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ABSTRACT

An orthogonally linked data structure is used- to represent sparse .
rectangular matrices, This representation requires four type INTEGER
‘locations and one ‘type REAL location per nonzero entry in the matrix.

Operatidns are preéentedAfhat perform many of the basic»computations:
required in numerical linear algebra. ’ ' o B

The operations are"aVailéble in portable FORTRAN with the exception
. of the necessarily operating system scnsitive "get" and "put' subprogram
for the individual records. ’ ' : ‘ ‘

The packége of subbrograms manages out-of-memory portions of the
matrices as well as the insertion, modification-and deletion of entries.

Using the package, many of the familiar processes of numerical linear
algebra, such as solving sparse linear algebraic equations, can be
written with a relatively few calls to these subprograms.
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Bas1c Row-Column Operatlons w1th Orthogonally
Llnked SParse Matrices for Use with Fortran

Int;oduetion
| This papef.diseusses a convenient structure for storing and pe;fofming
operations on sparse real;matrices and vectorsf The data structure‘dealt
with here is the orthoéonally linked list,-(1). A set of, fourteen operators
is then presented which perform many of the basic operations of‘numericel
-1ineaf algebra for row or column.vectors stored using this.structure. The
‘Lsubprograms whlch do the operations are written in- ANS FORTRAN and it is-
-1ntended that they be used with ANS FORTRAN’programs. The»only primitive
whlch~pecessar;}y contalns operating system sens;t;veAcomponents is the

subpfogram TRWVIR( *) which reads from or writes to virtual memory such as

extended memory or random access storage devices.

Much of the subprogram and test driver'development work_was done by

Katherine Peters. Her efforts are gratefully acknowledged.

Reasons for Developing the Package

l.

'Many'published algorithms in sparse numerical linear algebra theofy'

descrlbe both a data structure and a computing method. Understandlng
and 1mplement1ng the data structure is often more compllcated than the
computlng algorlthm 1tself By standardizing the data structure_much

of thls.prellmlnary compllcation can be eliminated. The programmer can

move iﬁﬁediately“totthe'implementation of the algorithm.

Many pubiished algorithms require both row and column operations on the

-matrix. The proposed data structure described allows the programmer

to do this with ease.

The package of FORTRAN ocubprograms for the bagic operatiohs are poftable

except for the TRWVIR(') routine which depends on the operating system.



4. The FORTRAN subprograms, in their portable forms, require mofe high-
speed memory than othér programs that use more specialized data structures,
e.g.? Curtis, Reid, (2). One result of this work, however, may be the
abi;ity to compare Various'algorithms on moderate sized problems by
vi#tue-of the moré genera} applicability qf the operatorsf

5 The.déta structure is deSignéd to use low-spééd virtual meﬁofy for
part'of the;déta storagé; This can allow antapplications prograﬁmer
£o éol&é certain lé;ge iiﬁear algebra problems without géttiﬁg involved
.in the details of storage management. |
- There are often compélling reasons why a programmer would develop a-

separate data structure that éxploits features of a specifié pfoblem or

' machine. These include the ability to minimize the storage requirements of

the necessary overhead information of sparse matrix probiems. This often

allows for a more effiéient algorithm becguse the problem data can be képt'_
entirely in,high-épeedtmemory.
There'éré al$6'eéually cémpelling reasons-why a p}ogrammer shduldvggﬁ

VAevelob a,separate'déta'sﬁrﬁgture that is tailored‘to'a problem or a':

o maChine:Q’ ' | | |

® It reqﬁirés a lot- of humaﬁ toil. This is particularly true if'ldw-épeed

. storage is utiiized as.part of the data structure design.

| O‘The package so developed by a programmer will hardly ever be bortable,

| even on the same machine line,Aif it,is tailored‘to a specific problém
and machiﬁe.

® A small and ?ns}gnificant algoritﬁmic’change in the problemﬁmay fequire
extensive changescin-the data structure; This may have an addifional )
high cost in humanitoii.' | . ‘ |

O;fhe design of ﬁpi$~§ackage represents a cbmprqmisé.betweeﬁ,lpw storage -

- requirements and the availabiliﬁy of a wide vaiiety bf‘permisSible



operations on the matrices stored using this data structure. By

'localizing the operating system dependent parts of this package it is

4poss1ble to achieve portability insofar as this is possible. Many

'&dlfferent algorlthms can be interfaced using this data structure, and it

prov1des for ease of usage w1thout the programmer being unnecessarily

‘diverted by-data«handl;ng prpbiems.

A word of caution is in order.

It is possible to misuse this package

by'codihg algbrithms in such & manner that "page thrashing" occurs.

Attention to the order in_which elements are stored and. processed can

prevent this phenomenon.

"Molef, (5), considers this probiem in the

context of solving linear algebraic systems having dense matrices using

FORTRAN on operating systéms with paging.

The Orthogonally Linked Data Structure

.. We Will.alwafsjbe:déaling'with rectangular matrices in this data

structure. Vectors are to be considered as slim matrices. Only the nonzero

'entriésxof.matfices are stored in this data structure. Note that matrices with

. less ‘than 20% of their entries nonzero achieve savings in the fequifed storage.

For each nonzero matrix component aij

we store; (1), a list of records

a, .
1J

Location of Next

-Nonzero in Row

Location of Next
Nonzero in Column

'These and other gspécts'bf the data structure are illustrated with the

matrix, used as an illuétﬁqtioﬁ in (3),



Lo206
02303
00037
110000

‘01004

Figure 1. Sample 5 by 5 Matrix

Using the<orthogonélly linked data structure to store this matrix
yields the following table. The definitions of LA, LP and LM appearing in

Table 1 are ‘given in the;sectibn Data Structure Specifications.
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Table 1. Storage of 5 by 5 matrix.
The "u" indicates undefined quantities.

Matrix ‘ Next Location Subscript Next Location
‘ “Element  Subscript = . of Nonzero Within of Nonzero
Location Values Within Row in Row Column in Column

e o0 9 . o 9
3 o .o 12 o 7
| Sl o e o 12

5 o 0 | 15 0 | - 8

10

O ® = o
n
)
o)
’—l

2.2 10 2 15

10 11 - 3

w
=

13

-

\n
w
w

13

3

3.
12 3.

7 16
W 1 |

\JU

5 . e 16
6. N, s 5 5 5
17=IA  u . w 18w o w
18 u ‘u . 22‘ u u
v19=Lf . - u. : - u - n | u
.‘26 o ; | gA. : e u N a
21‘j- A~  w ' u o o i» f o " B b}

20=IM. 1. . 19 17 5 T |

23 _ Storage-will be in:virtual ﬁemory from this poiht onward.



Examples:

® Find row 2 of the matrix.

Use location 2 row information to start; The first nonzero is at

‘location 9. From locations 9, .10, and 11 we have nonzero values and

'correspondingHSUbscripts which yield the row vector

[0

2.

o 3.]

as row 2 of the mafrix, The end of the row vector is indicated by

compuneul. 5 i lucalion 11 poiuting 'to location

® Find column 5 of the. matrix.

[a]
[

whiclh has an index

Use location 5 column information to start. The first nonzero is at

location 8. From locations 8, 11, 13, and 16 we have nonzero values

and corresponding subscripts which yield the column vector

® Change aué from zero to 8.

(6. 3. 7. o. u.]"

'A circular linked list of' available storage starts in locatioh 17.

Thus we must modify the records at locations 9 and 14 to become

respectively

The record at location 17 is defined as

 cararas ey

l2.

=5 v ente

10

17

1.

17

8.

2

L

L

15

. The value of LA is updated to 18. The record at location IM=22 is

"modified to become

‘19

18

-1

-]

0.



‘Here we could have used the location LP~19 in place of locatlon 17 to

étore the new record The value 19 indlcates that record locatlons

- 19-21 are free. o

In general the data structure for sterlng eech m by n maurlx cens1sts
of uwo llsts., The first llst is for storage of the matrix elements. The
} second llst has four rows.and is for storage -of the row.and column 1ud1ces
and the row and columu vector_llnks.

| “Oniy rows l;...,LMﬁef ﬁﬁeée lisfs‘muei be in high-speed memory..;The

remainder of the lists are in some type of virtual memory.

SX(IM) | o C IX(k,Iv)

. Matrix R Next Location . Subscript Next Location
Location Element ° Subscript of Nonzero Within | of Nonzero
in SX(°) ° Values Within Rows . in Row . Columns . in Column

1 Owvorl.. -m. K+l - -n .- k#l
w2 . o, o
3 o :

0 0

k 0. 0]
kA ay, 1 k2 1

LA u

LP u

IM 0, orl.

Fig. 2; The Higﬁfspeed Memory Poftien of the Data Structure
. for an m x n matrix, Here k = max(m,n).
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Data Structure Specifications

1. To find row i of the matrix use IX(2,i) to find the location of the

first nonzero in row i, If IX(2,i) = i, then row i is zero.

2. To find column j of the matrix use IX(4,j) to find the location of the

fifst-noniero in column j. If IX(h,j) = j, then column j is zero.
3. The values of IX(f,LM)Zhave a special meaning, and this record must'bé
kept inﬁéct. | |
The value(IX(l3LM) = LP defines a pointer such that records LP;;..;LM-l
are free;: If LP‘2 IM, then fhere is ﬁo free and open bléck of records.
‘The value TX(2,IM) = LA points to the start of a linked list of free
records.. ThisblistAis circular and ultimately points back to record IM,

If LA = IM, this list is empty. The values of IX(3,IM) = MN and

IX(L,1M) = 4NP are the matrix number and, up to a sign, the page number.

If the page number is negative there is no page beyond this one for that
malrix. | _ | |

fhe,yalue of SX(LMX) contains a binary flag indicating if this page
'is4aVailabie in low—spégd memory in exactly the form it had in high-

speed memory. If the high-speed copy is not'exaétly the same as the low-

~speed copy we call this page an original. 1If the page is original,

SX(IMX) = 1. Otherwise, SX(IMX) = O.
The following initialization is required of the user for each m x n
matrix'ocgupying a distinct data structure of the form shown .n Fig. 2.
For i = 1,...,m set IX(1,i) = 0, IX(2,i) = i;
o X(1,1) = -m

For j = 1,...,n set IX(3,§) = 0, IX(4,3) = j; .

IX(3’1) = =-n
Set. IX(1,IM) = max(m,n) + 1
X(2,IM) = IM :
IX(3,IM) = Matrix Number = MN ,
IX(4,IM) = -1 = - Page Number (= -NP) ..
Set SX(IMX) =

1, sX(i) = 0., i =1,...,max(m,n)



AThe FORTRAN statement
CALL TINITM(M N,MN, X, I0.¢ LMX)
allows ‘the user to 1n1t1a11ze the data structure representlng matrlx'_n
number MN. Theusubprogram TINITM( ) is included’ in the”package.
* An example of ‘the eenstruction‘of a matrix is given ih‘tﬁe section

entitled Constructing a Matrix. ' S T SRR

The poftion‘of the high-speed sterage'in locations k+1,%..,IM may be
overwrltten with pages of the same léngth that are stored in auxlllary
'Arandom.aCCess storage. The subprograms keep track of - all paglng requlrements.

- The page size 1tse1f is of length LPG = IM - k Frequently this value
must be chosen to reflect operatlng system parameters such-as block size
for data transfers;

lfhetlocationS<of'the bages for each matrix are kept in‘a page lodation.

tauie updated'in the "gét" and "put" Sutprogfam"TRWPGﬁ( ). A value of |
zere in this table indicates thatlthis page has not yet been written.,
~Otherwise,the entrylgives the location of the pages in the auuiliary
storage. -Thé'packagelallows one to have 5 matrices, each With_lOO;pages.
'This'restrietidn cah be femoVed by'recompiling TRWPGE( ) after modification
of the véfiabies iPTBLﬁ(‘; ), MAXMN and MAXPGE. | ‘
NPAa
Page-Numbet

1 2 3 L 5 6

1] wcjrocfo o o |o
~
M ,% 2 0 o |.o.Jo 0 0
L LB 3 0 0 0 0 0 0
N
o] ”
4]l ololo o lo jo
£
51 obto oo ]o}o

. Table,2. A Sample randém access locatlon table of pages for 5 matrices each
: . hav1ng up to 6 pages; one matrix and 2 pages are now in use.
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A Discussgion of Virtual Memory and the Orthogonally Linked Sparse Matrix
Data Structure

. When solving sparse matrix problems, we‘often solve Egzgg‘sparse
problems., These prdblems can become so large so aslto'require more storage -
than that available iﬂ High_speed central memofy. Any general package
which is intended to'perfOrm operations on sparse matrices should implement

a secondary, mass storage scheme to be used when the available storage in

- central meémory is exhausted.

- A secondéry;.mass:stOrage schemé should ha&e a'nﬁmbér of properties.
The switch,frOm high spéed memor& to secondary memory shbuld be aﬁfomatic.
The manaéemen£ of éecondary, as well as high speed memory, should be done
entirelj‘by fhé package wifhout the need for direct user intervention. The
amount of high speed memory allocated should be under uéer control, and the
user should have some indirect means of controlling the number of accesses
to secondary memory .

What we shall describe is a secondary mass storage écheme'which’meets
the above requirements:‘ The method employed ié that of viftﬁal meméry:with
demand paéing‘(Q); which is often used in an operafing systems context.

Ih our.impleﬁéntatibh;of secondar& storage, the'ortﬁogqnally linked
list dataAstructuré,is‘erken inﬁo two parts. If we lét k £'max(m,n),'where
m and n are métfiX'dimensions, the first segment or master page cbnsis£s

of the first k entries in the SX(¥) and IX(4,*) arrays. The data associated

with these entries point to the starting locations of a given row or

column. Since these data items are frequently accessed, they are always
kept in high speed memdry; The remaining LPG = IM - k entries constitute
a virtual memory page.

- Since the user specifies the quantities m, n and 1M, control is maintained



dver.tpetiehgth ina.page<Qnd ceftainl& the. amount. of high speed memory ..
'aveiieble to the peckage; As far as the user i's concerned, the arrays
'SX(*) IX(h‘*) are-eesentiaiiy uﬁbounded: .Since only one virtual memory
pageAre51des 1n high speed’ memory at+a time, the larger the page length
" the better. If suff1c1ent high speed memory is prov1ded for a.given sparse
matfixlno secondary memory will be used.
Evefv:virtUal4address‘(pointer value) is decoded into the quantities

= (page number) end,IbFF = (offset within the rage), where NP = integer
pert [(LOC-KQI)/LPGT +1 with LOC being the virtuai,address, and TOFF =
remalnder [(LOC k-l)/LPG] + k + 1. If the current page number |IX(M Mx) |
is not’ equal to NP ‘we’ write page | X (4,1MX) | to secondary memory if it
was an orlglnal and.read-pagevNP; This decoding function is performed by
the Fuﬁetidh{Subprogram ITLOC(>). o
Since“the-virtual eddressee‘renge from 1 to some large nuﬁber 4, the
: afraye SX(*) and IX(4,*) have the appearance of being of length { rather
than of leﬁgth LM; This pfoperty preserves the updating techniques required
fof the ofthogonel;y linked 1ist data structure fegardlessAofvthe~emount of
hiéh speed memory available:. The code switches froﬁ high speed memory to |
.a'seCOndery ﬁemory seheme.as sooe as the firstwpage.is exhausted. . Since
all virtual eddreesee are'deceded into page numbers and fosete,with pagihg
'being performedffor;thevhser, the management of secondary memory is ‘done
ehtire}y by‘the peckage; | - : s .

| ‘In addition, the.paekage mansages the dyﬂamic allocation

ehd deallocatienlof virtual memory locations. This is' done by subprogram
TCHNGE( ), depetdiﬁg on‘the old and new values of the element to. be |
changed. If ‘the old and new values of the element are both zero or .

LE .

nonzero, no allocation or deallocatlon is required When both the new

13



1

and old values are nonzero, only the value of the matrix element ié'
changed ana no pointers aré modified.

When the old value of an element is zero, but the new value is
nonzero, a virtual memoryAlocation is allocated and the- orthogonal links
are updated to reflect thé‘creation of' the new matrix element.

When the old value of an element is nonzero, but the new value is
Zero, the virtual memory location associated with the element is deallocated
and the orthogohal‘Linkslére ﬁpdated to reflect -the delellon ol Lhe maLrii‘
element. Deallocation of a virtual memory locaﬁion is accomplished by
updaﬁing the cifcularllisf of free storage, for the giveﬁ page, as was
described iﬁ tﬁe'section "The Orthogonally Linkéd Data Structure", Each
page of virtuél memory has its own linked 1list of free storége'which is
maintained.independently of other pages. So, the pointers stored in thg
lists of free sforage represent addresses within the page. They do not
represent virtual addresses.

The allocation of a virtual memory location is accomplished according

to the folluwing algorithm.

Algorithm Alldcate:i

Scan the virtual'memory pages for free Storagé in the folldwing order,

1. check the current page.

2. check the page where we last found a free storage location.

3. check all pages Croun the current page i1 to the 1ot page.

4. check all pages from the first'page to the current page -l.-,
If a free memory location is found in any page, terminate the
algorithm and return the virtual memory location of the free storage
location. ' '
If all pages were full, generate a new page of virtual memory and
return the virtual address of the first free memory location of the

newly generated page.

End allocate,



Within each page locations from the free and open block are first
assigned. When this is exhausted the’ linked list of available storage

is ass1gned on a last in - flrst out basis.

To some extent, the user has control over the page in‘Which an element

is stored. For example, when a matrix is first created using TCHNGE( ),

the first LPG - 1 data items which are stored will reside on page number 1,

the second LPG - l;on'page number 2, etc, 'Similarly; if the user atcesses
the date in the same order in which it was creafed, a reduction in the
._number of page faults'associated with a ‘given matrfx’operation can be:
" achieved. |

A numoer of ;oyerheadi itemsiare required in order to implement
aglng on a varlety of machlnes.' The most important item is the'page
table.. The page table has already been described in the prev1ous ‘section.
In the package we use a single subprogram TRWVIR( ) to implement the
' machlne dependent parts of the impleméntation associated with paging. We
inténd to have yersions of TRWVIR( ) for the CDC 6000-7000 series, UNIVAC
llOO_series;'and'IBM 360/370 series. In order to imblement this package

. on a virtual memory operating system, all the user needs to do is to

declare'the arrays .SX(*) and IX(L,*) to be at least k +‘l,plus,the'number

v;of nonzeros:in_the;computation;

‘ When we 1mplement paglng on a system using random access disk for
secondary memory, the address of a page is unlquely determined from the
,nage numher and matrix number. In thls 1nstance,'dm page table is of |
little use, It is then used only for error checking purposés. On the
other hand, 1f paging is implemented using some type of low speed, word
addressable memory device, such as extended core storage'on tne CDC 6606-

7000 series, then the page table is required. The page table provides the

15
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offset in low-speed Memory of a given page. 'This offset, and the length
of the given page are required to retrieve the page.

_Paging, alﬁhough qonveﬁient, may not be the Dest implementétion of
secondary memory for ghe»érthqgonally linked sParse'maﬁrix data structure.
This wés"discusséd in:tﬁe*intfoduction. Due to: the existénce of the .
orthogonai'links it is quité bossible‘to get page’thrashing regardlesé
of the_mannér'in which the matrix is accessed of mgdified.( Paging,
however, is a natﬁral way to implemehf seconda;y memofy aﬁd significantly
Ifeduces the complexity §f thg implementation since memory ié freated as
lengthened versions of the SX(*) and IX(L4,*) arrays. The best way a
user can reduce page thrashing is to make the arrays SX(*) and IX(l,*)
as lérge as poséib}e. ‘This will reduce the total number of pages and -
4§efhaps iimit-thé numbef 6f pages to a single page.. Ihrashing-éan be.

further feduced'by zeroing array elements once they are no longer needed.

‘More COmplicated methods,'such as transferring data to additional arrajs,

may also reduce thrashing.

Specification of the Operations

The package of subprograms performs computations on row or column
vectors of a matrix in single precision, The categories of operations

performed are array or matrix element manipulations, vector arithmetir,

normg and transmission, and an initialization subprogram.

Dimensioning Information

REAL SX(LMX) SY(LMY) SW, SA,SM(4)
INTEGER x(k, LMX) LMX. Iy(h IMY),LMY,IP,IRCX,IRCY, IPLACE(Z)

Matrix Initializatioh

CALL TINITM(M,N,MN,SX,TIX,LMX)



x Iniﬁidlize.tﬂé~M by N matrix numbered MN in £he.data structure
.1fepfésénted By sx(‘); x( ., ).éﬁd,LMX{ One call to TINITM(- ) is required
for eacﬂimatrix in the problem. |

Assign the maﬁrices gonsecﬁﬁiVe integer‘numpgrs bgginning;at thé
value one. Each matrix requires a unique éet of arrays SX( ), IX( , ) and

a value LMX.‘.A_call to TINI™( ) is equivalent to zeroing the entire matrix,

Subscripting Conventions for Rows or Columns

-

In.each 6f.the opefations 1. - 13. the sign of IRCX or IRCY‘determines.
whether a row or column of the matrices is being used.
' If IRCX < O, then use row vector -IRCX in the operation
If TIRCX 20, then usevc01umn vector IRCX in the‘operation.

Analogous remarks hold for IRCY.

Array or Matrix Element Manipulation

In sdbp;ograﬁs i. - 3. the scan to locate elemeht I of the vector is
started from the virtual location in IPLACE(1) if IPLACE(1) # O. -The scan
: st§r£$ froﬁ the%beginﬁing of<tﬁe vectéf if IPLACE(1) =AO.-'In-qgse4IPLACE(1)
AO.it{s neceséary that.this:value boint to an element'with,the’nékt-index:'
greaﬁer?thén I,&f‘tofé éonpoéitive<inde2. | '

1. CALL TNNZR(I,XVAL,IPLACE,SX,TX,LMX,IRCX)

#

Get the next nonzero in the vector with an index = I. The values

§f”I, XVAL, and IéLACE(*) may be updated. The value itself and
its index are returned in XVAL and I. An input value of I < O
,:starts ﬁhé scan ffom the beginning of the vector. An output value
of T =0 denotes that all components with an index = the input
.fValue of I are zero. |
2, " CALL TGET(I,XVAL,IPLAQE,sx,rx,LMX,Ichj

Get element I;inithe vector andiput'its vélue in XVAL. AAvalue

17



of XVAL = O denotes that the element was zero and that it is not
'stored. | |
3;A CALL TCHNGE(I,XVAL,IPLACE,SX.IX,LMX,IRCX)
Change‘elemeﬁt I in the vector to XVAL. Ail of the details of
creation or deletion of elements are done in this routine.
A"In the operations h.‘— 13;, operations are performed on the subvectors“
:x or y of tﬁe partitioned>row or column Vectore.' The beglnnlng and length
of these vectors is determ;ned by the sign of a part1t1nn1ng paramefer IP.

If IP < O, then use 1ndLLEb From both vectors with values < -TP in
" the operatlon.-

If TP 2 0, then use 1nd1ces from both vectors with values > IP in the

operation.
Arithmetic . o Operation
4. SwW = TDOT(IP,SX,IX,LMX,IRCX,SY,IY,IMY,IRCY) = Dot Product,
A ' W o= x' ’,V
5;-‘CALL TAXPY (TP, SA, 65X, IX, 1MX, IRCX, SY, IY LMY, Elementary vector
' IRCY) o Uperation, y: =
» a.x + y
6},4CALL-TSCAL(IP;SA,SX;IX,LMX,IRCX) : ‘ Vector Scaling,
) a . : . X = ax
7. fCALL TMPRO(IP, SM,SX, IX LMX, [RCX,SY, TY,IMY, ' Matrix Product,
" ‘ IRCY)
' T T
On input have SM(1) = X a c\/x
sM(2) = b, sM(3) = ¢, and o )= T
sM(4) = d. ) y nodf\y
- Norms
8. IW = ITAMAX(IP,SX,IX,LMX,IRCX) ' Smallest Index of
: : - the Component with
Maximum Magnitude
9. SW = TNRM2(1P,SX,Ix;LMX,IRCX) _ ‘Buclidean Length
10. SW = TASUM(IP,SX,IX,LMX,IRCX) S Sum of Magnitudes

18



Transm1531on

11. -
12,

13.

CALL TSWAP(IP ,SX, IX LMX IRCX,SY,IY,IMY, : Interchange Vectors,
: IRCY) A o X :=:¥
CALL TCOPY(IP SX, IX,IMX,IRCX,SY,IY, LMY, "Copy Vectors,
IRCY) y =X
CALL TMOVE(IP,SX,IX,LMX,IRCX,SY,IY,LMY, Move Vectors,
IRCY) . - 0 (=, x=0)

Supporting Subroutine Descriptions

Subprograms 0. - 13 are part of the package | Subprogfams 1k, - 18.

have the follow1ng an01llary .uses.

AT

,'15.'

16.

S 1'7.

18,

“INTEGERtFUNCTIQN ITFIND( )

Find’é free location to store a new record, or matrix element,

The 1océtion'returnédais a virtual location. ‘This routine may

. read'and,ﬁrite'pages."

INTEGER FUNCTION ITLOC( )

Compute a 'relative or present.page address given a.virtual location

 for a matrix elemént. This routine may read or write pages.

SUBROUTINE TRWPGF( )
Read or wrlte a page to random access or virtual memory . This

routine controls the locations for the'pages.’ It does not actually

" write on-a.device per se.

SUBROUTINE TRWVIR( )

'Read.orwﬁfite thg'pages on a virtual memory deviée. This is the
- only ﬁonportabie FORTRAN subprogram.A It is opérating system

_sensitive-and must usually be rewritten at the user'installation.

SUBROUTINE TERROR( )
This is the error. processor and status keeping subprogram The
usage of this subprogram and the interpretation of errors and

status of the cbmpﬁtation is given in Appendix 1.
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S RS s A S E S D G 5G
0.. TINIT™ {3 x| Ix}].
1. TNNZR X x
2. TGET x|
3. TcHNGE | | |x | x|x
4. TDOT x |
5. TAXPY x| [x
6. TSCAL x| Ix
7. TMPRO X X
8. TITAMAX | |[x
9. TNRM2 x
10. TASUM X
11. TSWAP x| |x
.12, TCOPY | x| |x
13.  TMOVE x| |x
1h.  ITFIND
15. TTLOC 1L AL el |
16, TRWPGE | ' : x| x
17. TRWVIR | . | ‘ x
18. TERROR | ‘ ‘

. Takle 3. Subroulline Helarchy Array

An x in-entry at row i and column j denotes that
subroutine number i calls subroutine number j.




Cosstrﬁetisé-aAMat}ik‘f ':'A . .A‘f' L gf. V-.t

In this sectlon andexemple 1svpresented for storlng the problem data
involved in the computatlon of the solutlon to ahsparse N by N linear
algebralc system Ax b us1ng the Fortran prep;ocessor language FLECS
(6) We will store the matrix A in sparse form and the vector b as a
_ linear FORTRAN array. |
The single. most 1mportant p01nt 1n deflnleg a matrlx is, the usage of
: the TCHNGE( ) subprogram Th1s subprogram manages}the details of. the
.orthogonally llnked data- structure This elimtnates.any needlfor the
use; totdirectly manipulate this data stfuctﬁfe.

Here we provide one exampie of a method for defining'the”elemepts of
a ﬁatfix A is an arbitrary order. o

The user provides a subprogram

TENTRY (I,J,AIJ,IFLAG)

to .define A andAb. When thisjsubprogram is called with IFLAG = 1 the

user must.define those row and column indices and nonzero values-of the -

_ matrlx and r1ghf hand 51de vector which occur.. This data can be returned

in any convenlent order.' The ‘nonzero matrix elements will have l <I <N,

I
denoted by the output_values'of J=N+1 and 1 < I < N, Wheu‘the

l <sJ < N The rlght hand slde vector b, will Have each nonzero b

"matrix:and'right side vector entries that are nonzero have been defined,
the user sets IFLAG = 2 as an output variable.
This is only one of many ways that a user could define a sparse

matrix.
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. 00001
00002
00003
00006
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00029
00021
00022
00023
00026
00025
00026
00027
00028

00029 -
00030

80031
00032

00033

00036
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c
c- "DEFINE A SFARSE N EBY N MATRIX A AND A VECTOR 6.
c STORE A USING THE ORTHOGONALLY LINKED LIST.
c STRUCTURE IN SX( )oIXC%s )¢ AND LMX., STORE
c _THE RIGHT FAND SIDE 8 IN THE LINEAR ARRAY 8¢ ).
b . ,
- ornsnsxon SX(LHX).IX(b.LHX),B(N),IPLACE(Z)
c .
c INITIALIZE THE OATA STRUCTURE TO STORE THE MATRIX A,
CALL TINITM(NoNo14SXoIXoLMX)
c
c SET B8( ) TC ALL ZEROS.
CALL SCCPY(Ny0.E0,0+8,1)
¢ A
c INITIALIZE IFLAG TC ASK TENTRY( )
c SUBPROGRAV FOR PROELEH DATA.
IFLAGC=1
CALL TENTRY(I'J,AIJoIFLAGm
CUNTIL(IFLACG.EQ.2) : :
c e THE USER DEFINES THE NUONZERC MATRIX ELEHENTS (INSIDE YENTRY(
c "o IN ANY CRODER. THE CASE J=N+1 DENOTES
c o TYHAT THE VALUE AIJ IS THE I-TH ELEMENT OF 8.
.« TIPLACE(1)=0 : :
c .
AA."HHEN(J LE«N) CALL TcHNGE(x.AIJ.IPLAce.<x.rx.Lnx.J»
e  ELSE B(I)—AIJ
c .
' . CALL TENTRY(I’J.AIJ.IFLAG)
L] ..F.IN
¢ . ' A '
c o (PROBLEM COMPUTATION,)
C Y
sTopP
END

(FLEGS VERSION 22.34)

Operations with Vectors in Linear Arrays

_Utilizihg subprograms in the package one can perform compuéations
.invql?ing sparse veetore stored in this‘orthogohall& lihk-d eata stfucture
and'veCtore séored'ae'lineer arrays in the usual FORTRAN convention.

| Fer 1nstance 1n the example used here the rlght hand side is stored
as a llpear erray.[ During the process of decompos1tion we must perform
eperetions of the form |

by = a*xI +or, I=J,..,N

- This can be done using the loop of the following form:

))



IPLACE(l)-O
I=J
CALL TNNZR(I,XVAL. IPLACE,SX IX,LMX,J)

WHILE(I.GT.O)
B(I)=A*XVAL+B(I)
I=T+1 ‘ _
CALL TNNZR(I,XVAL,IPLACE,SX,IX,IMX,J)
- | T . i | '
The vector (kJ,...,xN) is sparse in this example while the vector
T . : o
(QI""’bN) s not sparse. .Subprogram TNNZR( ) returns the next nonzero -
with an index greater than or equal to I, and returns,in thevvariable I
the index of that next nonzero. . Thus only_the nonzero components xi cause
bI to be updated. The value of I is incremented in the above loop solely
to step past the last nonzero which was obtained. When there are no
nonzero values with an index greater than or equal to I, subprogram TNNZR( )

returns with the value of I = O} This is the condition which terminates the

above loop.

Relatlonshgp to Other Packages

There are. some s1m11ar1t1es in the naming convention for thls sparse.
lpackage and the BLAS package of (4). ThlS was done 1ntentlonally because
‘the names uscd 1n de31gn1ng the BLAS were subJecLed to about four yearsb
of peer dlSCUSSlon and review. No claim is made that this sparse package
is as'easy to use as the BLAS package. However, there are. enough
s1m11ar1t1es that a user who is famlllar with the BLAS package should have
11ttle dlfflculty adjusting to the- usage of thls sparse package.

Other packages for sparse matrlx work u51ng low=-level routlnes, have
appeared. McNamee, (7), wrote a series of subprograms that performpmany
" of the'same:operatiens‘as,those‘of this package. . His code was written for -
IBM 360/370 systems under the " WATFOR FORTRAN" compiler.i

McNamee's'subroutiﬁes are not strictly portable,-but hints on



ol

necessdry changes for some other machine lines are given. The central
difficulty with his package, as reported in (8), is that hiéAstorage scheme
is esseotially a otatic one. If is qﬁite difficult to create and delete
elementé of a ﬁatrix. There is no such restriction in the package proposed
here, thanks to the fact that we have used the‘ofthogonally linked 1list
structure; | | |

There are a number of serious problems that await furthér reséarch.
These concern the locat;on of the matrix elements to optimize the number
of‘distinct page referenoes. .Each algorithm that dynamically creates and -
deletes matrix elements wili probably require a storage management

algorithm to function effectively on large-scale problems.
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Appénaix'l

Descrlptlon of - Subprogram TERROR( ), Error Proces31ng and Status Indication
Subprogram o L . Sl - e o

Subprogram TERROR( ) performs the error and status monitoring functlons
for the sparsg matrlx package. Th;svgppendlx'w1ll describe themusage of
Subbrogfam TER#OR(‘) and a list of error messages and probable causes. - The.
- method ugéd'by the package to,m@nitor demﬁnd paging is‘described. ‘In
édditiong'modifications to the routine'ﬁecessary to add a new error message

or to incorporate a new status indication feature are outlined.

Descrlptlon of Usage

A CALL TERROR(IFATAL IERROR IFMT)
Input
IFATAL is an integefwflag indicating the degree” of seriousness of the

error.

If IFATAL = 1 the program is terminated vié‘g STOP statement
T following an analysis of the value of IERROR,
 and a summary of all errors for the run is
printed. |

Otherwise ~ This routine returns to the calling program.

. TERROR is én error number:' A hiétogram_of all errors encountered is.
kept by this subprogram. . .

-Tf IERROR < O -No message is printed, only the status hlstogram
) A1s updated ' ‘ '

N

The status hlstogram for thls run is prlnted

I
o

IF IERROR

IfAIERROR > 0 The meqsage passed 1n IFMT is prlnted and the

~

status hlstogram 1s updated

25
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- IFMT(*) is a variable FORMAT which contains the message to be printed.
' " Example: 32H(27HOTHIS MATRIX IS NOT SQUARE.) is a literal
argument for a variable FORMAT and results in the prlntlng of:
'THIS MATRIX IS NOT SQUARE. '

Subprogram TERROR( ) restricts | IERROR| < 4O. At present, the maximum

‘value of IERRORI used by fhe package is 18, The variable FORMAT IFMT is

~used to avoid packing a variable number of characters per word, depending

on the machine. Although the variable FORMAT feature is not ANSI standard,

it 1s implemenféd on the major machine lines, and will'be in the new (1977)

FANSI standard{

. Descriptidn of Error Messages and Likely Causes

This section describes the 18 error messages and status indicatoré.that

" have been implemented in the sparse matrix package. Error checking for a
given matrix SX(*), IX(M,*), IMX, can be suppressed in the routines TGET( )

-and TNNZR( ) by setting the value SX(1) = 1 for that matrix. This will

sSuppress error numbers 1, 17, and 18 for that matrix in those routlnes

This error monitoring suppression can lead to run time improvements on the-

" order of 16%, but at the loss of this impartant debugging aid. The slalus

summary and.any error messages are written fo the FORTRAN logical unit

number 6.

‘Error number 1,

" In TGET( ) or TNNZR( ), row or column number was not compatible with

complementary indices.

The data pointed to by the array IPLACE(*) points to data which is not in

_the desired row or column. Make sure that the IPLACE(*) array is either

initialized properly; or that it is currently accessing data in the desired

" -row or column, For example, in table 1, row 2.is'stored in memory locations



9, 10 and ll w1th subscrlpts stored in the thlrd column of the table For
row 2 the complementary indices appear in column 5 of the table and all
must have a value of 2, If any of these complementary indices were not 2,

this message would.be'orinted.

Error number 2, _

In ITLOC( ) a value of LOC (flrst argument) .LE. 1 was encountered.

This error could - occur from an unlnltlallzed IPLACE(*) value in a hlgher
level routlne, or. may occur 1n.the presence of an overwrlte problem (the‘

: array IX(h,*).being‘overwr1tten by garbage).

Error number-3; |

In TRWPGE( ) tne value of MN (matrix number)‘wee not in the range
1.LE.MN.LE.MAXMN, | | | | -
Currently,'MAXMN = 5; The user has declared more than MAXMN‘mafriceehﬁol

4

'the -sparse matrix package.

Error number h

In TRWPGE( ) the value of IPAGE (page number) was not in the range -

14 LE. TPAGE. LE.MAXEGE. | = |
:Currently, MAXPGL:=,100.:,Mosﬁ:likely;'fhe given matrix nag'éxaegdea MAXPGE

" pages of‘memorYt'

Error number 5,
_In TRWPGE( ) the value of LPG (page.length)-uas nonpositive,
This error is unlikely to occur. Most likely the value of IMX was less than

27
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Error number 6
In TRWPGE( ) the value of KEY (read-wrlte flag) was not 0, 1, or 2.

The user has called thls,rout;ne directly with a bad value of KEY, or an

overwrite problem exists.

Error number 7,
In TRWVIR( ) a nonpositive virtual address was encountcrecd.
Bad pointer information exists in IX(4,*) most likely due to an overwrite

problem.

Error number 8,

' In TRWVIR( ) llmlts of v1rtual memory were exceeded

On the cDC 6000 7000 series extended core memory is belng used for v1rtual

‘memory exclu51vely, and this memory device has no more avallable space. To

fix, use a mixed strategy of extended core storage and disk for virtual

memory. (Set Method = 3 in subprogram TRWVIR( ); See Appendix 2.)

 Error number 9,
_In TERROR( ) an invalid error number was encountered
| Currently, MAXERR = Lo. Subprogram TERROR( ) was called with IERRORI

' MAXERR. If more ‘than MAXERR error numbers are’ requlred reoo.plle TERROR( )

1ncreas1ng MAXERR and d1mens1on array IERR to be MAXERR long

Error number 10,

In TINITM( ) one of the matrix dimensions (m or N) was less than one.

" Rectangular matrices must have positive dimensions.




Error number 11,
In TINITM( ) the value of MN (matrix number) was less than one,
This error is similar to error number 4., Matrix numbers must be positive

integers.

Error number.i2h‘

'In TINITM( ) the array d1mens1on LMX was less than max (m, n) + 2,

The array dlmens1ons of SX(LMX) and IX(M LMX) are too small Increase the
e“value LMX and the d1mens1ons of SX(*) IX (U4 *) to meet or. preferably exceed

the above requlrement

Status numbers 13, lh; iE‘and i6;:

These status numbers'arelreserved for the'mcnitoringiof demand paging.
Their function end use are_described iﬁ thevnekt section.

Error number 17, .

i In TGET( ) or. TNNZR( ) subscrlpts for array" element to be accessed were
outlcf:range. _ L A

' A.cail'to‘subprogram TGET(')-or TNNZR( ) attenpted to access an element
with. row subscript_greater than m or column subscript'greater_than n, 'All
references must be tn.élements uith subscripts within the declered.matrix

dimensions.

Error number 18, o ,
tIn TGET( ) or TNNZR( )‘a negative value for.IPLACE(L) wes;discovered°
Since the values of IPLACE(*) represent v1rtua1 addresses, they are requlred

to be non—negatlve. _'ﬂ
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Monitoring of Demand Paging
Status numbers 13, 1k, 15, and 16 are used to monitor demand paging. ’

Status numbers 13 and 1h4 keep track of page reads from Jow. speed memory and

_ page writes to low speed memory respectlvely. Whenever & page read or wrlte

occurs, the package automatlcally updates the counts for status numbers 13
or 14 by a call to subprogram TERROR( ) This call is a non-fatal call
with error message pr1nt1ng suppressed Thus, only the hlstogram count
for these status numbers is incremented.

~ The user can returthhe histogram counts for status numbers 13 and lh_

via a call to subprogram TERROR( ) with a value of IERROR = -15 or -16. A

call to TLRROR( ) w1th IERROR -15 returns in IERROR the histogram count

for status number l3;jwh11e a call to TERROR with IERROR = -16 returns in

IERROR, the histogram count for status numher 1L. Since the valuc of IERROR

‘is cnanged by subprogram TERROR( ), it must be a variable and not a constant.

The histogram count represents the total number of page reads or page writes

which have occurred during the course of this run for all matrices, A

sample calling sequence to return the histogram count for the number of page

reads is now illustrated.

TERROR
- TFATAL
IFMT = 0.

CALL TERROR(IFATAL TERROR ll"Ml‘)

._151
O': . ;

- Since no message'is~to be printed IERROR < O, the variable IFMT»is set to -
,'zero because 1t is never accessed for the above call, Upon return from

7 TERROR( Y, the varlable TERROR contalns the histogram count for the number .

of page reads.




Modifications Required to Add a New Error Message or Status Features

A\ -

Subprogram TERROR( ) is wrltten to allow the easy addltlon of enror

messages to the sparse matrlx package. The user can add an error message to

.the package by deflnlng a new error number and varlable format and by

-maklng a call to subprogram TERROR( ) to perform the prlntlng and tabulatlon '

' functlons. If an error number greater than hO is requlred recomplle
TERROR( ) with the changes 1nd1cated in the descrlptlon of error number 9

To add a new status number similar to those descrlbed in the prev1ous
Asection, code must'be added to subprogram TERROR('). " The existing code in
TERROR( ) for error_numbers'TS and'16'must'be mimicked.

Appendix 2

Usage and Further Implementation of Demand Paging

Usihginemand Pagihgion the'cnc.écob-7000 series:" |

. Subprogram TRWVIR( ) 1mplements three methods of demand paglng on the
"CDC 6000 7000 serles. The method used is chosen by settlng the variable’
METHOD equal to 1, 2 or 3 in subprogram TRWVIR( ) |

For METHOD = 1, we use extended core storage or large core memory

exclusively. The user must supply up to 131072 words of extended core
storage to the package. The system takes 1ts storage from t-= start of
extended core Storage, us1ng as much as 1t needs. “Error number 8 occurs
when more than 131072'<.words of extended core storage areirequired.
. For METHOD = 2 demand paglng is 1mplemented using - random access d1sk

alone; To use th1s method the user must declare TAPEl as a flle on’ the

PROGRAM‘card. The fllewTAPEl corresponds 'to FORTRAN loglcal unlt number 1.
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For METHOD.= 3, a combination of methods 1 and 2 is utilized. The

. user must supply up to the full 131072lO words of extended core sterage

to the package. The user must also declare the file TAPEl on the program
cerd The package first uses the 131072 word of extended core memory,

and when that is exhausted, it uses random access disk for the overflow pages.

Tmplementing Demand Paging for a New Machine
In order to 1mplem9nt demand puglng vn 4 uew machine, subprogram

TRWVIR( ) must be modlfled or rewritten. This can'be accomplished by

mlmlcklng method 1 or method 2 for the CDC 6000 7000 serles. Most often,

demand paging will be implemented using random access dlSk storage‘and hence

method 2 will be mimicked.

Method 2 accomplishes three main tasks. It opens a mass storage file

" when the routine is. first called. It computes a unique random access disk

32

. laddress for a given page number and matrix number, and it performs either

" the random access read or write'depending on the input value of the subprbgram

argument KEY. A unique random access disk address isicomputable using the

formula

IADDR = (IPAGE -1)*MAXMN + M-

‘where IPAGE is the page number,vMAXMN is. the meximhm allowed matrix number

and MN is'the matrix number assoclated with the given page being aceessed.

A: in Method 2, we write the real data and integer data as separate records
.80 to generate a unique disk address for each record, we store the real
.data at random access address 2¥IADDR - 1, and the integer data at random

'vaccess address 2%¥IADDR. The record lengths for these two records are

LPG and WL¥LPG respectively.’



Method,l shouldAbe mimicked when some fype of low-speed word
addressabie memOry is-to'be ﬁtilized for demand paging. The‘offset in
low-speed memory of matrlx MN, page IPAGE is stored in the page table

IOFF =.IPTBLE(MN,IPAGE). The SX(*) array is stored in locatlons IOFF

through IOFF + LPG - 1, and the IX(4,*) array is stored in locations IOFF +

LPG through IOFF + 5¥LPG -~ 1, of low-speed memory.
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