compared to PuO₂.

TABLE 3. Gamma Spectra and Yields

gammas/100 disintegrations

Energy Range (MeV)	Pu-238	Pu-239	Pu-240	Pu-241	Pu-242	Am-241	U-237	Pu-236	U-232	Th-228	Ra-224	Pb-212 ^(a)	Bi-212 ^(b)	Fission Spectra ^(c)
0.01 - 0.07	15.25	6.65	13.24	3.6-4	13.27	93.14	80.71	3.1-3	30.2	25.0	0.0	0.0	1.5	1.4-3
0.07 - 0.12	8.2-3 ^(d)	6.8-3	1.2-2	1.7-3	0.0	0.047	56.6	1.2-2	0.0	1.6	0.0	33.7	0.0	2.8-3
0.12 - 0.21	1.0-3	4.9-3	1.2-3	1.6-4	0.0	5.9-3	25.0	6.6-5	8.2-2	0.30	0.0	0.24	0.0	8.3-3
0.21 - 0.4	0.0	2.88-3	0.0	0.0	0.0	1.7-3	2.4	0.0	7.2-3	0.29	4.2	50.6	4.6	9.1-3
0.4 - 0.6	0.0	1.23-3	0.0	0.0	0.0	9.0-5	0.0	2.8-4	0.0	0.0	0.0	0.16	40.3	1.6-2
0.6 - 0.9	5.5-5	9.4-5	1.8-5	0.0	0.0	1.0-3	0.0	2.4-4	0.0	0.0	0.0	0.0	13.5	2.7-2
0.9 - 1.2	8.0-7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	4.7-2
1.2 - 1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.23	6.1-2
1.6 - 2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7	9.9-2
2.0 - 2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2-1
2.5 - 3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.0	1.9-1
3.0 - 3.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6-1
3.5 - 4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7-1
4.0 - 5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.6-2
5.0 - 6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0-2
6.0 - 7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.1-2
	0.0													

(a) Includes gammas from Po-216 and Rn-220

(b) Includes gammas from Po-212 and Tl-208

(c) Spectra normalized to 1.0, yields equal to 14.98 MeV/fission
which includes prompt and fission product gammas.

(d) Read as 8.2×10^{-3}

The major contributors to the dose rate in a given plutonium isotopic composition will depend on the shielding, geometry, and age since reprocessing. The half-lives of the plutonium isotopes and the daughters which contribute to the shielding problem are shown in Table 4.

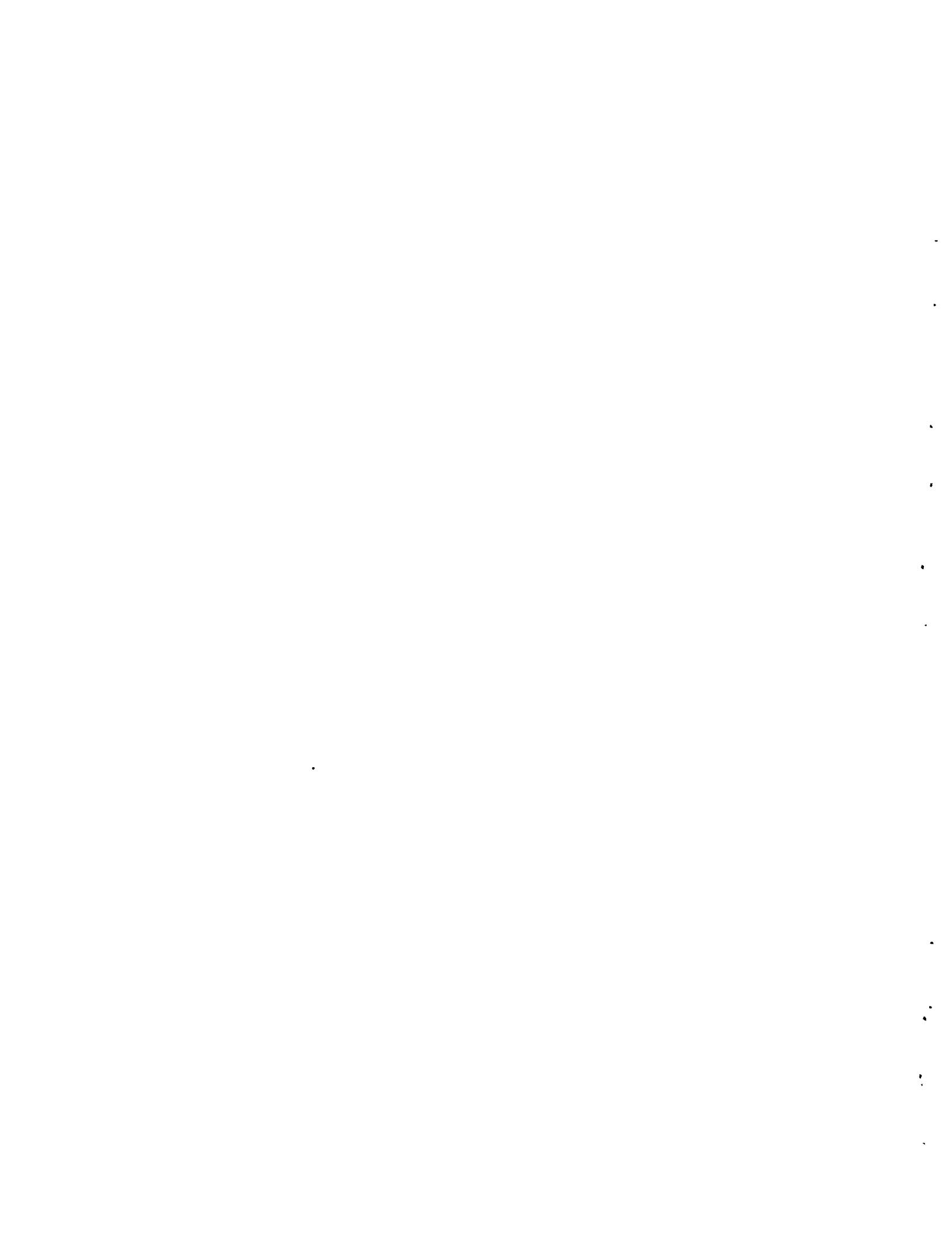
TABLE 4. Half-Lives of Plutonium and Daughters Which Contribute Significantly To Radiation Exposure(11)

<u>Daughters</u>	<u>Parents</u>	<u>Radioactive Decay Half-Life</u>	<u>Spontaneous Fission Half-Life</u>
Pu-236	-	2.85 yr	3.5×10^9 yr
Pu-238	-	86.4 yr	4.9×10^{10} yr
Pu-239	-	24390 yr	5.5×10^{15} yr
Pu-240	-	6580 yr	1.34×10^{11} yr
Pu-241	-	13.2 yr	-
Pu-242	-	3.79×10^5 yr	7.1×10^{10} yr
Am-241	Pu-241	458 yr	2.0×10^{14} yr
U-237	Pu-241	6.75 day	-
U-232	Pu-236	72 yr	8×10^{13} yr
Th-228	U-232	1.91 yr	-
Ra-224	Th-228	3.64 day	-
Rn-220	Ra-224	55.3 sec	-
Po-216	Rn-220	0.145 sec	-
Pb-212	Po-216	10.64 hr	-
Bi-212	Pb-212	60.6 min	-
Po-212	Bi-212	0.304 μ sec	-
Tl-208	Bi-212	3.10 min	-

Since each isotope has a different activity, the radiation source strength is determined by the isotopic composition. However, each isotope has a different gamma and x-ray spectra, and the isotope responsible for most of the dose rate can change depending on the shield thickness and geometry. In conditions of no shielding or very thin shields like hood gloves, the major contributors to the dose rate are those isotopes producing the most low energy gammas and x-rays. For this reason a geometry of plutonium with little self-shielding may produce a much greater dose rate than an equivalent amount of plutonium in a small dense source.

Several isotopes, notably Pu-236 and Pu-241 decay to daughters which contribute a significant dose rate. For this reason the time after reprocessing can change the relative contribution of the plutonium isotopes to the dose rate.

Most of the preceding discussion applies only to the gamma source. Because the neutron spectra from the different isotopes are essentially the same for shielding purposes, the geometry and shield thickness has little effect on the relative contribution to the dose rate by the different isotopes. Therefore, the dominate plutonium isotope from a neutron shielding standpoint is determined solely by the isotopes activity and density compared to the other plutonium isotopes.


The neutron and gamma radiation characteristics for each isotope are discussed below:

Pu-236

Typically recycle plutonium is expected to contain less then 0.1 ppm Pu-236. This isotope does not contribute significantly to neutron dose rates and the gamma dose rate is small compared to that from other isotopes. However because of decay daughters, the gamma dose rate will buildup with time. The decay scheme is shown in Figure 2. Equilibrium conditions will be reached in about 18 years. The major shielding problem is a 2.6 MeV gamma from Tl-208. Because of the high energy of this gamma ray, this isotope can contribute significantly to the dose rate under conditions of thick shields and several years time since reprocessing.

Pu-238

The amount of Pu-238 varies from about 1% to about 5% of the plutonium. This isotope, because of its abundance and relatively short half-life, is a major contributor to the dose rate. The gammas are mostly low energy and can be shielded by thin shields. However, there are enough high energy gammas to dominate the gamma dose rate if the shields are of the proper thickness.

The Pu-238 can also be the major contributor to the neutron dose rate. This is especially true in compounds with a potential for (α, n) reactions. The spontaneous fission half-life is also relatively short.

Pu-239

Pu-239 generally contributes less to the dose rate on a per atom basis than any of the others. The half-life for Pu-239 is much longer than for the other isotopes except α -decay of Pu-242. Only when Pu-239 makes up essentially all of the plutonium is it a major contributor to the dose rate. The Pu-239 can make up a significant portion of the gamma dose rates through thin lead shields. The Pu-239 can be more important if the dose rate due to induced fissions caused by neutron multiplication is significant. Since the Pu-239 and the Pu-241 are the only fissile isotopes, the neutron multiplication will depend on the amount of these isotopes.

Pu-240

Pu-240 may be about 25% of the plutonium. The gamma dose rate is mostly from low energy gammas and even thin shields reduce the contribution to insignificance.

This isotope can contribute about half of the neutron dose rate. This is due to both spontaneous fission and (α, n) neutrons.

Pu-241

Pu-241 may be about 17% of the plutonium. This isotope contributes primarily to the gamma dose rate through its daughters U-237 and Am-241. The decay scheme is shown in Figure 2. These isotopes are major contributors to the gamma dose rate for most shielding situations. The U-237 builds in to equilibrium within a month and the Am-241 builds in to significant levels in about a year after reprocessing.

Pu-241 contributes very little to the neutron dose rate. The Am-241 can contribute a small amount to the neutron dose rate through (α, n) reactions. Pu-241 is also fissile and may contribute to the induced fission neutron dose rate.

Pu-242

Pu-242 may be about 15% of the plutonium. This isotope contributes insignificantly to the gamma dose rate.

Pu-242 does contribute significantly to the neutron dose rate. This is mostly from spontaneous fission although some (α, n) neutrons can also be present.

From the foregoing discussion of the individual plutonium isotopes we can conclude that all the isotopes can contribute significantly to dose rates for differing conditions. However, in most instances in fabrication and reprocessing steps for plutonium recycle, the major contributors are Pu-238 and Pu-241 for the gamma dose rate and Pu-238, Pu-240 and Pu-242 for the neutron dose rate. Under conditions of thick shielding and long storage time, Pu-236 daughters may contribute a significant amount to the gamma dose rate. The proportions of the dose rate from these isotopes will vary depending on what shielding is employed and the specific isotopic composition.

Therefore in order to choose conservative isotopic compositions for recycle plutonium we would generally choose the composition with the least Pu-239 and the most Pu-238 and Pu-241. Generally the compositions with the most Pu-238 and Pu-241 would also have the most Pu-240 and Pu-242. However, in those cases where induced fissions are important we may want to choose a composition with the most Pu-239 and Pu-241 in order to assure conservatism.

REPORTED PLUTONIUM ISOTOPIC COMPOSITIONS FOR UO_2 AND PU- UO_2 FUELS

We have investigated several references for the isotopic composition of recycle plutonium. The mean isotopic composition and the range of values found for each isotope is shown in Table 5.

TABLE 5. Mean Isotopic Compositions From Plutonium Recycle

	<u>Equilibrium Uranium Cycle</u>	<u>First Pu Recycle</u>	<u>Second Pu Recycle</u>	<u>Third Pu Recycle</u>
Pu-236	0.08 ppm	0.06 ppm	0.06 ppm	-
Pu-238	$1.9 \pm .6$	2.3 ± 1.0	3.4 ± 1.5	4.3 ± 0.7
Pu-239	57.8 ± 3.4	46.9 ± 9.2	38.2 ± 8.8	29.0 ± 2.0
Pu-240	23.7 ± 2.3	28.0 ± 4.0	30.3 ± 3.3	29.8 ± 2.8
Pu-241	12.2 ± 2.1	16.0 ± 4.0	16.2 ± 8.2	18.8 ± 2.8
Pu-242	4.2 ± 1.1	10.0 ± 5.0	11.7 ± 3.7	19.2 ± 0.8

From this table we averaged the values for our recommendation in Table 1. In order to get the fourth plutonium recycle results in Table 1 we extrapolated the results for the first three recycles. Also, we show in Table 6 the predicted average plutonium isotopic composition for 1975, 1980, 1985.⁽³⁾ The various isotopic compositions from the individual references are shown in Tables 7, 8, 9, and 10. From these tables we can observe that there is a large variation in plutonium isotopic composition between the different sources.

TABLE 6. Average Composition of Plutonium Available for Recycle⁽³⁾

<u>Year</u>	<u>^{236}Pu</u>	<u>^{238}Pu</u>	<u>^{239}Pu</u>	<u>^{240}Pu</u>	<u>^{241}Pu</u>	<u>^{242}Pu</u>
1975	0.000006	1.0	64	22	10	3
1980	0.0000007	1.5	58	24	11	5
1985	0.0000007	1.7	54	25	12	7

This variation in results from the different references is explained mostly by the burnup assumed. During exposure of the fuel in a reactor core, the production of plutonium is not constant with time. Initially when most of the power is produced from U-235 fissions, only a small amount of plutonium is produced. As the U-235 is burned out and more power is produced from Pu-239 the effective production rate for the Pu-238, Pu-240, Pu-241 and Pu-242 isotopes increases relative to Pu-239. Therefore, the production rate of these isotopes is greatest just before the fuel is discharged. In the cases where fuel burnup and enrichment was given by the references used for this report, the burnup was about 27,000 MWD/MT for BWRs and 33,000 MWD/MTM for PWRs with 2.7% enrichment for BWRs to 3.3% enrichment for PWRs.

The isotopic compositions are generally based on average core burnups. Some portions of the fuel may achieve higher burnups and therefore higher proportions of Pu-238, Pu-241 and Pu-242. Likewise other portions of the core will achieve lower burnup. Therefore the plutonium isotopes given can only be considered as approximate averages of the actual plutonium isotopic composition.

TABLE 7. Plutonium Isotopic Compositions Discharged From The Uranium Cycle

	Plutonium Composition from First Uranium Cycle, wt%		Plutonium Composition from Equilibrium Uranium Cycle, wt%										
	(9) ^(a)	(3)	(3)	(5)	(6)	(6)	(7)	(8)	(10)PWR	(10)BWR	(1)	(15)PWR	(15)BWR
Pu-236	-	0.004 ppm	0.07 ppm	-	-	-	-	-	-	-	8.8-06	-	-
Pu-238	1	0.6	1.6	2.5	2	2.5	1.9	1.9	1.5	1.3	1.5	1.5	1.3
Pu-239	70	69	56	57	61	55.5	57.9	59.2	58.0	61.3	54.5	55.	55.1
Pu-240	17	20	26	23	24	23.6	24.7	24.0	22.8	21.4	21.6	23.9	26.0
Pu-241	10	8	11	11	10	13.5	11.0	11.1	13.6	12.7	12.5	14.3	12.7
Pu-242	2	2	5	5.2	3	4.9	4.4	3.8	4.3	3.4	4.9	5.3	4.8

a. These numbers refer to the references.

TABLE 8. Plutonium Isotopic Composition Discharged From The First Plutonium Recycle

	Plutonium Composition, wt%									
	(9)	(3)	(5)	(7)PWR	(8)	(10)PWR	(10)BWR	(7)BWR	(15)PWR	(15)BWR
Pu-236	-	0.06 ppm	-	-	-	-	-	-	1	-
Pu-238	2	1.7	3.2	3.46	2.9	1.2	1.6	3.4	2.2	2.0
Pu-239	56	51	40	38.2	39.6	37.7	41.9	41.7	39.1	41.3
Pu-240	24	27	30	29.4	25.6	29.1	27.6	29.2	30.6	31.9
Pu-241	13	12	15	17.2	16.8	19.9	18.7	15.2	17.9	15.8
Pu-242	5	8	10	11.7	15.0	12.2	10.2	10.2	10.3	8.9



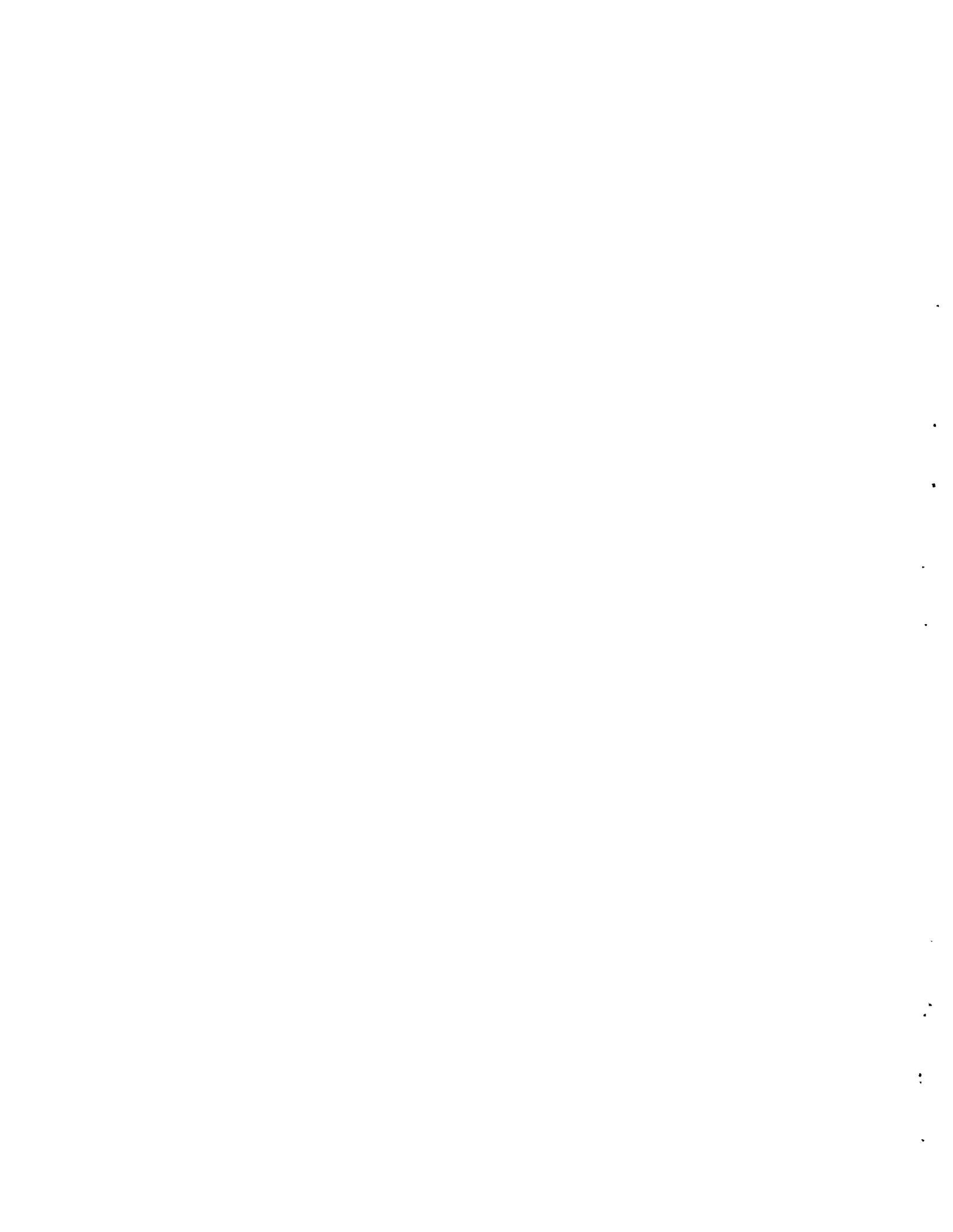
TABLE 9. Plutonium Isotopic Composition Discharged From The Second Plutonium Recycle

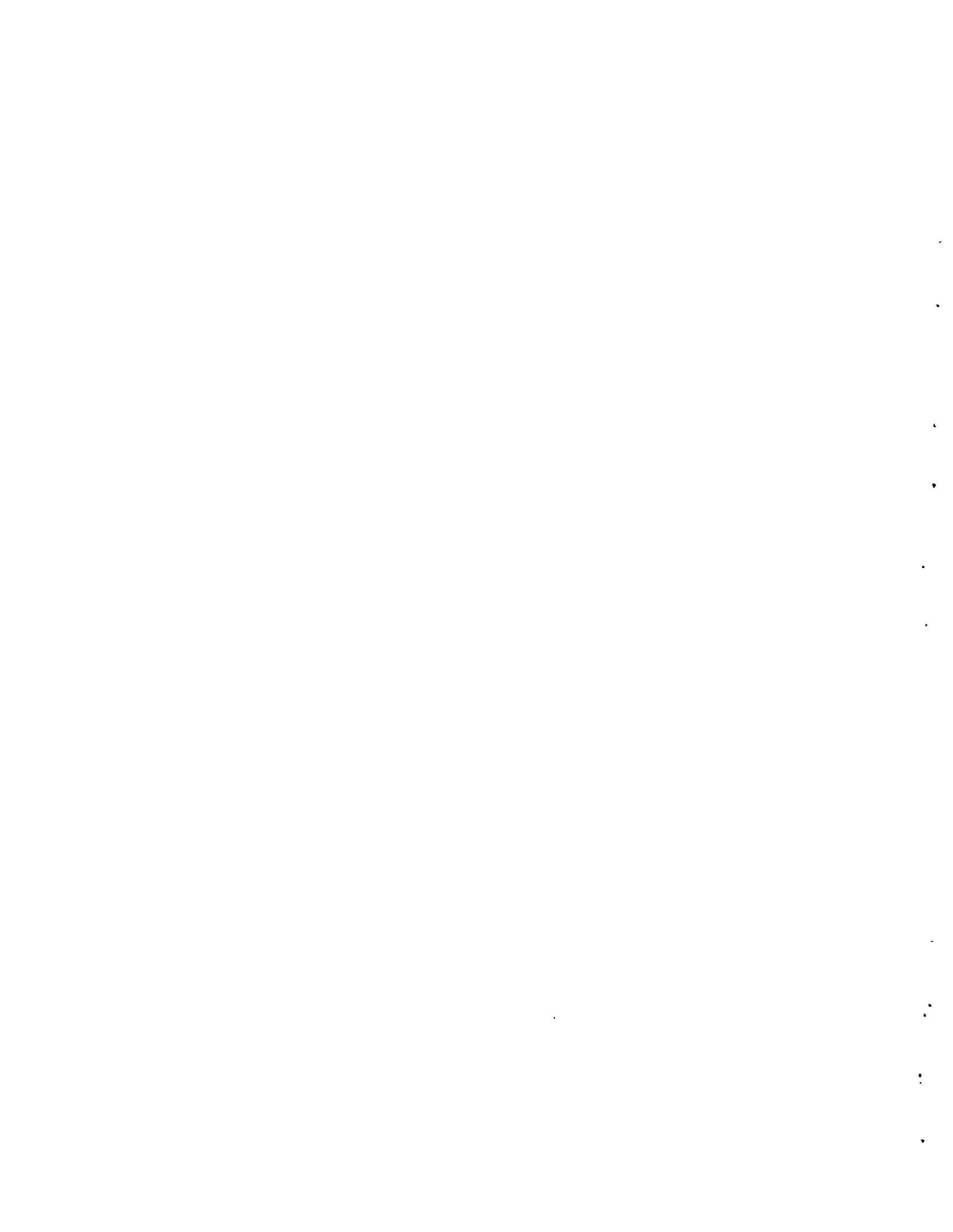
	Plutonium Composition, wt%					
	(9)	(3)	(5)	(7)	(15) PWR	(15) BWR
Pu-236	-	0.06 ppm	-	-	-	-
Pu-238	4	1.9	4.2	4.9	2.9	2.8
Pu-239	47	47	34	29.4	32.2	33.7
Pu-240	28	27	30	33.5	30.1	32.4
Pu-241	13	13	16	17.4	19.4	17.7
Pu-242	8	11	15	14.9	15.4	13.5

Other reasons for the differences observed in Tables 7-10 include differences in cross-sectional data and sophistication of techniques. The older results especially may be incorrect because of new cross-sectional data made available since they were calculated.

A comparison of our average isotopic composition in Table 1 and two other references is shown in Table 11. These two references did not present the ^{238}Pu wt%, therefore the comparison is made as a function of the ratio of the amount of a given plutonium isotope to that of ^{239}Pu . The results from references 15 and 16 differ from the Table 1 averages, however, the range of values in Tables 6 and 7 includes the values for the 1st and 2nd plutonium recycles from references 15 and 16 in Table 11. The third and fourth recycle values from Table 1 differ from those values given in references 15 and 16 because of the way in which the plutonium is recycled. The recycle plutonium given in Table 1 has been segregated. Segregation means that the plutonium from the first plutonium recycle is recycled separately from other plutonium into the second recycle and similarly into the third and fourth recycle. In references 15 and 16, the plutonium from each recycle step is mixed with plutonium from the rest of the UO_2 fueled core. This reduces the amounts of ^{240}Pu , ^{241}Pu , and ^{242}Pu relative to ^{239}Pu . The conservative approach for shielding analysis is to assume the plutonium is segregated.

TABLE 10. Plutonium Isotopic Compositions From The
Third Plutonium Recycle


	<u>Plutonium Composition, wt%</u>		
	<u>(5)</u>	<u>(15)PWR</u>	<u>(16)BWR</u>
Pu-236	-	-	-
Pu-238	5	3.7	3.6
Pu-239	31	27.0	27.8
Pu-240	27	28.3	32.5
Pu-241	16	21.5	18.7
Pu-242	20	19.4	18.4


TABLE 11. Ratio of Individual Plutonium Isotopes to Pu-239 in Discharged LWR Fuel

	Ratios from Pu Recycle in PWR's ¹⁵					Ratios from ¹⁶ Pu Recycle in BWR's		Ratios from Average Pu Recycle in LWR's ^(a)			
	1	2	3	4	5	1	4	1	2	3	4
Pu-239	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Pu-240	0.58	0.59	0.60	0.60	0.59	0.65	0.68	0.66	0.81	1.0	1.0
Pu-241	0.48	0.51	0.53	0.53	0.54	0.48	0.54	0.37	0.43	0.66	0.73
Pu-242	0.33	0.47	0.61	0.72	0.81	0.40	0.92	0.23	0.35	0.66	0.92

a. From Table 1



It would be difficult to include references 15 and 16 results in the averages because no ^{238}Pu values are given. The ^{238}Pu cannot be ignored in the shielding analysis.

REFERENCES

1. D. L. Prezbindowski, Calculation of ^{236}Pu and ^{238}Pu in the Discharge Fuel of Light Water Power Reactors, BNWL-1523, September 1970.
2. M. G. Zimmerman and D. H. Thomsen, A Shielding Calculational System for Plutonium, BNWL-1855, August 1975.
3. D. E. Deonigi, "The Value of Plutonium Recycle in Thermal Reactors," Nuclear Technology, Volume 18, May 1973.
4. H. H. Van Tuyl, Calculation of Gamma Dose Rates at the Surfaces of Plutonium Oxide Sources, BNWL-1259, January 1970.
5. A. J. Snyder, Computer Program NUFUEL for Forecasting Nuclear Fuel Requirements and Related Quantities, WASH-1348, UC-80, October, 1974.
6. USNRC, Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO), NUREG-0002, Vol. 3, August 1976.
7. J. J. Wachter, Model Plutonium Recycle Reactor for Environmental Analysis of the Mixed Oxide Fuel Cycle, ORNL-5118, 1976.
8. M. J. Bell, Heavy Element Composition of Spent Power Reactor Fuels, ORNL-TM-2897, May 1970.
9. G. H. Bryan, et.al., Results of Research to Evaluate Solid Plutonium Nitrate as a Safe Shipping Form, BNWL-1941, November 1976.
10. "Theoretical Analysis of Plutonium Buildup and Uranium Depletion in Pressurized Water and Boiling Water Power Reactors," Battelle-Northwest for IAEA, Y49024, July 1968.
11. C. M. Lederer, J. M. Hollander, and I. Perlman, Table of Isotopes, 6th ed., John Wiley & Sons, 1967.
12. L. Van Der Zwan, "Calculated Neutron Spectra from $\text{Be}^9(\alpha, n)$ Sources," Canadian Journal of Physics, 46, 1527, 1968.
13. R. H. Holeman and D. D. Matsumoto, ZODIAC (2+2) A Revision to ZODIAC 2, BNWL-459, Pacific Northwest Laboratory, Richland, Washington, May 1967.
14. D. F. Newman, R. M. Fleischman, and M. R. White, "Implications of Plutonium Utilization Strategies on the Transition from an LWR Economy to a Breeder Economy," Topical Meeting on the Plutonium Fuel Cycle, American Nuclear Society, Bal Harbour, Florida, May 2-4, 1977.
15. B. L. Vondra, LWR Fuel Reprocessing and Recycle Program Quarterly Report for Period April 1 to June 30, 1976, ORNL/TM-5547, July 1, 1976.
16. B. L. Vondra, LWR Fuel Reprocessing and Recycle Program Quarterly Report for Period July 1 to September 30, 1976, ORNL/TM-5660, November 1976.

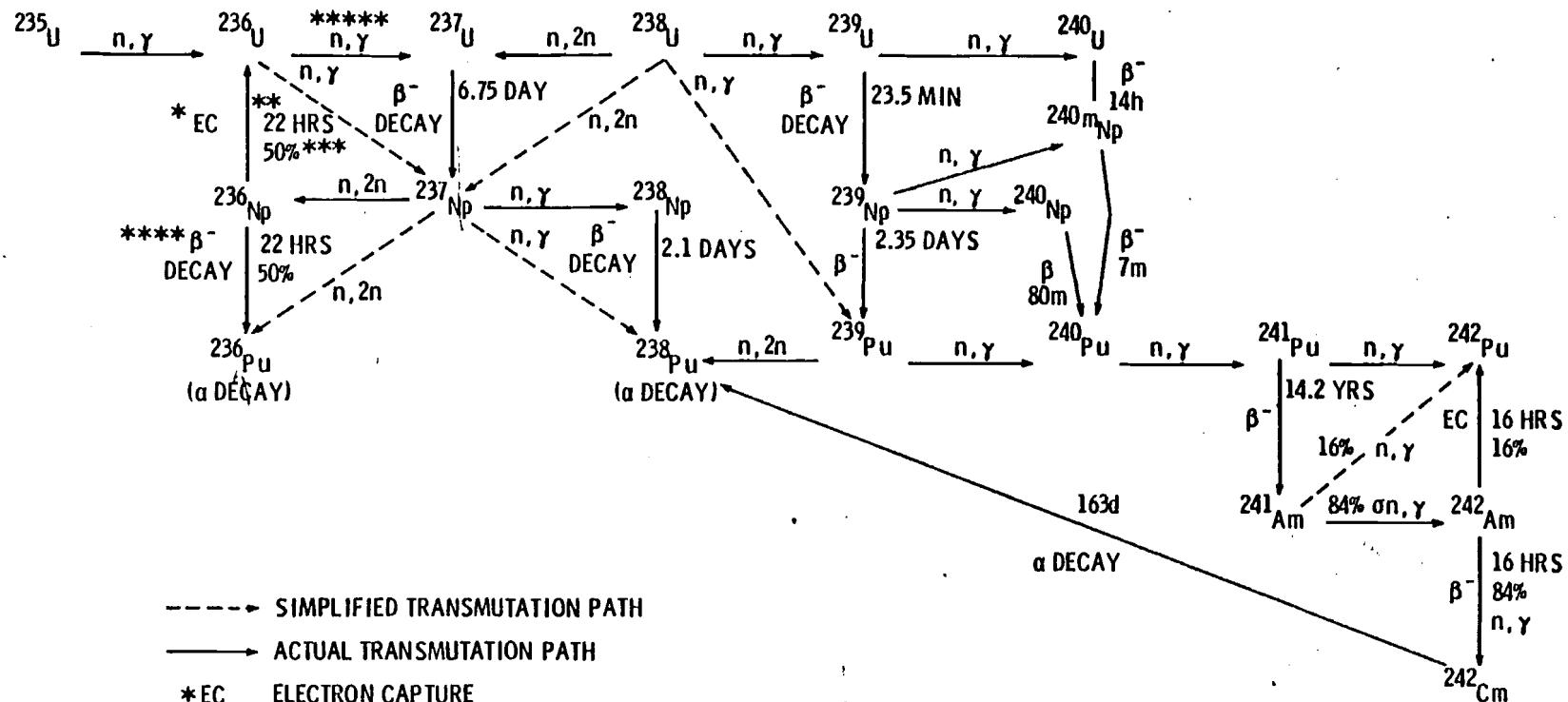
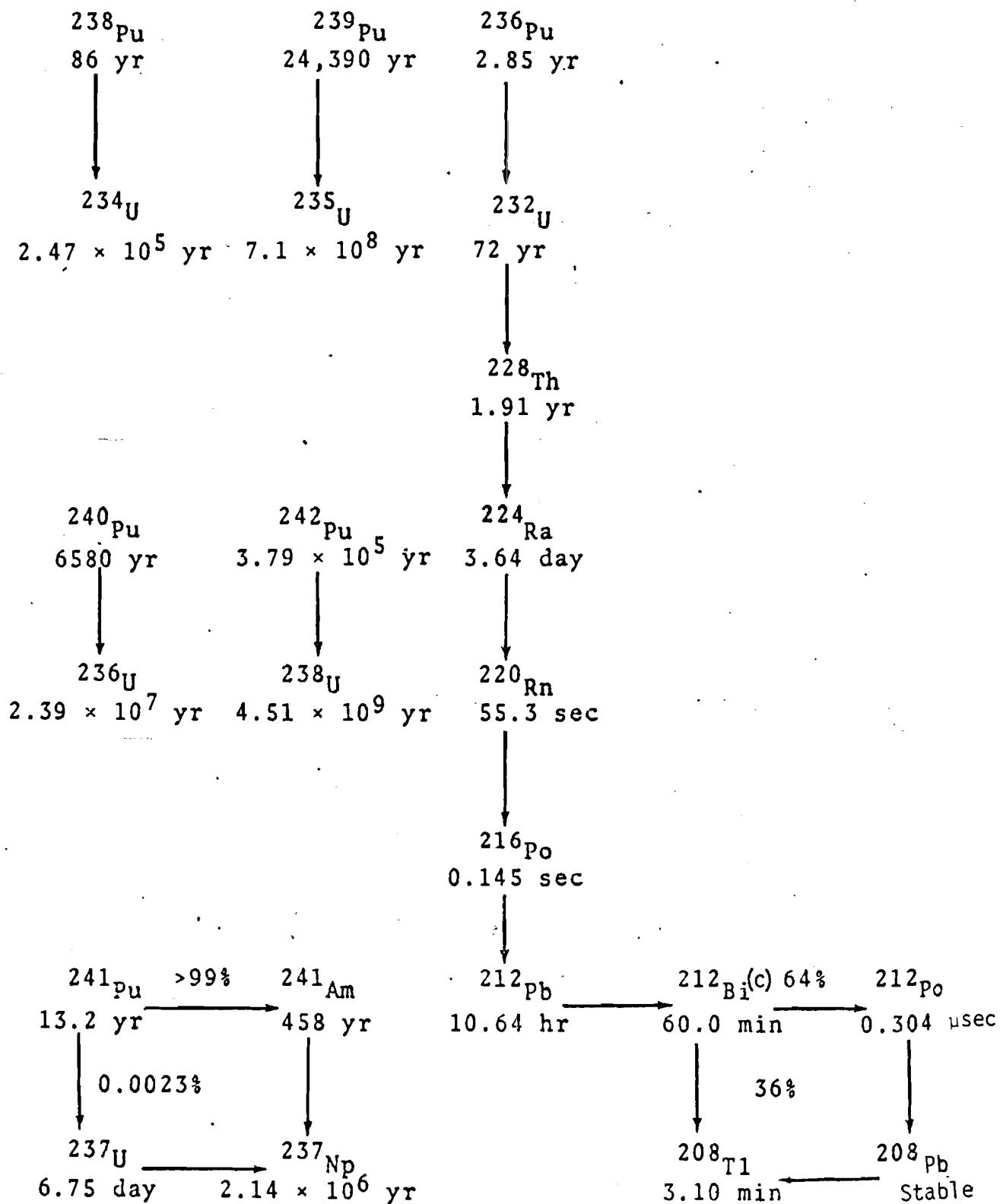



FIGURE 1. Actual and Simplified Transmutation Paths Used in the Zodiac Program (14)

Figure 2
Plutonium Isotopic Decay Daughters (a)

(a) From BNWL-1259 - reference 4.

DISTRIBUTION

No. of
Copies

OFFSITE

1 ERDA Chicago Patent Group
9800 South Cass Avenue
Argonne, IL 60439
A. A. Churm

1 ERDA Albuquerque Operations Office
P. O. Box 5400
Albuquerque, NM 87115

1 ERDA Chicago Operations Office
9800 South Cass Avenue
Argonne, IL 60439

1 ERDA Division of Biomedical and
Environmental Research
Washington, DC 20545

J. L. Liverman, Director

1 ERDA Division of International
Affairs
Washington, DC 20545

N. F. Seivering, Asst. Admin.

1 ERDA Nuclear Energy
Washington, DC 20545

R. W. Roberts, Asst. Admin.

1 ERDA Division of Reactor
Development Demonstration
Washington, DC 20545

Chief, Fuel Recycle Branch

1 ERDA Division of Safeguards and
Security
Washington, DC 20545

H. E. Lyon

No. of
Copies

OFFSITE

8 ERDA Division of Waste
Management Production
and Reprocessing
Washington, DC 20545

G. W. Cunningham, Director
G. Bradley
K. Burson
P. Hogroian
C. Kuhlman
W. McVey
G. Pleat
D. Spurgeon

1 ERDA Idaho Operations Office
550 2nd Street
Idaho Falls, ID 83401

1 ERDA Oak Ridge Operations Office
P. O. Box E
Oak Ridge, TN 37830

2 ERDA San Francisco Operations
Office
1333 Broadway, Wells Fargo Bldg.
Oakland, CA 94616

1 University of California
Lawrence Livermore Laboratory
Livermore, CA 94550

3 ERDA Savannah River Operations
Office
P.O. Box "A"
Aiken, SC 29801

T. B. Hindman, Jr., Director,
Fuel Cycle Project Office
Norman Hook
N. Stetson, Manager

27 ERDA Technical Information Center

<u>No. of Copies</u>		<u>No. of Copies</u>
<u>OFFSITE</u>		<u>OFFSITE</u>
1	<u>Aerojet, Energy Conversion Company</u> 1120 Connecticut Avenue, N.W. Suite 1050 Washington, DC 20036 F. J. Kierman, Eastern Regional Manager, Energy Systems	3 <u>Battelle-Human Affairs Research Centers</u> 4000 N.E. 41st Street Seattle, WA 98105 S. M. Nealey J. E. Rasmussen, Director C. R. Schuller
1	<u>Allied Chemical Corporation</u> 550 Second Street Idaho Falls, ID 83401 F. H. Anderson, General Manager	1 <u>Boeing Engineering and Construction Division</u> P. O. Box 3707 Seattle, WA 98124 Richard L. Grant, Director, Nuclear Projects
2	<u>Allied-General Nuclear Services</u> P. O. Box 847 Barnwell, SC 29812 A. E. Schubert, President A. K. Williams	1 <u>Burns and Roe, Industrial Services Corporation</u> P. O. Box 663 Paramus, NJ 07652 M. I. Naparstek, Manager, Proposals
1	<u>Argonne National Laboratory</u> 9700 South Cass Avenue Argonne, IL 60439 J. A. Kyger, Assoc. Director	1 <u>Combustion Engineering Nuclear Power Division</u> 1000 Prospect Hill Road Windsor, CT 06095 C. K. Anderson
1	<u>Atlantic Richfield Company</u> Box 2679 - TA Los Angeles, CA 90071 L. M. Richards, Coordinator, Nuclear Comm. Dev.	1 <u>Commonwealth Edison Company</u> P. O. Box 767 Chicago, IL 60690 G. R. Corey, Vice Chairman
1	<u>Babcock and Wilcox</u> P. O. Box 1260 Lynchburg, VA 24505 R. H. Ihde, Manager, Contracts and Marketing	1 <u>Carolina Power and Light Company</u> P. O. Box 1551 Raleigh, NC 27602 L. E. Smith, Manager, Fuel
1	<u>Battelle-Columbus Laboratories</u> 505 King Avenue Columbus, OH 43201 J. M. Batch, Director	1 <u>Corning Glass Works</u> Corning, NY 14830 M. G. Britton, Manager, Technical Liaison

No. of
Copies

OFFSITE

1 DBM Corporation
1920 Alpine Avenue
Vienna, VA 22180
R. G. Cross

1 Edison Electric
90 Park Avenue
New York, NY 10016
J. Carp, Director, Energy
Policy

E. I. duPont de Nemours and
Company
Aiken, SC 29801

10 C. H. Ice, Director, SRL
10 J. Church, SRL

2 Exxon Nuclear Company, Inc.
777 - 106th Avenue, N.E.
Bellevue, WA 98009
S. J. Beard
R. L. Dickeman, President

1 Florida Power Corporation
P. O. Box 14042
St. Petersburg, FL 33733
A. H. Hines, Jr., President

1 Florida Power and Light Company
P. O. Box 013100
Miami, FL 33101
Dr. Uhrig

1 General Atomic Company
P. O. Box 81608
San Diego, CA 92138
John Shefcik

2 General Electric Company
175 Curtner Avenue
San Jose, CA 95125
R. G. Barnes
K. Bowman

No. of
Copies

OFFSITE

1 GPU Services Corporation
260 Cherry Hill Road
Parsippany, NJ 07054
B. H. Cherry, Manager,
Fuel Resources

1 Holmes and Narver, Inc.
400 E. Orangethorpe Avenue
Anaheim, CA 92801
W. A. Kalk, Manager,
Nu Power Systems

1 Los Alamos Scientific Laboratory
P. O. Box 1663
Los Alamos, NM 87545
H. M. Agnew, Director

1 Middle South Utilities, Inc.
P. O. Box 61005
New Orleans, LA 70161
F. W. Lewis, President

1 Kerr-McGee Nuclear Corporation
Kerr-McGee Building
Oklahoma City, OK 73102
Martin Binstock

1 Livermore Radiation Laboratories
P. O. Box 808
Livermore, CA 94550
Kenneth Street, Assoc. Director

1 Monsanto Research Corporation
Mound Laboratory
P. O. Box 32
Miamisburg, OH 45332
W. T. Cave, Director

1 NL Industries
P. O. Box 928
Barnwell, SC 29812
George Stukenbroeker

No. of
Copies

OFFSITE

1 Niagara Mohawk Power Corp.
300 Erie Boulevard, West
Syracuse, NY 13202
G. K. Rhode, VP, Engineering

1 NRC Nuclear Materials Safety and
Safeguards
Washington, DC 20545
R. Cunningham

1 NRC Research
Washington, DC 20545
Saul Levine, Deputy Director

1 Nuclear Fuel Services, Inc.
6000 Executive Blvd.
Rockville, MD 20952
R. W. Deuster, President

1 Oak Ridge Gaseous Diffusion Plant
Oak Ridge, TN 27820
W. J. Wilcox, Technical Director

1 Oak Ridge National Laboratory
P. O. Box X
Oak Ridge, TN 37830
Herman Postma, Director

1 Proposal Management, Inc.
121 N. Orionna Street
Philadelphia, PA 19106
C. A. Hirenda, Director,
Marketing

1 Rockwell International
Atomics International Division
8900 De Soto Avenue
Canoga Park, CA 91304
R. D. Oldenkamp

1 Rockwell International
Rocky Flats Plant
P. O. Box 464
Golden, CO 80401
R. O. Williams, VP

No. of
Copies

OFFSITE

1 Science Applications, Inc.
1680 Hanover Street
Palo Alto, CA 94303

1 NUSAC
777 Leesburg Pike
Falls Church, VA 22043
R. C. Adkins, Technical
Representative

1 Tennessee Valley Authority
217 Electric Power Board Bldg.
Chattanooga, TN 37401
Ray Hoskins

1 Thraeger Tech.
110 S. Euclid Avenue
Pasadena, CA 91101
K. Vickers

1 The S. M. Stoller Corp.
Western Reprocessors
1250 Broadway
New York, NY 10001
S. M. Stoller

1 Virginia Electric Power Co.
Nuclear Fuel Service Dept.
512 Franklin Building
P. O. Box 26666
Richmond, VA 32361
Claude Stephens

1 Westinghouse Electric Corp.
Plutonium Recycle Fuel Programs
P. O. Box 355
Pittsburgh, PA 15230
J. F. Bader, Manager

1 Yankee Atomic Electric Company
20 Turnpike Road
Westboro, MA 01581
Wendell Johnson, VP

<u>No. of Copies</u>	<u>No. of Copies</u>
<u>ONSITE</u>	<u>ONSITE</u>
2 <u>ERDA Richland Operations Office</u>	<u>Battelle-Northwest (contd)</u>
	P. A. Craig
	N. T. Karagianes
2 <u>ARHCO</u>	J. M. Nielson
	R. E. Nightingale
	D. R. Oden
	D. E. Olesen
	G. B. Parker
	L. T. Pedersen
	A. M. Platt
	W. E. Reardon
	F. R. Reich
	R. D. Scheele
	L. C. Schwendiman
	J. L. Simmons
	C. L. Simpson
	J. L. Swanson
	C. M. Unruh
	H. H. Van Tuyl
	L. L. Wendell
	R. D. Widrig
	M. G. Zimmerman
3 <u>Hanford Engineering Development Laboratory</u>	Technical Information (5)
	R. E. Dahl, Jr.
	R. B. McCord
58 <u>Battelle-Northwest</u>	Technical Publications
	L. E. Addison
	R. P. Allen
	G. S. Allison
	T. W. Ambrose
	W. J. Bailey
	D. E. Blahnik
	D. W. Brite
	C. L. Brown
	L. M. Browne
	L. L. Burger
	N. E. Carter
	D. B. Cearlock
	E. D. Clayton
	W. J. Coleman
	J. W. Finnigan
	R. M. Fleischman
	M. D. Freshley
	J. C. Fox
	S. Goldsmith
	A. J. Haverfield
	E. R. Irish
	J. H. Jarrett (2)
	W. S. Kelly
	R. S. Kemper
	D. H. Lester
	R. C. Lloyd
	R. P. Marshall
	E. T. Merrill
	I. C. Nelson
	R. D. Nelson
	J. F. Nesbitt
	D. F. Newman

