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ABSTRACT

The inffuence of electron trapping on a large amplitude plasma
oscillation driven by the nonlinear interaction of two electromagnetic
waves (stimulated Raman scattering) is studied analytically and by
means of numerical simulation. When the plasma oscillation is resonantly
- excited to sufficiently large amplitude and electron trapping occurs,
there ensues considerable modification of the electron velocity distribution
function. The stimulated scattering ceases to be a resonant three-wave
process but continues as induced scattering by resonant electrons (stim-

ulated Thomson scattering).
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I. Introduction
| The nonlinear processes known as three-wave'decay and induced

scattering are c]ose]y're]ated. The present study shows how particle
trapping can cause the former process to evolve into the latter.
| To be specific, we consider two electromagnetic plasma waves (w], w2)
subject fo the decay process, whereby the ponderomotive potential at the
beat frequency (w1 -y = wo) drives a Langmuir wave (wo ~ wp), thereby
inducing Raman decay. This process has been extensively studied in many

1-14 but the waves have usually been treated as being of small

contexts,
amplitude. When one of the waves (the Langmuir wave) is of sufficiently
large amplitude so as to trap electrons, the process is greatly modified.

In a previous paper,15 we developed analytical tools for interpreting
computer-simulation results of the process, by considering the more

~ tractable model where the electromagnetic-wave amplitudes were held fixed.
Our conclusions from that study will be discussed in the following section,
as an introduction to the present study in which those amplitudes evolve
appropriately from the nonlinear wave'coup11ng.

In the course of the three-wave decay, energy is deposited irreversibly
intovthe plasma electrons by trapping. The consequent increase in electron
kinetic energy and momentum changes the plasma response, at the beat
frequency, from being a nearly resonant collective wave (resonance meaning
Wy -, ® wp) to being a non-collective particle resonance [w] -y =
(K] - EZ) . 3]. Such a response is sometimes described as a "quasi-mode,"
and the associated electromagnetic-wave evolution is called induced

scattering.s’]s']9
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In Section II, we shall review prior studies of three-wave decay,
‘as they relate to the present work, and shall discuss our conclusions

15 In Section III, we present the analytical

from our previous paper.
theory associated with the nonlinear process under investigation. The
electromagnetic waves and their coupling are adequately treated by a
cold-fluid model, but the beat-wave response demands a fully kinetic
treatment. Since the Tatter is not yet amenable to analytic solution,
computer simulation is used to study the process. Section IV is devoted
to a presentation of simulation results and to their detailed interpref

tation. The final section summarizes our conclusions and discusses

practical implications.

II. Literature Survey
Three-wave interactions are encountered in many branches of physics.
Consequently, there is a large literature associated with the study of

1-38 Lhich

these prbceSses. We shall draw attention to a number of papers
are relevant to the present discussion, but shall review Reference 15 in
some detail because of its specific interest to this study.

Much of the early wurk un stimulated scattering of electromagnetic
waves has come frém researchers in solid-state physics and nonlinear

1-4,20,22

optics. Many classic papers on three-wave interactions have

‘been written by workers in those fields. An apparently universal feature
of these processes is the emergence of a Manley-Rowe cond1’t1’on.22'26
Generally speaking, the Manley-Rowe condition can be formulated as a

conservation law for wave action or quanta. Our present study illustrates
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how the wave action of two of the waves participating in a three-wave decay
or induced scattering is conserved independent of the details of the
dynamics of the third wave (Langmuir wave) or quasi-mode involved. The
Manley-Rowe condition dictates important constraints on the energy and
momentum transferred in these processes.

The linear aspects of three-wave interactions and -induced scattering,
so-called parametric instabilities, have been recently reviewed in Reference
21. A particularly comprehensive study of the parametric instabilities
associated with the stimulated scattering of electromagnetic waves in a
homogeneous, unmagnetized plasma appears in Reference 5. The calculation
of the nonlinear aspects of three-waves interactions have evolved from the
early considerations of Sagdeev and Ga]eev,27 describing the cyclic
behavior of three couﬁ]ed modes in the absence of dissipation, to the use

28 which has allowed the

. of the sophisticated inverse scattering method,
space-time description of coupled, convecting pulses. Recently, Reiman,
Bers, and Kaup have extended the application of the latter method to the
solution of coupled modes with no linear dissipation in an inhomogeneous
medium.29

The three-wave decay ceases to be reversible wheh the waves ére subject
to dissipation (or instability). There have been many interesting studies
of the influence of linear dissipation on three-wave interactions fn both

9-12,30,31 1pe present work deals

homogeneous and inhomogeneous media.
with a specific example of irreversible three-wave decay in which there
is (nonlinear) dissipation owing to a wave-particle resonance and trapping.

When the damping is severe the three-way interaction is described as
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5,16-19

nonlinear Landau damping or induced scattering. Litvak and

16 18

Trakhtengerts, ° Johnston, ° and Johnston and Ku]sr‘ud]9 have contributed

important papers on induced scattering. The further decay of a decay-product
wave can also provide the initial decay process a source of dissipation.

32

This is called multiple scattering™ or cascading.‘7

7,9,11,12,15,38 in this area has been partially motivated

Our own work
by the possibility of using stimu]ated scattering as a means of heating a
plasma with lasers. Beat heating and optical mixing have been areas of

6-12,33-38 Reference 38 contains a review of

active research for some time.
research on various aspects of beat heating in homogeneous or inhomogeneous
plasmas, and for 1ineqr and nonlinear beat-wave. The present study and
Reference 15 are outgrowths of Reference 38, and address themselves to

the effects of trapped‘partic1es on beat heating. In Reference 38 are

. presented quantitative arguments supporting the possibility of electron
trapping in plasma waves resonantly excited by the beating of CO2 lasers

in a ¢-pinch plasma. The present study and that of Reference 15 also
analyze the more fundamental problem of driven nonlinear plasma waves.
While there has been considerable study of nonlinear, freely propagating

39-41

plasma waves, much Tess attention has been given to the driven

case.]5’42’43

In order to follow the nonlinear orbit modifications of the electrons
in their own self-consistent longitudinal fields, we have performed
computer simulations describing the evolution of the scattering. The

authors of References 13,14, and 17 have also numerically simulated the

effects of trapping on induced scattering and Raman scattering. Litvak
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Petrhkhina, and Trakhtengerts studied the induced scattering of two

transverse waves by resonant par'cides.]7

Their numerical calculations
exclude plasma collective effects, i.e., the self-consistent Coulomb
potential is ignored. We include collective effects in our simulations
by solving Poisson's equation in order to examine Raman and induced
scattering together.

13 and of

We also extend the work of Forslund, Kindel, and Lindman
K]ein; Ott, and Manheimer*,]4 who coﬁsidered the nonlinear saturation of
stimulated Raman scattering due to electron trapping. Out study differs
in various respects. We have chosen the initia] amplitudes of the
electromagnetic waves to be comparable. This serves to immediately excite
a large amplitude p{asﬁa wave which rapidly traps electrons. We can
therefore ignore ion effects which presumably occur on a much longer

‘time scale.38

We then follow the scattering over many bounce periods of
the trapped electrons in order .to examine the long-term evolution of the
scattering process and the substantial modification of the electron velocity
distribution function which occurs.

This paper is the logical conclusion of our earlier study described
in Reference 15. This earlier work focused on the nonlinear plasma response
to resonant. excitation near the electron plasma frequency by a constant
amplitude, finité-wave]ength, external force. The exciting field represented
a ponderomotive force, and the principal nonlinear feature of the plasma
response was particle trapping. The nonlinear dielectric response of the

plasma was described in terms of a nonlinear frequency shift and a dis-

sipation rate. The effects of trapped particles were analyzed in detail.
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.~ In our simulations, large negative frequency shifts, due to extensive
trapping, were observed, with a time-dependent damping rate initially in
excess of that predicted by linear theory (Figures 2 and 4 of Refernce 15).
The frequency mismatch between the ponderomotive driving frequency and

the nonlinear normal mode frequency gave rise to a modulation of the
amplitude and phase of the plasma response. Particle trapping produced
fﬁrther modulation at a higher frequency, the trapped-particle bounce
frequency. Energy and momentum conservation laws were presented which
illustrated the relationships of the nonlinear phenomena.

The present study extends the calculation of Reference 15 by including
the se]f—consistent determination of the ponderomotive force for stimulated
Raman and Thomson scattering. We shall analyze the evolution of the
electromagnetic-wave amplitudes and the plasma modification by again utilizing
. the concept of a nonlinear dielectric function. We also introduce the
hybrid simulation of the scattering, wherein coupled-mode equations describing
the electromagnetic waves are combined with a one-dimensional electrostatic
_ particle code.44 |

Many of the features observed in the simulations in Reference 15 are
also found here. However, because the ponderomotive force is now calculated
self-consistently and not held constant, there is a finite amount of energy
available to the electromagnetic waves and the plasma. We observe appreciable
depletion of the higher frcquency Lransverse wave and consequent plasma
heatingf‘ Because of nonlinear effects, the excited electron plasma wave
becgmes heavily damped; and induced scattering supercedes Raman decay. Our
results are thus particularly relevant to the understanding of trapping

7-12

effects on beat heating and on optical mixing for use as a plasma-laser
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amp]ifier.45 Similar nonlinear effects should be important in schemes
proposed for the generation of microwaves by relativistic electron

46,47

beams and for the free-e]ectron 1aser,48 which also employ stimulated

scattering processes.

ITI. Theoretical Formulation

For the sake of simplicity we consider an unmagneéized, uniform
electron plasma of warm, mobile electrons with a fixed, neutralizing ion
ba;kground. Furthermore, we treat the transverse wave amplitudes as
spatially uniform and consider the development of the scattering in time
only. The entire analysis may be genera]iied to a weakly inhomogeneous
p]asmé.]2538

We represent the electromagnetic waves, linearly polarized in the y

direction and propagating in the +x direction, by their transverse oscillation

velocities,

uy(x,t) = u](t)exp(-1m]t + 1k1x) + uz(t)exp(-1w t - 1k2x) +c.c., (1)

2

with slowly varying amplitudes Uy and U, of the two opposed transverse

waves (w] > w2); the wavenumbers satisfy the dispersion relation k2c2 =

w2 - w 2, where W is the unperturbed plasma frequency.

p
We cast the density .perturbation in a beat representation

b

sn(x,t) = E ﬁl(t)exp(—ize) +c.c. =

ﬁ](t)exp(-iwot'+ ikgx) + c.c. + ... (2)
where 0 = mot - kox, Wy T wy - W, is the beat frequency, and kp = k] + k2

is the beat wavenumber. (Henceforth, we shall drop the subscript on the

amplitude of the fundamental.) The neglect of the density perturbations
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at the sum frequencies (w1 *+ wys Zw], and 2w2) has been discussed in
Reference 12.

5,12

We adopt a cold fluid model™’ “for the transverse velocity;

the current density is thus jy(x,t) = uy(x,t) ny * én{x,t)|. The density
perturbation én is not necessarily small compared to Y and its calculation
will be fully kinetic. We follow Reference 12 and obtain from Maxwell's

eqdations and the fluid dynamical equations

duy/dt = -(i/2) (wpz/w]) (7/ng) u,

dup/dt = -(1/2) (w%/0,) (i /ng) uy, (3)

where oﬁ]y slow temporal variations are kept in the nonlinear coupling
_terms. . We note on the right sides of Equations (3) that.the coupling
strength i; independent of nO,.which cancels, and that n may be arbitrarily
large. Mu]tip]e scattering and the couplings to other transverse waves
arising from the density berturbations at the harmonics of the beat
frequency and beat wavenumber are ignored. We also neglect collisional
damping throughout the analysis.

We introduce $O(f), the slowly varying (complex) amplitude of the
ponderomotive poténtia], ‘

o dglt) = .(m/e)u]uz*.
_The electron charge is taken to be e. The ponderomotive force associated
with this potential is just the beat-frequency component of the longitudinal
v x B force on the electrons due to the high frequency waves. The amplitude
of the ponderomotive field is given by Eo(t) =-ﬁk0$0(t). The ponderomotive

force drives the density perturbations.
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The wave-action density of each transverse wave is given12 by
J = w(m/e)zlul?/Zv, and the wave energy density is wJ. The conservation

law for transverse-wave-action density is obtained directly from Equation (3)
(d/dt)(9; + 3,) = 0. (4a)

Use of the continuity equation,
-imoen(t) + ikojx(t) = 0,

(where 5x(t) is the slowly varying amplitude of the beat-wave current)

yields the action transfer rate
= I (4b) |
dJ]/dt = -2Re(EOJx )/wo. .
We introduce the wave-amplitude phases 6 defined by u = |u|exp(-i8) and
determine from Equation (3) the additional relation,
ko
Jéw = Re(en ¢g), (5)

for 8w = de/dt, the nonlinear frequency shift of each transverse wave.
Equations (4) and (5) are valid for linear or nonlinear density perturbations,
and can be generalized to the case of a nonuniform magnetized plasma and

to the inclusion of the spatial dépendences and convection of the

transverse-wave amph‘tudes.]2

Conservation of transverse-wave action density implies that transverse-
k3 - -> +
wave energy and momentum densities, W = wJ and P = kJ, are not conserved.

Their (non-)conservation laws are deduced from Equation 4b;
(d/dt)(w] +w2) = w]dJ]/dt + wszZ/dt
. R
= (w] - wz)ddl/dt = deJ]/dt = -2Re(EOJX) . (6)

and
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-> > > ~ ~ %
(d/dt)(P1 + P2) = -(ko/wO)ZRe(onx ). (7)
Equations (6) and (7) state that the rate of energy and momentum lost
or gained by the transverse waves equals the rate at which energy and
momentum are deposited'into.or withdrawn from the plasma by the pondero-
motive force.

We deduce from Equations (4), (6), and (7) that the rate of action
transfer, and hence of energy and momentum transfer, is zero when EO and
jx (or ﬁ) are 90° out of pnase. From Poisson's equation for the self-
consistent potential, ¢(x,t) = % £g(t)exp(-ile)+ c.c. = o(t)exp(-io) +

c.c. + ..., we obtain ¢ = 4nﬁe/k02 and conclude that there is no action
transfer when ¢ and 50 have a relative phase of 0° or 180°. There is then

no momentum transfer nor work done by the ponderomotive force, and the
transverse waves acquire steady nonlinear frequency shifts as the conse-

-1

- K -
quence of the coupling: sw = J "Refen ¢0). Any eventual steady state must

be consistent with these conditions and relations.

15

We have shown elsewhere ™ that the (possibly nonlinear) dielectric

response to the ponderomotive potential can be expressed as ¢(t) =

5'1(k0,m0 + idt) -1] éo(t). We describe the plasma response to be "quasi-
steady" when we can set d/dt = 0 in evaluating the dielectric function, i.e.,
e(ko,w +id, [¢ + ¢O ] (ko,wo)[$ + @0]. Use of the Poisson equation
and the quas1-steady 1imit of the dielectric function in Equations (4) and

(5) gives
ddy/dt = -dd,/dt = In(c™")|Ey|%/2n (8)

and

dud = Re(c™! - 1)|E0f/4n | (9)
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In the quasi-steady 1imit, the nonlinear dielectric function,
evaluated near a resonance, is given approximately by

o) |8 + v, (10)

e(kgsug) ~ 5(“61)[“0 B mnl]
where the nonlinear eigenfrequency g satisfies e(kO’wnz) = 0, and
€ = 3e/3w. The frequency mismatch A and the dissipation rate v are defined

) =~

by 4 = vy - Re w  and v =-Imw_ . For weakly nonlinear waves, &(w

ng ng ng

-1 . T .

2wp if koxe <<1, wherexe = ve/wp is the electron Debye length. The
justification of the quasi-steady approximation in Equation (10) requires
that .Iwo - wn2| >> |d/dt|.

We can use Equation (10) to express the right sides of Equations (8)
and (9) as -(vmp/ZAz)Iﬁolz/Zn and (wp/2A)|E0|2/4n, respectively, for
|v]<<]a]<< Wp- It is evident that irreversible action, energy, and
momentum transfer‘require finite dissipation in the plasma dielectric
~ response. The reversible action transfer that three coupled linear normal

27) does not occur here,

modes exhibit (described by Sagdeev and Galeev
because of heavy damping. However, if the dissipation of the density
perturbation oscillates about zero, because of the bouncing of trapped
~ particles, for example, the action transfer will also oscillate. Only if
the dissipation asymptotically were to vanish, and the frequency shift
to approach a finite value would action transfer cease. fhe transverse
waves would then exhibit constant nonlinear frequency shifts also [Equations
(5) and (9)].

We define the total response potential ¢ as the sum of the Coulomb ¢

and ponderomotive %0 potentials:
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o(x,t) = o(x,t) + ¢0(x,t) = i(t)exp(-iwot + ikox) +c.c. + ...

In References 15 and 38 we have demonstrated that the time-dependent

complex eigenfrequency dng can be constructed from a knowledge of &(t)

and $O(t) by utilizing a Taylor series expansion of the nonlinear dielectric

function. To Towest order in Iwo - ot i(d/dt)|/]w,,|<<1, we have

obtained _
| (50 = wng * 1(A/d0)[6(2) = 6 (£)/E(uy, ) (1)

The nonlinear frequency shift & = Re(wnz - wz) [the Tinear eigen-
freqqenéy w, is determined from the 1inear dielectric function: Ez(“z’ko) =

L

0] and the nonlinear dissipation v = Imw__ are deduce from the simulation

ng
1

results, ysing Equation (11) with &(y_ ) = 2wp' . Only for weakly nonlinear,

ng
freely propagating plasma waves, has perturbation theory been successfully

used to analytically construct € and Wogs when to good approximation the

[
wave amplitude could be assumed constant in calculating the perturbed

particle orbits.41

The phenomenon considered here is dominantly nonlinear
and demands a fully self-consistent, non-perturbative description. This
encourages the use of particle simulation, a discussion of which follows in
the next section.

To further emphasize the degree of nonlinearity in the phenomena

considered here, we formally integrate Equation (11):

t t
it) = -1 favaen Ty eensi [ ot (2], (12)
0 t
where By =99 = g The pldasma response is secular near the resonance

By = 0; however, the interaction of the beat-wave potential ¢0(x,t) with

the plasma is shifted away from resonance by the nonlinear electron
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0 Equation (12)

describes the ensuing modulation of the total potential #(t) at the

dynamics. There is induced a finite, complex-valued i

mismatch frequency Boge There is modulation also at the bounce frequency,

if there is trapping.]5’41

When the nonlinear frequency shift or
dissipation becomes appreciable in magnitude compared to the plasma
frequenéy Wy the Taylor-series expansion leading to Equation (11) is no
longer valid.

When the three-wave decay becomes nonresonant we must re-examine
the neglect of the density perturbations at the frequencies Zw], 2w2, and
wy + wy aS compared to the Tow frequency-beat perturbation. The former
perturbations have high phase velocities for which there are few resonant
particles. Consequently, Ime ~ 0 and Re € = 1; the plasma response is
essentially reactive. As these density perturbations contribute to the
nonlinear transverse current, there are additional nonlinear couplings
which are additive to the right sides of Equations (3;9). However, because
the plasma response is reactive, these couplings only induce small frequency
shifts in the transverse waves.12 These shifts scale as lu/cl2 and are
therefore the same order as relativistic effects49 which have been ignored
throughout. This.justifies the confinued neglect of the high frequency
density perturbations.

'On the other hand, the low frequency beat-wave can continue to
interact with the plasma in an inieresting and significant fashion, even
when electron plasma waves are no lTonger resonantly excited. A wave-particle
resonance remains accessible to the beat-wave: wy = wy T (?] - ?2)-7. When
this resonance condition is satisfied by'a large number of electrons and

the distribution function has finite slope at the resonant ve]ocity,'
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>16-19 11 ¢ is then appreciable,

stimulated Thomson scattering occurs.
and the plasma response is considerably resistive. In fact, the beat-
wave can be heavily dambed, with action transfer continuing nevertheless.
Therefore, in our simulations we have followed the temporal development

of the scattering well into regimes in which the beat-wave is heavily

damped.

IV. Computer Simulations
Numerical simulations were performed to investigat2 the back-reaction
of trapping on the scattering of the transverse waves in a regime of non-

linearity where analytical perturbation theory fails. This regime4]

corresponds to vtwo/k0 = vez, where the trapping velocity v, is defined as
1/2 .

vy = |2e¢/m| and v, (T/m)]/z. The simulation plasma was taken to be
periodic. and initially uniform. The equations for the transverse-wave
amplitudes, Equations (3), were adjoined to a one dimensional, electrostatic

44 (ES1); integrations were performed forward in time,

particle code
treating the stimulated scattering as a time-dependent initial value

problem. At each time-step, the transverse wave amplitudes were incrementally
changed according_to Eyuatfon (3), using a first-order Euler differencing
scheme. The ponderomotive potential ¢0(x,t) was then constructed, and the
electron velocities and positions advanced using the gradient of the
-ponderomotive and self-consistent Coulomb potentials. Ions were treated

as a fixed charge-neutralizing background. The self-consistent Coulomb
potential was obtained from solution of'Poisson's equation given the charge
density. Finally, from the Fourier component of the density perturbation,

at the beat wavenumber and frequency, the coupling of thc transverse waves

was calculated using Equation (3).
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By adjoining the coupled mode equations to an electrostatic
simulation, there is then no restriction on the time-step of the inte-
'gration due to the high'frequency waves, which would otherwise require

p
satisfied prt < 0.2. Energy, momentum and action were all conserved

that w]At << 1'in addition to w At << 1. 1In practice, the time step

within a few percent.

This simulation scheme precludes the possibility of the two trans-
verse waves scattering further into any other electromagnetic waves.32
Immobilizing the ions prevents interactions of the transverse waves and
the excited plasma wave with the ions, for example, the parametric
decay of the electron plasma wave into another plasma wave and an ion
acoustic wave.50 Reference 38 describes the range of parameters for which
electron trapping can occur well before parametric instabi]ities involving
ionslare-signifiéant.

In our simulations, we chose the following parameters:

wy = wps wy T 5wp’ wy = 4wp, u1(0) = u2(0), and wo/kO = 3v, = ¢/9.

This choice of beat-wave phase velocity relative to the electron thermal
velocity causes the resonantly excited plasma wave to be weakly damped
according to 1ineér theory. However, with wo/kO = 3ve there is a reasonable
number of simulation particles at v = mo/k0 even with only a modest total
‘number (4000) of simulation particles. The range of transverse wave
amplitudes considered was 0.3 < |u](0)/v9| < 0.9, which induced ponderomotive
potentials of magnitude 0.09 < leéo/Tl <0.9.

Results typical of simulations exhibiting considerable trapping are

“shown in Figures 1-5. The (total) electric field response E = -(3/3x)o(x,t),
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longitudinal phase space, and the longitudinal velocity distribution
function are displayed in Figure 1 at wpt/Zn = 6, 68, and 125. At early
times there is a large émp]itude response driven nearly in phase with
the ponderomotive force (Figure la); longitudinal phase space has a hole
centered over the bottom of the potential well (Figure 1b); and the
distribution function has a distended, nonmaxwellian tail for v > wo/k0
(Figure 1c). At later times the electric field response and the pondero-
motive force are both weaker than at early times and out of phase. The
total potential well is not so deep as before, and the hole in phase space
(related to the separatrix between trapped and unfrapped electrons) is
reduced. The distribution function is further deformed concomitant with
the continued scattering.

In Figures 2a and 2b are plotted the (real) amplitudes of the pondero-
motive pbtentia] and response, and their respective phases, as functions
of time. The plasma response builds rapidly to a re]étive]y large amplitude
in a few plasma periods. Initially the phase of the response relative to
the ponderomotive potential is =n/2, which is the appropriate phase for a
maximum rate of action transfer out of the high frequency transverse wave.
Later in time, as a consequence of nonlinear effects, the response amplitude
and phase are modulated dominantly on the time scale of the mismatch
Iwo - wn2|50.1wp as described by Equation (12). In addition, the response
'amp1itude has superimposed a finer scale, more rapid oscillation at the
directly observed bounce frequency of trapped electrons 31 ~ 0.5 wg- (The
phase-space trajectories of individual electrons were followed in the

rest frame of the beat wave.) This bounce frequency is slightly less than
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the standard bounce frequency of a deeply trapped particle Ji z kOVt’
which is calculated from the time-averaged amplitude of o(x,t). The
tendency for Ji < di was observed and discussed in Reference 15, and is
consistent with particles not being trapped near the bottom of the
potential well, for which the hole in longitudinal phase space is good

S

evidence (Figure 1b). Because Iwo - << di, w, there can exist

9ng
trapped particles which respond more or less adiabatically to the modulation
of the potential produced by the mismatch. However, particles near the
separatrix do not'respond adiabatically and are observed to suffer recurrent
trapping and detrapping.

The ponderomotive potential, as well as the response, oscillates on
the mismatch and trapping time scales, due to the reaction of the density
perturbation back on the-coup1ing of the transverse waves according to
Equation (4). However, the oscillations of $O(t) are of lesser degree
than for ®(t). The general decrease of |$0| is due to depletion of the
high frequency transverse wave. After the early period of considerable
action transfer and strong plasma response, the relative phase 6 -9,
oscillates fairly steadily but with large excursion (z =/2) around zero
with frequency approximately equal to the mismatch Anz(t)' One recalls
from Equation (4) that a relative phase of zero corregponds to no action
transfer, and +n/2 corresponds to relative extrema of the -action transfer
rate for fixed Iéol and |5X|.

In Figure 3 are shown the nonlinear frequency shift §q and the total
dissipation rate v as deduced using Equation (11). Initially the damping
rate far exceeds the linear Landau damping rate, vl/mp = 0.03. In the

small amplitude limit, only resonant particles (v ~ wo/ko) contribute to
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the damping of the wave. However, when the wave amplitude is finite,
the resonance width is broadened. The nonlinear damping can be quite
large depending on how much of the velocity distribution function is
resonant and the relative preponderance of resonant particles with
ye]ocities v < mo/ko. This phenomenon has been observed in experiments

51

and simulations, and understood theoretically. As our simulation

progresses the dissipation exhibits fairly large oscillations around zero

at the mismatch frequency and smaller, more rapid variations at the

trapping Frequency w The frequency shift also exhibits modulation

0
t-
effects and is negative in keeping with the presence of trapped partic1es.4]
A detailed discussion of the time dependence of the deduced frequency shift
and dissipation rate, andits relation to the modulation and trapped-particle
effects, is contained in Reference 15.

Later in the simulation, we observe a general increase of the mismatch
Iwo - mnzl’ and hence decrease of |5/50(- This is closely related to the
continued deformation of the velocity distribution function as implied by
momentum and energy conservation laws, Equations (3) and (4) of Reference 15.
The conservation laws i]]ustrate'the dependences of the nonlinear dissipation
on the momenta of the resonant electrons, and of the nonlinear frequency
shift on their kinetic energy. The deduced frequency shift and dissipation
are not shown past wpt/2n = 25 in Figure 3 because of the breakdown of the
expansion procedure leading to Equation (11) when the (complex-valued)
frequency mismatch is Tlarge. At this point, the electron plasma wave

ceases to be resonantly excited; but action transfer continues as a nonlinear

form of induced Thomson scattering. Many particles satisfy the condition
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wp - wp ~ (Ky - Ky)eV, d.e., wy = kgv, and have orbits which have been
strongly perturbed. Over a trapping region v = (wo/ko) £ Vi, the distri-
bution function has finite, time-dependent slope (see Figure 1c). Late in
time, when not much action is transferred on average, the sign of the slope
and the direction of action transfer osc1'11ate.]8’]9

In Figure 4 appear the amplitudes and phases of the three interacting
waves U, U,, and n as functions of time. As described earlier, the
amp]ifude of the density perturbat{on oscillates principally at the

mismatch frequency and also at the trapping frequency o It decreases

t-
in magnitude due to dissipation, the increase of IAnzl and the decrease of
the ponderomotive potential. The phase of the density perturbation seems

to be modulated at the mismatch frequency and not significant1y15

at wot.
The slowly varying wave phase 9, is fairly constant over the duration
of the simulation, but 84 is significantly modulated at the frequency
ReAng once theré is much less wave action associated with it [see Equations
(5) and (9)].

The energy of the higher frequency transverse wave depletes by
approximately 90%, and the energy transfer is essentially complete
after fifteen Langmuir oscillation periods (wpt/ 2w = 15). Although the
action transfer is rapid, it nevertheless occurs over many trapped-particle
bounce periods, viz. eight periods (dit/Zn ~ 8). Hence, the stimulated
scattering does not immediately terminate with the onset of trapping.w’]4
On the bounce time scale, the amplitudes Iu]l and |u2| have slight variations

in accordance with Equations (4) and (8).
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‘The relative energy transfer (from the w]-wave) to plasma oscillations
and longitudinal kinetic energy is given by 0.9 (wo/w]) = 0.9 (1/5) =
0.18. This 18% of the Higher frequency transverse-wave energy deposited
in the plasma results in a five-fold increase of the plasma thermal energy
relative to its initial value. Very little energy ends up in a coherent
oscillation (BGK wave). The action transfer AJ/J](O) ~ 0.9 also accounts

for a relative momentum transfer to the plasma k AJ/k]J1(O) ~ 1.8, and the

0
plasma acquires a longitudinal drift velocity equal to 1.2 ve(O).

The spatically averaged longitudinal kinetic and electric field
eneréy densities are displayed in Figure 5 as functions of time up to
mpt/Zn = 40. Accompanying the excitation of the 1arge amplitude electron
plasma wave and transfer of action early in the simulation is a large
increase in plasma kinetic energy, which soon exceeds the field energy
by more than an order of magnitude. Although there is significant damping
of the longitudinal field energy, it remains well above the thermal
fluctuation level. [For our one-dimensional simulation plasma, the

fluctuation level is reduced by the use of finite-sized particles to a

value which is given initially by ((8¢/3X)2/8ﬂ> < (NAE/L)']nOT(O)/Z ~
2n

0
and Ae/L ~ 0.05 is the ratio of the initial Debye 1ength'to the length of

0.25 x 10"°n,T(0), where N is the number of simulation particles (4000)
the plasma]. For later times not shown in Figure 5, the field energy
density continues to slowly decrease and the kinetic energy very slightly
increases. Both continue to exhibit some modulation.

. The disparity between the longitudinal field energy and the kinetic

energy demonstrates that the ponderomotive force of the transverse waves



-21-
deposits most of the available energy into the plasma and not into
long-lived plasma waves. The mechanism for this is. furnished by the
early onset of trapping'and the associated damping with a rate in excess
of the linear rate. One might have expected a significant fraction of
the energy to end up in a large amplitude BGK wave. This would seem
especially likely in the casé studied here, because our choice of the
fundamental wavelength of the simulation for the beat-wave has precluded
the sideband instability, a favorite mechanism for the break-up of BGK
waves.52 Nevertheless, there is nd evidence of a BGK wave late in time
in our simulations.

In other simulations different values of the initial transverse wave
amplitudes or frequencies were chosen. Large wave amplitudes tended to
shorten the time scales for the onset of nonlinear effects without
qualitatively altering the physical phenomena. By altering the choice
of the wave frequencies, the linear mismatch frequency wy = w, Was varied,
For weaker transverse wave amplitudes the nonlinear phenomena were more
sensitive to the linear mismatch, i.e. trapping and efficient energy/momentum
transfer to the plasma demanded smaller mismatch frequencies for smaller
uy | andtluzl.so that stimulated Raman scattering would be more nearly
resonant. On the other hand, for larger values of [u]I énd |u2| trapping
effects and the rate and amount of irreversible action transfer were less
sensitive to the linear mismatch.

We have observed, both here and in the simulations described in
Reference 15, the approximate constancy in time of the observed trapping
frequency J%, despite the significant modulation of and the general decrease

in the amplitude of the plasma wave. This has also been observed in many
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simulations and experiments in which the propagation of a single large

53.

amplitude electron plasma wdve has been studied. A decrease in the

depth of the potential well ought to reduce the trapping frequency,
Jzzléll/z. In our simulations this seems to be counterbalanced by the
fa]]ing of the trapped electrons toward the bottom of the potential well,

which is evidenced by the filling in of the hole in phase space (Figure 1c).

IV. Summary

Qur simulations of Raman scattering have exhibited extensive electron
trapping and deformation of the velocity distribution function, relatively
large nonlinear frequency shifts and dissipation, considerable energy and
momentum transfer, and a transition to induced Thomson scattering. By use
of coupled-mode equations for the electromagnetic waves and a ponderomotive
potential to describe their npn]inear interaction, together with a standard
one-dimensional electrostatic particle code, economically efficient and
conceptually simple simulations were performed on the electron plasma wave
time scale.

Various nonlinear effects due to electron trapping were observed and
interpreted self-consistently in the longitudinal lield response, the
nonlinear frequency shift and dissipation, and the reaction of the density
perturbation back on the coupled transverse waves. The simulations have
demonstrated the application of a prescription for analyzing the nonlinear
dielectric response proposed in Reference 15, which we have found useful
in understanding the self-consistent interplay of the nonlinear effects.

We have derived general relations, Equations (4) and (5), describing

stimulated Raman and Thomson scattering in terms of wave-action transfer
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and nonlinear frequency shifts. We have found in simulation that an
electron plasma wave can be resonantly excited to large amplitude and
then can nonlinearly shift its normal mode frequency. The interaction
of the fransverse waves with the plasma wave is thus shifted away from
resonance. The ponderomotive beat-wave can directly resonate with
particles, and much of the energy in the higher frequency transverse wave
can thus be rapidly depleted. We conclude from our computer simulations
that the plasma can absorb most of fhe available energy as kinetic energy
with only a small fraction residing in the longitudinal electric field.
The lower frequency transverse wave is amplified consistent with the
conservation of transverse-wave action.

Our simulations thus support the contention that the ultimate
efficiency of plasma beat-heating and plasma-laser amplification is
limited only by the Manley-Rowe relation. Hence, our present results
concerning the effects of electron trapping on stimulated Raman and
Thomson scattering are encouraging for these practical applications. How-
ever, the continued stimulated backscattering of laser light after the

onset of trapping may be discouraging for laser-fusion.

NOTICE

“This report was prepared as an account of work
sponsored by the United States Government, Neither
the United States nor the United States Energy
Research & Development Administration, nor any
of their employees, nor any of their contractors.
subcontractois, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy,
completeness or usefulness of any information,
apparatus, product or process disclosed, or
represents that its use would not infringe
privately-owned rights.”
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Figure Captiohs

Figure 1. Simulation of the resonant response of a maxwellian electron
plasma [thermal speed Vo = (T/m)]/z] to a ponderomotive plane-wave driving
force, of fréﬁuenéy wy (chosen equal to wp) and phase velocity mo/k0

(chosen equal to 3ve), induced by the V x B coupling of two opposed electro-
- magnetic waves with oscillation velocity amplitudes Uy and Uy (chosen
initié]]y equal to 0.2 mo/k0 = O'B‘Ve)‘ Initially the linear normal mode

frequency is Re w, = 1.17 W and the linear Landau damping rate is

L

-Im w, = 0.03 W

= 4wp. For a typical simulation, we exhibit at wpt/2n =

The transverse waves have frequencies wy = Swp and

wp =y T e o
6, 68, and 125 the following:
(a) the longitudinal driving field E0 = -a¢0/ax and the total Tongitudinal

~field E = -3¢/0x as functions of x, in natural units;
(b) the longitudinal electron phase space;
(c) the longitudinal velocity distribution, with different scales and

arbitrary units.

Figure 2. For the simulation in Figure 1, shown as functions of time are

(a) the magnitudes of the total and ponderomotive pdtentia]s in natural

. 2 2 -
units, e¢/(mv¢ ) and e¢0/(mv¢) where v¢ = wo/ko,
(b) their respective phases 9 and 6,, defined by

0’
o(x,t) = o(t) cos (wot - kox + 8) and ¢0(x,t) = ¢0(t) cos (wot - kox + eo).

Figure 3. For the simulation in Figure 1, shown schematically as functions

of time (up to wpt/Zw = 25) are
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- w. ), with the

(a) the deduced nonlinear frequency shift sq = Re(wnl - o,

Tinear mismatch AQ z wy = W, indicated for reference;

(b) the nonlinear dissibation rate v = -Im W

Figure 4. For the simulation in Figure 1, shown as functions of time

are

(a) the magnitudes of the coupled-mode amplitudes |u]|/v¢,|u2|/v¢, and

|n|/n0 where v, = wg/Kp3

(b) their respective phases 81> 853 and o,

Figure 5. The spatially averaged longitudinal kinetic and field energy
densities, <hmv§/2> and <(a¢/ax)2/8n> .

vs. time (up to mpt/Zn = 40) for the simulation shown in Figure 1. The
initial thermal fluctuation level for <(a¢/ax)2/8n> is less than 0.25 x

=2

10 nOT(O).
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