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The pa_t year ha_ seen significant progress in algorithms and software for the solution of large-
: scale sparse systems of equations, least-_quares problems, and optimization problem:l_ on advanced
_. distributed-memory parallel machines, The progress made to date is desc,'ibed below; together
| with my students and colleagues, I am continuing to pursue several research issues on these topics,

,- 1, Large-scale linear systems• In this area., we focused on three problems: the computation

of good orderings for solving sparse systems of equations, algorithms and software for factoring
| sparse matrices on distributed.memory multiprocessors, and algorithms for solving sparse triangular
J• systems on highly parallel machines.
!

i I,I. Spectralnested dissectionorderings.Injointwork withmy Ph.D,studentLieWang

i, and Horst Simon (NASA Ames) [13], we considered an algebraic approach to computing goodparallel orderings for the factorization of large, sparse, symmetric positive definite matrices. In this

i the of the matrix form matrix called the matri×,approach, we use adjacency graph to Laplaciana

I! and then use information about a particular eigenvector to compute a separator in the graph.
3

i_ This approach is then recursively employed to compute spectral nested dissection orderings, Our
= results on very large problems (with tens of thousands of unknowns) show that this approach is very

| successful in computing orderings that have better parallelism than the currently available methods

such as minimum-degree and earlier variants of nested dissection. The new spectral orderings wereused to compute the matrix factorizations on a Cray Y-MP/8 much faster than with minimum-
|. degree and other orderings. Currently we are working on au efficient implementation of spectral_m

! nested dissection algorithm for the Cray; there have been several requests for this code from several

| groups of researchers, and we intend to make our software available to them. Lie presented this
work at a 'Parallel Circus' organized by Professor Gene Golub (Stanford) and Dr. Esmond Ng at

the Oak Ridge National Labs in Nov '91.
I spent the months of Oct and Nov '91 at the Institute of Mathematics and its Applications

-- (IMA) at 'the University of Minnesota, at their invitation, While there, together with Professor

e Bojan Mohar of Ljubljana (formerly Yugoslavia), I used the spectral approach to design and analyze
° the performance of an a.lgcJrithm for reducing the envelope size of a sparse matrix. This problem is

-_" important in several structural engineering codes, where envelope methods are ured to solve large
._ systemsofequations.We showed thattheLaplacianmatrixcouldbe usedtogreatlyreducethe

size of the envelope, and thereby the storage and arithmetic work required for the solution. This
_- work [61 is being written up now. (The other work I performed while there will be described in the
: appropriate subsections below.)

- 1,2. Parallel Multifrontal faetorlzation. The multifrontal method is known to be an ef-

4.-= ficient method for computing the Cholesky factorization of sparse matrice_ on vector and parallel

-_ computation_ environments. My Ph.D. student Chunguang Sun (now a postdoc at the Advanced
!
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Computing Kesearch Institute, Cornell University) investigated several issues in producing an ef-
ficient implementation of the rnultifrontal method on the iPSC/2 and iPSC/8_0 hypercubes. We

used a data structure called the clique tree (which we had previously studied-i-see [5, 14]) to or-
ganize the computation using efficient dense matrix kernels, and designed a prDportional mapping

algorithm to map computational subtasks to the processors. We reported the fiirst set of results on
parallel execution times for irregular sparse systems for the hypercube machines, and efficiencies
were comparable to the results obtained for the model regular grid problem. This work has been
written up and submitted for publication [15, 16, 19]_ We intend to make th;s software available
for public use since we have received several requests for it. Chunguang described this work at the
International Conference on Industrial and Applied Mathematics, Washington D. C. in July and

at the SIAM linear algebra meeting at Minneapolis in Sep '91.

1.3. Highly parallel triangular solution. On massively parallel machines such as the Con-
section Machine, a bottleneck in the parallel solution of linear systems is the triangular solution

part, since O(n 2) floating point operations are performed on O(n r_)elements. In the situation when.
the system involves multiple right-hand side vectors, a partitioned inverse agproach can be used

to significantly improve the parMlelism by replacing triangular solutions by means of a sequence
of matrix-vector multiplications. By minimizing the number of matrix-vector multiplications, we
can obtain an algorithm for solving the triangular system efficiently in parallel on massively par-

allel rnachines. Together with Professor F. Alvarado (Wisconsin) we [9] desi_.;ned a fast algorithm
to reduce the number of matrix-vector multiplications in this approach wheJl the input rnatrix is

symmetric pof_itive definite. This algorithm was faster by more than a hundred fold on a collection
of problems over a previous algorithm [I]; it has an even greater edge in terms of auxiliary stor-
age. This program is now being used in a software package called the Sparse Matrix Manipulation

System (SMMS) for applications in Power I_3ngineering.
Recently, with Barry Peyton (Oak Ridge National Labs) and a graduate student Xiaoqing Yuan

[7], I was able to generalize the above problem to reduce the number of matrix-vector' multiplications

i even further. This work has necessitated the development of the theory of a class of orderings of_. chordal graphs called transitive elimination orderings. Currently we are writing up this work; soon

i we expect to implement the new algorithm to study the gains it might bring.
I talked about this work at the SIAM Applied Linear Algebra meeting at Minneapolis in Sep

'91 and at the IMA, University of Minnesota in Nov '91.
J

i 2. Least-squares problems. In this area, we worked on two problems: developing a parallelalgorithm for solving the least-squares problem on a hypercube, and the correct structure prediction

_ of the orthogonal factors of a sparse matrix.

2.1. Structure of orthogonal factors. A direct method for the solution of least-squares

problems requires the computation of the orthogonal factors of the given sparse matrix. To do so
efficiently, we require data structures that store only the nonzeros in the factors before the numerical

._ factorization is computed. However, till last year, structure of sparse orthogonal factors could be

_, correctly predicted only for a subset of matrices which possessed a property called the strong tlall

property. I, ast year, Hare, Johnson, Olesky, and van den Driessche showed how the structures could
_- be predicted in the absence of this property, but they could not show that the predicted structures

were the best possible. In [8], I extended this work to show that the structures predicted were the

_ best possible, and developed algorithms for efficiently computing the data structures of the factors.
An important consequence of this work is that it makes it possible to design efficient algorithms for
orthogonal factorization with pivoting for rank-deficient and ill-conditioned problems. We expect to

soon provide an implementation of such an orthogonal factorization algorithm since rank-deficient
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problems form an important class of least-squares problems. I talked about this work at the IMA

workshop on Sparse Matrix Algorithms in Minneapolis in Oct '91.

2.2. Parallel sparse orthogonal factorization. The development of parallel algorithms
for computing the sparse orthogonal fa.ctorization has lagged behind the development of Cholesky
factorization algorithms due to the greater difficulties associated with the former. My Ph.D. stu-

dent, Padma Raghavan, (now a postdoc with Professor Mike Heath at the University of Illinois),
and I developed a parallel sparse orthogonal factorization algorithm for the iPSC hypercube. Our
algorithm uses the multifrontal idea for computing the factorization by means of a sequence of
merges involving dense triangular matrices. The arithmetic cost of the algorithm is low because

row-oriented ttouseholder transformations are used to perform the numerical computations, and
the communication costs represent a lower order term than the arithmetic cost. Our implementa-
tion of this algorithm performed well on the ipSC hypercube, and good speed-ups (comparable to

Cholesky factorization) were of _rved.
Several areas for improvement of the algorithm remain. An important concern is reducing the

number of messages sent during the factorization, since the high start-up costs of sending messages
in currently available hypercubes demand that this number should be low. 2'o achieve this, a hybrid

of Givens and Householder transformations may be necessary.
Padma completed her thesis [18] last year, and this work is currently being written up. She

talked about this work at the International Co,fference on Industrial and Applied Mathematics at
" WasMngton, D. C. in July '91.

3. Numerical Optimization. A central problem is the solution of large-scale numerical opti-
c. mization problems is computing a sparse basis for the null space of a large, sparse, underdetermined

matrix. A theoretical study of the sparse null space basis problem was made in [3, 4], and then
=ml

algorithms for computing null space bases were designed and implemented in [17]. These algo-
l rithms compute a basis by successively computing null vectors which are linearly independent of

I previously computed null vectors. A fundamental problem associated with computing a sparsenull space basis is identifying a condition on the zero-nonzero structure which would guarantee the
linear independence of the computed null vectors. This was achieved in [4 17] by restricting the

Q
.i basis to have an embedded identity or upper triangular matrix.

-i_ An important open question in this work was whether this restriction was unnecessarily strong.
II In recent work [2] with Professors Richard Brualdi (Wisconsin-Madison) and Shmuel Friedland

I (Illinois, Chicago), I have been able to characterize the structure of sparsest bases of dense un-derdetermined matrices in terms of a condition on the zero-nonzero structure of the basis. This

work was also perforlned while I was visiting the IMA, University of Minneapolis, This problem
=I turned out to be surprisingly difficult, and we had to employ techniques from algebraic geometry

and multilinear algebra to solve the problem. We are currently trying to extend these results to

the sparse case. Once this is done, I will work on the problem of computing sparse null space bases
- which are well-conditioned. This will make use of the recent work on orthogonal factorization with

_._ pivoting.
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DISCLAIMER

i" This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the Unite.<;States Government nor any _.gencythereof, nor any of their

+II employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, t._omp!eteness,or usefulness of any information, apparatus, product, or

i process di_losed, or represents that its use would not infringe privately owned rights. Refer-
• enc_ herein to any specific commercial product, process, or service by trade name, trademark,
=-. manufacturer, or otherwise dots not nccvssarily constitute or imply its endorsement, recom.
i mendation, or favoring by the United States Government or any agency thereof. The views_a

and opinions of authors expresscA hcrein do not ne.cessarily state or reflect those ot' the
=--•- United Stat¢_ Government or any agency thereof.II
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