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Abstract

The ultimate purpose of this study is to put the widely used engineer­
ing averaged-equations models of multi-phase flows on a firmer footing by 
comparing their results with those of direct numerical multi-particle sim­
ulations and rigorously-derived averaged equations. Since the averaged- 
equations models are comparatively well developed, in the first year of this 
project we have focused on the multi-particle simulation and ensemble aver­
aging techniques. This report describes the progress to date on the several 
problems that are being studied.

The first problem addresses the derivation of ensemble-averaged equa­
tions for the propagation of pressure waves in bubbly liquids. The result 
is in the form of an expansion for small gas volume fraction. Previously 
known results are recovered at first order and in certain limits at higher 
order. However, a new insight into the structure of the expansion and the 
role of bubble-bubble interaction and surface deformations is obtained from 
this work.

In the second problem, by arranging N bubbles at random in a cubic 
cell and filling up the entire space with copies of this cell, we simulate the 
behavior of an infinite bubbly liquid. For this situation two alternative 
definitions of added mass are explored and the average viscous dissipation 
in the limit of large Reynolds number is studied.

In the third problem, we consider propagation of pressure waves in a 
layer of bubbles. The novel feature of this study is the fact that the volume 
fraction is arbitrary and the wavelength can be comparable to the inter­
bubble distance.

The last problem involves the flow of a “plug” of bubbly liquid in a 
conduit. For the time being the bubbles are arranged on the axis of the 
conduit, but will later be placed at random.

The study of the first problem has been completed as of this writing. 
Work on the other three problems is currently in progress and will be 
completed in the near future. A summary of the work to be carried out 
during the period 7/90 to 6/91 is given in the last section.

1



1 Introduction

The ultimate objective of the present study is to shed light on the closure 
problem for the averaged equations of multi-phase flow by comparing their 
predictions with the results of direct numerical simulations of multi-particle 
systems. At present, techniques for such direct simulations are still rela­
tively little developed and, therefore, in the first year of this study, we have 
mainly concentrated on them. The Pi’s, a post-doc, and several students 
are currently working on a number of such problems that are summarized 
in Sections 3 to 5.

Another possible approach to the validation of the heuristic averaged- 
equations models commonly used in engineering is their comparison with 
models more rigorously derived. We have also pursued this line of research 
for the relatively simple problem of linear pressure-wave propagation in 
a bubbly liquid. This study, which is summarized in Section 2, is near 
completion and will be submitted for publication shortly.

Plans for the work to be carried out during the second year of this 
contract are described in Section 7. A detailed budget for the continuation 
of this study has been submitted separately.

2 Pairwise interactions in dilute bubbly liquids

Author: A. S. Sangani
This study has been completed during the first year of the project and 

a manuscript based on this work is attached along with this report. Here 
we shall summarize the principal objectives and findings of the study. Our 
initial aim was to develop a rigorous approach for deriving averaged equa­
tions, i.e., equations that are satisfied by suitably-defined averaged pressure 
and velocity fields. There are, of course, already a large number of papers 
in the literature with the same general aim but a careful examination of 
these papers quickly suggested a need for a different approach. Many of the 
averaged equations suggested in the literature consist of writing averaged 
equations for the gas and liquid phases separately and then recommending 
the appropriate models for various terms for the interaction of the averaged 
fields of the individual phases via the common interface of the phases. An 
alternate approach to this, which has been employed with a considerable 
success in the study of sedimentation and rheology of dilute suspensions of 
small particles, is to derive the averaged equations for the entire mixture 
directly. For the case of gas-liquid mixtures such an approach was taken by 
Biesheuvel and van Wijngaarden (1984) who proposed a method based on a 
combination of volume and ensemble averaging methods and by Caflisch et 
al. (1985 a,b) who proposed a method of two-space homogenization. Keep­
ing in mind that our eventual goal is to employ the results of large-scale 
direct numerical simulations from which typically the ensemble-averaged 
quantities are probably the easiest to evaluate even when two distinct mi­
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cro and macro length scales do not exist, it seemed that the method of 
ensemble averages for the entire mixture was the most appropriate one to 
pursue.

We have developed a method that is somewhat similar to the one pro­
posed by Biesheuvel and van Wijngaarden. Having developed this method, 
we wanted to apply it first to the case of dilute bubbly liquids with the 
anticipation that the results for these dilute mixtures will serve as an im­
portant check on our numerical calculations to be performed later. Some of 
these calculations are near completion and these are presented in Section 
3.

We choose the simplest possible problem of linear pressure wave prop­
agation through a dilute bubbly mixture and examined in detail the con­
sequences of pairwise interactions among bubbles. This is the simplest 
possible problem in the sense that the nonlinear terms can be linearized 
and the problem of determining the microstructure of the mixture, i.e., 
the spatial configuration of the bubbles and their relative motions, which 
must be determined in many other problems as a part of the solution, need 
not be addressed. In spite of this considerable simplification, we found a 
number of interesting effects that arise solely from the interaction among 
the bubbles and in the remainder of this section we shall highlight some of 
these effects. A more detailed analysis and description may be found in the 
attached manuscript.

When the pressure wave propagates through a bubbly liquid, bubbles 
undergo volume, displacement, and shape oscillations because their com­
pressibility and density are different from those of the liquid and because 
of the finite interfacial or surface tension. The ensemble averaged continu­
ity and momentum equations in the absence of viscous and nonadiabatic 
effects require evaluation of mainly two coefficients, Xp and Au, which may 
be defined by the relations

A^(x) =aL(x|xi)p(Xl),i3xi' ,2 ,>

A"lr(x) = LxlH» (2-2)

where po and Uo are the unconditionally ensemble averaged pressure and 
velocity fields, pi and Ui are the corresponding conditionally averaged fields 
with the center of a bubble fixed at Xi, < is the time, and -P(xi) is the prob­
ability density function, i.e., the probability that a bubble may be found 
in the neighborhood of Xi. In words, Ap and At can be defined roughly as 
the ratios of the average pressure and linear acceleration of a representa­
tive bubble in the neighborhood of x to the corresponding quantities for 
the mixture. The effective speed of the pressure wave propagation can be 
expressed in terms of these two coefficients as

= c^l(1 ~ ~ Xp0)] + ^Ap(1 _ Xvl3)' (2'3)
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where Cl is the speed in the pure liquid, pi is the density of the liquid, (3 is 
the volume fraction of the gets bubbles, Pe is the equilibrium pressure in the 
gas bubbles, and 7 is the ratio of constant pressure and volume specific heats 
of the gas. For an air-water system at ambient pressure, the magnitude of 
the term containing l/C^ in the above equation is typically very small and 
therefore, unless (3 is less than 1CT4, the first term on the right-hand side of 
(2.3) is small compared to the second term and therefore can be neglected. 
As a consequence of this, it is possible to evaluate l/C^, correct to 0(/?2) by 
determining Ap correct to 0((3) and to 0(1). The 0(1) estimates of Au 
and Ap are evaluated simply by examining the interaction of a single bubble 
with the incident pressure wave while the 0((3) correction to Ap requires the 
examination of the pairwise interaction among bubbles. Thus, one assumes 
the presence of a second bubble at X2 and determines its effect on the 
pressure variation inside the bubble at Xj ( to be referred to as the test 
bubble ). The 0(/3) correction is then obtained by multiplying this effect by 
the probability of finding a second bubble at X2 and then integrating this 
effect for all possible positions of the second bubble. Actually, the method 
just described is not quite correct as it turns out that this direct method of 
summing the contribution due to the second bubble does not converge but 
ways of overcoming such difficulties have been proposed in the literature 
and so we shall not elaborate them here. Instead we shall try to explain 
the phenomenon in words.

When /3 is small the effective wavelength in the mixture is 0{Rf3~i^), 
where R is the radius of the bubbles, and so the two bubbles that are 
separated by a distance comparable to R see nearly the same pressure fluc­
tuations around them and as a result undergo volume pulsations that are 
nearly in phase with each other. Since the liquid is nearly incompressible, a 
combined effect of many two-bubble interactions at a separation distances 
comparable to R is to have a conditionally averaged pressure or velocity 
field to diverge when the effective wavelength is infinite. The fact that the 
effective wavelength, however, is finite is important in preventing the cu­
mulative effect of these pairwise interactions from diverging. Thus for each 
bubble that acts as a source of liquid during its volume expansion, there 
exists another bubble, located at half the effective wavelength away from 
the first bubble, that is undergoing a volume contraction and hence acts 
as a sink of liquid. The detailed analysis then shows that the correction 
to Ap is 0((3\oge(3) followed by an 0(/3) correction. These calculations also 
show that there is in fact also a relatively large 0{/31^2) correction to Ap 
that is a purely imaginary quantity indicating that Ap, and hence Cef, are 
complex quantities, or that waves attenuate even in the absence of any vis­
cous or nonadiabatic effects. This attenuation occurs because of the finite 
compressibility of the mixture and it is known as the acoustic radiation 
damping: The acoustic energy of the waves radiated from the test bubble 
is stored in the mixture and radiated later resulting in a phase difference 
between the pressure variations in the test bubble and the mixture. In all 
of the previous studies, which examined only the interaction of an isolated
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bubble with the incident wave, the compressibility of the mixture was at­
tributed to that of the pure liquid, whereas our calculations showed that 
one must use the compressibility of the mixture and not that of the pure 
liquid in evaluating the magnitude of the attenuation due to acoustic radi­
ation. Since the compressibility of the mixture can be typically 10-30 times 
larger than that of the pure liquid, this is a significant finding.

The detailed calculation of the 0(/?) correction to Ap further showed 
that it, in fact, diverges at a frequency that is lower than the natural fre­
quency of a single bubble. This is because a pair of bubbles resonate at 
frequencies that are different from the resonance frequency of the individual 
bubbles. Specifically, there are two modes in which a pair of bubbles can 
resonate. One corresponds to the two bubbles undergoing volume oscilla­
tions out of phase with each other and the other mode corresponds to the 
two bubbles undergoing volume oscillations in phase with each other. The 
former generally occurs at a frequency greater than the natural frequency 
of the isolated bubbles while the latter occurs at smaller frequencies. Now 
since the effective wavelength in the mixture is O(R0~1/2), the two bubbles 
see different ambient pressures around them only when their separation 
distance is 0{Rf3~il2) and, consequently, the first mode of out-of-phase 
resonance, which requires for its excitation unequal ambient pressures, is 
important only for pairs of widely separated bubbles. For such widely sep­
arated bubbles, the resonance frequency is only 0(/?1,/2) different from the 
natural frequency of the bubbles and therefore this mode does not make 
any contribution to the evaluation of Ap up to 0{(5) terms. This, however, 
is not the case with the second in-phase resonance mode which is excited by 
the nearly equal ambient pressures felt by the bubbles that are separated 
by a distance comparable to R. This resonance occurs at a frequency that 
depends, among other variables, on the separation distance and surface 
tension. When the latter is very large, the resonance occurs at a frequency 
u;cp that is about 0.83 times the natural frequency <jjc for a pair of nearly 
touching bubbles. Thus for any frequency u in the range there
is always a pair of bubbles that resonates. For finite surface tensions, wcp 
for the pair of nearly touching bubbles is generally smaller than its value 
for large surface tension and in fact for certain (of which there are count­
ably infinite numbers) surface tension values, the shape resonances make 
it nearly zero. Thus, depending upon surface tension and the separation 
distance between the bubbles, very large effects may be seen in the 0(/?) 
correction to Ap.

Although the resonance effects for pairs of bubbles described above may 
at first glance suggest that there will be a range of frequency values for 
which the bubbly mixture will exhibit a resonance like behavior, it turns 
out that the resonance of pairs of bubbles gives rise to a divergence in 
the estimate of Ap only for u> very close to ucp. This is because over most 
of the frequency range (wcp,u>c), for each pair of bubbles that is nearly 
resonating at any given instant, there is another pair of bubbles that is 
also nearly resonating but whose volume oscillations are out of phase with
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those of the first pair, resulting in a near cancellation of the large resonance 
effects. This, however, does not occur for the pairs of nearly touching 
bubbles for which there are no counter pairs undergoing out of phase volume 
oscillations. The overall effect, after averaging over all pairs, is as a result, 
only a weak logarithmic divergence in the 0(f3) correction to Ap for u> near 
u>cp. Since the effect of resonance near the natural frequency on Xp is rather 
strong, being proportional to l/(u^ — w2), compared with the contribution 
due to pairs of nearly touching bubbles, which is proportional to /?loge(|wCp — 
wl)> this divergence due to pairwise interaction will be overshadowed in 
practice by the more dominant isolated bubble resonances.

The numerical calculations for Ap also show that the corrections are 
generally small when u>/u>c is less than about 0.3. For such low frequencies, 
Ap approaches nearly unity for all values of 0 since temporal variations oc­
cur slowly at small frequencies, and as a consequence the average pressure 
fluctuations in the test bubble are nearly the same as the average pressure 
fluctuations in the mixture. For such low frequencies it is possible in fact to 
determine 1/C2^ correct to O{03) simply by determining A„ correct to only 
0(0) (cf. (2.3)). Therefore the 0(0) correction to A„ for small u was also 
determined using the method of pairwise interactions. In this case, since 
the frequency is small, the volume oscillations are absent and therefore 
there is no resonance effect of the kind described above. However, when 
the surface tension is not large, as is the case in many experimental condi­
tions for bubbly liquids, the shape deformation resonances are significant 
and these in turn make a large effect on the displacement oscillation of the 
test bubble and consequently on A^. Thus we found that the 0(0) correc­
tion to A„ diverges for a countably infinite number of frequencies owing to 
the shape deformation resonances. Each of these divergences, being loga­
rithmic, is weak but also, since the frequency range between each successive 
divergence gradually becomes narrower, the overall effect is difficult to es­
timate. It may be noted here that in previous theories, which examined 
only the interaction of an isolated bubble with the incident wave, such reso­
nances were not important because when the wavelength is large, the shape 
resonances are not excited by the pressure distribution around the bubble 
which is nearly uniform. However, in the presence of a second bubble, the 
pressure distribution on the surface of the test bubble becomes asymmet­
ric and therefore the shape deformation resonances are excited even in the 
limit of infinite effective wavelength.

Since the 0(0) estimates of both A„ and Ap diverge at several frequen­
cies owing to the resonance of pairs of bubbles at frequencies different from 
the natural frequency of the bubbles, it is important to include the damp­
ing mechanisms due to viscous and thermal effects. A new method was 
developed for determining the corrections to Ap and A„ when the viscosity 
of the liquid is small but nonnegligible. Similarly a method was developed 
for determining the corrections due to nonadiabatic changes inside the gas 
bubbles. It was found that thermal effects only dampen the spherically 
symmetric part of the pressure distribution around the test bubbles and
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thus play an important role in preventing the divergence of Xp from occur­
ring. On the other hand, the divergence in A„, which occurs even at low 
frequencies and is due to the shape deformation resonances, can only be 
damped by the viscous effects.

The O(03) theory for small frequency and the 0{f32) theory for arbi­
trary frequencies were compared with the experimental data available in 
the literature and it was found that the agreement between the theories 
and experiments was generally satisfactory except for frequencies close to 
and above the natural frequencies of the bubbles. For these frequencies the 
coefficient of 0(13) correction to Ap as calculated from the theory became 
very large. Thus the problem of predicting the phase speed and attenuation 
of waves for such high frequencies still remains unsolved.

This study of pairwise interaction among bubbles has pointed out the 
essentially very complex nature of the multiparticle interactions among the 
bubbles and their role on the macroscopic behavior of the bubbly liquids. 
For relatively dense mixtures it is clear that the resonance effects due to 
three or more bubbles will also begin to play a significant role. Also, in 
view of the fact that in the absence of any damping mechanism, these reso­
nances cause the overall properties to diverge, it seems that the magnitude 
of viscosity, even when small, may play an important role in determining 
the overall behavior. It seems that large-scale numerical simulations with 
selected values of viscosity, gas thermal diffusivity, etc. may be needed 
for obtaining meaningful predictions. Such numerical calculations will be 
carried out in the future. The case of slightly nonlinear deformations also 
seems fruitful to pursue. Although the resulting analysis at present ap­
pears algebraically complicated, it seems that pursuing it will indicate the 
proper nature of various weakly nonlinear terms that arise in the ensemble- 
averaged equations.

3 Drag and added mass in dense bubbly liquids

Authors: D.Z. Zhang and A. S. Sangani
In this study, which is not yet completed, we simulate the potential 

incompressible flow around an infinite number of massless bubbles. The 
calculation is made feasible by imposing a periodic structure to the system. 
This is obtained by arranging N bubbles at random in a cubic cell, and 
then filling up the whole space with copies of this cell. For each value 
of the bubbles’ volume fraction, several arrangements within the cell are 
generated and the results ensemble-averaged.

Our purpose is to investigate several problems in which the infinite 
lattice of bubbles is immersed in a flow that would have uniform velocity in 
the absence of the bubbles. We therefore write the solution to the Laplace 
equation satisfied by the velocity potential <f),

V2</> = 0. (3.1)
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in the form

■> = *.+ £ £ EKm^T" +>„„armA„]S1(r - r^), (3.2)

p=1 n—1 m=0

where d\ = d/dx\, rp denotes the position of the center of the p-th bubble 
(p = 1,2,... ,N) in the fundamental cell, and

£ = z2 + 1x3, *) = *2- 1x3, (3.5)
and S'i(r) is given by

5i(r) = ^ L k 1 k exP (-27nk • r), (3.6)
c k

in which the sum is extended to all the vectors k of the reciprocal lattice 
(except k = 0), and Vc denotes the volume of the fundamental cell. As 
shown in Sangani and Yao (1988), the function and its derivatives can 
be evaluated by combining Ewald’s technique (Hasimoto 1959) and the 
direct summation method.

The summation in (3.6) represents the disturbance induced in the flow 
by the presence of the bubbles and the use of the particular form of shown 
ensures the periodicity of the disturbance potential. Since the problem for 
cj> is linear, we have taken the coefficient of the first term Zj in (3.2) to be 
unity without loss of generality.

Near the surface of the p-th bubble, the potential can be expanded in 
spherical harmonics as

oo n
<* = £ £ [(CLr“ + cos

n=0 m=0

+ (C„V» + sin me] P„”(c°s 0). (3.7)

The relations between the coefficients of these local expansions and those 
of the global expansion (3.2) are given in Sangani and Yao (1988). The 
application of suitable boundary conditions on the surface of the bubbles 
then determines the coefficients.

The liquid velocity < > averaged over the volume of the cell is given
by

<uL>=iW VcMVl, (3.8)
Yl Jvl
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where Vi is the volume of the cell occupied by the liquid. Similarly, the 
average velocity of the bubbles, < uG >, is given by

N
< IT >: ___i*— V yp

(Vc - V.) £ 5 (3.9)

where v, — is the volume of the bubbles, all assumed to have the same
radius i?, and Vp is the velocity of the p-th bubble. In terms of < uL > 
and < uG >, the average mixture velocity < v > is

< v >= (1 - /?) < u1, > +/? < uG >, (3.10)

where /? = Nvs/Vc is the volume fraction of the bubbles.
These average quantities are readily evaluated. The velocities Vp can 

be determined by substituting (3.7) into the kinematic boundary condition

n • V^ljj = n • Vp, (3.11)

where we have assumed that the surface tension is large so that the small 
deformations of the bubble shape can be neglected. With this relation, the 
component of the bubble velocity in the direction, for example, can be 
evaluated from

v'= f frF^°sfl)dSp = C<o-2D’oIi~3- (312)

Substituting (3.12) into (3.9), we obtain the x^component of the average 
bubble velocity as

>=iE(CrK-2D’;„R-3). (3.13)
iV p=l

To calculate the liquid average velocity we use the generalized divergence 
theorem to write

(3.14)

where Sc is the surface of the cell and n is the outward normal with respect 
to Sc and the bubbles’ surfaces Sp. The contribution from the bubbles’ 
surfaces is readily evaluated from (3.7). For example, the component in 
the direction of xi is given by,

[ cf>nldSp = vs{Cpl0 + DP10R-3). (3.15)
J s„
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To evaluate the first integral in (3.14), it is convenient to use the form (3.2) 
of the velocity potential because the sum, being periodic, contributes zero 
so that, again in the direction of ix,

J 4>ri\dSc = Vc. (3.16)

Substituting (3.15) and (3.16) into (3.14) and (3.8) we find that the average 
liquid velocity in the X\ direction is given by

< uf >-
1-/?

1 - 4 Etcfo +-CfoR-5)
JV P=1

(3.17)

from which the volume average velocity (3.10) is obtained as

-?/? N
< t>i >= i DFi0R 3.

1 p=i
(3.18)

The approach just described allows us to calculate now several quantities 
of interest.

Added Mass

For an assembly of particles several non-equivalent definitions of the added 
mass coefficient are possible. We have begun to explore this matter.

For example, one possible definition is the following. Suppose that the 
bubbles undergo an oscillatory motion in the direction of Xx with a velocity 
of amplitude < uf > and frequency u. Then, for each particle, one may 
define an added mass coefficient Cm corresponding to the force in the Xi 
direction for motion in the Xi direction by

pn1dSp = -vspCmiuj < > (3.19)

The left-hand side is the Xx-component of the force on the p-th bubble and 
the coefficient 1/2 has been introduced so that Cm —> 1 in the dilute limit. 
For oscillations of small amplitude the Bernoulli equation reduces to

d<J) p 
dt p m, (3.20)

so that, with the change d/dt —> ito, we obtain from (3.19)

Tii dSp ^vsCm Uj > .
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If the bubbles are stationary while the liquid oscillates with a velocity 
< u[ >= — < uf >, the previous definition must be modified by adding 
to the velocity potential a term x- < uR > corresponding to the inertia 
force. Furthermore, following Biesheuvel and Spoelstra (1989), we relate 
Cm to the average volume velocity < vx > rather than to the liquid velocity. 
These considerations motivate the following definition of Cm

f 4>n1dSr,= 1vs(Cm + 2) <vx> .
J s,, l

Since now the bubbles are stationary, we have from (3.12)

Cf0 - 2£VT3 - 0.

Using this relation in (3.21), we then find

3Cf0
< tq >

- 2.

(3.21)

(3.22)

(3.23)

For small (3 the quantities appearing in this definition can be calculated 
analytically and the result is

Cm ~ 1 + 3.32/?,

in agreement with Biesheuvel and van Wijngaarden (1984). For arbitrary 
/?, we have calculated numerically Cm according to (3.23) for each bubble 
in the fundamental cell. For each value of /?, the calculation was repeated 
for a number of different configurations. The results of such computations 
are represented in Figure 1 by the symbols # and the small-/? asymptote 
by the dash-and-dot line.

Another possible definition of the added mass coefficient is the following. 
Suppose that the mixture oscillates with an average velocity < tq > e'wt. 
For a single body in a liquid, classical hydrodynamics gives the following 
relation between the velocity of the body and the velocity of the 
liquid at large distance from the body

Cm + 2
= -c“tt

where again Cm has been defined so as to equal 1 for a single isolated sphere. 
One can adapt this definition to the case at hand by identifying with 
the average velocity < iq > of the mixture so that

< >= Cm + 2 < tq > . (3.24)

The difference with the previous case is that now the total force on each 
bubble vanishes so that

Cfo + D\qR 3 — 0. (3.25)
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With this relation, the added mass coefficient for the p-th bubble is calcu­
lated from

Cm —
2

3C70(l-d)-l
(3.26)

Again, for small /?, one finds

Cm~ 1 + 3.32/?,

in agreement with van Wijngaarden (1976). Results for larger values of 
/? can be obtained numerically as before. They are shown in Figure 1 by 
the asterisks. The dashed line is the small-/? asymptote. It is interesting 
to observe that the two results are very close to each other up to at least
P = \-

The two different definitions of Cm can be treated together by writing 
the Xj-component of the total force F on a bubble in the form

F\ = P v.
d < Vi >\ d < vy >

dt dt (3.27)

Then the first definition (3.21) of Cm is obtained by setting < uf > = 
0, while the second one is obtained by setting F) = 0. An interesting 
consequence of our unified approach to these two different definitions is 
the explicit proof that the results thus obtained are not equivalent but 
correspond to different physical quantities.

The two definitions given above are not the only ones possible. A further 
exploration of these issues will be carried out in the continuation of this 
study.

Drag

It is well known that, at large Reynolds number, the drag on a bubble 
on the surface of which the tangential stress vanishes can be estimated 
by calculating the energy dissipation in the liquid using the potential-flow 
velocity distribution. In applying this procedure it would be necessary, 
for consistency, to allow the spheres to deform so as to approach more 
closely the behavior of actual free surfaces. For simplicity, however, here 
the bubbles are assumed to maintain the spherical shape.

In this calculation we keep the spheres fixed while the liquid has an 
average velocity < uf >. We define an average drag coefficient per sphere,
Cd, by

12 N n nRCd{< V! >)2 = E (3.28)

where /x is the dynamic viscosity and E is the energy dissipation rate in 
the fundamental cell given by

(3.29)
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= 2 ii ( (n • V)(V0)3 dS'-jr[ (n • V)(V*)3 dS,
J Sc ^JSp

It is easy to show that the integral on the surface Sc of the fundamental 
cell in the above expression vanishes while the integrals over the surface of 
the bubble can be evaluated from (3.7) by making use of the orthogonal 
properties of the Legendre polynomials and the relations among D^m,
Anm, and Anm to yield

• (n + l)(2n + 1) . . . .

x {(1 + <5m0) (A>nm)2 + (1 - <5m0) (>nm)2} • (3.30)

Some results obtained in this way are shown in Fig. 2 as a function of the 
spheres’ volume fraction. The asterisks indicate the mean value obtained 
with different simulations and the crosses the variance from the mean.

4 Acoustic wave propagation in dense bubbly liquids

Authors: A. Lezzi and A. S. Sangani
In this study we examine the situation in which the effective wave­

length of sound waves becomes comparable to the size of bubbles to de­
termine when the theories for predicting the phase speed or attenuation 
based on averaged equations and the long wavelength assumption begin to 
breakdown and to devise, if possible, an alternate averaged-equation theory 
which will yield reasonably accurate estimates. For this purpose we choose 
a somewhat idealized configuration for the spatial distribution of the bub­
bles, viz., when their centers are located on N parallel equidistant planes 
arranged with their normal pointing in the direction of wave propagation. 
The arrangement of bubbles within each plane is periodic. The volume 
fraction of bubbles is large and the frequency of the waves is comparable 
to, or larger than, the resonance frequency of the bubbles. In this case the 
effective wavelength is comparable to the size of the bubbles.

We have determined an exact (numerical) solution of this problem in 
terms of planar periodic singular solutions of the Helmholtz equation. Briefly, 
the fundamental planar periodic singular solution of the Helmholtz equa­
tion corresponds to an array of point scatterers on a plane Xi = 0, i.e.,

V2t/i + A:2t/; = —47r ^ <5(x — Xl) (4.1)
XL

where rp is the amplitude of the pressure variation in the liquid, k is the 
wavenumber for the pure liquid, i.e., k = w/C*,, u> is the frequency, Cl is 
the speed of sound in the pure liquid, and Xl are the lattice points defining
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the position of the bubbles’ centers on the plane Xi = 0. 
(4.1) is given by

e-ik|x-xL|

The solution of

(4.2)

which appears as outgoing planar waves from Xi = 0 for |ii| —► oo and 
as spherically outgoing waves from xl near each scatterer. The solution 
given by (4.2) is actually not very useful for computational purposes as 
the sum in it converges very slowly when k is small. Therefore this sum 
is rewritten in a different form using Ewald’s technique which converts it 
into a suitable sum in the reciprocal lattice. The details of this technique 
may be found in Sangani and Behl (1989) where it was employed in the 
calculation of the fundamental planar singular solutions of the Stokes and 
Laplace equations. In fact, when k is small, it is possible to obtain a 
uniformly valid approximation for tp in terms of the solutions derived by 
Sangani and Behl.

Now, since any spatial derivative of the fundamental solution rp also 
satisfies the Helmholtz equation, it is possible to generate an infinite number 
of planar periodic singular solutions of the Helmholtz equation simply by 
successive differentiation of the fundamental solution. A general solution is 
then constructed by adding all the singular solutions to the incident wave. 
Thus if a plane wave in the i! direction is incident upon the mixture, then 
the amplitude of the pressure variation is given by

N

p = + £ Z £ kj:
a = 1 n=0 m=0 dx\ </’(x - xj) (4.3)

where pa is the amplitude of the pressure variation in the incident wave, Y™ 
is a solid spherical harmonic of degree n, x“ is the x^ coordinate of the a 
plane, and Anrn are constants that can be determined from the appropriate 
boundary conditions on the surface of the bubble and at infinity.

The constants Anrri can be determined either by the method of succes­
sive approximations or by the method of direct substitution. The former 
is useful for the case of small volume fractions and large wavelengths. Ac­
cording to this method each of the constants is first expressed as consisting 
of two parts corresponding to two effective planar waves in the mixture. 
Thus

Km = anmexp(-tTx“) + 6nmexp(tT'x“) (4.4)
where F and F' can be shown to be related to the effective wavenumbers of 
two planar waves travelling in opposite directions at Xx = x“. Actually, the 
decomposition shown in (4.4) is valid only for bubbles well within the bulk 
of the mixture, i.e., for 1 << a << AL Edge effects will be important for a 
close to unity or N and the modifications required for the bubbles near the 
edge are taken into account separately once the bulk solution is determined. 
The method of successive approximations then consists of expanding anm,
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bnm, F, and F' in powers of /J1/3 (corresponding to the bubble radius-to- 
spacing ratio) and determining the successive approximations to F and F' 
and thereby determine the phase speed, attenuation, and the coefficients of 
the reflected and transmitted waves. This method is somewhat similar to 
that employed by Twersky (1962).

In this way we have obtained estimates of the phase speed that are in 
agreement with the 0(/?1/3) correction obtained by Rubinstein (1985) and 
the 0(0) estimate for the phase speed when the frequency is small as given 
by Caflisch et al. (1985 a,b). These investigators employed the method 
of homogenization to derive the effective equations and thus it is inter­
esting that their results can be recovered by an independent analysis for 
the situation examined here which is somewhat different. More interesting, 
however, is to examine the situation where the homogenization method 
will no longer be useful. As mentioned before, this corresponds to the 
case of large (3 and u. Although the method of successive approximations 
can be carried out, in principle, to evaluate the next few approximations 
beyond those determined by Rubinstein and Caflisch et al., the resulting 
algebra quickly becomes cumbersome and it is advantageous to use instead 
the method of direct substitution. In this method, the phase speed, at­
tenuation, and reflected and transmitted wave coefficients are determined 
numerically for selected values of N, u, and /3. The infinite sum in n in 
(4.3) is first truncated to include only a Finite number of singular solutions 
per plane of bubbles and then the same number of boundary conditions 
on the surface of the bubble are derived suitably and the resulting set of 
linear algebraic equations is solved directly. The number of singularities 
are then increased and the calculation repeated until the calculated values 
of the effective speed, attenuation, etc. do not change significantly. Using 
this method it is also easy to examine the edge effect. These calculations 
are currently in progress.

5 Multi-phase flow in a nozzle

Authors: H.S. Kim, A. Prosperetti, A. S. Sangani
The ultimate aim of this study is the numerical simulation of the flow of 

a number of particles or bubbles in a duct of variable geometry. The work 
carried out to date concerns a very simplified situation which is being stud­
ied to perfect the numerical techniques. We consider the buoyancy-induced 
motion of a number of rigid massless spheres on the axis of symmetry of 
a nozzle or pipe. The liquid is assumed to be incompressible and inviscid 
and the velocity field irrotational.

The starting point is Green’s identity for the velocity potential <f>,

2^nH*) = [
J s

1 d(^ J.t 9 1

lx - x'| dn dS', (5.1)

where -y = 2 if x is inside the domain occupied by the liquid and 7 = 1 if x
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belongs to the boundary S of this domain. For our purposes this relation 
will be applied to points on the boundary. Here and in the following the 
time dependence of </> is understood.

In the present problem the domain occupied by the fluid is bounded by 
N spherical surfaces Sa, a = 1,2,..., N, the lateral wall of the pipe W, and 
two surfaces at infinity upstream and downstream of the region occupied 
by the bubbles. Since, in the present simple situation, the motion of the 
liquid is solely due to that of the spheres, these surfaces can be disregarded. 
On the pipe wall, the normal velocity vanishes while, on the sphere a,

d<b
en=V°"- <6-2>

The preceding equation then becomes

27T(/>(x) = (5.3)

+ x'l
:Va n' J)1

dn' |x - x'|
dSa.

To solve (5.3) we start by setting, on the surface of each sphere,

4>|S" = Efin^n(cOSr). (5.4)
n=0

Here the axial symmetry of the problem has been used and 0“ is the az­
imuthal angle in a spherical coordinate system centered at the center x“ of 
the sphere a and having as polar axis the axis of symmetry of system. Us­
ing this expansion of the unknown potential on the surface of each sphere, 
for x on the pipe wall W, (5.3) gives

2^(x) = - fw <«x') A dSw + Z 2na2 
x - xa|2

^aVa cos6a (5.5)

+ E
n=0

2n
2u 4* 1

Ba
a n— 1

Pn (cos 6°) ?

where 6a is the angle between the axis and the line joining the points x and 
xa. For the purpose of calculating the integral over the pipe wall appearing 
in this equation it is convenient to make use of a system of cylindrical 
coordinates (r, 2,r/) having the axis of symmetry as 2 axis. We then take 
x on the meridian plane r? = 0, so that x = (r, 2,0), and decompose the 
integration over W into a line integral over the trace w that the pipe wall 
marks on a meridian plane and an angular integration over all meridian
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planes, 0 < tj < 27r. Due to the axial symmetry of the problem, the latter 
integration can be carried out explicitly and leads to

<£(x) = -/ <t>(x')H(x,x')dw' + ]P Q
Jw 0=1 |X - X

’2 2—-aVa cosSa (5.6)

n=0

_L V - Ba ( — a 
^ 2n + l n l |x-x“|

n-1

Fn(cos Sa)

where
W7-V vD = ff(r ?• r' r't — ^^ K (m)
ff( ’ )_H( ’ ’ ’ ) “ 7T an' \f~A ’ 

with K the complete elliptic integral of the first kind and

i4 = (r + r')2 + (z_z')2. 
A

(5.7)

(5.8)

We now write (5.3) for a point x on the spherical surface 5^, and take
the scalar product of the resulting equation with Pk(cos 60),k = 0,1,2,__
The result is

Air
2k -|- 1 (5.9)

+ t[V°UFt{™n\x^\)dS’-

-Bn I
JS'Is” dn' \ |x - x

where <,> denotes the scalar product over 80,

< f,g >= [ /(cos 90)g(cos 60) sin 613 d60. 
Jo

(5.10)

Some of the scalar products appearing in this relation can be evaluated 
analytically in closed form, while for others the use of a sufficiently high- 
order Gaussian quadrature is more efficient.

Equations (5.6) and (5.9) relate the values of <t> on the pipe wall,-the 
coefficients B°,n = 0,1,2,...; a = 1,2,... TV, and the velocities of the 
spheres = 1,2,..., JV. To close the system of equations, we need
additional relations between the velocity potential and the translational 
velocity of the spheres. To this end we use the fact that, since the spheres 
are massless, the total force on each one of them must vanish so that, for 
a = 1,2,... JV,

/ pn dSa = 0, (5.11)
JS"
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where p is the pressure. To calculate p, we use the Bernoulli integral

P=-P + ‘(V*-V,i)+gJ + F(l) (5.12)

where g is the acceleration of gravity and F[t) a constant with respect to 
the spatial variable x. On 5“ we may write

(5.13)

It is therefore clear from (5.4) that (5.12) will then lead to a system of 
equations involving Va and the time derivatives of the 5“’s.

The closure of the system requires now a set of equations to calculate 
the position of the spheres’ centers, and these are evidently given by

We are currently in the process of writing a computer problem for the 
solution of the system of equations presented above.

6 Personnel

The work described in the previous section has involved two graduate stu­
dents (A. Lezzi and D.Z. Zhang) at half time each, one post-doctoral fellow 
(H.S. Kim) at half time, 5% of the time of the PI (A.P.), and 50% of the 
time of the Co-PI (A.S.). Recently, a third graduate student (C.Y. Fei) has 
also started to work in this area. It is expected that these levels of effort 
will be maintained until the end of the present first year of funding on June 
30, 1990.

7 Future work

At the end of June, 1990 Dr. Ashok Sangani will return to Syracuse and, 
from that point on, his collaboration in this study will be covered by a 
separate contract the proposal for which has already been submitted to 
DOE. Accordingly, the work described in this section is the part that will 
be carried out at Johns Hopkins.

The first task will consist of the completion of the studies in progress 
summarized in sections 3 to 5. Secondly, it will be necessary to choose one 
or several averaged-equations models of two-phase flows and to write codes 
for their numerical integration. When this will have been accomplished, 
we shall be in the position to compare the averaged-equations results with
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those of the direct numerical simulation ami to improve the closure relations 
included in the averaged models.

It is estimated that these objectives can be met by the summer of 1991. 
A close connection with the work being carried out at Syracuse by Prof. 
Sangani and his students will be maintained throughout this project.
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