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Abstract. We discuss a new model to study alternating-phase focusing
(APF). Our approach is based on representing the accelerating electrie field
with a continuous phase modulated traveling wave. The resulting nonlin-
ear equations of motion can be solved analytically to predict the regions of
stable APEF motion. We also identify the kev parameters which adequately
describe the physics of APE. The model is believed to be applicable to low- 4
ion linacs with short independentlyv-controlled superconducting cavities being
developed at ANL.

1. Introduction

The basic idea of APF is to achieve stable beam transport in both axial and radial
planes of motion by alternating the sign of equilibrinm phase of the accelerating electric
field. The advantages of realizing a three-dimensional beam focusing without the use of
solenoids or quadrupole magnets must be weighed against the compromises in longitudi-
nal acceptance one is forced to make. Previous works in the field {1, 2, 3, 4. 5] addressed
APF in the context of a linac with a discrete number of accelerating gaps spaced in a
predetermined manner to achieve a particular value of the synchronous phase in ecch gap
(such as the case in the m-mode Wideroe linac and the Alvarez DTL). In contrast, the
application we have in mind is a linac with superconducting accelerating cavities of the
type described in [6]. These low-if cavities are short, can be independently controlled in
adjusting both the phase and the amplitude of the electric field, and were shown to pro-
duce very high accelerating gradients [7]. The model presented in this paper is thought
to be a good description of essential APEF physices for the superconducting linacs and a
starting point in tryving to determine the practical limits of APEF.
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2.1, Analytical model and assumptions
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where w is the angular velocity and & is the wave number of the rf field, ¢¢ is the
equilibrium phase in the absence of APF, and A and ¢, are the AP period and phase
modulation amplitude respectively, For the central reference trajectory z., we choose
wl = A( Nd:' = (2)
Jo

In subsequent analysis, we will neglect the effect of the velocity change in one APF
period; the reference particle is assumed to travel with a constant /3.

We can compute the average accelerating gradient by integrating eq. 1 for the
reference trajectory:
[':n

A
T / CcOs [(f)ﬂ + t’b] sin ('..).77':/‘\)] == L‘() CcOos (.')0‘/()(@'4)1 ) (3)
i 0

<k >=
Equctions of motion

The equations of motion are

d* -

s
—_r = [/'v NpaRe . ‘1
dt*  m (r z20); ()
d’r g :
= —Fo(r, zit), 5
di? m; b ' ()

with F, given by eq. | and £, given to the first order in 7 by Maxwell's equations,
rik,
fon(ryzit) = ————. (6)
i 2 0z
For an arbitrary longitudinal deviation from the reference trajectory given by Az = =~z
the equation of motion becomes

Az E
il = -([-—i() {cos|og — kAz + ¢rsin (2r(z. + Az)/A)] = cos oo + oy sin (27 2./ M)} ).

(7)
We will first look at the AP hinear motion.
2.4, Linear stability

Let us define some dimensionless parameters which we are going to use throughout this

paper,
Ao = -kA:= -an\ (3)
ey ;j(/
T = ‘( — “‘J‘\”“- (l))
A
Vo= 'T. (lU)
. q [',‘(] J,\

The linearized equations of motion are

if-—?g 4w {(—v + o1 cos2nT)sin (o + oy sin277)] Ao = 0, (12)
Pr . o
:_1_1; ~ v [(=v 4+ ¢y cos2rT)sin(@o + @) sin 2rr)] Ao = 0. (13)
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By expanding the linear coefficients in eq. 13 in a Fourier series. we get the familiar
Mathieu-Hill equations:

12 Ag , i ’ | .

'(‘—‘T,i - 2108+ L Cysin(2rnr +0,) Ao = 0, (14)

([T.‘ n=1
d*r S _ .
dr: + | B+ L (usin{2ant +0,)|r = 0, (15)
ars =1l i

where _
B = T;’?Vg']o((ﬁl)smd’na (16)

v B . - . 2 .
\/1/-’ cos? @y + n?sin” ¢ if n odd

v il
o= —mygvld, (o)) pa— ——s
l \/u“ sin” op + nlcos? oy if n even

2 i n odd

tan@, = —tanogg{ “ ) (18)

£ 9f n even
n

The equations are analogous (o those obtained in ref. [5] using a discrete thin-
lens approximation and a standing wave approach. Here, however. the beam dynamics
variables B and (', depend onlv on four independent parameters: ¢g. o, v, and
moreover. the dependence is given in an explicit analytic form. Keeping just the no= |
term. we obtain a well-known Mathicu equation for which we can compute the stable
region boundaries. Fig. | shows the linear stable region. Fig. 2 shows stability boundaries
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Figure 1. Transverse (T) and longitudinal (L) boundaries for the linear
stability region.

in the @, — v space for APF phase advances of less than 90° and oy = 5% 5 = 0.05: fig. 3
shows the effect of increasing the “acecleration parameter™ n to .25,

We next turn our attention to the nonlinear problem of calenlating the longitudinal
acceptauce for the APEF hnac.

2.4. Longitudinal acceptance

The full nonlinear equation of longitudinal motion is given by

(3

- \

d~Ao 5 ‘ . Ao .

st = et S con [ g + Ao+ oy sin { 277 — = || = cos{0q + o) sin ) L (1M
dr? v J
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Figure 2. Stability boundaries for trajectories not exceeding 90° in either
transverse or longitudinal phase advance with ¢¢ = 5° and n = 0.05.

\Vo can find the effective potential for eq. 19 by using the averaging method given
in ref. [8] and applied to the problem of longitudinal acceptance in ref. [5]. We review
the method | ere for completeness.

Conside * an equation of the form

d*r al’y

—— i — (20
dl? Or + /5 (20)
where -

= 3 [uysin(nQ) + v, cos (n)). 21)

n=1
If the period of the motion caused only by the potential U is T and § > /7T, the
particle motion can be described by

o) = X(t) + &(1), (22)

where X(t) and £(¢) are caused by the slowly varying potential {7y and the rapidly
oscillating force f respectively. In this case, eq. 21 can be averaged to yield

([3 X _ ()(/, {f

bR 23
dt® ax (23)
where the effective potential Vg 1s given hy
QN VL
(/I(. — (‘,’ + n , T . 21
it URENTOE “Z::] = (21)

In the problem at hand, eq. 19 can be transformed to the canonical form of eq. 21
by using well-known Fourter expansions:

)
cos (esin€) = Jo(w)+ 2 Jan(x) cos(2nb); (25)
n=1
sim{rsing) = 72 Jow o (X)sin ((2n — 1)0) . (26)
n=1
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Figure 3. Stability boundaries for trajectories not exceeding 90° in either
transverse or longitudinal phase advance with ¢y = 5° and = 0.25.

We find the effective potential to be given by

Ut = Uo + Y U, (27)
n=1
with
Up = gt Jo(or) [sin (¢ + Ad) — N cos oy — sin éo] (28)
AN S,
(»/rn = (‘}l_{“‘) '/7‘;(@1)“—,,—» (.2.())
2 n*
where
¢ sin’ (@ + A¢) + sin® ¢y — 2sin (¢g + A¢) sin @y cos (%Ag’)) il n odd (30)
D = ’ [

cos® (¢g + Ad) + c0s” ¢y — 2 cos (9g + AB) cos &g cos (f_\o) if n even

Checking the validity of the assumption that @ > 1/T, we find Q = 27, 27/T =

\/I_‘frr)u'-’.](,(@’l)sin ool and the assumption is satisfied if nu?|Jy(o))sin o] < 1677, For
any practical application, the requirement is v < 150.

Given the effective potential, we can caleulate the equation for the separatrix in
the (Ag, AW/W) space and the total longitudinal acceptance. The separatrix is given

by

AW 1 -

IR R L B A 2 A\ ‘
W ~qv \/“ [A{ { ('lf(A(-))}s (31)
where
Al = Uer(A0.) (32)
and o, is the unstable fixed point of the motion given by
M o B
o =0, - i3 33
(.)A@ A= A ‘ ZJZA(') Ad= A - ( )
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Figure 4. Relationship between (a) the effective potential {/.g(A¢) and
(b) the stable region in the (A¢, AW/W) phase space.

Fig. 4 illustrates the relationship hetween the potential well U.g(A¢) and the stability
boundaries in the (A¢, AW/W) plane of motion. The width of the separairix W is simply
the distance between the values of Ag at which [U.qg(A¢) = AUV (cf. fig. 1). The height
of the separatrix is given by

(34)

W

The area of the stability region in the (A¢, AW/W) phase space (longitudinal accep-

tance) is o
AW A U .
= 2| 1 = ——=d(A¢). 35
ap ( 1% )m“ -/A¢t:,—~ll 1 A.U’{ (A¢) (35)

Below we give an explicit solution for a, accurate to the second order in Ao, 1. e.
we consider terms up to O (A¢?) only in the Tayle: expansion of [eg.

(AW) _VRAT

v

2.4.1. Second-order solulion Consider a potential function U(r) described by

b .
Ur) = S0t = 243 (36)
Z 2
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Figure 5. A general potential U(x) described by a cubic polynomial in z.

and the stable motion confined to z, < @ < &, as shown in fig. 5. The turning points x,,
z,, potential well depth U/(zy), and the area of the stable (&, &) region are calculated to

he
r o= f; (37)
h

la
Ly = "':_’)"5, (’38)

1 a?
Uixy) = <57, (39)

6 0*

o = >/ V2IU() = UGa)] = 25 (40)

In the problem at hand, the effective potential U.g given in eq. 27 can be Taylor
expanded to O (A¢?) to yield

a

. b
Uen(Ag) = 526" — gm’ T (1)

where a is the square of the linear motion’s phase advance o,

s op b (Cn) _
a=o0; =28+ —; (,_> (42)
2r? A\ n
and bis given by
T, S W v? ‘
b= ;;ﬂrlax“J()((pl)cos o + §7)“1/ sin 2¢g L(—l) J(d) |1 = 3 (43)
- “ n=1

Then, the width of the separatrix W and the (Ag, AW/W) acceptance «p, are given by

da

¥ = 3 (44)
6 @/

I e 45

L Sry b (45)

Fig. 6 shows the results of acceptance calculations for ¢g = 5°, 7 = 0.1 using eq. 15
and keeping just the n = 1 term in egs. 42, 13. Computer simulations indicate that
for most practical cases the second-order acceptance approximation is accurate with an
error of less than 10%.
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Figure 6. Plots of the longitudinal acceptance ay for ¢o = 5°, n = 0.1,
(a) Plot of ay as a function of ¢; and v. (b) Contour plot representation
of (a). (c¢) Plot of «, as a function of o, and op, the longitudinal and

transverse phase advances respectively.

3. Conclusions and future work

The model of the traveling wave with continuous phase modulation presented in this
paper gives quantitative predictions to the problem of longitudinal stability in APEF
linacs. The model deseribes the physics of APEF with four parameters and yvields analytic
solutions for the effective potential and the acceptance for the longitudinal motion to
any order in Ag. '

Future work on the model will include investigations of practical limits in linacs with
independent superconducting cavities, space-charge current limits, and ways to improve
the acceptance by modulating both the phase and the amplitude of the accelerating field.
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