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Abstract

The ultimate purpose of this study is to put the widely used engineer-
ing averaged-equations models of multi-phase flows on a firmer footing by
comparing their results with those of direct numerical multi-particle sim-
ulations and rigorously-derived averaged equations. Since the averaged-
equations models are comparatively well developed, in the first year of this
project we have focused on the multi-particle simulation and ensemble aver-
aging techniques. This report describes the progress to date on the several
problems that are being studied.

The first problem addresses the derivation of ensemble-averaged equa-
tions for the propagation of pressure waves in bubbly liquids. The result
is in the form of an expansion for small gas volume fraction. Previously
known results are recovered at first order and in certain limits at higher
order. However, a new insight into the structure of the expansion and the
role of bubble-bubble interaction and surface deformations is obtained from
this work.

In the second problem, by arranging N bubbles at random in a cubic
cell and filling up the entire space with copies of this cell, we simulate the
behavior of an infinite bubbly liquid. For this situation two alternative
definitions of added mass are explored and the average viscous dissipation
in the limit of large Reynolds number is studied.

In the third problem, we consider propagation of pressure waves in a
layer of bubbles. The novel feature of this study is the fact that the volume
fraction is arbitrary and the wavelength can be comparable to the inter-
bubble distance.

The last problem involves the flow of a “plug” of bubbly liquid in a
conduit. For the time being the bubbles are arranged on the axis of the
conduit, but will later be placed at random.

The study of the first problem has been completed as of this writing.
Work on the other three problems is currently in progress and will be
completed in the near future. A summary of the work to be carried out
during the period 7/90 to 6/91 is given in the last section.



1 Introduction

The ultimate objective of the present study is to shed light on the closure
problem for the averaged equations of multi-phase flow by comparing their
predictions with the results of direct numerical simulations of multi-particle
systems. At present, techniques for such direct simulations are still rela-
tively little developed and, therefore, in the first year of this study, we have
mainly concentrated on them. The Pi’s, a post-doc, and several students
are currently working on a number of such problems that are summarized
in Sections 3 to 5.

Another possible approach to the validation of the heuristic averaged-
equations models commonly used in engineering is their comparison with
models more rigorously derived. We have also pursued this line of research
for the relatively simple problem of linear pressure-wave propagation in
a bubbly liquid. This study, which is summarized in Section 2, is near
completion and will be submitted for publication shortly.

Plans for the work to be carried out during the second year of this
contract are described in Section 7. A detailed budget for the continuation
of this study has been submitted separately.

2 Pairwise interactions in dilute bubbly liquids

Author: A. S. Sangani

This study has been completed during the first year of the project and
a manuscript based on this work is attached along with this report. Here
we shall summarize the principal objectives and findings of the study. Our
initial aim was to develop a rigorous approach for deriving averaged equa-
tions, i.e., equations that are satisfied by suitably-defined averaged pressure
and velocity fields. There are, of course, already a large number of papers
in the literature with the same general aim but a careful examination of
these papers quickly suggested a need for a different approach. Many of the
averaged equations suggested in the literature consist of writing averaged
equations for the gas and liquid phases separately and then recommending
the appropriate models for various terms for the interaction of the averaged
fields of the individual phases via the common interface of the phases. An
alternate approach to this, which has been employed with a considerable
success in the study of sedimentation and rheology of dilute suspensions of
small particles, is to derive the averaged equations for the entire mixture
directly. For the case of gas-liquid mixtures such an approach was taken by
Biesheuvel and van Wijngaarden (1984) who proposed a method based on a
combination of volume and ensemble averaging methods and by Caflisch et
al. (1985 a,b) who proposed a method of two-space homogenization. Keep-
ing in mind that our eventual goal is to employ the results of large-scale
direct numerical simulations from which typically the ensemble-averaged
quantities are probably the easiest to evaluate even when two distinct mi-



cro and macro length scales do not exist, it seemed that the method of
ensemble averages for the entire mixture was the most appropriate one to
pursue.

We have developed a method that is somewhat similar to the one pro-
posed by Biesheuvel and van Wijngaarden. Having developed this method,
we wanted to apply it first to the case of dilute bubbly liquids with the
anticipation that the results for these dilute mixtures will serve as an im-
portant check on our numerical calculations to be performed later. Some of
these calculations are near completion and these are presented in Section
3.

We choose the simplest possible problem of linear pressure wave prop-
agation through a dilute bubbly mixture and examined in detail the con-
sequences of pairwise interactions among bubbles. This is the simplest
possible problem in the sense that the nonlinear terms can be linearized
and the problem of determining the microstructure of the mixture, i.e.,
the spatial configuration of the bubbles and their relative motions, which
must be determined in many other problems as a part of the solution, need
not be addressed. In spite of this considerable simplification, we found a
number of interesting effects that arise solely from the interaction among
the bubbles and in the remainder of this section we shall highlight some of
these effects. A more detailed analysis and description may be found in the
attached manuscript.

When the pressure wave propagates through a bubbly liquid, bubbles
undergo volume, displacement, and shape oscillations because their com-
pressibility and density are different from those of the liquid and because
of the finite interfacial or surface tension. The ensemble averaged continu-
ity and momentum equations in the absence of viscous and nonadiabatic
effects require evaluation of mainly two coefficients, Xp and Au, which may
be defined by the relations

A" (x) ————alLxx1)p(Xl),i3x1' 2

A" (x) = Lx[Hy (2-2)

where po and Uo are the unconditionally ensemble averaged pressure and
velocity fields, pi and Ui are the corresponding conditionally averaged fields
with the center of a bubble fixed at Xi, < is the time, and -P(xi) is the prob-
ability density function, i.e., the probability that a bubble may be found
in the neighborhood of Xi. In words, Ap and At can be defined roughly as
the ratios of the average pressure and linear acceleration of a representa-
tive bubble in the neighborhood of x to the corresponding quantities for
the mixture. The effective speed of the pressure wave propagation can be
expressed in terms of these two coefficients as

= (1 ~ ~ Xp0)] + —~Ap(l _ Xvi3)' (23)



where CL is the speed in the pure liquid, pi is the density of the liquid, (3 is
the volume fraction of the gets bubbles, Pe is the equilibrium pressure in the
gas bubbles, and 7 is the ratio of constant pressure and volume specific heats
of the gas. For an air-water system at ambient pressure, the magnitude of
the term containing 1/C” in the above equation is typically very small and
therefore, unless (3 is less than 1CT4, the first term on the right-hand side of
(2.3) is small compared to the second term and therefore can be neglected.
As a consequence of this, it is possible to evaluate 1/C”, correct to 0(/?2) by
determining Ap correct to 0((3) and  to O(1). The O(1) estimates of Au
and Ap are evaluated simply by examining the interaction of a single bubble
with the incident pressure wave while the 0((3) correction to Ap requires the
examination of the pairwise interaction among bubbles. Thus, one assumes
the presence of a second bubble at X2 and determines its effect on the
pressure variation inside the bubble at Xj ( to be referred to as the test
bubble ). The 0(/3) correction is then obtained by multiplying this effect by
the probability of finding a second bubble at X2 and then integrating this
effect for all possible positions of the second bubble. Actually, the method
just described is not quite correct as it turns out that this direct method of
summing the contribution due to the second bubble does not converge but
ways of overcoming such difficulties have been proposed in the literature
and so we shall not elaborate them here. Instead we shall try to explain
the phenomenon in words.

When /3 is small the effective wavelength in the mixture is 0{Rf3~i"),
where R is the radius of the bubbles, and so the two bubbles that are
separated by a distance comparable to R see nearly the same pressure fluc-
tuations around them and as a result undergo volume pulsations that are
nearly in phase with each other. Since the liquid is nearly incompressible, a
combined effect of many two-bubble interactions at a separation distances
comparable to R is to have a conditionally averaged pressure or velocity
field to diverge when the effective wavelength is infinite. The fact that the
effective wavelength, however, is finite is important in preventing the cu-
mulative effect of these pairwise interactions from diverging. Thus for each
bubble that acts as a source of liquid during its volume expansion, there
exists another bubble, located at half the effective wavelength away from
the first bubble, that is undergoing a volume contraction and hence acts
as a sink of liquid. The detailed analysis then shows that the correction
to Ap is 0((3\oge(3) followed by an 0(/3) correction. These calculations also
show that there is in fact also a relatively large 0{/31"2) correction to Ap
that is a purely imaginary quantity indicating that Ap, and hence Cef, are
complex quantities, or that waves attenuate even in the absence of any vis-
cous or nonadiabatic effects. This attenuation occurs because of the finite
compressibility of the mixture and it is known as the acoustic radiation
damping: The acoustic energy of the waves radiated from the test bubble
is stored in the mixture and radiated later resulting in a phase difference
between the pressure variations in the test bubble and the mixture. In all
of the previous studies, which examined only the interaction of an isolated



bubble with the incident wave, the compressibility of the mixture was at-
tributed to that of the pure liquid, whereas our calculations showed that
one must use the compressibility of the mixture and not that of the pure
liquid in evaluating the magnitude of the attenuation due to acoustic radi-
ation. Since the compressibility of the mixture can be typically 10-30 times
larger than that of the pure liquid, this is a significant finding.

The detailed calculation of the 0(/?) correction to Ap further showed
that it, in fact, diverges at a frequency that is lower than the natural fre-
quency of a single bubble. This is because a pair of bubbles resonate at
frequencies that are different from the resonance frequency of the individual
bubbles. Specifically, there are two modes in which a pair of bubbles can
resonate. One corresponds to the two bubbles undergoing volume oscilla-
tions out of phase with each other and the other mode corresponds to the
two bubbles undergoing volume oscillations in phase with each other. The
former generally occurs at a frequency greater than the natural frequency
of the isolated bubbles while the latter occurs at smaller frequencies. Now
since the effective wavelength in the mixture is O(R0~1/2), the two bubbles
see different ambient pressures around them only when their separation
distance is O{Rf3~il2) and, consequently, the first mode of out-of-phase
resonance, which requires for its excitation unequal ambient pressures, is
important only for pairs of widely separated bubbles. For such widely sep-
arated bubbles, the resonance frequency is only O(/?1,2) different from the
natural frequency of the bubbles and therefore this mode does not make
any contribution to the evaluation of Ap up to 0{(5) terms. This, however,
is not the case with the second in-phase resonance mode which is excited by
the nearly equal ambient pressures felt by the bubbles that are separated
by a distance comparable to R. This resonance occurs at a frequency that
depends, among other variables, on the separation distance and surface
tension. When the latter is very large, the resonance occurs at a frequency
uep that is about 0.83 times the natural frequency <jc for a pair of nearly
touching bubbles. Thus for any frequency u in the range there
is always a pair of bubbles that resonates. For finite surface tensions, wep
for the pair of nearly touching bubbles is generally smaller than its value
for large surface tension and in fact for certain (of which there are count-
ably infinite numbers) surface tension values, the shape resonances make
it nearly zero. Thus, depending upon surface tension and the separation
distance between the bubbles, very large effects may be seen in the O(/?)
correction to Ap.

Although the resonance effects for pairs of bubbles described above may
at first glance suggest that there will be a range of frequency values for
which the bubbly mixture will exhibit a resonance like behavior, it turns
out that the resonance of pairs of bubbles gives rise to a divergence in
the estimate of Ap only for > very close to ucp. This is because over most
of the frequency range (wepu>c), for each pair of bubbles that is nearly
resonating at any given instant, there is another pair of bubbles that is
also nearly resonating but whose volume oscillations are out of phase with



those of the first pair, resulting in a near cancellation of the large resonance
effects. This, however, does not occur for the pairs of nearly touching
bubbles for which there are no counter pairs undergoing out of phase volume
oscillations. The overall effect, after averaging over all pairs, is as a result,
only a weak logarithmic divergence in the 0(f3) correction to Ap for > near
wep. Since the effect of resonance near the natural frequency on Xp is rather
strong, being proportional to 1/(u”™ — w2), compared with the contribution
due to pairs of nearly touching bubbles, which is proportional to /?loge(|w(p—
wl)> this divergence due to pairwise interaction will be overshadowed in
practice by the more dominant isolated bubble resonances.

The numerical calculations for Ap also show that the corrections are
generally small when u>/u>c is less than about 0.3. For such low frequencies,
Ap approaches nearly unity for all values of 0 since temporal variations oc-
cur slowly at small frequencies, and as a consequence the average pressure
fluctuations in the test bubble are nearly the same as the average pressure
fluctuations in the mixture. For such low frequencies it is possible in fact to
determine 1/C)" correct to O{03) simply by determining A, correct to only
0(0) (cf. (2.3)). Therefore the 0(0) correction to A, for small # was also
determined using the method of pairwise interactions. In this case, since
the frequency is small, the volume oscillations are absent and therefore
there is no resonance effect of the kind described above. However, when
the surface tension is not large, as is the case in many experimental condi-
tions for bubbly liquids, the shape deformation resonances are significant
and these in turn make a large effect on the displacement oscillation of the
test bubble and consequently on A". Thus we found that the 0(0) correc-
tion to A, diverges for a countably infinite number of frequencies owing to
the shape deformation resonances. Each of these divergences, being loga-
rithmic, is weak but also, since the frequency range between each successive
divergence gradually becomes narrower, the overall effect is difficult to es-
timate. It may be noted here that in previous theories, which examined
only the interaction of an isolated bubble with the incident wave, such reso-
nances were not important because when the wavelength is large, the shape
resonances are not excited by the pressure distribution around the bubble
which is nearly uniform. However, in the presence of a second bubble, the
pressure distribution on the surface of the test bubble becomes asymmet-
ric and therefore the shape deformation resonances are excited even in the
limit of infinite effective wavelength.

Since the 0(0) estimates of both A, and Ap diverge at several frequen-
cies owing to the resonance of pairs of bubbles at frequencies different from
the natural frequency of the bubbles, it is important to include the damp-
ing mechanisms due to viscous and thermal effects. A new method was
developed for determining the corrections to Ap and A, when the viscosity
of the liquid is small but nonnegligible. Similarly a method was developed
for determining the corrections due to nonadiabatic changes inside the gas
bubbles. It was found that thermal effects only dampen the spherically
symmetric part of the pressure distribution around the test bubbles and



thus play an important role in preventing the divergence of Xp from occur-
ring. On the other hand, the divergence in A,, which occurs even at low
frequencies and is due to the shape deformation resonances, can only be
damped by the viscous effects.

The O(03) theory for small frequency and the 0{f32) theory for arbi-
trary frequencies were compared with the experimental data available in
the literature and it was found that the agreement between the theories
and experiments was generally satisfactory except for frequencies close to
and above the natural frequencies of the bubbles. For these frequencies the
coefficient of ((13) correction to Ap as calculated from the theory became
very large. Thus the problem of predicting the phase speed and attenuation
of waves for such high frequencies still remains unsolved.

This study of pairwise interaction among bubbles has pointed out the
essentially very complex nature of the multiparticle interactions among the
bubbles and their role on the macroscopic behavior of the bubbly liquids.
For relatively dense mixtures it is clear that the resonance effects due to
three or more bubbles will also begin to play a significant role. Also, in
view of the fact that in the absence of any damping mechanism, these reso-
nances cause the overall properties to diverge, it seems that the magnitude
of viscosity, even when small, may play an important role in determining
the overall behavior. It seems that large-scale numerical simulations with
selected values of viscosity, gas thermal diffusivity, etc. may be needed
for obtaining meaningful predictions. Such numerical calculations will be
carried out in the future. The case of slightly nonlinear deformations also
seems fruitful to pursue. Although the resulting analysis at present ap-
pears algebraically complicated, it seems that pursuing it will indicate the
proper nature of various weakly nonlinear terms that arise in the ensemble-
averaged equations.

3 Drag and added mass in dense bubbly liquids

Authors: D.Z. Zhang and A. S. Sangani

In this study, which is not yet completed, we simulate the potential
incompressible flow around an infinite number of massless bubbles. The
calculation is made feasible by imposing a periodic structure to the system.
This is obtained by arranging /N bubbles at random in a cubic cell, and
then filling up the whole space with copies of this cell. For each value
of the bubbles’ volume fraction, several arrangements within the cell are
generated and the results ensemble-averaged.

Our purpose is to investigate several problems in which the infinite
lattice of bubbles is immersed in a flow that would have uniform velocity in
the absence of the bubbles. We therefore write the solution to the Laplace
equation satisfied by the velocity potential <)

V26 = 0, (3.1)



in the form
v=%*+ £ £ EKm"™T" +>_,,,armA,,]SI(r - ), 3.2)
p=1 n—1 m=0

where d\ = d/dx)\, rp denotes the position of the center of the p-th bubble
(p = 1,2,...,N) in the fundamental cell, and

£ =21+ Ix3, }o= *2- Ix3, 3.5
and S'i(r) is given by
51(r) = ™ L klkexP (-27nk ' 1), (3.6)
¢ k

in which the sum is extended to all the vectors k of the reciprocal lattice
(except k = 0), and V¢ denotes the volume of the fundamental cell. As
shown in Sangani and Yao (1988), the function and its derivatives can
be evaluated by combining Ewald’s technique (Hasimoto 1959) and the
direct summation method.

The summation in (3.6) represents the disturbance induced in the flow
by the presence of the bubbles and the use of the particular form of  shown
ensures the periodicity of the disturbance potential. Since the problem for
¢> is linear, we have taken the coefficient of the first term Zj in (3.2) to be
unity without loss of generality.

Near the surface of the p-th bubble, the potential can be expanded in
spherical harmonics as

d=4£ £ [(CLr+ cos
n=0 m=0
+ (C,,V» + sin mef P,>>(c®s 0). (3.7)

The relations between the coefficients of these local expansions and those
of the global expansion (3.2) are given in Sangani and Yao (1988). The
application of suitable boundary conditions on the surface of the bubbles
then determines the coefficients.
The liquid velocity < > averaged over the volume of the cell is given
by
<ul>=iW VIMVL, (3.8)
YL JrL



where Vi is the volume of the cell occupied by the liquid. Similarly, the
average velocity of the bubbles, < uG >, is given by

N

< > _1 *— Vv yp
T We-v)£ (3-9)
where v, — is the volume of the bubbles, all assumed to have the same

radius i?, and Vp is the velocity of the p-th bubble. In terms of < ul >
and < uG >, the average mixture velocity < v > is

<v>=(1-/"<ul>+?<uG >, (3.10)

where /? = Nvs/Ve is the volume fraction of the bubbles.
These average quantities are readily evaluated. The velocities V)p can
be determined by substituting (3.7) into the kinematic boundary condition

n VAjj =n ' Vp, (3.11)

where we have assumed that the surface tension is large so that the small
deformations of the bubble shape can be neglected. With this relation, the
component of the bubble velocity in the  direction, for example, can be
evaluated from

v = f FFE°sfl)dSy = C<o0-2D’oli~3- (312)

Substituting (3.12) into (3.9), we obtain the x“component of the average
bubble velocity as

>=iE(CK-2D', R-3). (3.13)

iv p=l

To calculate the liquid average velocity we use the generalized divergence
theorem to write

(3.14)

where St is the surface of the cell and n is the outward normal with respect
to Sc and the bubbles’ surfaces Sp. The contribution from the bubbles’
surfaces is readily evaluated from (3.7). For example, the component in
the direction of xi is given by,

[ c>nddSp = vs{CW + DIIR-3). (3.15)
Js,



To evaluate the first integral in (3.14), it is convenient to use the form (3.2)
of the velocity potential because the sum, being periodic, contributes zero
so that, again in the direction of ix,

J 4>rildSc = Ve (3.16)

Substituting (3.15) and (3.16) into (3.14) and (3.8) we find that the average
liquid velocity in the X! direction is given by

< uf >- | - 4 Etcfo +-CfoR-5)

1
1-/7 IV P=l A7
from which the volume average velocity (3.10) is obtained as
27N
<Pl >=1 DiOR 3. (3.18)
I pr=I

The approach just described allows us to calculate now several quantities
of interest.

Added Mass

For an assembly of particles several non-equivalent definitions of the added
mass coefficient are possible. We have begun to explore this matter.

For example, one possible definition is the following. Suppose that the
bubbles undergo an oscillatory motion in the direction of Xx with a velocity
of amplitude < uf > and frequency u. Then, for each particle, one may
define an added mass coefficient Cm corresponding to the force in the Xi
direction for motion in the Xi direction by

pnldSp = -vspCmiuj < > (3.19)

The left-hand side is the Xx-component of the force on the p-th bubble and
the coefficient 1/2 has been introduced so that Cm — 1 in the dilute limit.
For oscillations of small amplitude the Bernoulli equation reduces to

<)) p

P (3.20)

so that, with the change d/dt — ito, we obtain from (3.19)

TidSp "vsCm U > .

10



If the bubbles are stationary while the liquid oscillates with a velocity
< u/ >= — < uf >, the previous definition must be modified by adding
to the velocity potential a term x- < uR > corresponding to the inertia
force. Furthermore, following Biesheuvel and Spoelstra (1989), we relate
Cm to the average volume velocity < vr > rather than to the liquid velocity.
These considerations motivate the following definition of Cm

S nldS, = 1vs(Cm + 2) <vx> .

s, / (3.21)
Since now the bubbles are stationary, we have from (3.12)
Cf - 2£VTI - 0. (3.22)
Using this relation in (3.21), we then find
<3f;ﬂ)> -2 (3.23)

For small (3 the quantities appearing in this definition can be calculated
analytically and the result is

Cm ~ 1+ 3.32/7,

in agreement with Biesheuvel and van Wijngaarden (1984). For arbitrary
/7, we have calculated numerically Cm according to (3.23) for each bubble
in the fundamental cell. For each value of /7, the calculation was repeated
for a number of different configurations. The results of such computations
are represented in Figure | by the symbols # and the small-/? asymptote
by the dash-and-dot line.

Another possible definition of the added mass coefficient is the following.
Suppose that the mixture oscillates with an average velocity < tq > e'wt
For a single body in a liquid, classical hydrodynamics gives the following
relation between the velocity of the body and the velocity of the
liquid at large distance from the body

Cm + 2
= —C~“tt

where again Cm has been defined so as to equal | for a single isolated sphere.
One can adapt this definition to the case at hand by identifying with
the average velocity < iq > of the mixture so that

< >= Cm +2 <tq>. (3.24)

The difference with the previous case is that now the total force on each
bubble vanishes so that

Cfo + D\gR 3 — 0. (3.25)

11



With this relation, the added mass coefficient for the p-th bubble is calcu-

lated from )

Cm —
3¢70(1-d)-1
Again, for small /?, one finds

(3.26)

Cm~ 1 + 3.32/7,

in agreement with van Wijngaarden (1976). Results for larger values of
/7 can be obtained numerically as before. They are shown in Figure | by
the asterisks. The dashed line is the small-/? asymptote. It is interesting
to observe that the two results are very close to each other up to at least
P =1\

The two different definitions of Cm can be treated together by writing
the Xj-component of the total force F on a bubble in the form

d<Vi>=\ d<w>

F\ =Py. di dr

(3.27)

Then the first definition (3.21) of Cm is obtained by setting < uf >=
0, while the second one is obtained by setting F) = 0. An interesting
consequence of our unified approach to these two different definitions is
the explicit proof that the results thus obtained are not equivalent but
correspond to different physical quantities.

The two definitions given above are not the only ones possible. A further
exploration of these issues will be carried out in the continuation of this
study.

Drag

It is well known that, at large Reynolds number, the drag on a bubble
on the surface of which the tangential stress vanishes can be estimated
by calculating the energy dissipation in the liquid using the potential-flow
velocity distribution. In applying this procedure it would be necessary,
for consistency, to allow the spheres to deform so as to approach more
closely the behavior of actual free surfaces. For simplicity, however, here
the bubbles are assumed to maintain the spherical shape.

In this calculation we keep the spheres fixed while the liquid has an
average velocity < uf >. We define an average drag coefficient per sphere,
Cd, by

I2NnnRCd{< V! >)) = FE (3.28)
where /x is the dynamic viscosity and E is the energy dissipation rate in
the fundamental cell given by

(3.29)

12
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It is easy to show that the integral on the surface St of the fundamental
cell in the above expression vanishes while the integrals over the surface of
the bubble can be evaluated from (3.7) by making use of the orthogonal

properties of the Legendre polynomials and the relations among D"m,
Anm, and Anm to yield

. (n+ D2n + 1),
x {(1 + Sm0) (>nm)? + (1 = $m0) (>nm)2) - (3.30)

Some results obtained in this way are shown in Fig. 2 as a function of the
spheres’ volume fraction. The asterisks indicate the mean value obtained
with different simulations and the crosses the variance from the mean.

4 Acoustic wave propagation in dense bubbly liquids

Authors: A. Lezzi and A. S. Sangani

In this study we examine the situation in which the effective wave-
length of sound waves becomes comparable to the size of bubbles to de-
termine when the theories for predicting the phase speed or attenuation
based on averaged equations and the long wavelength assumption begin to
breakdown and to devise, if possible, an alternate averaged-equation theory
which will yield reasonably accurate estimates. For this purpose we choose
a somewhat idealized configuration for the spatial distribution of the bub-
bles, viz., when their centers are located on N parallel equidistant planes
arranged with their normal pointing in the direction of wave propagation.
The arrangement of bubbles within each plane is periodic. The volume
fraction of bubbles is large and the frequency of the waves is comparable
to, or larger than, the resonance frequency of the bubbles. In this case the
effective wavelength is comparable to the size of the bubbles.

We have determined an exact (numerical) solution of this problem in
terms of planar periodic singular solutions of the Helmholtz equation. Briefly,
the fundamental planar periodic singular solution of the Helmholtz equa-
tion corresponds to an array of point scatterers on a plane Xi = 0, i.e.,

Vi + A2y = —4Tr ™ <S(x — XL) 4.1)
XL

where rp is the amplitude of the pressure variation in the liquid, k£ is the
wavenumber for the pure liquid, i.e., £k = w/C*,, v is the frequency, CL is
the speed of sound in the pure liquid, and XL are the lattice points defining
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the position of the bubbles’ centers on the plane Xi = 0. The solution of
(4.1) is given by
e-ik|x-xL|

(4.2)

which appears as outgoing planar waves from Xi = 0 for |ii] — oo and
as spherically outgoing waves from XL near each scatterer. The solution
given by (4.2) is actually not very useful for computational purposes as
the sum in it converges very slowly when k is small. Therefore this sum
is rewritten in a different form using Ewald’s technique which converts it
into a suitable sum in the reciprocal lattice. The details of this technique
may be found in Sangani and Behl (1989) where it was employed in the
calculation of the fundamental planar singular solutions of the Stokes and
Laplace equations. In fact, when k is small, it is possible to obtain a
uniformly valid approximation for # in terms of the solutions derived by
Sangani and Behl.

Now, since any spatial derivative of the fundamental solution rp also
satisfies the Helmholtz equation, it is possible to generate an infinite number
of planar periodic singular solutions of the Helmholtz equation simply by
successive differentiation of the fundamental solution. A general solution is
then constructed by adding all the singular solutions to the incident wave.
Thus if a plane wave in the 1! direction is incident upon the mixture, then
the amplitude of the pressure variation is given by

N

p= + £ 7 £ K- L(x - xj) (4.3)
a=1n=0 m=0 dX\

where pa is the amplitude of the pressure variation in the incident wave, Y™

is a solid spherical harmonic of degree n, x“ is the x* coordinate of the a

plane, and Anm are constants that can be determined from the appropriate

boundary conditions on the surface of the bubble and at infinity.

The constants Anrri can be determined either by the method of succes-
sive approximations or by the method of direct substitution. The former
is useful for the case of small volume fractions and large wavelengths. Ac-
cording to this method each of the constants is first expressed as consisting
of two parts corresponding to two effective planar waves in the mixture.
Thus

Km = anmexp(-tTx*) + 6nmexp(tT'x*) (4.4)

where F and F' can be shown to be related to the effective wavenumbers of
two planar waves travelling in opposite directions at Xx = x*“. Actually, the
decomposition shown in (4.4) is valid only for bubbles well within the bulk
of the mixture, i.e., for | << a << AL Edge effects will be important for a
close to unity or NV and the modifications required for the bubbles near the
edge are taken into account separately once the bulk solution is determined.
The method of successive approximations then consists of expanding anm,
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bnm, F, and F' in powers of /JI/3 (corresponding to the bubble radius-to-
spacing ratio) and determining the successive approximations to F and F'
and thereby determine the phase speed, attenuation, and the coefficients of
the reflected and transmitted waves. This method is somewhat similar to
that employed by Twersky (1962).

In this way we have obtained estimates of the phase speed that are in
agreement with the 0(/?1/3) correction obtained by Rubinstein (1985) and
the 0(0) estimate for the phase speed when the frequency is small as given
by Caflisch ef al. (1985 a,b). These investigators employed the method
of homogenization to derive the effective equations and thus it is inter-
esting that their results can be recovered by an independent analysis for
the situation examined here which is somewhat different. More interesting,
however, is to examine the situation where the homogenization method
will no longer be useful. As mentioned before, this corresponds to the
case of large (3 and u. Although the method of successive approximations
can be carried out, in principle, to evaluate the next few approximations
beyond those determined by Rubinstein and Caflisch ef al, the resulting
algebra quickly becomes cumbersome and it is advantageous to use instead
the method of direct substitution. In this method, the phase speed, at-
tenuation, and reflected and transmitted wave coefficients are determined
numerically for selected values of NV, u, and /3. The infinite sum in n in
(4.3) is first truncated to include only a Finite number of singular solutions
per plane of bubbles and then the same number of boundary conditions
on the surface of the bubble are derived suitably and the resulting set of
linear algebraic equations is solved directly. The number of singularities
are then increased and the calculation repeated until the calculated values
of the effective speed, attenuation, etc. do not change significantly. Using
this method it is also easy to examine the edge effect. These calculations
are currently in progress.

5 Multi-phase flow in a nozzle

Authors: H.S. Kim, A. Prosperetti, A. S. Sangani

The ultimate aim of this study is the numerical simulation of the flow of
a number of particles or bubbles in a duct of variable geometry. The work
carried out to date concerns a very simplified situation which is being stud-
ied to perfect the numerical techniques. We consider the buoyancy-induced
motion of a number of rigid massless spheres on the axis of symmetry of
a nozzle or pipe. The liquid is assumed to be incompressible and inviscid
and the velocity field irrotational.

The starting point is Green’s identity for the velocity potential <,

_ 1 dm J.t 9 1
2/\ H*) - [ ’
" Js Ix = x| dn as’ (5.1

where -y = 2 if x is inside the domain occupied by the liquid and 7 = 1 ifx
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belongs to the boundary S of this domain. For our purposes this relation
will be applied to points on the boundary. Here and in the following the
time dependence of <> is understood.

In the present problem the domain occupied by the fluid is bounded by
N spherical surfaces Sa, a = 1,2,..., N, the lateral wall of the pipe W, and
two surfaces at infinity upstream and downstream of the region occupied
by the bubbles. Since, in the present simple situation, the motion of the
liquid is solely due to that of the spheres, these surfaces can be disregarded.
On the pipe wall, the normal velocity vanishes while, on the sphere a,

d<b
en=V°"- <6-2>

The preceding equation then becomes

27T(>(X) = (5.3)

+ :Va n' /> 1

x'l dn' |x - x|

dSa.

To solve (5.3) we start by setting, on the surface of each sphere,

458" = = fin*n(cOST). (5.4)

n=0

Here the axial symmetry of the problem has been used and 0“ is the az-
imuthal angle in a spherical coordinate system centered at the center x“ of
the sphere a and having as polar axis the axis of symmetry of system. Us-
ing this expansion of the unknown potential on the surface of each sphere,
for x on the pipe wall W, (5.3) gives

2N (X)) = - fw <«x') A dSw+ =z  2nal ~aVa cos6a (5.5)
X - xall ’
n—1
2n a o
+1E)2u4*13a Pn(cos 6°)

where 6a is the angle between the axis and the line joining the points x and
xa. For the purpose of calculating the integral over the pipe wall appearing
in this equation it is convenient to make use of a system of cylindrical
coordinates (r, 2,r/) having the axis of symmetry as 2 axis. We then take
x on the meridian plane 17 = 0, so that x = (r, 2,0), and decompose the
integration over W into a line integral over the trace w that the pipe wall
marks on a meridian plane and an angular integration over all meridian
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planes, 0 < 4 < 27r. Due to the axial symmetry of the problem, the latter
integration can be carried out explicitly and leads to

<f(x) = —/ <t>(x")H(x,x")dw' + 1P (52 _%aVa cosSz (5.6)

Jw 0=1 |X - X
n-1
LV - Ba (—a
R /=B 2n+ 1 nl|x-x Fn(cos Sa)
where
W7V vD = g 277 1't — K (1)
ff( > > H(' > 7 )T an' |f~4 "’ (5.7)

with K the complete elliptic integral of the first kind and
4=+ +(=z_2z)2 )
) (58)

We now write (5.3) for a point x on the spherical surface 5*, and take
the scalar product of the resulting equation with Pk(cos 60),k = 0,1,2,
The result is

Air
2k - 1 (59)

+ 2/ VO UIFt{ ™z2 \xx™\)dS -

—-Bn 1
IS" dn' | Ix — x

where <<,> denotes the scalar product over 80,

< f,g >= [ /(cos 90)g(cos 60) sin 61} d60. (5.10)
Jo

Some of the scalar products appearing in this relation can be evaluated
analytically in closed form, while for others the use of a sufficiently high-
order Gaussian quadrature is more efficient.

Equations (5.6) and (5.9) relate the values of ¢ on the pipe wall,-the
coefficients B°,n = 0,1,2,...; a = 1,2,... TV, and the velocities of the
spheres = 1,2,...,JV. To close the system of equations, we need
additional relations between the velocity potential and the translational
velocity of the spheres. To this end we use the fact that, since the spheres
are massless, the total force on each one of them must vanish so that, for
a=1,2,..1V,

/ pndSa =0, (5.11)
JSH
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where p is the pressure. To calculate p, we use the Bernoulli integral

P=_P + <(V*-V,i)+gJ + F(l) (5.12)

where g is the acceleration of gravity and F/#) a constant with respect to
the spatial variable x. On 5“ we may write

(5.13)

It is therefore clear from (5.4) that (5.12) will then lead to a system of
equations involving »a and the time derivatives of the 5°“s.

The closure of the system requires now a set of equations to calculate
the position of the spheres’ centers, and these are evidently given by

We are currently in the process of writing a computer problem for the
solution of the system of equations presented above.

6 Personnel

The work described in the previous section has involved two graduate stu-
dents (A. Lezzi and D.Z. Zhang) at half time each, one post-doctoral fellow
(H.S. Kim) at half time, 5% of the time of the PI (A.P.), and 50% of the
time of the Co-PI (A.S.). Recently, a third graduate student (C.Y. Fei) has
also started to work in this area. It is expected that these levels of effort

will be maintained until the end of the present first year of funding on June
30, 1990.

7 Future work

At the end of June, 1990 Dr. Ashok Sangani will return to Syracuse and,
from that point on, his collaboration in this study will be covered by a
separate contract the proposal for which has already been submitted to
DOE. Accordingly, the work described in this section is the part that will
be carried out at Johns Hopkins.

The first task will consist of the completion of the studies in progress
summarized in sections 3 to 5. Secondly, it will be necessary to choose one
or several averaged-equations models of two-phase flows and to write codes
for their numerical integration. When this will have been accomplished,
we shall be in the position to compare the averaged-equations results with
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those of the direct numerical simulation ami to improve the closure relations
included in the averaged models.

It is estimated that these objectives can be met by the summer of 1991.
A close connection with the work being carried out at Syracuse by Prof.
Sangani and his students will be maintained throughout this project.
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