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The past year has seen significant progress in algorithms and software for the solution of large-
scale sparse systems of equations, least-squares problems, and optimization problems on advanced
distributed-memory parallel machines. The progress made to date is desciibed below; together
‘with my students and colleagues, I am continuing to pursue several research issues on these topics.

1. Large-scale linear systems. In this area, we focused on three problems: the computation
of good orderings for solving sparse systems of equations, algorithms and software for factoring
sparse matrices on distributed-memory multiprocessors, and algorithms for solving sparse triangular
systems on highly parallel machines.

1.1. Spectral nested dissection orderings. In joint work with my Ph.D. student Lie Wang
and Horst Simon (NASA Ames) [13], we considered an algebraic approach to computing good
parallel orderings for the factorization of large, sparse, symmetric positive definite matrices. In this
approach, we use the adjacency graph of the matrix to form a matrix called the Laplacian matrix,

" and then use information about a particular eigenvector to compute a separator in the graph.
This approach is then recursively employed to compute spectral nested dissection orderings. Our
results on very large problems (with tens of thousands of unknowns) show that this approach is very
successful in computing orderings that have better parallelism than the currently available methods
such as minimum-degree and earlier variants of nested dissection. The new spectral orderings were
used to compute the matrix factorizations on a Cray Y-MP/8 much faster than with minimum-
degree and other orderings. Currently we are working on an efficient implementation of spectral
nested dissection algorithm for the Cray; there have been several requests for this code from several
groups of researchers, and we intend to make our software available to them. Lie presented this
work at a ‘Parallel Circus’ organized by Professor Gene Golub (Stanford) and Dr. Esmond Ng at
the Oak Ridge National Labs in Nov '91.

I spent the months of Oct and Nov '91 at the Institute of Mathematics and its Applications
(IMA) at the University of Minnesota, at their invitation. While there, together with Professor
Bojan Mohar of Ljubljana (formerly Yugoslavia), I used the spectral approach to design and analyze
the performance of an algorithm for reducing the envelope size of a sparse matrix. This problem is
important in several structural engineering codes, where envelope methods are uted to solve large
systems of equations. We showed that the Laplacian matrix could be used to greatly reduce the
size of the envelope, and thereby the storage and arithmetic work required for the solution. This
work (6] is being written up now. (The other work I performed while there will be described in the
appropriate subsections below.)

1.2. Parallel Multifrontal factorization. The multifrontal method is known to be an ef-
ficient method for computing the Cholesky factorization of sparse matrices on vector and parallel
computational environments, My Ph.D. student Chunguang Sun (now a postdoc at the Advanced
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Computing Research Institute, Cornell University) investigated several issues in producing an ef-
ficient implementation of the multifrontal method on the iPSC/2 and iPSC/850 hypercubes. We
used a data structure called the clique tree (which we had previously studied-—see [5, 14]) to or-
ganize the computation using efficient dense matrix kernels, and designed a proportional mapping
algorithm to map computational subtasks to the processors. We reported the first set of results on
parallel execution times for irregular sparse systems for the hypercube machines, and efficiencies
were comparable to the results obtained for the model regular grid problem. This work has bean
written up and submitted for publication {15, 16, 19). We intend to make this software available
for public use since we have received several requests for it. Chunguang described this work at the
International Conference on Industrial and Applied Mathematics, Washingtoa D. C. in July and
at the SIAM linear algebra meeting at Minneapolis in Sep '91.

1.3. Highly parallel triangular solution. On massively parallel machines such as the Con-
nection Machine, a bottleneck in the parallel solution of linear systems is the triangular solution
part, since O(n?) floating point operations are performed on O(n?) elements. In the situation when
the system involves multiple right-hand side vectors, a partitioned inverse approach can be used
to significantly improve the parailelism by replacing triangular solutions by means of a sequence
of matrix-vector multiplications. By minimizing the number of matrix-vector multiplications, we
can obtain an algorithm for solving the triangular system efficiently in parallel on massively par-
allel machines. Together with Professor F. Alvarado (Wisconsin) we [9] designed a fast algorithm
to reduce the number of matrix-vector multiplications in this approach when the input matrix is
symmetric positive definite. This algorithm was faster by more than a hundred fold on a collection
of problems over a previous algorithm [1]; it has an even greater edge in terms of auxiliary stor-
age. This program is now being used in a software package called the Sparse Matrix Manipulation
System (SMMS) for applications in Power Engineering,.

Recently, with Barry Peyton (Oak Ridge National Labs) and a graduate student Xiaoqing Yuan
[7], I was able to generalize the above problem to reduce the numbet of matrix-vector multiplications
even further. This work has necessitated the development of the theory of a class of orderings of
chordal graphs called transitive elimination orderings. Currently we are writing up this work; soon
we expect to implement the new algorithm to study the gains it might bring.

I talked about this work at the SIAM Applied Linear Algebra meeting at Minneapolis in Sep
'91 and at the IMA, University of Minnesota in Nov '91.

2. Least-squares problems. In this area, we worked on two problems: developing a parallel
algorithm for solving the least-squares problem on a hypercube, and the correct structure prediction
of the orthogonal factors of a sparse matrix.

2.1. Structure of orthogonal factors. A direct method for the solution of least-squares
problems requires the computation of the orthogonal factors of the given sparse matrix. To do so
efficiently, we require data structures that store only the nonzeros in the factors before the numerical
factorization is computed. However, till last year, structure of sparse orthogonal factors could be
correctly predicted only for a subset of matrices which possessed a property called the strong Hall
property. Last year, Hare, Johnson, Olesky, and van den Driessche showed how the structures could
be predicted in the absence of this property, but they could not show that the predicted structures
were the best possible. In [8], I extended this work to show that the structures predicted were the
best possible, and developed algorithms for efficiently computing the data structures of the factors.
An important consequence of this work is that it makes it possible to design efficient algorithms for
orthogonal factorization with pivoting for rank-deficient and ill-conditioned problems. We expect to
soon provide an implementation of such an orthogonal factorization algorithm since rank-deficient
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problems form an important class of least-squares problems. I talked about this work at the IMA
workshop on Sparse Matrix Algorithms in Minneapolis in Oct ’91.

2.2. Parallel sparse orthogonal factorization. The development of parallel algorithms
for computing the sparse orthogonal factorization has lagged behind the development of Cholesky
factorization algorithms due to the greater difficulties associated with the former. My Ph.D. stu-

dent, Padma Raghavan, (now a postdoc with Professor Mike Heath at the University of Illinois),

and I developed a parallel sparse orthogonal factorization algorithm for the iPSC hypercube. Our
algorithm uses the multifrontal idea for computing the factorization by means of a sequence of
merges involving dense triangular matrices. The arithmetic cost of the algorithm is low because
row-oriented Householder transformations are used to perform the numerical computations, and
the communication costs represent a lower order term than the arithmetic cost. Our implementa-
tion of this algorithm performed well on the ipSC hypercube, and good speed-ups (comparable to
Cholesky factorization) were ol >rved.

Several areas for improvement of the algorithm remain. An important concern is reducing the
number of messages sent during the factorization, since the high start-up costs of sending messages
in currently available hypercubes demand that this number should be low. To achieve this, a hybrid
of Givens and Householder transformations may be necessary.

Padma completed her thesis (18] last year, and this work is currently being written up. She
talked about this work at the International Conference on Industrial and Applied Mathematics at
Washington, D. C. in July '91.

3. Numerical Optimization. A central problem is the solution of large-scale numerical opti-
mization problems is computing a sparse basis for the null space of 4 large, sparse, underdetermined
matrix, A theoretical study of the sparse null space basis problem was made in [3, 4], and then
algorithms for computing null space bases were designed and implemented in [17]. These algo-
rithms compute a basis by successively computing null vectors which are linearly independent of
previously computed null vectors. A fundamental problem associated with computing a sparse
null space basis is identifying a condition on the zero-nonzero structure which would gnarantee the
linear independence of the computed null vectors. This was achieved in [4, 17] by restricting the
basis to have an embedded identity or upper triangular matrix.

An important open question in this work was whether this restriction was unnecessarily strong.
In recent work [2] with Professors Richard Brualdi (Wisconsin-Madison) and Shmuel Friedland
(Nlinois, Chicago), I have been able to characterize the structure of sparsest bases of dense un-
derdetermined matrices in terms of a condition on the zero-nonzero structure of the basis. This
work was also performed while I was visiting the IMA, University of Minneapolis. This problem
turned out to be surprisingly difficult, and we had to employ techniques from algebraic geometry
and multilinear algebra to solve the problem. We are currently trying to extend these results to
the sparse case. Once this is done, I will work on the problem of computing sparse null space bases
which are well-conditioned. This will make use of the recent work on orthogonal factorization with
pivoting.
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employees, makes any warranty, express or implied, or assumes any Jegal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparutus, product, or
ptocess disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any zgency thercof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or sny agency thereof,
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