

22
10-13-77
25 to MTB

MASTER

UCID-17549

Lawrence Livermore Laboratory

TRACE URANIUM - ITS MEASUREMENT BY TIME-RESOLVED FLUORESCENCE

F. B. Stephens, G. R. Haugen and J. H. Richardson

July 15, 1977

This is an informal report intended primarily for internal or limited external distribution. The opinions and conclusions stated are those of the author and may or may not be those of the laboratory.

Prepared for U.S. Energy Research & Development Administration under contract No. W-7405-Eng-48.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TRACE URANIUM - ITS MEASUREMENT BY
TIME-RESOLVED FLUORESCENCE

F. B. Stephens, G. R. Haugen and J. H. Richardson
University of California
Lawrence Livermore Laboratory
Post Office Box 808
Livermore, California 94550

Abstract

An investigation was undertaken to extend the limits of detection of uranium in natural waters to the parts-per-trillion (10^{12}) level using a laser-induced fluorescence technique.

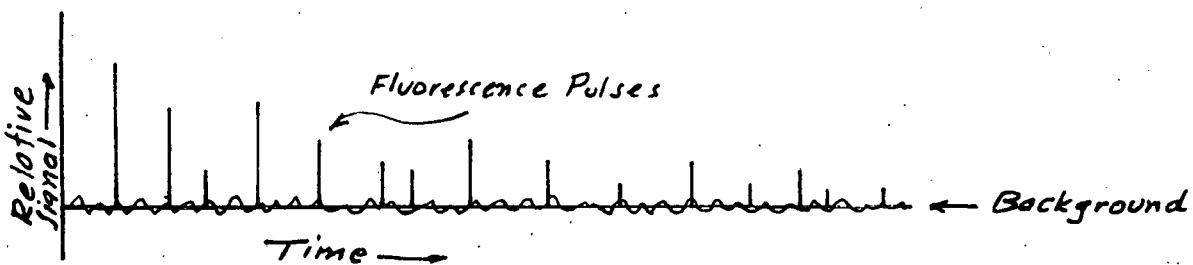
Observations of the time-resolved fluorescence spectrum were made using two techniques - boxcar integration and a pulse counting technique. Neither technique provided greater sensitivity into the parts-per-trillion range. This has been attributed to the long fluorescence lifetime ($\sim 55\mu\text{sec}$) of uranyl ion that results in a low fluorescence pulse density in the measured signal.

—NOTICE—
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

The determination of uranium in natural waters by fluorescence methods at parts-per-billion (10^9) levels has been reported by several investigators.¹⁻⁶ Using conventional fluorescence techniques, Danielsson, et. al.¹ were able to determine uranium in water containing 7 ppb U or less. Their method used an ion exchange purification step that also concentrated the uranium to about 150 ppb in the measured solution. Karkisch^{2,3} et.al., who also used ion exchange pre-treatment were able to measure uranium at about the same level in natural waters. The detection method employed the extremely difficult to automate technique using an alkali metal fluoride flux. Using X-ray fluorescence, Hathaway et. al.⁴ determined uranium in ground water at about the same level of concentration. Neutron activation^{5,6} has also been used successfully at the same or lower levels of uranium but requires the use of high neutron flux experimental reactor.

Recently Richardson, et. al.⁷ have demonstrated the increased sensitivity of fluorimetric measurements by several orders of magnitude using laser excitation instead of conventional light sources. They were able to detect riboflavin at the sub-part-per-trillion ($<10^{12}$) level by laser induced fluorescence. Richardson and Ando⁸ subsequently determined polycyclic aromatic hydrocarbons at the same levels by this technique.


The objective of the work described in this paper was an attempt to extend the limits of detection of uranium by one or two orders of magnitude (<0.1 ppb) using the laser-induced fluorescence technique mentioned above.

Experimental

Because we decided to use the ion exchange pre-treatment method of Danielsson, et. al.¹ for purification and a twenty-fold concentration of uranium, a known solution containing 200 ppb U (corresponding to about 10 ppb

in a water sample) was prepared and used in the measurements. The electrolyte employed was 1.35 M in both H_2SO_4 and H_3PO_4 . The instrumental setup (Fig. 1a) was the same as that used by Richardson and Ando⁸. A Molelectron UV 1000 N_2 laser and a Molelectron dye laser was operated at 30 Hz. The excitation wavelength was 305 nm (Rhodamine B, doubled) and the observed emission wavelength was 520 nm. An XP2020 PM tube was used as the detector at a maximum of 3000 V. A KV450 filter was placed in the light path just ahead of the PM tube.

Several measurements of the time-resolved fluorescence spectrum were obtained for the 200 ppb uranium solution and recorded after boxcar integration of the signal. Prior to boxcar integration the signal was sent through an integrating amplifier. A typical plot of the time-resolved fluorescence is shown in Fig. 2. It can be seen that an order of magnitude less uranium could probably be detected (1 ppb in a water sample) at the limit. This limit of detection does not present any advantage over that obtained by previous workers. The reason a lower limit of detection is not feasible in this case is that in using the boxcar integrator, the major portion of the signal being integrated is the near zero (on the average) background. The fluorescence pulses are present for only a small fraction of the total integration time. This is shown in the representation below:

Gating the photomultiplier tube and pre-integrating/amplifying the signal could improve the signal to background ratio.

Because of the above limitation, an attempt was made to count fluorescence pulses and discriminate against background by means of the circuit shown in Fig. 1b. In this scheme each laser pulse (30 Hz) triggers a signal source in order to provide a window pulse (100 μ s long) to the gate of a high frequency pulse generator operating at 2 MHz. This generator then provides a 100 μ s pulse-modulated signal that is fed to the START terminal of an ORTEC Model 457 time-to-pulse-height converter along with the PM tube signal at the stop terminal. Whenever a fluorescence pulse is preceded by one of the modulating pulses at the START input, its time from START is determined and the time of occurrence of each fluorescence pulse during the window is stored in the appropriate channel of an ORTEC spectrum analyzer.

Several time-resolved measurements of the same 200 ppb U solution were made. This measurement method resulted in the same degree of success in obtaining a lower detection capability as the boxcar integration method. For a typical 200 sec. run, the total counts of all channels in the window pulse was 25.9K for the 200 ppb U solution while the blank produced 6.5K counts.

Discussion

It became obvious during the experiments that a fundamental reason existed to prevent a significant improvement in obtaining a lower detection limit for uranium by observing its time-resolved fluorescence spectrum.

Initial measurements showed that the fluorescence lifetime of uranyl ion was about was about 55 μ sec. The fluorescence lifetime of riboflavin for example, is on the order of 5 nsec; a difference of 4 orders of magnitude. As a result,

fluorescence photon energy for uranium is spread over time such that the fluorescence peak density is low. This low density negates the advantages of boxcar integration techniques for effective measurements of long lived fluorescent species.

The counting technique fails because of the same fundamental reason - not enough pulses per unit time. This could be overcome by counting the pulses for a greater number of time units in two ways; (1) increase the laser pulse rate by a factor of 300 (not possible with the Molelectron). If this could be done the total counts would be about $26K \times 300$ in the same real time and the signal to noise ratio would improve by $(26 \times 10^3 \times 300)^{1/2}/(26 \times 10^3)^{1/2}$ or 17 times. (2) increase the total counting time at the laser pulse rate of 30 Hz to obtain the same total counts as above. This would require over 16 hours and is impractical.

It appears, therefore, that the determination of long-lived fluorescent species such as uranyl ion at the parts-per-trillion level is not feasible using the measurements methods described. Perhaps other approaches to the problem would be more fruitful.

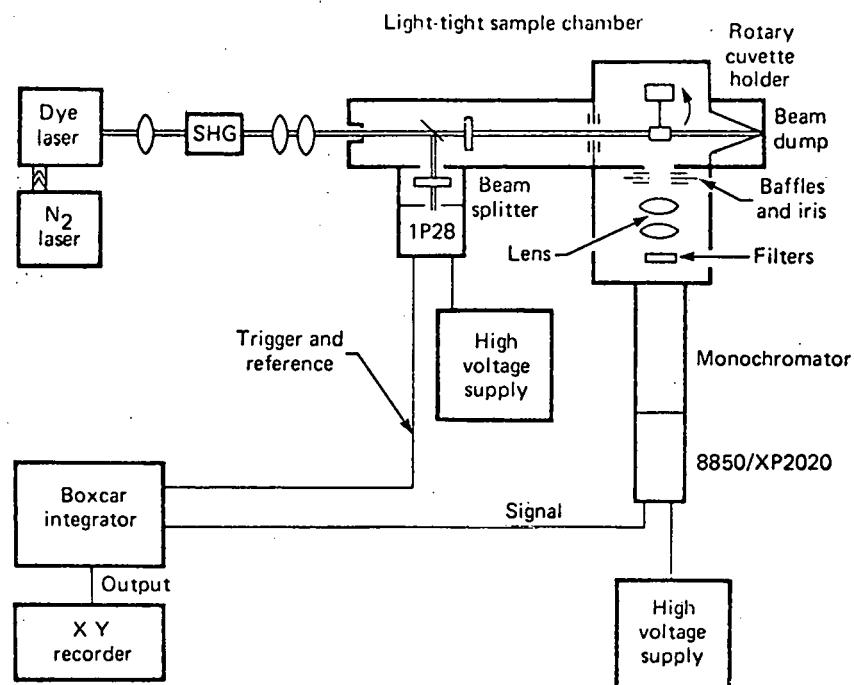


Figure 1a. Schematic of the experimental apparatus used

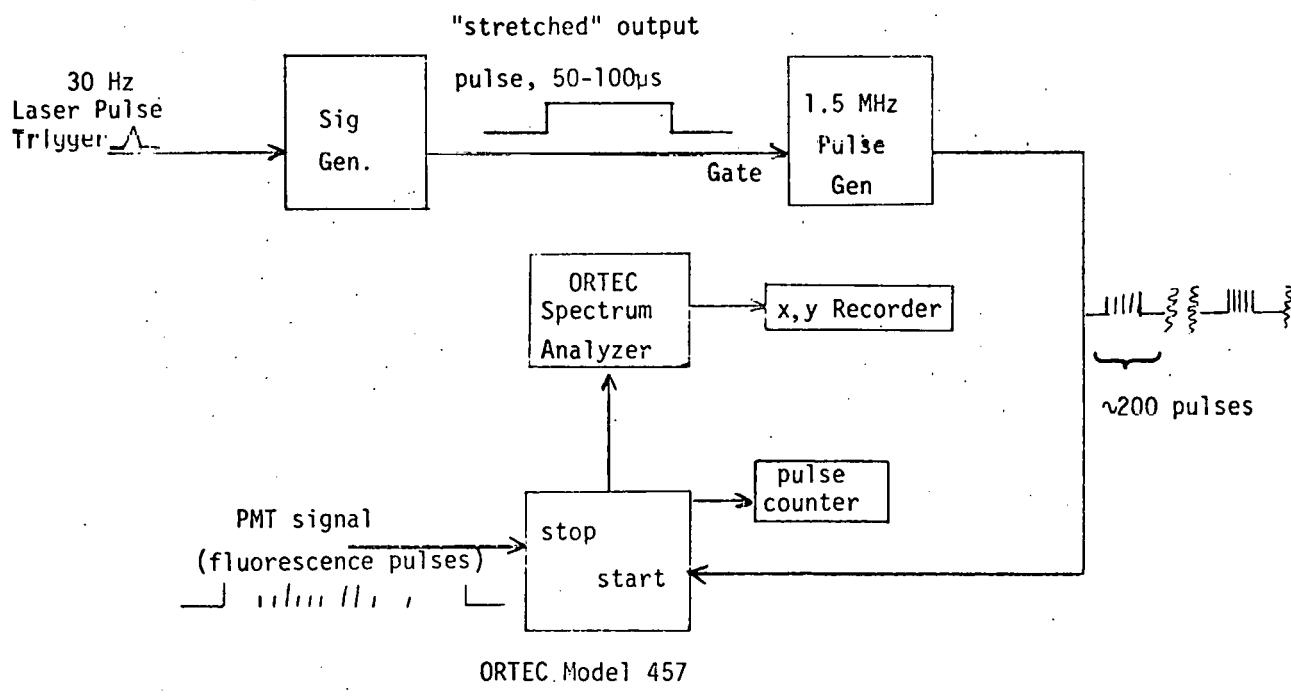


Figure 1b. Schematic of circuit used to count total pulses during 50-100 μ s window.

RELATIVE FLUORESCENCE INTENSITY

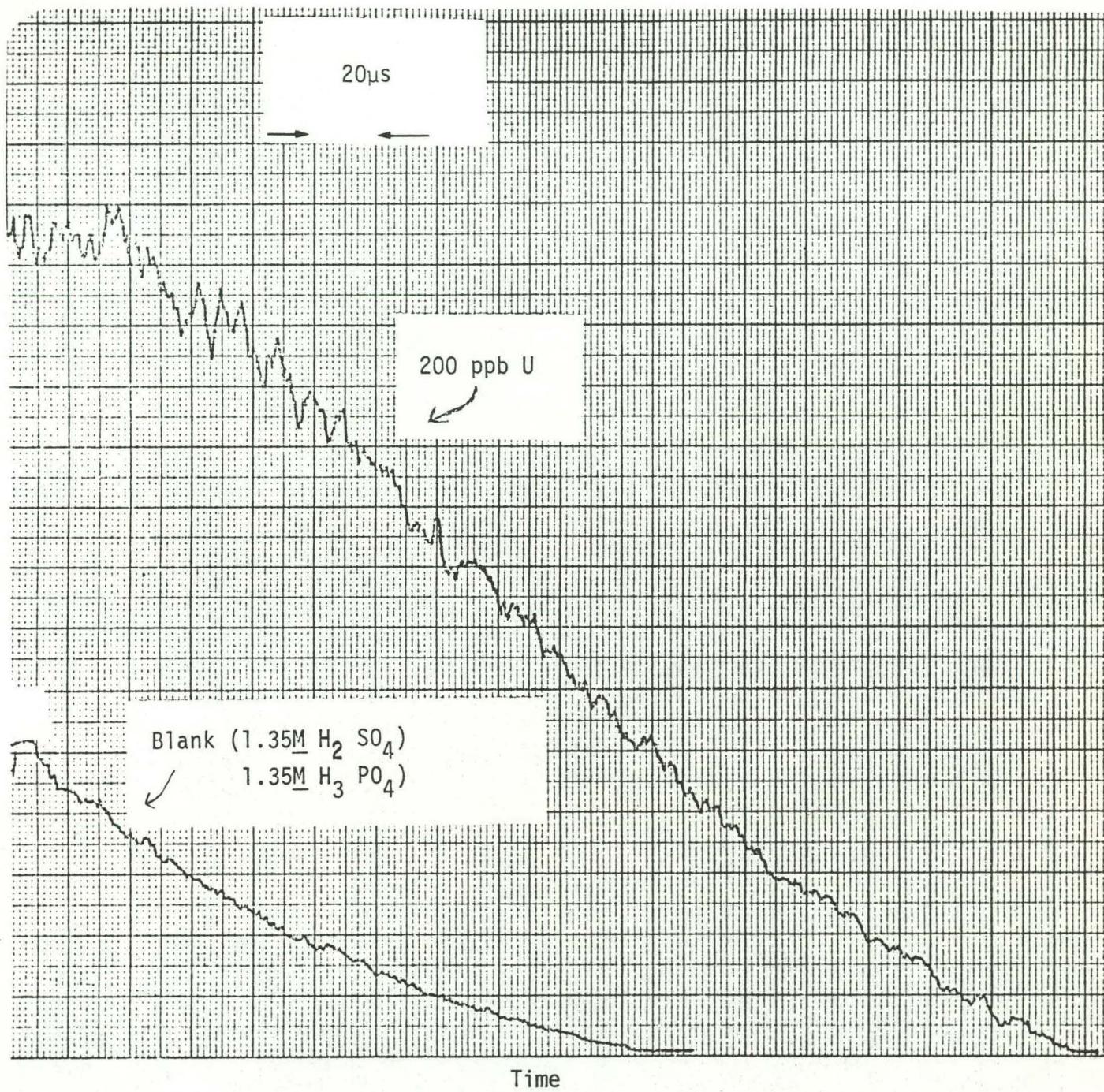


Figure 2. Time-resolved plot for uranium (200 ppb) in 1.35M H₂SO₄/1.35M H₃PO₄.

References:

1. Allan Danielsson, Bengt Rönnholm, Lars-Erik Kellström, and Folke Ingman, Talanta 20, 185 (1973).
2. J. Korkisch and H. Krivanec, Talanta 23, 295 (1976).
3. J. Korkisch and L. Gödl, Anal. Chim. Acta 71, 113 (1974).
4. Lawrence R. Hathaway and Gerard W. James, Anal. Chem., 47, 2035 (1975).
5. R.J.N. Brits and M.C.B. Smit, Anal. Chem., 49, 67, (1977).
6. Ernest S. Gladney, James W. Owens, and John W. Starner, Anal. Chem. 48, 973, (1976).
7. J. H. Richardson, B. W. Wallin, D. C. Johnson, and L. W. Hrubesh, Anal. Chim. Acta, 86, 236 (1976).
8. J. H. Richardson and M. E. Ando, Anal. Chem., 49, 955 (1977).

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research & Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.

NOTICE

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Energy Research & Development Administration to the exclusion of others that may be suitable.

Printed in the United States of America
Available from

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Price: Printed Copy \$: Microfiche \$3.00

Page Range	Domestic Price	Page Range	Domestic Price
001-025	\$ 3.50	326-350	10.00
026-050	4.00	351-375	10.50
051-075	4.50	376-400	10.75
076-100	5.00	401-425	11.00
101-125	5.50	426-450	11.75
126-150	6.00	451-475	12.00
151-175	6.75	476-500	12.50
176-200	7.50	501-525	12.75
201-225	7.75	526-550	13.00
226-250	8.00	551-575	13.50
251-275	9.00	576-600	13.75
276-300	9.25	601-up	*
301-325	9.75		

* Add \$2.50 for each additional 100 page increment from 601 to 1,000 pages;
add \$4.50 for each additional 100 page increment over 1,000 pages.

Technical Information Department

LAWRENCE LIVERMORE LABORATORY

University of California | Livermore, California | 94550