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ABSTRACT

We study the SU(N) scalar quartum chromodynamics in two
space~-time dimensions in the large N limit. This is the model of
color gauge fields interacting with scalar quarks. We find that
the consensual properties of the four dimensional QCD, i.e., the'
infrared slavery; quark confinement, the charmonium picture etc.
are all realized. Moreover, the current in this model mimics
nicely the behaviors of current in the four dimensional QCD, in

contrast to the original model of 't Hooft.
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I. Introduction

(1)

The naive quark model has been very helpful in our under-

standing of the gualitative features of the hadron spectroscopy.

(2,3)

Together with the parton pictiire it has also been useful

(4)

in describing the asymptotic scaling behaviors in deep-

inelastic scatterings, e+e- annihilation and other physical
processes related to the short-distance or light-cone behaviors

of the strong interactions. The dynamical basis for the success

remained a mystery until the realization that the quantum chromo-
dynamics (QCD) is asymptotically'freeES’s) In QCD the short-

distance behaviors are almost the same as in the free quark model

(5,6)

except for some small calculable devxatlons This explains

the almost Bjorken scaling in deep-inelastic experiments.
Furthermore, it has been speculated that QCD may give us another

bonus. Owing to the infrared instability in QCD, the severe

infrared behavior et large distance may provide strong forces to

(5,7)

confine quarks. The problem of whether QCD indeed gives rise

to the quark confinement is still unsolved.

To test the idea of quark confinement in QCD, 't Hooft(s)

studies the U(N) QCD in 1 space - 1 time dimensions. This is still

a very complicated dynamical system. An important observation was

made by 't Hooft that a great simplification can be achieved by

(9}

considering the limit of large N. He succeeds in showing that

the original quarks are removed from the physical Hilbert space.
Furthermore, the physical spectrum consists of an infinite number

of color singlet bound states of qg. The model has been further

(10)

elaborated by Callar, Coote and Gross. The application to the

oef”

deep inelastic scatterings has also been studied. (11,12,13)
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~ . the scalar QCD in the large N limit.

" for the wave functions describing gg bound states.

One special feature in the 't Hooft model is the behavior
of the currents. In contrast to the QCD in 4 dimensions, the
currents in 't Hooft model are softer than as was to be expected
from the short-distance -(or light-cone) consideration.(l4) To .be
épecific, in the short-distance (or light-cone) expansion of the
product of currenﬁs, Vu(z)Vu(O), the leading expansions are>zero
(in the 't Hooft model).

In order to make the comparison with the four dlmen51onal

QCD more realistic, it is certainly desirable to have a model in

which the leading short-distance (or light-cone} expansion is
non-vanishing. We find that the QCD interacting with scalar
quarks is such a model. The purpose of this paper is to study

We find that the spectrum

"consists of hadrons which are color-singlet bound states of qaq-

The quarks are removed from the physical spectrum. In othervwords,

 £he infrared slavery, quark confinement etc. are realized in our

model. The charmonium picture is also found to be valid. Further-
more, the currents mimic nicely the currents in the QCD in 4
dimensions.

The paper is organized in the following way.' In section II

the scalar QCD is studied in the large N limit. 1In particular,

‘we obtain the dresséd.quark propagator and the integral equation

In the section

".III we examine the behavior of the bound state wave functions.

First, we'study the non-relativistic limit. Next, we study the

end point behavior of wave functions at x = 0 and x = 1. The

semi-classical (or W.K.B.) approximation is used to obtain the

" expansion.
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approximate wave functions as well as the spectrum of bound states.
The completeness and orthogonality conditions are also discussed.
In séction IV the full qq scattering amplitude i; constructed.

From this we obtain the hadron-quark-antiquark vertex. The
question of unitarity is mentioned briefly. It is indicated that
indeed only colof-singlet states are needed in the unitarity
relation of hadron amplitudes. The m?trix elements of scalar
densities and vector currents and two point functions are discussed
in section V. We study the asymptotic behavior of two point
functions and compare with the free quark model. The differences
between the behavior in our model and the 't Hooft model are dis-
cussed. Section VI deals with the asymptotic behavior of forri
factors of the scalar densities and véctor currents. The heep'
inelastic scatterings are studied in the section VII. We find
that VW scales and the answer for VW agrees with Feynman parton.

picture exactly. It is also consistent with the light-cone

(15) (16) relation

The Drell-Yan-West and Bloom-Gilman
is examined. We also study the deep inelastic scattering for
scalar densities. The last section consists of summaries and
discussions. In the appendix we discuss a numerical method of
solving the integral equation. The method is well known in fluid .

mechanics. As an example, we study the original 't Hooft's equation

numerically.

The leading behavior in the eigenvalue ukz is obtained.

‘-
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II. " The Scalar QCD

The model we shall consider consists of scalar quarks
interacting via gauge fields in 2 space-time dimensions.

Specifically, the Lagrangian is

L=%6, G‘“’,'ji + 0@ 'p) - nl g2 P2 (2.1)
where

. Guv,ij = aup.ijv.- a,y“iju + g[Au,Avlz : ' (2.2)

D; (Pia - 2,0, + gxig ¢4? (2.3)

iii =2}, _%' 6] ng, = - A3 2.9

The color group in this model is SU(N). The scalar fields
transform as fundamentaljrepfesentation of coior group. They
aléo carfy'flavor index a. The flavor symmetry ﬁay be broken
explicitly bylassigniné mgo # mgo for a # b. This theory is
superrenormalizable and hence asympéotically free. As in any
gauge theor&, one has to fix a gauge condition before quantization.
- The simplest gauge condition that can be imposed here is the light-
' éone gauge. It has the virtue that (a) ‘no ghost is needed, {(b) no

self couplings of gauge fields exist. 1In this gauge,

A=A =0 (2.5)
and

. G = - 9_A_ . (2.6)

One can write the Lagrangian effectively as

_ 1 +,- a* uga _ 2 a* ,a
= -30(_A) (A7) + auwi T -m 07 @3
j *3 a a* a .
+g A+i [-@i 3_@3- + (9_ Qi )(fj ] ) - (2.7)

The Feynman rules can be derived readily and are given in Fig.l.

We follow 't Hooft(a)

inAstudying the theory in the large N limit

with 92N held fixed. 1In this limitbonly planar diaérams yith no .

quark loops are important. A A _ -
Let us first study the dréssed quark pfopggator. The lowest

non-trivial contribution (Fig.2) is

2 . L S
- 1 122 yg? fﬂf =i (2per)_ L e

(2m* x_ (p+k) “-mC+ie

a’k 1 (2psk).

(2")2 k- (p+k)2-m§+i;

= = ic + 2p_ Né? f

(2.8)
Here the first term

g2 ‘32

- e = NI J — ok

(2m) (p+k) -m6+ie
is independent of p and can be absorbed into the mass reno:ﬁaliﬁ.
zation, the second integral is infrared divergent due to the
singularity at k_ = 0. 't Hooft uses a regulation scheme by
inserting a factor O(RZ—AZ)(a) in the integral which is then
infrared divergence free. We use the same regulation scheme here.

When this is done, we obtain
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2
12 - o, No_ 2p_ (29n{p=) _ %i’ (2.9)

To find the full dressed quark propagator in the large N limit,

it is necessary to solve the integral equation represented

symbolically in Fig. 3. ‘If the dressed propagator is written as
i . i

mlaia _ Y
2p+p_ m°+1e 2p_II-c 2p_(p+ ) (mo+c)+1e

the integral equation is then

2 ; . 2.
- i(2p_Mi4c) = Ng2 I d k;j ;25 i(2p+k) 5
(2m) ™ k_ 2(p+k)_[(p+k)+-ﬂ(p+k)]-(m°+c)+ie
(2.10)
We find that
2
. 2 d’k 1
c = 1 Ng I —
(2m) 2(P+k)_[(p+k)+-n(p+k)]—(m§+c)+ie (2.11)
Ce? [ _alk 2 (p+k)
f=1Ng f = (2.12)

(2% 2(p4k)_1(p+k) = (p+k) I- (m2sc) +ic
Using the regulation scheme of 't Hooft,(e) we obtain

2

_ N sgn{p.) 1
m = 7%7 (—S_TE__) -~ E_) (2.13)

This agrees with the second order calculation in eq. (2.9). The

dressed quark propagator D is given by

1

D(p) = — (2.14)
2p_Ip, - %ﬁ; (§22%2=)- %t.)]- m?+ie

This indicates that the quarks have infinite self-energy as the
cutoff A + 0, which removes them from the physical spectrum.

We now turn to the qq bound states. The wave functions
satisfy the homogeneous Bethe-Salpeter equation depicted in Fig.4,
i.e., -

(e, 1) = 8g° i’p(p) D(r-p)

2 .
x I d k=1 y(p+k, 1) (2p+k) _(2p-204K) _ (2.15)
(2m) k_

Since the kernel is a function of - components only, the equation

can be simplified by introducing

¢(p_,r) = Idp+ V(p,,p_iT) (2.16)

It follows that

¢(p_,x) = Idp+ - P
_Ng® (sgn(p)_ 1 [TtEe
P m AT, p_/ 2p_
x 1 2
- Eﬁi (§gn(p-r)_ _ 1 . “m,tie
Pym5y™ 7o X (p-r)_) Z{p-1)_

x

ak_ .y (2P_tk.\ [2p_-2F_+k_
I ;f— ¢(p_+k_:r) 25 ) ( 2p_-7r_ )

(2.17)

The integration over P, is easily carried out. We end up with

Y
=
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2
olp.) olr_-p.)
{p_,2) = - ngN = -
- 2 _ g\ 2 _glN
: w1 Mm-S Ea
R B Zp_ 2(r-p)_
r_ /f‘%\‘
ak' p_+k' D_i - 2r_
x —=— ¢ (k' ,r)(Z=—=)( )
IO (k_'_-p_)z 2p_ Z(P_‘r_)

(2.18)

The integral is infrared divergent. We use the regulating scheme

described before. Equation (2.18) becomes

2 2

2_g 2_g'N .
2 m3 - m,—
gN 1l 1 L] 2 ki
(r+ T X 2p_ 2(r_-p_))‘¢(p"r)

=-%8 o(p) 0tr_-p_)

r

- dk! v -2r_+p_+k!
x % ¢(p_,r) + f —=— ¢(k: ’r)(E.%E. )(__Ez_g:__:)
. o (kl-P.) P_ 2(p_-r_)
(2.19)
The A-dependent terms cancel from both sides of the equation.
With the change of variables
2
Iy = 25_ ¢ TX =P
we find the integral equation for ¢(x),
2 gzN 2 gzN 1
2 ™ T mT T >N 4 (x+y) (2-x-y)
Wt = (2T v 2T Yoo - LR G ) oty) Goaey
. 0 (x~y) 4x(1-x)
(2.20)

Aside from the factor (x:x){f;?- ), this.equation resembles

the one obtained by 't Hooft for the fermion-antifermion bound
states. Similar equation has been obtained by Bardeen and Pearson

in different context.

(17)

III. The Eehaviors of the Bound State Wave Functions

In this section, we examine the behavior of the bound state
wave functions dascribed by eq. (2.20) in the last section. 1In
particular, we are interested in the following problems:

(a) non-relativistic limit , (b) the end point behavior of the wave
functions, (c) a simple approximation to the wave functions and
the mass spectrun.

fa) Non-relativistic limit

In this limit we expect that the homentgm in the center of
mass frame to be very small as compared to the mésses of the
constituents. For simplicity, we consider here only the case of
egual mass m,= m,. The momentum fraction x is related to the

c.m. momentum by

1 . X
x=5+ 731 with ]ﬁ#l <<l ' (3.1)
where
‘12 2 . :
m' = [m?- Rg_ y : (3.2)

. The eq. (2.20) can be written as

Mo (@) = m'? {z(u 47t v 2 -39 }Mq)
q'=m' A+ v +q"'
" o 2 rd
q'=-n' —3 (q-q') (1 - .2)
4m m

(3.3)

We keep only terms up to q2 in the kinetic terms and neglect
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4,9' as compared to m' inside the integral. The binding energy\ﬁ

is related to M by

M= 2m' + f;

Thus, q'=+m'
2 2 '
€o =9y - LN f aqr ¢l (3.4)
m (g-q')
q'=-m'

The condition |q/m'|<< 1 allows us to replace the upper and lower
limit of integral by += and -~ respectively. Therefore the non-

relativistic limit of eq. (2.20) is

2 2 .
N
o= &+ &2 xDo (3.5)

where X is the conjugate variable of g. The solutions of eq.

(3.5) are well-knownfla)

They can be expressed in terms of Airy
function. The energy spectrum is discrete and in the limit of

large quantum number

~ 2 2/3
£ . n2/3 [3 g°N ]
= n = (3.6)
n 16 7. 1/4
- L

We remark that eq. (3.5) is exactly the same as the equation
describing non-relativistic bound state in 't Hooft model. As
is well-known, the Schrdedinger equation does not distinguish
bosons from fermions. The same equation can be used to describe

the S-wave charmoniumslg'zo)

The only diference is in the boundary
condition.

(b} End point behaviors of wave functions

In many applications, it is impor:tant to know the bahaviors

-12-

of the wave functions near the end points x = 0 and x = 1.

One can rewrite eq. (2.20) as

a a
w? - 2 -2 ax1-nex)
1
= - { — 4 (y) [(2-x) %+ (2-20) y=y ] (3.7)
o (¥-x)
2
2 mmY
where M2 = E%_ u2' al = ——% -1
Ng
The following lemma[l] is useful: If f -~ y8 as y - 0, then,
f(y) - B
I v-x dy T cot(Bm)x" .

Suppose ¢ (y) ~ Ysl near y = 0, eq. (3.7) implies that
W? - L
s X

%2 8y
- 1% ) 4x(1-x) x

Bl—l B,-1
= x(2—x)nB1 cot(nBl)x + 2(1—x)ﬂ(81+l) cot(ﬂBl)x

B,+1

- ﬂ(81+2) cot(nBl)x Ll less important terms.

Compare the most important terms from both sides, we find

T(B+3) cot(n8)) = - a (3.8)

B
Similarly, ¢(y) ~ (l-y) 2 for y + 1, where

m(By* 3) cot(ngy) = - a, (3.9)

The solution of the transcendental equation is illustrated in

2
Fig. 5. It is easy to see that when mi > HFE, the exponent Bi :
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. 2 .
increases as mi increases.

(c) W.K.B. approximation

We would like to have a simple approximation to the wave
functions and the mass spectrum. One such approximation which
immediately comés to mind is the W.K.B. approximation. It is a
good approximation to both wave functions and eigenvalues especially
for the states with large quantum number. In this subsection we
shall derive the W.K.B. approximaticn appropriate to the integral
’ _equation'(z.zo). Noﬁice that the kernel of eq. (2.20) is not
hermitean. 1In order to apply W.K.B. method, the kernel has to be

made hermitean. This can be achieved by the following change of

¢ = [x(1-x) ¢ ) (3.10)

In terms of ¢, we find that .

function

a2 - 4N 2 _gN
ny - m, -
P | T_o_ 2 n o (x)
X 1-x
2,
_ - 9N ][ Ay - _x4y) 2oxmy) 4y
Ty x=p)? e fx(TSR) 7 (I v

J K(x,y) #ly)dy
(3.11)

Here K(x,y) is hermitean. Now we apply the W.K.B. approximation.
Let us write ¢ ='exp(%?) in the classically allowed domain as in

any application of W.K.B. approximation.
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In the semiclassical limit of h + 0, ¢(y) is rapidly varying.
The only importan: contribution to the integral'in eq. (3.11) comes

from the region oI integration where x ~ y. Therefore we can

(x+y) (2-x-y)
4/x(1-x) {y(1-y)

of ¢ also allows us to replace

replace the factor

By 1. The rapid variness

1 o
I by I . Hence, one finds
0 —
that in the W.K.B. approximation

’ 29N 2 gPN ) )
2 _ 71 @ T2 m ) _ N s 9
(M _ 2 o= 0 i (3.12)

It follows that

® = A exp {% juzx - ullnx + oy ln(l-x)]}

+ B exp{;% qux - a,enx + a, ln(l-#)]} ‘
(3.13)

The condition that ¢ = 0 at the classical turning point x = x

are solutions of 2. gl + Eg_
b VE X 1-x

+

(i.e., x then implies the

quantization condition. 1In the special-case of a, = a,, we find

that
uz a X

¢ = sin it - En(I:;.] ) (3.14)

and - . .
1+ /1-53
2 4a Tl 2 :
pjl - - - 2¢ n| ——— = nu . (3.15)
u .

4a
1- /1-—7
p

Equation (3.15) can also be written in the form of Bohr-Sommerfeld

}pdx = 2mn

condition
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where p, the conjugate momentum to x, is given by

_ 1 .2 %1 %
lPl = 7y - x " Ix

We would like to point out here that in order for W.K.B.
(or semiclassical) appfoximation to make sense, it is essential
2 .
that mi > SEE . This is evident from the fact that the right hand
2 2
1 and/or m, .
We can also understand this in the following way. Only for

2
side of eq. (3.15) becomes complex if QEE >m

a, .0, > 0 will the classical motion described by
2 _ %
x

-1 _
Ip| = = [u

be periodic. It is well kriown that nonperiodic system can.never

-

- give rise to any bound state. Perhaps this is an indication that

2
‘the large N limit is meaningful only when mi > i;ﬂ . In some

applications further approximation suffices: -‘In this case we

can use
2 sl
¢ = JﬁTTf;T 51n(7r x) (3.16)
or
2
o= 2 sint x) - ' (3.17)
and
uﬁ = nnz (3.18)

-16-

(d) Completeness and orthogonality conditions

We have discussed in (c¢) that although the integral equation
for ¢ does not have hermitean kernel, the kernel for ¢ is
hermitean. Therefore the completeness and orthogonality conditions

are most easily expressed in terms of °k' We have

E O (x) 0, (x') = §(x-x") } R (3.19)
and
1 .
* =
f dx 0k(x) b (x) = 6kk' (3.20)
0
1
Of course, these can be written using ¢, = ——— ¢ .
hd k &(l-x) k
They are
- [] —_! * ] = — } ,
E -x) fxt1-xt) etx) o (x ) = 8lx=x") (3.21)
and
l .
* _ (2
I dx x(l-x) ¢k(x)¢k,(x) = akk' (3.22)
0
respectively.

IV. The qq Scattering Amplitude

In many appliations, it is necessary to know the full qg

scattering smplitude. Let us write S=1+T.

The scattering amplitude T satisfies the integral equation

-i '

— g% (p_+p!) (p. +p_-2r_)
(p_-p!) .

=]
1]
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2 .
+ f d k2 —iR > gz (p_+k_) (p_+k_-2r_)iD (k) iD(k-r)
(27) (p_-k_) ,

x T(k,p’;r)

(4.1)
Graphically this is shown in Fig. 6.
It is convenient to introduce an auxiliary function
¢(p_,pl;x) = fdp+ D(p) D(p-r)T(p,p':r) (4.2)
In terms of ¢(p_,E. :r). one obtains
' 2 (p_+p’) (p_+p!-2r_)
T(p,p'ix) = - ig? -E=TF= pj § =
(p_-p)
2
i + +k_-2r_
+ ig N2 Idk- (p- ls.)(pT ;- 2r.) 6(k_,p’iT)
(2m) (p_-k_)
(4.3)

From the definition of ¢(p,p';r) and the above equation, one

finds that-
2 g’y 2 _g°n
T o R W S e S o o)
+ T x 2p_ 2(r_-p_) P_/P_i
2 1 p_+p. 2r_-p_-p.
= 279 '( Z ) ( =z
(p_—p_' ) 2 P_ 2(r_-p_)
2

-8 2 el

_ng? f a $E_/plix) (k_+p_) (2r_—p_—k_)
2m - (p_—k_)z 2p_ 2(r_-p_)

-18-

The A dependent terms cancel from both sides of the equation.

With the change of variables

j Mz = 2r r_ ,
P_ = Xr_ ,
P. = x'c_ .
k_=yr_ '

m2- N m2 - 2y ‘

2 :
wie AT - 2T ) gix,x'51)
2 1] L]
4mg 1 (x+x') (2-x-x"')

r_ (x-x')2 4x(1-x)

(x+y) (2-x-y)

2
- Ng© fdy o (y,x"ir)

I (x—y)2 4x (1-x)
(4.4)
We can also express ¢(x,x';r) and T(x,x';r) in terms of the
solution of homogeneous B-S equation. The results are . \
pe? o 1 (L () (2eyex") e, G0k (y) ‘
¢(x,x';r) = = 7§ 53 Idy (4.5)
r 2 2
- k M M7 (y-x)

2 (x+x')(2—x—x')

(x-x"')

kM-Mk

Lo, (v) (x4y) (2-x-y) [ .
+ fdy 5 Xy x » x',y -+ y'
2(x-y)

2
.2
SPCICALIN . {r_ 201019, (0 [x(1-x) ]

(4.6)



From this one can read off the q&h coupling. It is

1
2 ¢, (y) (x+y) (2-x-y)
g [T} (x(l-x))¢k<x)e(x(1-x))1+f ay X ‘]

0 2(x—y)2
(4.7)
Knowing the scattering amplitude we can now answer all physical
interesting questions at least in principle. We have checked
the three and four point hadronic'amplitudes. They are all finite
in the limit of A » 0. Furthermore, to order %.
unitary and no colored intermediate states appear. The arguments

the theory is

are similar to those of ref. 10. We will not include them here.

V. Matrix Elements of Scalar Densities and Vector

Currents and Two Point Functions

In this section we would like to consider the matrix elements
of scalar densities and vector currents as well as the two point
functions.

We begin with the matrix elements between vacuum and one
hadron states. In the model we studied. the scalar densities and

vector currents are given in terms of the boson fields as

N
ab a b
s =7 @ ¢F (5.1)
S
v o i) § (P2 a P -5 pAgb (5.2)
u i=1 i "pTi uriti °
. oab ab . .
Here S and Vu are color singlets and a, b are flavor indices.

-20-

(2]

The matrix elements <0|Sab|h>, <0|Vab|h> can be calculated

using the qall vertex we obtained in Sec. IV. Diagrammatically

this is represented in Fig. 8. The results are
ab i /N 1
<0|S Ih> = - 7 F I dx ¢k(x) (5.3)
0

. 1
<0]v3® |n> = g-[%fq_ Jodx (1-2x) ¢, (x), (5.4)

Other interesting objects to study are the two point functions
of scalar densities and vector currents. For the scalar densities,

we have

. +
M(g?) = de e <olr s2P (x) s2P(0) 0> ‘ (5.5)

In contrast to the fermion case, the scalar density S has

dimension 0 instead of 1. In the leading % approximation, one

finds
ab 2
M(g?) =i ] s 12> (5.6)
n q- - M
n
which approaches
il 7 )<n|s®P0>|? (5.7)
q n

provided that J <n|sab|0>|2 is finite. We can evaluate this
n

sum by eq. (5.3)

1 1
dx¢n(x)J dx'¢;(x') (5.8)

b 2 N
I lnls*®loo)? = R0 1
n am n’o 0 Yo
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Now, {,x(l-x) ¢n} forms a complete orthonormal set, i.e.,
D [x(1=x) 6, (x) fx'(1-x") oF(x') = 6(x-x') (5.9)
n

The sum becomes

1 1 § (x-x"'
I lnls®10>)? = & [ax [anr =E2
n

0 J x(1-x)xT({I-x"Y
_ljl ax
T 4m 0 x(1-x)

This is a logarithmically divergent integral. A more careful

treatment yields

M@ ~ 2 n(eg?) as - ¢+ = (5.10)
2nq

For comparison, one can evaluate M in the free boson theory.

The relevant graph is in Fig. 9. It is easy to obtain

1
-0y = Ni 1 1
M(g=0) = T 3 J du ——————7;7— (5.11)
9 7o u(1-u)+8
-q
One sees readily that
2

M + M(g=0) in the limit of -gq°“ + =. This agrees with the
expected behavior of an asymptotically free field theory. We
would like to point out that although the original quarks disappear
from the physical spectrum due to infinite self energy, their
presence ;n the original lagrangian is reflected here in the large

&
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q2 limit. The physical bound states collectively give rise to

the right short distance behavior. We turn to the two point
» .
func{ion of vector current. The simplest component to study

M__, ‘where

2 igx
M, = Jd x e'9 <0V, (x)v (0){0> .

In the leading 1/N approximation, one finds

2
. <n|V_]0>
SRR JETAL
q_ - M

i N 1 ‘ 2
v oal g 7 I dx(l-—2x)¢n‘(x)|
q n 0 :

-4 g2 E—Jldx (1-2x) 2
q2 - 4m 0 x(1-x)

~

is

(5.12)

In the last step, the completeness relation is used. The integral

is again logarithmically divergent. The correct treatment yields

i 2 N
“--“;7‘!- I

2n(—q2) +...

For comparison, one finds in the free quark theory,

M__(g=0) = N Idzz 2(2’1+q)_(211+q)_ ;
(22,2 _-m +ie) [2(2+q) , (2+4q) _-m“+ie)

sana (Lo a-am?
4 2 2

q m
0 x(l-x)-—z-

q

(5.13)

(5.14)
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One sees again that M__ -+ M__ (g=0) in the limit of -qz >
as was to be expected of an asymptoticaliy free field theory.

Befdre we part with this section, we would like to point out
the differences betweenltyo point functions in fermion and boson
theories. We list again the asymptotic behaviors of M, M__ in
both theories:

M(boson theory) ~ iN2 1n(—q2)+...
2nq

M__(boson theory) —iﬂr a? wn(-gH+...
2ng

;nd

M(fermion theory) ~ E%T 2n(-q2)+...

M__(fermion theory) ~ %?

The difference of the asymptotic behaviors of M is due to the
difference in the dimensions of scalar densities. In the boson
theory dim § = 0 while in the fermion dim S = 1. Although the
vector current V has the same dimension in both theories, their
asymptotic behaviors still differ by a factor of Zn(—qz). This

is due to the fact that in the fermion theory, if m = 0, then

<0|v]h> = 0,

(10)

" except for zero mass hadron state Or in other words,

if m = 0, there will be no absorptive part of Muu for s#0.
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VI. Form Factors 1

In this section we discuss the form factors of scalar
densities and vector currents between hadron states. In particu-~
lar we are interested in their asymptotic behavior as q2 + o,

To leading 1/N expansion, three diagrams may contribute
to the form factor <pl|Vu|p2> . They are depicted in Fig. (10).
It is easy to see, by counting power in‘A, that diagram b will
not contribute in the limit of A + 0. First let us concentrate

on diagram (a). It follows that

3 iD(k)iD(k-pl)iD(k-pz)(2k-p1-p2)_

2.2
x (if) TR (p))_ ull-we (w) (py)_ u'(1-u')g, (u')
’ (6.1)

where

o]
-

el
N

A straightforward calculation, by first integrating over k+ and

expressing k_ in terms of u, yields the simple result.

- By .
F_ = (p2)— ldu u'¢2(u')[1+(1—2u) §;=] ol(u)

P , P .
= py) [du u [l+(l-2u) F%=] &;(u)¢2 (5%= u) .
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Now we can study the asymptotic behavior as - q2 + =, ‘We .have
B

shown that ¢2(x) = cox as x + 0. With this one finds
F_n (P1_+P2) F

and

P 1 * Pi_ \8
F ~ (5__> Jodu u ¢l(u) (5;—-u) <y

2_
2 1+
M 1
= —l) c du ul+B ¢*(u)
QZ 2 1
0 . (6.3)
u
where the kinematic relation -—= a -5 has been used.
: 2_ Q

The calculation of diagrams (c) is more involved. We will
not include it here. We find that it gives the same 02 dependence
as the contribution from diagram (a).

The form factor of the scalar current <p1|S|p2> = %# Fs

can be studied in the similar fashion. One finds the contribution

from the diagram (a) has the asymptotic behavior

- [l ' * pl_
FS N ) du u ¢1(u) ¢2 (BE— u)
0 -
_ 91_> . P )
_( E;: Idu u ¢l(u) ¢2 (52? a
1+B

M 1

m(_lz_ c, J du ul"'B QI(u)
Q 0

The contribution from diagram (c) yields similar Q2 behavior.
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VII. Deep Inelastic Scattering

The deep inelastic lepton-hadron scattering is related to

the matrix element of vector currents in the Bjorken limit. The

{2]

structure functioa W is defined as

" ( qu(q-p))( qv(q-p)) W
uv u 2 v ]
q q M,

| [a*x ' v ) vy e

(7.1)
In particular,
Ww__ = <p| [dzx elax V_(x) v_(0)]|p>
= @m? [ Jplv_n>|? s(prar®-md)
n
= T IF_1® stipra)? - Mi ) (7.2)

n

In the leading % erxpansion only singlet hadron states has to be
included in the summation. The form factor has been studied in
the last section. 1In the Bjorken limit, it is obvioius that only

diagram (a) contribute to F_
F_=p, (1-x) idu ull+(1-2u) (1-x) 197 (w) ¢, (e(1-x)) (7.3)

Here the kinematic <elation Py = (l-x)p2 (in Bjorkens limit)

has been used. In order to evaluate W__ in the leading order in

% , we have to evalvate eqg. (7.3). Since in the Bjorken limit
k

*
+ =, therefore the asymptotic expression for ¢l(u) can be used
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¢I(u) " ,_ET%iG) sin(kmu) for large k.

Notice that in this limit, eq. (7.3) is nothing but the Fourier

coefficient of

w1+ (1-2u)x] u(12—-u) b, ((1-x)) .

The asymptotic behavior of Fourier coefficient are well known.(zz)

One finds that

k+1

F_ = pz_(l-x) f%= (-1) {x¢2(l-x)ea+... } (7.4)

in the Bjorken limit.
In eq. (7.2) we should really replace sum over delta function

by the densiti of states

o = 1
- ’
g?nN
Therefore,
2
W__=|F_{%
2 1 2.2 2,.2.2 2
= (p, (1rx)) 3 {x $5(1-x)e_+x o5 (x)ey ) (7.5)
- g Nk
(o, -xn? 5, 22,2
= {x e, ¢2(l—x)+x eb¢2(x) }
My
= %W(p )2 iz
M
2

The interference terms in |F_]2 cancel due to rapid variness of

(—l)k. (12) With the kinematic relation
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2 ‘ 2 _gn ., 2
q- + 2M2v = 2M2v(;-x) = Mk = % km
We obtain for W,
VW _ 1 2 2 2. 2.2
= = 5 2(1-x) x {ea ¢, (1 x)+eb¢2(x)} (7.6)
M2 2

In contrast to the fermion theory, VW scales in the boson theory.
This can be understood using the light cone expansion. We have

near the light cone

Vo(z) V_(0) v - Lo E=Es (@ a(z) (p (0)+ Pl2)6* (0) ) (7.7
47~ (z7)
Here [ (P*(z) (P(0) +@(z) @*(0) 1 has dimension 0. We would like

to point out that in the fermion theory the only operator with
dimension 0 is the unity operator. ”
It is interesting to compare with the calculation based on

(23)

Feynman's parton picture. The calculation is depicted in

Fig. 11. We follow reference 23 closely. For W__ we obtain

1 2 W
[
2
pem2el | g0 s (2 (x-5)) (6 g
= m) ‘e _— v (x- L
L a 22 2 E
-3 x’p2  £2(x) o2
a 2M2v X a
. (7.8)
Thus,
wo= M, 2k £2(x0) el . (7.9)
a
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Here fa(x) is the piobability of finding parton a with momentum
fraction x. We have discussed before that ¢2 = x(l-x)¢2 is

the probability density. Therefore,
o= my 2% (1% { e20% 0 + e262(1-x) )

This is in perfect agreement with our previous calculation.
The structure function for the scalar current can be studied

in a similar way. We quote here only the final result

i = % M, (1-x) (2% (x) + eZe?(1-x))

This agrees with Feynmah's parton picture and is consistent with

the light cone expansion.
It is important to check here the consistenconf our results
: on the form factor and the threshold behavior of the structure
function W. We have
2 28, 22 b |

. 2
L = 1 - 2 -y’ -
-3 = 0 2(1-x) {eaca (l-x} + ebcb(l x)
MZ 2

x+1
and from eq. (6.3)
: M2 B .
F_ = pz_ (1-x) (—%—) cb Idu u8+1 ¢1(u)

0

Notice that we have derived VW starting with the eqgs. (7.3)
and (7.4). Therefore, to check the validity of Drell—Yan—West(ls)
as well as Bloom-Grilman relation, all we have to do is to check

whether F. given in eq. (6.3) agrees with egs. (7.3),(7.4) in

«
, -
e -
S 0
|
| R -
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the limit of large k. The agreement follows from the asymptotic
evaluation of Fourier coefficient. It is easy to see that

1
I dau uf*l gt ) 4kt L K + o .

as
0 Jk

This proves the consistency of F_ . The Drell-Yan-West and

Bloom-Gilman relations are thus verified in our model.

VII. Summaries and Discussions

We have studied the large N-limit of the SU(N) scalar QCD
irn two space-time iimensions. In this model the current has the
virtue that it mimics nicely the behaviors of the current in the
four dimensional QCD. Furthermore the consensual properties of
the QCD, i.e., the infrared slavery, the quark confinement, the
charmonium picture etc. can all be realized. We have énalyzed
in this paper the cuark-antiquark bound state wave functions,
studied the behavicrs of the current form factors and e+e-
annihilation. In the deep inelastic scattering, we have found
that VW scales and satisfies the Drell-Yan-West and the Bloom-
Gilman relations, aad agrees nicely with Feynman parton picture
and the light-cone expansion.

It is pertinen= to remark here that our results and conclu-
sions are valid in the region of Ngz/n < mi . We do not expect
them to remain true in the other region E%— > mi and/or

2 P s R . . . .
m, . A similar sitrvation occurs in the massive Schwinger model.

(24)

Coleman has shown that the theory behaves quite differently
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. 2 2
depending on whether %r >> m2 or %T << m2. However he has not

pinned down the critical value of %; for the phase transition.
The result of our investigation using W.K.B. approximation
indicated that perhaps E%i = m2 is the critical value. The
W.K.B. approximation indicates that our results are valid only

We have not attempted to study the bahaviors
(25)

2
when E%— < m2

in the other region. Perhaps some kind of bosomization

procedure is called for in that.region.(zs)
It is also worthwhile to point out that Bardeen and Bander(27)
have studied the nonlinear O(N) o-model in 2 dimensions, especially

the problem of phase transition. They study the nonlinear theory

by taking the Ao + o limit of the linear theory

The phase transition they study is the relation between xo and

fo . The difference between the nonlinear o-model and our model
A
are twofolds. We do not have quantic term 13 (fg - 62)2. More-

over, the group properties in two models are different. The group
we discussed is a direct product of color gauge group andrflavor
.group. The group in their work is a flavor gauge group which is
spontaneously broken by the vacuum expectation value of 47.
Another comment concerns the similarities and the lack of
them in the scalar QCD and 't Hooft model. It is well known that
in two space-time dimensions, bosons and fermions are not funda-

(28)

mentally different. This is related to the fact that spin

loses its meaning in 2 dimensions. And therefore there is no spin-
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statistics connections. This may account for the fact that both
models have many common qualitative features. However, the
flavored vector currents behave quite differently in two models
mainly due to the softness of vector currents in the fermion .
theory ('t Hooft model).

Throughout the paper, we have used the singular cutoff
(A-cutoff) procedure of 't Hooft. It is a simple matter td check
that all the physical amplitudes and results remain the same if
the principal-value prescription of the infrared cutoff is used.

Before we conclude this paper we would like to mention the
problems that we have not studied here.

(1) Gauge problem: We restrict our consideration to the
light-cone gauge. The situations in the other gauges are much
more involved.la] For example, in the linear gauge n.A = 0,
the currents will contain the gauge field A. This makes the
expression of A in terms of color current j much more involved.
We have not pursued this and other gauge related problems in this
paper.

(2) Other physical processes: We have not discussed the
other physical processes, for example, the inclusive e+e_ annihila-

(30) (31)

tion, Regge behavior of the scattering amplitudes and the

problem of the Pomeron(3l)

These physical processes have been
studied in the 't Hooft model in references 30 and 31. However,
we expect that they behave similarly in our model.
(3) Strong coupling limit: We have not studied the ;trong
coupling limit of Ngz/n >> m? to see if our results remain valid..
(4) Relation to the string model: It has been sho;n‘that

the 't Hooft model is equivalent to a certain type of string model
in the serise that they yield same results for physical amplitudes.(32)
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" However, we do nct know at all whether similar equivalence exists

between the scalar QCD and certain other .string models.

Added note: While this paper is being typed, we come across
the work of M. B. Halpern and P. Senjanovic, Phys. Rev. D lg,.
1655 (1977). They discuss the connection between scalar QCD

and strings in two dimensions. The equation (2.20) in our paper

is also derived.
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APPENDIX

We would lixe to consider here another method of solution

* of the integral equation for. bound states in fermion theory.

The equation under study is

1
2 - o - ¢ (k)
voe(p) = 57 ¢ (p) fo (k-p)2 dk

1
o (k) g0

- a - . ’
paee 0@ {0 &=p) At

This type of equations appears very frequently in the study of

the ;irfoil.(33) There, one has

a
Mty l)[ r'(ryat

W - 7 t'to = f(t) = 4V0-(t))- A.2

-a
where T is the circulation of the airflow around the profile,
B(t) is a function related to the profile, V is the velocity of
airflow at infinity and a is the geometrical angel of incidence
and 2a is tﬁe span of the wing.

The treatment of this type of equation is well documented

in the literature. One just casts it into the fellowing form

w-w

. 0
T sin( )
_a sin w 2
Flug) = 2 J SR6 gn | [T (w)au
0 sin( 5—)

+ G(wo) + ¢
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where
t, = -a cos w
o ’

t = -a cos w v
G(wo) is a completely determined function which vanishes when

£ does, and cois-an integration constant.

Equation (1) corresponds to a = % and

1 __1 (ﬁz_ 40 )
B (w) m sinzw
w=uw
sin( 20) . .
Next the kernel 2#n e is expressed in terms of a
sin( 5 O)

complete set of functions {sin n w} ,

w-wy
sin(——) ©
gn | ——=— | = -7 2 Sin nw sin n w A4
w+w L.on 0
. 0 h=1
sin —;

It follows from egs. (A.3 and A.4) that

© g
_ 1 n _.
T(wo) =cy * T E & sin n wj A.5
: : n=1
and
T
a = I (uz— 4o )sin w sin nw I'(w)dew . A.6
n 2
0 sin"w

The boundary conditions ¢(1) = ¢(0) = 0 implies that F(wo) =0
when Wy = 0, or, €y = 0. It is easy to see that a, satisfies

the relation
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k=1 ku
T @ " 2 4
= z _l% J (€ - a ) sin w sin kw sin nw dw . A.7
k=1 knu sin"w . ’
0
Here,
In,k =0 : n - k odd
=1+ ; tn=k
4n"-1
= 1 5 + 12 : n - k even
1-(n-k) (n+k) “~1
"A.8
n+k) /2
?’ =27 —— :n - k even
n.k .
. -k 23-1
J=1+|27—| )
=0 :n - k odd
A.9

It is a hopeless task to solve the eigenvalue problem of an
iﬁfinite by infinite matrix. The best one can do is solving the
truncated equation. We are interested here in the eigenvalue

u2 >> a. Therefore we may neglect 4a3qhk as compared to uzln,k'

Thus
2 4 = ] — 1 a A.10
2 2 2 "%,k “k -

If we truncated the matrix to an nxn matrix, we have the follow-

ing relation between eigenvalues uf and the diagonal matrix

elements. . “~

se

\



A.11

This diverges as n + », From this one concludes immediately

that
1,2 . P
T2 5 in the large k limit.
k km
Namely,
ui = kn2 + less important term. A.12

This agrees*with the result of 't Hooft.

The numerical calculation for u2 beyond this leading term
is much harder. Hansen et al.(34) have done a great deal of
work in this direction. We refer the interested readers to their
work.

We would like to point out tha% the eéuation describing

bound states in scalar QCD can be rewritten as

c a
w? - = - lf—x) ax (1-x) (' (x)

‘ 1
= - f —H - Gy) (xty) (2-x-y)

0 (x-y)
1 @ 1 0

= - (y) (x+y) (2-x-y) _ Ly Q-x-y)
)[0 dy {y-x) 2 {o dy (y=-x)

A.13

Equations of this type involving ¢)and its derivatives (p(r)
occur in the study of aircraft wing of finite span. The general

study of these has been done by L. G. Magnaradze.[4]

(1]

(21

(3]

(4]

FOOTNOTES

See e.g. chapter 4 of ref. 20 and chapter 4 of
ref. 33
We use the covariant normalization of states

<plp'> = 2Ep §(p-p'). In 1 - 1 dimensions the tensors

q,(q-p) q,(q-p) P
P, - —q2 , P, - ——qz and (quq\, i

are not linearly independent. Therefore there is only
one structure function W in 1 - 1 dimensions.
The gauge problem in the 't Hooft model has been dis-
cussed in ref. 29. See also ref. 26.

See chapter 17 of ref. 33.
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FIGURE CA2TIONS

Feynman rules.

Second order self energy graph of quark.

Integral equation for the dressed quark propagator.

Bethe-Salpeter equation for the. bound states.

Graphic solutions of ecuations (3.8) and (3.9).

Bethe-Sa_peter equatior for the quark-antiquark
scattering amplitude.

The vertex of qgh coupling.

Graph for the matrix elements of <0|Sab|h> and

b b

<0|Vab|h>, x corresponds to either §2° or v®

Graph for calculating two point functions in the
free theory.

Graphs for the form fac-or <p1|Vu|p2> .

Graph in the Feynman pa-ton picture.



p2-mi+ie

p2

FlG.i‘

k —
ﬂ
P p+k - p
FiG. 2

g(p+p’)-

FIG. 3

ma

FIG. 4



FIG. 7

f+4

ki k

>

FIG. 8

FIG.5

'.Q’rq

FIG. 9

F1G.6




(a)

~(b)

FIG. 10

FIG. 44 -

(c)



——

T OREM=CO0zEE01 05
' ROCEZSING

1g 1 RH=CO02z201
“ITERSE 18-85
CROCESZIMG:

RIS A =1
ICCEEZION KO, > FERODIS33S

ITLE cmOmMQ: »
CEFORT HMOx
- TER:

Col--g220-1 05

Ctsbeses]

Icalar quantum chromodwn: dcs i

two dimensions and Farton mode]

-

-
*



