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Jacobs, Donald Thomas (Ph.D., Physics)

Critical Phenomena in Thick Films of a Binary Liquid Mixture

Thesis directed by Professors R.C. Mockler and W.J. O'Sullivan

This work presents the first experimental data on the behavior

of a critical system as it approaches two dimensionality.  Measure-

ments of the bulk coexistence curve using refractive index tech-

niques are done on the binary fluid mixture methanol-cyclohexane.

These measurements give the critical exponent B = 0.326 f 0.003

which agrees with recent Ising model calculations.  This same

binary fluid mixture was then constrained between two highly

reflective, optically flat pieces of fused silica in an interfero-

meter.  The critical temperature and coexistence curve were deter-

mined as the spacing between the flats was varied from 1 kim to

60 um.  The critical temperature was directly measured for spacings

between 3 and 60 Um.  It was found that if the walls were close

enough together (5 6 um) then the drops that form on phase separa-

tion would span the intervening space.  The coexistence curves of

these thick films (5 6 um) was determined from measurements of the

difference In refractive index between the two phases that appeared

as drops.

It was found that the shift in the critical temperature as the

spacing was varied followed a logarithmic dependence.  Such a

dependence is not expected from Scaling Theory for an Ising model,

                 but Is to be expected of systems with effectively infinite range
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interactions.  The coexistence curves for each spacing of the thick

film Indicated that the critical exponent B was close to 0.5 which

is the mean field (infinite range interaction) value and not the

two-dimensional Ising model value of 0.125.  The amplitude of the

coexistence curves was found to vary with spacing as LZ with z in

the range 0.6 + 0.8.  This was a much larger dependence than

expected from the theory.. A comparison of the data and the theory

and suggestions for new experiments are made.

This abstract is approved as to form and content.  I recommend

its publication. rip (*7
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The study of critical phenomena has been ongoing for fifty or
even a hundred years now (Stanley, 19718).  However, the main

Impetus has occurred since 1960 when Heller, Benedek and Jacrot,
along with theoreticians such as Domb, Rushbrooke, Fisher and

Marshall, realized that divergences in a variety of thermodynamic

functions appear as powers of the deviation from criticality.

These divergences are characterized by critical indices (the
exponents in the power laws).  The fascinating thing about these

exponents is that·they not only obey rigorous (via thermodynamics)

inequalities (which for many are.experimentally verified as

equalities) but that they are the same for a wide variety of

systems.  Examples of systems exhibiting critical phenomena

include superconductivity, liquid-gas, binary fluids, magnetic

systems, growth  of  pol ymer chains, percolation (jumping  from
place to place on a lattice), well-developed turbulence and, to1

some extent, many particle interactions in high energy physics

(Lubkin,  1972).1  It is for this reason that so much work has been
I                     done on critical phenomena in recent years.  With such a variety

of applications and with so much left to learn, it is indeed a

very exciting field.

1-
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The background experiments and theoretical developments are

rich and varied, and there are many reviews on the subject

(Brout, 1965; Fisher, 1967; Heller, 1967; Kadanoff, 1967;

Stanley, 197la and 1971b; Levelt-Sengers, 1976) so I will refrain

from expostulating on these, but let the interested reader refer

to them.  I will briefly discuss the nature of a critical point,

and the definition of some of the critical exponents, but the

details of some of the older phenomenological models will only be

alluded to.  A readable account of the above points is given by

stanley (197la).

Universality and Scaling in Critical Phenomena

The concept that broad classes of systems can exhibit the

same behavior near a critical point is called universality.  This,

along with the idea of scaling--that the behavior 'near the critical

point is unchanged as the scale of length (and other variables) is

changed--were realized in 1966 when Kadanoff proposed that, near a

critical point, if the length scale is changed the effective

Hamiltonian should remain invariant.  Using this, he was able to

recover the scaling laws of Widom and others, and also to obtain

relations among the critical exponents.  Kenneth Wilson, in 1971,

was able to show exactly how this is done and to provide a method

("Renormal ization Group") for approximating the critical exponents

for the various models.  The Renormalization Group approach is

discussed in Appendix A.

It is important to take a moment to realize the nature of

                 this method that uses the invariance of the Hamiltonian to change
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of scale (scale symmetry). (The invariance of the Hamiltonian to

a set of transformations changing the scale implies the set of

transformations forms a group, the change of scale, or length, and

is called "renormal izat ion", hence, "Renormalization Group". This

is to be distinguished from the field theory concept, where

renormalization involves divergences and cut off parameters--this

distinction will be made clearer later.)  Scale symmetry is a

"space-time" symmetry, others of which lead to conservation of

energy and momentum, instead of an "internal" symmetry, which leads

to  conservat lon of various "quantum numbers". The advantage  of

working with such a symmetry is obvious, as the nuclear and

particle physicists can testify.  There are advantages to investl-

,  gating exact and approximate symmetries.  By utilizing the

approximate scale symmetry, one can recover the relations among

the critical exponents (i.e., equalities which are experimentally

verified), the scaling laws of Widom, and universality.

It Is possible to separate any physical problem into a model

and the geometry where the model is used.  The geometry can be

described independently of the model by the symmetry it possesses.

For instance, the harmon ic oscillator is a model but the harmonic

oscillator problem can not be solved until the geometry is

provided; however, the geometry can be studied in general and

then combined with various models to obtain values of physically

interesting quantities.  The result of applying group theory to a

problem is that only relations between quantities can be found but

not the values of the quantities (unless a model is employed).

;                 The significance of the Renormalization Group approach is that it
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provides an approximate description of the geometry on which the

many models currently in existence can be used.

The  so-called "Scaling Theory"   i s a consequence  of   the

Renormalization Group approach and thus can provide realtionships

between critical exponents.  It is very important to remember that

many approximations are involved in the Renormalization Group

approach so that the predictions of Scaling Theory are just that--

predictions.  The work described in this thesis is the first

experimental test of some of these predictions.  The results of

the Renormalization Group procedure have thus far agreed with

experimental results.

Qualitative Features of Critical Phenomena

Before jumping into the details of this paper, it is useful

to consider a simple physt·cal picture of what occurs at a critical

point. Fl rst, consider a liquid-gas transition; we realize that

there is increasing interaction among the molecules as the critical

temperature Is approached from above as evidenced by the deviation

from the ideal gas law.  In fact, by utilizing the Van der Waals

equation of state for real gases (a "mean field" model), one can

exhibit a critical point and critical exponents (which are all at

variance with experimental values on bulk systems).

Now we consider the Ising model of magnetic systems (which

corresponds to the lattice-gas model for liquid-gas systems) where

one imagines a spin to be pointing up or down on each lattice site.

For liquid-gas systems, the volume is partitioned to microscopic

                cells allowing only one molecule on each site (finite size of the
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particles) where spin up corresponds to a molecule being present

and spin down corresponds to no molecule on the site. However, the

molecules  re not constrained to a site.  For the temperature, T,

much larger than the critical temperature, Tc, we see random

flipping of the spins, corresponding to freely moving gas mole-

cules.  As T + Tc  small domains of correlated spins occur as the

spin-spin. interaction becomes important, and their size increases

as T-T  +0.  (For the fluids, droplets begin to form, increasing
C

in size as T - Tc + 0.)  When the average size of the droplets

becomes the same order of magnitude as the wave length of visible

light, light is strongly scattered (called critical opalescence)

giving vivid experimental justification of the idea that near the

critical point the correlation length, E, becomes very large.  At

the critical point the long  range order (droplets) characteristic

of the region T > Tc gives rise to a liquid- (or fluid) phase or of

magnetic domains  characteristic of T<T.C

To be more specific, let us consider the Ising model (since

we will use.it shortly), which is a d-d.imensional lattice and on

every lattice site, A, a spin is situated.  The Ising Hamiltonian

is (without the factor, (kT)-1, included)

H    -  -H *   ·   I   SR  -   K  I     S.   ·   S+  +
*        *,7 n    n+1

where 5* stands for the spin on site A which can point up or down

(Slf = +1); the summation goes over all sites *; i are the unit

vectors in the lattice which shift from a site to its nearest

                 neighbor's.  The external magnetic field is H', and K is the
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spin-nearest neighbor spin coupling constant.  (For a liquid-gas

(lattice-gas model ) Sil - 2(PA -   where p;; = l if there is a

particle and 0 if no particle on site *; K gives the strength of

the attractive force among the particles, and the external field,
H', is Interpreted as the chemical potential, u, times the number

of particles:  H' = VN.)  The procedure is to calculate the parti-

tion function, Z, and so the free energy density, F (allowing all

'                   the other thermodynamic quantities to be calculated), from the

Hamiltonian

Z = < e-BH >, F = -ln(Z)/V

where < > denotes the sum over all possible states of the system.

This can be done exactly for d=1 and 2, but only approximately

for d=3·  The problem with the approximations done for d=3 are

that they assume large T so (kT)-1 is small and they expand in

(kT)-1 assuming a small correlation length, E.  However, as

criticality is approached, 4 +co and the approximations of some

thermodynamic functions develop singularities at T = Tc.  There

is a procedure to correct this (Pade approximates), but the problem

can be circumvented by using the Renormalization Group approach.

The correlation length, 4, which becomes very large close to

the critical temperature, Tc, but assumes some mean molecular size,
00, well away from the critical· point, can be written as a power

l a w d i vergence:      E   =   E a[ (T   -   Tc) /Tc] -v where   v    i s a c r i t i c a l.

exponent that is independent of the details of the system but

depends on general features such as boundary conditions and dimen-

sionality.  Other critical exponents can be defined by the power



law divergences of various thermodynamic quantities.  Some of the

exponents with their definitions and values are shown in Table I.

Considerable theoretical interest has been shown in the

behavior of critical systems In a dimensionality other'than threi.
This is partially due to the solutions to the models being easier

(an exact solution can be obtained for the two-dimensional Ising

model (see MeCoy and Wu, 1973)) but also because the Renormaliza-

tion Group Theory allows the critical exponents to be approximated

in a continuous fashion knowing the dimensionality and model (see

Appendix  A). "Scaling Theory" descr ibes the crossover from three-

to two-dimensional behavior as one of the system's dimensions

becomes small near the critical point.  Since the correlation

length, E..(see Table I), becomes quite large near Tc then L,  the
size of the system In one of its dimensions, can be smaller than

C.  Then the system is constrained from having fluctuations of

size E in one dimension and so may approximate a two-dimensional

system.  (This theory is presented in Chapter 4.)

The dimensionality of real films can be divided into three

main categories (Fisher, 1973) depending on the relative size of

the average molecular (or lattice) size, Ea, the range of inter-

action, E, and the film thickness, L.  First, purely two-

dimensional films can be divided into very thin films (L << 60 % E)

(which can be realized in superconductors and where a classical or

mean field description applies) and thin films (L 4 60) which

includes monomolecular and bimolecular films.  Second, thick films

(L >> Co) which are expected to exhibit "crossover" from three  to
              two dimensions as the critical point is approached.  And last, bulk
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TABLE I

DEFINITIONS AND VALUES OF SOME CRITICAL EXPONENTS

Exponent Definition Model Values Experimental Values

Ising Mean Field

d=2 d=3 d=2 d=3

a                                     Cv  # l E i-a 0(109) . 1/16         0                 ?        ?(4 0.1)

BB AtiE 1/8 4 5/16 1/2               7         4 0.34

v                                                              E   0   E-v                                                       1                                  4 0.64 1/2                ·                             ?                             .   0.64

-rlr
.

g(r) = Ae
1/4 4 0.04 O.                 7        ?(< O.1)

rl+n

00
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films (L > 106 Eo) where three-dimensional behavior is expected to

predom Inate.  For our binary fluid system, 60 . 3 A, so that a
"thick" film is one which varies from 0 100. A to 4 300 um in one

of its dimensions.  A bulk fluid has each dimension larger than

4 300 um.

Statement of the Problem

This work was undertaken to experimentally determine the

behavior of a binary fluid system near its critical point for

thick films that may simulate a two-dimensional system.  Recent

predictions have been made on the behavior of the critical tempera-

ture and the power law divergences of thermodynamic quantities

near the critical point as a function of the film thickness.  These

predictions are tested by the work described here.

0



CHAPTER 11
, 1 1 1-t      it

EXPERIMENTAL BACKGROUND AND APPARATUS

Experimental Background

In spite of theoretical predictions that changes would be

seen in the critical exponents and temperature as a function of

dimensionality, very little work has been done to test these

predictions.  A few measurements have been done on the critical

temperature of helium films (Brewer, 1970; Guyon, 1973) but, as

discussed in Appendix A, they are in a different universality class

than Ising-type systems which include binary fluid mixtures.  Some

superconductivity work (Guyon, 1973) has also been done but again,

they are not Ising systems.  Recently, data on Ni films near the

Curie point have shown an L-A dependence but the data are not

conclusive (Lutz, et.al., 1974).  Therefore, it was decided that a

look at the properties of thick films for an Ising class system

was needed.

First, binary fluids are shown to be consistent with the

universality class (n = 1) of the Ising (lattice-gas) class, which,

as discussed in Appendix A, also includes simple fluids and some

magnetic systems.  In order to do this, the measurement of a

critical exponent for a binary bulk fluid mixture was shown to

agree with the Ising model predictions and measurements on simple

fluids.  This is not to say that this was the first measurement of
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the coexistence curve for a binary fluid, but, as will be shown,

the method used allowed a much more accurate determination of

the curve.
6.    ...

11  .2    1 1Therefore, the first experiment was the measurement of the

critical exponent, B, which determines the shape of the coexistence

curve, and is an exponent that can be measured quite precisely.

For binary fluid mixtures, a variety of choices exist for the order

parameter (e.g., concentration in mole fraction, volume fraction,

weight percent, etc.) but since the volume fraction seems to give

the most syrnmetric coexistence curve experimentally (Greer, 1976),
it was chosen as the order parameter In this experiment.  The

simple Ising model predicts a completely symmetric coexistence

curve.

To measure the coexistence curve, the change in the volume

fraction between the two phases was detemined by employing

refractive index techniques.  The coexistence curve, of course, can

be determined in several ways.  One way would be to prepare a set

of vials of various compositions and measure the height of the

mentscus  as a funct ion of temperature. Another would  be to observe
the temperature at which the meniscus "disappeared" for different

compositions. However, these are not very precise methods for

several reasons.  First, it is difficult to prepare the exact

composition desired, particularly if the sample volume is small.

Second, the meniscus, which gets broad close to Tc but laps up on

the glass far from Tc, cannot be accurately located.  Third, the

temperature at which the meniscus disappears cannot be accurately

measured.  Another problem arises in making sure that the same
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level of impurities is present in all the samples, since even

minor impurities can cause very large changes in the critical

temperature, and so ruin any intercomparison of data between

..     1.1.,A        ,        I

samples.

A second and much better method of determining the coexistence

curve Is to simultaneously measure the density of the upper and

lower phase for various temperatures.  We chose one precise method

of measuring the density, namely, the refractive index.  The bulk

refractive index of our volatile fluid mixture was measured, since

it allows the critical exponent, B, to be determined, as well as

checking for any anomalies in the rectilinear diameter.  To

measure the bulk refractive indices of our fluids a prism cell was

used since it allowed the fluids to be sealed and also since a good

quality spectrometer was available.  From the measured index of

refraction in the upper and lower phases, the change in volume

fraction could be calculated, so that the critical exponent, B,

(the critical exponents were defined in the first section of this

work) could be determined and compared with values measured for

different systems that were also considered to be Ising-like.

Since refractive index techniques were to be used in thick films,

it was necessary to be sure there were no serious errors in using

the.Lorentz-Lorenz relation.  Thus, the refractive index anomaly

was remeasured using the critical concentration of the fluids

(which was determined from the coexistence curve).  Also, the

density anomaly near the critical point was checked by Scheibner

(1976) to determine the size of this effect, although it was not

expected to be very large based on other measurements on similar
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systems.  The relative importance of the refractive index and

density anomalies was determined near the critical point.

After these preliminary investigations, a fluid sample was
..

h ..;'. 1

captured between two optical flats and squeezed down''to· h thick

film whose thickness could be varied in order to determine the

critical temperature and exponent dependence.  The Ising-like

system chosen was a binary fluid mixture simply because it has

several advantages for the experimentalist.  First, the pressure

need not be controlled due to the effectively infinite compressi-

bility of liquids.  (Since our cells are sealed at room temperature

then the pressure  increase in raising the cell temperature 25 K

causes the critical temperature to,increase by 4 10 mK. (Washburn,

1928).)  Second, for the same reason, gravity effects are typically

much less for a binary fluid mixture than they are for a simple

liquid-gas transition.  And, third, the critical temperature is

experimentally very easily accessible--typically 10 K to 40 K

above room temperature--so temperature control is greatly simpli-

fled.  There are other advantages which will be pointed out later.

The binary fluid mixture chosen was one that had a large

refractive index difference but a small density difference between

the two components (so that the gravity effects were very small)

and one for which the critical temperature and concentration were

fairly well known.  These are all fairly severe restrictions,

especially the restriction that the density difference be small

while the refractive index difference is large.  The best choice

that we could find was the system methanol-cyclohexane.  It was

               also the system that Hartley (1974) had used in measuring the
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preliminary data on the refractive index anomaly.  We wished to

use  this data, as well.

Experimental Apparatus

Prism Cell

It was first necessary to construct a cell with which to

measure the refractive index of the two phases and obtain the

coexistence curve, and with it, the critical exponent, B, which

would indicate the universality class to which that binary mixture

belongs.  A convenient and reasonably accurate way to measure the

absolute bulk refractive index of volatile fluids, which must be

sealed to prevent impurities or evaporation from occurring, was to

use a prism cell as a simple, efficient and accurate method.  The

prism cell that we designed, as shown in Figure 1, was a piece of

aluminum carefully shaped to be an equilateral triangle.  The cell

was anodized in order to prevent reaction with the fluids which

were contained in a one-inch hole bored parallel to the base.  The

fluids were captured by two optically flat (A/20) pieces of glass

and sealed with teflon.  The cell was heated by means of three

heaters located symmetrically inside it and the temperature was

monitored by a thermistor.  The pertinent measurements which

needed to be taken with this cell were the prism angle (the angle

between the two windows), the undeviated angle through the refrac-

tometer and the deviated angle through the fluid. This' "general

physics" piece of equipment provided very precise measurements.

                 The geometry Is shown in Figure 2.  A laser was used as a
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Figure 1:  The prism cell used in this experiment is made of
anodized aluminum with a one-inch bore (A) for the fluids which
are captured by two optically flat pieces of glass (B) and
sealed with teflon (C).  The cell is heated by three symmetric
internal heaters (D) and the temperature Is monitored with a
thermistor (E).
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Figure 2:  Prism Cell Geometry.  The prism cell, A, is placed
inside a heat shield, 8, which is in turn inside a vacuum envelope,C.  The system is placed on the spectrometer, D, so that the light
from the coll imator, E, will be deviated through an angle *,- 00Into the telescope, F.

.
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monochromatic source with a rotating ground glass screen "mixing

the modes" and so el iminating the annoying "speckles".

Variable Spacing Cell

The next step was to devise a means by which some of the

anomalous refractive index data above the critical temperature

could be retaken while also using the same cell to capture a

thick film of fluid.  It was necessary that the spacing be variable

and directly measurable while allowing the behavior of the fluid

to be determined.  Toward this end we decided to use a differential

refractometer that was a modified version of what Hartley had used

in his anomalous refractive index measurement.

We again took two optically flat (A/100) pieces of quartz
.'

that were coated with very high reflectance coatings, 99.0% at

6328 A (He-Ne laser line).  The high reflectance coatings allowed

a very sharp and distinct fringe to be. seen, which was ideal for

both the refractive index measurements and also for observing the

behavior of the fluid between the flats.  The cell was modified

from the design of the cell that Hartley had used to that shown in

Figure 3.  The two flat pieces of quartz, which we will also refer

to as mirrors or simply "flats", were each sealed in one half of

the cell.  The two halves of the cell were then connected by means

of a stainless steel bellows, which allowed a reservoir of fluid to

surround the sample of fluid that was under study between the

flats, and also allowed the spacing between the flats to be

continuously varied by means of the differential screws which were

/0 located at the perimeter of the cell.  The three differential
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screws had fifty-two and fifty-one threads per inch on the out-

side and inside respectively, which allowed very fine control of

the spacing.  Of course, it also necessitated great care in setting

up the original spacing because, with the approximately one inch

of differential screw, the mirrors can only move about 240 um.

The cell halves were also made out of stainless steel and the seals

were teflon (except in the refractive index measurements, where

Indlum seals were used on a similar cell--the difference between

the cells was very slight and the distinction will be made where

appropriate.)  The cell had two end caps which contained the heater

coils.  This allowed the heater to be removed when cleaning,

filling and massing the cell and also allowed the radiated heat

from the heater to be contained within the cell.  The heater coils

were matched in resistance to f 0.1 0.  Between the two cell halves
.

were three turns of one-and-one-half Inch braid to provide better

thermal conduction between the cell halves.  The cell was thermally

isolated from the outside environment by being placed on nylon

posts Inside a half-inch thick aluminum heat shield which was then

attached to a surrounding vacuum envelope by an additional set of

nylon posts.  This assured very little conduction loss between the

pieces and almost all radiation exchange, thereby providing uniform

heat loss and small temperature gradients across the cell.  Of

course, with the nylon posts supporting the cell, there was some

extra heat loss down through the nylon supports which was compen-

sated for by a trim pot attached externally to the heater coll

remote from the nylon supports.  Thus, just the amount of power

                that was lost through the nylon supports could be subtracted from
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the other side of the cell.  We describe later, in more detail, the

ti                       by means of the fill-hole plug, taking approximately 50 ml of

procedure used to balance the power losses.  The cell was filled

fluid, while still allowing a small air spacd (See Figure 4.)
Refractive index techniques were used to determine the fluid's

behavior since, as the refractive Index of the fluid changes, the

optical path length will change causing the observed fringe to

shift.  Since the fringes are so very narrow, the shifts can be

measured quite accurately, thereby determining the refractive index

change. This "Fabry-Perot" interferometer had a slight tilt
between the mirrors (a "wedge mode") producing almost straight
fringes.  The slight curve in the center of the fringes was due to           I

distortions in sealing the flats.  This cell was illuminated by a

He-Nd laser beam of nearly monochromatic light made plane-parallel

by a spatial  filter and coll imator and was made incident perpendic-
ular to the first mirror by autocollimation.  The spacing was

adjusted by three nylon rods that could be pushed in to engage the

differential screws and then pulled out, clear of the cell and

shield so that no heat loss occurred down these rods.

Temperature Control

In these experiments, both cells and shields were temperature

controlled.  The controllers on the shields were DC bridges capable

of controlling to f 0.5 mK over twenty-four hours as tested in a

well-sti rred oil bath.  The DC bridge is basically a Wheatstone

bridge with the error signal being amplified by an op-amp and fed

                 back by way of a power amplifier to the heater (see Figure 5).  The
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0



22

.,

V

A C
r----/

... D                  F»  '--- '
E/ I T'H8 / IGI

_1_
I i l -

1.....I-...V- - 1

61 IT Reater
Powe r

1 Bridge 1  1Amplifier    1 1 Load         I

Figure 5:  Schematic diagram of the temperature control system.
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C.  The bridge unbalance is amplified at D with the error signal,
E, being amplified by the power amplifier, F, which supplies
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external trimpot used to eliminate temperature gradients.

0
0.



23

thermistors (temperature sensitive resistors) used were "aged"

(i.e., cycled several times from room temperature to operating

temperature) 'Yellow Springs Instrument (No. 44004:  2250 ohm at

25'C) thermistors.  (The stability and reliability of these

thermistors is discussed in a later section.)  The auxiliary

thermistor used in the prism cell was calibrated after the experi-

ment with respect to a standard platinum resistance element that

had been calibrated by the National Bureau of Standards.  The

critical ternperature found by this thermistor on the fluid sample

in the prism cell was 45.474 k 0.015 C, which differs from reported

values of 45.14 k 0.01 C by an amount consistent with the water

impurity present in our fluids.  Impurity effects will be discussed

in a later section.  This value of the critical temperature is

consistent with the determination from the variable-spaced cell

where absolute temperatures were known to only f 0.2 K.

A separate DC bridge was used for temperature control of the

prism cell allowing + 2.5 mK control over twelve hours with the

shield controlling to + 10 mK over the same period of time.  The

variable spaced cell utilized a more sophisticated AC Kelvin bridge

designed by Lyons (1973) that allowed a resolution of 20 UK and

control of t 50 BK per day.  Since the room temperature was

controlled to + 0.2 K for this cell, the shield could control to

f 2 mK for periods of a week.

0
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Experimental Precautions

In taking measurements of this kind there are several pre-

cautions that should be taken to insure that the interpretation of   g

the data is correct. Since thermistors are used to monitor and

control the temperature, they should be shown to be stable or at

least to have only a small drift.  Also, some assurance needs to

be made on the resistance versus temperature curves supplied with

the thermistor, not so much for absolute as for relative calibra-

tion.  Some determinations as to the effects of gravity on the

data and the size of their effects in binary fluids also should be

made.  Consideration of the predicted and observed effects of

impurities should be made.  Finally, a method to monitor and

eliminate temperature gradients should be devised.

Thermistor Stability

Our thermistors were monitored while some prel iminary data was

being taken with the Fabry-Perot cell.  There were four thermistors

in the cell, one control and three auxiliary thermistors, and all
were monitored.  The three auxiliary  thermistors were compared to

each other after a long period of time (three months) to determine

the long term drifts of the thermistors.  A typical set of data

(neither the best nor the worst) Is shown In Figure 6.  The drift

with time was typically a millidegree per month.  There was also a

slight discrepancy in the relative temperature shifts given by the

thermistors--an effect that was about 0.1% of the temperature

change.  Since all our temperatures were measured with respect to

the critical temperature, this small error was not important unless
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far from the critical temperature (that is, more than l'C).  When

compared with the critical temperature the thermistors were found

to be consistent to within 1.5 mi< over a period of about two    -

months.  The net effect was that the thermistor values could be

trusted and that only over very extended regions in temperature

was it necessary to worry about the temperature scale error.

Thus, for the experiment in which the bulk coexistence curve over

an 18°C range was measured, an auxiliary  thermistor was calibrated

at. the completion of the experiment (the temperature intervals

agreed to 0.03%)·  Because the slope of plots of the change in an

effect versus the change in temperature usually gives the critical

exponents, any error in the temperature scale is propagated

directly to the critical exponents.  One is fortunate to determine

a  critical-exponent   to   1%  and   so the small (0.1%) temperature   scale

error was not very significant.

In order to determine the temperature from the resistance of

the thermistor, an equation must be fit. The equation that is

generally recognized as providing the best fit with the fewest

parameters Is (Steinhart and Hart, 1968)

T-l =A+B log R+C [log R]3

where T is the absolute temperature and R Is the corresponding

resistance.  This formula was used in the calibration procedure and

in determining the temperatures of the other thermistors and is

accurate to the extent described in the preceeding paragraph.
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Gravity Effects

For a long time it was believed that the effects of gravity

on a binary fluid mixture were negligible due to the very small

compressiblilty of liquids.  However, it is possible for the more

dense component to slowly diffuse toward the bottom of the cell,

and recent calculations (Fannin and Knobler, 1974) have shown that

the effects can be as large as with pure fluids.  Also, some recent

experiments (Lorentzen and Hansen, 1966; Bagoi, et.al., 1970;

Greer, et.al., 1975; Glglio and Vendramini, 1975) have observed a

gravity effect in binary fluids.  Fannin and Knobler (1974) have

shown that gravity effects cause the data to curve up (to a smaller

value of B) when close to the critical temperature as shown in

Figure 7.  How close the critical temperature can be approached

before gravity effects become significant scales with the critical

temperature, sample height and density difference of the two compo-

nents (Fannin and Knobler, 1974).  For example, they show that the

effect is significant (0.2% of (X - Xc)/Xc; X - mole fraction) for

the coexistence curve when E= (Tc - T)/Tc 6 5 x 10-4 for the

mixture CH4-CF4 (|Pl - F2|/8 = 1.38) in a cell 2 cm high.  For our

fluids (|pl - P2|/8 = 0.016) in a cell one cm high with a critical

temperature one-third of theirs, the gravity effect would not

become significant until the temperature was closer than 0.5 mK of

the critical temperature.  Thus, the critical temperature must be

approached much closer than it was In these experiments to observe

gravity effects for our fluids, methanol-cyclohexane.

0
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Figure 7:  Gravity effects on the coexistence curve.  The dashed

line represents a system without gravity effects.  Gravity causes
the data to deviate as shown in the solid line so that a best fit
to the data (dot-dashed line) has a different slope than with the
gravity effects taken into account (dashed line).  The inset shows
how the residuals (the deviation of the best fit from the data)
reflect the poor fit and indicate a correction is necessary to

properly fit the data.
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Impurity Effects

. Early research on this binary fluid mixture was done toT
determine the effect of various impurities on the critical tempera-

4

ture and coexistence curve. Jones and Arnstell (1930) introduced
water as an impurity to provide a guide in preparing pure methanol,

which is very hygroscopic.  Later, Eckfeldt and Lucasse (1943) used

Inorganic salts as an impurity and showed, in agreement with Jones'

work, that the binary mixture methanol-cyclohexane is much more

sensitive to a water impurity.  (A 0.003% water impurity is quoted            

as causing an increase in the critical temperature of 0.05 K.)

Eckfeldt and Lucasse (1943) also state that the effect of water on

the critical temperature is more than ten times that for organic

impurities.  Unfortunately, systematic measurements to determine

the impurity effect of water on our system (giving both the

critical temperature and exponent dependence) have yet to be done.

However, experiments on this mixture (Warren and Webb, 1969) and

other mixtures (Bak and Goldburg, 1969; Bak, Goldburg and Pusey,

1970; Goldburg and Pusey, 1972) indicate  that although the criti-

cal temperature may shift due to a small impurity, the critical

exponents, measured relative to the shifted critical temperature,

do not seem to change significantly.

In the experiments described here, the various sample cells

were prepared with fluids from the same bottles.  The fluids used

were Fisher "Spectranalyzed" methanol (99.95% pure) and cyclohexane
(99.98% pure) with the major impurity in each being water.  This

resulted in a 0.3% by weight water impurity in our sample cells.

               Rather than undertake the questionable task of further purifying

/
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the fluids, emphasis was placed on preventing introduction of

additional  impurities when .filling the cell. The cells were

thoroughly cleaned and then placed in an oven to remove any

residual moisture.  The hot cell was then placed in a dry nitrogen

atmosphere until filling.  Loading the cell with the fluids

occurred in the same dry box using phosphorous pentoxide as a

dessicant and under a constant stream of dry nitrogen.  Massing

of the cell took place outside this box with the cell sealed after

the filling of each component.  The concentration of fluids was

thus known and kept close to the quoted critical value, which was

checked in the coexistence curve experiment.  Samples prepared in

this manner gave consistent values for the critical temperature

and suggested that further impurities were not introduced on

filling.

Since it has been experimentally observed and theoretically

predicted (Kouvel and  Fisher, 1964) that the critical exponents do

not significantly (< 2%) change their values for small amounts of

impurities, then the only concern rests on the impurity effects of

the critical temperature dependence on film thickness.  Although a

critical exponent should describe this behavior (Fisher, 1971),

further assurance should be provided.  Since this is the first

experiment done on such a dependence, no experimental data are

available on impurity effects.  However, Ising model calculations

have been done, assuming random lattice impurities, by Miyazima

(1973) in which the critical temperature dependence on film

thickness was found not to alter for small impurity concentrations.

...-
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We use this theoretical prediction to justify our tolerance of

the sm'all (0.03% by weight) water impurity used in this work.

Temperature Gradients

For the variable-spaced cell (see Figures 3 and 4), the

temperature gradient across the cell could be adjusted by means

of an external trimpot connected  in  series with the heater coll

remote from the nylon supports.  Such an adjustment was needed

since the nylon support legs, which were on one side of the cell,

conduct some heat.  This heat loss can be compensated by externally

dissipating an equivalent amount of the energy that would power

the other side of the cell.  The two heater coils were matched in

resistance to 0.1  0 and connected in parallel  to the power ampl i-
fier (see Figure 5).

The size of the gradient (if one exists) depended, in this

case, on the temperature difference betweeh the cell and shield.

To determine if such a gradient was present, a thermistor on each
cell half (not necessarily calibrated with respect to each other)

was monitored while the temperature difference between the cell

and shield was varied (see Figure 8).  A gradient was present if

the temperature difference between the two cell halves changed as

the temperature between the cell and shield changed.  The value at

which the external trimpot should be set to eliminate a gradient

was  determined  from two values  of the temperature d ifference
between the cell and shield as the trimpot setting was varied.

These
 

data  form two straight  lines when plotted  with the tempera-

ture difference across the ce11 versus the fraction of power
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dissipated in the trimpot; the intersection gives the value of the

trimpot needed to offset the heat conduction through the nylon

supports (see Figure 9).  This value allowed the two cell halves

to be the same temperature independent of the cell and shield

temperatures and without having previously calibrated the two

thermistors.

Two additional points should be made concerning this adjust-

ment.  First, an additional thermistor mounted on the same side as

the nylon posts indicated a slight gradient around the cell half

(the two thermistors were at the perimeter and about 90' apart)

as seen in the dashed line in Figure 8.  This gradient was presum-

ably caused by the screws on the clamps holding the braid in place

radiating slightly more than the uniform body and was kept to

i 0.1 m K by keeping the shield temperature close to the cell

temperature (T  -T= 0.06'C).  Secondly, the gradients measured
C    S

were quite small and could be buried in the uncertainty of measure-

ment if one tried to, for instance, calibrate two thermistors and

then separate them.  The method described here is certainly the

easiest and appears to give very satisfactory results.

With the prism cell, no adjustments were possible but a

measurement indicated that the temperature gradient was less than

2.5 mK (the measurement accuracy) across the cell.  Temperature

gradients could be visually observed as convection currents in the

cell. This was not observed in th,Is bulk coexistence curve

experiment.

.
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CHAPTER 111

EXPERIMENTAL PROCEDURE AND RESULTS

Introduction and Lorentz-Lorenz Relation

In doing refractive index measurements to probe critical

phenomena, It is often necessary to relate the refractive index

to density or volume fraction.  Hartley (1974) has shown that

the standard and well-accepted Lorentz-Lorenz formula

(n2 - 1)/fn2 + 2) = 4wap/3, where a is the polarizability and p

is the mass density, approximately holds for the background

(non-fluctuating) refractive index of a binary fluid mixture.

However, in applying this to critical phenomena, some care must be

taken that the anomaly In the refractive index and in the density

(or volume) near the critical point does not invalidate the

relation.  Although the refractive index anomaly has already been

measured for this system by Hartley (1974), he did not use the

critical concentration and may have underestimated the size of the

anomaly.  For this reason and to try to obtain more precise data,

the refractive index anomaly measurements on this system were

repeated.  The density anomaly is predicted to be very small

(Fannin and Knobler, 1974) and is difficult to measure.   We

looked for such an effect when the coexistence curve was measured

even though preliminary results by Scheibner (1976) showed the

effdct to be too small to be seen, even with the differential
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refractometer.  The anomalous refractive index measurements are

discussed  by Hartley and shown to be less than 10-4.  This is

..                                               less   than the error of measu rement   in the other experiments   so   that

the Lorentz-Lorenz relation can be applied to these (coexistence

curve) measurements.  The Lorentz-Lorenz relation will now be

applied to the bulk coexistence curve data.

Bulk Coexistence Curve

It was shown by Hartley(1974)   that the refractive index .anomal y

is less than 1 x 10-4 when T - Tc > 1 mK so that the measurements

of the bulk refractive index can be used to probe the critical

fluid's behavior.  By using refractive index techniques to measure

the coexistence curve, in the manner described below, both the

shape of the "rectilinear" diameter (mean density) and the coexist-

ence curve (giving the critical exponent, B) can be determined.

These data  will be compa red with other measurements determining   B

in pure fluids and binary mixtures to see if these systems have

the predicted value of B given by the three-dimensional Ising

model.

As was alluded to in Appendix A, the nonlinear operators in

Renormalization Group Theory will cause corrections to simple

scaling (Wegner, 1972).  In particular, this corrections-to-

scaling approach has recently been found to be important for

coexistence curves, particularly in pure fluids (Hocken and

Moldover, 1976; Greer, 1976).  The correction would be expected to

be more easily seen for the coexistence curve since data can be
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taken for very large values of |T - Tcl.  The coexistence curve
-

data presented below will be analyzed with such corrections in

mind. ..

The coexlstence curve of methanol-cyclohexane was first

studied by Lecat  (1909)  and  then by Jones and Arnstell   (1930)  and

Eckfeldt and Lucasse (1943), where the effect of impurities was

considered.  The only recent studies have been done by Gilmer,

et.al.,  (1965) and Campbell and Kartzmark  (1967),  both of whom..also

used a refractive index technique.  However, these works were not

extensive enough to even determine the critical exponent, B, much

less answer the questions posed above and so this first experiment

was undertaken.

For some time a disparity has existed between the critical

exponent describing the coexistence curve of pure fluids (Sengers,

1975; Sengers, Greer and Sengers, 1976) (B = 0.355 k 0.007) and

that for binary mixtures (Stein and Allen, 1974) (B = 0.34 i 0.01)

with the series expansion result for the Ising (lattice-gas) model

(Domb, 1974 (B = 0.313).  However, recent measurements on pure

fluids (Estler, Hocken, Chariton and Wilcox, 1975; Hocken and

Moldover, 1976) and binary mixtures (Balzarini, 1974; Greer, 1976)

show that by taking gravity effects (Fannin and Knobler, 1974) and

a correct form for extended scaling (Greer, 1976) into account,

these values of B for pure fluids (B·= 0.320 + 0.329) and binary

mixtures (B = 0.322 + 0.328) agree with recent Renormalization

Group calculations (Kadanoff, et.al., 1976; Baker, et.al., 1976)

for the Ising model (B = 0.322 f 0.002) and are much closer to the

old series expansion value.  We point out that for our system,
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which has been shown to be virtually free of gravity effects, a

value of B = 0.326 f 0.003 is determined with only simple scaling

needed to fit the data (E < 0.06).

To take the data on the coexistence we measured the refrac-

tive index of the fluids by capturing them in a fluid prism as

described earlier.  The relation between the refractive index, n,

and the measured angles Is the elementary one for a simple prism:

n = sin [(0 - 40 + 0)/21/ sin (8/2) where e is the prism angle,

00 is the undeviated angle and 4 Is the minimum deviated angle (see

Figure 2).  Because of the large windows on the cell, the usual

methods of determining the prism angle were not possible.  However,

by placing the cell on the stage and fixing the telescope while

allowing the table to rotate, the prism angle could be determined

by autocollimation.  A He-Ne laser beam struck the prism perpendic-

ularly at the axis and with a separation of about eighteen feet

between them.  The beam could be reflected from the first (which

overlapped with the second) surface back into the laser aperture

with an error of i 3 mm (which corresponds to an error of 10 sec

of arc).   By repeating these measurements for each window, the

prism angle was determined to be 60.156° i 0.005.  The remaining

measurements were taken with the table fixed and the telescope

free to rotate.  With the prism cell removed, the undeviated angle

was measured and checked occasionally.  (Although this quantity

should remain constant, there was sufficient play in the telescope

assembly to rotate the telescope if the eyepiece was handled when

moved to the next position.)  A vintage J. W. Queen & Co. spectro-

                 meter with an eleven and a half inch base was used, allowing a



-

39

resolution of 10 secs of arc. The cell was placed on the table at

a position which compensated for the shift of the light due to the

half-inch thick window.  (A shift does not alter the measured

deviated angle since the glass surfaces are flat and parallel.)

We measured the minimum deviation angle, 0, for each line several

times with a precision of less than 10 secs of arc.  We estimate

the error in refractive index due to the uncertainties in measure-

ment (errors In prlsm, undeviated and deviated angles as well as

non-parallel window surfacesq to be + 0.00015.

Because of the recent observations (Lorentzen and Hansen,

1966; Bagoi, et.al., 1970; Greer, et.al., 1975; Giglio and

Vendramini, 1975) of density gradients due to gravity in binary

fluids, we started our experiment by looking for such gravity

effects, although they are predicted to be very small for our

system due to the   closely matched densities (see previous

comments In Experimental Precautions).  After our system had been

at room temperature for some time with the slit source images

(which I call "lines") straight, we raised the temperature a few

degrees and noticed some curving of the lines near the meniscus for

many hours after the new temperature had been reached.  We

discovered that this was due to concentration gradients in the cell

caused by the slow diffusion across the meniscus and not a density

gradient others (Lorentzen and Hansen, 1966) have reported using a

similar technique.  The meniscus was also observed to persist well

above the critical temperature.  We found no curving of the lines

even very close to the critical temperature (T - Tc < 5 mK) if the

cell was shaken after temperature equilibrium had been reached.
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Shaking the cell did not affect the deviated angle of the line

within our precision of measurement.  We have also looked for the

characteristic sigmold shape of the gravity effects using a

"Fabry-Perot" interferometer in the wedge mode, but have been

unable to detect any above or below the critical point even after

waiting several days.  However, small temperature gradients may have

inhiblted the formation of this effect.

Data Collection

The minimum deviated angle was measured several times, after

i
which the temperature was changed and allowed to come to equillb-

rium before shaking the cell.  The time span between shaking and

taking the hext set of measurements depended on how far from the

critical temperature the cell was, but typically the wait was from

four to twelve hours.  The critical point was defined as the

temperature at which the meniscus would just appear or disappear

after shaking the cell and allowing it to stand for several hours.

Although strong opalescence was encountered near the critical point,

we were still able to take reproducible measurements within 5 mK

of the critical temperature, which was determined to f 2.5 mK.

After about twenty-five points were taken, some pump oil condensed            I

on the cell and shield.  To remove this contaminant, the sealed

cell was placed in a vapor degreaser for a few seconds; however,

this resulted In a shift of 110 mK in the readings of the control-

ling thermistor relative to the critical point.  An auxiliary

thermistor imbedded deep in the cell body showed no change in the

critical temperature, so the fluids were not contaminated.  Since.
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all of the data agree whether taken before or after this occurrence

or while raising or lowering the temperature, we make no distinc-

tion in presenting it in Table 11 in order of increasing Tc - T.

Although visual observation could determine the critical

temperature to =t 2.5 mK, a more precise value could be determined

by using the method of Kouvel and Fisher (1964).  By assuming

scaling and constructing the numerical derivative from the data

taken below Tc, the quantity T* = [(d(an)/dT)/an]-1 = (T  - T)/8C

can be constructed allowing a determination of Tc (independent of

B) to + 0.5 mK and to a value consistent with that observed

visually (see  Figure 10).  We will show in the next section that

the scaling assumption used above is not violated over the tempera-

ture range measured with this mixture.

Data Analysis

From the refractive index data taken above and below Tc, we

can determine the shape of the coexistence curve, the critical

concentration and the rectillnear diameter.  The average of the

refractive indices above and below the meniscus is a measure of

the mean density of the fluid and is called the "rectilinear"

diameter of the coexistence curve (see Figure 11).  A straight line

drawn through the data points above T  intersects the "rectilinear"

diameter at a point on the coexistence curve indicating that we are

very close to the critical concentration.  (The diameter of the

coexistence curve fit very well to a straight line of the form

(nU + nL)/2 = A + B'(Tc - T)  with A = 1.37956 and

B' = 2.96 x 10-4/K.  See Figures 11 and 12a.)  The rectilinear
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TABLE 11

BULK COEXISTENCE CURVE DATA

(Tc - T)K          nu nL nU - nL (nU + nL)/2

- 3.436 1.37765
- 2.403 1.37825
- 1.363 1.37888
- 0.661 1.37926
- 0.241 1.37951
0.0026 · 1.38155 1.3785 0.00305 .1.38002
0.0074 1·38222 1.3774 0.00482 1.37981
0.0094 1.38218 1.37743 0.00475 1.3798
0.012 1.38233 1.37692 0.00541 1.37962
0.0124 1.38239 1.37677 0.00562 1.37958
0.0294 1.38292 1.3765 0.00642 1.37971
0.036 1.38307 1.37562 0.00745 1.37934
0.0484 1.38354 1.37575 0.00779 1.37964
0.0654 1.38406 1.37536 0.0087 1.37971
0.084 1.38429 1.3744 0.00989 1.37934
0.0864 1.38473 1.37484 0.00989 1.37978
0.094 1.38442 1.37411 O.01031 1.37926
0.1104 1.38494 1.37431 0.01063 1.37962
O.171 1.38557 1.37327 0.0123 1.37942
0.182 1.38612 1.37316 0.01296 1.37964
0.209 1.38644 1.37317 0.01327 1.3798
0.305 1.38676 1.37194 0.01482 1.37935
0.406 1.38745 1.37124 0.01621 1.37934
0.502 1.38804 1.37067 0.01737 1.37935
0.579 1.38849 1.37022 0.01827 1.37935
O.67 1.38912 1.37001 0.01911 1.37956
0.694 1.3891 1.36962 0.01948 1.37936
0.797 1.3895 1.36923 0.02027 1.37936
0.916 1.39025 1.36887 0.02138 1.37956
0.923 1.39013 1.36877 0.02136 1.37945
1.167 1.39106 1.36802 0.02304 1.37954
1.799 '

1.39348 1.36693 0.02655 1.3802
2.749 1.3959 1.36506 0.03084 .1.38048
3.792 1.39762 1.36369 0.03393 1.38065
4.686 1.39849 1.36263 0.03586 1.38056
5.59 1.40014 1.36171 0.03843 1.38092
6.573 1.40169 1.36086 0.04083 1.38127

.
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TABLE 11 (continued)

'                                                                       BULK  COEX I STENCE CURVE   DATA                           ,

(Tc - T)K         nu           nL         nu - nL (nU + nL)/2

. 7.645 1.40297 1.36029 0.04268 1.38163
8.656 1.40434 1.35987 0.04447 1.3821

9.451 1.40534 1.35959 0.04575 1.38246
10.329 1.40606 1.35909 0.04697 1.38257
11.312 1.40729 1.35891 0.04838 1.3831

12.423 1.40818 1.35835 0.04983 1.38326
13·265 1.40904 1.35806 0.05098 1.38355
14.126 1.40955 1.35771 0.05184 1.38363
15·183 1.4107 1.35752 0.05318 1.38411
16.212 1.41167 1.35721 0.05446 1.38444
17·207 1.41249 1.35704 0.05545 1.38476
18.205 1.4132 1.35675 0.05645 1.38497

.

.
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Figure 10:  T* versus T for one set of bulk coexistence curve data.
The scatter in the data results from taking the numerical deriva-
tive of the An versus T data.
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Figure 11:  The coexistence curve of methanol-cyclohexane as given
in Table ll.  The data above the critical temperature
(TG * 45.474°C) has a slope of 5.82 x 10-4/'C and an intercept with
the coexistence curve of 1.37966.  The rectilinear diameter
(average of the refractive index above and below the meniscus) is
the solid squares and line bisecting the coexistence curve.  The

line is a least squares fit to (ni + no)/2 =A+ B'(Tc -T) with

A = 1.37956 and B' - 2.96 x 10-4/'C an3 where nl and n2 are the
refractive indices above and below the meniscus respectively.
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Figure 12:  The residuals from the fit to (a) the rectilinear
diameter in Figure 11 and (b) our data in Figure 13.  The residualis the amount the fitted line differs from the data point divided
by the data point's error.
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i diameter extrapolated to the critical temperature gives the criti-

cal refractive index to be 1.37956 k 0.00005.  From the data above
; the critical point the refractive index at the critical point is

extrapolated to be 1.37966.  So, by using the Lorentz-Lorenz

relation, the critical concentration was determined from these two

values of n at Tc to be 29.04 + 0.1% by weight methanol.

It has been predicted (Hemmer and Stell, 1970 and 1972; Widom

and Rowlinson, 1970; M.S. Green, et.al., 1971; Mermin and Rehr,

1971; Mermin, 197la and 1971b) and observed (Weiner, et.al., 1974;

Gopal, et.al., 1974) that the "rectilinear" diameter (mean density)
has some sort of an anomaly near the critical point.  However, this

was not seen in this experiment (see Figures 11 and 12a).

The index of refraction of a mixture of liquids can be related

to the volume fraction by the Lorentz-Lorenz relation

V(n2 - 1)/(n2 + 2) = 4/3A aiMi

where n is the Index of refraction of the mixture, V is the total

·thvolume, 31 is the polarizability per unit mass of the ,   component

and Mi is its mass.  If we consider two components, then we have

(T > Tc)

(n2 - 1)/(n2 + 2) = (n2 - 1)/(n2 + 2)$1 + (n2 - 1)/(n2 + 2)(1 - *1)1 1 2 2

where nl (*2) are the refractive index component 1 (2) and 01 (02)

is its volume fraction Vl/V (V2/V).  If one is below Tc then there
is a volume fraction of component 1 in the upper (*U) and lower (0 )
phases giving refractive indices nu, nL.  If we define

Al = (n  - 1)/(n  + 2), i = 1, 2, and solve the previous equation
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1

for 80  = *U - * , we obtain1 1

801 = K'(n  -n) = K'An, whereU     L
1

j

K' E 3(nu + nL)/[(Al - A2)(nU + 2)(n  + 2)].

The constant K' is only slightly temperature dependent.  For our

fluids a value Tc -T= 18.205 K gives K' = 10.59 where Tc -T=O

gives K' = 10.48 (an error in K' of 1% over 18 K).  The error in

an ranges from 0.4% to 10% over the same 18 K temperature range.

The small systematic error in'assuming K' to be a constant is thus

small compared to our experimental uncertainty, and An is propor-

tional to 801.  (The 1% error in assuming K' a constant would

increase the value of B by 1% if the data were plotted using 801.

i choose to present the An data keeping in mind this error.)

To analyze the coexistence curve and determine what the

critical exponent B should be, a "properly" weighted least squares

fit to our data, shown in Figure 13, is required. By "properly"

weighted we mean that one needs (Sengers, 1975) to propagate the

temperature error into the refractive index error bars and take

into account that one is fitting a log-log scale and weight the

points in the fit accordingly.  We used the method described by

Bevington (1969) to obtain the fit (shown in Figure 13) to the

function An - BEB with B = 0.326 =t 0.003 and B = 0.143 + 0.008

(the errors are three standard deviations).  It is important to

use a properly weighted fit to the data and also to have a

sufficient number of data points over the temperature region

studied so one can say with reasonable accuracy what is the best



Figure 13:  The difference in refractive index (proportional to the
volume fraction) above and below the meniscus as a function of
T  - T.  The open circles are the data taken in this experiment,
tRe triangles (8) are from Hartley (1974) and the inverted triangles

(v) are from Gilmer, et.al., (1965).  The line is a fit to our data
using simple scaling, An = B€B, with B = 0.326 + 0.003 and
B = 0.143 + 0.008 (uncertainties are three standard deviations).
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fit.  Others (Gilmer, et.al., 1965; Hartley, 1974) who have

measured the coexistence curve for methanol-cyclohexane using

refractive index techniques have taken less data over a smaller

tamperature region and have found higher values for the critical

exponent B (0.347 + 0.008 and 0.35 + 0.02).  Their data are

consistent with ours as shown in Figure 13.

Comments and. Conclusions

It has been shown that refractive index techniques are a

valuable probe into critical behavior and that the difference in

refractive index between two phases is effectively the same as

the difference in volume fraction--the preferred order parameter

in coexistence curve measurements in binary liquid mixtures.

There has been recent evidence that corrections to scaling as

predicted by Wegner (1972) are necessary for pure fluids and binary

mixtures to explain the coexistence curve data.  As seen in Figure

12b, a simple scaling relation works well for this data with

correction terms not significantly improving the fit.  (Greer (1976)

states that the first correction term gives An = BEB + 81&8 + 0.50)

With this correction term the weighted non-linear fit gives

B  = 2.5 x 10-3 and a reduced chi squared of 0.76 versus 0.79
1

without a correction term (81 = 0)•  (The values of B and B are

effectively the same whether Bl = 0 or 2.5 x 10-3.))  It has been

suggested (Greer, 1976) that extended scaling is not important in

binary mixtures until E > 10-2, whereas it is necessary for pure

fluids (Estlei, et.al., 1975; Hocken and Moldover, 1976) for

E > 10-4.  Our data corroborates this view. Since gravity effects
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(Fannin and Knobler, 1974) and corrections to scaling (Greer, 1976)

both cause the residuals to the coexistence curve fits to curve in

the same direction (concave upward), care must be taken in ana-

lyzing the data to correctly explain its features.

This result for B Is in very good agreement with recent

Renormalization Group calculations (Kadanoff, et.al., 1976;
Baker, et.al., 1976) for the Ising model and with recent measure-

ments on pure fluids (Hocken and Moldover, 1976) and binary

mixtures (Balzarini, 1974; Greer, 1976).  These results provide

evidence that pure fluids and binary mixtures belong to the same

universality class as the Ising (lattice-gas) model.  This is

particularly important since it allows the results of binary

mixtures, where gravity effects are generally smaller and correc-

tions to scaling do not appear until very far from the transition,

to be compared to Ising model predictions.

Thick Film Measurements

Now that the coexistence curve and the critical exponent B

have been determined for the bulk system, showing Ising behavior,

a thick film cah be formed and analyzed to determine any deviations

from bulk effects.  In particular, a critical temperature dependence

on spacing and any change in the critical exponents can be looked

for.  In order to investigate this behavior, the critical concen-

tration of fluids was sealed in the variable spacing Fabry-Perot

discussed earlier.  This instrument has large, optically flat,

high-reflectance mirrors between which a well defined film can be

                 captured.  Although the mirrors were originally flat to 1/100 on
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the coated side, the process of sealing them caused some distortion

so they were flat to approximately X/20 in this thick film experi-

ment.  The method of determining the spacing between the flats will

be discussed and then the critical temperature and coexistence

curve measurements will be presented.

Spacing Determination

Since high reflectance coatings were used on our mirrors, the

resulting interference fringes were very sharp (Francon, 1966) and

well-defined (the ratio of fringe width to fringe separation was

about 1/100).  As discussed earlier, with the mirrors tilted

slightly, three or four vertical fringes were observed from the

opposite side of the flats by a measuring telescope.  The stage

on which the telescope travels has a resolution of + 2 Um out of

a total travel of 10 am.  In this work, only about 2 cm of the

excursion was needed to do the precise measurements on the fringes.

To determine the separation between the flats from measuring

the fringes, one considers the mirrors at a slight wedge angle as

shown in Figure 14 with fringes forming for the two wavelengths

Al and X2 when the separations are Ll' L2' and L3 between the

mirrors.  The fringes observed are shown in Figure 15 with sepa-

th
ration y between Al and 12 and x between the m   and m+1 order of

Al.  The fringes form when twice the optical path length is equal

to an integral humber of wavelengths:

Ll = mlxl/(2nl)

L  = m 12/(2n2)22
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Figure 14:  Side view of two flat mirrors tilted at an angle 0 to
the incident beam from the left.  Constructive interference causes
lines to be seen a·distance y and x from the first line.
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L3 = (ml + 1)11/(2nl).

Since the dispersion and temperature coefficient in the index of

refraction is small (between 6328 A and 5890 A the dispersion is

0.1% and the temperature coefficient is # 0.05%/K) we will let

nl =n2=n= 1.38. The wedge angle,  0, is given by

tan 0 = (L2
- Ll)/y = (LS - Ll)/x

so that

(m212 - mlll)/ny = Al/nx

Ih general, m2 = ml - m (m = 0 corresponds to being closer

than the first coincidence) so that

Ll = [m212/Al + Y/X]A /[2n(12 - Al)] (Al < 12)

is the spacing between the flats (see Figure 14).  The spacing can

be adjusted so that the fringes associated with the two wavelenges

are at the same place (cal.led coincidence with y/x=0) so that

Lc = mA 112/[2n(12 - Al)] (at coincidence).

Some of the sources used in this experiment and the corresponding

values of L  are listed in Table Ill.
C

The initial spacing between the flats can be best determined

by using two sets of doublets (such as the Hg and Na yellow

doublets) and using the two resulting equations te determine the

two unknowns, Ll and m.  A problem arises because it is difficult

                 to distinguish Al and 12 for some sources such as the sodium yellow  ·
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TABLE 111

LIGHT SOURCES USED IN THE THICK FILM CELL SPACING DETERMINATIONS
AND THE CORRESPONDING FLAT SEPARATION

FOR THE FIRST COINCIDENCE

Source
Al (A) X2 (A) LC (Um) Filter used

H and He-Ne 6328 6566 6.3 6200 A  higH-pass

5770 5887        11
Na and Hg 5780 A  band-pass

5790 5893        12

Hg 5770 5790        60        5780 A  band-pass

Na 5887 5893 209 5890 A  band-pass
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doublet (although for Hg, 1(A2) - 7 1(11)); however, by knowing

which way the wedge is oriented one can determine the initial

spacing.  After the initial spacing is determined all one does is

count coincidences.  (It is not quite this easy since when

switching sources from say Hg yellow to H and He-Ne, one needs to

know whether the ninth or tenth H and He-Ne coincidence (it is the

ninth) corresponds to what one sees as the first Hg yellow coinci-

dence--the only way to be sure is to squeeze down until the flats

distort, which we did several times to check that a coincidence

count was not lost in the opening and closing of the cell on the

fluid.)

For all of the thick film data presented here, only the H and

He-Ne lines were used to determine the spacing (although the others

were used as an occasional check).  In order to assure a uniform

sample at the critical composition, the cell mirrors would be

separated to 126 um (twentieth coincidence) at a temperature about

0.7 K above the bulk critical temperature and the cell shaken

approximately 800 times until the fringes were straight and uniform.

The spacing would then be decreased until the desired separation

was obtained.  This sample could be used for smaller spacings but

not for larger ones since the bulk fluid, which separates into two

phases below Tc and mixes very slowly when above Tc, would be drawn

between the flats.   If the temperature was taken far below Tc for

very small spacings, the separation would have decreased suffi-

clently (due to the cell's thermal expansion, 4 0.65 um/K) to allow

bulk fluid of mostly one phase (due to the mirrors' position in the

cell) to enter the sample when heated back toward Tc.  For most
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spacings at which data was taken, a new sample was prepared (the

exceptiohs were 12 +3+1 u m and 6+ 2.3 um).

Since the effects in thick films were of interest, care was

taken to avoid intrusion of the bulk fluids which surrounded the

sample. Since most of the measurements were taken at or below the

bulk critical temperature, the fluid surrounding the mirrors was

mostly one phase (cyclohexane-rich) and any intrusion of this

phase into the thick film sample was quite noticeable (see

Figure 16).  The time before such mixing occurred depended on the

spacing; for the films of 30 jim and 60 um it took about two days

for noticeable mixing; for films of 6 um and 12 um it took about

one week and for films 3 um and smaller no mixing was ever observed

(about two weeks).  Once mixing had set in, no further measurements

were attempted.

Determining the Critical Temperature

For each sample, with its known spacing, the critical tempera-

ture was measured.  After the uniform sample had been captured by

the method described in the previous sections, the temperature was

lowered·to.about 20 mK above the expected value of Tc.  The

temperature was then lowered in steps until Tc was found.  Then,

an iteration procedure was used to determine the critical tempera-

tures  to  +.  1  mK. The temperature steps  were  one  and  two  mK,   taki ng

about a half hour for the system to come to equilibrium and with a

three to five hour wait between steps.

Because of the high reflectance coatings on the mirrors, the

resulting fringes were very sharp.  The critical temperature for

.I
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Figure 16:  Photograph of the bulk fluid intruding into the thick
film.
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spacings larger than 12 um was when this fine fringe would become

broad and granular. The "granular" appearance of the fringes was

attributed to the many drops which form between the flats on phase

separation; however, the spacing was close enough (12 jim to 60 um)

that the extinction of the light did not occur.  Otherwise, this

transition was similar to that observed previously (Hartley, et.al.„

1974) In a bulk (600 im) system.  However, when the spacing was

6 jim and smaller, the fringes split abruptly at the temperature

that was associated with the critical temperature and did not

display the graininess characteristic of larger spacings.  Although

surprised at first, we realized that the drops that form on phase

separation were now large enough to span the space between the

flats and so regions of each phase appeared as viewed through the

telescope.  Since each phase has a different refractive index, the

differing optical path length causes the fringe to form In a

different location and so "splitting" of the line is seen (see

Figure 17).  The regions of each phase (which I call "drops") were

clearly seen when shlning an unfiltered Hg lamp through the fluid

since the broad blue-green bands that resulted allowed sufficient

contrast to distinguish the drops.  A picture of these drops is

shown in  Figure 18.

It is interesting to inspect the fringe splitting associated

with these drops at this fairly large (6 jim) spacing (see Figure              I

19).  In those regions where drops have formed, the lines have also

split, but where no drops appear, the fringe does not split but

becomes granular as in the lower left of Figure 18.  It is felt

that if the drops that form can span the space between the flats,
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Figure 17:  Photograph of the splitting of the fringe below T .
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of 44.585 C using a He-Ne laser light source.
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as depicted in Figure 2Oa, then the fringes split.  However, if the

drops do not span the flats, as depicted in Figure 2Ob, then the

fr Inges become "granular" for the reasons already discussed in

connection with the larger spacings' critical temperature.

Since the fringe splitting is due to the difference in refrac-

tive index between the two phases, then by measuring the splitting

we can determine the coexistence curve for these thick films.  For

the small (1 wn and 2 Vm) spacings, the critical temperature could

not be determined directly because of the resolution of the Fabry-

Perot and the shape of the coexistence curve.  A discussion of

these points is done in the next section.  The results of the

critical temperature determination are presented in Table IV.  As

a point of reference, the critical temperature as determined from

a·bulk (800 jim) sample was found to be 0.5 + 1.0 mK below the 60 vm

critical temperature; however, if the cell was shaken so that the

fluid In the surrounding reservoir could be examined, then its

critical temperature was found to be 6 t 1.0 mK below the critical

temperature for 60 um.  At this large spacing the fringes became

very broad and granular at the critical point.  This shift in TC

from a bulk (800 um) to the reservoir fluids (42000 Um) is most

probably due to a temperature gradient in the cell but could be

due in part to a finite size effect.  However, over the region of

the flats, the temperature gradient, as determined by observing the

appearance of the fringes at the critical temperature, was less

than 2 mK.
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.
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TABLE IV

CRITICAL TEMPERATURE, Tc(L), AS A FUNCTION OF SPACING, L

L (um) TC(L) (OC)

(uncalibrated)

2000 (shaken) 45·517  f 0.001
(bulk)

800 (unshaken) 45·5225 + 0.001

60                        45.523  + 0.001

32                        45.525  + 0.001

13                        45.528  + 0.0007

6                        45.5305 + 0.0015

3                        45.533  + 0.001

0
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Coexistence Curve for Various Spacings

When phase separation occurred, causing distinct regions

between the flats at close spacing, the fringes split.  A measure-

ment of this splitting allowed the difference in refractive index

between the two regions (phases) to be calculated.  To see how this

relation Is obtained, we again consider Figures 14 and 15, where

now, instead of a fringe being separated a distance, y, from the

first due to the wavelength being different, the optical path

length Is different due to a different n.  (lt is assumed here that

the drops span the space between the flats.)  Then

Ll = mlxl/(2nl)

L2 = mlxl/(2n2)

L3 = (ml + 1)Al/(2nl)

so that

y/x - 2Llnl(nl - n2)/(Aln2)0

Since n  - n  =n then12

y/x = 2Llan/Al'

so that the fringe shift, y, over the fringe spacing, x, is equal

to twice the ratio of the flat spacing, L, to vacuum wavelength,

Al, times the difference in refractive Index between the two

phases.  As can be seen, the values of An accessible to experiment

depend on the spacing, L, and the resolution of the instrument,

(y/x).   The smallest ratio of fringe spl itting to spacing  (y/x)
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observable is related to the mirror's reflectivity, r2 = 0.99, and

the number of full widths, r, needed between the fringes before

the split is visible.  If we assume that one r between the fringes
..R.

allows a visible separation, then

(Y/X) = 2(1 - r2)/r = 0.013.min

The coexistence curve data was determined from measurements

of the fringe splitting and spacing using a traveling telescope,

to a precision of + 5 um.  Although the instrument is capable of

+ 1 jim resolution, It was difficult to measure tile broken fringes i t

due to their curvature and fringe "pieces" not being adjacent

(especially for thicker flat spacings).  Due to this difficulty,

photographs were taken of the fringe splittings to allow separate

measurements with a microscope's retlcle.  Since the photograph

could be oriented so the fringes were parallel to the reticle, an

average fringe splitting could be determined over the length of

the fringes.  Also, for the very fine splittings (at the small

spacings) only the photographs were usable in measuring the fringe

split.  The precision of measurement using the photographs was the

same as with measurements from the traveling telescope.

The measurements were made as the temperature was raised and

lowered; the data in Table V show the reproducibility of the

measurements. After a temperature change was made and the system

had attained thermal equilibrium, a measurement was taken.

Occasionally, the measurement would be retaken after an additional

period of time had elapsed; the two measurements agreed within

                 experimental error.  These coexistence curve data are presented  in
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TABLE V

THICK FILM COEXISTENCE CURVE DATA*

L (pm) T (oC) An            Measurement

(f 0.1 Um) (t 0.0001) error on An

1.0 45.406 + 0.0041 + 0.0008
0.9 45·310 + 0.0060 + 0.0010
0.86 45·207 + 0.0078 + 0.0012

0.7 43·617 + 0.0086 + 0.0020
- 0.0010

0.9 .+ 0.2
43·617 + 0,0131

+ 0.0024
- 0.1 - 0.0016

\
1.2  + 0.2

43·617 + 0.0157
+ 0.0022

- 0.1 - 0.0014

1.6 44.585 + 0.0141 + 0.0003
2.1 45.301 + 0.0095 + 0.0002
2.2 45.372 + 0.0080 f 0.0002
2.2 45.4234 + 0.0063 + 0.0004
2.2 45.4533 + 0.0054 +   0.0002,,
2.3 45.4841 + 0.0048 + 0.0002
2.3 45·4848 + 0.0042 + 0.0002
2.3 45.505 + 0.0030 + 0.0002
2.3 45.5155 + 0.0028 + 0.0003
2.3 45.5151 + 0.0028 t 0.0002
2.3 45.5255 + 0.0021 + 0.0004

3.0 45.527 + 0.0029 f 0.0003
3.0 45.523 + 0.0036 + 0.0002
3.0 45·505 + 0.0058 i 0.0002
3.0 45·469 + 0.0078 + 0.0002
3.0 45.418 + 0.0105 + 0.0002

5.9 45.501 + 0.0059 i 0.0002
5.9 45.465 + 0.0076 f 0.0002
5.9 45.521 + 0.0036 + 0.0002
5.9 45.526 + 0.0023 + 0.0002

*Coexistence curve measurements on thick films of spacing, L.

T is the temperature with + (+) indicating the temperature was
raised (lowered) in reaching T, and An is the difference in

refractive index between the two phases.
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Table V.  The errors on An quoted in Table V include the error in

measuring the fringe splitting and fringe spacing and the uncer-

tainty in the flat separation, but not the uncertainty in the
#.4;

.-

temperature or In Tc(L) - T.  The data in Table V will be discussed

after some theory is presented.

0
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CHAPTER IV

SCALING THEORY IN THICK FILMS

Scaling theory has been introduced at the beginning of this

work and was shown to give relations among the critical exponents

which have been experimentally verified.  Appendix A gives a

"justification" of Scaling as a result of the system's invariance

to a change of length (referred to as "Renormalization Group").

Group theory can give relations among quantities by investigating

the geometry; however, actual numbers are calculable only when a

specific model is used.  Since a model describing the interaction

of the walls with the fluid near a critical point has yet to be

devised, only the geometry ("Scaling Theory") will be presented

here, following the treatment given by Fisher (1971, 1973).

However, the data will allow future models to be tested.

We will consider a system which is effectively infinite in

two of its dimensions but of a finite thickness, L = ZEO, in a

third dimension, where E  is the mean lattice or molecular size and

f is a dimensionless integer.  If L - 60, then the system can be

thought  of as "two-dimensional" (neglecting wall forces) . However,

if L >> E , then one may expect a "crossover" from the three-

dimensional to one characteristic of "two-dimensions" when L = ES,

the correlation length of the system, so that the system is

               constrained
from having fluctuations larger than L in one dimension.
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The correlation length, E, is assumed to uniquely describe the size

of the system's fluctuations and be given by a simple power law

divergence E = EO['Tc - T /Tc]-v·  The constant 60 is E evaluated

at T = OK and is identified with the mean molecular size and

therefore is independent of temperature and spacing.  For our binary

fluid mixture, EO = 2.5 A.

The crossover from three- to two-dimensional behavior can be

characterized by a crossover temperature, Tx, even though such a

crossover may not take place abruptly.  By our scaling assumption,

such a crossover should occur when L = 6, which means

(1)                [Tc(L) - T ]/T (m) E t* = L-8X C

where e = 1/v if crossover occurs when L = E.  Notice that we have

allowed the critical temperature to depend on the spacing, L.

To see how the critical temperature might depend on spacing,

we will consider a heuristic argument.  Let £1 be the size of a

lattice in each of the two large dimensions in units of the lattice

spacing, Eo.  The bulk energy, E-, can be
written as  E- = 2 ZEI,

where E  is the average energy per molecule in the bulk and the

surface energy, E s' as  Es = (1  + 2111)E , where Eos is the average

energy per molecule at the surface.  The transition temperature

goes as the energy--

bulk:
kTc (-)    -   EOO   =   12 ZE1    0

consttained:  kTs x Es + Em = (12..+ 2111)E  + 1 £Eb

so that
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1 - Ts/Tc(-) = -(1  + 2111)E /(1 £E-)      > A/£,  A E -E /EOU  2<<f
1

i

or

Irc(-) - T (1)]/T (-) = A/1,
(TC(£) E Ts)·CC

"

Model calculations can be carried out for different boundary

conditions--for the Ising model the result of numerical. approxi-

mations (Fisher, 1971) is

(2)             tt E [Tc(m) - T (1)]/Tc(u) = b/ZAC

with the sign and magnitude of b depending strongly on the boundary

conditions and with X=l for systems with a constraint (such as

constant density or composition) and A = 1/v otherwise (e.g.,

constant pressure or chemical potential) (Fisher,- 1973). These "
I '

calculations are Ising-like in the sense that the nearest-neighbor

interactions go over to nearest-"block" interactions.  For a long

range interaction (that is, ihfinite in extent), the critical region

is independent of dimensionality (1 + 0 (Fisher, 1971)), and the

critical exponents (or the fixed point discussed in Appendix A) are

constant.

Let us now consider a particular divergence as the spacing is

varied.  In order to make a comparison with the experiment, the

shape of the coexistence curve, governed by the critical exponent

B, will be analyzed:

1 " ./

(3)                   8$ = AtB  as T + TcH-

               where t = [T (e) - T]/Tc (°°) and 8$ is the change in volume fractionC

Il
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which was shown in the preceeding chapter to be proportional to

the difference in refractive index between the two phases.  For

small Z this becomes

(4)            801 = A(1)£8  as T + Tc(L)   (t fixed)

where B= Bd-1 (Bd =B) and t= [Tc(Z) - T]/Tc( ) =t- tt.
We make the scaling hypothesis that the only relevant variable

affecting the crossover from (3) to (4) is L/4 4 Etv. A convenient
.

form to postulate (Fisher, 1971) is

(5)           att = tw X(£86) E tw X(x),  (e = 1/v),

where the exponent w is determined by matching (5) to (3) as z + m.

(X(x) is the "shape function for the finite-£ critical behavior"

(Fisher, 1971).)   If we let x + - in  (5)  then bulk behavior must

result so that

X(x) =IX:XB

or

Xcolwle BrB =.AtB

(6)                          A=X-

w = -08.

We can also determine Al by examining (5) in the limit of

small x where

X(x) = Xoxi
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801(T) = 1-BeX,£08£8 = A(£) 68

0(8-B)
(7)                  ACE) = Xof

This  A(£) will smoothly  go  over  to  A  If  XQ  =  A  and   flows smoothl y

to B (as it does since it can be determined by an E=4- d(x)

expans ior* as x + m. The prediction of A(£) can be verified
independently of B and  . The relation of (5) represents a "law of

corresponding states" such that if in[<688$] is plotted versus

ln[Le t] for different values of L, a universal curve given by

X(x) should result.

Scaling Theory can also provide some insight into the effects

of the surfaces on the bulk behavior. Take the limit £ >> l at

fixed t;.the coexistence curve should be described (Fisher, 1971)

by

(8)                80£ = 80- + 2£-18$s
+0.0 (2 + 00)

where the second term on the right is the surface correction to the

bulk behavior.  The first term is just the bulk critical phenomena

which is being corrected by a term which will likely diverge at

its own critical point, Tc(L) 0 T (-).  In fact, we have already
C

argued that close to Tc(L), or for small 2, that the coexistence

cutve should behave as in (4).  Thus (8) should hold only away from

the critical temperature shift or crossover.  The scaling function

defined by (5) can be generalized to

X(x) e X-xB + Y-x$

where the first term is necessary to give the bulk behavior and the
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second term is a postulated correction where $ will be determined.

Thus

8+2 = X-It - tt]8 + lw+0+Y-[t - tt10 + . . .

which, when expanded and using (2) for tt, gives (With w = -08)

(9)        80  = AtB - ABbl-Ata-1 + Y=10(0-B)tt + . . .£

There are three cahes to be considered when match ihg this equation

to equation (8):  A= 1/v>1,  A=1  and  A<1.

If A = 1/v > 1., then the third term will dominate the second

in equation (9) so that for an k dependence as in (8), 0 must be

given by

0=B-v,  (A = 1/v >1)

S

so that  805 - AstB  with

(10) As = Y-/2  and  Bs =B-v   (A = 1/v > 1).

Thus the value of Bs is predicted from the (three dimensional)

values of B·and v.  Unfortunately, neither the sign nor magnitude

of As is intimated.

The more applicable case for this work is when X = 1, due to

the constraint of constant density (composition) for the various

film thicknesses (Fisher, 1971, 1974).  Now the correction terms

in (9) become

805 = -ABbtB-1/2 + Y-ta-v/2

but since v < 1, (at least in three dimensions) then the first
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term dominates (since the exponent of t is less in the first than

second term) allowing the important predictions

(11) As = -*Bb  and B s=B-1 (A = 1).

Thus, the first correction to the bulk behavior is completely

predicted since A and B are known from bulk measurements and b is

determined from the critical temperature dependence on spacing.

Finally, if A <.1, then equation (8), which allowed a surface

correction to the bulk behavior, breaks down.  As Fisher (1971)

has pointed out, 1+0 corresponds to long range ordering in the

fluids ih which case a separation of surface properties from bulk

properties would not occur.



#                                          CHAPTER V

COMPARISON OF THEORY AND EXPERIMENT

Testing the Theory

We are now in a position to analyze our data and compare it

with the theory just presented.  The critical temperature shift

from the bulk (unshaken, 800 um) value is plotted in Figure 21 as

a function of spacing, L, from the data in Table IV.  This plot

shows that a logarithmic dependence of Te(L) - T ("-") on L fits

the data very well.  The best fit to the data with an L-1 dependence

-    is also shown in Figure 21 not to be inconsistent with the data but

not to fit it as well.  The explanation of the apparent logarithmic

dependence will be postponed until the coexistence curve data are

analyzed and a connection between the two sets is made.

It was shown at the end of Chapter 111 that the difference in

refractive index, An, between the two phases can be determined by

measuring the ratio of the fringe shift, y, to the fringe spacing,

x, and the spacing, L:

An =  (Al/2L) (y/x).

Further it was shown that the resolution of the optics provided a

minimum measurable value of y/x = 0.013.  This results i-n a minimum

value of An that depends on the spacing, L.  This inaccessible

region is the lower left triangle in Figure 22 with the solid line
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being the theoretical lower limit of experimentally observable

data. Also plotted in' Figure 22 are the data that were taken in

the thick film coexistence curve experiment and listed in Table V.

It can be noted that data was taken as close to the resolving limit

of the "tabry-Perot" interferometer as possible, (particularly at

small spacings).  Thus, the critical temperature, as determined by

the "drops" forming or the lines spI itting, could not be observed

for small flat separations (< 3 lim)1  It is only after the tempera-

ture is well below critical that the splitting can be resolved at             I

these small flat spacings.

Critical temperatures for these spacings can be estimated

either by extrapolating the Tc(L) data in Figure 21, or by

constraining the data points from Table V (and shown in Figure 23)

to fit a straight line.  Wa find the values of Tc(L) obtained by

extrapolating the logarithmic curve in Figure 21 to be the values

obtained by fitting the coexistence curve data shown in Figure 23

withih experimental error.

The coexistence curve data in Figure 23 are presented using

the values of Tc(L) from the logarithmic curve in Figure 21.  These

data were reproducible whether raising or lowering the temperature

as shown in Figure 23.  The results of the bulk coexistence curve

are used to suggest the coexistence curve for thick films is again

described by An = A(L)68 where A is perhaps a different value of B

and i E [Tc(L) - T]/Tc(-) (see equation (4) in Chapter IV).  This

form uses the critical temperature as a function of the spacing,

L, determined (independently for 3 um and 6 Wm) from Figure 21.

Thus, a plot of log An versus log (Te(L) - T) for the various flat
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spacings should give a set of straight lines.  A log-log plot of'-
I. the data points does indeed appear to give a set of reasonably

straight lines, for each flat spacing (see Figure 23).  Since the
.;.

4

most extehsive of the coexistence curve data were obtained for a

flat spacing of 2.3 um (other than the large amount of data for the

bulk fluid), a fit was made to determine the slope of a straight

line through these data points.  This slope is the critical

exponent Band a weighted least squares fit gave B = 0.49 (with a

standard deviation of f 0.02) with a reduced chi square of 1.1.

Straight lines with slope 0.5 were also drawn through the data

points for the spacings 6 um, 3 um and 1 um.  These straight lines

also suggest that B = 0.5 for these spacings as well.  It is

interesting to note that coexistence curve data Hartley (1974) took

at a flat spacing of 125 lim fall on the bulk curve.  The bulk curve

is the fitted line to the coexistence curve data taken with the

prism cell as discussed previously.

An apparent "crossover" from bulk to "two-dimensional"

behavior occurs in the 3 um and 6 tim points and is also suggested

in the 2.3 um and 1.0 um points.  The strong dependence of the

coexistence curve (or fringe splitting) on L is vividly shown in

Figure 24, where L varies from # 0.7 um at the left fringe to

4 1.2 um at the right one, but where the fringe splittings differ
by more than a factor of two.  Since the critical temperature seems

to vary so slowly with spacing (see Figure 21), then these three

fringes give values of An at effectively the same value of

TC(L) - T, (= 2 K, and are the three points at the right in Figure

23) and show the large dependence on spacing of the amplitude, A(L).
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Figure 24:  Photograph of fringe splittings almost 2'C below the
critical temperature using a He-Ne laser light source.  Flat
separation at the center fringes is 0.9 f 0.1 um and the fringes
on the left (right) are at a separation X/2n smaller (larger) than
at the center.  The fringe splitting is barely detectable at the
left but is quite large at the right--much more so than the factor
of two difference in spacing would allow.  These three points are
the highest Tc(L) - T points shown in Figure 23.
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Our value for B = 1/2 is the mean field (infinite range)

value and agrees with the experimental results of Hawkins and

Benedek (1974) and Kim and Cannell (1976) on monomolecular films

on water, which should simulate a two-dimensional liquid-gas

transition in the absence of wall forces.  The mean field value

for B is consistent with the apparent logarithmic dependence of

the critical temperature on spacing (Figure 21).  The scaling

arguments presented in the preceeding chapter predict that Tc(L)

should behave as L-A, with X=1 when the fluid composition is

donstant for various spacings (Fisher, 1971).  However, Fisher

(1971) has stated that for long range interactions, A approaches

zero, which results in either no dependence of Tc(L) upon spacing

or the logarithmic dependence which seems to (best) fit our data.

3          Although the logarithmic curve fits the data in Figure 21 from

L = l to 60 um very well, we cannot extrapolate this dependence to

larger spacings.  Whether the logarithmic dependence is followed

at larger spacings is a crucial question since the geometry of even

"bulk" cells would then be very important. Our result indicates

that for every decade change in spacing the critical temperature

should change by.4 7.7 mK--not a huge effect but certainly one that

could be seen if looked for.  The 800 jim (bulk, unshaken) critical

temperature (See Table IV) indicates that the logarithmic depend-

ence does not contiue to this large a spacing.  However, the

discrepancy noted earlier between the shaken and unshaken critical

temperatures at 800 um:flat spacing could be explained as a finite

size effect.
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The amplitude dependence of Figure 23 is very interesting

since it allows the determination of 0 and the general scaling

fundtion X(x) (see (7) and (5) in Chapter IV).  If, for all the

spacings shown in Figure 23, the value of B = 0.5 is used (which

fits the data quite well) then the amplitude dependence on spacing

can be plotted as in Figure 25.  The Scaling Theory presented in

Chapter IV predicted 6quation (7)) that A(L) x Lz where

z = (8 - 8)0 = (8 - B)/v.  Using our measured value of 8 - 0.5 and

B = 0.326.and the three dimensional value for v (0.64)  then the
Scaling Theory prediction for z is 0.27.  However, our inferred

amplitude dependenc4 shown in Figure 25, gives z in the range 0.6

to 0.81  The Scaling Theory prediction of z = 0.27 is shown in

Figure 25 to be inconsistent with the amplitude dependence

observed in this experiment.  The fitted value of z = 0.7 + 0.1

gives 8=4+ 0.5 or, using the Scaling Theory assumption that

"crossover" occurs when & 0 L, v # 1/4.
This discrepancy between the Scaling Theory prediction and

this observation should not be too distressing.  As Bergman, Imry

and Deutscher (1973) point out, there are several assumptions that

go into the predicted value of z, but the significant point is that

there is a simple power law dependence of the amplitude on spacing.

In fact, one can "patch up" the Scaling Theory given in Chapter IV

by changing  the scal ing assumption that crossover occurs when  L # E

to L2 0 E. This gives a value of z=4 i f v= 0.5 (the mean field
                      value).  Alternatively, one can merely not make the assumption that

e = 1/v so that the experiment determines the value of e.  (It

should be noted that 8 is the power law dependence of the crossover



Figure 25:  Amplitude dependence on spacing.  The dashed line is
the predicted slope using Scaling Theory.
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temperature, tx, given in equation (1) of Chapter IV.  One can

either calculate the crossover temperatures from extrapolating

the lines in Figure 23 or determine the amplitudes (as has been

done above).  The amplitudes were chosen since they more accurately

reflect the data in Figure 23 and are less dependent on the behavior

near the actual crossover.  However, in the formalism developed in

Chapter IV, the two approaches are equivalent.)

The approach that is taken here is that e is experimentally

determined and not necessarily given by.0 = 1/v.  This raises the

question as to whether the Scaling theory predicts any special

relationship between the data once the values of B, B and e are

determined.  The answer is yes, indeed.  The scaling function X(x)

defined in Chapter IV:

(5)                       80£ = 1-0BX(106)

allows one to predict a universal curve given by X(x) for all thick

08                                    eB
film data.  Since Z  80£ = X(106) then a log-log plot of L  60£

versus Let should give a universal curve for all the data (Fisher,

1973)·  Such a curve is plotted in Figure 26 from the data in

Table V using B = 0.326 and 8 = 4.  The points fall on a curve that

is fairly linear and independent of spacing. The circles 1 ie „off"

this curve presumably for the same reason they overlap the 5.9 um

data points in Figure 23.

If the correction due to the surfaces on the bulk behavior is

attempted (using the Scaling Theory developed in the previous

chapter) then one needs to assume that the critical temperature

dependence on spacing can be described by L-1.  As described in the
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Figure 26:  Scaling function X(x) is sketched (using 8=4 and B= 0:326) as a universal curve for all the
data in Table V.  The symbols are the same as those used in Figure 23.  The error bars are larger at
larger spacings, L, due to the uncertainty of 0 which is the exponent of L. The slope of the line is 0.45   w
(L has units of um).
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previous Scaling Theory section, the surface correction is com-

pletely predicted (see equation (11)) knowing A (0.143) and

B (0.326) from the bulk coexistence curve measurements and b (0.50)
i

from the L-1 fit shown in Figure 21.  If this correction term is

used with the bulk term then the predicted effect is opposite to

that observed experimentally as shown in the dot-dashed line in

Figure 27.  Should it be argued that the critical temperature

dependence on spacing in Figure 21 could be L-A with A = 1/v 2 1

then the correction term is no longer completely specified but, in

particular, may have the opposite sign.  If the Y- in equation (10)

is taken to be -ABb and 1 2 1 then the Ziet of dashed lines in

Figure 27 are pred icted.  As can be seen, the qualitative behavior

of the surface correction term does not approximate the behavior of

the data.  (Note that the data are plotted versus (Tc(°°) - T)
instead of (T (L) - T) as was done in Figure 23.)  This result is

C

expected from the apparent long range behavior inferred previously,

since the surfaces could not act independently of the bulk (A < 1).

Since the long range behavior has been effectively shown, then

a comment is necessary as to whether the long range behavior can be

used to explain the low value for v (4 1/4) that the data and
Scaling Theory seemed to indicate.  Fisher, Ma and Nickel (1972)

have used Renormal izat ion Group expansions to invest Igate  long

range interactions (as with dipole-dipole interactions) decaying in

-(d+a)d dimensions as 0(r) 4 r .  This leads to classical values of

the critical exponents B = (d/a - 1)/2 and v = 1/a, if a > d/2.

Using our experimental value of B - 1/2 and if d 42 then a # 1 and

50 v '6 1 which is not consistent with the Scaling Theory analysis
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of the amplitude dependence discussed previously where v 0 1/4.

                  In this case, Fisher's result duplicates the Ising model calcula-

tion for the critical exponents B and v in two dimensions, and does

not seem to clarify the value of v the data suggests.  It is

interesting to note, however, that the dimensionality, d*, at which

classical values of the exponents are observed is d* = 2 when long

range ordering predominates.  (As discussed in Appendix A, d* = 4

for short range Interactions, e.g., the Ising model.)

Conclusions and Recommendations

This thesis has presented the first experimental data of the

behavior of a critical system as It approaches two dimensionality.

Evidence in the form of the bulk coexistence curve data and the

resulting value of the critical exponent B has been presented to

confirm predictions that a binary fluid mixture near its critical

point is an Ising class system.  This same binary fluid mixture

was then constrained between two optically flat pieces of quartz so

that the critical temperature and coexistence curve could be

determined as the spacing between the flats was varied from 1 um to

60 Kim.  The critical temperature was directly measured for spacings

between 3 and 60 um.  It was found that if the walls were close

enough together (5 6 um) then the drops that formed on phase

separation would span the intervening space.  The coexistence

curves of these thick films was then determined from measurements

of  the d ifference   in  refractive index between  the two phases  that

appeared as drops.
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The theory concerning the behavior of the coexistence curve as

a function of spacing was presented and then compared to our data.

The theory accommodated the data very well but did not give the

critical exponents that are expected from the exact two-dimensional

Ising model, but rather gave a "mean field" value of B = 0.5 that

agreed with experimental results on a system which might be expected

: to simulate a two-dimensional lattice-gas (Ising model) transition.

The critical exponent v seemed to have a value near 1/4 (assuming

the system "crosses  over"  when  L  4  E),  wh ich  has  not  been pred icted

for any model thus far.

The thick film data on the critical temperature dependence on

spacing was shown to agree with the (largely) independent measure-

ments of the coexistence curve dependence.  These measurements

suggested that long-range interactions were present in the fluids

near the critical point.  The crossover from normal three-dimen-

sional behavior to the long range behavior was accommodated nicely

by the existing Scaling Theory.

Clearly, more data is needed to determine whether the long

range ordering observed here Is typical of binary fluid  (lattice-

gas) transitions near two dimensionality (particularly with regard

to having a polar component such as methanol, that might cause long

range ordering for the binary mixture).  The reason the critical

exponent values were quite distinct from the predictions may lie in

the Interaction of the walls with the fluid.  Since only one

component (methanol) of the binary mixture is very polar, it is not

clear to what extent a dipole-dipole type interaction with the walls

will affect the critical behavior of the mixture.  It would be

'»
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interesting to see if the amplitude dependence for other binary

mixtures on spacing is as strong as indicated here.

I would suggest that similar measurements be attempted on a

non-polar binary mixture to determine the importance of the

wall-fluid forces.  Additional experiments on different polar and

nonpolar fluid mixtures would give additional details of this

unknown interaction.  Also, more extensive measurements on the

critical temperature dependence on spacing should be conducted to

determine if the dependence is logarlthmic out to large spacings

("bulk" systems) or if it falls off faster (or "oscillates").

The implications of this research are far reaching and

important for all aspects of critical phenomena.  The effects on a

critical system due to its finite size had not been measured in        '

Ising class systems prior to this work.  Should the logarithmic

dependence of the critical temperature on film thickness be found

to htld for "bulk" (4 1 cm) systems as it did for our films

(3 <L<6 0 um) then no system would be free of size effects.  Our

work suggests that the critical temperature decreases 4 8 mK for

every decade increase in spacing.  It is also important to realize

that both this work and that on monomolecular films (Hawkins and

Benedek, 1974; Kim and Cannell, 1976), both of which are expected

to be lattice-gas transitions, gave a "mean field" value for the

critical exponent, B.  This may indicate that real critical systems

have mean field exponents at and near two dimensions.
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APPENDIX A

RENORMALIZATION GROUP

Some basic ideas in the Renormalization Group approach will be

discussed as well as some of the methods used to calculate the

critical exponents for the various models.  Universality and

Scaling will be shown to follow from the assumptions made in the

Renormalization Group Theory.  For the most part, the discussion

that follows will parallel several review articles (Ma, 1973;

Fisher, 1974; and Wilson and Kogut, 1974) in an effort to highlight

the important results.

Imagine a d-dimensional crystal lattice of volume Ld where L

is measured in units of lattice spacing.  At each lattice site, x,

a spin of n components is situated 0(x) E [ti(x), . . .0 (x)].
n

(The number of spin components, n, determines the model and the

"universality class".)  If 01< is the Fourier component of 0(x) then

0i(x) = L-d/2 I0. eikxk Ik

where the sum over wave vectors, k, is over the Ld points in the

first Brillouln zone. If H is the Hamiltonian--a function of all
m

the random variables 0  --then the probability distribution for
1k

these random variables is Pm 0 e-Hm/T.  It is assumed that Hm is
./

invariant under rotation in the n-dimensional spin vector space and

                 under translation in x space.  Since critical phenomena are

-
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governed by long range interactions, which are equivalent to long

wavelength fluctuations (tk with small k)b then an effective

Hamiltonian can be constructed that has integrated out the irrele-

vant random variables (the 0 with large k):ik

(Al) H   Jd*   e-Hm/T E e-H(A)/T
i,k>A    ik

where A is the momentum cutoff and is much smaller than the inverse

lattice spacing but still much larger than the small values of k

that are of interest near the critical point.  The multiple integral

is taken over all 0  '   i = 1,2 ., n and all k > A.  H(A)ik -'

provides information down to a minimum distance 1/A but averages

out any finer details at smaller distances.

Any probability distribution, P, of these random variables,

0ik, can be specified by a set of parameters which defines a point

in a parameter space (e.g., P is represented by a point w in this

-Hspace).    Then  for  P  x  e      we  can  write

(A2) H =     L-(m-1)d I
I ,  *ilkl'    m=1

kl'...k2m-1 il'""2m

. 0 U   + const.
|2mk2m  m

where k   = - (k  +k + . . . +k ) and2m 12 2m-1

U2m = Uam(kl' ka' 0, . k2m-1' |l' 12' . . . 12m).  We assume that

the system can be represented by short range interactions so that

U   can be expanded in powers of k.  We now have a huge parameter2m

space with points u giving a probability distribution:

0 E (u2' u4' u6,0 0 0) where each u   can be a function of the2m

                 parameters.  As will be shown shortly, only part of the parameter
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space Is useful.  The cutoff A is fixed for all probability

distributions or else the coupling parameters are meaningless.

Also, L, which is the "block size" and tells us how many random

variables there are, is not included as a parameter since we will

evantually let L + m.

Now we can consider the transformation, Rs, which takes a

probablilty distribution, P, to another ones P'' which we will

represent by the associated points in the parameter space:

B, = R U.  Rs is defined implicitly by
S

(A3) P'xe  =l  H  Id$;k'e ].
-H' p -H

i,             *kvas*sk
A/s<k'<A

where sk is the product s times k.  We can extract u' from H' by

writing H' in the form of equation (A2) and identifying the

coefficients of products of random variables.  There are three

steps in performing (A3); first, integrate out those tk' with k'

between A/s and A; then, relabel the random variables by enlarging

the wave vectors by a factor s; and, finally, multiply all random

variables by a constant factor, as.  This reduces the number of

parameters by a factor s-d due to the multiple integral in (A3), or

-d          •equivalently, the density of points in k space is smaller by s

by the transformation k + sk so that the volume of the system

described by P' is L'd = s-dLd.  We can now write H' from (A3) in

the form (A2) and using L' and so identify li'.  The set of these

transformations, Rs, where 1 5 5 5 -, is called th3 "renormal ization

g rou p".
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We have yet to consider the role of a which came in the lastS,

substitution  in (A3).   If two successive trarisformations Rs and Rs,1--
are performed, then by (A3) they have the same result as a single

transformation Rss' ptovided

(A4)
asas' = ass'.

Since we wish our set of transformations, Rs, to form a group we

require

RsRa'U = Rss'U

which in turn requires (A4).  Equation (A4) requires that

a  = sY
S

where y Is a constant. ,

We can now define a point in the paraaeter space #* such that

(A5) Rs"* = V*

(w* is called a fixed point and can be found by solving this

equation.)  This e4uation is not expected to have a solution unless

the 9 in as = sY is properly chosen, particularly as s + co.  We

would then expect a very delicate balance of powers of s in order

that (A5) was satisfied.  Equation (A5) can be thought of as an

eigenvalue problem with eigenvectors 31* and eigenvalues y.  (Of

course, Rs is not linear so we cannot say whether we shall encounter

a discrete or continuous (or any at all) set of solutions.)  We

will asiume a solution and define a new exponent, n, by y=1- 0/2

so that as = sl-n/2:   If we define the cortelation function
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, ,

G(k,v) by  G(k,w) E <1*lk'2>p =a  <|*isk'2>p, = a G(sk,Rsy), with

k < A/s, then

(A6) G(k,W) = 52-nG(sk,Rsu), k < A/s.

We have a way now to get from one point in the parameter space

to another--by using Rs.  By letting u(T) represent our system at

temperature T, then, with T + Tc, we will show that Rsw(T) + )1* for

large s.  In particular, if T is close to Tc then we can say u is

close to 0* so that we can expand

U - u* = 60 + 0(62U)

and keep only the first term, i.e., linearize Rs.  We can now use

our knowledge of linear vector spaces and operators to guide us in

obtaining solutions.  With U = W* + 6#  then

u, = Rsy = Rs(P* + 60) = 0* + Rsau E #* + 6u'

(A7) -  60. = R5611.

Rs is a linear operator if 0(6251) terms are dropped in calculating

6p, from (A/).  We can now use matrix techniques to solve (A7) for

the eigenvectors and eigenvalues.  If the eigenvalues are Xj(s) and

the corresponding eigenvectors are ej, j = 1, 2, . . ., =, then we

can label the eigenvalues in decreasing order:  Al 2 X2 2 X3 0 ..

Since R R ,e. = R  ,e. thenS S J SS  J

X (s)X (s') = A (ss')

*       Aj (s)    =   syj

1                   where yj are constants and y  k y  k y  . . .  since 5 2 1.1 2 3
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We can then write 6u as a linear combination of the eigenvectors:

1.-                                         a.. i '.1.1
(A8) .       611.   =   I   tjsyjej.

J

Consider a model (e.g., Gaussian model) where there is only

one yl > 0 with all other yj's negative.  (Most models have two

y's > 0 and we will discuss this case later.)  Then, if s is so

large that the first term dominates, 6,1, = Rsau = tlsylel + 0(sy2).

(We assume that tlsyl Is still small enough that the linear

approximation for Rs is valid.)  If tl = 0 then

611' = Rsau + 0

so that p converges to the fixed point &1* by Rs.  Wilson calls tl a

"relevant" variable (since yl > 0) and all other tj's "irrelevant".
We can think of the linear vector space close to 11* being

spanned by the eigenvectors ej.  The subspace with tl - 0 is the

"critical surface" and points thereon will be pushed toward u* by Rs
Points not on the critical surface will be pushed toward el but

away from W* as shown by (A8).

To obtain the relation between the formalism we have so far and

critical phenomena, we will consider Rs on the probability distri-

button defined in (Al), which describes fluctuations in a physical

system at a definite temperature, T.  We can represent this proba-

bility distribution by a point v(T) in the parameter space.  This

point corresponds to a set of coupling parameters that depend

'

smoothly on temperature.  Since we have integrated out tk' for
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k' > A in Hm then we also expect H(A) to depend smoothly on

temperature.  By varying T, we trace out a smooth curve in the

parameter space that intersects the "critical surface" at Tc.  If
we are at a temperature, T, very close to Tc and if 11(T) is close

to #* then the distance tl of 0(T) from the critical surface can be

expanded in T - Tc:

tl(T) = A(T - Tc) + 8(T - Tc)2 + . . . .

Writing

51 (T) = W* + 6 ji (T)

or

Rsay(T) = ACT - Tc)sl vel + 0(SY2)

where 91 = 1/v gives (A6) to be

G(k,#(T)) = 52-n[G(sk,p* + ACT -Tc)sl/vel + 0(SY2))].

If we let T=T c (tl =0) and 1/k   s= A/2k (s is arbitrary) we get

G(k,*(Tc)) a k-2+n(A/2)2-n[G(A/2,0*) + 0((A/2k)Y2)]

which as k+0 goes as

G(k,#(Tc)) = k-2+n, k small,

which defines the critical exponent n.  This results since

Rsy(Tc) + #* for large s x 1/k, e.g.,

1/Y2k/A << 2 ,  Y  < 0.2
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The case T-T c>O,k=0 can be considered by letting

s = tIV L [ACT - Tc)]-v so that

6(0,0(T)) = t (2-n)v[G(0,0* + el) * 0(t-vy2)].

When (T - Tc) (or tl) is small, theh

G(0,0(T)) x (T - Tc)-Y

where

(A9) y=v(2-n)

which gives a "scaling law" relating the critical exponents y, v
.

and n.

Remember that E = 4,[ T - Tc'/Tc]-v = Itl|-V is the correlation
length--the average spatial extent of the fluctuations in the
critical system.  This means that

Rsay(T) = (s/E)1/vel + 9(SY2)

so that Rs decreases the correlation length by a factor s.  This

gives the scaling result discussed in the block construction done

earlier, provided that Rs, in its linear approximation near v*, is

dominated by one eigenvalue for large s.

The linear assumption that resulted in simple scaling does not

have to be utilized.  Wegner (1972) has investigated nonlinear

terms and the resulting corrections to simple scaling.  Such

corrections have recently been found necessary to explain coexist-

ence curve measurements in pure fluids (Estler, et.al., 1975;

'                 Hocken and Moldover, 1976).  These corrections have not been found
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necessary for  binary mixtures unless very large temperature

excursions (E > 10-2) are made (Greer, 1976).

We have thus provided a framework that gives us the univer-
t

sality of the critical exponents and the scaling relations between

them.  It turns out that only two critical exponents are independent

(we have chosen v and n above) and all other exponents can be

written in terms of these two.  For all of the resulting critical

exponent relations, none have been shown, either by experiment or

by direct calculation, to be invalid.

Applications

The question arises as to whether the renormalization group

can provide any new predictions (scaling and universality were

known long before Wilson's work).  In fact, there -are several, but

we will only mention a few.  If we use a particular model (i.e., a

value for n and d) then the critical exponents can be calculated by

expansions using Feynman graphs.  In 6rder to know what to expand

about, we need to explain what some of the values of n and d give

for the critical exponents.  As it turns out, there are two fixed

points in the parameter space--one belonging to the Gaussian model

(mean field exponents) and the other to the model (value of n) used.

Which fixed point Is stable (and only one has been observed to be)

depends on the dimensionality d of the system.  For short range

interactions (Ising, Heisenberg, etc., models) the magic dimension-

ality is d* = 4.  For d 2 4, the Gaussian fixed point is stable and

mean field values are always found for the critical exponents.

.                    Below d = 4, the model's fixed point is stable, so an expansion can
7-
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be done in < =4-d dimensions to determine the critical

exponents at smaller dimensions (for £ small).  Of course, e=1

and 2 (d = 3 and 2) are interesting cases and it is truly amazing

that the exponents are as close to experimental and exact and

series expansion results as they are  (see Figure 28).

Another exactly soluble model (the others were the Gaussian

and two-dimensional Ising) is the spherical model (n = -) which

gives another starting point for expansions (in 1/n).  The d,n

plane can then be "filled in" for a particular critical exponent

using the approximations from Renormalization Group Theory, as

shown in Figure 29.  These expansions (and Figure 29) are given in

Fisherts review article (Fisher, 1974) and allow one to  think of

a continuous spin and dimensionality space--a very useful concept

when one wishes to experimentally approach a two-dimensional

system.

As the dimensionality (for a fixed n) varies (d < 4) then the

fixed point moves to a new location in the parameter space.  If

one then imagines going from, say, three to two dimensions, then

there is a crossover from the bulk (three-dimensional) to the two-

dimensional system as the fixed point moves to its new location.

It is very difficult  to determine the dimensionality directly so

an al ternative approach  to the "crossover" from three-  to  two-

dimensions is presented in Chapter 4.
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EXPANSION PARAMETER G =4-d)
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Figure 28: Predictions of the e=4-d expansions for the suscep-
tibility critical exponent y, for different spin dimensionality:
n = 1, Ising-like (fluids, alloys, etc.); n - 3, Heisenberg-like

(isotropic ferromagnets, etc.); n = -, which corresponds to
spherical model.  Dashed lines are exact second-order predictions.
For d=2 the exact spin-1/2 Ising-model result y= 1.75 is
indicated by cross; for d=3 the best numerical estimates for
Ising and Heisenberg models are shown by an 1; the solid line for
n= -i s the exact spherical-model result.  Note that for E<0
or d>4 the "classical" or mean field value y=l applies for all
n.  (From Lubkin (1972).)
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Figure 29: Diagram of the (d,n) plane showing contours of constant
B as calculated from £ and 1/n expansions.  There is a region where
B > 1/2, and a non-physical region of negative B.  (From Fisher
(1974).)
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