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Migration error in transversely isotropic media
with linear velocity variation in depth

Ken Larner and Jack K. Cohen

ABSTRACT

Given the sensitivity of imaging accuracy to the velocity used in migration,
migration founded (as in practice) on the erroneous assumption that a medium is
isotropic can be expected to be inaccurate for steep reflectors. Here, we estimate
errors in interpreted reflection time and lateral position as a function of reflector
dip for transversely isotropic models in which the axis of symmetry is vertical and
the medium velocity varies linearly with depth. We limit consideration to media
in which ratios of the various elastic moduli are independent of depth.

Tests with reflector dips up to 120 degrees on a variety of anisotropic media
show errors that are tens of wavelengths for dips beyond 90 degrees when the
medium (unrealistically) is homogeneous. For a given anisotropy, the errors are
smaller for inhomogeneous media; the larger the velocity gradient, the smaller the
errors. For gradients that are representative of the subsurface, lateral-position er-
rors tend to be minor for dips less than about 60 degrees, growing to two to five
wavelengths as dip passes beyond 90 degrees.

These errors depend on reflector depth and average velocity to the reflector
only through their ratio, i.e., migrated reflection time. Migration error, which is
found to be unrelated to the ratio of horizontal to vertical velocity, is such that
reflections with later migrated reflection times tend to be more severely over-
migrated than are those with earlier ones.

Over a large range of dips, migration errors that arise when anisotropy is
ignored but inhomogeneity is honored tend to be considerably smaller than those
encountered when inhomogeneity is ignored in migrating data from isotropic,
inhomogeneous media.
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INTRODUCTION

Difficult and unreliable as it is to measure anisotropy in the field, and as infre-
quently as it is done, it is nevertheless currently recognized that the Earth’s subsur-
face is anisotropic—often, considerably so. For example, a frequently used measure
of anisotropy for p-waves, the ratio of velocity in the horizontal direction to that in
the vertical direction, is commonly found to be 1.05 to 1.1, and is often as large as
1.2 and higher (Seriff, 1986). For typical seismic wavelengths, the anisotropy may be
either an intrinsic property of the rocks or the result of thin layering of different rock
types. The distinction here is immaterial—the essential result is that waves travel
with different speeds in different directions.

Given the general increase in wave speed with depth in the subsurface, reflections
from steep interfaces—dips of 90 degrees and beyond—involve raypaths that sweep
through a wide range of angles from vertical. Consequently, for inhomogeneous,
anisotropic media, the energy propagates at different speeds due not only to variation
in velocity with position but also to its variation with direction of propagation. Given
the sensitivity of imaging accuracy to the velocity used in migration and given that
migration, in practice, is founded on the assumption that the subsurface is isotropic,
it is useful to analyze the positioning errors that arise from using migration algorithms
that assume isotropy when the subsurface medium is not isotropic. This issue should
be particularly relevant to the use of large-dip algorithms such as those that use
turning waves (Hale, Hill, and Stefani, 1991) to image flanks of overhanging salt
domes.

While anisotropy exists for both p-waves and s-waves, and s-wave anisotropy has
been given the greater attention in the literature, most imaged reflection seismic data
involve p-waves, and that is what we treat here. Moreover, although anisotropy can
take on all manner of complexity, we assume the relatively simple, but plausible, form
of transverse isotropy with a vertical axis of symmetry. That is, the velocity of plane
waves (i.e., phase velocity) varies only with angle from the vertical; velocity is the
same in all azimuthal directions.

Also, since the Earth’s subsurface is not homogeneous (otherwise, among other
things, turning waves would not exist), studies of migration error restricted to aniso-
tropic medels that are homogeneous can yield conclusions that, as we shall see, are
greatly misleading. Again, actual subsurface inhomogeneity can be complicated and
endlessly varied, so we limit consideration to a particularly simple form—media in
which the pertinent elastic moduli vary only with depth z. Morecver, the allowed spa-
tial variation will be such that ratios among the moduli remain independent of depth.
Cerveny (1989) refers to such media as factorized anisotropic inhomogeneous (FAI),
and shows simplifications that arise when ray tracing in FAI media. Furthermore,
following Shearer and Chapman (1988), we gain considerable efficiency in ray-trace
modeling of traveltimes with our assumption that velocity variations are linear with
depth.
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Here, we do numerical studies of errors in interpreted reflection time and lateral
position as a function of reflector dip for models of the type described above. We treat
only post-stack migration, and do so by considering only errors in the imaged position
of sloping reflections for media with no lateral velocity variation. Those positioning
errors are estimated from analysis of diffraction traveltime curves obtained by ray
tracing; thus, they rely solely on traveltime information, ignoring amplitude and
phase contributions to imaging.

Anisotropy and inhomogeneity can have a pronounced influence on the shape of
diffraction curves, as evidenced by the comparison of diffraction curves for four mod-
els shown in Figure 1. All four curves pertain to a scatterer at depth D = 1500 m,
beneath midpoint y = 0, in media having the same vertical average velocity from the
surface to the reflector. They differ in that the different subsurface models represent
the four combinations of homogeneous/inhomogeneous and isotropic/anisotropic me-
dia. Here and throughout this paper, the anisotropy is FAI transverse isotropy, with
vertical axis of symmetry. The two inhomogeneous models (solid curves) involve lin-
ear v(z), where v represents any of the velocity-equivalents of the four elastic moduli
describing p-wave behavior in a transversely isotropic medium.

For those models, the vertical p-wave velocity is given by
v(z) = vy + kz, (1)

with the gradient k = 0.6 s~1, and the vertical-direction velocity at the surface vg is
such that the vertical average velocity down to D = 1500 m is 3306 m/s, the value of
vertical velocity for Levin’s shale-limestone listed in Table 1. For the homogeneous,
transversely isotropic model, the four elastic moduli (A, C, F, and L, in the notation
of White [1983]) are those of the shale-limestone medium listed in Table 1. Actually
listed in the table are velocities associated with the various moduli (i.e., Vo = 1/C/p
—where p is bulk density—is the p-wave velocity in the vertical direction; V4 1s the
p-wave velocity in the horizontal direction; V, is the s-wave velocity in the vertical
direction; and Vy is a velocity-like quantity associated with the elasticity modulus F).
For the anisoiropic model with linear v(2), the moduli are such that their associated
average velocities between the surface and the scatter at depth are equal to their
constant-velocity counterparts in the homogeneous model.

In Figure 1, the curve for the homogeneous, isotropic model is a hyperbola, as ex-
pected, and the curves for the two inhomogeneous models are clearly non-hyperbolic,
with inflection points at midpoints beyond which reflections pertain to turning waves
(Hale et al., 1992). While the diffraction curve for the homogeneous, anisotropic
model differs from that for the homogeneous, isotropic one, it is not evident from
this figure whether or not the curve is hyperbolic. As it happens, it is not: a plot of
the instantaneous slope of the T? versus y? line indicates that, while the 72 versus
y? is almost straight, it is not strictly so. Instantaneous “stacking” velocity based on
the instantaneous slope of T?(y?) increases with increasing midpoint value y, from a
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Medium \/C'/p \/A/p \/F/p \/L/p
m/s | m/s | m/s | m/s
Berea sandstone 4206 | 4210 | 1961 | 2664
Shale-limestone 3306 | 3721 | 2076 | 1819
Cotton Valley shale | 4721 | 5320 | 3095 | 2890
Pierre shale 2202 | 2235 | 1803 969

Table 1. Velocity-type quantities related to the four elastic moduli that are pertinent
to p-waves in transversely isotropic media. The four media listed are the same as
those studied by Levin (1990).

value close to the velocity in the vertical direction at y = 0 to one that is close to
that for propagation in the horizontal direction as y/D becomes large.

It is not obvious that the differences seen in the curves of Figure 1 would give
rise to sizeable errors in migration when the wrong curve is used for the migration.
As we shall see, however, for reflections from steep reflectors (i.e., for regions of the
diffraction curves where y is large), the migration errors can be large—even tens of
wavelengths. As it happens, the largest errors arise when isotropy is assumed for
media that are both anisotropic and homogeneous, rather than inhomogeneous.

ERROR COMPUTATION

The quality of a migration algorithm is usually assessed by applying the algorithm
to synthetic and, ultimately, field data. Typical test data consist of reflections from
plane-dipping reflectors, diffractions from point scatterers, and impulses. With data
from plane reflectors, one measures the positioa of the migrated reflection relative
to its known true location; with diffractions, one qualitatively assesses how well or
poorly the diffractions collapse about the apex; and with impulses, one studies the
shape of the impulse response.

Here, we are less interested in the quality of a particular migration algorithm
than in errors that arise when the migration is based on an rrroneous assumption
(e.g., isotropy) about the velocity model. In the context of the  rchhoff-summation
view of migration, errors arise because the wrong diffraction - e is used to do the
migration: points on sloping reflections are migrated to the © g apex locations.

Consider migration of the schematic, zero-offset, sloping  ction sl -vn in Fig-
ure 2. In migrating the portion of the reflection in the vicinity of point (7', y), where
T is unmigrated reflection time, we first find the diffraction curve that is tangent
to the reflection at (T, y). If the velocity model is correct, migration will image the
point (T,y) at the correct migrated position (Tr,yn). Suppose, instead, that the

4
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Fic. 1. Diffraction curves T'(y), where T is two-way time between a surface source
at midpoint y and a scatterer at depth D = 1500 m beneath y = 0, for four related
media characterized by the same vertical average velocity. (a) transversely isotropic,

with linear v(z)—black solid, (b) homogeneous, transversely isotropic—black dash,
ﬁlgzl isotropic with linear v(z)—gray solid, and (d) homogeneous, isotropic—gray dash.
e latter curve is the only hyperbolic one.

wrong velocity model is used for the migration. Then, after migration, as depicted in
Figure 3, the point (T, y) goes to the erroneous position (T, y.) instead of to (T, Ym)-

Note that the point (T, y.) is at the apex of the erroneous diffraction curve that
is tangent to both the correct diffraction curve and the reflection at the unmigrated
position (T, y). For the numerical estimates of migration error as a function of reflector
dip, we do not actually compute reflections from plane-dipping reflectors. Instead,
we work with just diffraction curves, recognizing that any point along a diffraction
curve may be associated with a dipping reflector whose reflection is tangent to the
diffraction curve at that point. The estimation of migration error involves three steps:

1. Compute diffraction curves associated with a buried point scatterer (such as
those shown in Figure 1).
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midpoint (y) ————

reflection

migration diffraction
curve

F1G. 2. Schematic time section showing the 1clationship between the unmigrated
position (T, y) on a sloping reflection and the “osition (T},,ym) to which it should
migrate. The migrated position is at the apex ot the diffraction curve that is tangent
to the reflection %slope = p) at the unmigrated position.

2. Estimate the erronenus position (T, v.) to which any given point on the true
diffraction curve for the anisotropic medium migrates when an algorithm that
erroneously assumes isotropy is used for the migration.

3. Estimate the error in interpreted temporal and lateral position of a migrated
reflection by determining the departures in position and time of the erroneously
migrated point from the correctly migrated reflection.

Computation of diffraction curves

While traveltime computation in inhomogeneous media generally first requires
computationally intensive numerical integration to obtain raypaths, such numericzc.l
integration can be averted for special classes of media. For example, in isotropic media
with constant gradient in velocity, raypaths are circular so that two-point ray tracing
and traveltime computation can be done analytically. Shearer and Chapman (1988)
have developed an efficient method for ray tracing in the type of media considered
here—FAI media with constant velocity gradient. For transversely isotropic media,
the core of their result is the remarkable property that raypaths simply are scaled,
rotated versions of the slowness curve, the curve that relates horizontal and vertical
slowness at any point in the medium.

With this observation, Larner (1992) shows that, when the axis of symmetry for
the transverse isotropy is parallel to the velocity gradient, two-point ray tracing can
be done by solving a quadratic equation for z? as a function of z2 followed by a
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reflection
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Fic. 3. Schematic time section showing the relationship between the unmigrated
position (T, y) on a sloping reflection, the position (T, Ym) to which it should migrate,

and the position (T.,.) at which it is actually imaged when the data are migrated
with an erroneous velocity function.

secant search to determine the ray parameter p;. As shown in Figure 4, (z,73) is
position along the raypath, where z3 is the coordinate in the gradient direction, with
73 = 0 being the line along which the linear velocity function is zero, and z, is the
coordinate in the orthogonal direction, such that z; = 0 at the ray’s turning point.
The coordinate z3 is just a translated version of the depth 2 obtained by rewriting
equation (1) as

where
T3=2+ —. (2)

Note, in Figure 4, that reflectors such as the one shown, in general are not per-
pendicular to zero-offset raypaths when the medium is anisotropic. For anisotropic

media, reflectors are orthogonal to the phase direction rather than the ray direction
(Byun, 1984).

Different solutions of the quadratic equation for z% give raypaths for p-waves
and for sv-waves (Larner, 1992). Here, we are interested in only the p-wave solu-
tions. Once the ray parameter is determined, numerical integration is still required
to obtain traveltime; Cerveny (1989), however, shows the form of the integrand to
be particularly simple, and the integration thus efficient, for the particular type of

7



Larner and Cohen Migration error '

t
|
|
|

:-/ (X-' =0, X3=0)

S e e e e TP PR x1-—-—>
/// E fVO/k
z= // E l,
ﬁ / ! »7
= ="~ zero-offset
§ (x4, X3) TR ray path
© / l
reflector — : turning point
A,
=== X

3

|

FIG. 4. Raypath in an FAI transversely isotropic, linear v(z) half-space, shown in
(z1,z3) coordinates. The medium’s surface, z = 0, is equivalent to z3 = v, /k. Also,
r; = 0 at the turning point. If this is a zero-offset raypath, then the line shown with
dip ¢ represents a hypothetical reflector; the solid portion of the raypath pertains to
a source-receiver location to the left of the reflector, and the dashed portion contains
a turning ray that would image the underside of the reflector from the right. Note
that the reflector is not perpendicular to the raypath except at the turning point.

/

anisotropic medium under consideration here. The procedure for computing T'(y;) at
uniformly sampled midpoint distances y; is described in Larner (1992). There, it is
also shown that, for zero-offset rays in media of the type studied here, reflector dip ¢
at any point (z,,z3) is given by

tan¢=_-a (3)

as indicated in Figure 4.

Estimation of erroneous migrated position (T, y.)

As illustrated in Figure 3, to find the erroneous migrated position (T.;,y.;) at
which a point (T}, y;) is imaged, we must find the diffraction curve that is associated
with the migration-velocity model and is tangent to the true diffraction curve T'(y) at
(T},y;)- Specifically, the erroneous diffraction curve should have slope p; at (Tj,y;),
where p; is computed as

_ T =Ty

’ Yi+1 — Yi-1
This would be no problem if the migration process were based on the assumption that
the medium were homogeneous and isotropic. In that case, the migration diffraction

8



Larner and Cohen Magration error

curve would be a hyperbola, given by
4(yj - yej)2
V2 '

where V,, is the migration velocity. Differentiating this equation gives the slope at
(1}9 y])

2 _ 2
T? =T +

or

Also, the erroneously migrated time would be given by
T; = Tjcos#b;,

where DV,

jVm
-5 (4)
Assume instead that the data are migrated with an algorithm that honors vertical
variation in velocity, but is founded on the assumption that the subsurface medium
is isotropic (e.g., the phase-shift method of Gazdag [1978]). Then, the depth z; of
the scatterer that would give rise to the migration diffraction curve with slope p;
at (Tj,y;) is unknown at the outset, and hence, the migration velocity required to
generate that migration diffraction curve is initially unknown.

sinf; =

To find that scatterer depth and associated velocity, we match the slopes of the
true and migration diffraction curves at the point (Tj,y;), as follows. Let the erro-
neous, migration diffraction curve be given by t(z), where, referring to Figure 3,

TEY—Ye (5)

is the migration distance. We assume that the velocity model used for migration is
isotropic, with velocity given by equation (1). That is, the velocity at any depth 2
is identical to the velocity in the vertical direction in the true, transversely isotropic
medium. (Below, we shall modify this assumption somewhat.) For such a medium,
raypaths are circles, and, using Slotnick (1986; equation (17), p. 237), the two-way
time ¢ between a surface point at midpoint y and a scatterer at depth (y,, z) is given
by

t = %cosh‘l(

k%22 + v? + v*(2)
2vpv(2)

= %cosh'l(ax2 + 8)

= %cosh‘1 n, (6)
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where
k2
« = 2'00’0()
e
- 2v0v()
n = aa:2+ﬁ=coshﬁ. (7)

2

Differentiating equation (6) gives the slope of the diffraction curve

dt dazx

p:dw_k\/ﬁz—_l‘ (8)

Given measurements of T; (= t) and p;, and assuming that the constants vy and & in
equation (1) are known, we eliminate z from equations (7) and (8). The result is a
quadratic equation for v(z;), whose appropriate solution is

vo(cosh & + sinh §y/1 — ¢?)

L) = , 9
v(z) 1+ g2sinh®6 (9)
where
5 = %
iU
g = %2. (10)

Once v(z;) has been determined, the depth z; is obtained from equation (1), z;
from equation (8), and y.; from equation (5). Finally, the vertical reflection time to
the scatterer is given by

(ZJ)
61—2/ v0+k:a_ log Vo an

Estimation of migration error

We have just seen how the erroneous migrated position (T;, y.;) is computed. In
addition, the correct position (T}n, ym) is known to be just the apex of the diffraction
curve (T}, y;) obtained by ray tracing in the FAI transversely isotropic medium. At
first thought, it might seem from Figure 3 that the sought-after errors in migrated
time and position are just (T, — T),) and (Y, — Ym), respectively (from here on, the
subscript j is dropped). While in a sense that is true, such measures will not suffice for
assessing errors in the positions of reflections that confront interpreters. Interpreters
rarely identify how individual points in data move when data are migrated. Instead,

10
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they generally focus attention on reflections that, if not planar, are often locally
approximately so.

Consider the sloping reflections in the schematic, migrated zero-offset section
shown in Figure 5a. In practice, the incorrectly migrated reflection through migrated
point (7T%.,y.) would be approximately parallel to the correctly migrated reflection
through (Ton,¥ym), as depicted in the figure. The quantities Ay and AT shown in
the figure are the measures of error that would be apparent to the interpreter. Note
that given (T.,v.) and (Tn,ym), Ay and AT are dependent on the slope p,, of the
migrated reflection. That is, one has to know, or estimate, p,, in order to compute
Ay and AT. This fact becomes obvious when Figures 5a and 5b are compared. Fig-
ure 5b depicts a situation where the apex positions (Te, ye) and (T, ym) are identical
to those in Figure 5a, but the slopes of the reflections differ greatly in the two figures.
Figure 5a might pertain to a reflector dip that is less than 90 degrees, and Figure 5b
to one that exceeds 90 degrees. As a result, the migration errors Ay and AT differ
considerably in the two figures.

The dependence of Ay and AT on the slope py, is readily seen in the geometry of
Figure 5. We have
T, -Tn

Pm
AT = —pnAy. (12)

Ay = (ye_ ym) -

So, these two interrelated measures of migration error can be fully estimated once
we know the slope p,, of the correctly migrated reflections. That slope is readily
computed from knowledge of v(z) and the reflector dip ¢. Such a reflector is depicted
in Figure 6. Also shown are vertical “paths” from two surface points separated by the
distance Ay down to the reflector. Migrated reflection time at the two surface points
is just the two-way time along these vertical paths. Locally, the migrated reflection
slope is taken as constant, given by
_ AT, dIn
Pm = Ay ~ dy
dT,, dz dT,,

-—d-;-@ = tan Td—z—

But, for any v(z) medium,

: do
Tm = 2/0 v(o)’
S0
iy 2
dz ~ v(z)’

11
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F16. 5. Schematic time sections showing the erroneously migrated (dashed) and
correctly migrated (solid) reflections through the erroneously and correctly imaged

positions (T,y.) and (Tpn,ym). The lateral error in imaged reflection position is Ay,
and the time error is AT. Figures 5a and 5b differ only in that the slope Pm Of the
migrated reflection differs in the two cases.

12
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midpoint —»

vz)

<— depth

F1G. 6. Schematic depth section showing a dipping reflector beneath a v(z? medium.
Migrated reflection times at two neighboring points on the surface are simply two-way
times along the vertical paths.

from which we get
_ 2tan¢

SO

(13)

Note that this result, which is familiar for homogeneous media, holds for any v(z)
medium, even a generally anisotropic one. For our error studies, then, we have all
the information required to compute the migration errors Ay and AT once we can
associate any point (T}, y;) along the true diffraction curve (for a scatterer at depth z)
with a reflector dip ¢;. That dip is available from the ray-tracing result, equation (3).

WHAT FORM OF VELOCITY TO USE FOR MIGRATION

Reiterating, our estimates of migration error come from relating the true diffrac-
tion curve (i.e., that for an FAI transversely isotropic medium with linear v(z) de-
peudence) to the diffraction curve associated with the time-migration process used.
Almost universally in practice, that migration process is based on the assumption
that the subsurface is isotropic and vertically inhomogeneous. As is known, if the
medium were homogeneous and isotropic, no issue would arise as to which form of ve-
locity to use in the migration—migration velocity = root-mean-square (rms) velocity
= stacking velocity (assuming horizontal reflectors) = medium velocity. Equally well
known, for vertically inhomogeneous, isotropic media, stacking velocity (obtained by

13
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T2 — X? analysis over a finite spreadlength .X') exceeds rms velocity, approaching it
as the spreadlength approaches zero. When the medium is anisotropic (even when it
is homogeneous), the situation becomes more complex.

Levin (1979) has shown that, in a transversely isotropic medium with vertical axis
of symmetry, stacking velocity for p-wave reflections from horizontal interfaces differs
from the vertical velocity, even in the limit as spreadlength X approaches zero. The
limiting stacking velocity can be larger or smaller than the vertical velocity, depending
on ratios among the four pertinent elastic moduli. Moreover, Thomsen (1986) shows
that, for so-called weak anisotropy, the relationship between these two types of velocity
is totally independent of the ratio of horizontal-direction velocity to vertical-direction
velocity, V4 /Vo—the most commonly quoted measure of degree of anisotropy. As we
shall see, this same discrepancy between zero-offset-limit stacking velocity and vertical
velocity in homogeneous media carries over into a difference between zero-offset-limit
stacking velocity and vertical rms velocity for inhomogeneous media.

Given this complexity, for studies of migration error and, indeed, when doing
migration in practice, which form of velocity should we use—vertical rms velocity,
stacking velocity based on finite spreadlength, or the limiting stacking velocity as
offset approaches zero?

Figure 7 shows computed lateral position errors Ay for reflector dip ranging from
0 to 120 degrees, for four different choices of migration velocity. Results are shown
for the shale-limestone and Cotton Valley shale tabulated in Table 1 (for all but the
shale-limestone, the quantities shown in Table 1 are computed from the parameters
of Thomsen [1986]). The media treated in Figure 7 have linear velocity increase with

depth, with vertical average velocity matching the Vo = {/C/p values in Table 1 (e.g.,
the vertical average velocity for the inhomogeneous shale-limestone medium is 3306
m/s). For these tests, the reflector depth is 1500 m, and the gradient £ = 0.6 s™! in
the vertical-velocity expression v(2) = vy + kz.

Not surprising, as seen in Figure 7, the position errors depend on the velocity
function used for the migration. For both the shale-limestone and Cotton Valley
shale, migration errors are smallest for the migration-velocity function v(z) that is
based on stacking velocity computed when the spreadlength is comparable to reflector
depth—a satisfying result since, in practice, velocity is most often estimated in this
way. From the figure, the poorest choice of velocity function for migration is that
based on the vertical rms velocity, such as might be obtained from sonic-log data.

Perhaps most striking in the Figure 7 is the dramatically anomalous error behavior
for the Cotton Valley shale when the migration velocity is based on the rms velocity.
For the shale-limestone, errors for stacking velocity approach those for rms velocity
as the spreadlength shrinks to zero. Such is not the case for the Cotton Valley shale.
This behavior for migration error is consistent with Thomsen’s (1986) predictions that
the small spreadlength stacking velocity for transversely isotropic media can depart
significantly from vertical velocity.

14
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FIG. 7. Position error Ay versus reflector dip for shale-limestone (top) and Cotton
Valley shale (bottom). For each, the reflector depth is D = 1500 m and the vertical
velocity gradient is k = 0.6 s™!. For the dashed curve, the v(z) velocity function
used for migration is derived from the vertical rms velocity to the reflector. For the
other three curves, the v(z) velocity function used for migration is derived from the
stacking velocity to a horizontal reflector at depth D, with different choices of ratio
of spreadlength to depth X/D used in the stacking-velocity computation.

15



Larner and Cohen

Mzgration error -

Medium ‘/A/VC %tack/‘/rms
X/D=10|X/D=0.5|X/D=0.1|Thomsen
Berea sandstone 1.001 1.01 1.02 1.02 1.02
Shale-limestone 1.126 - 1.06 1.02 1.00 1.60
Cotton Valley shale | 1.127 1.16 1.18 1.19 1.19
Pierre shale 1.015 1.04 1.05 1.06 1.06

Table 2. For the four media treated in this study, columns 3-5 list the ratio of stacking
velocity to vertical rms velocity for three values of the ratio of the spreadlength to
reflector depth. For comparison, column 6 contains the ratio of zero-offset stacking
velocity to rms velocity predicted by Thomsen (1986). Column 2 lists the ratio of
horizontal to vertical medium velocity—the most frequently quoted measure of degree
of anisotropy.

Table 2 gives a summary of the ratio Vyger/Vims measured in our studies with
transversely isotropic, linear v(z) media. For comparison are shown Thomsen’s predic-
tions, which were derived for homogeneous transversely isotropic media. The equality
of values in columns 5 and 6 of the table shows that Thomsen’s predictions extend to
inhomogeneous media. Moreover, also in agreement with Thomsen'’s predictions, note
the considerable differences between the values in column 6 for the shale-limestone
and Cotton Valley shale despite the fact that the ratios of horizontal to vertical ve-
locity for the two media (column 2) are nearly ident’cal.

In summary, based on the curves shown in Figure 7, along with those for the other
media studied (Berea sandstone and Pierre shale, not shown here), the migration-
velocity function that is derived from stacking velocity computed when the spread-
length is comparable to reflector depth yields the smallest of the errors. Thus, both
in accord with these results and mimicking common practice, the velocity function
that we use for all the migration-error tests below is based on stacking velocity (for
horizontal reflectors) with X/D = 1, and the migration action that we simulate fully
takes into account velocity variation with depth.

MIGRATION-ERROR RESULTS

Anisotropy versus inhomogeneity

Figure 8 shows position error Ay (top) and time error AT (bottom) as a function
of reflector dip ranging from 0 to 120 degrees for three different models, all of which
have properties related to those of the transversely isotropic shale-limestone listed in
Table 1. For all three curves, the reflector depth is 1500 m. The solid gray curves
pertain to a homogeneous medium with just the properties listed in Table 1. The solid
black curves are for a v(z) = v + kz medium with gradient k¥ = 0.6 s~!, and with v,
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such that the vertical average velocity to the reflector is 3306 m/s. Consider, first, just
the position errors. The gray curve exhibits large error for dips greater than about
60 degrees. Clearly, if we limited our analysis to just homogeneous media, we would
conclude that failure to take anisotropy into account would lead to migration errors
that are intoicrably large for steep reflectors. However, we find that the combination
of anisotropy and velocity variation with depth (solid black curve) leads to much more
acceptable errors—even for dips as large as 120 degrees. As we shall see below, in
some sense the shale-limestone is the most extreme of the four types of media studied
here. For the other inedia, the errors, even for the homogeneous models, are not
so large as those shown here. In all cases, nevertheless, errors are smaller for the
inhomogeneous models than for their (unrealistic) homogeneous counterparts.

Now, consider the dotted curve in the top part of the figure. This curve pertains
to an isotropic medium with v(z) identical to the vertical-velocity function in the
transversely isotropic shale-limestone. If we were to migrate data from such a medium
with an algorithm that honors the v(z) behavior, such as the phase-shift method of
Gazdag (1978) as extended for turning =vaves by Hale, et al. (1992), then we would
get near-zero error for all dips. The dotted curve, however, simulates errors that
would arise if the data were migrated with a Kirchhoff-type time-migration algorithm
(Schneider, 1978) that siiaplistically uses a hyperbolic diffraction curve based on the
stacking velocity. Such a limited algorithm is known to yield unacceptable errors for
steep reflectors; the dotted curve, then, shows the size of error that is corrected when
a phase-shift-type migration approach is used.

Stated differently, the dotted curve gives the errors when inhomogeneity is not
properly treated in the migration of an inhomogeneous, isotropic medium, while the
gray curve gives the errors when anisotropy is not taken into account in the migration
of a homogeneons, transversely isotropic medium with the shale-limestone properties.
Significantly, for dip less than about 60 degrees, anisotropy is the considerably less
serious issue.

Comforting as it may be that errors are not so large when the medium is both
inhomogeneous and anisotropic, we should still note that the errors for the poorly mi-
grated isotropic medium are correctable (with, for example, a phase-shift algorithm),
whereas those for the anisotropic medium would require that we have adequate in-
formation ~bout the four pertinent elastic moduli of the medium and that we use an
imaging algorithm that takes the anisotropy into account.

The time-error curves in the lower part of Figure 8 tell a comparable story, but
they also show what appears to be a disturbing instability near 90-degree dip. Ac-
tually, the behavior is not so troubling as it may appear. For a plane reflector near
vertical, a huge error in reflection time would not be noticeable to the interpreter
since the temporal period of migrated reflections becomes large without bounds as
dip approaches 90 degrees. Similarly, a seemingly large error Ay in lateral position
is inconsequential for small dip since the apparent wavelength in the lateral direction
becomes large as dip approaches zero. Whether it be time error or position error,
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F1G. 8. Position error Ay (top) and time error AT (bottom) versus reflecior dip for
three different cases related to the transversely isotropic shale-limestone. Solid black:
The actual medium is inhomogeneous with v(2) = vy + 0.6z and anisotropic; the
inhomogeneity is honored in the migration, and the plotted errors are due to neglect
of the anisotropy. Gray: The medium is the anisotropic shale-limestone, but now
velocity is constant; the plotted errors are again due to the neglect of anisotropy in
the migration. Dotted: Now the actual medium is isotropic but inhomogeneous, with
linear v(z), as above; the plotted errors are due to neglect of the inhomogeneity (e.g.,
migration is done with a Kirchhoff-type algorithm that uses hyperbolic diffraction
curves based upon stacking velocity).
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the interpreter will be concerned only with errors that are large relative to a period,
or wavelength, as the case may be. For that reason, henceforth, we shall study er-
rors normalized, as follows, so that they are expressed in terms of multiples of the
dominant period and wavelength in the migrated data.

Earlier, we saw that migration increases the slope of a reflection from p before
migration to p,, = 2tan¢/v(z), afterward. Migration also lowers frequencies such
that horizontal wavelength A is preserved. Consequently,

1
S\' = fmpm = fp, (14)

where f is frequency in the unmigrated reflection wavelet, and f,, is the frequency
after migration.

Subsequent position-error curves in this paper are plotted in terms of normalized
values given by

aj=5Y, (15)
Ad
where, from equation (14),
1
M= — 16
T fap (16)

is the horizontal wavelength after migration, corresponding to some assumed domi-
nant frequency f; in the unmigrated reflections.

If we similarly normalize time errors such that

AT = AT
Td
Td = Pm ’\da (17)
from equation (12) it follows that, simply,
AT = =Aj.

Note, that since p,, < 0 for dips exceeding 90 degrees, 74 as defined in equation (17)
is also negative for those large dips. This unusual choice, rather than defining 7, to be
always positive, is a convenience that ensures that the normalized time error is contin-
uous at 90-degree dip—indeed that it is just the negative of the normalized position
error. This being the case, henceforth we show all migration errors as normalized
position errors Ay.

Figure 9 shows the normalized position error Ay corresponding to the error Ay
in Figure 8. For the normalization here and in subsequent figures, the dominant
frequency is taken as 30 Hz.

While the errors for the homogeneous shale-limestone can be very large for steep
reflectors (more than ten wavelengths for dips exceeding about 60 degrees), errors
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for the inhomogeneous counterpart are about two wavelengths for vertical reflectors,
and just four wavelengths at 120-degree dip. Again, these errors are much smaller
than the errors for isotropic media that are corrected when a phase-shift algorithm,
as opposed to one that involves hyperholic diffractions, is used for migration.

20
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F1G. 9. Same as the top part of Figure 8 except that the pusition errors are now the
normalized quantities Ag, expressed in multiples of lateral wavelengths corresponding
to unmigrated reflections with dominant frequency 30 Hz.

Dependence on velocity gradient

With reflector depth fixed at 1500 m and the vertical average velocity at 3306 m/s,
Figure 10 shows the dependence of normalized position errors on the velocity gradient,
k, for the shale-limestone, and Figure 11 shows the normalized position errors for the
four media listed in Table 1. For all four media, the failure to take anisotropy into
account in migration is a less serious issue when the medium is inhomogeneous than
if it were homogeneous, but the difference is truly significant only for the shale-
limestone.

Not surprising, errors in most cases tend to be larger for larger reflector dip. Of
the four media, the Berea sandstone is most weakly anisotropic, and gives errors that
are least influenced by the inhomogeneity. The shale-limestone is anomalous in that
the position errors for larger dips are positive, whereas errors for the other media
are negative. Thus, steep reflectors in the shale-limestone are under-migrated when
anisotropy is not taken into account in the migration algorithm, while those in the
other media are over-migrated. Intuition might lead one to predict that the presence
of anisotropy would cause data to be under-migrated since isotropy-based migration
algorithms fail to adapt to the higher propagation speeds that arise for waves that

20
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F1G. 10. Normalized position errors (at 30 Hz) as a function of reflector dip for
the shale-limestone, with velocity gradients k=0.0, 0.2, 0.6, and 1.2 s~!. All models
have the same vertical average velocity, 3306 m/s, and the reflector depth is 1500 m
in all cases. In all cases the medium is inhomogeneous and anisotropic, and the
inhomogeneity is honored in the migration. The plotted errors are due to neglect

of the anisotropy in the migration. Each curve shows the errors for the indicated
velocity gradient.
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F1G. 11. Normalized position error (at 30 Hz) as a function of reflector dip for the
four media listed in Table 1, with velocity gradients k=0.0, 0.2, 0.6, and 1.2 s~*. The

reflector depth is 1500 m in all cases.
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turn close to horizontal. As often happens, intuition fails when it comes to anisotropy.
The diametrically opposing behavior of errors for the shale-limestone and the Cotton
Valley shale is particularly striking, again because the ratio of horizontal to vertical
velocity, V4 / Ve, is almest identical in the two media.

Based on the migration errors in Figure 11, we would infer that the shale-limestone
has the greatest degree of anisotropy, followed by the Pierre shale and Cotton Valley
shale, and finally the Berea sandstone—not quite the order that would be predicted
on the basis of V,4/V-. Note that errors for the Cotton Valley shale are somewhat
less dependent on the velocity gradient than are those for the Pierre shale (the curve
for gradient £ = 1.2 s™! in Pierre shale is not shown).

While linear v{z) is generally not expected for the earth’s subsurface, to the extent
that linear v(z) holds, k = 0.6 s~! is a somewhat representative value: k =1.2s7! is
on the high side, and k = 0.2 57! is clearly too small to yield the velocity increases with
depth that are normally encountered. Thus, for all four media the “representative”
case, k = 0.6 s™!, exhibits errors no larger than three or four wavelengths (and
periods) even for dips as large as 120 degrees.

Dependence on reflector depth and on stacking velocity

Focusing our attention on the shale-limestone medium, Figure 12 shows the de-
pendence of migration error on medium velocity and reflector depth. As throughout
this paper, the ratios of the four velocity quantities characterizing the transverse
isotropy are independent of depth and match those for the velocities listed in Table
1. In generating the three curves shown in the top portion of the figure, the vertical
velocity at the surface vy was set so as to yield vertical average velocities of 3000 m/s,
2200 m/s, and 1500 m/s at the reflector depth. For linear v(2) media characterized by
equation (1), the relationship between surface velocity vy and vertical average velocity
Vavg(2) is given by

fs do k z
Vavg(2) = = = . 18)
e (14 E) (

So, given kz and Vg,4, we have
kz
exp (75) - 1

In Figure 12, the solid black curve pertains to parameters that are close to those
that generated the solid black curve in Figure 10. The dependence of errors on
average velocity and on depth exhibit much similarity. The errors tend to become
less positive with either increasing reflector depth or decreasing velocity. Inspection of
Figure 12 suggests that the shape of an error curve is independent of either the depth
or average velocity so long as the ratio of the two is held constant and the reference
frequency (30 Hz in all these tests) is fixed. Since this ratio is proportional to migrated
reflection time, we infer that the shape and, indeed, the sign of the error curve for

(19)

Vo =

23



Larner and Cohen Migration error

Position error (wavelengths)

Position error (wavelengths)

0 50 100
Dip (deg)

F1G. 12. Velocity dependence (top) and depth dependence (]bottom) of normalized
position errors as a function of reflector dip for FAI shale-limestone. All models
have the “representative” velocity gradient, k = 0.6 s™!. Depth is held constant
(1500 m) for the velocity tests on the top, and vertical average velocity is held constant
(3000 m/s) for the depth tests on the bottom.
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the shale-limestone is governed by the migrated reflection time. Thus depending on
the migrated reflection time the data may be either over-migrated or under-migrated
when anisotropy is not taken into account in the migration process. The Appendix
summarizes a proof that, with the gradient k£ and reference frequency held fixed, the
normalized migration error indeed depends on reflector depth and average velocity
only through their ratio, or equivalently, migrated reflection time.

Thus, inferences made in the preceding section about the relative importance
of anisotropy for the four different media must be reviewed in the light that error
behavior for any given medium can vary considerably with migrated reflection time.
The complexity of the migration-error behavior for the different media emerges in
Figure 13.

Shale-l_.imestone |

Cotton Valley shale

Position error (wavelengths)
Position error (wavelengths)

-10
0

50 160
Dip (deg) Dip (deg)
5 Berea sandstone | 5 Pier(e shale

Position error (wavelengths)
Position error (wavelengths)

0 %0 160
Dip (deg) Dip (deg)

F1G. 13. Normalized position errors as a function of reflector dip for the four media
listed in Table 1, for three values of migrated reflection time 2D /V,,, All models

have the same velocity gradient, k = 0.6 s™!.

For all the models treated in Figure 13, the velocity gradient is 0.6 s~!. The three
error curves shown for each of the four media pertain to average velocity and reflector
depth chosen so that the migrated reflection time is 0.67, 1.0, and 2.0 s.

While it is satisfying to find that the migration errors depend only on migrated
reflection time, that dependence, nevertheless, can be significant. For the shale-
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limestone medium, for example, ignoring anisotropy leads to under-migration for
shallow reflectors, but to over-migration of deeper reflectors. Moreover, at migrated
times later than about 1 s, reflections in the Cotton Valley shale become significantly
over-migrated. Even the ‘“relatively isotropic” Berea sandstone exhibits a growing
over-migration of the later reflections. If we were to rank degree of anisotropy on the
basis of migration error for reflections at or later than 2 s, migrated time, we would
say that the Cotton Valley shale is the most anisotropic, followed by the I i=rre shale,
Berea sandstone, and then the shale-limestone— a different ordering than what we
inferred above, when all the reflectors werc at the same depth and the vertical average
velocities were given in Table 1.

In practice, the trend toward increasing normalized position error with increasing
migrated reflection time, seen in Figure 13, is ameliorated by the tendency for domi-
nant frequency to decrease with increasing reflection time. Thus, while unnormalized
position (and time) errors certainly increase with increasing reflection migrated time,
given the tendency for dominant frequency to decrease with increasing reflection time,
the normalized errors should exhibit less dependence on migrated reflection time than
that shown in Figure 13.

DISCUSSION AND CONCLUSION

Failure to take anisotropy into account in migration leads to position errors whose
magnitude and sign both depend not only on the various elastic moduli of the sub-
surface medium, but also on migrated reflection time. These migration errors cannot
at all be predicted on the basis of the ratio, V4/Vc, of the horizontal to vertical ve-
locity. (Recall that this ratio is nearly identical for the shale-limestone and Cotton
Valley shale, which exhibit greatly differing error behavior in Figure 13.) In fact,
any attempt to determine which of several media is “most” anisotropic and which is
“least” is doomed to frustration. The answer is “it depends on the situation.”

If, for example, our problem is one of converting from time to depth based on ve-
locity analysis, then for an elliptically anisotropic medium, the measure of importance
would be the ratio V;/V. However, elliptical anistropy is a poor assumption for p-
wave behavior, and, as Thomsen (1986) has pointed out, this ratio has no influence
whatsoever on the relationship between vertical velocity and the velocity estimated
from conventional velocity analysis. Alternatively, if our problem is one of assessing
migration error, then our ranking of degree of anisotropy might be based on size of
error—and even then, the answer would depend on migrated reflection time.

Of course the correct thing to do is migrate with an algorithm that takes aniso-
tropy into account. VerWest (1989) discussed migration in elliptically anisotropic
media, and Uren, Gardner, and McDonald (1990) have shown results on model-tank
data migrated with a frequency-wavenumber-domain approach that takes rather gen-
eral anisotropy into account. However, it is not algorithmic limitations that prevent
the use, in practice, of migration approaches that understand how to treat aniso-
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tropy. Rather, our information about the anisotropic characteristics of the subsur-
face is woefully inadequate. We have seen that the most readily accessible measure
of anisotropy—the ratio of stacking velocity to vertical velocity—does not provide
sufficient information about the pertinent elastic moduli. In fact, the elastic modulus
F is not at all obtainable from surface seismic data alone. While we do not have a
good means of quantifying anisotropic behavior either routinely or otherwise in prac-
tice, studies suggest that anisotropy is the rule, and the degree of anisotropy is often
considerable.

The limitations go deeper than this, however. Consider, for example, the many
assumptions about the medium made for the analysis in this paper. The models
studied are all (1) transversely isotropic, with (2) vertical axis of symmetry, with (3)
velocity variation in depth only, with (4) constant gradient, and (5) all ratios among
the four pertinent elastic moduli are independent of depth. While this combination
of assumptions enabled efficient ray-trace calculation of the diffraction times required
in the analysis, we can give little justification of the appropriateness of these models
other than: (1) they provide more generality, and perhaps more realism, than do
isotropic models and (2) there is little justification for models of anisotropy that
differ substantially from those used here. (One possibile alternative to the FAI media
considered here would be media in which, more true to observation, the ratio of
vertical s-wave velocity to vertical p-wave velocity changes slowly wit'. depth. Such
media, however, may not lend itself to such straightforward ray tracing.)

Clearly, the studies here show that models of anisotropy are inadequate in describ-
ing migration error when inhomogeneity is not also taken into account. Also, while
the subsurface is, of course, not a constant-gradient medium, the range of gradients
studied here do provide examples of highly inhomogeneous media.

Ratcliff, et al. (1992) and Hale, et al. (1992) have presented examples from the
Gulf of Mexico of stunning, apparently quite accurate, migrations of overhanging
salt-dome flanks and of thin salt intrusions (100-m wide with more than 1-km vertical
relief) into faults surrounding salt domes. How could such features be imaged so well
given that the migration algorithms did not take anisotropy into account? While
the errors for some of the test cases here become sizeable for dips approaching and
exceeding 90 degrees, results here also suggest that if the subsurface in the Gulf of
Mexico is not “strongly anisotropic” in some appropriate sense, migration errors due
to the combination of anisotropy and inhomogeneity may be no more than two or
three wavelengths even for dips beyond 90 degrees. While two or three wavelengths is
not insignificant to explorationists, the common practice of trial-and-error selection
of migration velocity can readily accommodate errors of that size.

The error analysis in this study was limited to that for post-stack migration.
Larner (1992) similarly treats characteristics of dip-moveout for this same type of
anisotropic, inhomogeneous media. The extension of the methodology here to pre-
stack time migration is the subject of a future paper.
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Final comment: While numerical estimation of migration error of the sort done
here is no substitute for actual application of migration algorithms on synthetic and
field data, such actual migration demonstrations would have been totally impractical
and inadequate for attempts to understand the dependence of migration error on the
range of model parameters considered here.
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APPENDIX:
DEPENDENCE OF MIGRATION ERROR ON MIGRATED
REFLECTION TIME

Consider an FAI, transversely isotropic, linear v(z) medium, defined by the ratios
among the four pertinent elastic moduli and by the value of vertical velocity gradient
k, as given in equation (1). Following Shearer and Chapman (1988), Larner (1992)
shows that all raypaths within such a medium are simply scaled versions of one
another, when represented in the ), z3 coordinate system described in reference to
Figure (4). Now suppose that a scatterer is located at depth Z and that the average
vertical velocity between the surface and the scatterer is V,,4(Z), so that the migrated
time T,, (i.e., vertical time from the surface to scatterer) is given by

22

Th = .
Vavg(Z)

(A-1)

For linear v(z) media, equation (18) relates the average vertical velocity V,,,(Z) to
the velocity at the surface vy and to that at depth Z, v(Z). Combining equations (18)

and (A-1) gives Z -
vEJO) = exp (-—21‘-) . (A-2)

Now, consider two different media with different velocities at the surface and with
scatterers at different depths, but both with the same ratios among the elastic moduli,
the same gradient k, and the same migrated time T, to the scatterer. Equation (A-2)
shows that the ratio of velocity at the scatterer to velocity at the surface is the same
for the two media. It then follows, from equation (1), that

’l)(Z) — Vo _ k_Z-
vo Y

is also the same for the two media. That is, vy is proportional to the scatterer depth
Z. Also, from equation (A-2), the vertical velocity at the scatterer v(Z) is likewise
proportional to Z between the two media. In fact, if the ratio of scatterer depths
Zy/Z, for the two media is m, it follows from equation (1) that for any pair of depths
z2/z1 = m in the two media, the ratio of vertical velocities v(z;)/v(z,) = m, as well.
Finally, this proportionality holds for the velocities in any direction through the FAI
property that the ratios among the elastic moduli are independent of depth.

Thus, the two media described here are simply scaled versions of one another.
Consequently, the shape of the raypath from a dipping reflector at depth Z; in medium
2 is identical to that from a reflector with the same dip at depth Z; in medium 1.
Being inversely proportional to velocity, the ray parameters for the two raypaths thus
satisfy

P2 _ 1 _ 4 (A-3)



" . Larer and Cohen Migration error

Also, the lateral migration distances Ay, and Ay, for reflections from the two
reflectors are in the same proportion as the scatterer depths in the two media. That
is,

Ay _ 2
Ay Zy

This relationship holds not only for the correct migration distances, but also
for the erroneous migration distances that arise when isotropy is assumed for the
migration (isotropy linear v(z) media is a special case of the FAI media considered
here). Therefore the differences between the true and erroneous migration distances,
the position errors, must be in the same proportion.

Finally, if we are considering the same reference frequency for computation of
the normalized position errors in the two media, it follows from equation (14) and
equatien (A-3) that the normalized position errors are the same for the two media.
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