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ABSTRACT

The theoretical background for the finite element computer program,
NACHOS, is presented in detail. The NACHOS code is designed for the
two-dimensional analysis of viscous incompressible fluid flows, in-
cluding the effects of heat transfer. A general description of the
fluid/thermal boundary value problems treated by the program is
described. The finite element method and the associated numerical
methods used in the NACHOS ccde are also presented. Instructions for

use of the program are documented in SAND77-1334.
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INTRODUCTION

This document describes the theoretical and numerical background for th:
finite element computer code called NACHOS. The NACHOS program is designed
for the analysis of two-dimensional, viscous, incémpressible fluid flow prob!«
including the effects of heat transfer. The code has been designed with the
dual purpose of being an easily modified research tool for finite element
methods in fluid dyramics and as a user-oriented analysis package for typica:
engineering problems.

The present document presents a description of the theoretical fluid
mechanics background for the code as well as a discussion of the most import:r
numerical procedures utilized by NACHOS. This volume is intended to serve a:
background dozument for the NACHOS user's manual,l SAND77-1334, "NACHOS -- A
Finite Element Computer Prcgram for Incompressible I'low Problems, Part II -
User's Manual." Potential users of NACHOS are encouraged to become familiar
with the present report before attempting to uses the program.

During the development of the present report, it has been assumed that
the reader has a background in the areas of fluid mechanics and heat transfe -
A basic knowledge of numerical methods is also essential for the proper unde --
standing and use of the computer code. Though it has not been assumed that
the reader has a background in finite element methods, a general acquaintancr
with the method is highly advantageous. Since by necessity many of the topi- -
covered here are discussed only in the ccntext of the present code applicaticn,
the reader interested in general finite element methods is referred to the
standard texts by Zienkiewicz,2 Huebner,3 Gallagher4 or Oden.5

In the follewing section, the general class of flow problems analyzed b
NACHOS is discussed and the equations for the initial, boundary value problem

are presented. Section 3 presents a brief description of the finite elament



method (FEM) and the Galerkin formulation for the present class of problems.

Sections 4 and 5 discuss computational details of individual element formula-
tion and solution procedures for the matrix equations, respectively. The last
section describes some of the special procedures used in NACHOS for auxillary

calculations, e.g., stress calculations, stream function calculations, etc.

FORMULATION OF THE CONTINUUM PROBLEM

A necessary prereguisite to the development of a general purpose computer
program such as NACHOS is the careful definition of the class of problems to
which the code will be applied. 1In terms of general categorization, the
NACHOS program is designed for the analysis of non-isothermal fluid flow
problems. Included in this category are isothermal flows, forced convection,
frev convection and mixed convection heat transfer problems. Solid body heat
conduction effects are also treated in this development.

To be more specific, the following restrictions and assumptions have been
used to define the problem areas of interest.

1} The geometry of the fluid/solid regiorn is limited to two dimensions,

either planar or axially symmetric.

2} The fluid is assumed to be Newtonian and incompressible within the

Boussinesg approximation.6

3) All materials are assumed homogeneous and isotropic; ttre fluid is

assumed to be composed of a single species.

4) The fluid motion is assumed to be laminar.

5) The effects of viscous dissipation are assumed negligible.

6) Fluid flows with free surface boundaries are not considered.

To simplify the derivation of the equations in later sections, only the
case of plane two-dimensional flow will be treated in detail. Derivation of
the axisymmetric form of the equations follows in a straightforward manner,
With the assumptions noted above, the appropriate mathermatical description of

the fluid motion is given by the Navier-Stokes equations,

(8,
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The condition cf fluid incompressibility is enforced through the equation,

The transport of thermal energy in the fluid is described by.
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is the appropriate equation.
In Equations (1) through (3), t is the time, u; is the velo~icy compon: 2!
in the Xy coordinate direction, P is the pressure, T the temperature, p the

density, T the stress tensor, q; the heat flux vector, S the volumetric heat

ij
source, u the viscosity, Cp the heat capacity, k the thermal conductivity ar’
2 the coefficient of volume expansion. Also, Tref is a reference tempervatu:~

for which Luoyancy forces are zero, Gij is the identity tensor and 95 the
gravitational constant (assumed to act in the negative y direction).

The material properties such as p, k and B are in general functions of
two thermodynamic variables such as pressure and temperature. In the present

case, the dependence on pressure is assumed to be negligible; the material
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properties are assumed to vary with temperature only. The volumetric heat
source is assumed to varv with temperature and time.

To complete the formulation of the initial/boundary wvalue problem, suitable
boundary and initial conditions for the dependent variables are required. For
the hydrodynamic part of the problem, either the velocity components or the
total surface stress (or traction) must be specified on the boundary of the
fluid region. Tre thermal part of the vroblem requires a temperature or heat
flux condition to be specified on all parts of the boundary. Symbolically,

these conditions are expressed by,

u, = fi(s) on Fu ,
(4)
ti = Tij(s)nj(s) on Tt ,
for the fluid and,
T = g(s) on FT .
(5)

[a,(s) + a (s) + q (s)] = (k %§I>ni(5) on T,

)

for the heat transfer problem. Ir. Equations (4) and (5), s is the coordirate

along the bourdary, n, is the outward unit normal to the toundary, Ff = Tu +
is the total boundary enclosing the fluid region ﬂf, and Fe = TT + Fa is the
total boundary enclosing the energy transfer region, Qe. The flux boundary

condition for the energy equation has been expressed as the sum of three parts
where q, is the applied heat flux, d. is the heat flux due to convection and
q, is the heat flux due to radiation. Typically, the convective and radiative
heat fluxes are given by,

ie]
1]

hC(T - Tc) ’
(6a)

9, = hI(T - Tr) [



where hc and hr are convective and radiative heat transfer coefficients and
and Tr are equilibrium temperatures for which no convection or radiation occur:.

The radiation coefficient is given by,
- 2 2 .
h = eo(T% + T) (T + T, (6h

in which e is the emissivity and ¢ is the Stefan-~Boltzmann constant.
The initial conditions for the boundary value problem consist of specify-
ing the value of each dependent variable at the initial time for all points in

the appropriate region. That is,

4 = ai(kl)
at £t = 0 on Qf .
P = b(xi)
; (7)
T = c(xi) at t = 0 on Qe .

where Qf and Qe are the fluid and energy transfer regions, respectively.
Equations (1) thrcugh (3) with the boundary and initial ronditions,
Equations (4) through (7), form a complete set for the determination of the
velocity, pressure and temperature fields in a fluid and the temperature field
in a solid. 1In general, the velocity field is coupled to the temperature field
through the body force term (buoyancy) and the appearance of temperature
dependent material properties in Equation (l1). The relative importance of this
coupling is a function of the magnitude of the material properties and the
types of boundary conditions imposed on the problem. A discussion of the
specialization of the equations for cases of strong or weak coupling is includec

in the section on solution methods.



FORMULATION OF THE FINITE ELEMENT EQUATIONS

The boundary value problem outlined in the previous section is generally
not amenable to closed form solution except in cases where problem geometry
may be regularized and/or physical phenomena neglected. For the solution of
realistic problems, one is forced to consider approximate solution methods of
which the computerized numerical schemes are the most powerful., The currently
popular numerical methods are generally divided into two groups~-finite
difference methods (FDM) and finite element methods (FEM). The cbjective of
both approaches is to reduca the continuous problem (infinite number of degrees
of freedom) described by a partial differential equation to a discrete problem
(finite number of degrees of freedom) described by a system of algebraic
eqguatiens. Though the ultimate results of both procedures are very similar,
the procedures are sufficiently different in their philosophies and implemen-
tation to be considesred distinct.

It is beyond the scope of the present discussion to describe either method
in general. Rather, the approach followed *:2re will be to describe in some
detail the particular FEM used in developing the NACHOS program.

The finite element procedure begins with the division of the continuum
region of interest into a number of simply shaped regions called rfinite elements
as shown in Figure 1. Since the Eulerian description of the fluid motion was
used in the field equations (1) through (3j, these elements are assumed to he
fixed in space. wit@in each element, the dependent variahles (ui, P and T)
are interpoclated by continuous functions of compatible order, in terms of
values to be determined at a set of nodal points. For purposes of developing
thz equations for these nodal point unknowns, an individuval element may be

separated from the assembled system.
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Within each element, the velocity, pressure and temperature fields are

approximated by,

_ T .
u; (x5, £y =9 {(x;) gi(t) ’
Plxg, t) = ¥ (x,) - Be) ()
T(x., £} = O (x.) - T(t)
3 0  begd - T ’

where the u; ., E and T are vectors of element nodal point unknowns, ?, % and L
are vectors of interpolation functions and superscript T denotes a vector
transpose.

Substitution of these approximations into the field equations (1) throuch

(3} and boundary conditions, Equations (4) and (5}, yields a set of eguations

of the form,

10



Momentum: flfg, ¥, 0, u;e By T) =Ry

Incompressibility: £,{%, u;} = R, (9)

Energy: f3(9, ¢, T, u;) =Ry

where R; are the residuals {errors) resulting from the use of the approximations
in Equation (8).

The Galerkin form of the Method of Weighted‘Residuals7 seeks to reduce
these errors to zero, in a weighted sense, by making the residuals ortbroonal

to the interpolation functions (Equation (8)) over each element. These

orthogonality conditions are expressed by,
o =Ry 9D =0
<?2' %> = <R2' T> =0 (10}
<?3' Q> = <R3' 9> =0
where <; > denotes the inner product, defined by,
TR =./~ a*b av ,
v

with V being the volume of the element.
The detailed manipulations involving the integrals defined in Egquation
(10) are presented in Appendix A, The results of those computations can be

expressed by the matrix equaticns,

Momentum: MV + C(u)V + K(T)V = F(T) , (1)
and,
Energy: NT + D(wT + L(DT = 6(1) , (12)
with
T T T
e = (o m)

11



and,

ph) .

LA
The matrix equations in Equations (11) and (12) represent the discrete
analogues of the conservation egquations for an individual fluid finite elemen:.
Note that the S and E matrices represent the advection (convection) of momentum

and energy, respectively; the 5 and 2 matrices represent the diffusion of
momentum and energy (the K matrix also contains tﬁe incompressibility
constraint). The E and § matrices represent the mass and capacitance terms in
the field equations. The F and G vectors provide the forcing functions for
the system in terms of volume forces (kody force, volumetric heating) ard
surface forces (stress, heat flux).

For the case where a solid (non-flowing) material is to be represented,
then only the capacitance, diffusion and force terms of Eguation (12) need tc
be considered, i.e.,

NT + L(D)T = (D) (13)
which is the discrete analog for the transient heat conduction equation.

The above derivation has been concerned with a single finite element and
the limited portion of the continuum it represents. The discrete representa-
tion of the entire continuum region of interest is obtained through an
assemblage uf elements such that interelement continuity cf the approximate
velocity, pressure and temperature is enforced. This continuity requirement
is met through the appropriate summation of equations for nodes common to
adjacent elements (the so-called “direct stiffness" approachz). The result of
such an assembly process is a system of matrix equations of the form given by
Equations {11) through (13).

The matrix equations given in Equations (11) through (13) symbolically
describe the FEM as applied to a general convective heat transfer problem. 1In
the next section, some details of the construction of the matrix equations for
particular finite elements are given. The actual solution procedures for
Equations (11) through (13) are described in the subsequent chapter.

12



ELEMENT CONSTRUCTION

Of central importance to the development of a finite element code is the
choice of particular elements to be included in the element library. For the
NACHOS code, four basic elements were selected: 'a subparametric and isopara-
metric quadrilateral and a subparametric and isoparametric triangle. The
basic concepts of finite element construction and the isoparametric element

formulation are thoroughly described in References 2-5.

Quadrilateral Elements

The basic quadrilateral =lement used in the NACHOS code is an eight node,
twenty degree of freedom element shown in Figure 2. The velocity components
(ui) and temperature (T) are approximated using quadratic interpolation
functions; the pressure (P) and material properties (u, k and B) are approxi-~

mated by linear functions. The interpolation functions for this element are

given by the vectors,

9 =0=%/%1-8@Q-t(s-t-1
{1l + sJ(1l -t)(s -t -1)
(1L + s)(l + t)i{s +t ~1)
B(1 - 8)(L + t)(-s + £ - 1)
5 (14)
1-sHa -
(1+s)Q1Q -t
1-s550a+ 6

(1 - s)(1 - £2)

13
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FIGURE 2

v=n=5f01-s0 t)
(1 +s)(l -t)
(1 + s)}(1 + t)

(1 - s)(1 +t)

.

where the ordering of the functions corresponds to the crdering of unknowns
shown in Figure 2. The shape functions given in Equations (14) and (15) are
expressed in terms of the normalized or natural coordinates for the element,
s and t, which vary from -1 to +l1 as shown in the figure. The relationship
between the physical coordinates x, y (or r, z) and the natural coordinates
s, t is obtained from the parametric concept discussed by Ergatoudis, et al.8

That is, the coordinate transformation is given Ly,

x=0'% 5 y=nTy ;0" =¥'(s, 0, (16)

14



where N is a vector of interpolation functions over the element and x, y are
vectors of coordinates describing the geometry of the element {generally, nodal
point coordinates).

The transformation given in Equation (16) is guite gener:l and allows for
the generation of curved-sided elements. In the present case, if N = ? , Q
quadratic interpolation of the element boundary is possible and tre element is
said to be isoparametric (i1.e., the functions defining the dependent variables

are of the same order as the functions defining the element geometry). If

7

= f , a linear interpolation of the element boundary is possikle and the
element is subparametric.

The construction of the finite element matrices defined by Equations (A7)
through (Al5) in Arpendix A reguires the computation of various derivatives
and integrals of the interpolation functions given in Equations (14) and (15).
Since the basis functions are given in terms of the normalized coordinates,

s and t, and the derivatives and integrals are in terms of the physical x, vy

coordinates the following relations need to be defined,

—

30 30
= ox 3y [ § ~
ds s 9s ax
2Y a2
5t |3t 5t | &
moNTx aNTyT) £3¢ 0
3s 88 X x
= = (7] , (17)
NTx BNTyJ 20 30
~ 3t ot 3y 3y

where [J] is the Jacobian matrix. Inverting the Jacobian provides the needed

relation for the derivatives of the basis functions,

15
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Equation (18) has been written for the gquadratic basis function ¢; similar

<
i
t

expressions are available for the remaining functions defined in Equations
(14) and (15). To complete the transformation from physical coordinates (x, ¥!
to normalized coordinates, the expression for an elemental area is required.

Thus,

dx dy = det[J] ds dt , (19}

where det indicates the determinant of a matrix.

Use of the relations given in Equations (18) and (1%) allows the element
matrices defined in Appendix A to be expressed as integrals of rational
functions in the s, t ccordinate system. The evaluation of such integrals
requires a numerical guadrature procedure. In the NACHOS code, the quadri-~
lateral element is evaluated using a Gauss quadrature formula. Further deta 13

of this procedure are given in Appendix B.

Triangular Elements

A companion element to the parametric quadrilateral is the parametric
triangle. 1In the NACHOS code, the triangular element is a six node, fifteen
degree of frerdom element shown in Figure 3. As in the quadrilateral, the
velocity components and temperature are approximated quadratically over the
triangle; the pressure and material properties use linear functions. The
interpolation functions for this element are given by,

t=0= L1(2Ll ~ 1)
iL2(2L2 ~- 1)
- (20)

L3(2L3 1)
4L1L2

4L2L3

Ly

16 4Ll



Nn

2
FIGURE 3
== (L
Lz (21)
Ly

where the ordering of the functions corresponds to the ordering of the unknowns
shown in Figure 3. The basis functions in Equations (20) and (21) are expressed
in terms of the natural or area coordinates for a triangle.2 Note that the

coordinates L; are not independent but are related by,

2 ¥ L3 =1 . (22)

17



The parametric mapping concept may also be used with the triangular

element by defining,

x=Nx; y=Ny; N =N(L,}) , . (22

where N is given by Equation (20) for an isoparametric triangle and by Eqguat

(21) for a subparametric element.

Following the procedure used for the gquadrilateral element, the followin«:

relations may be defined,

3¢ 3NTx ONTyT| (29 30
aLl) 3L 3L Bx) . ax?
;= =[g R (210
32 ) 3NT§ 3§T¥ 3?5 s
BLZ BLZ 8L2 9y qy
or,
ag? £3%
I _ ‘BL
=[JJ 1 1 , (25
30 ‘ 3
3y 3L,
and,
dx ay = @et[s] ar, az, ", (24

where L3 has been expressed in terms of Ll and L2 using Equation (22).
The element matrices defined by the integral egquations in Appendix A and

the above relations require evaluation by numerical quadrature. The NACHOS

code uses a seven point quadrature formula for the triangular element. Deta

of the evaluation procedure are given in Appendix B.

Element Boundary Conditions and Source Terms

The previous sections have described the most important points in the
evaluation of the finite element coefficient matrices for a particular choice

of elements. However, in constructing the nodal point force vectors, defined

18



by Equations (All) and (Al5) a number of additional assumptions are used that

require further comment.
The force vectors for both the momentum and energy equations consist of
two parts; a part due to volumetric forces (sources) and a part due to surface

forces (fluxes). Considering first the volumetric terms, of which the heat

source is typical,

G =f 0s dv . (27)
s v~

As given previously, the elemental volume (area for two-dimensional problems)
can be expressed in terms of normalized or natural coordinates by Equations
(19) or (26). To complete the evaluation of the integral, the variation of
the source over the element in terms of the element coordinates is required.
In the present version of NACHOS source terms (i.e., S and gi) are assumed to
be uniform over each element allowing Equation (27) to be evaluated in a

straightforward manner.

The evaluation of the boundary integrals containing applied surface forces
or fluxes also requires an assumption about the variation of the integrand with

position in the element. As an example, consider the heat flux term,

G, = Ag.n. dA = jr 0q da ,
~F Jg ~*3] A ~ 0
which for a plane two-dimensional problem becomes,
Sp = jr‘ oq, dr (28)

where T is the boundary of the element and q, the heat flux ncrmal to the

boundary. The boundary segment dI' may be expressed as,

dl‘=%ds+%§ds , (29)

19



where s is the coordinate along the boundary (see Figure 4). As given

previously,

X = NTx Py = NTy

which a4llows Equation (28) to be written as,

3s

1 (BNTx BNTy

9F=f9

-1

— (30}
+ I5 )qn ds . (30

FIGURE 4

In Eguation (30) the N vector may be a set of either linear or guadratic

functions depending on the type of element. Note that all functicns in Eguation

(30) are restricted to an element boundary (edge function). That is,
0 = s{s - 1)/2 ; N = s{(s -~ 1)/2
- 2 - 2 (L - s)/2
(1 - s7) (1 -~ s%) or . (31)
1+ szl
s(s + 1})/2 s{s + 1)/2

20
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To complete the specif.cation of GF' the variation of the heat flux, qy

along the element boundary is required. From Equations (5) and (6), the heat

flux is given by,

4, = qa(s) + hc(T - Tc) + hr(f - Tr) . (32)

In the present version of NACHOS, the applied heat tlux is assumed constant
along an element boundary; the convective heat transfer coefficient and sink
temperature are also assumed constant. For the_radiative flux, the emissivity
and sink temperature are assumed constant (see ﬁquation (6b)). Since the
temperatures given in Equation (32) are temperatures on the elemenf boundary,

they are interpolated using the edge functions defined in Egquation (31). With

the above considerations, the GF vector may be expressed by,

1 (SNTX 3§T¥
§F=f19 55 ¢ as>qads

1 (ang aNTy T
+f19 9s * as>hc(9?-’rc) ds

Loy g
+f_19 5=+ —e)h (07T - T) ds . (33)

Note that some of the terms defining gF in Bquation (33) contain unknown
element temperatures. For solution purposes, these terms are moved to the
left hand side of the matrix eguation given by Egquaticn (Al7).

A computation similar to the above may be carried out for the boundary

integrals in the momentum equations. From Equation (All),

gi = -4 ?Tijnj dan

or for a plane two-dimensional problem in component form,

21



Py = /r. FASERL D /; LASPLPEC

Ez = jc ?TZInl dar + jc ?Tzznz dar . {40

yiince boundary conditions for fluid dynamics problems are rarely expresscd o
terms of applied shear stresses, NACHOS does not allow for the computation o'
the shear terms defined in Equation (34}. 1In the case of applied normal
stresses, the assumption has been made that the applied stress is constant

along the element boundary. Thus,
F =f ot n dr:f et dar f ¢ ar e,
1 ERA PR AR r s 1
F=f ¢rndF=f ot dr=f vdre, .
Fy SERAFFiP: - i . 2

with the definition for dl given in Equation (23), the above integrals may b

directly evaluated for a given element. It should be emphasized that tho af«
boundary condition is in terms of the total normal stress or traction which is
different than the pressure., From the constitutive relation, Equation (1),
du,

T < -P + 2u<§§%) i not summed.
In many practical cases, the viscous part of the stress is negligibly small
(e.g., small viscosity) and the rormal stress is essentially equal to the
pressure. When the viscous part is not egligible, the application of a stres=
boundary condition does not distinguish between contributions from the pressurc
and viscous parts but simply reflects their net effect. For purposes of input
to the NACHOS codel this boundary condition is termed a "pressure" boundary
condition to reflect its usual role in finite element models. Further comment

may be found in Reference 9.
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In addition to the "natural” boundary conditions for the equations,
"essential” boundary conditions specifying particular values for the dependent
variables must be ceonsidered. Application of a specified velocity component,
pressure or temperature results in the field equation for that particular degree
of freedom being replaced by a constraint equation enforcing the proper boundar:
value. A similar procedure is employed when a boundary condition specifies a
certain relationsiip between dependent variables as in the case of a slip
boundary for the flu:id. Details of the slip boundary condition procedure are

given in Appendix C.

SOLUTION PROCEDURES

For most finite element solutiors to field problems, the majority of the
computational effort is expended in solving the assembled matrix equations
that describe the discrete problem. This is especially true in the case of
highly nonlinear problems or problems with coupled physical phenomena. The
general convection problem treated here contains koth of these latter charac-
teristics.

Before embarking on a description of the various sclution procedures
contained in the NACHOS code, it is appropriate to describe some of the
characteristics of the eguation system under consideration. Rewritting

Eguations (11) through (13), for ccnvenience,

Momentum: MV + Clu)-v + §(T)-v = F(T) , (35)
P P =i ~ s
Energy (Fluid): NT + D{w)*T + L(T)-T = G(T) , (36)
i 2 < . el bl A b
Fnergy (Solid): NT + L(T}'T = G(T) . (37)
o~ 't 2 pA

The above equations describe a rather large class of problems and for

purposes of discussion, it is useful to identify several subclasses denoted

23



as: (a) isothermal problems, (b) weakly coupled ccnvection problems, and
(c) strongly coupled convection problems. Isothermal problems refer to th-:r
involving the solution of Equation (35) only. Weakly coupled convection proh-

lems are those in which the momentum Equation (35) is nut a function of teo

ature, e.g., {orced convection with constant material
problem allows the momentum equation to be solved independently of the enersy
equation, followed by a solution of the energy egquation with a known velocitw
fieid. The strongly coupled convection problem denotes the case in which thr
morentum eguation depends on the temperature field, e.g., free convection or
forced convection with temperature dependent material properties. With stron:
coupling, the momentum and energy equations must be solwv=d together.
The choice of & solution strategy for each of these problem categories

also requires consideration of whether the analysis is to be a steady state o~

time dependent computation. 1In the case of convection problems, the appropri -

crdering for solution nof the energy and mcmentum equations must also he r''n
uated. In the following sections, the solution algorithms currently used in

NACHOS for problems in each of the three subclasses are described in deta:1l.

Steady State Algorithms

The choice of an iterative solution method for a general purpose code is

governed by several considerations. First, the chosen algorithm should be

applicable (convergent) for a wide range of problems with a minimal sensitivi--

to variations in flow conditions and geometry. The rate of convergence of theo
method should also be reasonably high for economy. Finally, the algorithm
should be user~-oriented in the sense that input data (e.g., over-relaxation
factors) for the procedure is minimal. The algorithms currently available in

NACRHOS represent the best understood methods that meet the above criteria.

lsothermal Problems:

For problems involving a steady, isothermal flow, the appropriate matrix
equation 1is,

C(B)V + Kv = F | (38)
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The NACHOS program employs twe fixed point iteration schemes for the solution
of Equation (38)., A particularly simple scheme with a large radius of conver-
gence is the successive gubstitution or Picard iteration algorithm given by,

cwhv™l g™ o p (39)

a e~ ~

where the superscript n indicates the iteration level. The second iterative

algorithm available in NACHOS is a generalized Newton-Raphson procedure given

by,
ag|
£V = - §6| vt oy, (40)
tw vl, - v
~N
where,

FW s cy sk - F

A comparison of the Picard and Newton-Raphson procedureslo

has irdicated a
superior rate of convergence for the Newton method. However, the Newton methed
has a smaller radius of convergence {i.e., is more sensitive to the initial
solution vector, Yo) and, therefore, inclusion of both algoritiams in a parti-

cular code is warranted. Note that in NACHOS, the starting vector for both

algorithms is the solution to the creeping or Stokes flow problem,
RV = F . (41)

Weakly Coupled Convection Problems:

When the energy equations (36) and (37) are decoupled from the momentum
eguation, the NACHOS program treats the problem by first solving for the velo-
city and pressure fields using the algorithms described above for an iso*hermal
flow. With a known velocity field, the energy equations are solved directly
for the temperature field. If nonlinear boundary conditions on temperature
(e.g., radiation) are present, the energy equations are solved iteratively

using a Picard algorithm.
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Strongly Coupled Convection Problems:

For cases where the momentum equation depends on the temperature field,
Equations (35) through (37) can no longer be treated independently. A parti-
cularly simple algorithm for this type of problem is an alternating solution

scheme given by,

Bl n)Tn+l . L(Tn)Tn+l G(Tn)
£ d L] ~ hd ~
cwhHy™ + k@™ hy™ - ra™h
D(un+l)Tn+2 + E‘(,I,m-l),rn+2 - E;(,.ljxwl) 142)
etc.

The basic iteration scheme in Equation (42) can often be accelerated by suit~
able choice of an interpolation procedure for the dependent variables used ‘=
evaluate the coefficient matrices. For example, the K or L matrices can be

T*n+l

evaluated at with,

»ntl n+l

T o™+ (L -0 ca ) 143)

NACHOS uses the above interpolation procedure for the temperature field with
« = %; no interpolation on the velocity field is used. The initial solution

vectors for the iteration scheme are obtained from the linear problems,

L(Tlnt)To g(Tlnt) ,
K = rr%)
where Tlnt indicates an initial temperature estimate supplied to the program.

Transient Algorithms

The choice of a transient analysis procedure is basically governed by the

same criteria used in choosing a steady state algorithm. However, the inclusion
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of the temporal term in the matrix system, Equations (35) through (37), requires
several additional criteria to be considered. Equations (35) through (37)
represent a discrete space, continuous time approximation to a field problem.
A direct time integration procedure replaces the continuous time derivative
with an approximation for the history of the dependent variable over a small
portion of the problem time scale. The result is an incremental procedure that
advances the solution by discrete steps in time. In constructing such = pro-
cedure, gquestions of numerical stability and accﬁracy must be considered.

For use in a user-oriented code such as NACHOS, the increased stability
of an implicit integration scheme was deemed more desirable than the computa-
tional speed »f an explicit method. Furthermore, as a result of several pre-
vious investigationsll’12 an algorithm using a consistent mass and capacitance
formulation was considered most appropriate, thus specifically excluding ex-
plicit integration methods from consideration. The following sections describe

the implicit integration scheme used in NACHOS.

Isothermal Problems:

For problems involving an isothermal flow, the velocity and pressure fields

are advanced in time through use of the following algorithm,
[ 2 n a 2 n
e yrcwh s 5 = e (aa)

where,

a n+1l

v

+vhs2 o, (45)

and At is the time step and superscript n indicates the time level. The algo-
rithm in Equations (44) and (45) is related to the basic Crank-Nicholson method
though in the present case, Equation (45) is not used to extend the solutior

to the end of the time interval but serves only as a definition for Ya. The
above method has somewhat better stability properties than the standard Crank-
Nicholson approach.13 Note that quasilinearization has been used to allow the
nonlinear term, s, to be evaluated at Bn rather than the formally correct (and

second order accurate) u? value. Such an approach has proved to be valid for
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reasonable choices of the time step and most types of evolution problems. A
derivation of the algorithm given by Equation (44) is given in Appendix D.

Weakly Coupled Convection Problems:

When the energy equations are to be advanced in time but are still un-
coupled from the momentum eguation, NACHOS treats the eguations in a seguential
manner. The velocity and pressure fields are advanced in time using the pre-

viously described algorithm; the temperature field is then advanced using,

2 n+l a _ 2 n
{At§+’3(‘3 )+£‘}T =G+ . (46)
with,
2 = (™1 s My, (47)
which is the energy equation counterpart to Equations (44) and (45). If the

anergy equation is nonlinear due to the appearance of radiation type boundary
conditions, a quasilinearisation process is used, i.e., the boundary conditicn
is evaluated using the latest available temperature field.

Strongly Coupled Convection Problems:

A sequential solution procedure is again used when the momentum equation
depends on temperature. The quasilinearization procedure is invoked to allow
the solution to advance in time without iteration during a time step. Since
most strongly ccupled problems are of the free convection type, the energy

equaticn is typically advanced first using,

2 n n a _ n 2 n
{fyroeh crahjrt - o - ot te)
followed by the momentum equation,
{i M+ c®) + K(Tn+l)}Va = F(T™L) 4+ 2oy | (49)
At = » o~ &~ M ~s At u~

Nonlinear boundary conditions are again treated by quasilinearization.
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Further Remarks on Solution Algorithms

The solution algorithms for both steady and transient analyses as presented
above represent the methods currently available in the NACHOS code. It is not
to be implied that these choices represent the best or only methods for this
class of problems. Rather they do represent methdds that have prcved generally
reliable and accurate for a wide variety of problems. As solution algorithms
for nonlinear finite element analysis is a topicvof current research it is
anticipated that further refinements to the present methods and/or the inclu-

sion of other procedures will occur in future versions of NACHOS.

Matrix Solution Procedures

When the solution algorithms of the previous sections are applied at a
given iteration or time step, the general result is a matrix eguation of the

form,

Ax = b . (50)

In the problems considered here the e matrix is large (e.g., several thousand
equations), sparse, banded and generally unsymmetric.

The solution of the equation system given by Equation (50) may be approach-
ed by two basic methods--iterative and direct. Iterative methods, such as the
Gauss-Seidel procedure, have occasionally been used in a finite element context.
However, by far, the most prevalent solution methods for Equation (50} are the
direct methods such as Cholesky decomposition and Gauss elimination.

The solution procedure used in NACHOS is a form of Gauss elimination
developed by Irons,14 called the frontal solution method. The basic premise
of the frontal method is that the process of assembling the system matrix, Q'
from the individual element matrices and the reduction of é by standard Gauss
elimination may be efficiently intertwined. 1In processing each element in
sequence, the frontal procedure passes through the following basic steps:

a) assembly of element equations into glcbal matrix Q (in actuality é

is stored as part of a one-dimensional working space),
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b) check each equation in the assembled system to determine if all
contributions to that eguation have been made,

c) condense from the system (by Gauss elimination) the equations for all
degrees of freedom that have been completely assembled,

d) return to Step a) for the next element.

By combining the assembly and reduction process computer storage is effectivel
minimized since only the currently "active" (i.e.f incompletely assembled)
degrees of freedom are retained in core storage. Following reduction of the
matrix A to an upper triangular form, a back-substitution algorithm completes
the solution process for the vector X.

Since the frontal method is structured around the individual element, it
is especially adaptable for general purpose codes with an element library.
The processing of higher ordexr elements (e.g., quadratic basis functions) is
also handled efficiently by a frontal method.

The original frontal solution package published by Irons was developed
for symmetric, positive definite systems. For incorporation into the NACHOS
code, Irons' program was modified to account for nonsymmetry of the system in:o
the appearance of zero coefficients on the diagonal of the e matrix ‘the zeroes
occur due to the form of the incompressibility constraint, see Appendix A,

Equation (AS5)}. This latter modification consists of essentially re-ordering

the elimination sequence of some of the pressure degrees of freedom.
PRE- AND POST~-PROCESSING OPERATIONS

The NACHOS code was designed to be a self-contained analysis package w.th
the necessary options to set up a problem, solve for the required dependent
variables and analyze the resultant solution in terms of derived gquantities
and graphical output. The previous sections have described the formulation
and soluiicn phases of the NACHOS program; the present section provides a brief

description of the methods used in the pre- and post-~processing operations.
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Mesh Generation

For most analysis situations, the major demand on the user of a finite
element program arises from the preparation of the input data and in particular
the construction of a suitable element mesh. The NACHOS program was developed
with a self-contained, automatic mesh generation scheme that allows very zom-
plex geometries to be modelled accurately with a minimum of user input.

The mesh generator is based on an isoparametric mapping technique proposed

15 and developed in iés present form by Womack.16

16

by Zienkiewicz and Phillips

As this mesh generator has been previously documented and found use in several

other codes'”’18

only a brief description of its operation will be given here.

For purposes of grid construction, the region of interest is considered to
be made up of quadrilateral shaped parts or subregions, which are determined by
the user. Within each part, an isoparametric mapping is used to approximate
the region boundary. By specifying a number of x, y (or r, z) coordinates on
the boundary of each part, the limits of the region and the type of interpola-
tiosn function used to define the boundary shape are determined. The current
version of NACHOS allows a linear, quadratic or cubic description of the
boundary shape for each side of the individual parts.

The mesh points (nodes) within a region are generated automatically once
the number of nodes along a boundary is specified. Local nodal point spacing
is easily adjusted by use of a gradient parameter in the input. Nodal points
within a region are identified by an I, J numbering system. Definition of
individual finite elements and element connectivity are bhased on the I, J

identification of the nodal points. Further details on the mesh generator are

given in Reference 1.

Stream Function Computation

A quantity that is often useful in the graphic display of computed flow
fields is the stream function. For two-dimensional incompressible flows, the
stream function is the remaining non-zero component of a vector potential which

satisfies the eguation of mass conservation identically. By definition,
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u, = 2%,y =2 (51;

and gince the change in the stream fun-ztion, &8¢, is an exact differential,
§p = jr
A

g+nm ar (52:

with,

Q)
1]
o
o
[}
-
+
c
[\
[]
N

3|
]

where n is the normal to the integration path, dI', and § is the velocity vectnr
along the path.

The calculation of the change in the stream function within a finite
element may be carried out using Equation (52) once a suitable integration
path is identified. 1In the NACHOS program, the integration path is taken
along the element boundaries. Consider the general element boundary shown in

Figure 5 with the following definitions of velocities and coordinates,

FIGURE 5
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where ¢ and N are interpolation functions along the boundary (edge functions)
and up. uy
vector is expressed by,

x and vy are nodal point velocities and coordinates. The normal

~ _ 3y/8s —~ _ 3x/3s =
ne SRS e - e, (54)
with,
2 P
dr = [(3x/3s)° + (3y/ds)°] as
Use of the relations in Equations (53) and (54) in the definition for &y,
Equation (32) yields,
1 3N 3N
- T, _ T LT
GW‘[I (¥" 353 ¢y = ¥ 55 8uy) ds . (55)

In the present application, the quadratic velocity interpolation functions,

Sr are given by,
¢ = s{(s -~ 1})/2
(L - 52)
s{s + 1)/2 .

The coordinate interpolation may be either quadratic, N = ¢, or linear,

N = {(l ~ 5)/2;
(1 + s8)/2 .

The shape function definitions for ¢ and N allow the change §y to be computed
along any element boundary once the element geometry (x, y) and velocity fields
(ul, uz) are specified. Computation of the stream function field for an entire

finite element mesh is generated by applying Equation (55) along successive
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element boundaries starting at a node for which a base value of y is specified.
The calculation of the Stokes stream function for axisymmetric flow geo-

metries follows a similar procedure with the -pprop-.ate definitions for Y,

I

1
N
|
Rl

with,

Qal
1l

ulrel + u2re2

+ n e

€1 2%2 -

=L
u

"y

Stress and Heat Flux Computation

The computation of the stress fields for the fluid flow and the heat flux
distributions for the heat transfer problem follow directly from the definit:on
of those quantities.

The fluid stresses for a planar geometry are given by,

aul
Txx = P 20 5T
T = =P + 2u EEE
Yy 9y
su Ju
- 1 z)
Txy = u(§§— * X ’ {56)
and the finite element approximations by,
_ .7 _ AT . wT
Uy =0y suy =ty s P= YRR

where the ¢ and ¥ ghape functions are those described in the element construc-
tion section. The N shape functions may be either quadratic or linear depending
on the type of element used. Direct substitution of the approximations for u,

and P into Equation (56) shows that derivatives of the shape functions with
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respect to the physical x, y coordinates are required. As given in a previous

section, the needed relations for a quadrilateral are,

30 90
3% 1 Fl11 Fia|lss
= TET . ’ (57)
2% 29
&7 Fa1  FaajlsE
where, ,
"y aN"y
Fio =35 ¢ F12® 7 5%
' o'
For =~ =g 7 Fap = 35
|3l = Fyy « Fop = Fyp * Fyy

Using these definitions, the stresses are given by,

T 2u ‘ aTT a?T ’
Tyx (8¢ €)= ~¥7P + 73 (Fll 75 Wt Fia 3 By
T T
T 2u a? 3 )

Tyy(Se £) = =¥'P + 73 lFZl 35— Y2 * Fay 3% S

‘ 30T ao” asT 2T
xy® =) Fa s Wt Fa et P 5 2t Fi ae g2 - (s8)

Note that for a triangular element the s, t coordinates are replaced by the
L coordinates.

The expressions in Egquation (58) allow the stress components to be com-
puted at any point Syt to within an element for a known element geometry and
solution field. The NACHOS program evaluates the stress conponents on the
element boundary, midway between adjacent nodes.

Calculation of stress fields for an axisymmetric geometry follow a similar

procedure with the definitions of the stress components given by,
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Trp = 7P 20 5=
du
_ 2
Tzz—P+2uaz 13
u
1
Tgp = B * 2T
. - (Buz . aul)
rz ”\ar 3z ’

The computation of the relevant heat flux quantities follows also from

the basic definitions,

= -x oT
9 = "k 3% ¢
oT
= Kk o= 59
qy 3y ] { )
and,
qn = 5’5 ’
with,
q=gqe * qyey '
n=ne + nyey .

Reference to Figure 5 and the previous definitions for the normal vector (see

Equation (54)) allows the heat flux normal to a boundary to be given by,

_ dy/3s - Bx/as) .
9y qx(dI" * q,\~ ar . (60:

As in the case of the stress computations, the following finite element defin-

itions are required,
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as well as,

) 30
(W N e, Fiol |
= J ’,
30 20
7/ Fa1 Taz2l 5%

where J and Fij are defined in an analogous manner to Egquation (S57).

The above relations allow the flux components to be expressed by,

. 39’1‘ aQT
9% = " moTVir s~ T P2 52 T) -
y BQT BQT
R (FZL 55 Lt Fa 3 T) ’ (61)
and the normal flux by a combination of Equations (61} and (60). The expres-

sions in Equation (6l) may be evaluated at any point Sqr to within an element;
the NACHOS program evaluates the heat flux values on the boundary of an

element, midway between adjacent nodes.

Plotting
The NACHOS program contains a complete plotting package that allows finite

element meshes. contour plots and time history plots to be constructed at the
option of the user. 8ince the generation of the various types of plots follows

standard procedures, no attempt will be made to describe those methods here.

CCNCLUDING REMARKS

The present document has been designed to provide a moderately detailed
description of the methods and numerical procedures employed in the finite
element code, NACHOS. The material presented here is intended to serve as
necessary background for the user of the NRCHOS program., The detailed des-

cription of the input for NACHOS is described in Part II of this report.
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The versicn of NACHOS described here represents the first iteration in

the process of developing a general-purpose program for the solution of a class
of fluid dynamics problems. As the finite element methods applied here are

stili subjects of current research, it is anticipated that future versicns cf

NACHOS will reflect development activities.
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AFPENDIX A

FINITE ELEMENT EQUATIONS

The manipulations reguired to transform the field equations into a dis-
crete system are outlined in this sectinn. Using the definition of the
Galerkin procedure, Equation (10), and the finite element approximation,

Equation (B), allows the following intearal equations to be written:

(Momentum)
F T BEL
J, 7t Vi
ae ae7 30 397
L e [ s
v 3 % v 3 J
b r
= ._ - o} -
[/\; poe; AV [‘/“/ pBg; 02 dv] (T - Trep)
+ ot,..n. dA .
[j; ~T”nj :, (Al)
(Incompressibility)
agT
v ¥ oy vagi =0 . (A2)
(Energy)
[f 2 eT ST 30 307
pC OO‘]dv—"+ {f pC 06 u, —:—dVJT + [f k-—*—-;dVJT
v P~ t v P~~ ~J axj ~ v axj axj ~

= [f as dv]+[ qu.dA] . (A3)
v~ A <33
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In arriving at the above equations, the Green-Gauss theorem has been used to
reduce the second-order diffusion terms in the momentum and energy equations
to first-order terms plus an area integral. The appearance of the area inte-
grals containing the applied surface stresses (tractions) and heat fluxes
corresponds to the "natural" boundary conditions for the problem.

Several terms in Equations (Al) and (A3) contain the material properties
u, k and 8, which are assumed to depend on the temperature. It has been found
convenient in the present code to allow these propérties to have a spatial var-
iation over each element. Thus, let p, k and 8 be apprcximated within each

element by,

[

U(xi) QT(xi)g

_.T
k(xi) = n {x;)k

Bexy) = n'(x)8 ()
where n is a vector of interpolation functions and the Ue 5 and § are vectors
of nodal point material property quantities, Since the temperature is also a
nodal point quantity, the above form allows the values of py, k and B to be
evaluated in a straightforward manner.

oOnce the form of the interpolation functions e, Q, f and n is specified
the integrals defined in Equations (al) through (A3} may be evaluated to produce
the required coefficient matrices. Combining the momentum eguations and the
incompressibility constraint into a single matrix equation produces a System

of the form:
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T2 9(n [C1 9 + $p(u)) Q ol (%
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o M opqu,p * ¢ Cplup) + Coluy) 0fQ Yy

o o afls o 0 olle

x £ £l ~ - ~ L] £ ~

K1 * Ko K1 (% £
* K12 K2 YR % l Upp = ¢ Fyp L (A5)

T T
{ 2 2 QJrP °
The energy eguation has the form,
i Heb={et

({2} + (ot + otz « [mn + mallzh={el - e

The coefficient matrices shown in Equations (A5) and (A6) are defined by,

M=f pool av (A7)
M o0
v
. 26T
¢iluy) = fv Py ox, av s (A8)
T 27T
= f Temom @ (%)
v + J
Th
gi=f v av (A10)
v i

- - T T - -
By = fv P9y dv _4 PN By 807 AV (T - T o) + ./; 0740y dA i (ALD)

N = f oc_00T av  ; (a12)
v B

E]

20T

= T ~ ;
pitag) = f ecp08yy v (A13)
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T

o 30 30
b = f 0w m v (ALa)
\4 1 i
G = f 55 AV + f Og.n, da . (r1%)
~ v - a~33

Equations (AS) and (AR6) may be written symbolically as,

MV + C(u)*V + KV = F(T) , (Al6}
x~ E ~ a3~ ~ o~
NT + D(u)-T + LT = G , (A17)
x~ x v ~ -~ ~
with,
T
o= e w) o
and,
T
y (\311 u2' E) .



APPENDIX B

EVALUATION OF MATRIX COEFFICIENTS

As a result of the manipulations described in Appendix A, the basic field
eguations were transformed into a set of matrix équations. The coefficients of
the various element matrices can be expressed as spatial integrals of various
interpolation functions and their derivatives (see Equations (A7)-(Al5)). The
present section describes the method of evaluation for these coefficients.

For purposes of discussion consider the evaluation of a typical diffusion
term from the momentum equation {Eguation (A9)) for a planar guadrilateral

element. The matrix coefficients are given by,

. p 3% 82
L‘xy‘f'JEHWdV ’ (B1)

where ¢ and n are interpolation functions given by Equations (Al4) and (AlS5),
u is a vector of nodal point quantiiies (viscosity values), and V is the volume

of the element, For a planar element,
dv = dx dy ,
or from Eguation (19},
av = detfs1] das at , (B2)

where s and t are the normalized coordinates for the element. From Eguations
(17) and (18), the derivatives of the interpolation functions can be expressed

as,
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Ix 9s
= [J]'l ] (e3)
¢ 20
3y 3t
where,
. L fa T
(437" = ———— - , (815
det[J] For Fay
and,
aNTy SNT§
P15 355 ¢ P12 7 ° 3%
BNT¥ BNTx
For =~ 35 7 P22 ® 53 (851
det[J] = Fy Foy = Fio'Foy

where N may be either ¢ (isoparametric element) or n (subparametric element).

Substituting definitions (B2}-(B5) into (Bl) yields,

LS R . as 50 ae”T T s ar
K =f f nu(F ~ + F —l)(r =— + F —“———) . (B6)
Xy g Jog - rPss 12 3t/ 1\ 213s 22 3t det[J)

Similar procedures may be carried out for the other terms in the matrix
equations (Equations (A7)~(Al5)), as well as other element geometries such as
the triangle. When considering an axisymmetric element, the definition of the

elemental volume is modified to,
dv = r do dr dz = r d9 det[J] as at . (B7)

The axisymmetric equivalent of Equation (B6) is then,
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Rrz o Jy S TEF 3 12 3t
aeT asT

1 . (B8)

where the radius, r, has been interpolated according to the parametric concept
given in Eguation (16). The axisymmetric form of the field egquations introduces
several additional matrix terms not given in Equatione (A7)-(Al5), however, all
are treated in a manner analogous to Equation (B8).

An examination of the definite integrals given by Equation (B6) or (B8)
shows that the integrand is a rational function of the s, t coordinates. The
evaluation of these integrals is carried out in the NACHOS program by use of a

numerical quadrature procedure. Expressing a generalized definite integral hy,

1 1
1=ff £(s, t) ds dt ,
-1 J-1

the numerical gquadrature algorithm is given by,

1.1 n
1= f_lf_l f(s, t) ds dt = E }: HHE(s), ) (BO)

where the weighting coefficients Hi' Hj and the abscissae values Sy tj depend
on the particular quadrature formula used. The NACHOS program uses a 3 x J
(i.e., n = 3} Gauss formula2 for the evaluation of matrix coefficients for
quadrilateral elements. Matrix coefficients for triangular elements are

evaluated using a seven point quadrature scheme developed by Hammer, et al.19
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APPENDIX C

SLIP BOUNDARY CONDITIONS

A boundary condition that allows a viscous fluid to flow freely (slip),
parallel to a given boundary, is gquite useful in some modeling applications.
The numerical implementation of the slip condition is different than most
"essential" boundary conditions since it specifies a relationship between tuv:-
dependent variables (velocity components) rather than a specific boun@éry
value. /

Consider the bcundary geomnetry shown in Figure 6 where u, and u, are the
local velocity components tangent and normal to the boundary, u, and uy are
the local velocity components in the x, y coordinate system and o is the loral
angle betwen the x coordinate direction and the tangent to the boundary. The
slip boundary condition provides that the fluid velocity normal to the bountdar:
is zero, while the tangential velocity is unconstrained. Since the numerical
computations are carried out in terms of velocity components in the coordinate
directions, a suitable constraint condition in terms of u, and uy is required.

The tangential velocity can be expressed by,

= + in .
U, u, cos a uy sin a (Cl)

The normal velocity is set to zero and thus need not be written. Equation (Cl:

may be transformed back into x, y components by,

a = . a
Ux ut cos ’

- sin o ‘ (Cc2)

el
i
(=
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or,

cos2 a sin a * cos a ‘ux

(c3)

fl

w

-

)

R
—

=4
——

sin a + cos a

(=4}

—~———
=
x

— —

where the barred components in Equations (C2) and (C3) represent x, y velocity
components that have been modified to account for the slip boundary condition.
The constraint matrix in Equation (C3) is used to modify the appropriate

coefficients of the equations in the assembled matri. system, e.g., Equation

(35).

FIGURE 6
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APPENDIX D

TIME INTEGRATION METHOD

The time integration method to be considered here is a modification of
the basic Crank-Nicholson algorithm. The nonlinear momentur Equazion (35) may

be evaluated at time level n and time level n + 1,

P o+ cMvt o+ kv = FT O, (D1;
x~ o~ ~ a~ ~

SN+l n+l, . n+l n+l n+l (D2)

W + KV = F .

=
<
+
20
)

By an averaging process, Equations (Dl) and (D2) may be combined to provide an

equation at the mid-point of the time interval, At. Thus,

My + cu®v® + kv = P2, (p2)
o SRR i d

vhere,
ga - <\zn+l . &n)/z ,
a n+l n
v v +viy/2 o,
a n+l n
u (u +ul/2 ,
P:a - (§n+l + fn)/Z .

The averaging process has assumed that V varies linearly over the interval At;

therefore, V is constant over At and can be expressed by,

3oyt o Pm o ™ - vy e (D4)

1<
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; A a
Substituting Equation (D4) into (D3) and using the definition of V™ allows

Equation (D3} to be rewritten as,

2 v? ok c®)v® + kv® = PR o+ 2o, (D5)
At o~ P ~ o~ ~ t

o=

I
@

with,

a _ (Yn+1 - Y'n)/2 .

1<

Equation (DS) is a nonlinear algebraic equation system. To reduce the cost of
the integration procedure, a quasilinearization process can be applied to

Eguation (D5) to yield,

2 a n,,,a
Be MY Sy

x

+ kv? = P2+ oy, (D6)
Ry 3

Equation (D6) is the integration algorithm presently available in NACHOQS.
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