C60-2203 -7

CRITICAL PHENOMENA IN THICK FILMS OF A BINARY LIQUID MIXTURE

by |
" Donald Thomas Jacbbs
B.A., University of South Florida, 1971

M.A., University of South.Florida, 1972

NOTICE
.| is report was prepared as an account of work
] s
.| the United States nor the United States Energy
Research and Development Administration, nor any of

subcontractors, or their employees, makes any
warranty, €xpress of implied, or assumes any legal
Liability or responsibili for the

process disclosed, or represents that its use would nat
infringe privately owned rights.

QA:thesiﬁ submltted to thé‘Faculty of the‘Graduate
School of the University ofiﬁdlorado.in barti#li
fQIffilmenf'of the requirements for Ehé‘dégree of
| Doctor of Phifosqphy:‘ “
- Department of Physics and Astrophyﬁicé

1976

2y

T 1S UNLIMITED

DGTMBUTKwJOFTHHsDOCQMEN

onsored by the United States Government. Neither '

their employees, nor any of their contractors, |

Y,
or usefulness of any information, apparatus, product ot




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



This Thesis for the Doctor of Phllosophy Degree by

" Donald Thomas Jacobs
_has been approved for the
- Department.of‘

Physics and Astrophysics

by

Rlcha;eec.'ﬂeekleri

W£I)4am J. O‘Sull|van _

Date X~ = /‘4‘. . ‘_) /§/(




Jacobs, Donald Thomas (Ph.D., Physics)

Critical'Phenomena in Thick Films of a Binary Liquid Mixture -
Thesis directed by Professors R.C. Mockler and W.J. 0'Sullivan

This. work presents the first experimental data on the behavnor
of a critical system as it approaches two dimensionality. Measure-
ments of the bulk coexistence curve using refractive index tech-
| niques are done on the binary fluid mixture methanoi-cyciohexane.
These measurements give the critical exponent 8 = 0.326 + 0.003
which agrees with recent ising model calculations. This same
binary fidid-mixture was then constrained between two highly
reflective, optically flat pieces of fused silica in an interfero-
meter. The'criticai temperature and coexistence‘curve were deter-
mined asdthe'spacing between the fiats was varied from I”um to.
60 um, The critical temperature was directly measured for spacings
hetween 3 and 60 um. It was found that |f the waiis were close
enough together (s 6 um) then the drops that form on phase separa-
tion wouid span the intervening space. The coexistence curves of
these thick films (5 6 um) was determined from measurements of the
difference in refractive index between the two phases that appeared
as drops. | | -

It was&found that the shift in the critical'temperature as the
spacing was: varied foilowed a logarithmic dependence Such a .
dependence is not expected from Scaling Theory for an. Ising model,

but is to be expected of systems with effectiveiy infinlte range

Y
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Interactfons. The coexistence curves for each spaclng of the thick'

film lndlcated that the critical exponent B was close to 0.5 whnch
Is the mean field (infinite range Interactlon) ‘value and not the
two-dimenslonal lslng model value of 0.125, The amplltude of the
coexlstence curves was found to vary wlth spacing as Lz with z in
the range 0.6 » 0.8. Thls was a much larger dependence than
expecteddrrom the'theory.. A comparison of the data_and the theory
and sugoeatfons for new experiments are made. |

This abstract is approved as to form and content. | ‘recommend -
its publlcation.
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CHAPTER | . . ny+

INTRODUCT I ON

The study of critical phenomena has been ongoing for fifty or

veven a hundred years now (Stanley, 1971a). However, the-main

lmpetus has occurred since 1960 when Heller, Benedek and Jacrot,

along wuth theoretlclans such as Domb, Rushbrooke, Fisher and

Marshall, realized that divergences in a varuety of thermodynamnc

functions appear as powers of the dev:atlon from crttlcallty.
These dlvergences are characterlzed by critical indices (the
exponents in the power laws) . The fascnnatlng thlng about these
exponents ns that  they not only obey rigorous (vna thermodynamncs)
inequallties (whlch for many are. experlmentaily verifued as -
equalities) but that they are the same for a wide variety of .
systems. Examples of systems exhlblting crltlcal phenomena»
include superconductiv:ty, llquid-gas, binary flunds, magnetlc |
systems, growth of polymer chains, percolatlon (Jumping from
place to place on a lattice), well-deveioped turbulence and, to
: !

some extent, many partlcle lnteractions in hlgh energy physics

(Lubking 1972).f It Is for thiS reason that SO - much work has been

-done on crltical phenomena in recent years. With such a varlety

of applications and with so much left to learn, it is indeed a

very exc:tingifneld.




TheebaCkground experiments and theoretical deVelopments are
rich and varied, and there are many reviews on the subject
(Brout, 1965; Fisher, 1967; Heller, 1967; Kadanoff, 1967;

Stanley, 197|a and 1971b; Levelt-Sengers, 1976) so | will refrain

from expostulating on these, but let the |nterested reader refer

tovthem._ I will briefly discuss the nature of a critical pount,
and the definition of some of the critical exponents, but the
details of some of the older phenomenolog:cal models will only be
alluded to. A readable account of the above pounts is given by

Stanley.(197la).
1 Universality and Scaling in Critical Phenomena

The”ooncept that broad classestof systems can:exhibit the
same behavior near a critical pount is called unlversality. 'This,
along wlth the idea of scaling--that the behavuor ‘near the crltncal
point is unchanged as the scale of length (and other variables)
changed--were reallzed in 1966 when Kadanoff proposed that, near a
crltncal point, |f the length scale is changed the effectlve
Hamiltonian,should remain invariant. Usnng-thls,.he was able to
vrecoter'thedscaling laws of Widom and others,{andpalso‘to obtain
reiations among the critical exponents. rKenneth_hilson, in 1971,
was able to show exactly how this is done and to protide a method
(“Renormaifiation Group'') for approximating the Crttfcal exponents

for the varfous models. The Renormalization GrOup approachvis

_ dlscussed in Appendix A.

It Is important to take a moment to reallze the nature of

this methpd,that uses the invariance of the Ham}ltonlan to change



of scalel(scale symmetry). (The invariance of the’Hamiltonian to
a set of.transformations changing the scale implies the set of
trahsformations forms a group, thevchange of scale, or length, and
is called'“renormalization", hence, "Renormalization Group''. This
is to be distinguished from the field theory concept, where |
renormalization involves divergences and cut off parameters--thls’
dlstinctlon will be made clearer later.) Scale_symmetrygisfa
"space-time“ symmetry, others of which lead tonconservation of
energy and_momentum, instead of an ﬂinternal”‘symmetry,'which leads
to conservation of various ‘''quantum numbers''. fhe‘advantage of
working Qlth such a symmetry is obvious, as thefnuclear and
particle{physiclsts can testify. There are advantages to investi-
gating eXact and approximate symmetries. By utilizing the
approximate scale symmetry, one can recover the reiatlons among
the critical exponents’ (|.e., equalities whlch are experimentally
verified), the scaling laws of widom, and unlversality.

It is possible to separate any physical problem into a model
and the geometry where the model is used. The geometry can be
described independently of the model by the symmetry it possesses.
For instance, the harmonic oscillator is a model but the harmonic
osclllator problem can not be solved until the geometry is
provlded however, the geometry can be studied in general and
then comblned with various models to obtain values of physically
interesting quantities._ The result of applying group theory to a
problem is that only relations between quantlties can be found but
not the values of the quantlties (unless avmodel i1s employed).

The sugniflcance of the Renormallzatlon Group approach is that it



_provides an approximate description of the geometry on which the
many models currently in exustence can be used.

The.SOfcalled “"Scaling Theory" is a consequence of the
Renormalization Group approach and thus‘can provide realtidnships
betweén.critical exponents. It is veryvimportant to remember -that

many approximations are involved in the Renormalization Group

approach-so-that the predictions of Scaling:Theory are just that--
predictions; The work described in this thesis is the first
experimental test of some of these predictions.. lhe results of
the Renormalization Group procedure have.thUSlfar‘agreed'with_

experimental results.
: QUalitative Features of Critical Phenomena

Before jumping into the details of thls‘paper, it is useful
to consider a simple physical plcture of what occurs at a critical
point. First, consader a liquid=-gas transituon‘ we realize that
| there is lncreassng interactuon among the molecules as»the crltlcal
temperatureiis approached from above as evidenced‘by the deviation
from the ideal Qas law. In fact, by utiliiing the'Van der Waals
equatlon'otistate for real gases (a "mean field"wmodel), one can
exhibnt a critical point and critical exponents (which are all at
variance with experimental values on bulk systems)

Now we . consider the Isnng model of magnetlc systems (whith
corresponds to the lattice-gas mode! for liquid-gas systems) where
'one imagines a spin to be pounting up or down on each lattice site.
For liquid-gas systems, the volume is partltioned_to mlcroscoplc

cells allowing only one molecule on each site (finite size of the



particles) where spin up corresponds to a molecule Being present
and spln doWn corresponds to no molecule onithe site. However, the
moleCules'are not constrained to a site. For the temperature, T,
much larger than the crltical temperatdre, Tc' we see random B
flipping of the splns, corresponding to freely moving gas mole-
cules. vAS'T -+ Tc small ‘domains of correlated spins occur_as the
spln-spln.lnteraction becomes important, and thelrlsizepinCreeses
as T -Alc14 0. (For the fluids, droplets begin to form, increasing
in slze:as T-_Tc + 0.) When the average size of the droplets
becomes'the same order of magnitude as the waye_length of visible
llght,_llght’is strongly scattered (called criticelvopalescence)
‘givlng vlvld ~experimental justlflcatlon of the ldea that'near the
crltlcal polnt ‘the correlation length, &, becomes very large. At
the eritical point the long range order (droplets) characteristic
of the reglon T > T glves rise to a llquld (or flund) phase or of .
magnetlc domalns characterlstlc of T < T . o |

To be more SpelelC, let us consider the lsing model (slnce
we wlll use lt shortly), which is a d- dlmensuonal lattlce and on
every lattlce site, &, a spin is situated. The_lslng Hamiltonian
is (wlthoqt the factor, (kT)~!, included) -

Hl-eH gsﬁ-&% Sy ¢ S
where Qﬁ.stends for the spln on site ® thch caﬁ*pélnt up or down
(Sﬁ = tl)gcthe.summatlon goes over allvsltes ﬁ;:T are the unit
vectors in the lattice which shift from e‘site to‘ltsfneareSt

nelghbor's; The external magnetic field is'Hf, and K is the



spln-nearest neighbor spin coupling constant. (For a liquid-gas
(Iattice*gasbmodel) Sx = Z(pa - %) where p> = 1 If there is a
particle.and 0 if no particle on site &; K gives the strength of
the attractlve force among the particles, and the external field,

H”, is interprered as the chemical potential, p, times. the number
of particles- H® = uN.) The procedure is to calculate the partl- .
tion function, Z, and so the free.energy density, F (atiowing all
the other thermodynam}c quantities to be calculafed), from‘the

Hamiltonian

Z=<eBHs  Faogn@)/v

where <a> denotes the sum over all possible states of the system.
This can be done exactly for d =1 and 2, but only approxnmately
for d = 3 The problem wnth the approximations done for d = 3 are
that they assume large T so (kT)"! Is small and they expand in.
.(kT) 1 assuming a small correlation length E. However, as
criticality is approached, £ + = and the approximations of some
thermodynaﬁic functions develop singularities at T = Tc' 'There
is a procedure to correct this (Pade approximates), but the’problem:_
can be circumvented by using the Renormalizationréroup approach.

The correlation length, E, which becomes very large close to

the crltlcal temperature, T_, but assumes some mean molecular size,

c’
o well.away from the critical point, can be written as a power
law divergence: £ = g [(T - Tc)/Tc]'“ where v is a critical.
exponent that is independent of the details of the system but

depends.on_general features suoh as boundary conditions and dimen-

alonality. Othervoritical exponents can be defined by the power



iaw divergences of various thermodynamic ouantltles Some of the
exponents with their definitnons and values are shown in Table l.
Considerabie theoretical interest has been shown in the
behavior of critical systems in a dlmensionailty other than three.
This is partialiy due to the solutions to the models being easier
(an exact soiutlon can be obtained for the two-dimensnonal Ising

model (see McCoy and wu, 1973)) but also because the Renormaliza-

“tion Group Theory allows the critical exponents to be approximated

in a continuous fashion knowing the dimensionailty and model (see
Appendix A) "*Scal ing Theory" descrlbes the crossover from three-
to two-dimensional behavior as one of the system s dlmensions
becomes smali near the criticai point. Since the correiatlon
Iength.&d(see Table 1), becomes quite large near T, then L, the
siae of the'system in one of its dimensions, can be smaller than’
§&. Then the system is constrained from having-fiuctuations of
size § in one’dimension and so may approximateﬁa two-dimensionai
system. (This theory Is presented in Chapter 4, )

. The dimensnonaiity of real fllms can be dlvided into three
main categories (Fisher, 1973) depending on the relatnve size of
the average molecular (or lattice) size, Eo’ the range of inter-
action,;E,,and the_fiim thickness, L. First, purely two--
dimensionai films can be divided into very thin fiims (L << gy £)

(which can be realized in superconductors and where a cIaSS|cal or

‘mean fleld description applies) and thin fiims (L ~oEL) which .

includes monomoiecuiar and bimolecular films. Second, thick films
(L >>v€°)iwhiCh are expected to exhibit "crossover' from three to

two'dimensions_as the critical point is approached. And last, bulk
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Expohént‘

TABLE |

" DEFINITIONS AND VALUES OF SOME CRITICAL EXPONENTS

— -
— e TRt

Definition

A,Mddel Values o . Experimental Values

Ising Mean Field

d =2 - d=3 . d=2  d=3

s

v lel™®

peT/E

rlitn

0(10g) “~ 1716 0 R 2(~ 0.1)
1/8. ~S5/16 12 n 0,34
10 w0k 12 - . 1 0.6k

/b ~0.08 0. 7 7(< 0.1)
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fllms (L*> fOG go) where three-dimensional behayior is expected to
‘predﬁmlhéteQ For our binary fluid system, Eo N3 ﬁ, so that a
"thlck" fllm is one which varies from ~ 100. A to ~ 300 um in one
of Its dfmenSions. A bulk fluid has each diménéfon largéé than-,

~'300 um.
" Statement of the Problem

Thl;-work:was undertaken td experimentally determihé the
behavior of a binary fluid systém near its critical pofnt for =
thick ftlhébthat.may simulate a two-dimensionalf§jsfem. Recent
predlctioﬁé have been made on the behavior of the critical tempera-
ture and tﬁ;ipower law dfvergences of thermodynaﬁ!c quantities
neaf thg ;fItlcal poinf as a function of the fflh thi¢kné55.‘ These

predictions ére tested by the work described»héré,“




CHAPTER |1

v a,{f":f 3.,

EXPERIMENTAL BACKGROUND AND APPARATUS
Experimental Background

‘in-gpité of theoretical predictions that changes would be 
seen }n the crlticalrexﬁonents and témperature as a function of
dimensionality, very little work has been done to test thg$e<
ﬁre&ictfchs; A few measurements have Been done 66 the'erificél
temperatﬁrelcf helium films (Brewer, 1970; Guyon,'1973) but;‘as
discussed in Appeﬁdix A, they are in a differehﬁ univ§rsaIity class
than Ising-type systems which inciude bfﬁary flﬁfd mixtures. Some
sqpercoﬁddcthtty»work (Guyon, 1973) hasbalso beeﬁ done but again,
they are ﬁof_lsfng systems. Recently, data oﬁ‘Ni'films.near thei
Curie:pofnf;have shown ah L=A dependence but fheﬁdata é;e,nof
coﬁélusi§é>(Luté,VEE;EL;; 1974) . Théféfofg;bffrwas décidedvthat a
look a;7the:pfopertiesvbf.thick films %bf én'ising‘class system.
was needé33” | 77 o

F[fSt,.binary fluids are shown to be consi#teht with the
unlverséiif§ class (n = 1) of the Ising (latti#e;gés) class, thch,
as dIscq§§ed in Appendix A, also includes simple_fluids and some
magneti;;syéfems. In order to do.this, the measurément of a :
crltica| éxp;nent for a binary bulk fluid mixfufegWas_shown to
agree with the Ising model predictlions and meaSufementS’oﬁ:simple

|

|

|
fluids. This is not to say that this was the fiféirmeésurement'of '
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“the coeXistence curve for a binary fluid, but, asvwiii be shown,
the method'used'aiiowed a much more accurate determinatidn of
the curve. |

Therefore, the first experiment was the measurement of the
critical exponent, B, which determines the shape of the coexistence
curve, and is an exponent that can be measured quite precisely.

For binaryrfluid mixtures, a variety of choices exist for the'order
parameter'(e.g.; concentration in moie’fraction, volume fraction,
weight percent, etc.) but since the Voiume fraction seems to give
the most symmetrlc coexistence curve experimentaiiy (Greer, i976),
it was chosen as the order parameter in this experiment. The
simple ising model predicts a completely symmetric coexistence
curve.

To measure the coexistence curve, the change in the voiume
fraction between the two phases was determined by empioying
refractive index techniques. The coexistence curye, of course,vcan
be determined in several ways. One way wouidibe to prepare'a'set
of vials ofTVarious'compositions and‘measure the height of the
meniscus asta function of temperature; Another wouid be to observe
the temperature at which the meniscus "dlsappeared" for different
' compositlons.’ However, these are not very precise methods for
several reasons. First, it is difficuit to prepare the exact
composition desired particularly if the sampie'voiume is small.
Second, the meniscus, which gets broad close to T. but laps up on
the glass far from Tc' cannot be accurateiy iocated Third, the
temperature at which the meniscus disappears cannot be accurateiy

measured. Another problem arises in making sure that the same



- samples.
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level of'lmpurlties is present in all_the samples, since even

minor lmpuritles can cause very large changes in the critlcal-
temperature, and so ruin any intercomparlson of.data between
" W

‘A second and much better method of determlnlng the coexistence
curve is to_slmultaneously measure the densityfofbthe upper and
lower phase for various temperatures. We chosehone'precise{method
of measurlng the denslty, namely, the refractlve index.-‘The'bulkA
refractive index of our volatile fluid mixture wasvmeasured,_since

it allows the critical exponent, 8, to be determined, as well as

' Checking_for any anomalies in the rectilinear diameter. To |

measure'the'bulk refractlye indices of our flulds.a prism cell was
used since lt allowed the fluids to be sealed and also since.a good
quallty:spectrometer was available. From thevmeasured index of
refractlon'ln the upper and lower'phases, the change.in-volume
fraction could be calculated, so that the crltlcal exponent B,h
(the. crltlcal exponents were defined |n the furst sectnon of thls
work) could'be determined and compared wnth values‘measured for
different systems that were also considered to. be IS|ng-l|ke. .
Slnce refractlve index techniques were to be used in thlck fllms,
it was necessary to be sure there were no serlous;errors |n,uslng
theuLorenti-Lorenz relation. Thus, the refractlye»lndex anomaly '
was remeasured using the critical concentrationdoflthe fluids
(which was‘determined from the coexistence curyel Also, the
density anomaly near the crxtlcal point was checked by Scheubner _

(1976) tO determlne the size of this effect, although it was not

vexpected to be very large based on other measurements on snmllar
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systems."The'telative-importance of the refractive:index and
density anomalies was determined near the critical point.

After these preliminary investigations, a fluid sample was
captured,between two optical flats and squeezed dBWniterg:tthk‘
film whose thickness could be varied in order to determine the
crltical temperature and exponent dependence. The lsing-Iike
system,ehpsen was a binary fluid migture simply because it has
several advantages for the experimentalist.. First, the pressure

need not be controlled due to the effectively infinite compressi- |

k bllfty of liquids. (Since our cells are sealed atvroomvtemperature

then the pressure increase in ralsung the cell temperature 25 K
causes the critical temperature to increase by m‘lo mK. (washburn,
1928).)_'§eeond, for the same reason, gravity effects are typically
much less For a binary fluid mixture than they are.for a simpTe'
quuid-gas transltlon. And, third, the critical temperatdre is
experlmentally very easlly accessible--typlcally 10 K to hO K |
above room temperature--so temperature control is greatly samplx-
fied. There are other. advantages whnch will be ponnted out later.
The blnary fluid mixture chosen was one that had a large
refractiveaindex dlfference but a sma]l_densnty difference between

the two.cdmpenents (so that the gravity effects were very small)

~and one'forfwhich the critical temperature and concentration were

fairly weil known. These are all fairly severe restrictions,
especially the restriction that the density difference be small
while the. refractive index difference is large; ‘fhe best_thoice
that we . could find was the system methanol-cyclohexane. lt was

also the system that Hartley (1974) had used in measurlng the
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preliminary data on the refractive index anomaly.. We wished to

use this data, as well.
Experimental Apparatus S

Prism Cell

It was first necessary to construct a cell with which to.
" measure the refractive lndex of the two phases and obtain ‘the
coexistence curve, and with it, the critlcal exponent, B, which
would (ndlcate the;universality class.tobwhich that binary,mixture'-
belongsgfiAjconvenient'and reasonably accurate way to measure‘the
absolute;huik refractfve.index of volatile fluids, which must be
sealed'to prevent impurities or evaporation from-occurring, was to -
use a prism cell as a simple, efficient and accurate method. The _
prism cell that we designed, as shown in anure 1, was a piece of
aluminumycarefully shaped to be an equllateralrtrnangle; »The cell
nas anoofzed'inrorder to prevent reaction with the fiuids which
were contafned in a oneéfnch hole bored parallel to the base. The.
fluids mere_captured,hy two optically flat (A/20) pieces of glass
and sealed'WIth teflon. v+he cell Was heated bY means of three
.heatershlocated symmetrically inside it and the'temperature'was
monltoreo,by a thermistor. The pertinent measurements’which
needed to'he taken with this cell were the prism.angle (the angle
between the two wnndows), the undeviated angle through the refrac-
tometer and the deviated angle through the. flund “This' ”general
physncs" plece of equtpment provided very precnse measurements. )

The geometry Is shown |n anure 2, A,laser was used as a.



Figure 1: The prism cell used in this experiment is made of
anodized aluminum with a one-inch bore (A) for the fluids which
are captured by two optically flat pieces of glass (B) and:
 sealed with teflon (C). The cell is heated by three symmetric

internal heaters (D) and the temperature ls monitcred with a
thermistor (E)



Figure 2: -Prism Cell Geometry. “The prism cell, A, is placed

inside a heat shield, B, which is in turn inside a vacuum envelope,

C. The system is placed on the spectrometer, D, so that the light

from the collimator, E, will be deviated through an angle ¢ - ¥,
into theﬁtelescope, F. o ‘ O
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monochromatic source with a rotating ground glass screen 'mixing

the modes" and so eliminating the annoying Nspeckles'.

- Variable Spacing Cell

The next step was to devise a means by which some of the -
anomaloushrefractive.index data above the critical temperature
could be‘retaken while also using the same cell to'capture a
thick filmlof fluid. It was necessary that the spacing be variable
and directly measurable while allowing the behavior of the fluid

to be determined. Toward this end we decided to use a differential

frefractometer that was a modified version of what Hartley had used

in his anomalous refractive index measurement. | v |

| Ne again took two optically flat (A/lOO) pieces of quartz
that werevcoated with very high reflectance coatings, 99.02 at
6328 A (he-Ne laser line). The high*reflectance'coatlngs allowed
a very sharovand distlnct fringe to'befseen;'whlchvwasvldeal for
both‘the‘refractlve index measurements and also forfobserVIng the
behavior of the fluid between the flats. The cell was modified
from‘thetdeslgn of the cell fhat‘Hartleyahad usedbto that shown in
Flgure 3- The two flat pieces of quartz, whlch we WIll also refer
to- as mirrors or slmply “flats", were each sealed in one half of
the cell The two halves of the cell were then connected by means

of a stainless steel bellows, which allowed a reservour of fluid to

surround the sample of fluld that was under study between the

flats, and ‘also allowed the spacing between the flats to be

contlnuously varied by means of the dlfferentlal screws which were

locatedfat the perimeter of the cell, The three differential
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" figure 3: Variable spacing cell with A ~the quartz (fused silica)
. flats, B~ the fluid cavity, C- the high reflectance coating, D—
“the stainless steel bellows, E- the stainless steel cell haif, F-
~ an aluminum cell cap containing a heater form, G, H- an invar
differential screw, |- a teflon seal and J~ a thermistor well.
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screws had fifty-two and fifty-one threads per inch on the.out-
side and inside respectively, which al Towed very fine control of
the spaclng. Of course, it also necessitated great care in settlng
up the orlginal spacing because, with the approximately one inch

of differential screw, the mirrors can only move_about 240 um.

The cell halves were also made out of stainless steel and the seals
were teflon (except in the refractive index measurements, where
indium seals were used on a similar cell--the differencebbetween
the cells was very slight and the dlstlnctlon will be made where
approprlate ) The cell ‘had two end caps which contalned the heater
colls. ThiS'allowed the heater to be removed when cleaning,
filllngland massing the'cell and also allowed'theiradlated heat
from the heater to be contained within the cell ”The heater coils
were matched'ln resistance to + 0.1 Q. Between the two cell halves
were three turns of one-and-one-half Inch brald to prov:de better
thermal conduction between the cell halves. The'cell was thermally
lsolated from the outside environment by being placed on nylon |
posts lnslde a half-inch thick aluminum heat shield which was then
attached to»a surrounding_vacuum envelope by an_additional set of

nylon posts,riThis‘assured7very little'conduction”loss'between the

pieces and almost all radiation exchange, thereby providing unlform v

heat loss and small temperature gradients across the cell of
course, with the nylon posts supporting the cell, there was some
extra heat loss down through the nylon supports which was compen-
sated_for by a trim pot attached externally tofthe_heater coil
remote fromythe nylon supports. Thus, just the amount of power

that was_lost through the nylon supports could be'sqbtracted from
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the other'side of-the cell. We describe later, in more detail, the

procedure used to balance the power losses. The: cell was filled

by means of the fill-hole plug, taking approxnmately 50 ml of

fluid, whlle still allowing a small air space (See Figure &4,)
Refractive index techniques were used to determine the fluid's

behavior since, as the refractive Index of the fluld changes, the

optical path length will change causing the observed frlnge to

shift. Since the fringes are so very narrow,'the shifts can be

measured quite accurately, thereby determlning the refractive index

change.v This '""Fabry-Perot' |nterferometer had a slight titt -
between the mirrors (a ''wedge mode') producing almost straight |
frlnges.v The slight curve in the center of the fringes was due to
distortions in sealing the flats. This cell was llluminated by a

He-Ne laser beam of nearly monochromatic light made plane-paraliel

by a spatlal filter and collimator and was made incldent perpendic- '

uiar to the first mirror by autocolllmatlon. The spacing was

adjusted by ‘three nylon rods that could be pushed in to engage the -

: differential screws and then pulled out, clear of the cell and

shleld so that no heat loss occurred down these rods.

Temperature Control . -

‘ln“these'experlments,~both cells and shlelds:were temperature
controlled The controllers on the shlelds were DC bridges capable
of controillng to £ 0.5 mK over twenty-four hours as tested in a
weli-stirrednoli bath. The DC bridge is'basiCally a Wheatstone :
bridge withithe.error signal being amplified by:an_op-amp and fed

back by[wav-of a power amplifier to the heater (see Figure 5). The
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Figure b: The variable spacing cell, A, is attached by nylon-legs.,

C, to a surrounding aluminum heat shield, B. The heat shield is
‘enclosed in vacuum jacket, D. Light passes through the windows, E.
The spacing can be adjusted by the sliding nylon rods, F, engaging
the differential screws. The vacuum pump is attached at the port,
G.. H is the electrical feedthroughs, and | is the braid used to

- provide a thermal path between the cell halves.
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‘ - Power S
L Bridge | |[Amplifier | Load ' |

Figure 5: Schematic diagram of the temperature control system.
The thermistor, A, and standard resistor, B, are basically in a
Wheatstone Bridge which is balanced with the Kevin-Varley divider,
C. The bridge unbalance is amplified at D with the error signal,
E, being amplified by the power amplifier, F, which supplies

power to the load. The load shown here is for the variable-
.spacing cell where G are the heaters in the cell caps and H is the
external trimpot used to eliminate temperature gradients.




thermlstors (temperaturevsensltlve-reslstors) used were.“aged“
(l.e.,v‘cyCled several times from room temperature to operating
temperature) Yellow Sprlngs Instrument (No. 440OL: 2250 ohm at
25°C) thermlstors. (The stability and rellablllty of these |
thermlstors Is discussed in a later section.) The auxiliary
thermistor used In the prism cell was calibrated after the experi-
ment wlth respect to a standard platinum resistance element that
had been'callbrated by the Natlonal Bureau of Standards._ Tne.
crltlcalttemperature found by this thermlstor on the fluld sample
in the prlsnfcell was h5'47h +0.015 C, whlch dlffers from reported
‘values of 45.14 £ 0.0 C by an amount consistent wlth the water
Impurity present.ln our flulds. Impurity effects‘wlll be discussed
In a later'sectlon. This value of the crltlcal'temperature ls
conslstent wlth the determination from the'varlable-spaced cell
where absolute temperatures were known to onlytt 0.2 K.

A.sebarate DC bridge was used for temperature control of the
prlsm cell allowing + 2.5 mK control over twelve hours wlth the
shield controlllng to & lO_mK over the same period of time. The
varlable'soeced cell'utlllzed a more sopnlsticated AC Kelvin brldge'
deslgned by ‘Lyons (1973) that allowed a resolution of 20 uK and-
control of 50 pK per day Since the room temperature was
controlled to £ 0.2 K for this cell, the shleld could control to .

+ 2 mK for perlods of a week.



EXperimental Precautions

In_taktngvmeasurements of this kind there are several pre-
cautions that should be taken to insure that the interpretation of
the data Isveorrect. Since thermistors are used to monitor and
control the temperature, they should be shown to be stable or at .
least to“haye only a small drift., Also, some assurance needs to
be made on the resistance versus temperature curves supplied'with
the thermlstor, not so much for absolute as for relative calibra-
tion. Some determlnations as to the effects of gravity on the
data and,the*slze of their effects in binary fluids also should be
made. Consideration of the predicted and observed eftects of

'Impuritfes.should'be made. Finally, a method:to monitor and

eliminate temperature gradients should be devised.

Thermistor~Stability

Our thermlstors were monntored while some prellmlnary data was
being taken with the Fabry-Perot cell. There were four thermistors
in the cell, one control and three auxillary thermlstors, and all
were monltored The three auxi].ary thermlstors were compared to
each other after a Iong period of time (three months) to determine
the longbterm drifts of the thermistors. A-typical_set of data
4(neither.the best nor the worst) Is shown ih ngurevé,- The drift
with tlme”was typically a millidegree per month;v There was also a
ksllght diSerepancy in the relative temperature shifts given by the
thermiStorsj-an effect that was about 0.1% of the temperature

change. Since all our temperatures were measured with respect to

. the crltjcal temperature, this small error was not important unless
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far from the critical temperature (that is, more than 1°C). When
compared with the critical temperature the thermistors were found
to be COnsiétent to within 1.5 mKk over a period of about two .
months.” Tﬁe net effect was that the thermistor values could be
ffﬁsted'éhd that only'over‘very extended‘feglbns ln'temperafure 
was it necessary to worry about the temberature scalé efror.
Thus, for tﬁe exberiment in which the bulk coexlstence curve over
an 18°C‘fange was measured, an auxiliary thermistor was calibrated
at. the cbmbfetlon of the experiment.(the temperafure intervals
agreed to 0.03%). Because the slope of plots of the change in an
effect versus the change In temperature usually gives the critical
exponents, any error in the temperature scale ié propagated_ v
dlreﬁily fdithe critical exponents. One Is fofthﬁéte to determine
avcriticéi'exponent to 1% and so the small (0}]2)‘femberaturé‘scéle
érrOr wéstnbt véry sighlflcant. |

InYOrdér,to déterﬁine the temperature from fhe‘resistance of
the'therhfétbr, an equation must be fit. The eﬁda?fon thatvls )
generally recognized as providing the best’fitIWfth the fewest

pafametgrs is (Steinhart and Hart, 1968)
T°! = A+ B log R+ C [log R]®

where T is the absolute temperature and R Is the cdrrespondlng
resisfance,':This formula. was used In the calibration hrocedure and
in determining thevfempéfatures of the other thermistors and is

accurate to the extent described In the preceedingjparagraph. ,




 _Gravity Effects

Fof a Jong time it was bellieved that the effects of gravity
on a binary fluid mixture were negligible due to the very smal['
compressiblilty of liquids. However, it ls'posSible-for the more
dense qqmpdhent to slowly diffuse toward'the‘bottgmbbf the cell,
and recent calculations (Fannin and Knobler, 1974) have shown that
the effects can be as large as with pure fluids. Also, some recent
experlménts.(Lorentzen and Hansen, 1966; Bagoi, et.al., 1970;.
Greer, et.al., 1975; Giglio and Vendramini, 1975)‘have oEseryed a
gravity'effeCt in binary fluids. Fannin and Knoblér (1974) have
shown "that graviﬁy effects cause the data to cdee up (fo a smaller
value o% é) when close to the critical temperatufe as shownlin
ng@re 7;  How ciose.the crftica] temperature canjbé épbroach;dv.
before gravfty effec;s become signifi@antlécaléglwith the critical
tgmperaturg, sample Height and density:dfffefence-of the two compo-
nents.(Fannin énd Kﬁobier, 1974). For éxémple;;théy show that the:
effeét ls‘significant (0.2% of (X - xc)/xc; X2=.mole fraction) for
the coe#iﬁfence curve when ¢ = (T - T)/Té a5 x.ldf“ for the
mixture CH;’-‘CF,, (Ioy = 01/7 = 1.38) 1h a cell 2 em high. For our
fluids (161 - pZI/S =‘0;0|6) in a cell ;ne Cmihigh with a critical

temperature one-third of theirs, the gravity effect would not

become significant until the temperature was clbsef_than 0.5 mK of

the critical temperature. Thus, the critical temperature must be
approached much closer than it was In these experiments to observe

gravity effects fOr our fiuids, methanolécyt)dhexane._




¥ ¥ 7T r I

LOG An

“with gavity

- = Rwithout gravity

L R

 LOG(T-T).

Figure 7 Gravuty effects on the coexistence curVe; The dashed
line represents a system without gravity effects.’ Gravity causes
the data to deviate as .shown in the solid line so that a best fit

- to the data (dot-dashed line) has a different slope than with the

gravlty effects taken into account (dashed line). The inset shows
how the residuals (the deviation of the best fit from the data)
reflect the poor fit and .indicate a correctuon |s necessary to
properly fit the data.
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Impurity Effects

Early research on this binary fluid mixture was done to
determine the effect of various impurities on the critical tempera-
ture and coexlstence curve. Jones and Amstell (1330) fntroduced
water as an impurity to provide a guide in preparing_pure methanol,
which s very hygroscopic. Later, Eckfeldt and Lucasse (1943) used
Inorganic“salts as an Impurity and showed, in agreement with Jones'v,'

work, thatvthe binary mixture methanol-cyclohexane is much more
sensitive to a water impurity. (A 0.003% water impurlty is quoted
as causing an increase in the critical temperature of 0.05 K.)
Eckfeldt.and Lucasse (1943) also state that the effect of water on
the critical temperature is more than ten timesrthat for organic
impurities;'.Unfortunately, systematic measurements‘to determine
the Impurity effect of water on our system (glVlng both the '
crltical temperature and exponent dependence) have yet to. be done.
However, experiments on thls mlxture (Warren and Webb 1969) and
other mixtures (Bak and Goldburg, 1969, Bak, Goldburg and Pusey, |

1970; Goldburg and Pusey, 1972) indlcate that although the criti-
cal temperature may shift due to a small Impuruty, the crltlcal
exponents, measured relative to the shifted critical temperature,
do not seem to change significantly.

In the experiments described here, the variousvsamp)e cells
were prepared with fluids from the same bottles. The fluids used
were F!sher "Spectranalyzed“ methanol (99 952 pure) and cyclohexane
(99.98% pure) wath the major impurity in each belng water. This
resulted in aYO 32 by weight water Impurity in our sample cells.

Rather than'undertake the questionabte task of'further purifying
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the flulds; emphasis was placed on preventingbintroduction of
additional impurities when filling the cell. The cells were
thoroudhly cleaned and then placed in an oven to remove any
reslduaT'noisture. The hot cell was then placed in a dry‘nitrogen

atmosphere until f111ing. Loading the cell with the fluids

~occurred In the same dry box using phosphorous pentoxide as a

dessicant and under a constant stream of dry nitrogen. Massnng

of the cell took place outsude this box wuth the cell sealed after

the filling of each component. The concentration of fluids was
thus knewn:and kept close to the quoted critical value, whicnewas
checked’in the coeyistence curve experiment. Samples prepared in
this mannet'gave consistent values for. the critjeai temperature

and suggested that further impurities were notbintroduced on

filling.

YSInce it‘nas-been'experimentally oBserved and theoreticaIIy
predlcted (Kouvel and Fisher, 196k)  that the crttical exponents do
not signiflcantly (< 2%) change their values for. small amounts of
impunltles, ‘then the only concern rests on the |mpur|ty effects of
the critlcai'temperature dependence on film thftkness.' Al though a
eriticaI:eannent should describe this behavion'(Fisher, 1971),
further>assurance should be provided. Since this js the first
exper iment done on such a dependence, no_experinental data are d
available‘on impurity effects. However, lsiné.model calculatfons
have been ddne, assumfng random lattice-impurit}es, by Miyazima
(1973) in whfch the critical temperature dependeneevon filn

thlcknessvwas found not to alter for small impurity concentrations.
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We use this theoretical prediction to justify our tolerance of

the small (0 03% by weight) water impurity used in ‘this work.

Temperature"Gradlents o

For the variable—Spaced cell (see Figures 3 and 4), the
temperature gradient across the céll could be adjusted by means |
of an external trimpot connected in series'with the heater coil
remote from the nylon supports. Such an adjustment was needed
since the nylon support Iegs.‘which were on one side of the celi
conduct some:heat Th|s heat loss can be compensated by externally
dissipating an equivalent amount of the energy that would power
the other side of the cell, The two heater colls were matched in
resistance to 0.1 2 and connected In parallel to the power ampli-
fier (see anure 5) -

| The size of the gradient (if one exists) depended, in this
case, on. the temperature difference between the cell and shield.
To determine if such a gradient was present, a thermistor on each
cell half (not necessarily calibrated with respect to each other)
was mon!tored while the temperature difference betWeen the cell
and shieid”was varied (see Figure 8). A gradient was present if
the temperature difference between the two cell halves changed as
the temperature between the cell and shield changed The value at
which the externai trimpot should be set to ellmlnate a gradient
was determined from two values of the temperature difference
between'the cell and shield as the trimpot setting'was varied.-
These" data form two stranght lines when plotted with the tempera-

. o ture difference across the cell versus the fraction of power
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Figure 8: Temperature Gradients. The temperature difference across the cell, 69 was monitored
while the temperature difference between the cell and shield, T. - T_, was variea at a fixed trimpot
resistance, R (solid lines). The dashed line was T,

TG, the temperature dlfference between two thermis-
tors on the same cell half as a function of Te T
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dissipated fn the trimpot; the intersection gives the value of the
trlmpothheeded~to offset the heat conduction through the nylon
supporte-(eee Fleure 9). This value allowed the two cell halves
to be the:same temperature independent of the cellvand shield
temperatures.and without having prevlously calibrated the two
thermietqre. o

TWoladditional peints should be made concerning this adjust-
ment. ?irst, an additional thermistor hounted on the same side as
the nylon peSts indicated a slight gradient aroundfthe cell half
(the two thermistors were at the perimeter and abeut 90° apart)‘
as seen In the dashed line in Figure 8. This gredient was presum-
ably causedfby the screws on the clamps holdlng the braid in place
‘radiatinghsllghtly more than the uniform body anﬂ was kept to
n 0.1 mK - by keeping the shield temperature close to the cell
temperature (T T = 0, 06°C) Secondly, the gradlents measured
were qulte small and could be buried In the uncertalnty of measure-
ment if one tried to, for instance, callbrate two thermistors. and
_then separate them The method descrlbed here is certalnly the
easlest andveppears to give very satisfactory_results.

Wlthfthe prism cell, no adjustments were peesible'but a
measurement:}ndicated that the temperature gradient was less than.
2.5 mK (the;measurement accuracy) across the ceilt Temperature
gradients could be visuall* observed as convactfbn currents In the

cell. This was not observed in this bulk coexistence curve

experlment.;
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A;Thé temperature difference across the cell; T5 - Té, as
a function of the fraction of power dissipated in the trimpot at

fixed values of T_ - Ts. R is the resistance of the trimpot and

Re -_hO"Q‘is the resistance of a heater coil. The lines intersect
at the optimum setting of R (= 10,2 Q). o o




CHAPTER 111

EXPERIMENTAL PROCEDURE AND RESULTS  :
Introduction and Lorentz-Lorenz Relation

lﬁ dojhg refractive Index measurements to probe critical
phenomena;‘it is often necessary to relate the,rgfractiVelindég
to densfty or volume fraction. Hartley (1974) has shown that
the standérd and well-accepted Lorentz-Lorenz fofmula
(n2 - l)/(né + 2) = lbnap/3, where a Is the polarizability and p
Is the mass density, approximately holds for thé béckgrohnd, w' |
(nonfflqcfuaflng)_refra;tlve inde* of a binarylfluidvmikture.
However,'lﬁ applyingithls to crltlcaivphgnoména, some care must be
taken that the ahcmaiy in the refracfi?é:fndei énd’in_the density
(or voluhe).near:fhé critical pofnt does not'thQiidéte thé'
rélatfon. Aithough the fefractive index énémély.has.élready:bgen
measured for this system by Hartley (1974), he.diq,not use the
crlticaif&bﬁcentration and ma9 have underestimated the size of fhe
anomaly. - For this reason and to try to obtain more precise data,
.the refraCtlye index anomaly measurements on tﬁf#ﬁsystem were
repgated.  The density anomaly is predicted to be §erY Sﬁall
(?annln'and'Knobler, 197b) and is difficuit td:méa§ure.' We -
looked fdr.such an-éffect when the coéxlstence'cﬁrvé-was measyred
ever théugh éreliminary results by Schelbner (1976) showed the

effeéct to be too small to be seen,-even‘with:thé_dtffgrential:_
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refractometer. The anomalous refractive index measurements are
dlscussed‘ by Hartley . and shown to be less than 10°%. This is
less than.the error of measurement in the other experiment; so that
thevLorentz-Lorenz relation can be applied to these (coexistence
curve) measurements. The Lorentz-Lorenz reiaticn will now be

appiied to the bulk coexistence curve data.
Bulk Coexistence Curve

It was shown by Hartley(1974) that the refractive index;andmaiyg
is less than 1 x 10™* when T - T. > | mK so that the measurements
of the bulk refractive index can be used to prcbe the critical
fiuid's'behavior. By using refractive index techniques to measure
the coexistence curve, in the manner descrlbed beiow, both the
shape of the “rectiiinear“ diameter (mean density) and the coexist-
ence curve (giving the critical exponent, B) can be determined
Thesedata will be compared with other measurements determining 8
in pure fluids and binary mixtures to see if these systems have
the predicted value of B given by the three-dimenSionai'ising
modei.. : |

As was'aliuded to in Appendix A, the noniinear operatcrs in
Renormal ization Group Theory will cause correcticns to simple’
scaling (Wegner, 1972). In particular, this corrections-to-
scaling'approach has recentiy been found to be important for
coexistenceicurves, particularly in pure fluids (Hocken and
Moldover, 1976; Greer, 1976). The correction‘mbpld be expected to

be more easily seen for the coexistence curve since data can be



taken for very large values of |T -~ Tc|. The coexistence curve

data presented below will be analyzed with such corrections in -
mind. \
The coexistence curve of methanoifeycionexane was first!

studied by Lecat (1909) and then by Jones and Ansteii (1930) end
Eckfeldt and Lucasse (1943), where the effect of Impurities was
considered. The only recent studies have been done by Giimer;-'
et.al., (1965) and Campbell and Kartzmark (1967), both of whom:also |
used a refrective index technique. However, these works were not

extensive enough to even determine the critical exponent, 8, much

less answer the questions posed above and so this first experiment

was undertaken

For some time a disparlty has existed between the critical
exponent describing the coexistence curve of pure fiuids (Sengers,

1975, Sengers, Greer and Sengers, 1976) (B = 0.355 + 0.007) and

that for binary mixtures (Stein and Aiien, 1574) (B = 0.34 +0,01)

with the series expansion result for the Ising (lattice-gas) model
(Domb, 1978 (8 = 0.313). However, recent measurements on pure '
fluids (Estler, Hocken,_Chariton and Wilcox, 1375;‘Hocken and'
Moidover;visié) and binery mixtures (Baitarini; 197h' Greer, 1976)
show that by taking gravity effects (Fannin and Knobler, 1974) and

a correct form for extended scaling (Greer, 1976) into account,

~ these values of 8 for pure fluids (B = 0. 320 > 0 329) and binary .

mixtures.(6-= 0.322 + 0.328) agree with recent Renormal ization
Group caicuiations (Kadanoff, et.al., 1976 Baker, et. ai ., 1976)
for the ising modei (8 = 0.322 ¢ 0.002) and are much closer to the

old series expanslion vaiue. We point out that for our system,
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which hee'been shown to be virtually free of grevity effects, a
value of B = 0.326 + 0. 003 Is determined wlth only simple scaling
needed to flt the data (e < 0.06).

To take the data on the coexistence we measured the refrac-
tive index of the fluids by capturing them in a fluid prism as
described earlier. The relation between the refractive index, n,
and the meeeured angles is the elementary ome-for}e simple prism:
n=sin [(y - Yo + 8)/2]/ sin (8/2) where 8 is the prism angie,

Yo is the Qndeviated angle and ¢ is the minimum deviated ehgle (see
Figure 2). Because of the large windows on the.cell, the usdal

methods of determlnlng the prism angle were not possible However,

by plactng the cell on the stage and fixing the telescope while

allowing the table to rotate, the prism angle cpu]d be determined .
by autocollfmatlon. A He-Ne laser beam strucklthe prlém.perpendfc-
ularly at. the axls and with a separation of about elghteen feet
between them. The beam could be reflected from the first (whlch
overlappedrwith'the second) surface beck into the laser abertdre
with an,errer of £+ 3 mm (which correeponds'to en error of 10 sec
of.arc);"vﬂy repeating,these measurements for eech wihdew, the
pr!sm‘anglefWas determined to be 60.!56f z'o,bds; The remaining
measdremeﬂts were taken with the table_fixed'and‘the telescope
free to rotate. wlth the prism cell remeved,-the'undeviated ahg]e
was‘measured'and checked occasionally. (Althqudh this quantity
should remain constant, there was sufficient pla9 in the telescope
assembly-to»retate the telescope if the eyeplece-wes handled when

moved to the next position.) A vintage J. V. Queen & Co. spectro-

- meter wlthvan eleven and a half inch base was used, allowing a
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resolution of 10 secs of arc. The cell was placed on the table at
a posltian which compensated for the shift of the 1ight due to the
half-incﬁ thick window. (A shift does not alter the measured'
deviatedrangle since the glass surfaces are flat and parallel;)

We measured the minimum deviation angle, y, for each line Seyeral
times with a precision of less than 10 secs of'arc. We estimate
the error in refractive index due to the uncgrtéinties,in measﬁre-
ment (effors.fn prism, undeviated and deviated angles as well as
non-parallel window surfaced to be * 0.00015.

" Because of the recent observatioﬁs (Lorentzen. and Hanseﬁ;..
1966; Bagol, et.al., 1970; Greer, et.al., 1975; Giglio and
Véndramlni; 1975) of density gradients due to gravity in binary
flulds,rwé';farted our experiment by looking for such gfavity'
effecﬁs, although they are predicied to be very small for our
system'dué,to the fclbsely matched densities (see:prévlous

comments in Experimental Precautions). After our system had been

~ at room temperature for some time with the slit SOurce'images '

(which 1 cail "]ines') straight, we rafsed the téﬁperature a few
dégrees and.noticed some curving of the lines near the meniscus for
many hours after the new temperature had been reached. We
discovefed'that this was due to concentration gradients in the cell
caused by the slow diffusion across the menlscus;ahd not a density
gradient otﬁers (Lorentzen and Hansen, 1966) havé reported using a

similar technique. The meniscus was also observed to persist well

above the critical temperature. We found no curving'of the lines

even very close to tﬁé critical temperature (T-- T¢v< 5 mK) if the

Vcell was shaken after temperature equilibrium had been reached.




Shaking thé'ééil did not affect the deQiated angle of the line
within 6ur pfeclslonvbf measurement; We have élso looked for the
characteristic sigmoid shape of the gravity effects using a
"Fabry=Perot" Intérferdméter In the wedge mode, but have been -
unable to detect any above or below the critical point even after
waiting ﬁevefal days. However, small temperature gradients may have

inhiblted.the formation of this effect.

Data Colléctton

" The minjmum deviated angle was mgasured séQeré] times, after
which the feﬁ§érathe was changed and allowedlté come to équilib-
rium befofe shakfng the cell. The time span between shaking and
takfng thé'hext set. of measurements depénded on'ﬁéw farufroh the
criflcal temperature the cell was, but typicaiiy:fhe wait was froﬁ
four to fWelve hours. The critical point was qéfiped as the
temberatu?e at'whlch the meniscus would just apbear 6r'dlsabpear
after shaklﬁg the'cell and allbwing It to standifdf several houré.

Although strong opalescence was encountered neéf the critical point,

‘we were still able to take reproducible measurements within 5 mK

dfvthe>qklii¢éi'téﬁpéréthré; which was deterhinedﬂtb £ 2.5 mK.
After ab@ut twéhff-fi?é points were taken, some pump oil condensed
on the cell. and éhield;v Té remove thi; COhtaﬁinﬁnt;:the_ﬁealed'
cell waéfplacedvin a vapor degreaser for a fewi;écOnds; however, .
this resulted In a shift of 110 mK in the readings of the control;'
1ing thefmlsfor relative to the critical point. vAﬁ auxiliary
thermistor Imbedded deep in the cell body showédﬁﬁb change In the

critical temperature, so the flulds were not contaminated. Since
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all of the data agree whether taken before or after this occurrence

or while raising or lowering the temperature, we make no distinc-

tion in presenting it in Table Il in order of iné?easlng Tc -T.
Althoﬁgh visual observation could determine the critical .
témperature to £ 2.5 mK, a more preclse value could be de;efmingd
by using the method of Kouvel and Fisher (1964). By assqming' 7.
scaling ana construéting the numerical derivative frbm the data
taken b>elow'Tc, the quantity T* = [(d(An)/dT)/an]"! = (Tc - T)/8
can be constructed allowing a determination of T. (independent qf»
B) to + 0.5 mK and to a value consistent with that observed
visually (see Figure 10). We will show in the next section that
the scalfhg asSumption used above is not violated over the teﬁpera-

ture range measured with this mixture.

i

Déta Analysis
From ﬁhe refféctivé index data taken above and below TC; we

can detefmine the shape of the coexistence curve, the critical

concentratfon and the rectilinear diameter. The average of ﬁhé

refractive indices above and below the menliscus is a measure of

the mean density of the fluid and is called the “rectilinear"

diameter of the coexistence curve (see Figure ll);- A straight line
drawn throdgh the data points above Tc intersectshthe "'rectilinear"
diameter at a point on the coexistence curve indicating that we are
very close to the critical concentration. (The_diameter of the
coexisteﬁce‘cufve fit very well to a straight line of the form

(ny + n)/2 = A+87(T, = T) with A =1.37956 and

B* = 2.96 x 10™4/K. See Figures 11 and 12a.) The rectilinear




TABLE 11

BULK COEXISTENCE CURVE DATA.

(Tc - T)K Ny n ny = n_ (QU + nL)/Z

- 3.436 - 1.37765

- 2.403 1.37825

- 1.363 1.37888

- 0.661 1.37926

- 0.241 1.37951 : :
0.0026 1.38155 1.3785 0.00305 .1.38002
0.0074 1.38222 1.3774 0.00482 - 1.37981
0.0094 1.38218 1.37743 0.00475 1.3798
0.012 1.38233 1.37692 0.00541 1.37962
0.0124 1.38239 1.37677 0.00562 1.37958
0.0294 1.38292 1.3765 0.00642 1.37971

. 0.036 1.38307 1.37562 0.00745 1.37934
0.0484 1.38354" 1.37575 0.00779 1.37964
0.0654 1.38L406 1.37536 0.0087 1.37971
0.084 1.38429 1.3744 0.00989 1.37934

© 0.0864 1.38473 1.37484 0.00989 1.37978
0.094 - 1.38442 1.37411 0.01031 1.37926
o.1104 - 1.38494 1.37431 0.01063 1.37962

0.7 1.38557 1.37327 0.0123 1.37942
0.182 - 1.38612 1.37316 0.01296 1.37964

..0.209 1.38644 1.37317 0.01327 1.3798
0.305 1.38676 . 1.37194 0.01482 1.37935
0.406 1.38745 1.37124 0.01621 1.37934
0.502 1.38804 1.37067 0.01737 1.37935
0.579 1.38849 1.37022 0.01827 1.37935
0.67 1.38912 1.37001 0.01911 1.37956
0.694 1.3891 1.36962 0.01948 - 1.37936
0.797 1.3895 1.36923 0.02027 1.37936
0.916 1.39025 1.36887 0.02138 1.37956
0.923 1.39013 1.36877 0.02136 1.37945
1.167 1.39106 1.36802  0.02304 - 1.37954
1.799 - 1.39348 1.36693 0.02655 1.3802
2.749 1.3959 1.36506 0.03084 1.38048
3.792 1.39762 - 1.36369 0.03393 - 1.38065
L.686 1.39849 1.36263 0.03586 1.38056
5.59 1.40014 1.36171 0.03843 1.38092
6.573 1 1.36086 0

40169 .

.04083

1.38127




TABLE 11 (continued)

BULK COEXISTENCE CURVE DATA

(T - T)K ny n ny T L (nU + nL)/Z
.~ 7.645 1.40297 1.36029 0.04268 1.38163
8.656 1.40434 1.35987 0.04447 1.3821

9.451 1.40534 1.35959 0.04575 1.38246

106.329 1.40606 1.35909 0.04697 1.38257
11.312 1.40729 1.35891 0.04838 1.3831
12.423 1.40818 1.35835 0.04983 1.38326
13.265 1.40904 1.35806 0.05098 1.38355
14,126 1.40955 1.35771 0.05184 1.38363
15.183 1.4107 1.35752 0.05318 1.38411
16.212 1.41167 f.35721 0.05446 1.38444
17.207 1.41249 "1.35704 0.05545 1.38476
18.205 1.4132 1.35675 0.05645 1.38497




Figure 10: T* versus T for one set of bulk coexistence curve data.
The scatter in the data results from taking the numerical deriva-
tive of the An versus T data. : ‘







Figure 11: The coexistence curve of methanol-cyclohexane as given

in Table Il.. The data above the critical temperature ,

(T, = 45.474°C) has a slope of 5.82 x 107%/°C and an intercept with
the coexistence curve of 1.37966. The rectilinear diameter

- (average of the refractive index above and below the meniscus) is

the solid squares and line bisecting the coexistence curve. The

line is a least squares fit to (nl n,)/2 = A+ B°(T_ = T) with

A = 1.37956 and B” = 2.96 x 1074/°C anﬁ where n, ‘and n, are the

refractlve indices above and below the meniscus respectlvely.
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Figure 12: The residuals from the

Is the amount the fitted line diffe
by the data point's error. -

fit to (a) the rectilinear
~diameter in Figure 11 and (b) our data in Figure 13. The residual

rs from the data point divided
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diameter eXtrapolated to the critical temperature gives the criti-
cal refnactlve index to be 1.37956 + 0.00005. From the data above
the ccltlcal point the refractive index at the Crltlcallpoint Is
extrapolated;:o be’l.37966. So, by using the Lorentz?Lorenz.
relatlon,.tne crlflcalvconcentratlon_wasbdetermlned from these two
valﬁes of.nset T 'to be 29.04 + 0.1% by welght methanol

It has been predlcted (Hemmer and Stell, 1970 and 1972; Widom
and Rowllnson, 1970; M.S. Green, et.al., 1971; Mermin and Rehr,
1971; Mermln, 1971a and 1971b) and observed (Weiner, et.al., 1974;
Gopal, EE;EL;' 1974) that the 'rectilinear" dlemeter.(mean density)
has some sort of an anomaly near the crltlcal.polnt. However, thls
was not seen in thls experiment (see Figures ll and 12a).

The lndex of refractlon of a mixture of llqulds can be related

to the volume fraction by the Lorenti-Lorenz'reletion
V(n2 = 1)/(n2 + 2) = Q/BngqiMi_-_.' .

where n is.the index of refraction of the mlxture,:V is the total
volume, ai is the polarizability per unit mass of the ith component

and M; is |ts mass. |f we consider two components, then we have

(T > Tc).:

(2 - l)’,(n“ 2) = (02 - /062 4 2o, + (o2 4.1)'/'(&2 20 -4

where n (n ) are the refractive index. component ] (2) and ¢, (¢ )

s Its volume fractlon v /V (v,/v). If one is below T, then there

is a volume fraction of component 1 in the upper (¢U) and lower (¢L)
phases glvlng refractlve indices nys N If we deflne

A, = (n% - l)/(n% +2), i =1, 2, and solve the previous equation




. ,K“ = 3(nU + “L)/.[(Al - Az) (»nﬁ + 2) ('n'f"+ 2)].

The constant K* is only slightly temperature dependent.  For our

fluids a'value T - T = 18,205 K gives K~ = 10, 59 where T -T=0

gives K* = 10.48 (an error in K” of 1% over 18 K) The error'in

An ranges from O.h% to 102 over the same 18 K temperature range.

The small syStematic error ln'assuming K~* to be a constant isvthus

small compared to our experimental uncertainty, and An is propor-

~tional to A¢ (The I% error in assuming K* a constant would

uncrease:the value of B8 by 1% if the data were'plotted using A¢1,
I choose tojpresent the An data keeping in mind'this error.)

To anajyze the coexistencevcurve.and.determfneiwhat the
critICal ekponent B should be, a “properlf” weiohted least squares

fit to our data, shown in Flgure 13, is requlred By "properly"

weighted we mean that one needs (Sengers, 1975) to propagate ‘the

temperature error into the refractive index error bars and take
into account ‘that one is fitting a log-log scale and weught the _

polnts in the fit accordingly. We used the method descrlbed by

' Bevtngton (1969) to obtain the fit (shown in Figure 13) to the

function An = BeP with 8 = 0.326 + 0.003 and B = 0.143 + 0.008
(the errors are three standard deviations). It.is‘important to
use a properfy weighted fit to the data and also.tofhave a .
sufficientfnumber of data points over the temperature region

studied so one can say with reasonable accuracy-what is-the:best"




Figure 13: The difference in refractive index (proportional to the

volume fraction) above and below the meniscus as a function of

T. - T. The open circles are the data taken in this experiment,

the triangles () are from Hartley (1974) and the inverted triangles
(v) are from Gilmer, et.al., é1965). The line is a fit to our data

using simple scaling, An = BeP, with 8 = 0.326 + 0.003 and .

B =0.143 + 0.008 (uncertainties are three standard deviations).
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fit. Others (Gilmer, et.al., 1965; Hartley, 1974) who have

measured the coexistence curve for methanol-cyclohexane using
refractiue.ﬁndex techniques have taken less data.eVer a smaller
temperaturedregion and have found higher values for the criticai
eXponentEB~(0 347 +'0 008 and 0.35 + 0.02). Their data are

consistent with ours as shown in anure l3

Comments and Concluslions

It'has'been shewn,that refractive index techniques are a
valuable nrobe into critical behavior and that the difference in
refractive fndex between two phases is_effectiVeiy the same as
the difference in volume fraction--the preferred order parameter
in coexistence curve measurements in blnary ]quId mixtures. v

There has been recent evudence that corrections to scallng as
predlcted by Wegner (1972) are necessary for pure fluids and binary
mlxtures to explain the coexistence curve data.» As seen in Figure
le a snmple scaling relatlon works well for this data with
correftlon terms not significantly improving the fit. (Greer (1976)
states that»the first correction term glves An =v8e8 + BveB + o;SJ
With th!s correctlon term the weighted non- Ilnear fit gives

= 2, 5 x 107 3 and a reduced chi squared of 0.76 versus 0. 79

'wlthout a correction term (B, = 0). (The values of Bgand B are

effectIVely:the same whether B, =0or 2.5x 1073 )) RL has been
suggested (Greer, 1976) that extended scaling is not lmportant in
binary mixtures until e > 10'2, whereas it is necessary for pure
fluids (Estler, et. al., 1975, Hocken and Moldover, 1976) for

€ > IO “. ‘Our data corroborates this view. Srnce gravity effects
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(Fannin andnKnobler,rl97h) and corrections to scaling (Greer, 1976)
both cause the residuals to the coexistence curve fits to curve in
the same direction (concave upward), care must be taken in ana-
lyzing the data to correctly explain its features;

This result for g is in very good agreement wnth recent ‘
Renormalizatlon Group calculations (Kadanoff et.al., 1976;
Baker, 35;31:9 1976) forgthe Ising model and with recent measure- i

. ments onvpure fluids (Hocken and Moldover, 1976) and binary i
mixtures'(Balzarini, 1974; Creer, 1976). These results provide - "
evidenCe"that pure fluids and binary mixtures belong to the same |
universallty class as the Ising (lattice-gas) model. This is:
particularly important since it allows the results'of binary f A!
mixtures, where gravity effects are generally smaller and correc- ;
tions to scaling do not appear until very far from the transition, ‘

-to be compared to lsing model predlctions.
Thick Film Measurements

| Now that the coexistence curve and the critical exponent B
haue been determined for the bulk system,’showingflslng behavior,
a thick film can be formed and analyzed tovdeternlne any deviations
from bulkneffects. In particular, a critical temperature dependence
on spaclng.and any change in the crltlcal exponents can be looked
for. In order to investigate this behavior, the-critical concen-
tration of: fluids was sealed in the varlable spacing Fabry-Perot
discussed earlier. ThlS instrument has large, optically flat,
high-reflectance mirrors between which a well deflned film can be

n | ' - captured. v Although the mirrors were origlnally_ flat to J\/lOO on
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the coated side, the brocess of sealing them cauﬁed'somé distortion
so they were flat té approximately A/20 in this thick film experi-
ment. fhe‘method ofjdetérmining the spécing betweeﬁ the flats will
be'discﬁssed and then the critical temperature.and coexistence

curve measurements will be presented.

Spacing Détekminatlon

Sinceihfgh reflectance coatings were used on our mirrdrs; the
resultiqg interference fringes were very sharp (Francon, 1966) and
a .well-deflngd (the ratio of fringe width to fringe separation.Was;
1 about 1/100) . As discussed earlier, with the mirrors tilted
slightiy,,thfée or four vertical fringes.Wére oﬁsefved from the _
_ ' opposite side of the flats by a measuring teleﬁcbpe. The Staée
} on wh!chﬁthé'telescope travels has a resoluthn~of + 2 um out of
a total travel of 10 cm. In this work, only abqufli cm of the
exéurslqn wés néeded to do the precise ﬁeasuréments on the fringes.
To détéfﬁine-fhe separation between the fléts from méaéuring
the fringes; one considers the m{rrors at a sligﬁthedge ahgle aSA
shown in"F]gdre 14 with fringes forming for th§7two.wavélen§th§'
A and X;'wﬁén the Separa%fons are Li,'Lé,,ahd‘L5 between the
mlrrors;' Thg fringes observed are shown in Figure 15 with sepa-
h

ration y between A, and Aévand x between the mt 1ahd m + | order of

A

1° The fringes form when twice the optical path length is edual

to an integral number of wavelengths:

L, = '“1"1/(2"1) :

L2 = mZAZ/(an)
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'l ‘ S Vo mirgor
. ' , ' - Surtaces

Figure 1h: Side view of two flat mirrors tilted at an angle ¢ to
the incident beam from the left. Constructive interference causes
lines to be ‘seen a distance y and x from the flrst line.




- - Position

Figure '1"5:" Intensity profile of lines seen through the telescope.
'y and x correspond to y and x in Figure 14, :




59
Ly = (m + 10 /(2n) .

Since the dispersion and temperature coefficient in the index of
refraction is small (between 6328 & and 5890 R the dispersion is
O‘IZvahd‘fhé temperature coefficient is ~ 0.05%/K) we will let

n,=n,=n=« 1.38. The.wedge angle, ¢, is given by
tan ¢ = (L2 - Ll)/y = (L3lf Ll)/x
so that

(m,d, = mA;)/ny = A /nx

In geheral, m, = m =m (m = 0 corresponds to being closer

than the first coincidence) so that

L= Dnhp/ay +yixa2/zn(y, - 2)T (<)

is thevspacing between the flats'(see Figure 14). The spacing can
be adjusted so that the fringes assoclated with the two wavelenges

are at the same place (called coincidence with y/x=0) so that
L. = mAIAZ/[Zn(A2 - AI)]', (at coincidence).

Some of the gourcéé used in this expérimehéland thevcbrresponding
values 6f'Lc are listed in Table I11.

'Thé initial spacing between the flats can be_best determined
by usingvfwovsets of doublets (such as the Hg ahd:Na yellow
dqubleté)_and using_the two resulting equations té‘determine the
two unkﬁdwns; L, and m. A problem arises becagse'it is difficult
to distinguish XI and xz for some sources such as the sodium yeilow

N
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TABLE 11

LIGHT SOURCES USED IN THE THICK FILM CELL SPACING DETERM|NATIONS
: AND THE CORRESPONDING FLAT SEPARATION .
FOR THE FIRST CO!NCIDENCE

Source - Ay (R) A, (A) L. (um) Filter used

H and He=-Ne 6328 6566 6.3 6200 A highi-pass
5770 5887 B L et
Na and Hg .. 5780 A band-pass
5790 5893 12 o B
Hg 5770 5790 60 5780 A band-pass :

>0

Na - 5887 5893 209 5890 A band-pass
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doubfét (altﬁough for Hg, l(xz) = 7 |(;1))§ hdwevef; by knowing
Whichlwéyvthe wédge is oriented one can determine the initial
spacing. Afier the initial spacing is determined all one does is
count coincideﬁceﬁ. (1t is not quite this easy since when
switching SOU;CeS from say Hg yellow to H aﬁd Hé-Ne, one needs to
know whethéf the ninth or tenth H and He-Ne coincidence (it is the
ninth) corresponds to what one sees as the first Hg yellow coiﬁci-
dence~-~the only way to be sure is to squeeze down.un;il the.flats
distort, which we did several times to check’that a coincidence
count was:not lost in the opening and closing‘of the cell on the
fluid.) | |

: For'all'of the thick film data presented_here;-only the H and
He-Ne liné§ were used to determine the spécing (alfhoﬁgh“the others
were uséd as an occasional check). In order to assure a uniform
sémple atbfhe critical coﬁposition, the cell mirrors would be
separated to.126-um (twentieth coincidence) atbé'temperatdfe about
0.7 KvabQQe:ﬁhe bulk critical temperature and the cell shaken
apprdxima;ély 800 times until the fringes were stféigh; $nduhfform.
Thé spaéfﬁé would then be decreased until the desfred separation
‘was_dbtafned; fhis sampie could be USéd for’smallgr spacings but

not for'lérger ones since the bulk fluid, which'Separateébinto two

phases below Tc and mixes very slowly when above fc'

would be:dfawh '
between thg flats. If the temperature was taken far below T; for
very smaii Spacings, the separation would have‘décreased suffi-
clently (dde to the cell's thermal expansion, n 0;65 um/K) to allow

bulk flujd»of mostly one phase (due to the mirrors' position in the

cell) to;éntér the sample when heated back tbward:Tc.' For most
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spacings at which data was taken, a new sample was prepared (the
eXCeptldﬁg Qere 12 +3 + 1 ym and 6 + 2.3 um).

| Slnce'ﬁhe effects in thick films were of interest, care was
taken to avold intrusion of the bulk fluids which surrounded the
sample; Since most of the measurements were fakén at or below the
bulk crlt!cél téﬁperéture, the fluid surroundfng the mirrors was
mostly oné3phasé (cYcldhexane-rich) and any intrusion of this
phase into :ﬁe thick film sample was quite noticeable (see |
Figure 16). The time before such mixing occurred depended on the
spacing; for the films of 30 um and 60 um it téok about two days
for notlcéabie mixing; for films of 6 um‘and 12 uh it took about
one weekvana for fllm§ 3 um and smaller no mixing was ever observed
(ébout two Weeks). Once mixing had set in, no-further measuréments

were attempted.

Determining_the Cfitlcal;Temperature

' For each sample, with its known spacing, the critical tempera-

ture was measured. After the uniform sample had béen‘captured.by

the method described in the previous sections;bthe temperature was .

lowered;tb,about 20 mK above the expected value of'Tc. The
temperaturé was then lowered in steps until Tc'waé-fouhd. Then,
an iteration procedure was used to determine the eritlcal tempera-
tureg to :*]me. The temperature steps were oﬁe_aﬁd~twova,,taking
about a haif hour for the system to come to eqﬁiflbrlum aﬂd,wjth a
three to flvé hour wait between steps. | |

| Be¢ap§e of thevhfgh reflectance coatings op'the mirrdrs,.the

resultin§ fringes were very sharp. The éritiqal témperature for



Figure 16: Photograph of the bulk fluid intruding into the
film,
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spacings larger than 12 um was when this fine fringe would become
broad and granular. The ''granular' appearance of the fringes was
attributed to the many drops which form between the flats on phase
separation; however, the spacing was close enough (12 ym to 60 um)
that the extinction of the 1ight did not occur. Otherwise, this
transition was similar to that observed previously (Hartley, et.al.,
1974) in a bulk (600 um) system. However, when the spacing was

6 um and smaller, the fringes split abruptly at the temperature
that was associated with the critical temperature and did not
display the graininess characteristic of larger spacings. Although
surprised at first, we realized that the drops that form on phase
separation were now large enough to span the space between the
flats and so regions of each phase appeared as viewed through the
telescope. Since each phase has a different refractive index, the
differing optical path length causes the fringe to form in a
different location and so '"splitting" of the line is seen (see
Figure 17). The regions of each phase (which | call 'drops') were
clearly seen when shining an unfiltered Hg lamp through the fluid
since the broad blue-green bands that resulted allowed sufficient
contrast to distingulish the drops. A picture of these drops is
shown in Figure 18.

It is Interesting to inspect the fringe splitting associated
with these drops at this fairly large (6 um) spacing (see Figure
19). In those regions where drops have formed, the lines have also
split, but where no drops appear, the fringe does not sclit but
becomes granular as in the lower left of Figure 18. It is felt

that if the drops that form can span the space between the flats,



65

HRN

’.

.
Mol

e,

Vo, fan el & hoh wieshrobre m AT auna oy 4

P
LU ST ST Py lfl?bmrt...!, .7:...34..:3.:

gl
‘g,

Ny

-y,

L
bty PO Y

ey N

Sture

.6 uym thich and at a temper

ght source.

Photograph of the splitting of the fringe below T_.

This picture was taken of a film 1|

Figure 17

of 44,585 C using a He-Ne laser |




66

Figure 18: ''Drops'' spanning the flats as seen with an unfiltered
Hg light source. The broad light bands are caused by the low
reflectivity at these (blue-green) wavelengths. This picture was
at L = 6 ym and Tc(L) - T = 0.077°C.



Figure 19: Photograph of the fringes associated with the drops
Figure 18 using a He-Ne laser light source.
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as depicted_in Figure 20a, then the fringes split. However,sif the
drops do not span the flats, as depicted in Figure 20b, then the
fringes become "granular" for the reasons already discussed |n
connection with the larger spacings criticai temperature.
‘”Sincevthe fringe splitting is due to the difference in'refrac-
tive index‘between the two phases, then by measuring the splitting
we can determine the coexlistence curve for these thick films. For

the smaii (1 ym and 2 um) spacings, the criticai temperature could

- not be determined directly because of the resolution of the Fabry-

Perot and the shape of the coexistence curve. | A discussion of
these points Is done in the next section. The resuits of.the..
critical temperature determination are presented’in Table IV. As
a point‘of,reference,lthe critical temperature'as_determined.from

a bulk (BoO;um) sample was found to be 0.5 * I,O'mK'beIOWVthe 60 um

~critical temperature; however, if the cell was'shaken,so that  the -

fluid infthe:surrounding reservoir could be examined; then its:x
criticai temperature was found to be 6 = 1.0 mebeiow'thevcriticai
temperature for 60 um. At this large spacingvthe-fringes became'
;__x.broad andvgranuiar at the.critical point. This'shift in‘T ‘
from a buik (800 um) to the reservoir fiuids (~2000 um) is most
probabiy due to a temperature gradient in the cell but couid be

due in part to a finite size effect. However, over the region of
the fiats, the temperature gradient, as detennined by observing the

appearance of the-fringes at the critical temperature, was less

than 2'mth
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Figure_zo:_fa) Drops spanning the spa;é between the flats.

- b) Drops not spanning the space between the flats.




TABLE 1V

CRITICAL TEMPERATURE, T _(L), AS A FUNCTION OF SPACING, L =

L () T L) (%)

(uncalibrated)'

12000 (shaken) 45.517 + 0.001

- £ 0
(bulk) R
o 800 (unshaken) 45.5225 + 0.001
60 : 45.523 '+ 0.001
32 . 45.525 £ 0.001
13 - - 45.528 £ 0.0007
6 . b5.5305 £ 0.0015
+0.001

3 45.533




71

~ Coexistence Curve for Various Spacings

When phase sepetation occurred, causing distlnct reglons,
between thesflats at close spacing, the fringes split. A measure-
ment of this'spllttlng allowed the difference in refractive index
between the two regions (phases) to be calculated. To see how this
relationhls obtained, we again consider Figures 14 and 15, where
now, lnsteedlof a fringe being separated a dlstance,'y, from the
flrst due to the wavelength being dlfferent, the optical’ path
length is dlfferent due to a different n. (It is assumed here that.

_the drops span the space between the flats.) Theﬁ
L =ma/(2n)

L, = mlkl/(an)

Ly = (my +1)2,/(2n))
so that':"

y/x = 2L.n (n, - n,)/(xn,):
Smce_n1 = n2v= n then
y/x = 2L,4n/X,

so that the frlnge shift, y, over the fringe spaclng, X, is equal
to twice the ratlo of the flat spacing, L, to vacuum wavelength,
Ay tlmes the dlfference in refractive index between the two
phases. As can be seen, the values of An accessuble to experlment

'depend on the spaclng, L, and the resolution of the |nstrument,

(y/x) . The smallest ratio of fringe splitting to spacing (y/x)
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' vobservable Is related to the mirror's reflectivity, r2 = 0.99, and

i the number of full widths, T, needed betWeen the fringes before
‘allows a visible separation, then
(y{w)mln 2(1 - r2)/r = 0.013.

The coexistence curve data was determined from measurements
of the Fringe splitting and spacing using a traveling telescope,

to a precisnon of + 5 um. Although the instrument is capable of

+ 1 um resolution, It was difficult to measure the broken fringes , {f.

due to their curvature and fringe “pieces"-not being adjacent.
(especially for thicker flat spacings). Due to:this difficulty,
photographs:were taken of the fringe spiittings:to allow separate
measurements with a microscope's reticle. Since the photograph
could be oriented SO the fringes were paraliel to the reticle, an
average fringe splitting could be determined over the length of
the fringes. Also, for the very fine splittlngs (at the smali
spaclngs) only the photographs were usable in measuring the fringe
' split. The precision of measurement using the photographs was the
 same as with measurements from the traveling telescope.
The measurements were made as the temperature was raised and
lowered; the data in Table V show the reproducibility of the
'measurements. After: a temperature change was made and the system
had attalned thenmal equilibrlum, a measurement was’ taken.
Occasionally, the measurement would be retaken after an additional
perlod of time had elapsed, the two measurements agreed within )

. - "experlmental error. These coexistence curve data are presented in

the split Is visible. If we assume that one T between the fringes .
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TABLE V

THICK FILM COEXISTENCE CURVE DATA#*

RNRPONRNNPONRNN —
[ ] ® [ ] L ]

L (um)-. :V T (°c) Y Measurement
(+ 0.1 ym) - (+ 0.0001) ‘ error on An
1.0 45,406 4 0.0041 + 0.0008
0.9 45.310 + 0.0060 '+ 0.0010
0.86 45.207 + 0.0078 +.0.0012

o . S o +0.,0020
.7 . ‘ A : ll3.6|7 + 0.0086 - 0.0010
+ 0.2 . S + 0.0024
+ 0.2 b ' + 0.0022 -
2 t8-2 43.617 + 0.0157 . T 00014

6 ‘ 44,585 4 0.0141 . + 0.0003

i 45,301 + 0.0095 . + 0.0002

.2, 45.372 + 0.0080 + 0.0002

.2 45,4234 + 0.0063 + 0.0004

.2 45,4533 + 0.005kh + 0.0002 ..

3 45,4841 + 0.0048 = + 0.0002

3 45,4848 + - 0.0042 +0.0002

3 45.505 + 0.0030 + 0.0002

.3 45,5155 4 0.0028 % 0.0003

.3 45.5151 + 0.0028 '+ 0.0002

.3 45.5255 4+ 0.0021" '+ 0.0004
3.0 45.527 + 0.0029 + 0.0003
3.0 45,523 + 0.0036 + 0.0002
3.0 45.505 +  0.0058 + 0.0002
3.0 . 45,463 + 0.0078 + 0.0002
3.0 45.418 + 0.0105 + 0.0002
5.9 45.501 + 0.0059 + 0.0002
5.9 45,465 + 0.0076 - + 0.0002"
5.9 - 45.521 + 0.0036 + 0.0002
5.9 k5,526 + + 0.0002

0.0023 -

*Coexistence curve measurements on thick fllms of spacing, L.
T is the temperature with 4+ (+) indicating the temperature was
raised (lowered) in reaching T, and An is the dnfference in:
refractnve index between the two phases.




~ tainty in'the flat separation, but not thevunCertainty in the
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o Table VQ  The errors on An quoted in Table V include the error in

measurlhg the fringe splitting and fringe‘spaCingband the uncer-

&l

temperature or In T_(L) - T. The data in Table V will be discussed”

after‘some'theory is presented.




CHAPTER 1V

SCALING THEORY IN THICK FILMS

Scaling theory has been introduced at the beginning of this
work and was shown to give relations amoﬁg the critiéal eXponents
which have been experimentally verified. Appendix A gives av
”justification“ of Scaling as a result of the system's invariance
to a change of length (referred to as "Renormal ization Group").
Group theéfy can givé relations among quantities by fnvestigating
the geomgtry; however, actual numbers are calculable only.whenﬁa
specific modgi is used. Since a model describing the interaction
of the wailS'with the fluid ﬁear a crifical poiht has yet to be
devised, only the gebmgtfy ("'scaling fheory“) wili‘be presented
here, following the treatment given by-FTsher (1971, 1973).
However, thé data will allow future modelg to be tested.

We will consider a system which is effectively infinite in
two of its dimensions but of a finite thickness,vL = 250, 1n‘a
third dimension, where Eo is the mean lattice or moiecu]ar size and
2 is a dimensionless integer. |If L = Egs then ﬁhe system can»be
thought 6f.é§v“two-dimensional" (neglecting wall forces). However,
if L >>v£6,vthenvone may expect a ''crossover!! frém’fhe three-
dimensloﬁalifb one characteristic of ”two-dihenSions“ wheﬁ L=~g,
the correlation lenggh of the‘system, so that the system is

constrained from having fluctuations larger than L in one dimension.
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The correlation length, £, is assumed to uniquely describe the size
of the‘eyetem's fluctuatiens and be givéen by a simple power law
divergeneerg = g [T, - TI/T 17V, The constant g, Is £ evaluated
at T =.OK and is identified with the mean molecular size and
thereforegie indépendent of temperature and spaetng. For our binary
fluid mixture, E =z 2,5 R |

The ¢rossover from three- to two-dtmensnonal behaV|or can be
characterized by a crossover temperature, T,» even though such a

crossover may not take place abruptly. By our scaling assumption,

R

such a crossover should occur when L £, which means

. L..e

n
L
R

M) - T () =

X
where 6. = 1/v if croesover occurs when L = £. Notice that we have
allowed the critical temperature to depend on the spaCIng, L.

To. see how the crltlcal temperature mnght depend on spacnng,
we wlll consuder a heuristuc argument. Let 2 be the size of a

lattlce in each of the two large dimensions in units of the Iattlce'

spacing, 50‘ The bulk energy, E., can. be wrltten as Eg = £22E

where E‘ is the average energy per molecule in the bulk and the

surface energy, Es, as s = (21 + Zzzl)Eo, where-E: is the average
energy per molecule at the surface. The transition temperature

goes as the energy--
bulk: KT (=) « € = g24E S .
e c m 1770 - : o

I e . « = 2 S 2
constragned. kT, Es_+ E_ (21n+ lez)EO fvlllEOr

so that .



- o o, o | L
l‘ TS/TC( ) (z1 +vzzlz)eo/(zlzeo) I::Ef’ Mg, Az -ES/E,

or
[Te(=) =T (DT (=) = /s, ,(Tc(n) =T).

Model Calculations can be carried out for different boundary:
conditions--for the Ising mode! the result of numerical approxf—

| mationsT(Fisher, 1971)
(2) | f: ty = [T _(a) =T (A)I/T («) = b/
Do c c -

with:the'sign.and magnitude of b depending strongly on tne BOUndary
condltions and with A = 1 for systems with a constralnt (such as
constant density or composntuon) and A = l/v otherwise (e. g.
constant pressure or chemical potentual) (Flsher, 1973). These
calculatlonS«are Ising-like in the sense that the nearesténefghbor
inferacffons'go over to nearest-''"block" interactions. For a long
range interactlon (that is, infinite in extent), the crltncal region
is nndependent of dimensionality (A »~ 0 (Fusher, 1971)), and the -
critlcal exponents (or the fixed pocnt dlscussed in Appendlx A) are
constant. | |

Let us now conslder a particular dlvergence asbthe spacing is
varied. In order to make a comparison wuth the expercment, the
shape of the coexlstence curve, governed by the crltlcal exponent

8, will be analyzed
3 8 = AtP as T o Tc(w);

~ where t_QZ[TC(m) - T]/Tc(w)vand Ap is the change'in_volume fraction




R

. which was shown in the preceeding chanter to be proportionai.to
the difference in refractive index between the two phases. For
small £ this becomes

W) se, =AM as T T (L) (2 Fixed)

where 8 = B4, (8 = 8) and t = [T (1) - TI/T (=) = t - t,.
We make the scaling hypothesis that the only relevant variable

'affectlng the crossover from (3) to (4) is L/E ~ 2tY. A convenient

e

form to postulate (Fisher, 1971) i
(5)  ae, = 9 X(2) = 0 x(x)._ (@ = 173,

where the exponent w is determined by matching (5) to (3) as L > o,
(X (x) is the “"'shape function for the finite-2 cr|t|cal behavior"
(Fisher,t197l).) If we let x - » in (5) then bulk behavior must -

result so.that

X(x) = xxB
or.
. sz“’zes'tﬁ >='.‘,A.t6 ‘
(6) o o A= X
w = -96..

We can also determine A by examining (5) in the limit of

small X where




A¢1(T) = 2‘B°xoz°éié = A(z)&?'

(7) : A(z) = xuze(é‘s).

This A(2) will smoothly go over to A\IF X, = A and 8 flows smoothly
to 8 (aevit does since it can be determined byvan e =4 - d(x)
expansibd,es X + o, ThHe prediction of‘A(z) can be verified
indepeneently dt g8 and é. The relation oF'(S)'representS'a-"law of
correspondiné states' such that if ln[LGBA¢]-is pietted'versus
In[L® t] for different values of L, a universal curve given by
X(x) should result,

Scaling Theory can also provide some insight into the:effects
of the sprfeees on the bulk behavior. Take the limit % >> 1 at

fixed t; the coexistence curve should be deScribed (Fisher, 1971)

(8) | a4, = Ag, + 2271495 + . e (2 w)

where tHeASecend term on the right is the surtece_eorrectionrto,the
buik behavfot.v The first-term is just the bulk critical phenomena
which is belng corrected by a term which will Ilkely diverge at

its own crltlcal point, T L) #7 (w) ln fact, we have already
argued that close to T (L), or for small 2, that the coexistence
curve should behave as in (4). Thus:(8) should hold onlyveway from
the crltncal temperature shift or crossover. Thezecaliné.funCtion

def ined by (5) can be generaltzed to
X(x) = was + me¢

where the first term is necessary to give the bdlk'behavior and the
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second term is a postulated correction where ¢ will be determined.

Thus
- -t 1B e gty e p 104
b4, = Xt = 6,15 + 2970% [t - £ 1%+, .,
which, when expanded and using (2) for t,, gives (with w = -88)
t
(9) be, = AtB - agba APl 4y g8(0-B)ed o

There are_fhree cases to be considered when matchihg this equétibn
to equaﬁioha(B): A=1/v>1, x=1 and A< j.

If x=1/v>1, then the third term wiil»domfnate the second
in equatiéh (9) so that for an % dependenﬁe as in (8),'¢ must be

given by
p=8=-v, (A=1/v>1)

. ) S
so that 445 = AStB™ with

(1)~ AS=VY/2 and B5=8-v (rA=1/v>1).

ThUs_thé.;éjQé of 8% is predicted from the (thrgé‘dimensfona1)
values of Bfand v. *Unfé?;unate1y, né@fhér'thé sTgn'hbr magn i tude
of A° ishiﬁffmated} L |

VThefmbre appiicéble case for this work is Qhen A =1, due to
the constraint of constant density (compoéition)’fér the va}ious.
film thiékhé§ses (Fisher, 1971,*1974)f Now thé:éqrrection terms

in (9) become
8¢5 = -AgbtB-1/2 + v tB-v/2

but since v < 1, (at least in three dimensions) then the first
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term dominates (since the exponent of t is less in the first than

“second term) allowing the important predictions
0N AS=-Agb and BS=8-1 (x=1).

Thus, the:fifst ﬁofréctién to the bulk béhanorffé complefely
predicted S}nce A'ahd B are known from bulk measurements and b is
_ determined from the critical temperature dependence. on spaﬁing.v'
Ftnaliy; if A <.1, then equation (8), which allowed a surface
‘correction to the bulk behavior, breaks down. As Fisher (1971)
has pofnfed out, A + 0 corresponds to long range_érderihg in the

fluids in which case a separation of surface properties from bulk

properties would not occur.




CHAPTER V
COMPARISON OF THEORY AND EXPERIMENT
Testing the Theory

wé'are now In a poéition to analyze our data and compare it
with the'tneory Just presented. The critical temperature shift
from the bulk (unshaken, 800 um) value is plotted in Flgure 21 as
a function of spacing, L, from the data in Table IV. This plot
shows that a logarlthmlc dependence .of TG(L) - Tc(”w“) on L fits
the data very weil. The best fit to the data with an L”1 dependence
is also shown in FigureVZf not to be,ineonsistent with the data but -
- not to fit_it as well. The explanation of the épparent logarithmic
dependence will be postponed until the coexistence curve data are
analyzed and a connection between the two sets. Is made.

lt_was shown at the end of Chapter 11| that the differenee in
refractfve,lndex, An, between the two phases cénfbé determined by
meaSuring'the ratio of the fringe shift, y, to the fringe snacing,

X, and the spacing, L:
R an = Oy /20) (3700

Further’ it was shown that the resolution of the OpthS provuded a .
minlmum measurable value of y/x = 0,013, Thls results in a minimum
value of An-that depends on the spacing, L. This inaccessiblev

region fé the lower left triangfe in Figure 22 wf;thhe.solid line
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Figure 21: Shiféﬂih“criticalZtemperatdre relative to theABulk (800 um) value as a functidnlof_flat
spacing, L. The solid line is a fit to a log (L) dependence; the dashed line. is the best fit to the data

for L™! dependence. The dashed circles are the extrapolated values of TC(L)’Used for the coexlistence
curve, o L : '
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Figure 22:"Accessible region and the coexistence curve data that

~was taken with our optical system. For the region below the solid

slanted line, the fringe splitting cannot be resolved with our 99%
reflective mirrors. The symbols used are the same as in Figure 23,
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being the fheoretical lower limit of experimentally obse}vable
data. -Also'plotted in" Figure 22 are the data that were taken ihb
the thiek”fiim coexistence curve experiment and listed in Table V.
It can be noted that data was taken as close to the resolving lihit
of the JFabry-Perot“ interferometer as possible, (particulerly at
small spécings). Thus, the critical temperature; as detefhined by
the'“drops"_formfng or the lines splitting, cduld ggs.be'observed
for smell fjet separetions (<3 um)! It is only after the tempera-
ture is Qeil'below critical that the splitting can be reso]ved at
these sméfl_Flat spacings. |

Critieal temperatures for these spacings can be estimated
.efther by extrapolatfng the Tc(L) data in FigureIZf,ior by
cbnstrainfﬁg?the data boints from Table V (and shown in Figure 23)
to fit afstreight line. We find the values of TC(L)vqbtaihee by
extrapolatiﬁé the logarithmic curve in Figure 2i to'be'fhe valﬁes
obtafnedfbyefltting ;he eOekistence cere data shoWn in Figufe 23
thhih e*pefimentél'erfdr; |

The eeexistenCe-eurve data in Figere 23 are bresented using
tHeIYalues'ef Tc(L) from the logarithmic‘curve,fn FigureIZI. These
data were febroducible whether raising or Iowering:the temperature
as showniin'?igure 23? The results of the bulk coexistence curve
are used to suggest the coexistence curve for thick films isvagain
describediﬁy an = A(L) tB where & is perhaps a different value of 8
and t = ch(t) - TI/T_(=) (see equation (k) in_CHapfer IV). This
form Uses.the crttical temperature as a functioh of'the spac{ng,'
L, deterﬁfﬁedt(independedtly for 3 um and 6 gm)'freﬁengQre Zi.

Thus, a plot of leg_An versus log (Tc(L) - T) for the various flat
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Figure 23: Coexistence curves for the various ,.c,pa'éings. “The bulk line isvfrom Figure 13, and has a sldpe
(B3) of 0.326; lines drawn through the points have a slope (82)’of 0.5. Open symbols are points taken
while lowering (and solid symbols while raising) the temperature. - :

98



87

Spacingshshould give a set of stralght‘lines.' A log-lop plot of
the datalpolnts does indeed appear to give a set of reasonably
straight lines, for each flat spacing (see Flgure 23) Since the
most extensive of the coexistence curve ddata weré zbtalned for a
flat spacnng of 2.3 um (other than the large amount of data for. the
bulk fluud), a fit was made to determine the slope of a stralght
line thrOugh these data polnts. This slope is the crntlcal
exponent 8 and a welghted least squares fit gave B = 0 Lo (wnth a

standard deviation of * 10.02) with a reduced chi square of 1. l

Stralght lnnes with slope 0.5 were also drawn through the data

- points for the spacings 6 um, 3 um and 1 um. These straight lines

also suggest,that B = 0.5 for these spacings as well. It is
lnterestlng'to note that coexistence curve data Hartley (lé?h) took -
at a flat spaclng of 125 um fall on the bulk curve. The‘bulk curve
ls the fitted line to the coexistence curve data taken wuth the ‘,
prlsm cell -as dlscussed prevnously. | |

An apparent “crossover" from bulk to "two-dlmensional“-
behaviorioceurs in the 3 un and 6 um polnts'andnis also sugpested
ln the:2'3 um and 1 O um points. The strong dependence of the:
coexnstence curve (or fringe splnttnng) onL is vividly shown |n
Figure Zk where L varies from ~ 0.7 um at the left frlnge to
v 1.2 um at the right one, but where the frlnge spllttlngs differ
by more than a factor of two. Since the crltlcal temperature seems
to vary so slowly with spacnng (see Figure Zl), then these three
frlnges glve values of An at effectlvely the same value of
T (L) - T ( 2 K and are the three ponnts at the rught in Figure

23) and show the large dependence on spacnng of the amplltude, A(L).




Figure 24: Photograph of fringe splittings almost 2°C below the
critical temperature using a He-Ne laser light source. Flat
separation at the center fringes is 0.9 + 0.1 um and the fringes
on the left (right) are at a separation A/2n smaller (larger) than
at the center. The fringe splitting is barely detectable at the
left but is quite large at the right--much more so than the factor
of two difference in spacing would allow. These three points are
the highest Tc(L) = T points shown in Figure 23.




Ourfvalue for B = 1/2 is the mean field (infinite range)
value and agrees with the experlmental results ef Hawkins and
Benedeki(l97h) and Kim and Cannell (1976) on monohelecular films
on Water,‘nhlch should simulate a two-dlmenSlonal liquid-gas
transition ln the absence of wall forces.' The nean field value
for B is consistent with the apparent logarlthmic dependence»ofr,
the critical temperature on Spaclng (Figure 21). The scaling
argumentsbpresented in the preceeding chapter:predlct that TC(L)
should behave as L™, with A = 1 when the fluid composition is
constant fcr various spacings (Fisher, l97l).v however,:Fisher
(l97l) has stated that for long range interactldns, A approaches
zero, whlch results in elther no dependence of T (L) upon spacung
or the logarlthmac dependence which seems to (best) fit our data..

Although the logarlthmlc curve fits the data in Flgure 2] from
L=l to 60 um very well we cannot extrapolate thus dependence to

larger spacings Whether the logarlthmlc dependence is followed

'at larger spaclngs Is a crucial questnon since the geometry of even

“bulk" cells would then be very important. Our result indicates
that for eQery decade change in spaclng'the critlcal temperature
should change by.¢ 7.7 mK--not a huge effectlbut[certalnly one that
could be seenvif looked for. The 800 um (bulk, dnshaken).crltical
temperature (see Table'ly) indicates-that_the logarlthmic depend~-
ence does not contlderto,this large avspaclng;'VHowever, the

dlscrepanCy noted earller between the shaken and unshaken critical

_temperatures at 800 um . flat spaclng could be explauned as a finite

size effect.



Thevamplntude dependence of Figure 23 is very lnteresting
since It allows the determinatlon of 0 and the general scaling
fundtion_X(x) (see (7) and (5) in Chapter V). If, for all the
spacings shown in Figure 23, the value of 8 =_o;5 is used (which
fits the data quite well) then the amplitude dependence on spacing
can be plotted as in Figure 25. The Scaling Theory presented in
Chapter IV predicted equatton‘(7» that A(L) « L? where o
z= (8 -8)o= (8 -B)/v. Using our measured value of g = 0.5 and
B = 0.326;and the three dimensional value for v (0.64) then the
Scaling Theory prediction for z is 0.27. However, our inferred
enplitude dependence, shown in Figure 25, gives z in the range 0.6
to 0.8! -The Scaling Theory prediction of z = 0.27 is shown in
Figure 25dto be fnconaistent with the amplitude dependence
observed.fn this experiment. The fitted value of é = 0.7 *
gives 0= h + 0.5 or, using the Scallng Theory assumptlon that
“crossover“ occurs when £ v L, v ~ 1/4.
| Thls discrepancy between the Scaling Theory predlctlon and
'thlS observatlon should not be too dxstressnng. As Bergman, tmry
and Deutscher (1973) ponnt out, there are several assumptlons that
go into the predlcted value of z, but the sngnificant ponnt is that
there is a simple power law dependence of the amplltude on spacnng.
In fact, one can Ypatch up" the Scaling Theory glven in Chapter v
by changlng the scaling assumption that crossover occurs when L ~ 1
to L2 A . This gives a value of z = &4 if v = 0.5 (the mean field
value). 'Aiternatively, one can merely not make the,assumption that

6 = 1/v so that the experiment determines the value of 8. (1t

- should be noted that e'is the power law dependencelof the crossover




Figure 25: Amplit;.u.de dependence on spacing. The dashed l_ihé' is
the predicted slope using Scaling Theory. ' o
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temperature, t , givgn in equation (1) of Chapter IV. . One can
' | ' either célculéte the crossover temperatures froni’extrapbl'ating
| the lineS'fn Eiguré 23'0r determine the ampiitudes (as has been
done abbve). The.ampiitudes were choséh since they mdre_accurately
reflect'thé data in Figure 23 and are less depehdgnfvon thé behavior
near the actual crossover. However, in the forﬁalism déveloped fn
Chapter IV, the two approaches are equivalent.) | |
Thé abéroach that is taken here is that 8 is éxperimentally
determinéd_éndvnot necessarily given by 6 = l/y.'_This raiées the
questidn as to whether the Scaling theory prediqt$ any special
felétionship.between thé.data once the valgés of B8, é and 6 are
&etermined; :Thé:answef fs yes, indeed. The scéling function X(x)

defined in Chapter IV:
s bo, = 4%x(2%%)

allows one'tévpredict a universal curve given by,X(x) for all thfck
film détafifSInce 268A¢2 & X(le;).then a log-log plot of LGBA¢2
versus Lot SHould give a universal curve for all the data (Fisher,
1973) . Suﬁh“a curve is plotted in Figure 26 from the data in
Table V using 8 = 0.326 and 6 = 4, The points7fall“on é cﬁrve that
is faifiy iineér andvlndependent.of sbaclngﬂ fhe»éfrcles lie vioff"
this curvezpfesumaﬁly for.the same reason theyfqverlap the 5.9 um
déta‘poihférfn Figure 23.4 R |

lf ﬁhgvcorrection due to the surfaces on the bulk behaviOr'is
attempted (using the Scaling Theory developed ihfthe previous
chapter)‘thén_one.needs to assume that the crffical femperature

dependence on spacing can be described by L'l._vAs_déscribéd in the
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Figure 26: Scallng function X(x) is sketched (using @ = 4 and B.= 0:326) as a universal curve for all the.
data in ‘Table V. The symbols are the same as those used in Figure 23. The error bars are larger at
larger spacings, L, ‘due to the uncertainty of 8 which is the exponent of L. The slope .of the line is 0. 45

(Vo]
(L has units of um). =
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previousgécaling Theory section, the surface correction is com-
pletely predicted (seevequation (11)) knowing A (0.143) and

B (0.326) from the bulk coexistence curve measurements and b (0 50)
from the L 1 fit shown in Figure 21 ~If this correction term is
used with the bulk term then the predicted effect is opposite to
that observed experimentally as shown in the dot-dashed line in
Figure 27._ Should it be argued that the critical temperature
depehdence on spacing in Figure 21 could be L™ with » = 1/v 2 |
then the correction term is no longer completely'specified but, in
particular, may have the opposite sign. If the"Yﬁ_in equation (10)
ls taken to be -ABb and A 2 1 then the set of dashed lines in
Figure 27 are predlcted As can be seen, thevqualitative behavior
of the surface correction term does not approximate the behavuor of
the data. (Note that the data are plotted versus (T (w) - T)
Instead of (T (L) -7) as was done in Figure 23 ) This result is
expected from the apparent long range behavnor nnferred previously,
since the surfaces could not act independently of the bulk (A <1).

Slnce the long range behavior has been effectlvely shown, then

a comment is necessary as to whether the long range behavnor can bev
used to explain the low value for.v (v l/h) that the data and
Scaling Theory seemed to indicate. " Flsher, Ma and Nlckel (1972)
have used Renormalization Group expansions to investlgate long
- range interactions (as wnth dipole-dipole lnteractlons) decaying in

d dimensions as ¢(r) ~ r (d+°).

This leads to”cla55|cal values of
the critical exponents 8 = (d/o - 1)/2 and v = l/c, if g > d/2
Using our'experimental value of 8 = 1/2 and if d ~ 2 then o ~ 1 and

SOV l which is not conslstent with the Scaling Theory analysis
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' Figure 27: Surface corrections predict the dot=dash curves if X\ =1 and qualitatively predict the dashed
curves if A 2 1, The solid line is the bulk coexistence curve from Figure 11, The symbols for the data
correspond to those used in Figure 23. Note that the ''crossover' temperatures predicted do not agree with

- those obseived experimentally (see also Figure 23).

(¥
oN




of the amplitude dependence discussed previously where v v 1/,

In this case, Fisher's result duplicates the Ising model calcula-
tlon for the critical exponents B and v in two dlmen5|ons, and does
not seem to clarify the value of v the data suggests. It is
interesting to note, however, that the dimensionality, d*, at which
classical values of the exponents are observed is d* = 2 when long
range orderlng predominates. (As discussed in Appendux_A, d* = 4

for short range Interactions, e.g., the Ising model.)
»vConclusions and Recommendations

This thesis has presented the first experimental data of the
behavior of a critical system as It approaches two dimensionality.
Evidence.in-the’form of the bulk coexistence curve data and the
resultlng value of the crltical exponent B has been presented to
conflrm predictions that a binary fluid mixture near Its crltical

point is_an Is!ng class system., Thls same binary fluid mixture

~ was then constrained between two optically flat pieces of quartz‘so

that the critical temperature and coexistence curve could be
determined as the spacing between the flats was varied from 1 um to
60 um. The criticalltemperatdre was directly measured for spacings
betweenv3 and 60 ym. It was found that if the walls were close
enough together (2 6 um) then the drops that formed on phase
separatlon would span the lntervening space. The coexistence
curves of these thick films was then determined from measurements'
of the difference in refractive index between the two phiases that

appeared as drops.
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‘ Thg theory concerning the behavior of the coexlStencg curve as
a function of spacing was presented and then comparea to our data.
The theory accommodated the data very well but dI? not give the
crlt!cai;eXponents that are expected from the'exa;tvtwo-diménéfonal
Ising model, but rather gave a ‘mean field" valuevof B‘= 0;5 that
agreed wlth‘experimental results on a system which might be expected
to slmuléte a two-dimensional lattice-gas (lsing model) transition.
The crifiﬁal exponent v seemed to have a value neaf 1/4'(ass§ming
the systeﬁ 'crosses over'' when L ~ £), which has not beén predicted
for any médel thus far. |

The thick film-data on the critfcal temperature depehdence on
spacing was shown to agfee with the (largely) fndependent measure-
ments of the coexlstence curve dependence. Thesé measuremen;s
suggested.that long-range interactions were present in the fluids
near the critical point. The cro;sover from normal_thrée-diﬁen~
sional béhavfor to the:long range behavior was acﬁbmmodated_nlcely
by the é¥l§ting ScalingATheory. -

Clearly, more data is needed to determine whéther the-long |
range 6rdéftng observed here Is typical of binary fluid (lattice-
gas) traﬁé!tions near two dimensionality (particularly with regard
to hévlﬁg'a?polar component such as methanol, that:might cause long
range orderfng for the binary mixture). The reééon the critical
exponent values were quite dfstinct from the_prédfctlons may lie in
the interaction of the walls with the fluid. 'Sinée only one
componedtf(methandl):of the binary miXture Is_Qéry poIar, it ié not
cleér tovwhéf extent é dipble-dipole type intéraction with the walls

will affect the critical behavior of the mixture. It would be
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lnfé?est[ngfto ﬁee if the amplitude dependence for other binary
| mlkﬁurés'on spacing Is as strong as indicated here. o |
| w°ula suggest-that-slmilar measurehents bé éttempted on a
non-pqlar Bfnary ﬁixtu?é to determiné the impgrtance of the
wall-fluid forces. Additional experiments on deférent polar and
'nOnpblar fluid mixtures would give additional details of this:
unknowh.interactiqn. Alsoc, more extensive measurements on the
critlcaj temperaturé dependence on spacing should be conducted to
determlné if the dependence is logarithmic 6ut[t6 large spacings
("'bulk" Systems) or if It falls off faster (or "oscillates"). .
The_ﬁﬁﬁfications of this research are far reaching‘and'-

important;for all aspeth'of critical phenomena. The effects on a
critica]géys;em due to ft§ finite s!zé had noﬁ'been measuréd in
Ising class Systemsvpriof to this work..'Should ﬁhévlpgérithmic
dependenceiqf the critical temperatﬁre on film thf;kneés be found
to hold Fbr:"bulk".(& I cm) systems as it did for our films

(3 <L % 60 ﬁm) then no sYStem would be free.of size effects. Our
work suggesté that the critical temperature décreases ~ 8 mK for
every de;adéiincrease in spacing. It ié also important t§ realize
that both}thf;work and that on monomolecular'filhsV(HawkinS'and
Benedek, 1974; Kim and Canhell, 1976), both of which ére éxpected
to be léttlce-gas ;;ansftiqns, géve a “ﬁeén field' value for the
cr!ticaf;eprnént, S. Thié may indicaté that real .critical systems

have mean field exponents at and near two dimensions.
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APPENDIX A
RENORMALIZATION GROUP

Some basnc ldeas in the Renormallzatlon Group approach mlll be
discussed as well as some of the methods used to calculate the
critical exponents for the various models. Universality and
Scaling will be shown to follow from the assumptlons made in the
Renormallzatlon Group Theory. For the most part, the discussion
that followe:wlll parallel several review articles (Ma, 1973;
Fisher, 1974 and Wilson and Kogut, 1974) in an effort to highlight
the important results

lmagine_a d-dimensional crystel lattice of volume LY where L
is measured ln units of lattice spaclng At eech lattice slte, X,
a spin of n components is sltuated ¢(x) = [¢ (x), . .. ¢ x)].

(The number of spin components, n, determlnes the model and the

' “unnversallty class".) |If ¢k is the Fourier component of ¢(x) then |

- 1 ~d/2 lk* ‘ v -
6. (x) =L Ecbike _ ;

where the sum over wave vectors, k, is over the Lq

points in the
first Brlllouln zone, |If Hm is the Hamiltonian--a functlon of all
the randomhvarlables ¢'k--then the probability distribution for
these rendom'varlables is P « e'Hm/T“ It Is assumed that H s

lnvartant under rotatlon in the n-dimensional spln vector space and

under translatlon in x space. Since crltlcal phenomena are
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‘governed by long range interactions, which are equiValent to long
wavelength fluctuations (¢k with small k), then an effective
Hamiltonian ¢can be constructed that has integrated out the irrele-

vant random'variables (the-¢ik with large k):

- “H/T _
(A1) , E,E>A fd¢ik e e

-H(A) /T

where A is the momentum cutoff and is much smailer than the;inverse'
lattice spacing but still much larger than the small values of k
that are of Interest near the critical point. The multiple'integral
is taken.qvet all ¢, 's, I=1,2...,n and all k > A. H(A)
provideSginformation down to a minimum distance I/A but averages
out any flner details at smaller distances. | |

Any probability distribution, P, of these random variables,
$iK» can be specnfled by a set of parameters which deflnes a point

in a parameter space (e g., P is represented by a point u in this

space). .Then for_P x e -H we can write
IR b «(m-1)d
(A2) H= El L ) ) . g Z-.i ¢i1k1
m 1,00. 2m-1 l'l"."zm’.__
e e e ¢I K Uym + const. -
2m2m

where kzm.fif (ky +k, + . oL+ Komey) @nd
Uy = U '(k

2m Zm k  J L] L] . k

12 Ky T PR lzm). We assume that

2m=-1? i

the system can be represented by short range nnteract:ons so that

U2m can be expanded in powers of k. We now have avhuge parameter

space with points u giving a probability distribution:
u o= (“2? q;, Ugoe o .) where each Usm cép be a function of the

parameters. As will be shown shortly, only part of the parameter
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space [s useful. The cutoff A is fixed for ali probability
djstribufions or else the coupling parameters are meariingless.
Also, L, which is the 'block size' and tells us how many random
Variableélthere are, is not included as a parametér sincelhe wifi
eventually let L + =, | |

Now we can consider the transformatidn, RS; whi;h}takes é
probablilt?:distribution; P, to another one, P°, which we will
represent by the associated points in the parameter space:
o o= Rsv: 'Rs is defined implicitly by
(a3)  preeMa m fap, ™

S i, L
A/ s<k”<A

where skvis th¢ product s times k. We can exfract u” from H"by
writing,H’ in the form ofvequatlon (AZ) and identifying the ' : - ﬁ
coefficféhtsxof products of random variables. fhere are threev
steps‘inrberforming (A3); first, integfatevout.thoﬁe ¢y with k~
between A/s and A; then, relabel the random variagiés by enlafging
the;waQe vgéfors by a factor s; énd,_finally, multiply all réndOm ,
variableé By_a constant factor, a . This reduﬁes the number of
parametefs:by a factor s~d due to the multiple intégral in (A3), or
equivalenf]y, the density of points in k space is'smaller by sd
by the tranéformation k = sk so that the voluméfof.the system
described by P~ is L*d = s™9L9, We can now wrifé'H? Froml(A3) in
the'formS(AZ) and using L° and so identify ﬁ’.V:Thé ﬁet ofvthese |
traﬁsformétion;; Rg» wﬁeré_l Ss s w,'is_calledbtﬁa "'renormalization

- group'. S



108

we have yet tb consider the role of ag, which came in the last

‘substltﬁtfbn'in (A3). If two successive trarisformations R, and R_,

are peffdrmed, then by (A3) they have the same result as a single
transformation Rgs~ provided

Sihce welwish our set of transformations, Rs,'to,form a group we
require

RgRg-u = Rgg-u

,which_in'turn requires (Al). Equat!on‘(Ah) requires that

= gY
a, = s

where y Is a constant.

We can now define a point in. the parameter. space u* such that
(A) Rk =k

(u* is éailed a fixed point and can be found by‘soiying this
equation;)7”This edquation is not expeéted to have a solutiﬁn unless
the ¥ ih a;f= sY 'is properly chosen, particulafiy és 5+ @ We
would théﬁ'éxpect a very delicate balance of poWérs of s in order
that (A5) Wé$ satisfied. Equation (A5) can bezthought of as an
elgenVaige-ﬁroblem with eigenvectors p* and eigehvalues y. (of
course,'R;,Té not linear so we cannot say whether Qe sha]l'encéuhter

a discrete or continuous (or any at all) set of solutions.) We

will assuﬁeia solution and define a new ekponent; n, byvy =1 - n/2

o that o = s;'"/2ﬁ " If we define the'cbrrelatiqn function
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G(k,u) by Glk,u) = <logil?>, = o2 <lo;gi|?>p- = a26(sk,Rau), with

k < As, fhéh ’
(A6) - | . G(kou) = SZ-nG(Sk,Rsu), k < As.

we havé a way now to get from one point in the parametér space
to another-?by using R_. ' By letéiné u(T) represeﬁt our system at
temperatufe*T, then, with T > T¢, we will show that Rsu(T) +_p* for.
large s. fn particular, If T is close to Tc then we can say u is

- close to u* so that we can expand
uo= owk o= Sy + 0(82y)

and keep only the first term, i.e., IinearizevRs. We can now use
our knowledge of 1inear vector spaces and operators to guide”us in

obtéining‘sdlutions, With u = p* + &y then

u = Rou .='.R-;5(uv* + §u) = px + R 6H T uk o+ G_u”

(A7) -' 12 7 : = Sy’ s R Su.

Rs is a'liné;r operator if 0(82u) terms are drqﬁpgd in cal;ﬁlatihg
su” from (A?). We can now use matrix techniqqe&lto solve (A7) for
the eigen?eétors and eigenvalues., |If tﬁe eigényalues are lj(s) and
- the correspénding eligenvectors are ej, j=12, ..., =, then we

can labé] the eigenvalues in decreasing order{ A, 24, 2

1- 2 3 . s o0

Since RSRs;ej = Rss‘ej thgn

25(aj(57) = (s

L]
.

= _ }\j.(S)

« « . sinces 21,

w
~<

where yj are constants and y, 2y

2
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We can then'write Su as a linear combination of the eigenvectors:
un

t, yJe .

(A8) . » = i

J
Consider a model (e.g., Gaussian model) where there is only

one y, > 0 with all other yJ's negative. (Mostbmodels have two

y's >0 and we will discuss this case later.) Then, If s is so

large that the first term dominates, 6u” = R Gu =t syle + 0(sy2)

1
(We assume that t syl is still small enough that the Innear

approx:mation for R is valid.) If t; = 0 then
Sy’ = Rséu -0

SO that u converges to the fixed point p* by R . Wilson calls t1 a
"relevant“ uariable (snnce Yy, > 0) and all other tJ |rrelevant“
: We can think of the linear vector space close to u* belng
spanned . by the etgenvectors eJ.. The subspace wuth t, = 0 is thel
crltical surface“ and pounts thereon will be pushed toward p* by R

Points not on the critical surface will be pushed ‘toward e, but

1
away from u* as shown by (A8).

To obtain the relatlon between the formallsm we have so far and
crltlcal phenomena, we will consider R on the probabillty distri-
bution defined in (A1), wh:ch descrlbes fluctuations in a physncal
system at a definlte temperature, T. Ve can represent this proba-
bility dlstrubutlon by a point u(T) in the parameter space. ThlS
point corresponds to a set of coupllng parameters that depend

smoothly»on temperature. Since we have integrated out ¢k,'for



amn

k” > A In Hﬁ then we a!ép expect H(A) to}depehd ﬁmpothly on
-temperature;',By varying T, we trace out a smooth curve in the
parametefvsﬁacg that intersects the “critical.surface" at Tc. If
we are étvé.temperature; T, very close to Tc and if u(T) is close
to w* then the distance t, of u(T) from the critical surface can be

expanded in T - T.:
£, (T) = A(T = T) +8(T=T)2+. . .,
Writing
FUEIRO N
or
R&u(T) =A(T-T )si/Ve + 0(;y2):
S c 1 o
where yi gvj/v gives (A6) to be
G(k;Q(T)) = s27N[G(sk,u* + A(T -Tc)sl/ve15+ 0(s'2))].
If we le£ T_é T, (t1 = 0) and 1/k = 5 = A/?k (5 (§Harbitrary> we'getA
's(g;u(Tc))'é k42*"(A/z)2'"[G(A72,u*§.f»o((A/Zk)yz)]-
which a§ k f_0‘9des as | |
Glk,u(T ) = k=2*10,  ; _k gmalx,

which definés the critical exponent n. This reéuits since

Rsu(Tc) -+ u* for large s « 1/k, e.g.,

' 1
kh << 2772,
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The case T - Tc >0, k = 0 can be considefed by letting

s = t;v';'[A(T - T)I™Y so that
é-(o,u(r)) = (a0, + e ) w 0(e ™).
When (T‘_'-,TC) (or tl) is small, then
60,u(m) = (T - 7)™
where
wy v = (2 =)

which gives-e "'scaling law'" relating the criticallexponents Yy V

oy

and n.
Remember that € = ¢ [[T =TTV = It [~V is the correlatlon
length--the average spatial extent of the fluctuatlons in the

critical system. This means that
: 1/\, . y2 . .
Ru(T) = (s/g)1/Ve, + 0(s"2)

SO . that R ‘decreases the correlation !ength by a factor s. This

glves the scallng result discussed in the block constructlon done

‘earller, provaded that R s» in its linear approx:matlon near u%, is

domlnated by one eigenvalue for large s.

The llnear assumption that resulted in 5|mp|e scaling does not

| have to be utilized. Wegner (1972) has |nvest|gated nonlinear

terms and-the resulting corrections to simple scaling. Such
corrections have recently been found necessary to explaun coexist-
ence curve measurements in pure fluids (Estler, et. al., 1975,

Hocken and Moldover, 1976) These cOrrect|ons'have.nbt been found




necéssary for . binary mixtures unless very large temperature
excursions (e > 10°2) are made (Greer, 1976).

welhavé thus provided a framework that gives us the univer-

. roe '
sality of the critical exponents and the scaling relations between

them. It turns -out that only two critical exponents ‘are fndependent
(we have éhosen v and n above) and ail other éXponeﬁté can be
written fnrtérms of thes§>two. For all of the resqlting critfcal
exponent relations, none have been sthn, either by'eXperimeﬁt_or

by dire;t calculation, to be invalid.
Applications

The'qhéstion arises as to whether the renormélization group
can'provide;ény new predictions (scaling and-uﬁTVerality were
known lohg béfore'Wilson's work). In fact, there are several, bﬁt
we will ohly mention a feh. If we Qse a'péftiéuiér model (i.e., a

value fqr:n;ahd d) then the critical exponents can be calculated by

“expansions using Feynman graphs. In order to know what to expand

about, we need to explain what some of the vaiﬁgs of n and d giQe
for the critical exponents. As it turns out, there are two fixed
points fn thé parameter space--one belonging to the Gaussian model
(mean fiéld.exponents) and the other to the model (value of n) used.
Which flx;d point Is stable (and only one has'bgeh observed to be)

depends on the dimensionality d of the system. For short rahge-

interactions (Ising, Heisenberg, etc., models),thé'magic dimension-

ality is d* = 4. For d 2 4, the Gaussian fixed innt is stable and
mean fie]d values_are always found for the critical exponents.

Below d ='Hi_the model's fixed point is stablé;_so’an expansion can




be ddne in € = 4 - d dimensions to determine the critical
eXponents.af smaller dimensions (for e small).. 0Of course, € = 1
and 2 (d‘$_3 and 2) are interesting cases and it is truly amazihg
that the.expOnenfs are as close to experimental and exact and
series expansion re#ults'as they are (see-Figure.ZS).

Another exactlyvsoluble model (the others were the Gaussian
- and two;dimensfonaf Isthg) is the spherical model (n = «) Which
gives another starting point for expansions'(ia 1/n). The d,n
plane can then be "filled in" for a particula} crftical exponent
using thé'approximations frqm Renormalization'Group Theory, aé
shOwn'fningure 29. These expansions (and Figure 29) are given in
Fisher's review article (Fisher, 1974) and aITOW-dne to think of
a'c0n£inﬁbu$ spin and dimensionality spéce--axvéry useful éoncept
when one wi#hes té expefimentally apbroach a two-dimensional |
system. | | | - | |

As fﬁ§.dimensionalify (for a fixed n) varies (d < 4) then the
fixéd paintbmoves to a ﬁew locatioh in the parametér space. |If
one\then.fhagines going from, say, three to.twd dimensions, then
fhere is.a ?rossover from the bulk (three-dimeﬁéfdnal) to the two-
dlmensibnéi:system as the fixed point moves to its new locaffon.
It is véryidifflcult to determine the dimensionality directly so
an altern§tiVe approach to the ''crossover' from three*-to'tWQé

dimensions is presented inIChapter 4,
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EXPANSION PARAMETER (¢ = 4 — d)
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Figure 28: Predictions of the € = 4 - d expansions for the suscep-
tibility critical exponent Y, for different spin dimensionality:
n=1, Ising-like (fluids, alloys, etc.); n = 3, Heisenberg-like
(isotropic:ferromagnets, etc.); n = », which corresponds to
spherical model. Dashed lines are exact second-order predictions.
For d = 2 the exact spin-1/2 Ising-model result y = 1.75 is
indicated by cross; for d = 3 the best numerical estimates for
Ising and Heisenberg models are shown by an 1; the solid line for
n = o is the exact spherical-model result. Note that for ¢ < 0
or d > L the 'classical" or mean field value y = 1 applies for all
n. (From Lubkin (1972).) '
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Figure 29: Diagram,df .thé' (d,n) plane showing cohtours of constant
‘B as calculated from € and 1/n expansions. There is a region where
g > 1/2, and a non-physical region of negatlve B. (From Fisher

(1974) . ) |




