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ABSTRACT 

The theoretical background for the finite element computer program, 

NACHOS, is presented in detail. The NACHOS code is designed for the 

two-dimensional analysis of viscous incompressible fluid flows, in­

cluding the effects of heat transfer. A general description of the 

fluid/thermal boundary value problems treated by the program is 

described. The finite element method and the associated numerical 

methods used in the NACHOS code are also presented. Instructions for 

use of the program are documented in SAND77-1334. 
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INTRODUCTION 

This document describes the theoretical and numerical background for th j 
finite element computer code called NACHOS. The NACHOS program is designed 
for the analysis of tvio-dimensional, viscous, incompressible fluid flow prob! <•• 
including the effects of heat transfer. The code has been designed with the 
dual purpose of being an easily modified research tool for finite element 
methods in fluid dynamics and as a user-oriented analysis package for typica; 
engineering problems. 

The present document presents a description of the theoretical fluid 
mechanics background for the code as well as a discussion of the most import i-' 
numerical procedures utilized by NACHOS. This volume is intended to serve a • 

background document for the NACHOS user's manual, SAND77-1334, "NACHOS — A 
Finite Element Computer Program for Incompressible Flow Problems, Part II -
User's Manual." Potential users of NACHOS are encouraged to become familiar 
with the present report before attempting to use the program. 

During the development of the present report, it has been assumed that 
the reader has a background in the areas of fluid mechanics and heat transfe-. 
A basic knowledge of numerical methods is also essential for the proper undo --
standing and use of the computer code. Though it has not been assumed that 
the reader has a background in finite element methods, a general acquaintance 
with the method is highly advantageous. Since by necessity many of the topi" 
covered here are discussed only in the context of the present code application, 
the reader interested in general finite element methods is referred to the 

2 3 4 5 
standard texts by Zienkiewicz, Huebner, Gallagher or Oden. 

In the following section, the general class of flow problems analyzed by 
NACHOS is discussed and the equations for the initial, boundary value problem 
are presented. Section 3 presents a brief description of the finite element 
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method (FEM) and the Galerkin formulation for the present class of problems. 

Sections 4 and 5 discuss computational details of individual element formula­

tion and solution procedures for the matrix equations, respectively. The last 

section describes some of the special procedures used in NACHOS for auxiliary 

calculations, e.g., stress calculations, stream function calculations, etc. 

FORMULATION OF THE CONTINUUM PROBLEM 

A necessary prerequisite to the development of a general purpose computer 

program such as NACHOS is the careful definition of the class of problems to 

which the code will be applied. In terms of general categorization, the 

NACHOS program is designed for the analysis of non-isothermal fluid flow 

pioblems. Included in this category are isothermal flows, forced convection, 

freo convection and mixed convection heat transfer problems. Solid body heat 

conduction effects are also treated in this development. 

To be more specific, the following restrictions and assumptions have been 

used to define the problem areas of interest. 

1) The geometry of the fluid/solid region is limited to two dimensions, 

either planar or axially symmetric. 

2) The fluid is assumed to be Newtonian and incompressible within the 

Boussinesq approximation. 

3) All materials are assumed homogeneous and isotropic; the fluid is 

assumed to be composed of a single species. 

4) The fluid motion is assumed to be laminar. 

5) The effects of viscous dissipation are assumed negligible. 

6) Fluid flows with free surface boundaries are not considered. 

To simplify the derivation of the equations in later sections, only the 

case of plane two-dimensional flow will be treated in detail. Derivation of 

the axisymmetric form of the equations follows in a straightforward manner. 

With the assumptions noted above, the appropriate mathematical description of 

the fluid motion is given by the Navier-Stokes equations, 



3u. 3u. 3T. • 
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The condition cf fluid incompressibility is enforced through the equation, 

3u 

The transport of thermal energy in the fluid is described by.. 

3q 
PC E r pC u. |2- + -r-1. - S = 0 , (2a! 
p 3t p 3 3x. 3x. 

with, 

^ 3T q . = - k •* , 
: axj 

while in the solid region, 

5 T 3q^ 
Pc |I + — l - s = o , Chi 
p 3t 3x. ' 

: 
is the appropriate equation. 

In Equations (1) through (3), t is the time, u. is the velo-vicy componr -.' 
in the x. coordinate direction, P is the pressure, T the temperature, p the 
density, T. . the stress tensor, q. the heat flux vector, S the volumetric hfaf-
source, u the viscosity, C the heat capacity, k the thermal conductivity ar ' 
3 the coefficient of volume expansion. Also, T , is a reference tempevatui'-
for which Luoyancy forces are zero, 6. . is the identity tensor and g. the 
gravitational constant (assumed to act in the negative y direction). 

The material properties such as u, k and & are in general functions of 
two thermodynamic variables such as pressure and temperature. In the present 
case, the dependence on pressure is assumed to be negligible; the material 



properties are assumed to vary with temperature only. The volumetric heat 
source is assumed to var' with temperature and time. 

To complete the formulation of the initial/boundary value problem, suitable 
boundary and initial conditions for the dependent variables are required. For 
the hydrodynamic part of the problem, either the velocity components or the 
total surface stress (or traction) must be specified on the boundary of the 
fluid region, ^'e thermal part of the problem requires a temperature or heat 
flux condition to be specified on all parts of the boundary. Symbolically, 
these conditions are expressed by, 

for the fluid and, 

f . (s) on r . 

ti = ^j^V 5' °n r
t 

T = g(s) on r T 

(4) 

(5) 
[qa(s) + qc(s) + qr(s)] = (k f ^ K l s ) on 1^ , 

for the heat transfer problem. Ir. Equations (4) and (5), s is the coordir ate 
along the boundary, n. is the outward unit normal to the boundary, r, = 7i + '.' 
is the total boundary enclosing the fluid region f)f, and r = V + T is tne 
total boundary enclosing the energy transfer region, JJ . The flux boundary 
condition for the energy equation has been expressed as the sum of three parts 
where q is the applied heat flux, q is the heat flux due to convection and 
q is the heat flux due to radiation. Typically, the convective and radiative 
heat fluxes are given by. 

hc(T - T c) 

q = h (T - T Mr r I 

(6a) 
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where h and h are convective and radiative heat transfer coefficients and '' c r c 
and T are equilibrium temperatures for which no convection or radiation occur:-. 

The radiation coefficient is given by, 

h = ea(T 2 + T 2) (T + T ) . , (6b' 

in which e is the emissivity and a is the Stefan-Boltzmann constant. 

The initial conditions for the boundary value: problem consist of specify­

ing the value of each dependent variable at the initial time for all points in 

the appropriate region. That is, 

u. = a.(x.) l 1 1 

at t = 0 on £2, , 

P = b(x. ) 

(7) 

T = c(x.) at t = 0 on ft , 

where fi_ and fi are the fluid and energy transfer regions, respectively. 

Equations (1) through (3) with the boundary and initial conditions. 

Equations (4) through (7), form a complete set for the determination of the 

velocity, pressure and temperature fields in a fluid and the temperature field 

in a solid. In general, the velocity field is coupled to the temperature field 

through the body force term (buoyancy) and the appearance of temperature 

dependent material properties in Equation (1). The relative importance of this 

coupling is a function of the magnitude of the material properties and the 

types of boundary conditions imposed on the problem. A discussion of the 

specialization of the equations for cases of strong or weak coupling is include ; 

in the section on solution methods. 
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FORMULATION OF THE FINITE ELEMENT EQUATIONS 

The boundary value problem outlined in the previous section is generally 
not amenable to closed form solution except in cases where problem geometry 
may be regularised and/or physical phenomena neglected. For the solution of 
realistic problems, one is forced to consider approximate solution methods of 
which the computerized numerical schemes are the most powerful. The currently 
popular numerical methods are generally divided into two groups—finite 
difference methods (FDM) and finite element methods (FEM). The objective of 
both approaches is to reduce the continuous problem (infinite number of degrees 
of freedom) described by a partial differential equation to a discrete problem 
(finite number of degrees of freedom) described, by a system of algebraic 
equations. Though the ultimate results of both procedures are very similar, 
the procedures are sufficiently different in their philosophies and implemen­
tation to be considered distinct. 

It is beyond the scope of the present discussion to describe either method 
in general. Rather, the approach followed >-2re will be to describe in some 
detail the particular FEM used in developing the NACHOS program. 

The finite element procedure begins with the division of the continuum 
region of interest into a number of simply shaped regions called finite elements 
as shown in Figure 1. Since the Eulerian description of the fluid motion was 
used in the field equations (1) through (3), these elements are assumed to be 
fixed in space, within each element, the dependent variables (u., P and T) 
are interpolated by continuous functions of compatible order, in terms of 
values to be determined at a set of nodal points. For purposes of developing 
the; equations for these nodal point unknowns, an individual element may be 
separated from the assembled system. 
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FINITE ELEflENTS 

NODAL POINTS 

REGION a 

BOUNDARY T 

FIGURE 1 

Within each element, the velocity, pressure and temperature fields are 
approximated by, 

u i(x i, t) = 4 i(x i) • u..(t) , 

Plx±, t) = I {xt) • P(t) , (8) 

T(x i f t) = 9 (Xj.) • T(t) , 

wnere the u., P and T are vectors of element nodal point unknowns, *, V and ' 
are vectors of interpolation functions and superscript T denotes a vector 
transpose. 

Substitution of these approximations into the field equations (l) through 
(3) and boundary conditions. Equations (4) and (5), yields a set of equations 
of the form, 
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Momentum: f'*, T, 0, u.. , P, T) = R 1 ; 

Incompressibility: f2(*< u.) = R-, ; (9) 

Energy: f,(0, *, T, u.) = R 3 ; 

where R. are the residuals (errors) resulting from the use of the approximations 
in Equation (8). 

7 The GalTkin form of the Method of Weighted Residuals seeks to reduce 
these errors to zero, in a weighted sense, by making the residuals orthogonal 
to the interpolation functions (Equation (8)) over each element. These 
orthogonality conditions are expressed by, 

<!i< * > - <?i- ! > = ° •• 

(t2, l) = <R2, l) = 0 ; (10) 

<f3' !> = <R3' 2> = ° ; 

where <̂ , / denotes the inner product, defined by, 

(a, b) = [ a-b dv , 
•'v 

with V being the volume of the element. 
The detailed manipulations involving the integrals defined in Equation 

(10) are presented in Appendix A. The results of those computations can be 
expressed by the matrix equations, 

Momentum: MV + C(u)V + K(T)V = F(T) , (11) 

and. 
Energy: NT + D(u)T + L(T)T = G (T) , (12) 

with 
T . T T. u = (u, , u.) , 
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and, 
V T = <u*, u*f f) . 

The matrix equations in Equations (11) and (12) represent the discrete 
analogues of the conservation equations for an individual fluid finite element. 
Note that the C and D matrices represent the advection (convection) of momentum 
and energy, respectively; the K and L matrices represent the diffusion of 

at a* 

momentum and energy (the K matrix also contains the incompressibility 
constraint). The M and N matrices represent the mass and capacitance terms in 
the field equations. The F and G vectors provide the forcing functions for 
the system in terms of volume forces (body force, volumetric heating) and 
surface forces (stress, heat flux). 

For the case where a solid (non-flowing) material is to be represented, 
then only the capacitance, diffusion and force terms of Equation (12) need to 
be considered, i.e., 

NT + L(T)T = G(T) , (1.3) 

which is the discrete analog for the transient heat conduction equation. 
The above derivation has been concerned with a single finite element and 

the limited portion of the continuum it represents. The discrete representa­
tion of the entire continuum region of interest is obtained through an 
assemblage of elements such that interelement continuity of the approximate 
velocity, pressure and temperature is enforced. This continuity requirement 
is met through the appropriate summation of equations for nodes common to 

2 adjacent elements (the so-called "direct stiffness" approach ). The result oC 

such an assembly process is a system of matrix equations of the form given by 
Equations (11) through (13). 

The matrix equations given in Equations (11) through (13) symbolically 
describe the FEM as applied to a general convective heat transfer problem. In 
the next section, some details of the construction of the matrix equations for 
particular finite elements are given. The actual solution procedures for 
Equations (11) through (13) are described in the subsequent chapter. 
12 



ELEMENT CONSTRUCTION 

Of central importance to the development of a finite element code is the 
choice of particular elements to be included in tht. element library. For the 
NACHOS code, four basic elements were selected: 'a subparametric and isopara­
metric quadrilateral and a subparametric and isoparametric triangle. The 
basic concepts of finite element construction and the isoparametric element 
formulation are thoroughly described in References 2-5. 

Quadrilateral Elements 
The basic quadrilateral element used in the NACHOS code is an eight node, 

twenty degree of freedom element shown in Figure 2. The velocity components 
(u.) and temperature (T) are approximated using quadratic interpolation 
functions; the pressure (P) and material properties (v, k and B) are approxi­
mated by linear functions. The interpolation functions for this element are 
given by the vectors, 

\ 
= 0 = H I HU - s) (1 - t) (-s - t - 1) 

ha + s) (i - t) (s - t - i) 

!i(l + S) (1 + t) Js + t - 1) 
M l - s)|l + t)(-s + t - 1) 

(14) 
(1 - s 2 ) (1 - t ) 

(1 + s ) (1 - t 2 ) 

(1 - s 2 ) ( 1 + t ) 

(1 - s ) ( 1 - t 2 ) 
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U ?, V 7, T ? 

s = 1 

U 5, V 5, T 5 

U 3, V 3. P 3. T 3 

~—XI V o . T 2' 2' "2' 2 

FIGURE 2 

(15) 

where the ordering of the functions corresponds to the crdering of unknowns 
shown in Figure 2. The shape functions given in Equations (14) and (15) are 
expressed in terms of the normalized or natural coordinates for the element, 
s and t, which vary from -1 to +1 as shown in the figure. The relationship 
between the physical coordinates x, y (or r, z) and the natural coordinates 
s, t is obtained from the parametric concept discussed by Eigatoudis, et al. 
That is, the coordinate transformation is given by, 

T T T T 
x = N x ; y = N xy ; N* = N (s, t) , 

(16) 

14 



where N is a vector of interpolation functions over the element and x, y are 
vectors of coordinates describing the geometry of the element (generally, nodal 
point coordinates). 

The transformation given in Equation (16) is quite general and allows for 
the generation of curved-sided elements. In the present case, if N = • , a 
quadratic interpolation of the element boundary is possible and t.̂ e element is 
said to be isoparametric (i.e., the functions defining the dependent variables 
are of the same order as the functions defining the element geometry). If 
N = Y , a linear interpolation of the element boundary is possible and the 
element is subparametric. 

The construction of the finite element matrices defined by Equations (A7) 
through (A15) in Appendix A requires the computation of various derivatives 
and integrals of the interpolation functions given in Equations (14) and (15). 
Since the basis functions are given in terms of the normalized coordinates, 
s and t, and the derivatives and integrals are in terms of the physical x, y 
coordinates the following relations need to be defined, 

P! 
(S) 

~Ti 3"T~ 

T T 3N x 3N y 
-It 3t~-

where [j] is the Jacobian matrix. Inverting the Jacobian provides the needed 
relation for the derivatives of the basis functions. 

3x 3y 
3s 3s 

3x 3y 
3t 3t 

(17) 



(13) 

Equation (18) has been written for the quadratic basis function 4>; similar 
expressions are available for the remaining functions defined in Equations 
(14) and (15). To complete the transformation from physical coordinates (x, y! 
to normalized coordinates, the expression for an elemental area is required. 
Thus, 

dx dy = det[j] ds dt , (19) 

where det indicates the determinant of a matrix. 
Use of the relations given in Equations (18) and (19) allows the element 

matrices defined in Appendix A to be expressed as integrals of rational 
functions in the s, t coordinate system. The evaluation of such integrals 
requires a numerical quadrature procedure. In the NACHOS code, the quadri­
lateral element is evaluated using a Gauss quaarature formula. Further detri 1.; 
of this procedure are given in Appendix B. 

Triangular Elemems 
A companion element to the parametric quadrilateral is the parametric 

triangle. In the NACHOS code, the triangular element is a six node, fifteen 
degree of freedom element shown in Figure 3. As in the quadrilateral, the 
velocity components and temperature are approximated quadratically over the 
triangle; the pressure and material properties use linear functions. The 
interpolation functions for this element are given by, 

= 0 = / L 1 ( 2 L 1 - 1)' 

L 2(2L 2 - 1) 

' L 3 ( 2 L 3 - 1)V ( 2 0 > 

4 L 1 L 2 
4L 2L 3 

16 V 4 L 1 L 3 



V V T6 

FIGURE 3 

(21) 

where the ordering of the functions corresponds to the ordering of the unknowns 
shown in Figure 3. The basis functions in Equations (20) and (21) are expressed 
in terms of the natural or area coordinates for a triangle, 
coordinates L ; are not independent but are related by, 

Note that the 

L.x + L 2 + L 3 (22) 
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The parametric mapping concept may also be used with the triangular 

element by defining, 

T T T T 
x = N x ; y = N y ; N = N (L.) , (2 • 

where N is given by Equation (20) for an isoparametric triangle and by Equat -

(21) for a subparametric element. 

Following the procedure used for the quadrilateral element, the followi-.-

relations may be defined. 

w— T T _ 

( = [J] 
llfx I 
'o4 1 !21' 

and. 

a* I J 3* ' 

dx dy = det[j] dL dL 2 " , 

(23) 

<2S] 

where L, has been expressed in terms of L, and L, using Equation (22). 

The element matrices defined by the integral equations in Appendix A and 

the above relations require evaluation by numerical quadrature. The NACHOS 

code uses a seven point quadrature formula for the triangular element. Deta ' 

of the evaluation procedure are given in Appendix B. 

Element Boundary Conditions and Source Terms 

The previous sections have described the most important points in the 

evaluation of the finite element coefficient matrices for a particular choice 

of elements. However, in constructing the nodal point force vectors, defined 
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by Equations (All) and (A15) a number of additional assumptions are used that 
require further comment. 

The force vectors for both the momentum and energy equations consist of 
two parts; a part due to volumetric forces (sources) and a part due to surface 
forces (fluxes). Considering first the volumetric terms, of which the heat 
source is typical. 

X G = / es dV . (27) 

As given previously, the elemental volume (area for two-dimensional problems) 
can be expressed in terms of normalized or natural coordinates by Equations 
(19) or (26). To complete the evaluation of the integral, the variation of 
the source over the element in terms of the element coordinates is required. 
In the present version of NACHOS source terms (i.e., S and g.) are assumed to 
be uniform over each element allowing Equation (27) to be evaluated in a 
straightforward manner. 

The evaluation of the boundary integrals containing applied surface forces 
or fluxes also requires an assumption about the variation of the integrand with 
position in the element. As an example, consider the heat flux term, 

G F = j£ eq.n. dA = j£ 0q n dA , 

which for a plane two-dimensional problem becomes. 

fT 2 qn ar , (28) 

where r is the boundary of the element and q the heat flux normal to the 
^n 

boundary. The boundary segment dT may be expressed as, 

3x dr = It ds * S ds ' ' 2 9> 
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where s is the coordinate along the boundary (see Figure 4). As given 
previously, 

T T 
x = N x ; y = N y 

which .allows Equation (28) to be written as, 

„T ,.TT 
5F 

-1 /3N x 3N y\ 
= J_x ? H ^ + Tr^n ds (30) 

s = 0 
di\ 

s = -1 

FIGURE 4 

In Equation (30) the N vector may be a set of either linear or quadratic 
functions depending on the type of element. Note that all functions in Equation 
(30) are restricted to an element boundary (edge function). That is. 

9 = I s(s - l)/2 ) ; N = I s(s - l)/2 
(1 - s") 

s(s + l)/2 
(1 - s") > or 

(1 - s)/2 J 
(1 + s)/2 ( s(s + l)/2 J ( ) 

(31) 
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To complete the specif.cation of G , the variation of the heat flux, q^, 
along the element boundary is required. From Equations (5) and (6), the heat 
flux is given by, 

qn = q a ( s ) + h c ( T " V + hr ( T " V ' ( 3 2 ) 

In the present version of NACHOS, the applied heat flux is assumed constant 
along an element boundary; the convective heat transfer coefficient and sink 
temperature are also assumed constant. For the radiative flux, the err.issivity 
and sink temperature are assumed constant (see Equation (6b)). Since the 
temperatures given in Equation (32) are temperatures on the element boundary, 
they are interpolated using the edge functions defined in Equation (31) . With 
the above considerations , the G vector may be expressed by, 

.1 /3NTx 3NTy\ 
SF - J_x ?l"tr + -zir)% d s 

- 1 / 3 N T x 3 N T y \ ' 

r l / 3 N T x 3 N T y \ 
+ J.x

 ? H ^ + ~^rhie~ - " V d s • ( 3 3 ) 

Note that some of the terms defining G in Equation (33) contain unknown 
element temperatures. For solution purposes, these terms are moved to the 
left hand side of the matrix equation given by Equation (A17). 

A computation similar to the above may be carried out for the boundary 
integrals in the momentum equations. From Equation (All), 

F. = / *T..n. dA , 

or for a plane two-dimensional problem in component form, 
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?2 = / r * T21 nl d F +fr t T22 n2 d F • '"•• 

:;inco boundary conditions for fluid dynamics problems are rarely expressed .: 
terms of applied shear stresses, NACHOS does not allow for the computnt ion r,' 
the shear terms defined in Equation (34). In the case of applied normal 
stresses, the assumption has been made that the applied stress is constant 
along the element boundary. Thus, 

Ci • fT ? T n n i d r = j f * f ci d r = fr * d r fci ' 

!2 = fT ! T22"2 d r = fT ?fc2 d r = fT * d F 4 • 
With the definition for dT given in Equation (29), the above integrals may lit 
directly evaluated for a given element. It should be emphasized that the .il" 
boundary condition is in terms of the total normal stress or traction which is 
different than the pressure. From the constitutive relation. Equation (1), 

/3u. \ 
T . . = -p + 2u[-r I i not summed. 

In many practical cases, the viscous part of the stress is negligibly small 
(e.g., small viscosity) and the normal stress is essentially equal to the 
pressure. When the viscous part is not egligible, the application of a stn s-
boundary condition does not distinguish between contributions from the pressure 
and viscous parts but simply reflects their net effect. For purposes of input 
to the NACHOS code this boundary condition is termed a "pressure" boundary 
condition to reflect its usual role in finite element models. Further comment 
may be found in Reference 9. 
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In addition to the "natural" boundary conditions for the equations, 
"essential" boundary conditions specifying particular values for the dependent 
variables must be considered. Application of a specified velocity component, 
pressure or temperature results in the field equation for that particular degree 
of freedom being replaced by a constraint equation enforcing the proper boundary 
value. A similar procedure is employed when a boundary condition specifies a 
certain relationship between dependent variables as in the case of a slip 
boundary for the fluid. Details of the slip boundary condition procedure are 
given in Appendix C. 

SOLUTION PROCEDURES 

For most finite element solutions to field problems, the majority of the 
computational effort is expended in solving the assembled matrix equations 
that describe the discrete problem. This is especially true in the case of 
highly nonlinear problems or problems with coupled physical phenomena. The 
general convection problem treated here contains both of these latter charac­
teristics. 

Before embarking on a description of the various solution procedures 
contained in the NACHOS code, it is appropriate to describe some of the 
characteristics of the equation system under consideration. Rewritting 
Equations (11) through (13),for convenience, 

Momentum: MV + C(u)-V + K(T)-V = F(T) , (35) 
sa— * — — a — — — — 

Energy (Fluid): NT + D(u)-T + L(T)-T = G(T) , (36) 

Energy (Solid): NT + L(T)'T = G(T) . (37) 

The above eguations describe a rather large class of problems and for 
purposes of discussion, it is useful to identify several subclasses denoted 
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as: (a) isothermal problems, (b) weakly coupled convection problems, and 
(c) strongly coupled convection problems. Isothermal problems refer to th-r;' 
involving the solution of Equation (35) only. Weakly coupled convection proh • 
lens are those in which the momentum Equation (35) is not a function of tor.fe­
ature, e.g., forced convection with constant material properties. This tyr<-> 
problem allows the momentum equation to be solved independently of the cner7"/ 
equation, followed by a solution of the energy equation with a known velocity 
field. The strongly coupled convection problem denotes the case in which thr 

momentum equation depends on the temperature field, e.g., free convection or 
forced convection with temperature dependent material properties. With s':ron: 
coupling, the momentum and energy equations must be solved together. 

The choice of a solution strategy for each of these problem categories 
also requires consideration of whether the analysis is to be a steady state or 
time dependent computation. In the case of convection problems, the appropri •' 
ordering for solution of the energy and momentum equations must also be p"ni-
uated. In the following sections, the solution algorithms currently used in 
NACHOS for problems in each of the three subclasses are described in deta\]. 

Steady State Algorithms 
The choice of an iterative solution method for a general purpose code is 

governed by several considerations. First, the chosen algorithm should be 
applicable (convergent) for a wide range of problems with a minimal sensitivi . 
to variations in flow conditions and geometry. The rate of convergence of th? 
method should also be reasonably high for economy. Finally, the algorithm 
should be user-oriented in the sense that input data (e.g., over-relaxation 
factors) for the procedure is minimal. The algorithms currently available in 
NACHOS represent the best understood methods that meet the above criteria. 

Isothermal Problems: 
For problems involving a steady, isothermal flow, the appropriate matrix 

equation is, 
C(u)V + KV = F . (38) 
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The NACHOS program employs two fixed point iteration schemes for the solution 
of Equation (38). A particularly simple scheme with a large radius of conver­
gence is the successive substitution or Picard iteration algorithm given by, 

C(u n)V n + 1 + K V n + 1 = F -. (39) 

where the superscript n indicates the iteration level. The second iterative 
algorithm available in NACHOS is a generalized Newton-Raphson procedure given 
by. 

3f 
(V n + 1 - V n) , (40) 

V 

where, 

f (V) = C(u)V + KV - F . 
~ ~ st ~ ~ a- ~ 

A comparison of the Picard and Newton-Raphson procedures has indicated a 
superior rate of convergence for the Newton method. However, the Newton method 
has a smaller radius of convergence (i.e., is more sensitive to the initial 
solution vector, V ) and, therefore, inclusion of both algorithms in a parti­
cular code is warranted. Note that in NACHOS, the starting vector for both 
algorithms is the solution to the creeping or Stokes flow problem, 

KV° = F . (41) 

Weakly Coupled Convection Problems: 
When the energy equations (36) and (37) are decoupled from the momentum 

equation, the NACHOS program treats the problem by first solving for the velo­
city and pressure fields using the algorithms described above for an isothermal 
flow. With a known velocity field, the energy equations are solved directly 
for the temperature field. If nonlinear boundary conditions on temperature 
(e.g., radiation) are present, the energy equations are solved iteratively 
using a Picard algorithm. 
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Strongly Coupled Jonvection Problems: 
For cases where the momentum equation depends on the temperature field, 

Equations (35) through (37) can no longer be treated independently. A parti­
cularly simple algorithm for this type of problem is an alternating solution 
scheme given by, 

B(u n)T n + 1 + L(T n)T n + 1 = G(Tn) 

C(u r-)V n + 1 + K(T n + 1)V n + 1 = F(T n + 1) 

D ( u n + 1 ) T n + 2 + L ( T n + 1 ) T n + 2 = G(T n + 1) '42) 

etc. 

The basic iteration scheme in Eguation (42) can often be accelerated by suit­
able choice of an interpolation procedure for the dependent variables used '.;:. 
evaluate the coefficient matrices. For example, the K or L matrices can be 
evaluated at T* with, 

T * n + 1 = a T n + 1 + (1 - a)Tn(0 <_ a <_ 1) . (43) 

NACHOS uses the above interpolation procedure for the temperature field with 
a = hi no interpolation on the velocity field is used. The initial solution 
vectors for the iteration scheme are obtained from the linear problems, 

U T i n t ) T ° = G(T i n t) , 

K(T i n t)V° = F(T°) , 

where T l n indicates an initial temperature estimate supplied to the program. 

Transient Algorithms 
The choice of a transient analysis procedure is basically governed by the 

same criteria used in choosing a steady state algorithm. However, the inclusion 
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of the temporal term in the matrix system, Equations (35) through (37), requires 
several additional criteria to be considered. Equations (35) through (37) 
represent a discrete space, continuous time approximation to a field problem. 
A direct time integration procedure replaces the continuous time derivative 
with an approximation for the history of the dependent variable over a small 
portion of the problem time scale. The result is an incremental procedure that 
advances the solution by discrete steps in time. In constructing such = pro­
cedure, questions of numerical stability and accuracy must be considered. 

For use in a user-oriented code such as NACHOS, the increased stability 
of an implicit integration scheme was deemed more desirable than the computa­
tional speed .if an explicit method. Furthermore, as a result of several pre-

11 12 vious investigations ' an algorithm using a consistent mass and capacitance 
formulation was considered most appropriate, thus specifically excluding ex­
plicit integration methods from consideration. The following sections describe 
the implicit integration scheme used in NACHOS. 

Isothermal Problems: 
For problems involving an isothermal flow, the velocity and pressure fields 

are advanced in time through use of the following algorithm, 

{AT**^") + «}f " l + AT™" ' <44> 
where. 

(V n + 1 + Vn)/2 , (45) 

and At is the time step and superscript n indicates the time level. The algo­
rithm in Equations (44) and (45) is related to the basic Crank-Nicholson method 
though in the present case, Equation (45) is not used to extend the solution 
to the end of the time interval but serves only as a definition for V a. The 
above method has somewhat better stability properties than the standard Crank-

13 Nicholson approach. Note that quasilinearization has been used to allow the 
nonlinear term, C, to be evaluated at u rather than the formally correct (and 
second order accurate) u a value. Such an approach has proved to be valid for 
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reasonable choices of the time step and most types of evolution problems. A 
derivation of the algorithm given by Equation (44) is given in Appendix D. 

Weakly Coupled Convection Problems: 
When the energy equations are to be advanced in time but are still un­

coupled from the momentum equation, NACHOS treats the equations in a sequential 
manner. The velocity and pressure fields are advanced in time using the pre­
viously described algorithm; the temperature field is then advanced using, 

f-~ N + D(u n + 1) + h\la = G + •£; NT n , (46) 
(it * a»- x) ~ - ilt=;~ 

with, 
T a = (T n + 1 + Tn)/2 , (47) 

which is the energy equation counterpart to Equations (44) and (45). If the 
energy equation is nonlinear due to the appearance of radiation type boundary 
conditions, a quasilineari^ation process is U3ed, i.e., the boundary condition 
is evaluated using the latest available temperature field. 

Strongly Coupled Convection Problems: 
A sequential solution procedure is again used when the momentum equation 

depends on temperature. The quasilinearization procedure is invoked to allow 
the solution to advance in time without iteration during a time step. Since 
most strongly coupled problems are of the free convection type, the energy 
equation is typically advanced first using, 

l~ N + D(u n ) + L ( T M T 3 = G(T n ) + ^ r NT n , (48) 
( A t =, S J - S3 ~ } ~- ~ - fit * ~ 

followed by the momentum equation, 

| ~ M + C(u n ) + K ( T n + 1 ) l v a = F ( T n + 1 ) + -nr MV11 . (4 9) 
l A t as ai ~ sy ~ } ~ ~ ~ Ziu a j -

Nonlinear boundary conditions are again treated by quasilinearization. 
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Further Remarks on Solution Algorithms 
The solution algorithms for both steady and transient analyses as presented 

above represent the methods currently available in the NACHOS code. It is not 
to be implied that these choices represent the best or only methods for this 
class of problems. Rather they do represent methods that have proved generally 
reliable and accurate for a wide variety of problems. As solution algorithms 
foi nonlinear finite element analysis is a topic of current research it is 
anticipated that further refinements to the present methods and/or the inclu­
sion of other procedures will occur in future versions of NACHOS. 

Matrix Solution Procedures 
When the solution algorithms of the previous sections are applied at a 

given iteration or time step, the general result is a matrix equation of the 
form, 

Ax = b . (50) 

In the problems considered here the A matrix is large (e.g., several thousand 
equations), sparse, banded and generally unsymmetric. 

The solution of the equation system given by Equation (50) may be approach­
ed by two basic methods—iterative and direct. Iterative methods, such as the 
Gauss-Seidel procedure, have occasionally been used in a finite element context. 
However, by far, the most prevalent solution methods for Equation (50) are the 
direct methods such as Cholesky decomposition and Gauss elimination. 

The solution procedure used in NACHOS is a form of Gauss elimination 
14 developed by Irons, called the frontal solution method. The basic premise 

of the frontal method is that the process of assembling the system matrix. A, 
from the individual element matrices and the reduction of A by standard Gauss 
elimination may be efficiently intertwined. In processing each element in 
sequence, the frontal procedure passes through the following basic steps: 

a) assembly of element equations into global matrix A (in actuality A 
at n 

is stored as part of a one-dimensional working space), 
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b) check each equation in the assembled system to determine if all 

contributions to that equation have been made, 

c) condense from the system (by Gauss elimination) the equations for all 

degrees of freedom that have been completely assembled, 

d) return to Step a) for the next element. 

By combining the assembly and reduction process computer storage is effective"/ 

minimized since only the currently "active" (i.e., incompletely assembled) 

degrees of freedom are retained in core storage. Following reduction of the 

matrix A to an upper triangular form, a back-substitution algorithm completes 

the solution process for the vector x. 

Since the frontal method is structured around the individual element, it 

is especially adaptable for general purpose codes with an element library. 

The processing of higher order elements (e.g., quadratic basis functions) is 

also handled efficiently by a frontal method. 

The original frontal solution package published by Irons was developed 

for symmetric, positive definite systems. For incorporation into the NACHOS 

code. Irons' program was modified to account for nonsymmetry of the system ur.r: 

the appearance of zero coefficients on the diagonal of the A matrix 'the zeroes 

occur due to the form of the incompress.ibility constraint, see Appendix A, 

Equation (A5)). This latter modification consists of essentially re-ordering 

the elimination sequence of some of the pressure degrees of freedom. 

PRE- AND POST-PROCESSING OPERATIONS 

The NACHOS code was designed to be a self-contained analysis package kith 

the necessary options to set up a problem, solve for the required dependent 

variables and analyze the resultant solution in terms of derived quantities 

and graphical output. The previous sections have described the formulation 

and soluvicn phases of the NACHOS program; the present section provides a brief 

description of the methods used in the pre- and post-processing operations. 

30 



Mesh Generation 
For most analysis situations, the major demand on the user of a finite 

element program arises from the preparation of the input data and in particular 
the construction of a suitable element mesh. The NACHOS program was developed 
with a self-contained, automatic mesh generation scheme that allows very com­
plex geometries to be modelled accurately with a minimum of user input. 

The mesh generator is based on an isoparametric mapping technique proposed 
by Zienkiewicz and Phillips and developed in its present form by Womack. 
As this mesh generator has been previously documented and found use in several 

17 18 other codes' ' only a brief description of its operation W3.ll be given here. 
For purposes of grid construction, the rt:gion of interest is considered to 

be made up of quadrilateral shaped parts or subregions, which are determined by 
the user. Within each part, an isoparametric mapping is used to approximate 
the region boundary. By specifying a number of x, y (or r, z) coordinates on 
the boundary of each part, the limits of the region and the type of interpola­
tion function used to define the boundary shape are determined. The current 
version of NACHOS allows a linear, quadratic or cubic description of the 
boundary shape for each side of the individual parts. 

The mesh points (nodes) within a region are generated automatically once 
the number of nodes along a boundary is specified. Local nodal point spacing 
is easily adjusted by use of a gradient parameter in the input. Nodal points 
within a region are identified by an I, J numbering system. Definition of 
individual finite elements and element connectivity are based on the I, J 
identification of the nodal points. Further details on the mesh generator are 
given in Reference 1. 

Stream Function Computation 
A quantity that is often useful in the graphic display of computed flow 

fields is the stream function. For two-dimensional incompressible flows, the 
stream function is the remaining non-zero component of a vector potential which 
satisfies the equation of mass conservation identically. By definition. 

31 

http://W3.ll


Sill dill 
u i = it; ' u2 - Jtq < 

( 5 1 ) 

and since the change in the stream function, <5i|i, is an exact differential. 

Sty r - -
= I q-n 

•'A 

df , (52; 

with, 

q = U l e x + u 2e 2 

where n is the normal to the integration path, dr, and q is the velocity vector 
along the path. 

The calculation of the change in the stream function within a finite 
element may be carried out using Equation (52) once a suitable integration 
path is identified. In the NACHOS program, the integration path is taken 
along the element boundaries. Consider the general element boundary shown in 
Figure 5 with the following definitions of velocities and coordinates, 

s = -1 

FIGURE 5 
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ul = ! TSl ; u2 = * ^ 2 ' 

X = N T X ; y = N T y , (5 3) 

where * and N are interpolation functions along the boundary (edge functions) 
and u., u-, x and y are nodal point velocities and coordinates. The normal 
vector is expressed by, 

n = 3 y / 3 s e _ 3 x / 3 s e (54) 
n dr el dr e2 ' ( 5 4 ) 

with, 

dr = [(3x/3s)2 + Oy/3s) 2] ds . 

Use of the relations in Equations (53) and (54) in the definition for Sty, 

Equation (52) yields, 

i\)i 
r1 T 3 N T T 32 T 

f_x <r 75 *\ - * JE r v d s • ( 5 5 ) 

In the present application, the quadratic velocity interpolation functions, 
i, are given by, 

"s(s - l)/2\ 
(1 - s 2) | 

,s(s + D/2) 

The coordinate interpolation may be either quadratic, N = *, or linear, 

ia - s)/2> 
I (1 + s)/2) 

The shape function definitions for 4> and N allow the change 6i|/ to be computed 
along any element boundary once the element geometry (x, y) and velocity fields 
(u., u,) are specified. Computation of the stream function field for an entire 
finite element mesh is generated by applying Equation (55) along successive 
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element boundaries starting at a node for which a base value of <ii it. specified. 
The calculation of the Stokes stream function for axisymmetric flow geo­

metries follows a similar procedure with the ->.pprop' jate definitions for <fi, 

- i it i 3* 
ul r 3z ' u2 r 3r 

r B - -
&V = I q -n d£ , 

with, 
q 

Stress and Heat Flux Computation 
The computation of the stress fields for the fluid flow and the heat flux 

distributions for the heat transfer problem follow directly from the definition 
of those quantities. 

The fluid stresses for a planar geometry are given by, 
3u 

xx " 3x 
3u, 

^yy = -p + 2^5F 
/ 3 u l , du2) 

T xy = U\W + 33T7 ' (56) 

and the finite element approximations by. 

T T T 
ul = * ul ; u 2 = * 2 ; P = * P 

„T „T 
N x ; y = N y 

where the * and 1 shape functions are those described in the element construc­
tion section. The N shape functions may be either quadratic or linear depending 
on the type of element used. Direct substitution of the approximations for u. 
and P into Equation (56) shows that derivatives of the shape functions with 
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respect to the physical x, y coordinates are required. As given in a previous 
section, the needed relations for a quadrilateral are. 

Fll F12 

LF21 F22. 

(57) 

where, T 
Fll = ~5t~ 12 

T 
3N y 

21 

T JR x 
3t 

T 3N x 
; F 22 3s 

|J| = F 11 ' F22 " F12 ' F21 

Using these definitions, the stresses are given by, 

T 3 ?
T 

T\ ) * 11 3s~ ~1 + F12 W ~lI 
T 2u I 3 r 3* 

T (s, t) = -Y P + f=-r ' F,, T^r- u, + F n, -5T- u 

T 2u I 3 J T 3 ! T ) 
T y y ( S ' t } = -r? + WY j' F 2 1 3lT S 2

 + F 2 2 7 t " S 2 ) ' 

3* S** 3*x 3* 
T x y(s, t) Jl I F21 3i~ Si + F22 3t" Si + Fll IT" S 2

 + F12 3t~ S 2 
(58) 

Note that for a triangular element the s, t coordinates are replaced by the 
L. coordinates. 

The expressions in Equation (58) allow the stress components to be com­
puted at any point s , t within an element for a known element geometry and 
solution field. The NACHOS program evaluates the stress components on the 
element boundary, midway between adjacent nodes. 

Calculation of stress fieldB for an axisymmetric geometry follow a similar 
procedure with the definitions of the stress components given by, 
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3u. 
Trr = " P + 2 u 3T- ' 

3u-
Tzz - " P + 2 u W ' 

Tse " " p + 2» T- • 

T r Z " ^ S r - + 3T7 • 

The computation of the relevant heat flux quantities follows also from 
the basic definitions, 

qx " " k 1Z ' 

q y = -k |I , (59, 

and, 

with, 

q = q e + q e ^ ^x x y y 

n = n e + n e x x y y 

Reference to Figure 5 and the previous definitions for the normal vector (see 
Equation (54)) allows the heat flux normal to a boundary to be given by, 

% - * x ( ^ ) • * , ( " ^ ) • 

As in the case of the stress computations, the following finite element defin­
itions are required, 

T T = 0 T , 

T T 
x = N x ; y = N y , 
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as well as. 

1 
FT 

11 

•21 

l12 

22 

where J and F. . are defined in an analoaous manner to Equation (57). 
The above relations allow the flux components to be expressed by. 

"ITTyfn ^i~ ~ + Fi2 at - - J 
T T 

. / 30 30 
]JT( F21 ST" I + F22 3F" I 

(61) 

and the normal flux by a combination of Equations (61) and (60). The expres­
sions in Equation (61) may be evaluated at any point s , t within an element; 
the NACHOS program evaluates the heat flux values on the boundary of an 
element, midway between adjacent nodes. 

Plotting 
The NACHOS program contains a complete plotting package that allows finite 

element meshes, contour plots and time history plots to be constructed at the 
option of the user. Since the generation of the various types of plots follows 
standard procedures, no attempt will be made to describe those methods here. 

CONCLUDING REMARKS 

The present document has been designed to provide a moderately detailed 
description of the methods and numerical procedures employed in the finite 
element code, NACHOS. The material presented here is intended to serve as 
necessary background for the user of the NACHOS program. The detailed des­
cription of the input for NACHOS is described in Part II o£ this report. 
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The version of NACHOS described here represents the first iteration in 
the process of developing a general-purpose program for the solution of a clasr, 
of fluid dynamics problems. As the finite element methods applied here are 
still subjects of current research, it is anticipated that future versions of 
NACHOS will reflect development activities. 
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AFPENDIX A 
FINITE ELEMENT EQUATIONS 

The manipulations required to transform the field equations into a dis­
crete system are outlined in this section. Using the definition of the 
Galerkin procedure, Equation (10), and the finite element approximation, 
Equation (8), allows the following integral equations to be written: 

(Momentum) 

If T V"i< r <- x 3 ! 1 r r 3 ! 1 
[//*• dvJatT + [X ° ^ : TOJ d v > i - L/ v 1ST * d v j? 

r r 34 3 4 T "I r - 3* 3 4 T 

+ / V T ^ - - ^ - dV u. + / u T— -F^— d 
L y v » x j <>xj J 1 L. /v 3 x j a x i 

f p*g. dvl - I / pBg.49 dV 
Uv ~ x -I L-'v 1~~ 

+ / * T . . n . dA 

(A - j n J 

(7 " *ref> 

(Incomeressibility) 

(Energy) 

[fv I ^ d V ]? i " ° 

(Al) 

(A2) 

[/ v

0 Cp22T] d v £ + [fv *P°*\ S- d v]? + [/v

 k S- S" d v]l 

= [_^ 0S d V ] + [_£ Oq j n j dA] . (A3) 
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In arriving at the above equations, the Green-Gauss theorem has been used to 
reduce the second-order diffusion terms in the momentum and energy equations 
to first-order terms plus an area integral. The appearance of the area inte­
grals containing the applied surface stresses (tractions) and heat fluxes 
corresponds to the "natural" boundary conditions for the problem. 

Several terms in Eguations (Al) and (A3) contain the material properties 
u, k and 6, which are assumed to depend on the temperature. It has been found 
convenient in the present code to allow these properties to have a spatial var­
iation over each element. Thus, let y, k and 8 be approximated within each 
element by, 

vix^ = n (xi)u 

k(xi) = nT(xi)k 

B(xi) = n'i'(xi)e , (AO 

where n is a vector of interpolation functions and the u, k and 6 are vectors 
of nodal point material property quantities. Since the temperature is also a 
nodal point quantity, the above form allows the values of g, k and g to be 
evaluated in a straightforward manner. 

Once the form of the interpolation functions *, 0, HI and n is specified 
the integrals defined in Equations (Al) through (A3) may be evaluated to produce 
the required coefficient matrices. Combining the momentum equations and the 
incompressibility constraint into a single matrix equation produces a system 
of the form: 
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M O O 
* sa =: 

0 M O 
as ft a 

.0 0 0_ 
as ft * 

rSi (Si» + S2(lf2» 

S l ^ l ' + » 2 ( V 

2 h l + 522 

-Q 

12 

T 

.21 

2522 + hi -Q-. I? 

- I I 

• ! i 

(A5) 

The energy equation has the form, 

Hi*} + b i ' s i ' + ^vlhl + [hi + h 2]{j( = tef • 
The coefficient matrices shown in Equations (A5) and (A6) are defined by, 

M = / p4>*T dV ; 

r T a * ! 
C. (u. ) = / pt^U. -5— dV ; 
» a - 1 y y -"• ~ i 

r T 3* 3» T 

- 3* T 

(A6) 

dV ; 

dV 

(A7) 

(A8) 

(A9) 

(A10) 

F. = f p*g. dV - f pnTeg.*0T dV (T - T .} + f »T. .n. dA ; (All) 

N = /" pC 
* ./v 

_00 T dV (A12) 



50 3 0 T 

^ i i = J 1 T k y ^ ^ - dV ; (All) 

G = / OS dV + / " G q . n . 
- ' V - . /A ~ 3 3 

dA . (Al r>) 

L i q u a t i o n s (A5) and (A6) may b e w r i t t e n s y m b o l i c a l l y a s , 

MV + C ( u ) - V + KV = F(T) , (A16) 

w i t h , 

NT + D ( u ) - T + L-T = G , (A17) 
a s - a« - - w - — 

T 
u = ( u 1 , u 2 ) , 

a n d , 

V T = (u , , u , , P) 
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APPENDIX B 
EVALUATION OF MATRIX COEFFICIENTS 

As a result of the manipulations described in Appendix A, the basic field 
equations were transformed into a set of matrix equations. The coefficients of 
the various element matrices can be expressed as spatial integrals of various 
interpolation functions and their derivatives (see Equations (A7)-(A15)). The 
present section describes the method of evaluation for these coefficients. 

For purposes of discussion consider the evaluation of a typical diffusion 
term from the momentum equation (Equation (A9)) for a planar quadrilateral 
element. The matrix coefficients are given by, 

f T a* a* T 

K~„ = I 1 U TCT UTT- dV , (Bl) Jxy - Jv 2 « 35 ay 

where 4 and n are interpolation functions given by Equations (A14) and (A15), 
u is a vector of nodal point quantities (viscosity values), and V is the volume 
of the element. For a planar element, 

or from Equation (19), 

dv = dx dy 

dV = det[j] ds dt , (B2) 

where s and t are the normalized coordinates for the element. From Equations 
(17) and (18), the derivatives of the interpolation functions can be expressed 
as. 
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(B i ) 

whcro, 

22. det[j] [F 2 1 

(Bl i 

and. 
T T 

3N y !S x at 

T T 
9N y SN x .- F „ = - 5 — (311 Is ' 22 3s 

det[j] = F l l . F 2 2 - F 1 2-F 2 1 

where N may be either • (isoparametric element) or n (subparametric element). 
Substituting definitions (B2)-(B5) into (Bl) yields, 

+ 1 .. +1 m , 3* 34 
/

x r T / ° ° \ / * - ds dt 1 
., J _x 3 M F 1 1 T i + F12 3t)( F2l3S- + F22 3 t - ^ y , J 

Similar procedures may be carried out for the other terms in the matrix 
equations (Equations (A7)-(A15)), as well as other element geometries such as 
the triangle. When considering an axisymmetric element, the definition of the 
elemental volume is modified to, 

dv = r de dr dz = r d9 det[j] ds dt . (B7) 

The axisymmetric equivalent of Equation (B6) is then. 
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2TT , .+1 „ -"-1 m ; 34> 34 
p 1. + p —H 

11 3& 12 3 t j « = L L /., =M 
T T 

/ 3 * 3 * \ T H rt*-
F9i si~ + F,- ^ - (N r)- 5- w- JC . (B8) 

\ 21 3s 22 3t / - ~ det(-j-J 

where the radius, r, has been interpolated according to the parametric concept 

given in Equation (16). The axisymmetric form of the field equations introduces 

several additional matrix terms not given in Equations (A7)-(A15), however, all 

are treated in a manner analogous to Equation (B8) . 

An examination of the definite integrals given by Equation (B6) or (B8) 

shows that the integrand is a rational function of the s, t coordinates. The 

evaluation of these integrals is carried out in the NACHOS program by use of a 

numerical quadrature procedure. Expressing a generalized definite integral by, 

1 .1 
f(s, t) ds dt , -LL 

the numerical quadrature algorithm is given by, 

LI/.!f(s' * > d s d t • £ Z) w ( s i - *J ) , (B9) 
_, J- j J- j 

i=i 5=T 
where the weighting coefficients H., H- and the abscissae values s., t. depend 

on the particular quadrature formula used. The NACHOS program uses a 3 x 3 

(i.e., n = 3) Gauss formula for the evaluation of matrix coefficients for 

quadrilateral elements. Matrix coefficients for triangular elements are 
19 evaluated using a seven point quadrature scheme developed by Hammer, et al. 
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APPENDIX C 
SLIP BOUNDARY CONDITIONS 

A boundary condition that allows a viscous fluid to flow freely (slip), 
parallel to a given boundary, is quite useful in some modeling applications. 
The numerical implementation of the slip condition is different than most 
"essential" boundary conditions since it specifies a relationship between tv. 
dependent variables (velocity components) rather than a specific boundary 
value. 

Consider the boundary geometry shown in Figure 6 where u and u are the 
local velocity components tangent and normal to the boundary, u. and u_ are 

v. y 
the local velocity components in the x, y coordinate system and a is the lc-il 
angle betwen the x coordinate direction and the tangent to the boundary. The 
slip boundary condition provides that the fluid velocity normal to the bounriar; 
is zero, while the tangential velocity is unconstrained. Since the numerical 
computations are carried out in terms of velocity components in the coordinate 
directions, a suitable constraint condition in terms of u and u is required. 

The tangential velocity can be expressed by, 
u. = u cos a + u sin a . (CI) 
t x y 

The normal velocity is set to zero and thus need not be written. Equation 'CI! 
may be transformed back into x, y components by, 

u = u • cos a , 

u = u • sin a , (C2) 
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N 
y 

2 cos a 

sin a • cos a 

sin a • cos a J"* (C3) 

where the barred components in Equations (C2) and (C3) represent x, y velocity 
components that have been modified to account for the slip boundary condition. 

The constraint matrix in Equation (C3) is used to modify the appropriate 
coefficients of the equations in the assembled matrix system, e.g., Equation 
(35) . 

- 1 

FIGURE 6 
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APPENDIX D 
TINE INTEGRATION METHOD 

The time integration method to be considered here is a modification of 
the basic Crank-Nicholson algorithm. The nonlinear nonentur. Equation (35) r.,v/ 
be evaluated at time level n and time level n + 1, 

MV n + C(u n)V n + KV n = F n , (Dl; 

M V n + 1 + C(u n + 1)V n + 1 + K V n + 1 = F n + 1 . (D2) 

By an averaging process, Equations (Dl) and (D2) nay be combined to provide an 

equation at the mid-point of the time interval, At. Thus, 

(D3) 

V a = (V n + 1 + Vn)/2 , 

V a = (V n + 1 + Vn)/2 , 

a , n+1 n, ,,, u = (u + u )/2 , 

F a = (F n + 1
 + Fn)/2 

The averaging process has assumed that V varies linearly over the interval At; 
therefore, V is constant over At and can be expressed by, 

V a = v n + 1 = V n = (V n + 1 - Vn)/At . (D4) 
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Substituting Equation (D4) into (D3) and using the definition of V allows 
Equation (D3) to be rewritten as, 

xr- MV a + C(u a)V a + KV a = F a + — Mv" , (D5) 

with, 

y a = (V n + 1 -r Vn)/2 . 

Equation (D5) is a nonlinear algebraic equation system. To reduce the cost of 
the integration procedure, a quasilinearization process can be applied to 
Equation (D5) to yield, 

Jr- MVa + C ( u n ) V a + KV a = F a + ^ 7 MVn . (D6) 
< l t as-* * - - a i~ - flU SB~ 

Equation (D6) is the integration algorithm presently available in NACHOS. 
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