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INVESTIGATION OF ALTERNATING-PHASE FOCUSING FOR SUPERCONDUCTING LINACS*

Abstract

The paper describes a new model of alternating-phase
focusing (APF) dynamics applicable to ion linacs with
short independently controlled superconducting cavities.
The equations of motion are derived for a cylindrically
symmetric electric field represented by a traveling wave
with continuous periodic phase modulation. Solutions are
obtained and analyzed for both the linear and nonlinear
particle motion. Problems of linear stability and overall
longitudinal acceptance are solved using standard mathe-
matical techniques for periodic systems; analytical results
are obtained. It is shown that the main beam dynamical
aspects of APF are adequately described by four param-
eters: equilibrium synchronous phase, phase modulation
amplitude, length of APF period, and incremental energy
gain. The model can be applied to study the feasibility of
realizing APF in a low-/ section of a proton linac.

Introduction

Previous works in the field {1, 2, 3, 4, 5] addressed
APF in the context of a linac with a discrete number of
accelerating gaps spaced in a predetermined manner to
achieve a particular value of the synchronous phase in each
gap (such as the case in the m-mode Wideroe linac and
the Alvarez DTL). APF has also been studied for heavy
ion linacs comprised of independently-phased short accel-
erating structures [6] where it was concluded that APF
could be useful in some applications, namely low-velocity,
low-mass particles, provided the rate of acceleration was
sufficiently high. The application we have in mind is a pro-
ton linac with superconducting accelerating cavities of the
type described in [7]. These low-3 cavities are short, can
be independently controlled in adjusting both the phase
and the amplitude of the electric field, and were shown
to produce very high accelerating gradients [8]. The pur-
pose of the paper is to present a model which is thought
to be a good description of essential APF physics for the
superconducting linacs and a starting point in trying to
determine the practical limits of APF.

Beam Dynamics in APF Linacs
Analytical Model and Assumptions

We assume that the electric field is described by a
cylindrically symmetric traveling wave with a continuous
phase modulation. Here, we choose the modulation to be
sinusoidal:

: )
E. = Egcos [u)t —/ k(z')d:' + o0 + 01 sin (:77;3)} , (1)
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where w is the angular velocity and k is the wave number

of the rf tield, @g 1s the equilibrium phase in the absence of
APF, and A and ¢, are the APF period and phase mod-
ulation amplitude respectively. For the central reference
trajectory z.. we choose

wt — /‘c k(z")dz' = 0. (2)

In subsequent analysis, we will neglect the effect of the
velocity change in one APF period; the reference particle
is assumed to travel with a constant 3 and k(2) = k = %—’:\-

. We can compute the average accelerating gradient by
integrating eq. 1 for the reference trajectory:

< E >= Ejcos¢odo(d1). (3)

Equations of Motion

The equations of motion are

d?r

d?z q q

'a'z' -——"—lEz(r,z,t), E{;—;Er(r,..,t), (4)
with E, given by eq. 1 and E, determined to the first
order in r by Maxwell’s equations: E.(r, z;t) = —;S-Q(a—E;L.

For an arbitrary longitudinal d=viation from the reference
trajectory Az = z — z,, the equation of motion becomes

Pas i,
dt? - m

do — kAz + ¢y sin (anc +;\AZ)]

— cos [d)o + ¢ sin (2#%)] } . (5)

We will first look at the APF linear motion.

Linear Stability

Let us define dimensionless parameters which we will
use throughout this paper,

e = A
A’

=y

qu,@/\

Ao = —-kAz, .
o T Tmd?c

n= (6)

The linearized equations cf motion are given by

d’A .

WE = mnv[(v — @1 cos2nr)sin (do + ¢1sin 277)] Ag, (T7)
d?r T ) 5 L N
TF =Ty [(v = é1cos2nr)sin(¢o + ¢y sin 2x7)]r.  (8)

By expanding the linear coefficients in egs. 7, 8 in a
Fourier series, we get the familiar Mathieu-Hill equations:

d’A¢

£2%2 _,
dr?

X
B+ Z Cnsin(27nr +8,)| A =0, (9)

n=1
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d? >~ .
HT:'+ [3+chsm(2mr+en) r=0, (10)
n=1
where .
= =nv’ Jo(¢1) sin ¢o, (11)
Cos ¢o v if n odd .
Cn = —mnw J"((bl)cos 0, { n if neven ° (12)
_ , n/v if n odd
tan fn —-—&anoo{ v/n if n even (13)

The equations are analogous to those obtained in
ref. [5] using a discrete thin-lens approximation and a
standing wave approach. Here, however, the beam dy-
namics variables B and C,, depend only on four indepen-
dent parameters: ¢g, ¢1, v, and n; moreover, the depen-
dence is given explicitly in an analytic form. Keeping only
the n = 1 term, we obtain a well-known Mathieu equation
for which we can compute stable region boundaries.

Fig. 1 (a) shows stability boundaries in the ¢, — v
space for ¢g = 5°, n = 0.05; fig. 1 (b) shows the effect of
increasing the “acceleration parameter” 7 to 0.25.
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Figure 1: Stability boundaries for trajectories not exceeding
90° in either transverse or longitudinal phase advance with
(a) o = 5° and n = 0.03, (b) ¢o = 3° and 5 = 0.25.

We next turn to the nonlinear problem of calculating
the longitudinal acceptance for the APF linac.

Longitudinal Acceptance

The equation of longitudinal motion is given by
2 .
id-%”- = —mp’ {cos {d)o + A + ¢ sin (‘27rr - %)]

—cos[$o+¢15in27rr]}. (14)

We can calculate the effective potential for eq. 14 by
using the averaging method given in ref. [9] and applied
to the problem of longitudinal acceptance in ref. [3]. We
do not. review the method here.

We find the effective potential to be given by

Ueg = Uo + Z Un (15)
n=1
with
Uy = ':1'7]112.]0(01 ) [sin (@0 + Ao) — A@cos o — sin (Do], (16)

(17)

nv® : S
. 2 n
Up = (T) Jn(flll)“"l—z.

where

sn={

82 + 53 — 2s3sf cos (n/vA¢)
2+ -2k cos (n/vAg)

if n odd

if n even ’ (18)

Co = cOS Po,

S0 = sin ¢o,

c1 =cos (¢o + A9),
8y = sin (¢o + L) .

Given the effective potential, we can calculate the
equation for the separatrix in the (A, %—V‘z) space and
the longitudinal acceptance. The separatrix is given by

AW 1
_W = :}:-;r; \/2 [AU —_ Ueff(A¢)]‘

(19)
where
AU - Ug(Ag.)

and A¢, is the unstable fixed point of the motion.
Fig. 2 illustrates the relationship between the poten-
tial well U.g(A¢) and the stability boundaries.
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Figure 2: Relationship between (a) the effective potential
Ut (A¢) and (b) the stable region in the (Ag, QWVL) phase
space.

The width of the separatrix W is the distance between
the values of A¢ at which Ueg(A¢) = AU (cf. fig. 2). The
height of the separatrix is given by

(AW’) _ _\/'ZAU
W/ max - Ty

(21)

The area of the stability region (acceptance) is

AW & e Uest
aLz?.( ) / 1= 2848y, (22)
W) max S, v AU

Below we give an explicit solution for «p accurate to
the second order in Aé.

Second-Order Solution. The effective potential
U.q given in eq. 15 can be expanded to O (A¢®) to yield

, b
Uen (80) = 380 = 28¢° + -, (23)
where a is the square of the linear phase advance o,
—o? = L g (Cn\?
a=oi=28+553 () (24

and b is given by

b = -;r]l/2.]0((,01)cos¢o

20

350 . .. "2, 2
+ §n~uzsln2¢02(—1) ./3,(¢,)<1_%-2->. (25)

n=1



Then, the width of the separatrix ¥ and the acceptance
« are calculated to be

6 a*/?

=S B (26)

Figure 3: Plots of the longitudinal acceptance o for ¢o = 5°,
n = 0.1. (a) Plot of o as a function of ¢; and v. (b) Plot of
oy, as a function of o, and or, the longitudinal and transverse
phase advances respectively.

Fig. 3 shows the results of acceptance calculations
for ¢o = 5°, 7 = 0.1 using eq. 26 and keeping only the
n = 1 term in egs. 24, 25. Computer simulations indicate
that for most practical cases the second-order acceptance
approximation is accurate with an error of less than 10%.

Amplitude Modulation

It has been suggested [1] that the effectiveness of APF
can be increased by simultaneous modulation of the accel-
eration amplitude. Using the techniques presented above,
we can incorporate the amplitude modulation into our
model by replacing Ey in eq. 1 by

i 2rz
Eo — Eo ll+csin (—A—+6>]. (27)
Here we choose a sinusoidal modulation with the same
period A; the two new parameters are ¢ and 6, the strength
and relative phase of the modulation respectively.

With the above change, it is a straightforward

(though tedious) exercise to obtain the modified equations

of motion and the effective potential.
The average accelerating gradient is now given by

_ Ji(¢1) .
< E>=< E > [l—ccosécand;ojo(d“)], (28)

where < £ >g is the right hand side of eq. 3.
The linear equation of motion for A¢, keeping only
the first term in the Fourier expansion, becomes

d*A¢
dr2

7rrw2Ac6{ [Jl(wg)sin o0 + €cos by (o )]

2[1+c<sin¢oc056J{(¢1)

cos in & .
m]l(¢])>] sin 271
o v

. i sin 0o sin §
- ~.>J1(m)[—--snf° +c<bm -
1

cospocosd Jy (o) cos 21T
v Jo(o1) - .

The constants in eqs. 9, 10 are modified as follows,

A Ji(o1)
B — B |1+ ¢cosécot ¢ , 30
[ soco *To(d1) (30)
C, — Cn 1+ ffln + 52€2n| (31)

where €1, &2, are closed-form functions of 8, which we
do not explicitly give here for lack of space.

Using the averaging method of ref. [9], we can recal-
culate the modified equations for the effective potential
and obtain the new expressions for a and b in eqs. 23-26.
The results of the changes on the longitudinal acceptance
will be given elsewhere.

Conclusions

The model of the traveling wave with continuous
phase modulation presented in this paper gives quanti-
tative predictions to the problem of longitudinal stability
in APF linacs. The model describes the physics of APF
with four parameters and yields analytic solutions for the
effective potential and the acceptance for the longitudinal
motion. Modulation of the accelerating field amplitude
can be straightforwardly incorporated into the model as
well.

Future work on the model will focus on investigations
of practical limits of APF in linacs with independent su-
perconducting cavities, space-charge current limits, and
ways to improve the acceptance by both the phase and
the amplitude modulation.
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