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Introduction 

Basic Row-Column Op~rations with Orthogonally 
Linked Sparse Matrices for Use with·Fortran 

This paper.discusses a convenient structure for storing and performing 

operations on sparse real.matrices and vectors. The data structure d~alt 

with here is the orthogonally linked list,· (1). A set of. fourteen operators 

is then presented which perform many of the basic operations of numerical 

linear algebra for row or column.vectors ~tqr~d using this.structure. The 
. . . . . 

·subprograms which do the operations a;re written in·ANS FORTRAN, and it is 
. .· : ·. :· . .· . . 

intended ~hat they be used with ANS FORTRAN programs. The only primitive 

which .. necessarily contains operating syst~m sensitive component~. i·s the 
. . . 

subprogram TRWVIR( ·) which reads from or wri t~s to virtual memory such as. 

exten~ed memory or ~andom. access storage devices. 

Much of the subprogram and test d:dver development work was done by 

Katherine Peters. Her efforts are gratefully acknowledged . 

.Reasons for Developing the Package 

1. Many published algorithms in sparse numerical linear algebra theory· 

describe both a data s.tructure and a computing method. Understanding 

and implementing the ~ata structure is often more complicated than the 

computing algorithlri itself. By standardizing the data structure much 

of this preliminary complication can be eliminated.;. The programmer can 

move i.Irimediatel.Y .. to the implementation of the algorithm. 

2. ~any published algorithms require both row and column operations on the 

. matrix. The proposed data structure described ailows the programmer 

to do this with ease. 

3. The package of FORTRAN oubprogrllJ!ls for tho basic operations are portable 

except for the TRWVIR(.) routine which depends on the operating system. 

\ 
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4. The FORTRAN subprograms, in their portable forms, require more high-

speed memory than other programs that use more specialized data structures, 

e.g., Curtis, Reid, (2). One result of this work, however, may be the 

ability to compare various algorithms on moderate sized problems by 

virtue.of the more general applicability of the operators. 
. . 

5. The .data structure is designed to use low-speed virtual memory for 

part of.the 'data storage. This can allow an applications programmer 

to solve certain large linear algebra problems without getting involved 

.in the details of storage management. 

There are often compelling reasons why a programmer would develop a 

separate data structure that exploits features of a specific problem or 

machine. These include the ability to minimize the storage requirements of 

the necessary overhead information of sparse matrix problems. This often 

allows for a more efficient algorithm ·because the problem data can be kept. 

entirely in high-speed.memory. 

There are also equally compelling reasons why a programmer should not 

develop a separate data structure that is tailored to' a problem or a . 

machine:. 

• It requires a ·lot· of' human toil. This is particularly true· if low-speed 

storage is utilized as part of the data structure design. 

• The pa~kage so developed by a programmer will hardly ever be portable, 

even on the same machine line, if it. is tailored to a specific problem 

and machine. 

• A small and ins~gnificant algorithmic change in the 1;iroble~ inay require 

extensive changes· in the data structure. This may have an additional 

high cost in human toil.· 

eThe design of thi~ -package represents a compromise between low storage· 

· requirements and the availability of a wide va.riety of· permissible 



·• 

operations on the matrices stored using this data structure. By 

localizing the operating system dependent parts of this package it is 

.possible toachieve portability insofar as this is possible. Many 

.different algorithms cari be interfaced using this data structure, arid it 

provides for ease of usage without the ·programmer being unnecessarily 

. diverted by data ·handling problems. 
; .. 

A word of caution is iri order. It is possible to misuse this package 

by coding algorithms in such a manner that "page thrashing" occurs~ 

Attention to the order in which elements are stored and processed can . 

prevent this phenomenon. Moler, (5), considers this problem in the 

context of solving linear algebraic systems having dense matrices using 

FORT~AN on operating systems with paging, 

The Ort,hogonally Linked 'Data Struct\U'e 

.. ·we Will always pe dealing with rectangular matrices in this data. 

structu·re. Vectors are to l)e considered as slim matrices. Only the nonzero 

. entr:ies . of ID.atrices are stored in this data structure. Note that matrices with 

less ·than 20$ of their entries nonzero achieve savings in the required storage • 

.. For each nonzero matrix component aij we store; (1), a .1 ;_st of records 

Location of Next Location of Next 
a .. i ·Nonzero in Row j Nonzero in Column 

l.J 

·These and other aspects ·or the data structure .are illustrated with the 

. ·matrix, .used as an illustration in (3), 

5 
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4 0 2 0 6 

0 2 3 0 3 

. 0 0 0 .i 7 

1 0 0 0 0 

0 1 0 0 4 

Figure 1. Sample 5 by 5 Matrix 

Using the·orthogonally linked data structure to store this matrix 

yields the following table. The definitions of LA, LP and LM appearing in 

Table 1 are given in the section Data Structure Specifications. 

.. 



Table 1. Storage of 5 by 5 matrix. 
The "u" indicates undefined quantities. 

Matrix Next Location SUb scrip~ Next Location 
:·Element Subscript . of N:onzero .. Within of Nonzero 

Location Values Within Row in Row Column in Column 

1· o. -5 6 -5 6 

2 o. 0 .. 9 0 9 

3 0. 0 12 0 ·7 
.. 

4 ·o. 0 14 0 12 

5 o. 0 15 0 8 

6 4. 1 7 1 14 

7 2. 3 8 1 10 

8 6. 5 1 1 li 

9 2. 2 10 2" 15 

10 3. 3 11 2 3 

11" 3 .. • . :5 2 2 13 

12 3 .. 4• 13 3 4 

13 ·7. 5 3 3 16 

14 1. 1 4 4 1 

15 1. ·2 16 5 2 

16. 4. 5 5 5 5 

17=LA u u 18 u u 

18 u u 22 u u 

19=LP u u .. u 1l u 

20 u u ·U u u 

21 u ·U u u u 

22=LM 1. 19 17 1 -1 

23 Storage ·will be in-virtual memory from this point onward. 

7 



Examples: 

• Find row 2 of the matrix. 

Use location 2 row information to start. The first nonzero is at 

location 9. From locations 9, .10, and ll we have nonzero values and 
. . 

corresponding subscripts which yield the row vector 

[o 2. 3. o 3.] 

as row 2 of the matrix. The end of the row vector is indicated by 

t!UlllpUUt!HL :;i lu luL:~L.i.uu 11 vo.i.nt.i.ng ·to locatiC.l'1 £ which hELo3 an. index ~ 0. 

• Find column 5 of the matrix. 

Use location 5 column information to start. The first nonzero is at 

location 8. From locations 8, 11, 13, and 16 we have .nonzero_ values 

and corresponding subscripts which yield the column vector 

[6 4. J T 
• 3. 7- o. 

• Change a42 from zero to 8. 

A circular linked list ot' available storage starts in location 17. 

Thus we must modify the records at locations 9 and 14-to become 

respectively 

·-- ... ~ .... - .. ·-··· ~ .. --
2. 2 10 2 17 

1. '1 17 4 1 

The record at location 17 is defined as 

[ 8o 1 2 1 4 1 4 I 151 
The value of LA is updated to 18. The record at location LM:=22 is 

- modified to .become 

18 1 -1 

8 



... 
Here we could have used the location LP=l9 in place·of location 17 to 

... ·. 

store the new record. The value 19 indicates that record locat.ions 
t · ..... 

19-21 are free. 

In ·general the ~a:ta structure fpr storing each m by n matrix consists 

of two lists •. ·The first list is for storage of the matrix elements. The 
., 

· second list has four rows and is for storage of the row and colUmn indices 

and the row and column vector links • 
. ' 

Only rows l, ••• ,LM of these lists must be in high-speed memory. · Th~ 

remainder of the lists are in same type of virtual memory. 

SX(LM) IX(4,LM) 

Matrix . \ Next Location Subscript Next Location 
Location Element Subscript of Nonzero Within of Nonzero 
in sx(' ) Values Within Rows in Row Columns in Column 

1 o •. or 1. m· - . k+l .-n k+l 

2' o. 0 

3 0. .. 
0 0 

o. 0 

. k+l 1 k+2 1 

k+2 2 

LA u 

LP u 

.•.. 

LM 0. OJ' 1. 

Fig. 2. The High-Spee·d Memory Portion of the Data Structure 
. for an _ni ·x n matr~~ · Here k. = max'(m,n). 

9 
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Data Structure Specifications 

l. To find row i of the matrix use IX(2;i) to find the location of the 

first nonzero in row i. If IX(2,i) = i, then row i is zero. 

2. To find column j of the matrix use IX(4,j) to find the location of the 

first- nonzero in column j. If IX(4,j) = j, then column j is zero. 

3.· The values of IX(*,LM):have a special meaning, and this record must ·be 

kept int~ct. 

The value IX(l,LM):::: LP defines a pointer such that records LP,~ •• ,LM-1 

are free. If LP ~ LM, then there is no free and open block of records. 

The value IX(2;LM) = LA points to the start of a linked list of free 

records. This list. is circular and ultimately points back to record LM. 

If LA= LM, this list is empty. The values of IX(3,LM) = MN and 

IX(4,LM) = ±NP are the matrix number and, up to a sign, the page number. 

If the page number is negative .there is no page beyond this one for that 

maLl'lx. 

The value of SX(LMX) contains a binary flag indicating if this page 

_is. available in low-speed memory in exactly the form it had in high­

speed memory. If the high~speed copy is not exactly the same as the low-

. speed copy we call this page an original. If the page is original, . 

SX(LMX) = 1. Otherwise, SX(LMX) = 0. 

The following initialization is required of the user for each m x n 

matrix occupying a distinct data structure of the form shown _ n Fig. 2. 

-Fori= l, •• ,.,m set IX(l,i) = 0, IX(2,i) = i; 

IX(l,l) = ..;m 

For j = l, ••• ,n set IX(3,j) = 0, IX(4,.)) = j; 

IX(3,1) = -n 

Set IX(l,LM) = max(m,n) + 1 
IX(2,LM) = LM 
IX(3,LM) = Matrix Number = MN . 
IX(4,tM) = -1 = - Page Number (= -NP) . 

Set SX(LMX) = 1, SX(i) = 0., i = l, .•• ,max(m,n) 



.The FORTRAN statement 

CALL TINITM(M,N ,MN ,SX:,IX>,LMX) 

allows the user to initialize the data structure ;epre~enting ma.t:dx ··_ 

number MN. The __ subprogram TINITM( ) is included· in the·· package. 

-
.: An example of''tlie construction of a 'matrix is given i'rr the section 

entitled ~Constructing a Matrix.· ··\.· 

The portion· of the high-speed storage in locations: k+l,"·.-.·. ,LM may be 

overwritten with pages of the same length that are stored in auxiliary · 

random .access storage~ The subprograms keep track· of ··all paging ,requirements. 

·The page size.itself is of length LPG= LM- k. ·Frequently this value 
. ' ' 

must be chosen to re.fiect operating· system parameters such··as block size 

for data transfers~ 

The locations of· the pages for each matrix are kept in' a page location. 

tabie updated in the "get1' and "put" subprog-ram .TRWPGE.( ) . A value of 

zero in this table indicates that this page has not yet been written. 

Otherwise, the entry gives the location of the pages in the a'lixiliai'y 

storage. The package aliow:s one to have 5 matrices, each with lOO·page~=;. 

This 'restri~tion ca.il be removed by recompiling TRWPGE( ) after modification· 

of the variables IPTBLE( ) , MAXMN and MAXroE. 

;·' 

NP _. 

Page Number 

1 2 3 4 5 6 

... 1 LQC LOC 0 0 0 0 

J..i 
Q) 2 

MN .0 

~ 
l 3 ':< 

0 0 .0 0 0 0 

Q.. 0 0 0 0 0 

•r-l 
~ 4 ~ 0 0 0 0 0 .0 

~ 
5 0 0 0 0 0 0 

... 

Table' 2. A Sample random acces's location table of pages for 5 matrices each 
having up to 6 pages; one matrix and 2 pages are now in use. 

li 

I 
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A Discussion of Virtual Memory and the Orthogonally Linked Sparse Matrix 
Data Structure 

When solving sparse matrix problems, we often solve large sparse 

problems. These problems can become so large so as ·to require more storage· 

than that available in high speed central memory. Any general package 

which is intended to perform operations on sparse matrices should implement 

a secondary, mass storage scheme to be used. when the available storage in 

central memory is ~xhaustbi. 

A secondary, mass storage scheme should have a number of properties. 

The switch .. frcim high speed memory to secondary memory should be automatic. 

The management of' secondary, as well as high speed memory, should be done 

entirely by the package without the need for direct user intervention. The 

amount of high speed memory al.located should 'be under user contrul, and the 

user should have some indirect means of controlling the number of accesses 

'tO secondary memory. 

What we shall describe is a secondary mass storage scheme which meets 

the above requirements. The method employed is that of virtual memory with 

demand paging (9), which is often used in an operating systems context. 

In our iinp~ementation of secondary storage, the orthogonal.l.y linked 
• . t 

list data structure. is broken into two parts. If we let k,:; max(m,n),·where 

m and n are matrix dimensions, the first segment or master pa~e consists 

of the first k entries in the SX(*) and IX(4,*) arrays. The data associated 

with these entries point to the starting locations ofa given row or 

column. Since these data items are frequently accessed, they are always 

kept in high speed memory. The remaining LPG = LM - k entries constitute 

a virtual memory page. 

Sirice the_user specifies the quantities m, nand LM, control is maintained 



. . 
over. the· length of a. page and certainly the- amo,);lllt. of high speed memory 

. . 

avaiiable to the package~ As far as the user is· concerneq., the arr~ys 

SX(*) ,IX(4,*) are .essentially unbounded.~ .Since .only one virtual memory 

page resides iri high speed memory at .. ·a time' . the larger the page length' 

the better. If sufficient high speed memory is provided for a.given sparse 

matrix no secondary memory will be used. 

E'lrervvirttial .address .(pointer value) is !iecoded into the quantities 

NP = (p~ge number) and !OFF= (offset within. the nage), where NP =integer 

part [(LOC-k~l)/LPGJ + 1 with LOC being the virtual.address, and !OFF= 

remainder [(LOC-:-k.,;,l)/LFG] +·k + L If the current page number lrx(4,LMX)I 

is not·equal to NP, we ~ite page lrx(4,LMX)I· to secondary memory if .it 

was an original and read page NP·. This decoding func-tion is performed by 

the Function · Subprogram tTLOC ( ) . 

Since the virtual addresses r~ge from 1 to some large number t, the 

arrays SX(*) and IX(4,*) have the appearance of being of length t rather 

than of length LM. This property preserves the updating techniques required 

for the orthogonally linked _list data structure regardless of the amount of 

high speed memory available. The code switches from high speed memory to 

a secondary memory scheme as soon as the first .page .is exhausted· .. ·Since 

all virtual addresses are decoded into page numbers and offsets,with paging 
.. . . . . 

being perforiiled·for the user, the management of secondary memory is done 

entirely by the package. 

In addition, the package manages the dynamic allocation 

and deallocation of virtual memory locations. This is· done by subprogram 

TCHNGE( ), depending on the old and new va.I.ues of the element to. be 

changed. -If the old and new values of the element. are both zero or 
·f. 

J •• 

nonzero, no allocation or deallocation is required. When both the new 
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and old values are nonzero, only the value of the matrix element is 

changed and no pointers are modified. 

When the old value of an element is zero, but the new value is 

nonzero, a virtual memory location is allocated and the· orthogonal links 

are updated to reflect the creaticm of' the new matrix elerrient. 

When the old value of an element is nonzero, but the new value is 

zero, the virtual memory location associated with the element is deallocated 

and the orthogonal links are updated to reflect the <lelel..luu ui' Lil~ JuC:I.Lrlx 

element. Deallocation of a virtual memory location is accomplished by 

updating the circular list of free storage, for the given page, as was 

described in the section "The Orthogonally Linked Data Structure". Each 

page of virtual memory has its own linked list of free storage.which is 

maintained independently of other pages. So, the pointers stored in the 

lists of free storage represent addresses within the page. They do not 

repre$ent virtual addresses. 

The·allocatidn of a. virtual memory location is accomplished according 

to the following algorithm. 

Algorithm Allocate:· 

Scan the virtual memory pages for free storage in the following order. 

l. check the current page. 

2. check the page .where we last found a free storage location. 

3. check all .!JC:I.gl:!l:: fL'UJll the cui·1·ent p~e;e i 1 t.n t.hr. 11 •.. -,t page • 

4. check all pages from the first ·page to the current page -1. 

If a free memory location is found in any page, terminate the 
algorithm and return the virtual memory location of the free storage· 
location. 

If all pages were full, generate a new page of virtual memory and 
return.the virtual address of the first free memory location of the 
newly generated page. 

End allocate. 

, I 



Within each page locations from the free and open .block are first 

assigned. When this is exhausted the·: linked list of avaitable storage 

is as~igned on a last in - first out basis: 

To some extent, the user has control over the ·page in-which an element 

is stored. For example, when. ·a matrix is first created us:irig TCHNGE( ) ~ 

the first LPG - 1 data items which are stored will reside on page number 1, 

the second LPG - 1 on page number 2, etc. Similarly, if the us.er accesses 

the data in the same order in which it was created, a reduction in the 

number of page faults assodated with a ·given matrix.operation can be 

achieved. 
·. :' 

A nUniber ·of 'overhead'. i terns are required in order ·to implement 

paging o~ a variety of machines. The most important item is the page 

table. The page table has already been described in the previous section. 

In the package, we use a sin·gle subprogram TRWVIR( ) to implement the 

machine dependent parts of the implementation associated with paging~· We 

intend to have versions of TRWVIR( ) for the CDC 6000-7000 series, UNIVAC 

1100 series, and. IBM 360/370 series. In order to implement this package 

·on a virtual memory operating system, all the user needs to do is to 

declare the arrays SX(*) and IX(4,*) to he at least k + 1 plus.the number 

of nonzeros iri.the computation~ 

. . 

When we. ·impiemerit paging on a system using random access disk for 

secondary memory, the address·of a page is uniqueiy determined from.the 

page number and matrix number. In this instance, the page table is of 

little use. It is then used only.for error checking purposes. On the 

other hand, if paging is implemented using som:e t;Ype of low speed, word 

E:Lcidressable memory device, such as extended core storage on the CDC 6600-

7000 series, then the page table is required. The page table provides the 

15 
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offset in low-speed memory of a given page. This offset, and the length 

of the given page are required to retrieve the page. 

Paging, although convenient, may not be the Sest implementation of 

secondary memory fqr the orthogonally linked sparne matrix data structure. 

This was.discussed in.the introduction. Due to: the existence of the. 

orthogonal.links it is quite possible to get page thrashing regardless 

of the manner·in which the matrix is accessed or modified. Pagine;, 

however, is a natural way to implement secondary memory and significantly 

reduces the complexity of the implementation since memory is treated as 

lengthened versions of the SX(*) and IX(4,*) arrays. The best way a 

user can reduce page thrashing is to make the arrays SX(*) and IX(4,*) 

as large as possible. This will reduce the total number of pages and 

. perhaps limit ·the numbe.r of pages to a single page.. .Thrashing ·can be 

:further reduced by zeroing array elements once they are no longer needed. 

More complicated methods, such as transferring data to additional arrays, 

may also reduce thrashing. 

Specification of the Operations 

The package of subprograms perfo:rrns computations on row or column 

vectors of a matrix in single precision. The categories of operations 

performed are array or matrix element manipulation~? .• vector a.ri t.hmP.t.i r, 

norms and transmission, and an initialization subprogram. 

Dimensioning Information 

REAL SX(uMx),SY(LMY),SW,SA,SM(4) · 
INTEGER IX(4 ,LMX) ,LMX. IY(4, LMY) ,LMY, IP, IRCX,IRCY ,IPLACE(2) 

Matrix Initialization 

CALL TINITM(M,N,MN,SX,IX,LMX) 



Initialize the· M by N matrix numbered MN in the data structure 

. represented by SX(. ) , IX( ., ) ~rid-~-: One. call to TINITM( ) is required 

for each matrix in the problem. 

Assign the matrices consecutive integer.numbers beginning at ~he 

value one. Each matrix requires a unique set of arrays SX( ) , IX( , ) and 

a value LMX. A call to TINITM( ) is equiv~lent to zeroing the entire matrix. 

Subscripting Conventions for Rows or Columns 

In each of the operations l. - 13. the sign of IRCX or IRCY determines 

whether a row or column of ·the ·matrices is being used. 

·If IRCX ~ o, then use row vector -IRCX in the operation 

If IRCX -~·o, then use column vector IRCX in the operation. 

Ariaiogous remarks hold for IRCY. 

Array or Matrix Element Manipulation 

In subprograms l. - 3. the scan to locate element I of the vector is 

started· from the virtual location in IPLACE(l) if IPLACE(l) -f 0. .The scan 

~tarts from the beginning of the vector if IPLACE(l) = 0. In case I-PLACE(i) /: 

.o it's necessary that this' value point to an element with the next index 

g:r~a~er than I.or to. a nonpositive index. 

l •. CALL TNNZR(I,XVAL,IPLACE,SX,IX,LMX,IRCX) 

Get the next nonzero in the vector with an index ~ I. The values 

of I, XVAL, and IPLACE(*) may be updated. The value itself and 

its index are returned in XVAL and I. An input value of I ~ 0 

. starts the scan from the beginning of the vector. An output value 

of I = 0 denotes that all components with an index ~ the input 

value of I are zero. 

2 •. CALL '.iuET(I ,XVAl.,TPJJAGE, SX, IX, LMX, IRCX) 

Get element I in the vector and put· its value in XVAL. A value 

17 
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of XVAL = 0 denotes that the element was zero and that it is not 

stored. 

3. CALL TCHNG.E(I,XVAL,IPLACE,SX,IX,LMX,IRCX) 

Change element I in-the vector to XVAL. All of the details of 

creation or deletion of elements are done in this routine. 

In the operations 4. - 13., operations are performed on the subvectors 

·x or y oi' the partitioned row or coltimn vectors. · The beginning and length 

of these vectors is de:t;;e;rmined by the ::;ign of a pA.rt.i.t.inning p.<trA.mPt.Pr IP. 

If IF ~- 0, ·~hen us~ indices from both vectors with values ::;; - IP in 
· the operation •.. 

If IP ~ 0, then use indices from both vectors with values ~ IP in the 
operation. 

Arithmetic 

Norms 

4~ SW = TDOT(IP,SX,IX,LMX,IRCX,SY,IY,LMY,IRCY) 

5. CALL TAXPY(IP,SA,SX,IX,LMX,IRCX,SY,IY,LMY, 
. . IRCY) . 

. 
6' .. CALL TSCAL(IP, SA, SX ;IX.LMX ,IRCX) 

7. ·-CALL TMPRO(IP, SM,SX, IX,tMX,IHCX,SY, IY, IMY, 
. 'IRCY) · 

On input have SM(l) = a, 
SM(2) = b, SM(3) = c, and 
SM(4) = d. 

8·. IW = ITAMAX(IP, SX, IX,LMX, IRCX) 

9. SW .= TNRM2 (JP, SX, IX.,LMX,IRCX) 

10~ SW = TASUM(IP,SX,IX,LMX,T~CX) 

Operation 

Dot Product, 
'1' 

w·=:_~~ 

Elementary Vector 
Operation, y:· 
ax+ Y 

Vector Scaling; 
x := ax 

Matrix Product·, 

Smallest Index of 
the Component with 
Maximum Magnitude 

Euclidean Length 

Sum of Magnitudes 



·· .. 

Transmission 
. . 

11. · CALL TSWAP(IP ;SX~IX,LMx, IRCX, SY, IT ,IMY', . 
.. IRCY) 

Interchange Vectors, 
X :=: y 

i2 •.. CALL TCOPY(IP, SX,IX,LMX, IRCX, SY ,IY, LMY,. 
IRCY) 

·copy Vectors, 
y :=X 

13. CALL TMOVE(IP,SX,IX,LMX,IRCX,SY,IY,LMY, 
IRCY) 

Move Vectors, 
( (y : = ~)' X .: = 2:) 

Supporting Subroutine Descriptions 

SUbprograms 0. - 13.· are part of the package. Subprograms 14. - iS. 

have the following ancillary .use:;; .• 

14. ·INTEGER FUNCTION ITFIND( ) 
. . . . . 

Find a free location to store.a new record, or matrix element. 

The location returnedis a virtual location. This routine may 

read and .Write page~.· 

15. INTEGER! FuNCTION . ITLOC ( ) 

Compute a'relative or presentpage address given a.virtual location 

fnr a matrix element. This rqutine may read or write pages. 

16. SUBROUTINE TRWPGE( ) 

Read or write a page to random access or virtual ·memory. This 

routine controls the locations for the·pages.· It does not actually 

wri.te on· a device per se. 

17. · SUBROtJrr:INE TRWVIR ( . ) 

·Read or .write the pages on a virtual memory device. This is the 

·· onJ.Y nonportable FORTRAN subprogram. It is operating system 

.sensitive and must usually be rewritten at the user installation. 

18. SUBROUTINE TERROR ( ·) 

This is the error.processor and status keeping subprogram. The 

usage qf this subprogram and the interpretation of errors and 

status· of the c·omputation is given in Appendix 1. 
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• • • • • • 0 . 

0...-lC\J(Y') II'. \0 f:'- co 0\ r-l .-lr-l.-lr-lr-lr-lr-l..--1 
• • • • • • • • • • 0 r-l C\l (Y') ..:t II'. \0 t- co 

0 .. TINITM X X 

1. TNNZR X X 

2. TGET X X 

3. TCHNGE X X X 
--· 

4. TDOT X : 

5. TAXPY X X 

6. TSCAL X X 

7. TMPRO X X 
,. 

8. ITAMAX X 

9- TNRM2 X 

10. TASUM X 

11. TSWAP X X 

12. TCOPY X X 

13. TMOVE X X 
.. 

1h. JTFIND X 

15 •. ITLOC X X 

16. TRWPGE X X 

17. TRWVIR X 

18. TERROR 

Table 3. Subroutine Heiurchy Arro.y· 

An x in·entry at row i and colUI!IIl j denotes that 
subroutine number i calls subroutine number j. · 



Cons.trU.cting a Mat"ri.X 
.. ·. ·.1• 

'. 
~ ! .. . 

In this section an example is presented for storing the problem data 
. ~ ( ~ ·. . ~. 

involved in the computation of the s'olution to a sparse N by N linear 

algebraic\ystem AX .. = b ~sing the Fo~t~an prep;oc~ss9r language_.F~ECS, 
• - - • I • ' 

(6). We will store the matrix A in sparse fo~ and the vector b as a 

linear FORTRAN array. 
., 
;, '· . . :: 

The single. most important poin~ in.: defining a matrix is., the. usage of· 

the TCHNGE( ) subprogram. ·This Sl1bprog;ram manages. the details of the 

orthogonally: lin\ted data s:t.rilc~ure. This eliJ!lipates. any need. for the 
·. . 

user to directl;y- manipUlate this data structure. 

Here we provide·one example of a method for defining the elements of 

a matrix A in an ·arbitrary order. 

The user provides a subprogram 

TENTRY(I,J,AIJ,IFLAG) 

to ·define A and b. When this subprogram is called with IFLAG !" l the 

user must define those row and column indices and nonzero values of the 

matrix. and rte;ht hand sidevector which occur. This data can be returned· 
. . 

in any .convenient qrder~ · The nonzero matri~ elements will hav~ 1 ~-I. ~ N, 

1 ~ J ~ N·. The right .hand. side vector, £_, will have each nonzero bi. 

denoted by the output values ·or J = N + ·1 and I :5;· I ~ N. Whc. the 

·matrixand right side vector entries that are nonzero have b.een defined, 

the user sets IFLAG = 2 as an·output variable. 

This is only one.of many ways that a user could define a sparse 

matrix. 
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00001 c 
··acnro2 c··:-· ···oEF'.IN£: A S~A~S£ N E!Y N MATRl)f"A.ANO A V£Ct0~ 9. 

C S~OR£ A ~SING·THE ORTHOGONALLY LINKED LIST 
C STRUCTURE IN SXC ),1XC4t ), AND LHX. STORE 
C THE RIG~T ~AND SlOE 8 IN THE LINEAR ARRAY 8( t. 
c 

00003 
00004 
00005 
00006 
00007 
00008 c 
00009 c 
(j 0 0 10 

INITIALIZE THE OAT~ STRUCTURE. TO STORE THE- "ATRIX A • 
CALL 1INITMCN,N,1,SX,IX,LHXt 

0 0011 c 
o tfo 12 c 
0 0013 
0001'+ c 
00015 c 
o·oo 16 c 
a 0011 

. 0 00 18 
00019 
000 20 c 
000 21 c 
00022 c 
00023 
000 24 c 
00025 

. 0 00 26 
0 00 27 c 
00028 
0 00 29 . 

... 00030 c 
. 00031 t 
. 00032 c 

000 J3· 
_00034 

SET . 8 C t 10 ALL ZEfCOS. 
CALL SCCPYCN,Q;EQ,Q,8,1t 

INITIALIZE !FLAG TC ASK TENTRYC ) 
SUBPROGRA~ FOR PROELEH DATA. 
IFLAC•t· 
CALL TENT~YCI,J,AIJ,IFLAG~ 
UNTIL IIFL ~ G.EQ. 2) 
• THE USE~ Oe:FINES THE Nvt-12£RO MATR{)( ELEHENTS· 

· • IN ANY. CROER. THE CASE J=N+1 DENOTES . 
• T~AT T~E VALtE AIJ IS TH£ I-TW ELEMENT OF a. 
• IPtACE f U=O 
• 

ClNSIDE TENTRYC )) 

•. WHENCJ.LE.N) CALL TCHNGECI,AIJ,IPLACE,SX,IX,l.MX,Jt 
• ELSE BfH=AIJ 
• 
• 
• •• FI ~ 

• 
• CPROBLEM COHPUT~TION.t 
• 

STOP 
E_ND 

CFLECS VERSION 22.34t 
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Operations with Vectors in Linear Arrays 

utilizing subprograms in the package one can perform computations 

involving sparse vect9rs stored in this orthogonally linh a data structure 

arid vectors stored as·line~r arrays in the usual FORTRAN convention. 

For instance in the example used here the right· .hand side is stored 

as a linear arrey.· During the process of decomposition we must perform 

operations of the form 

This can ·be done using the loop of the following form: 



IPLACE(l)=O. 
I=J 
CALL TNNZR(I,XVAL.IPLACE,SX,IX,LMX,J) 

WHILE(I.GT.O) 
(I)=A*XVAL+B(I) 
I+l 

ALL TNNZR ( r·, xv AL, I PLACE, sx, rx, LMX , J) 

The vector (X.J'''''xN)T is sparse in this example while the vector 

(bJ; •.• , bN)·T is not sparse •. Subprogram TNNZR( ) returns the next nonzero . 

with an index greater than or equal to I, and returns. ~n the. variable I 

the index of that next nonzero. Thus only.the nonzero components x cause . . I 

b1 to be updated. The value of I is incremented in the above loop solely 

to step past the last nonzero which was obtained. When there are no 

nonzero values with an index greater than or equal to I, subprogram TNNZR( ) 

returns with the value of I = 0. This is the condition which terminates the 

above loop. 

Relationship to Other Packages 

There are. some similarities in the naming convention for this sparse 

··package and. the BLAS package of ( 4). This was done. intentionally because 
. . . 

tl1e names used in de.signing the BLA1::i were subJel! Led to about four years. 

of peer discussion and review. No claim is II$.de that this sparse package 

is as· easy to use as the BLAS package. However, there are enough 

similarities that a user who is familiar with the BLAS package should have 

1 i.ttle difficulty adjusting to the· usage of this sparse package. 

Other packages for sparse matrix work, using low-level routines, have 

appeared. McNamee, (7), wrote a series of s~bptograms that perfo~ many 

of the same operations as. those of this package •. His code was written for 

IBM 360/370 systems under the "WATFOR FORTRAN" compiler. 
. . . . 

McNwuee Is su'broutiries are nnt. Rt'rictl,v portable' but hints on 

23 
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necessary changes for some other machine lines are given. The central 

difficulty with his package, as reported in (8), is that his storage scheme 

is essentially a static one. It is quite difficult to create.and delete 

elements of a matrix. There is no Guch restriction in the package proposed 

here~ thanks to the fact that we have used the orthogonally linked list 

structure. 

There are a number of serious problems that await further research. 

These concen1 the location of the matrix elements to optimize the number 

of distinct page references. .Each algorithm that dynamically creates and 

deletes matrix elements wi~l probably require a storage management 

algorithm to fUnction effectively on large-scale problems. 
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Appendix 1 ... , ·' 

Description of Subprogram TERROR( ), Error Processing and Status Indication 
Subprogram . . ··.; 

. Supprogr_am TERRO.R( ) performs the error. ~nd status monitor-ing fupctions 

for the SJ?arse matrix package. This ap:l?endix·will describe the .. U:sage of 

Subprogram TERROR( , ) and a list of error. ~e~sages and probable. causes .. ,The . 

method used by the package to monitor demand paging is described. In 

addition; modifications to the routine·necessary to add a new error message_ 

or to incorporate a new status indication feature are outlined. 

Descr~ption of Usage 

CALL''TERROR(IFATAL,IERROR,IFMT) 

Input·:.· 

!FATAL is an integer. flag -indicating the d~gree·· of seriousness .of the 

error. 

If !FATAL = 1 the. program is terminated via a STOP statement 

following an analysis of the value of IERROR, 

and a summary of all errors for the run is . 

printed. 

Othei-Wise This routine returns to the calling program. 

!ERROR is an error number. A histogram of all errors encountered is 

kept by this subprogram. 

·If !ERROR< 0 No ~essage is printed, .only the status histogram 

is updated. 

IF !ERROR = 0 The status histogram for this run is printed! 

If IERROR > 0 The message passed in IFMT is printed, and the 
I" • • ~ • ; • ' • 'l 

status histogram is updated. 

. ~. 

. ... :' 

:I 
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IFMT(*) is a variable FORMAT which contains the message to be printed • 

. Example: 32H(27HOTHIS MATRIX -IS NOT SQUAR.E.) is a literal 

argument for a variable FORMAT and results in the printing of: 

THIS MATRIX IS NOT SQUARE. 

Subprog~am TERROR( ) restricts jiERRORI ~ 40. At present, the maximum 

_value of !IERRORI used by the package is 18. The variable FORMAT IFMT is 

. used to avoid packing a variable number of characters per word, depending 

on the machine. Although the variable FORMAT feature is not ANSI standard, 

it 1s implemented on the ma,jo~ machine linPFJ\, and will be in the new· (1977) 

ANSI standard. 

Description of Error Messages and Likely Causes 

This section describes the 18 error messages and status indicators .that 

have been implemented in the sparse matrix package. Error checking for a 

given matrix SX(*), IX(4,*), LMX, can be ~=:npp:rP.saed in the routines TGET( ) 

and TNNZR( ) by setting the value SX(l) = l'for that matrix. This will 

suppress error numbers 1, 17, w1d 18 for that matrix in those routines. 

This error monitoring suppression can lead to run time improvements on the· 

order of 16%, .but at the loss of this impn,..t.ant d9bugging a.id. The ~L~Lus 

summary and any error messages are written to the FORTRAN logical unit 

number 6. 

·Error number 1, 

· . In TGET( ) o:r TNNZR( ) , row or column number was not compatible with 

complementary indices. 

The data pointed to by the array IPLACE(*) points to data which is not in 

the desired row or column. Make sure that the IPLACE(*) array is either 

initialized properly, or that it is currently accessing data in the desired 

· row or column. For example, in table 1, row 2 is stored in memory locations 



9, 10 and 11 with subscripts stored in the third column of the table. For 

row 2,. the complementary indices appear in column 5 of the table and all 

must have a va.iue of!2.· If any of these complementary indices were not 2, 
. . 

this message would be· printed. 

Error number 2, · 

In ITLOC( ) a value of LOC (first argument) .LE.l was encountered. 

This error. could· occur from an unlni tialized !PLACE ( *) :·value in a ·higher 
. . ~. . .. ·. 

level 'routine·; or maY. o.ccur in the .presence of an overwrite problem (the 

array IX(4,*) ·being overwritten by garbage). 

Error number 3, 

In TRWPGE( ) the value of MN (matrix number) was not in the range 
. . 

l.LE.MN.LE.MAXMN. 
. . . 

Cur·rently, · MAXMN = 5. '' The user has declared more than MAxMN matrices to· 

the sparse· matrix package. 

Error nunibe~.4, 

In TRWPGE( ) . the value of IPAGE (LJage number)· was not ·in the ra.nge 

l;LE.IPAGE.LE.MAXPGE • 

. Currently, M:AxFG.!!;.- 100 •. Most likely~ the given matrix has exceeded MAxPGE. 

pages of m~mo:t:Y< .. 

Error numbe.r 5 , 

. In TIM.ffiE( ) the value of LPG (page length) was nonpositive. 

This error is Unlikely to occur. Most likely the value of LMX was less than 

max(m,n) + 2. 

27 
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Error number 6, 

In TRWIUE( ) the value of KEY (read-write flag) was not 0, 1, or 2. 

'rhe user has called this routine directly with a bad value of KEY, or an 

overwrite problem exists. 

Error number 7, 

In TRWVIR( ) a nonpositive virtual annrPss was encountered. 

Bad pointer information exists in IX(4,*) most likely due to an overwrite 

problem. 

Error number 8, 

In TRWVIR( ·) limits o"f virtuSJ. memory were exceeded. 

On the cnc· 6000-7000 series extended core memory is being used for virtual 

memory exclusively, and this memory device has no more available space. To 

fix, use a mixed strategy of extended core storage and disk fnr virtual 

memory. (Set Method = 3 in subprogram TRWVIR( ) ; SP.e Appendix _?.) 

Error number 9, . 

In TERROR( ) an invalid error number was encountered. 

Currently, MAXERR = 40. Subp~ogram TERROR( ) was called with IIERRORj >. 

MAXERR •. If more than MAXERR error nunibers are" required, reco. pile TERROR( ) . 

increasing·. MAxERR arid dimension arrey IERR to be MAXERR long. 

Error uwriber 10, 

In TINITM( ) one of the matrix dimensions (morN) was less than one. 

Rectangular matrices must have positive dimensions. 

I 
I 
I 



Error number ll, 

In TINITM( ) the value of MN (matrix number) was less than one. 

This error is similar to error nwriber 4. Matrix numbers must be positive 
0 ; • 

integers. 

Error number 12, . 

In TINITM() the array dimension LMX 'wa~ less than nia.X(m,n) + 2. 

The array. dimensions of SX(LMX) .and IX(4,LMX) are too small. Increase the 

value LMX arid the dimensions of SX(*),IX(4,*) ·t~ meet or preferably exceed 

the above requirement. 

Status numbers 13, 14, 15 and 16, 

These status nwribers are reserved for the monitoring of demand paging. 

Their function and use are described in the next section. 

Error n\.unber 17, · 

In TGE'r() or .TNNZR( ) s'libscripts for array .element to 'be. accessed were 

out of .. ran~e. 

A call to subprogram TGET( · ) or TNNZR( ) att'e~pted to access an element 

with.row subscript greater than m or colwnn subscript greater than n. All 

references must be toelements with subscripts within the declared matrix 

dimensions. 

Error number·l8, 
. . . . : . 

• In TOET( ) o~ TNNZR(. ) a negat?:.ve value fo:r:. IPT..ACE(l·) w~s :discoveredo 

Since the :yaiu~s of IPLACE(*) represent virtual addresses, they_ are required 

to 'be non-negative .. 
. ,. . . 
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Monitoring of Demand Paging 

Status numbers_l3, 14, 15, and 16 are used to monitor demand paging. 

Status numbers 13 and 14 keep track of page reads from low speed me~ory and 

page writes to low speed memory respectively. Whenever a page read or write 

occurs, the package automatically updates the counts for status numbers 13 

or 14 by a call to subprogram TERROR( ). This call is a non-fatal call 

with error message printing suppressed~ Thus, only the histogram count 

for these status numbe~s is incremented. 

The user can return the histogram counts for status numbers 13 and 14 

via .a call to subprogram TERROR( ) with a value of !ERROR = ~15 or -16. A 

call to TERROR( ) with !ERROR = -15 returns in !ERROR the histogram count 

for status number 13, while a call to TERROR with !ERROR = -16 returns in 

!ERROR~ the histogram count :for statu::: numhAr lh. Since the value of IEIIDOn 

·is changed by subprogram TERROR( ), it must be a variable and not a constant. 

The histogram count represents the total number of page reads or page writes 

which have occurred during the course of this Mln for all matrices. ·A 

sample calling sequence to return th~ hi~t.n~~Rm count for the number of page 

reads is now illustrated.· 

!ERROR = -15: 
··!FATAL = 0 

IFMT = 0 . 
. CALL TERROR (IF A TAL-, IEHHOH, H'M'l') 

. Since no message.is·to be printed, !ERROR< o, the variable IFMT is set to 

· zero because it is never accessed for the above cali. Upon return from 

'rERROR( ), the· variable !ERROR contains the histogram count for the number 

of page reads • 



Modifications Required to Add a· New Error Message or Status Features 

:: 

Subprogram TERROR( ) is written to allow the easy addition of enror 

messages to the sparse· matrix package. The user can add an error message to 
·: .. 

the package.by defining a new error number and variable format, and by 
·, .. . . . . . 

·making a ca.J.l to subprogram TERROR( ) to perform the printing and tabulation 
•. 

functions.·· ' If an error number greater than 40 is required recompile 
., . . 

TERROR( ) with the changes indicated in the description of error number 9. 

To add a new status number similar to those described in the previous 

. section, code must be added .to subp.rogram TERROR(/. ··The existing code in 

TERROR( ) for error numbers l5 and 16. must· be inimicke·d. 

Appendix 2 

Usage and FUrther Implementation of Demand Paging 

Using Demand Paging· on th~ CDC 6000-7000 Series· ·.: 

Subi>rogram TRWVIR( .) implements three methods of demand paging on the 

·cDc 6ooo..;7000 series. 
·' 

The method used is chosen by setting the variable 

METHOD equal to 1, 2, or 3 in subprogram TRWVIR( ). 

For METHOD = 1, we use extended core storage or large core memory 
~- ' . 

exclusively. The user must supply up to 13107210 words of extended core 

storage to the package. fhe syst~m' takes its ~torage from t'~-'; start of 

extended core storage, using as mu~h a~ it n'eeds. ·. Error numher 8 occur's. 
. . 

when more than 13+,07210. words. of extended .core st'orage are required. 

For·METHOri·= 2; demand paging is implemented using ra.tldom·access disk 

alone~ :To use this ~~t.hod,' the user must deciare .. TAFEl as ·a file on· the 

PROGRAM card. · Th~ file TAFEl corresponds to FORTRAN logical unit ·number 1. 
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For METHOD.= 3, a combination of methods·l and 2 is utilized. The 

user must supp~ up to the full 13107210 words of extended core storage 

to the package. The user must also declare the file TAFEl on the program 

card. The package first uses the 13107210 word of exten~ed core memory, 

and when that is exhausted, it uses random access disk for the overflow pages. 

Implementing Demand Paging for a New Machine 

·.·· 
In order to J.iiiplenient demancl p1:1.glug uu 1:1. u~:::w iM.l::hi11e, !Ubprogram · 

TRWVIR( ) must.be modified or rewritten. This can be accomplished by 

mimicking method 1 or.method 2 for the CDC 6ooo~7000 series. Most often, 

demand paging will "be implemented using random access disk storage and hence 

method 2 will ·be mimicked. 

Method 2 accomplishes three main tasks. It opens a mass storage file 

when the routine is.first called. It computes a unique random access disk 

address for a given page number and matrix number, and it performs either 

the random access read or write depending on the input value of the subprogram 

argument KEY. A unique random.access disk address is-computable using the 

fo:r.mula 

IADDR = (IPAGE -l)*MAXMN + ·MN 

where IP.AGE is the page number, MAXMN is the maximum allowed matrix number 

and MN is· the matriX number associated with the given page being uccesuetl. 

In Method 2, we write the real data and integer data as separate records 

.. so to generate a unique d1sk address for each record, we store the-real 

. data at random access address 2*IADDR - 1, and the integer data at random 

access address 2*IADDR. The record lengths for these two records are 

-Lro and 4*LR1 respecti v'e1y. 



.. 

Method 1 should be mimicked when some type of low-speed word 

addressable memory is ·to be utilized for demand paging. The offset in 

low-speed memory of matrix MN, page !PAGE is stored in the page table 

IOF'F·= .. IPTBLE(MN,IPAGE). The SX(*) array is stored in locations IOFF 

throughiOFF + Lro- 1, and the IX(4,*) array is stored in locations IOFF + 

Lro through IOFF + 5*LIU - 1, of low-speed memory • 
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