ucib- 17377

Lawrence Livermore Laboratory

AVMAC: AN ASSEMBLY LANGUAGE FOR THE AYDIN MODEL 5214A
REFRESH DISPLAY GENERATOR

R. E. Werner

March 3, 1977

I
Fa

:i“%'-
e "'"ii|l|'[I||
i |

z. !; ! :l.j | J “ i)

2.1 q,awg*,gni!mmg

o iiv}j‘m# L" \‘t mi |
':“'»""?'ttr ?: it r:*:-.j

This is an informal report intended
primarily for internal or limited
external distribution. The opinions
and conclusions stated are those of
the author and may or may not be
those of the laboratory.

Prepared for U.S. Energy Research &
Development Administration under
contract No. W-7405-Eng-48.

LIMITED
Q\STR\BUT\ON OF THIS DOCUMENT 1S UN

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

L)

CONTENTS

Abstract 4 0 e e e e e '. e e e s e e . 1
Introduction "+ . .+ . . . e e e e e e e e e e o1
Instrucfion Set « . . 0w o h e e e e e e e e e e 2
Automatic Cursor Advance (ACA) Word« o « v o o v . . 2
Bloék Transfer Mode (BXM) . . ¢ v v v v 4 e e e e e .. 3
Cursor Positioning (LCX, LCY, and CUR) . . .+ 4+ « =+ v + o. . . &
Scrolling and Clearing: Edit Instruction (EDT) 6
Vector/Conic Generator: Execute Conic Instruction (EXC) 7,
Load Alphanumeric Character (LAC) e e e e e e e e, 9
Load Graphic Elements (LGE). .+ . + v v v v v @« o o « « . 10
Load Index Registers (LIX and LIY) . . .+ .+ . + o+ .« o« . . . 11
Load Look-Up Table (LLU) . I
Programmable Font: Load Programmable Font (LPF) S
Load Rectangular Limits (LRR, LRL, LRT, and LRB) 13
Mode Control Word (MCW) . . . +« =+« v « « & & & & « o o« . 15

No Operation (NOOP) . .+ v v v ¢ & & 4 o o« v v v v < . 19
Read Look-Up Table (RLU) e
Channel Selection: Select Major Channel (SMC) 19
Cursor Position Readback: Transmit Cursor Only (TCO) 20
Memory Data Readback: Transmit Selected Channel (TSC) e« .« . .. 20
References . .+ v + &« v 4 4 4 e e e e e e e e e e .22
Appendix A: Summary of Usage « +« « « « « « o o 4 e .4 e« .« . 23
Appendix B: Program Listing . . .+ .+ + « 4 4+ « 4 e« .+ + . . 26
30

IndexX « &+ v v e e e e e e e e e e e e e e e e e e

NOTICE
This report was prepared "as an account of \.voxk
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research and Nevelnpment Administration, nor any of | |
their employees, nor any of their, contractars,

or their ploy makes any |}

! warranty, express or implied, or assumes any legal .

! liability or ibility for l!\c N |
or of any inf product or

t

|

t process disclosed, or represents that its use would not r -
infringo privately awned rights. 3 1 Q b
l] X
~ - R 1 I

A

N OF THIS DOCUMENT 1S UNLIMITED

- PISTRIBUTIO

AVMAC: AN ASSEMBLY LANGUAGE FOR THE AYDIN 5214A
REFRESH DISPLAY GENERATOR '

ABSTRACT

We present an instruction set and program listing for AVMAC, an assembly
language for the Aydin 5214A Refresh Display Generator. AVMAC runs on a
Varian V-70 series computer. We describe the mnemonics and appropriate param-
eter list, for each Aydin operation, needed to generate the Aydin machine

code.

INTRODUCTION

AVMAC is an assembly language for the Aydin 5214A Refresh Display
Generator, a cross assembler that runs on a Varian V-70 series computer with
Vortex System.l_3 The code consists of macros, for the Varian DASMR Matcro
Assembler, which define Aydin display generator operations. Aydin mnemonics
along with appropriate parameter lists generate the Aydin machine code.

Of ten used Aydinioperations or sequences of operations can be defined with
macros.

In the following we describe each operation of AVMAC. Words in italics
are optional or default to a zero value. A six-character alphanumeric symbol
can be used as a tag in the first position in each line. All lines which
start with an * (asterisk) are treated as comments. The last line -of the
code must be an END card. Each Aydin operation is described by its mnemonic
followed by a parameter list where each item is delimited by commas. Two
adjacent commas may be used to specify 0. Commas are not necessary if the
label, OP code, and variable field conventions of the DASMR assembler are
observed.

For mnemonics, the mneominic usually corresponds to the value 1.
Default is the opposite case and corresponds to the value 0. Note that all
numbers may'be written as decimal or octél. All octal numbers must be pre-
ceded by a 0; decimal numbers may not be preceded by 0.

Some optional symbols are défined at the end of the program listing in

Appendix B.

INSTRUCTION SET

Each display generator instruction is a 16-bit word, consisting of an
OP code field (4 to 7 bits) and one or more additional fields. All of the
instructions are single word instructions except BXM (block transfer mode),
and the optional instructions LLU (load look-up) and LPF (load programmable
font), which must be followed by one or more data words.

Instruction mnemonics, word formats, and bit assignments are given with

each instruction description below.

Automatic Cursor Advance (ACA) Word

|-et—————— ACA Soooe et ACA ——»

1514131211 10 9 8 7 6 5 4 3 2 1 0

ACA
0 0 1 1f{Uu/D Y, Y5, Y, Y5|L/R X, X5 X, Xy X
L 3 L]
A |)
sien 0 = down]
VR 1= wp
v magnitude
, 0 = right]
X S8 g < 1eft
X magnitude
Usage. "Type)
up left
down right
symbol ACA, 0 , y value, 0 , X value
1 1
* *

where * is any user defined symbol equal to either 0 or 1, or omission of
this parameter for O.

The ACA word specifies the amount by which the cursor is.to be moved
each time a memory write operation is performed in the graphic mode. As
noted in the MCW (mode control word) description below, the cursor movement
is predetermined by the selected font in the alphanumeric mode if the A/N

flag of MCW is O. -

-}

Each of the fields, ACAy and ACAX, specifies a magnitude and direction.
The magnitude of the cursor advance may be 0 to 31 raster lines in the y

direction and 0 to 31 picture elements in the x direction. *

Block Transfer Mode (BXM)

15 11 10 9 8 7 6 5 4 3 2 1 0
BXM 0O 1L 0 0 1 B10 B9 B B B6 B5 B4 B3 B B BO
l |
Word count field “}

The BXM instruction is used to transfer a block of data words from the
host computer to the refresh memory. The block length is given by the number
of words specified in the word count field (up to 2047). BXM must always be
followed by the number of words specified in the word field count field. The
data words following BXM may represent graphic data or character codes, as
explained below. Vectors and gonics can be written only by the EXC (execute
conic instruction) command, and cannot be specified by a block transfer,

except as graphic data.

Usage. Type

symbol, BXM, wordcount

symbol, DATA, word 1, word 2,, word n
for graphics or '

symbol, DATA, 'abcdefg'
for- alphanumerics where each word is decimal or octal. The two characters
per word in the Varian are packed in reverse order in the Aydin. Therefore,

to write 'abecdefg' you must type 'badcfe g'

-3

Cursor Positioning (LCX, LCY, and CUR)

1514131211109 8 7 6 5 4 3 2 1 O

LCX 0°1°1 1 O[R[-|A A A A A A AJA A
X X X X X XX X
LCY 01 1 1 1|R|-|A A A A A A A A A
vy Ay Ay By By By Ay Ay Ay
“ J/
—_

Cursor X, ¥
Relative flag coordinate value

R = O:Ci<-Ai
R = 1:C.<«A_+C,
1 1 1

CUR - 1011010 - - 0D Y X ¥ + « >
;__‘___J
DOT-——1 |
y HOME
x HOME

Relative movement
depends on display mode

The start address of refresh memory read and write operations is spec-
ified by the cursor x and y coordinates in the picture element matrix. The
least significant 9 bits of LCX, LCY are loaded into the cursor counters upon
execution. If the relative flag is set, the values of Ax or Ay are added to
the present cursor location CX or Cy. If the result of LCX or LCY places the
cursor outside the current values of the limits, an overflow error message
is sent to the computer.

" The CUR instruction allows movement of the cursor in both the x and y
directions without issuing a pair of LCX, LCY commands. This instruction is
similar to a relative LCX or LCY, except that the number of picture elements
by which the cursor position is incremented is specified as shown in Table 1.
With the appropriate bit settings, CUR provides common functions such as
carriage return and line feed (CR/LF), backspace and line feed (BS/LF), HOME,

etc.

Table 1. Cursor advance vs display mode.

Display mode ' Cursor x Cursor y
Graphic ACAx (0 to 31) ACAy (0 to 31)
Alphanumeric . ACA (0 to 31) ACA (0 to 31)
(A/N bit of MCW = 1) X " y .
Alphanumeric :

(A/N bit of MCW = 0)

5x 7 font : 8 10

7 x 9 font , 10 14
10 x 14 font 16 16 .
16 x 15 prog. font x cur. adv, y pitch

(see LPF)

Usage. Type

symbol, LCX, , X value

symbol, LCY , ¥ value

symbol, CUR, octal expression, dot
In addition to the Aydin instructions the following operations are

available. They all use the CUR instruction.

To move the cursor home, type
symbol, HOME

For carriage return and line feed, type
symbol, CRLF

For back space and line feed, type

symbol, BSLF

For line feed, type
symbol, LF

For carriage return, type
symbol, CR

For space; type

symbol, SPACE

Scrolling and Clearing: Edit Instruction (EDT)

15 9 8 3 2 1 0

EDT i1 01 0 0 1 1| - - - - - = 1/z CLR U/D
[| |

Clear bits
Scroll bit

The edit instruction provides for clearing any combination of selected
channels simultaneously, either to all 1's or all O's. In addition, all data
within the rectangular limits may be scrolled up or down one raster line with
the scroll instruction. The three least significant bits of the edit in-

struction are decoded as shown in Table 2.

Table 2. Least significant three bits of edit instruction.

Bit No,
2 1 0]
1/z CLR SCR Meaning
0 0 0 Scroll down
0 0 1 Scroll up
0 1 X Clear to O's
1 1 X Clear to 1's

-l

Scroll

.Zeros in bits 1 and 2 of EDT define the scroll instruction. This in-
struction causes the displayed data in selected channels to move up or down
one vertical element. The scroll operation is performed only on data within
the previously defined rectangular limits. Data in each selected channel is
scrolled, starting with the lowest.channel number and proceeding until all
selected channels have been scrolled. The execution time for the scroll in-
struction depends on the number of channels selected, N, and the values of

the rectangular limicts:

_ y | RL-LL+1 _

tocroll = ¥ 16 X (BL TL)J X 4.8 yus

for RL-LL = 512, BL-TL = 512, N =1, and t = 79 ms.
scroll)

Bit 1 of EDT specifies that a memory clear operation is to be performed.
All selected memory chénnels are cleared to 0's if bit 1 = 0 or are cleared
to 1's if bit 1 = 1, Selected channels are simultaneously cleared within the
current values of the rectangular limits, and the maximum execution time for
512 x 512 is 28 ms.

Usage.
To set to 0's, type

symbol, CLEAR
To set to 1's, type
' symbol, SETLS
To scroll up, type

symbol, SCRLUP
To scroll dbwn, type

symbol, SCRLDN

Vector/Conic Generator: Execute Conic Instruction (EXC)

Discrete approximations to vectors, and circles, are computed and

written into all selected memory channels by the EXC instruction. The

rectangular limits within which conics are written are specified by LRR (load
rectangular limits, right), LRT (load rectangular limits, top), and LRB (load
rectangular limits, bottom), instructions with the conic limit flag set.

These limits are independent of the limits used to define areas to be scrolled,
cleared, transmitted, or written into with BXM, LGE (load graphic elements),

or LAC (load alphanumeric character) instructions.

15 9 8 7 6 0 Cl C0 | Type
EXC 101010 0|C, C./IR RRRRRR. OOIVector
1 0 .
0 1 Circle
Conic Rotation
type (for ellipses only)
Vectors

The end point coordinates are loaded into the index x and y registers.
The start point is the cursor location. Having specified these parameters,
an EXC instruction, set for vectors, will cause the vector to be drawn. The
cursor is positioned at the end point when the vector is complete. End-to-end
vectors are drawn by respecifying the end point and issuing another EXC in-
struction, Random vectors are drawn by reloading both the cursor and index
registers and issuing EXC. Computation and execution require 40 us/point.

Usage. Type

symhol, VECTOR, x end point value, y end point value

This results in code which loads the x-index register and the y-index

register and executes the vector.

Circles
The radius is stored in the index x register, and the center point is
the cursor location. The circle thus defined is then drawn by the EXC in-
~ struction set for circles. Upon completion of the circle,.the cursor is
+ R, C

positioned at Cx , where the subscripts X, and Yo are the center

0] yO0
coordinates. The time to execute a circle is 80 us/point.

—R-

Usage. Type
symbol, CIRCLE, radius

This results in code that loads the x-index register and executes the

circle.

Load Alphanumeric Character (LAC)

15 10 9 87 6 5 4 3 2 1 O

LAC ¥ 0 0 1 1 O}I - - b7 b6 b5 b4 b3 b2 bl

|]
[}

Indexed address
flag

Character code

The seven least significant bits of LAC specify one of 128 possible
character codes. This code addresses all of the character fonts, but only
the output of the font specified in MCW will be written. Limit checks are
performed before the character is written and the cursor is advanced after
the write operation has been performed. Bit 9 of LAC permits indexed
addressing as described for LGE. MCW must specify the alphanumeric mode

when LAC is used. Characters may also be written in the block transfer mode.

Character Block Definition

Associated with each charactér font is a fixed character block area with-
in which the character specified by LAC is written. The cursor position at
the start of LAC is the top left picture element of the character block area,
and the character is written one line at a time from top to bottom.

If different adjacent character spacings are required, the A/N ACA flag

. of MCW may be sét and the desired spacings specified by an ACA instruction

Usage. Type (for upper case) Ind
symbol, LAC, 'ASCII character', 2
*

The ASCII character to be displayed is enclosed in single quotes

(shift 7). For lower case symbols use the octal or decimal equivalent of the

ASCII character. Type Ind
symbol, LAC, number, g
*

Load Graphic Elements (LGE)

15 10 9 8 7 6 54 3 2 1 0
LGE 1 00 0 10|1T - EEEETETETEE
. = '

\
Indexed address
flag

Picture element
data field

This instruction writes eight bits of picture elements data into all
selected memory channels, starting at the memory location addressed by the
cursor x and y coordinates. If bit 9 is set, the actual starting address for
the memory write is Cx + Ix’ Cy +'Iy, where C is the cursor coordinate and I
denotes the index register content.

Data for single picture elements is entered ﬁsing LGE with the OR 1's
memory input mode selected. After LGE has performed the memory write, the
cursor is advanced to the right by the number of picture elements specified
by ACA. The programmer may enter from 1 to 8 graphic elements and move the
cursor the desired amount (1 to. 32 picture elements) by the setting of ACAX.
The graphic display mode must be selected before LGE is executed. Graphic

data may also bhe entered in the block transfer mode.

Usage. Type Ind
symbol, LGE, pilcture eleweuts, é
%

where IND causes indexing.

~10=

Load Index Registers (LIX and LIY)

15 10
LIX 1 0 0 0 0 0] 9 0
Ay Ag A, A Ag A, Ay A, Al A
Lzy - [1 0 0 0 0 1| *

The least significant .10 bits of LIX and LIY specify the contents of the
x and y index registers, respectively. The index registers provide indexed
refresh memory addressing for the LAC and LGE display instrucfions, as well
as storage of parameters used in specifying conics (see the EXC instruction).

Usage. Type

symbol, LIX, x value

symbol, LIY, y value

Load Look-Up Table (LLU)

15 9 8 - 6 5 0 O

LLU 1 01 0 0 1 0lo 0 O0lw w w w w w

COLOR/intensity - |B B4 B3 B2 B1 - G4 G3 G2 G1 - R4 R3 R, Ry
data word

Blink Blue Green Red

LLU is a two-word instruction used to initially define the color data
words stored in the look-up table. The w field of LLU specifies the address
in the color table at which the subsequent color data word is stored. The
color data word has three 4-bit fields, one for each primary color (red,
green, and blue). Each field represents 1 of 16 possible intensity levels
for each primary color. The use of 4 bits per primary color gives 212 or
4096 different color data words. The color table provides storage for any
64 of the 4096 possible colors that the programmer wishes to use. However,
only 2N (N < 6 memory channel) color data words may be addressed. For
example, 5 memory channels permit 32 colors to be simultaneously displayed.
The LLU instruction may be used to alter the color of a displayed image

without altering the contents of any of the refresh memory channels.

-11-

Usage. Type
symbol, LLU, word number, color

' Note: word number is not complemented.

The assembler recognizes the following full intensity colors. BLACK,
WHITE, RED, GREEN, BLUE, MAGENT, CYAN, YELLOW.

For blinking of the above colors use the following: BWHITE, BRED,
BGREEN, BBLUE, BMAGEN, BCYAN, BYELLOW. q

All the other possible colors of other intensities may be defined.by the
user in the following manner: type

color, EQU, octal expression or decimal number
where the octal expression is the color/intensity word described above. The

color EQU statement must precede its use in an LLU statement.

Programmable Font: Load Programmable Font (LPF)

15 10 9 5 0
1 0 0 1 0 1 - - - - b6 b5 b4 b3 b2 bl LPF
LPF
0 0 XA4 XA3 XA2 XAl 4 Y3 Y2 Yl YO | X3 X2 Xl XO x,ydpltch
.~ S AN J A J wor
it e Y a
X cur. adv. y pitch x pitch

D D D D D D D D D D D DD D DD Character
Data (next
15 con-
secutive
words)

LPF is a multiple word instruction used to specify any one of the 64
characters in the programmable font. The 16 words which follow LPF are stored
in sequential locations of the programmable font RAM (random access memory),
starting at the address specified by bits O through 5 of LPF. To load all.

64 characters, it is necessar& to issue 64 different LPF instructions, each
followed by 16 data words in the format shown above. An x pitch field value
of 0 specifies and x pitch of one picture element; the value 15 specifies an

x pitch of 16,

~12-

‘Each programmed character may have a y dimension of 2 to 15 picture
‘elements, and an x dimension of 1 to 16 picture elements is.specified in the
x and y pitch fields. Cursor advance information is also specified by the
pitch word. After a programmed character is written, the XA (x advance)
field determines the amount of cursor x advance, and the y pitch field deter-
mines the cursor y advance when a new line is begun. The y pitch field also
specifies the character block y dimension. Note that when loading the font,
LPF must be followed by a pitch word and 15 data words, even if the programmed
character occupies less than 15 scan lines. When the character is displayed,
only the number of lines specified in the y pitch field are displayed.

Usage. Type

symbol, LPF,. symbol name

octal expression
decimal number

, X cur. adv,, y pitch, x pitch

where the symbol name is defined by an EQU statement.

symbol, DATA, word 1, word 2,, word 15

Load Rectangular Limits (LRR, LRL, LRT, and LRB)

151413121110 9 8 7 6 5 4 3 2 1 0

Left - LRL [001 01 0fcc]z © . 1 L L L L L L |
Right - LRR [0 1 0 1 1Jct]R R' R R R R R R R R |
Top — LRT [0 1 1 0oofcefTr T T T 17T T 1T T T T|]
Bottom — LRB [0 1 1 0o 1fct[B B B B B B B B B B |
~— —— /

1

= conic Binary value of limit
0 nonconic

The 10 least significant bits of the limit instructions are the binary
values of the rectangular limits, though only the 9 least signifiéant bits
are normally used. Two independent sets of limits are stored - one set for
use in defining arcs of conics in conjunction with the EXC instruction

(entered with the conic flag bit set), and one set for use in all other

-13-

operations, Limit values entered with the conic flag bit reset define a
rectangular area within which all subsequent operations on refresh memory

data are performed. Data which has been previously stored outside the current
limits are still displayed. The limit values apply to all memory channels

in the unit.

The origin of x,y coordinates is in the upper left-hand corner of the
CRT screen. The positive x direction is from left to right, and the positive
y direction is from top to bottom. The top and bottom limits determine the
range through which the cursor y coordinate may move. When the cursor y
exceeds LRB, the cursor y is automatically reset to LRT (vertical wraparound).
LRT must always be less than LRB., When the cursor x coordinate exceeds LRR,
the cursor x is automatically repositioned at the left limit (horizontal
wraparound) and the cursor y coordinate is advanced as directed by ACA or the
font specified in MCW. .

A specification of the rectangular limits is essential for block transfer
inputs (see the BXM instruction for further details), defining areas in which
data is to be read back to the computer (see transmit selected channel, TSC,
below), and defining areas to be scrolled or cleared (see the EDT instruction).

For graphic or alphanumeric block transfers, as well as for the scroll
and transmit operations, the left and right limit values are truncated by the
hardware so that the quantity (LRR - LRL + 1)/16 is an integer between 1 and
32; the four LSB's of LRL are truncated to O's and the four LSB's of LRR are
rounded to l's,

Usage. ‘lype

LRL *
symbol LRR CONIC
y ? LRT i 1 , octal expression or decimal
LRB 0 number
Example:

symbol, LRL

will set nonconic left limit to O.

“14-

Mode Control Word (MCW)

1514 13121110.9 8 7 6 5 4 3 2 1 0
MCW

01 0 0 O0f-1-~ A/Nzlzov FlFO— - M

L]\ J
‘ i A !

Alphanumeric mode ACA flag

Memory input mode select

Font select (A/N mode only)

Display Mode Select [alphanumeric = 0]
graphic =14

Display Mode Selection

If bit 0 is set, graphic information may be written into the refresh
memory using the LGE or BXM instructions. If bit 0 is reset, alphanumerics

may be written'using LAC or BXM instructions.

Font Selection

In the alphanumeric mode (bit 0 = 0), bits 3 and 4 of MCW are decoded
to select the outputs of one of four character fonts. After a character is
written, the'cursor is advanced in x and, if the right limit is exceeded, in

y by the number of picture elements shown in Table 3.

Table 3. Standard font cursor advance.

Cursor advance
in selected font
(number of

Bit No. 'A A picture elements)

4 3 Font selected X y

0 0 5x7 ' . 8 10

0 1 7 xX9 10 14

1 0 10 x 14 16 16

1 1 16 x 15 X cur.adv, y pitch
(programmable
font)

Bits 3 and 4 have no effect in the graphic mode. The x and y cursor advances
shown are used unless bit 8 of MCW is set.

~15-

Alphanumeric Mode Cursor Advance Flag

When bit 8 of MCW (the A/N flag) is set, the cursor advance values shown

above do not apply. Instead, the x and y cursor advance information is spe-

cified by the ACA word.

- Memory Input Mode Selection

The Zl’ ZO’ and V bits (bit numbers 7,6,5) of MCW determine the manner

in which data is entered into the selected refresh memory channels. The

Z bits are decoded to select one of three memory input modes.

MCW bit No. 7 6 5
Designation Zl ZO A Memory input mode
0 0 0 OR 1's
0 1 1/0 Replace data
1 0 0 Erase 1's
1 1 X Not defined

Note that the V bit (bit 5) applies only in the '""Replace data" mode.
Any memory input mode may be selected while in either the alphanumeric or
.graphic display mode. The three modes differ in the manner in which input
data is conditioned prior to being written into the refresh memory. An

example is given for each mode in the paragraphs which follow.

OR 1's Memory Input Mode

4 In this memory input mode, only input data bits which are logic 1l's are
entered into the refresh memory, while data bits which are logic 0's are
ignored. In this manner, input data is essentially OR'ed with existing data.
For example, suppose the eight-bit pattern shown below (representing eight
picture.elements on a raster line) is written in the OR 1's mode, and that
the existing data in the same locations is as shown. By writing only the
input data logic 1l's, the input data is essentially OR'ed with the existing
data.

-16-

1 01 1 1 1 0 1 - Existing data
0 1 0 1 0 - Input data

1 - Result when OR 1's mode is
A specified

___,.
I

-
_—>H

1's written in locations
corresponding to logic 1l's

Existing data left unchanged since
input 0 bits are not written

Erase 1's Memory Input Mode

In this mode, input data bits that are logic 1's are written as O's, and
as in the OR 1's mode, input data bits which are O's are ignored. The result
or an erase 1's memory input is shown below for the same bit pattérns used

in ‘the OR 1's example,.

1 0 1 1 .l 1 0 1 - Existing data
1 01 01 0 1 0O - Input data
0 0 01 0 1 0 1 - Result when erase 1's mode
A A A 4 is specified
0's written in locations

corresponding to input logic 1l's

Existing data left unchanged since
input 0 bits are not written

Replace Data Memory Input Mode

This memory input mode simply replaces existing data with new data. If
the V bit (bit 5), of MCW is 0, the input data replaces the existing data.
If the V bit is 1, the existing data is replaced by the logical inversion of

the input data.

1 01 1 1 1 1 1 - Existing data
1 01 01 0 1 0 - Input data
1 01 0 1 0 1 0 - Result when replace data mode

is specified and V = 0

0 1 0 1 0 1 0 1 - Result when replace data mode
o is specified aud V = 1

-17=

The V bit is normally used to display alphanumerics as colored symbols on a

black background (V = 0) or as black symbols on a colored background (V = 1).
Usage. Type

[OR1S [F5x7
RPDALS F7x9
* * F10x14 *
symbol, MCW, 1 , OCTAL# , FPROG | , 1
0 ERS1S OCTAL# 0
| RPDA B
To Mode
use graphic(l)
ACA : or
type alpha-
1l or * : : numeric(0)
Masking.
15 12 11 0
MMC 0 01 0lccccccccccc cl

121110 9 8 7 6 5 4 3 2 1

Channel number
masked by
corresponding
bit number

MMC causes the memory channel inputs indicated in the channel mask field
to be disabled, inhibiting(further entry of data into the corresponding
memory channel. This instruction is mainly for use by an executive routine
for memory protection. .

To ensure consistency in programs involving protected channels, only
unselected channels may be masked, and only unmasked channels may be selected.
Selecting a masked channel causes an error, deselection of the offending
channels, and selection of only unmasked channels thereafter. Similarly, the

error caused by masking a selected channel is cleared by unmasking the

channel.

-18-

Usage. Type '
symbol, MMC, octal expression

Example.
symbol, MMC, 016

This masks channels 2, 3, and 4.

No Operation (NOOP)

Usage. .Type

symbol, NOOP
This geﬁerates a 0 word.

The Aydin OP code mnemonic NOP conflicts with the usage of NOP by the
Varian DASMR assembler. Thus the name has been changed to NOOP.

Read Look-Up Table (RLU)

The RLU instruction causes the display generator to transmit to the
computer the contents of the look-up table. The display generator will
transmit ‘an LPF word specifying the specific look-up table and address as

well as the corresponding data word for each of the 64 locations.

15 '

, | 0
RLU [T{o[tJo]1]oJofoJoJoJo]o]o]0]

Usage. Type
symbol, RLU

Channel Selection: Select Major Channel (SMC)

15 12 11 0 Bit No.

SMC [o o 0o 1]c ¢cccccccccc ¢

12 1110 9 8 7 6 5 4 3 2 1 Channel number
selected by

corresponding
bit number

-19-

The SMC instruction contains a 12-bit channel select field. Each bit
of the channel select field (bits O to 11) enables the inputs of one of up
to twelve 512 X 512 refresh memory channels. The SMC instruction is used to
select any combination of memory channels for use in subsequent instructions.
After SMC, any data written into the refresh memory (characters, vectors,
etc.) are entered in the same locations in each of the selected channels. A
channel that is not selected will receive no further input data, but its pre-
vious contents will continue to be displayed. SMC is used in conjunction
with MMC to provide memory protection (described earlier). SMC may be issued

many times to construct a complex picture.

Usage. Type
octal expression
symbol, SMC, AL

- %k

Cursor Position Readback: Transit Cursor Only (TCO)

The TCO instruction causes the display generator to transmit the current

contents of the cursor x and y registers to the computer,

15 10 9 4 3 0

TCO 1 00011 - - - - - ~-11111
Usage. Type

symbol, TCO

Memory Data Readback: Transit Selected Channel (TSC)

15 0

TSC [110[1[1]0]1]1]0[0|o]o|o|o|o|oj

The TSC instruction causes the display generator to transmit the data
within the truncated rectangular limits in each selected memory channel, one
channel at a time. The data returned are picture element information for

each raster line of each memory channel. Display instructions are inserted

—20-

where necessary so that the display generator output of memory data may be

retransmitted at a later time to recreate the displayed image originally read
back.

Usage. Type
symbol, TSC

-21-

REFERENCES

1. Programming Information, Model 5214A Display Generator by Aydin Controls,
Aydin Controls, Fort Washington, PA, pp. 1-32.

2. Varian V73 System Handbook, Publication 98A9906 011, Varian Data Machines,
Irvine, CA, pp. 15-1 — 15-27.

3. Varian Software Handbook, Vol. 1, Publication 98A 9952 201, Varian Data
Machines, Irvine, CA, pp. DAS 1-DAS 40.

KLC/hr/jn/mla

-29-

APPENDIX A: SUMMARY OF USAGE

Automatic cursor advance.

r - : .
Up LEFT
. Down RIGHT
symbol, ACA, . 0 ~, y value, 0 , X value
1 1
* *

where * is any user defined symbol equal to either O or 1, or omission of
this'parameter for O.
Block transfer.
symbol, BXM, wordcount
symbol, DATA, word 1, word 2,, wordn
(for graphic) or ' '
symbol, DATA, 'abcdefg{
(for alphanumerics).
Cursor positioning.
symbol, CUR, octal expression, dot
Move cursor home.
symbol, HOME
Carriage return and line feed.
symbol, CRLF
Back space and line feed.
symbol, BSLF
Line feed. .
symbol, LF
Carriage return.
symbol, CR
Space.)
symbol, SPACE
To set zeros.
symbol, CLEAR
To set onco.
symbol, SET1S
To eeroll up,
symbol, SCRLUP

-23=

To scroll down.
symbol, SCRLDN

To draw a circle. .
symbol, CIRCLE, radius

This results in code that loads x-index register and executes the circle.

To display a character.

. octal expression IND
symbol, LAC, decimal number . 0
'ASCII character' 1
%

Load cursor x.

Re
symbol, LCX, g , % value
%
Load cursor y.
Re
symbol, LCY, g , v value
*
Load graphic elements.
Ind

symbol, LGE, , picture elements

»o D

Load index x.
symbol, LIX, x value
Load index y.
symbol, LIY, y value
Load look-up table.
' symbol, LLU, word number, color
co;or, EQU. octal expression or decimal number

Load programmable font.

~24—

symbol, LPF, [symbol name

symbol, DATA, word 1, word 2, . . . « « & & « « .

Load limits.

LRL *
LRR ’ CONIC
symbol
Y ’ LRT i 1
LRB 0
Mode control word.
OR1S.]
* RPDA1S
symbol, MCW, l] » | ERS1S
0 ‘RPDA
%
OCTAL#]

octal expression

Mask channels.

] , X cur, adv., y pitch, x pitch

., word 15

, octal expression or decimal number

F5x7

F7x9
s F10x14

FPROG

OCTAL#
*

symbol, MMC, octal expression or decimal number

No operation.
symbol, NOOP,
Read look-up table.
symbol, RLU,
Select, channels.
decimal number

octal expression

ALL
*

symbol, SMC,

Transmit cursor only.
symbol, TCO,
Transmit selected channelf
} symbol, TSC,

Draw a vector.

symbol, VECIUR, x end point vélue, y end point value

-25~

APPENDIX B: PROGRAM LISTING

1 % AYDIN CROSSASSEMBLER MAY 1976 BY R. E. WERNER NOT COPYRIGHTED
2 NOOP MAC
3 DATA @
4 EMAC
S SMC MAC
6 DATA ©10000+P(1)
? EMAC
8 MMC MAC
9 DATA ©20000+P(1)
10 EMAC
11 ACA MAC
12 DATA (((O6+P(1))X32+P(2))X2+P(3))X32+P(4)
13 EMAC
000000 A 14 DOWN EQU)
Q00001 A 15 UP EQU 01
000001 A 16 LEFT EQU 01
200000 A 17 RT EQU Q
18 i ACA,U/D,Y,L/R,X
19
: 20 X ,MCW,FLAG,OPERATION,FONT, MODE
000000 A 21 OR1S EQU 2
Q00003 A 22 RPDAIS EQU 03
Qe0ee2 A 23 RPDA EGU 02
0O00R4 A 24 ERSIS EQU 04
QOPe21 A 25 ALP EQU o1
000000 A 26 NONALP EQU 0
27 MCW MAC
28 DATA 040000+P(1)%256+P (2)X32+P(3)X8+P(4)
29 EMAC :
Q00000 A 30 F5X7 EQU e
Qeeed1 A 31 F7X9 EQU 01
@P00e2 A 32 F1OX14 EQU o2
000003 A 33 FPROG EQU 03
34 X
35 X BXM,WORDCOUNT
36 BXM MAC
37 DATA ©44000+P(1)
38 EMAC
39 X
40 ¥ LRL,CONIC, LEFT LIMIT
41 LRL ~ MAC '
42 DATA (@24+P(1))X1024+P(2)
43 EMAC
000021 ¥ 44 CONIC EQU 01
45 X
46 % LRR,CONIC, RIGHT LIMIT
47 LRR MAC
48 DATA (@26+P(1))X1024+P(2)
49 EMAC
S0 X ‘
51 ¥ LRT,CONIC TOP LIMIT
S2 LRT = MAC
53 DATA (@30+P(1))X1024+P(2)
54 EMAC
55 X
S6 % LRB,CONIC, BOTTOM LIMIT
57 LRB ~ MAC
58 DATA (@32+P(1))%1024+P(2)
59 EMAC 4
60 X
61 % LCX,RE,X VALUE
Q00017 A 62 ALL - EQU 217
1 QUEP0l A 63 RE EQU 21
64 LCX MAC
85 DATA (@34+P(1))%1024+P(2)

~-20—

66 EMAC

67 X

63 X LCY,RE,Y VALUE
69 LCY MAC

70 DATA (@36+P(1))X1024+P(2)
71 EMAC
72 X

73 X LIX, INDEX X VALUE
74 LIX MAC

75 DATA 0100000+P(1)
76 EMAc
77 X

78 X LIY, INDEX ¥ VALUE
79 LIY MAC

82 DATA ©102000+P(1)
81 EMAC
82 %
83 % LGE, IND,PICTURE ELEMENTS
Q00001 A 84 IND EQU 01
85 LGE MAC
26 DATA ©104000+P(1)+P(2)%512
87 EMAC
88 % , :
89 % TCO OR TCO,KA IFKEYBOARDS THEN DATA, @106000P+(1)
Q00017 A 90 KA EQU 017
91 TCO MAC
92 DATA 0106017
o3 EMAC
94 X

g5 X LPF,SYMBOL NUMBER,X CUR ADV., VY PITCH, X PITCH
96 X,DATA, . .15 DATA WORDS, ..
97 LPF MARC

98 DATA Q112000+P(1)
99 DATA (P(2)X16+P(3))X32+P(4)
100 EMAC
101 X
102 X LAC, /CHAR’ , INX

200001 A 103 INX ~ EQU 01
104 LAC MAC
105 DATA ©114000+P(1)+P(2)X512
106 EMAC
107 X

108 X LLU, WORD,COLOR
109 LLU MAC

110 DATA 077-P(1)+02122000
111 DATA =~ P(2)
112 EMAC
- B0YY A 113 BLACK EQU %)
036757 A 114 WHITE EQU 036757
000017 A 115 RED EQU @17
000740 A 116 GREEN EW w749
036000 A 117 BLUE EQU 036000
035017 A 118 MAGEN EQU 0326017
036740 A 119 CYAN EQU 026740
@Be757 A 120 YELLOW EQU 0757
76757 A 121 BWHITE EQU Q76757
040817 A 122 BRED EQU 040017
240740 A 123 BGREEN EQU 040740
076000 A 124 BBLUE EQU V76000
976017 A 185 BMRGEN EGU wvE017
076740 A 126 BCYAN EQU 076740
240757 A 127 BYELLO EQU 040757
128 x*

129 X CLEAR SCREEN
130 CLEAR MAC

131 DATA 9123002
132 EMAC
133 X

134 X% SET TO ONES
135 SET1S MAC

136 DATA Y1405
137 EMAC
138 X

=27~

139 X SCROLL UP
149 SCRLUP MAC

141 DATA 0123001
142 EMAC
143 %

144 X SCROLL DOWN
145 SCRLDN MAC

146 DATA 0123c¢e2
147 EMAC
148 X

149 X EXECUTE CONIC OR VECTOR
150 X VECTOR,X END POINT,Y END POINT
151 VYECTOR MAC

152 LIX P(1)
153 . LIY P(2)
154 DATA 0124000
185 EMAC

156 X

157 %X CIRCLE ,RADIUS
158 CIRCLE MAC

159 LIX P(1)
169 DATA 0124200
161 EMAC :
152 X

163 X READ LOOKUP TABLE
164 RLU MAC

165 DATA 0125600
166 EMRC
167 X :

168 X CURSOR, OCTAL CODE
169 X CUR,QOCTALCODE, DOT

000001 A 170 DOT QU 1

171 CUR MAC

172 DATA 0132000+P(1)+P(2)%64
173 EMAC

174 HOME MAC

175 - DATA 0132069

176 EMAC ,

177 CRLF MAC . :

178 DATA 0132030

179 EMAC '

180 BSLF MAC

181 DATA 0132012

182 EMAC

183 BS MAC

184 DATA 132002

185 EMAC

186 LF MAC

187 DATA 0132010

188 EMAC

189 CR MAC

. 190 DATA 0132020

191 EMAC

192 SPACE MAC

193 DATA 0132001

194 EMAC

195 %

196 EXC MAC

197 DATA 0124000+P(1)
198 EMAC -
199 X

200 X TRANSMIT SELECTED CHANEL
201 TSC MAC

202 DATA 0133000
203 EMAC

204 X

7S] -END

-28-

ENTRY NAMES

EXTERNAL NAMES
SYMBOLS

000817 A ALL 000001
040740 A BGREEN ©00000
040017 A BRED 076757
036740 A CYAN 009001
000202 A F10X14 000
000740 A GREEN 000001
o000l A LEFT 036917
Q0Ce0l A RE Q0017
20000 A RT 000281

>D>DPDPDTDD

ALP
BLACK
BWHITE
DOT
F5X7
IND
MAGEN
RED
upP

© ERRORS ASSEMBLY COMPLETE

Q76000
036000
040757
000009
QoY1
000001
0OV
020002
036757

BBLUE
BLUE
BYELLO
DOWN
F7X9
IMX
NONALP
RPDA
WHITE

PD»PDTDPDTD

=29~

076740
076017
000001
00004
000003
Q02017
Q000
000003

. QRR75?

>PDPDPDPTPTDPDD

BCYAN
BMAGEN
CONIC
ERS1S
FPROG
KA
OR1S
RPDA1S
YELLOW

INDEX

Automatic cursor advance
ACA

Block transfer mode
BXM

Cursor positioning
CUR

Cursor position readback
TCO

Editing
EDT

Execute conic or vector
EXC

Load alphanumeric character
LAC

Load cursor
LCX, LCY

Load graphic element
LGE

Load index registers
LIX, LIY

Load look-up table
LLU

Load programmable font
LPF

load reclaugular limits
LRL, LRR, LRT, LRB

Mode control word
MCW

Masking
MMC

Memory data readback
TSC

Read-Look-up table

RLU
Select channels
SMC '

-30-

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Energy Research
& Development Administration, nor any of their
employees, nor any of their contractors, subcontractors,
or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility
for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or
represents that its use would not infringe
privately-owned rights.

NOTICE

Reference to a company or product name does not
imply approval or recommendation of the product by
the University of California or the U.S. Energy Research
& Development Administration to the exclusion of
others that may be suitable.

Printed in the United States of America
Available from

National Technical Information Service

U.S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

Price: Printed Copy $; Microfiche $3.00

Domestic Domestic
Page Range Price Page Range Price
001--025 $ 3.50 326-350 10.00
026050 4.00 351-375 10.50
051-075 4.50 376--400 10.75
076—100 5.00 401-425 11.00
101125 5.50 426--450 11.75
126—150 6.00 451-475 12.00
151175 6.75 476—500 12.50
176200 7.50 501-525 Bo e
201-225 915 526-550 13.00
226-250 8.00 551-575 13.50
251-275 9.00 576600 13.75
276-300 9.25 601—up %
301-325 9.75

"Add $2.50 for each additional 100 page increment from 601 to 1,000 pages;
add $4.50 for each additional 100 page increment over 1,000 pages.

