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ABSTRACT

A computational scheme is presented for the analysis of a certain

class of problems involving creep of metals at elevated temperatures.

The high temperature nonelastic behavior of materials is assumed to

obey a new mechanical equation of state type constitutive relation

recently proposed by Hart.  As an illustration, the problem of creep

of a closed-ended thick-walled cylinder under internal and external

pressures is analysed employing the proposed computational scheme and
..1

Hart's equation of state approach.  The results obtained are compared

qualitatively with the results of classical strain hardening and time

hardening theories of creep and the experimental results obtained earlier

by other researchers.  The proposed computational scheme is found to be

very efficient from the view point of both computational time and effort.

In regard to the equation of state approach, it is found that in addi-

tion to the general features of these classical creep theories, it is

also capable of taking into account the effect of prior deformation his-

tory on subsuquent creep behavior by simply specifying the initial dis-

tribution of a single state variable called hardness.
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Uability 0, responsibility for the accuracy, completeness
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INTRODUCTION

The  study  of high temperature inelastic behavior of meta]s has  re-

ceived remarkable attention in the recent years.  This growth of inter-

est is mainly because of the vast technological applications of metals

at elevated temperatures, especially in the nuclear power industry.  In

particular, great emphasis has been laid recently upon the develoFment

of constitutive relations for representing the time dependent inelastic

behavior of metals which is highly nonlinear and hereditary in nature.

Various theories of creep, as described by Rabotnov [1] and Penny

and Marriot [2], have been proposed in the past to represent this com-
.

plex phenomenon of creep of metals.  Of all these theories, strain harden-

ing and time hardening laws are most commonly used at present for creep

'analysis of structures.  Krempl [3,4] and Onat and Fardshisheh [5] have

critically examined these classical theories and have concluded that

they are incapable of representing all the salient features of high

temperature deformation behavior of metals.  For example, the strain

hardening and the time hardening theories do not take into account the

effect of prior deformation history on subsequent creep behavior, and

both of them are incapable of representing a softening of the material

which accompanies creep recovery.  These theories are, therefore, in-

adequate for analysis of structures subjected to complex mechanical and

thermal loadings at elevated temperatures.

Several modifications have been suggested to remedy such drawbacks

of classical theories and to obtain a more faithful representation of

the high temperature deformation behavior of metals.  In this paper we

shall concentrate on one such modern theory, namely the equation of

1-
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state approach  due  to Hart  [6,71.    Thid theoly involves  the  use  of

certain well defined state variables which depend upon the previous

deformation history.  A novel feature of this theory is its ability

to incorporate in a simple way the difference between geometrically

identical. specimens with different initial deformation states, e.g.

between annealed and cold worked specimens.  The basic assumptions under-              6

lying the uniaxial constitutive relation for relatively steady loading

have .been justified experimentally for various metals and alloys by
-

Hart, Li and their coworkers [6-15]. Also, uniaxial constant load creep ex-

periments at 250' C have been performed by Ellis, Wire and Li [15] on

1100 Aluminum alloy specimens with different initial states.  The re-

sults they have reported are in good agreement with theoretical predic-

tions.

In regard to the application of Hart's theory to multiaxial states

/     of stress situations, the present authors have recently analyzed the

problem of creep of a thick-walled spherical shell under steady internal

and external pressures  [16].   The aim of this paper is twofold:  (1)· to

present a general computational technique for solving boundary value

problems arising in creep analysis of structures involving materials

that obey either Hart's constitutive relation or classical strain or

time hardening type creep theories,,and (2) to analyze the problem of

creep of a closed-ended thick-walled cylinder subjected to steady inter-               i

nal and external pressures using the proposed computational method and

Hart's constitutive relation for the cylinder material.  The results

obtained are compared qualitatively with the time hardening results of John-

son [17] and Smith [18], and the strain hardening and experimental results

of Taira [19, 20] and their coworkers.  The main features of Hart's theory

.....„,«.„......*.    --...
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are discussed and encouraging conclusions are drawn regarding the pro-

p,osed camputational scheme.

1.  EQUATION OF STATE APPROACH DUE TO HART

. In this section we shall outline the basic features of Hart's theory.

A detailed description can be found in references [6, 7].

We shall concentrate our attention on the constitutive laws govern-

ing grain matrix deformation.  For situations under consideration the

contribution due to grain boundary sliding is neglible ,and is, therefore,

not included in the present formulation of Hart's theory [7].  The ac-

t
cumulated total strain due to grain matrix deformation, € , at any time

can be decomposed into three components:

<t     ce   <a   Ep (1.1)

where €e  is the elastic strain which is related to stress by Hooke's

law; €a  is the anelastic strain, a stored strain that is completely reco
verable

P
eventually upon unloading;   and € is the completely irrecoverable and

path dependent permanent strain.  The anelastic strain rate  La  is

appreciable for relatively short times following abrupt changes of load

and plays a very important role in cyclic loading.  In case of relatively

steady loading, however, we can use the transient free relationship in

which  Za = 0.  In what follows we.consider steady loading situations

a
where we ignore the anelastic strain € and consider only the elastic

strain  €e and permanent strain  € . It should be pointed out that  €P

represents the completely irrecoverable component of strain and includes

the time  independent as well as the time dependent plastic strains in a

classical sense.

'-'-'=; -/'•- '=.lr../
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Relaxation tests have been performed by Hart, Li and their co-

workers   [8-15 ] on various metals and alloys at different temperatures.

The results reported indicate that for samples of the same material

.Pat the samel temperature but with different initial states,  the log  a-log €

curves form a one parameter family.  Moreover, it is observed that in

each case the family of curves can be generated by translation, without

rotation, of a single master curve along a straight line.  Thus, the

family of curves obey on equation of state of the type

*
a y(a,dp) (1.2)

*
where a is a well defined state variable, called hardness, which

characterizes the present deformation state of the material.  The

hardness at certain time  t  depends upon the deformation history upto

time t.  Clearly, the hardness of a specimen increases with the

amount of cold work and remains constant in a process where  €   is
P

held constant (as is approximately true in a relaxation test).  Each

relaxation curve is, therefore, regarded as a constant hardness curve.

The researchers mentioned above have also conducted a series of

str in hardening tests at constant strain rates.  It is found that the
*

growth rate of hardness  &   is a function of  a  and  a only. Based

upon these experiments Hart et al have obtained the following expres-

sions for the equation of state and the kinetic law:

dP = A(a,a ) =  (a /G)mf exp(-z/RT)0(a/a ) (1.3)

6* =- 8(0,0*) = dpa*r( 0,0*) (1.4)

In the above  f  is an arbitrary coefficient with dimensions of frequency,

Z:=TE
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R is the gas constant, G is the isothermal modulus of rikidity and is

a function of temperature, m  is a material constant with a value between

3 and 8, z is a measure of thermal activation energy and is a function

of temperature alone, T  is temperature, and 0  and r  are measured

functions of their arguments.  The explicit forms of 0  and r  for
-

1100 Aluminum will be presented later.  Note that there is no rate in-
*

dependent yeild stress and that the current values of  a, a and T

uniquely determine the permanent strain rate and the rate of growth of

hardness.

The three dimensional generalization of the above constitutive re-

lations is obtained in a straightforward manner.  In keeping with con-

cepts of incremental plasticity Hart [7] defines two invariants as

;follows :

a  =   1 s. .s..L                                                         (1.5)
4 2  lJ lJ

i

.P     =     i &  dp Kp (1.6)€
43  ijij

where s is the deviatoric stress tensor
ij

1sij  =  aij - 5 Cickaij (1.7)

In the above a repeated index implies summation over that index and  8..
1J

is the Kronecker delta. ..,

It is now assumed that the invariants  a. and dp  defined above

by equations (1.5) ·and (1.6) are related to each other. through the hard-

*
ness  a   according to equations (1.3) and (1.4).  FinAlly, a flow rule

relating the permanent strain rate to the deviatoric stress tensor is

given by
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.P ,.

.P
3 (i-) s (1.8)E i j=z a i j

Equations (1.5)-(1.8) must reduce to (1.3)-(1.4) for the uniaxial

case.  In order to assure this, Hart's equations as given in [7] have

been m6dified by proper numerical factors.

j

2.  GENERAL METHOD OF ANAISSIS OF CREEP PROBLEMS

We now present a general computational method for analysis of creep

problems.  Although the scheme presented uses Hart's conatitutive rela-

tion, we shall see later that its application to classical strain or

time'hardening type theories is straightforward.  Since in this paper

we are mainly concerned with relatively steady processes, the anelastic

a t
strain component € is ignored.  Thus, the total strain € is the

sum of elastic strain  €e  and permanent strain  €P.  The total strain                 4

t
rates 6 must satisfy the compatibility condition

t                     t               .t               .t               .tVxd XV  5 +€ -€ -€ 0    (2.1)-         -            - ij,kf kl, ij ik, jt 1£,ik

where i is the strain rate tensor with cartesian components  d..  and
1J

V is the gradient operator defined as-

333V  =  e -+ -+e-    -ldxl   52 dx2   -3 3;q

£  being the triad of orthogonal unit vectors.  Since  it = de + dP
-         -         -

the campatibility equation (2.1) can be written as

V k r x v  =  -V x Z p x V (2.2)- - .. - - -

The elastic strain rates are related to stress rates by Hooke's law

1=„.
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. e                   1( 8-   -·L- 61) (2.3)€... 2G -  1+B

and the permanent strain rates to stresses by Hart's constitutive relation

ip=   S3  A( 0, a ) (2.4)
2-  0  -

where  G and B  are the shear modulus and Poisson's ratio respectively,

I  is the unit tensor, 2  is the stress tensor with cartesian components

    'and  8 = tr a  = 0 k' Substitution of (2.3) and (2.4) into (2.2)
vij'                                                         -

yields
*

v  x   [1(8-  -2      6  I) ]   x  v     =      f  x   [3A(a, a   ) s]   x v (2·5)-    2G - 1+B . C -        -

, The stress rates must satisfy the equilibrium equation

v.k=-2 (2.6)

where  K is the given body force per unit volume.  In (2.6) the inertial

terms are neglected because we are considering only quasi-steady pro-

cesses.  Finally, the hardness evolves with time according to the kinetic

law

.*                       *
a     B(a,0 ) (2.7)

The boundary condition is

2.2 = i (2.8)

where  2 is outward unit normal to the boundary and I is the pre-

scribed surface traction vector.

The initial deformation state of the solid should be specified

by  prescribing the hardness     0(xi, 0) · The deformation history prior

 .r*.
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to time t=0  is completely taken into account by specifping

a<(xi,0)  and the ihitial permanent strains are taken to be zero.

(In most cases the initial hardness distribution would be uniform through-

*
out the material, i.e.  a (x.,0) = constant.  But nonhomogeneous ini-1

tial hardness may be introduced during fabrication of the structure

such as due to machining and forming processes). Since  SP = 0  at

t=0, the stresses and strains at time  t=0  are given by the cor-

responding elastic solution of the problem.  Thus, the initial con-

ditions are

2(xi, o) 00(X.)  ,  le(Xi, o)-v   . 1
e°(xi)  ,  sp(xi, 0) =0, 0*(xi'O) = 0 (xi)

(2.9)

where     go(x.)     and sO(xi) correspond  to the elastic solution' at
1

t  =  0. In other words,   20    and    €0 are obtained by solving  the  fol-

lowing system of equations:

0     1-( 0 - --2- ePI) (2.10)
S     2G'£.   1+B

v  X   [1(GO  -   -2-  e I)]   x  Z     = O (2.11)
-    2G - 1+B -

0      0                                               (2.12)700     -F
- - -

0                             0                                                                   '.,                                                                                                   (2.13)0 02 =  I

0
Here F is the body force per unit volume at t = 0.'V

The proposed computational scheme proceeds as follows: the initial

stresses and-strains are first obtained by solving the elasticity prob-
*

lem governed by equations (2.10)-(2.13).  Once  Z'  and    are known,

--------)/.-



.

the stress and hardness rates at  t=0  are obtained by solving the
f

set of linear, inhomogeneous, partial differential equations (2.5)-

(2.7) tubject to the boundary condition (2.8).  The stresses and

hardness are then obtained at a new time At  by using,for example, the

0                          *   .94Euler 's method      a|        =    a     + 6| x At and
0*At

= 0 + x At
-'At ·w -t=q .                            O    0' t=o

(higher order integration methods such as the fourth-order Runge-Kutta

method may also be used to obtain   1 |at  and  al At).    These new stresses

and hardness are now used to obtain the rates at time  At  and so oni

and the process continued upto the  desired final time.  Thus, knowing

the stress and hardness at time  t, the rates at time  t  are obtained

by solving the boundary value problem (2.5)-(2.8), and then the stresses

and hardness at time  t + At are obtained byusing  glt+ t - -4 + 2't X8t
*1 *, .* 1

and     a    It+At  -   0   It  +   (    Itx  At     or
some other suitable integration scheme.

It should be pointed out that the boundary value problem (2.5)-(2.8) can

be solved analytically only for a few cases.  For complicated problems,

one may have to use finite difference or finite element methods to solve
.

-the boundary value problem (2.10)-(2.13) for initial stresses and the

boundary value problem (215)-(2.8) for stress and hardness rates. The

strain history is obtained by using equations (2.3) and (2.4).  Choice

of time step  Et is found to be very crucial in the computation. Initial

time steps must be small because the rates are rather high in the beginning.

If classical creep theories are used, equation (2.4) should be suit-

abably modified and equation (2.7) dropped. For example, equation (2.4)
*   gs (a, ep ).Pshould be replaced by  € -2 s  for strain hardening theory,

0.-2           a
, g*(gt)

and by  iP = 2 s  for time hardening theory.:. 2 0 0.

4.-I--·....'*.--
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3.  GOVERNING EQUATIaNS FOR THICK-WALLED CYLINDER

Let us now consider the equations governing the creep behavior of a

closed-ended thick-walled cylinder subjected to constant internal and

.1

external pressures as shown in Fig. 1.  Because of cylindrical symmetry,

the tangential dispalcement component  ue  is zero.  The end effects

are  negle cted and the solution is assumed to be valid sufficiently far

fram the ends.  Therefore, the radial displacement component  ur  is

a function of the radius  r  and time  t  only.  The kinematic equations

for non-vanishing strains are

au
e    p       r                                            (3.1)€ +€
r r -52

U
e    p      r                                             (3.2)

ce + Ee     7

€e.+ €p (3·3)auz

Z Z 8Z

where u is the axial component of the displacement.  The equilibrium
Z

equations in radial and axial directions are

Bar 1 (3.4)-37 - r(ae_ar)     0 i

b                                                                   1
f 0,2 *r dr „(42P-629) (3·5)

L

1

I.                                                                                                                      ./

where  a  and b  are internal and external radii of the cylinder and                 V

p    and   q   are the internal and external pressures
respectively..   The                                  i

elastic strain components are governed by Hooke's law       
                         i

./.-r-'..
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e e       -       .1[               --21(ar+ Cb + az)] (3.6)
r - 24 ar- 1+*

€ee = LI      _  _B_< a  +a +0 1] (3·7)
2G  ae     1+11 '   r     e     z'

i        ee    _     1In  -  -2-_(fr+Ca+0 )1 (3.8)

I
z - 2G z 1+B V Z

The permanent strain rates are governed by the flow rule

Il         ip   =    _C-)s      =     (EF) (2ar- 0.-a )                        (3·9)
3 dp

r     20 r 0 Z

'p     _      -(-) s-     -      21·( F)(2 ae- or- az)3 dp (3.10)
<0-2 0 0

.P

/P      =      3(f.) s         =       (50=) (2 az-ar- ae)
(3.11)

z      20  z

At this point we assume that there is no creep in the axial direction, i.
e.

ip. - 0 r   (3·12)
Z

Johnson [17], Taira [19, 20] and their coworkers have supported this

assumption by arguing that    ;P    is so small compared to   ZP    and   d     that
.

it can be neglected for all practical purposes.  Smith [18], however, ha
s

teken axial creep into account and has analyzed the problem using a compli-

cated finite difference procedure.  His results also indicate that  ZP

.Pis negligible compared to  Er  and d ·  Note that equation (3.12) implies

that plane cross sections do not remain plane and the compatibility condi
-

tion in the  z  direction is not satisfied just like for the plane stress

case of classical elasticity.  Equation (3.12) together with (3.11) gives

'....€.A#&                                                                                                                                          -I        --rr-
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az (ar+(Te)/2
(3·13)

It is shown in Appendix A that the above relation for ag satisfies the

equilibrium.equation in the axial direction (3.5).

j

The   invariants.     a     and € now become.P

a = 43(ae-gr)/2 =-,/3 sr (3.14)

ip =
-2d /Ji 

(3.15)
1. f

Equation (3·15) follows from the condition of incom
pressibility of per- '*L

. i

manent strains, dP + dP =  0.  Note that  a and dp 
 are, by defini-

1.

tion,.positive quantities.  The boundary conditions
 are                                  9

9 1
lk.

'r(a, t) -p ' ar(b,t)  -q           (3.16)

and the initial conditions, with €P(r, 0) = €P(r, 0) = 0,
are given by r1

the  Lame' s solution  to the corresponding elastic problem. The initial                                          4
:5

l

stress distributions, therefore, are                                              t 1 3
I *

Id

22

ar (r, 0 ) 212[6-b2q.  a  b  (P-q)] (3.17)             f 1

b -a           r
i 14

11

03(r, 0) 21  2[a.2p-b24+ 5-F-(P-q)] (3.18)»                              4
b -a            r                                                 4

; 4

oz (r, 0) Ior(r, 0)+Ge(r, 0)]/2 (a -b2q)/(b2-a2) (3.19)              1

i#

i. i

Finally, the initial distribution of hardness must be specified                          i 4
5 1

 (r, 0)         a (r)                                                                           (3.20)*
0

1

"

r-3.:f--5::.-.--80--*0:*4
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4.  METHOD OF SOLUTION TO THE CYLINDER PROBLEM

The equations presented in the preceeding section can be solved

numerically. to obtain the desired solution.  However, if these equa-

tions are used in their present form, the computational procedure is

complex and involves solving a succession of nonlinear two-point bound-
.

ary value problems at each time.  Using the ideas outlined in Section 2,

we present here-a scheme for manipulating these equations so that they

reduce to an initial value problem in time at each radius r.  Since, in

general, solutions of initial value problems are computationally much

simpler than of two-point boundary value problems, this method results

in a substantial saving in computational time and effort.

' Using equations (3.1) and (3·2) and separating the elastic and

1

permanent components, the compatibility equation in terms of strain

1.

rates can be written as

&                   ad .e

.e .e  e .p .p
e r    -    e e    -    r    -3F        =         -Er    +    E e   +    r -82- (4.1)

Noting that  se = -sr' the equilibrium equation (3.4) can be rewritten

in terms of rates of the mean stress  a  = (a +6.+az)/3 and the deviatoric
r  u

stresses as

35 .   8&
m       r 2 8 (4.2)-F=  -3 F-r  r

We now replace the elastic strain rates in (4.1) in terms of  &   and  &r m

using (3·6)-(3.8), and use (4.2) to eliminate  &  in favor of  E .  Them r

right hand side of (4.1) is written in compact form by using the incom-

pressibility relation  6   =  -dP. This gives
.

... .  ...  I. r=
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r fi

(2-%)  1 3 2. 1 A(r ep) (4.3)

2G(1+B) r. 3F(r sr)  =  -r or,   r                                          1

1

which can be integrated to yield
 

A  + a ZP  = H(t)/re ·(4.4)
r

where

a 6 2G(1+K)/(2-*)

and .H(t)  is an as yet undetermined function of time. 
 This function

can be obtained by using the equilibrium equation (4.2).  Using

dr = Ar + dIn' and integrating (4.2) gives

bA.

( r)r=b - (dr)r=a + 2/ -  dr     0                           (401)
a

which, for constant internal and external pressures, sim
plifies to

ba                                                          (4.6)f -1 dr     0ra

using (4.6) in (4.4), we can solve for H(t).  Resubstitut
ing for

1

H(t)  into (4.4) gives                                                               
-

-

22 bip
 p- 2ab       -1 f- -r d r (4.7)s -a 22r

r         r  (b -a ) r  a                                                        i//.-                1
So far we have used all the equations except those relati

ng the
..

permanent strain rates to the stresses (3.9-3.12, 1.3) and th
e kinetic

law (1.4).  Using the equation of state (1.3) together wit
h the equa-

tions (3·143 and (3·15) for the invariants  a and dP, we obtain

-lt r  ,9-,tr,-- -It·. -X  ------r-.--·---L
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*m 6 s-
;P.       - t (· -) f exp(-z/RT)0(-    *   ) (4.8)
r a

Substituting (4.8) into (4.7) gives us an equation for  ir  as a

function of  sr  and  a .  In the kinetic law (1.4), we subs
titute for                i

ZP  in terms of  sr  and a  using (3.14) t6 obtain an equation for
1                                                                .**

6   in terms of  sr  and  a .  Thus, our final equations for  ir  and  a

assume the following forms

*m 43 sr
ir     =     a 4 3      Cal)   f   exp(-    )0(-        *      )

a
-

1

22

b   * m               4/ 3 s-  --

- 24-b   _1- f  (· -) f exp(- i )0(-   * *-)dr (4.9)

(b2-a2)   ri   a                                                                  0

*m ,/3 sr * -

(4.10).*                                                                           -,A sr' a*)c = (- -) f exp(-  )0(-  *  )a It
C

The initial condition for  sr  is given by

sr(r, 0) = -[ ae(r, 0)-ar(r,0)]/2 (4.11)

where  or(r, 0), ae(r,0) are given by (3.17)  and (3.18) respectively.

The initial hardness distribution      (r, 0) is given  by  (3.20).

Given the initial stress and hardness disturbution, equations (4.9)

and (4.10) are used to calculate the rates  ir(r, 0),  (r, 0). These

rates are then used to obtain sr(r,Zt), a (r,At)  after a small time

interval At by using a suitable integration scheme.  These, in turn

are resubstituted into (4.9), (4.10) to obtain ir(r,At),  (r,At)  and
the process continued as long as desired.  Once  sr(r, t)

, 0(r, t)  are

-:*.-.....
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known, the complete stress history is obtained from the following equation
s

r sr(n, t)

ar (r,t)      = -2/ dll - P (4.12)
9

/              
         a

ae(r, t) = -2sr(r, t) +.a (r, t) (4.13)

az(r,t)      =       I or (r,t) +a e (r,t) ] /2 (4.14)

Equation (4.12) follows from the. equilibrium equation written in

terms of  sr  and  %  (see (4.2)) and the boundary condition (3.16),

The strain history can naw be obtained using equations (1.3), (3.6)-(3.12).

We now introduce the following nondimensionalization:

.1                            - -* *,

% = ar/P , ae = ge/P , az ;  0 p,  0  =  a 11  ,

Er = sr/p 's e= se/p '3= 0/p ,  = q/p ,

8= a/p , 8= G/p , E= r/a , E= b/a (4.15)

Using these nondimensionalized variables, the equations (4.9), (4.10),

(3.17)-(3.20) and (4.12)-(4.14) become

--* m
43 Er)8                      AP.        (0-)    f    exp (-   i )0(-       -*r G                 a

2       K -*m /38-  -7
- 2IC    _1, f 1(·fL) f exp(- -1)0(-  -* r)dE (4.16)

(E2-1) E-li  8                  a
RT

J

-* m 473 E  *:*
0                 (·0-)   f   exp( -  1)0 (.      _*  r)3  r (-  3pEr'pf) (4.17)

RT
G                 a

- ---                                                                   1-r-
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2

ar(%,0)    =    _21_Il-192 - %(1- ) ] (4.18)
K -1

2

38(t,0)    =    -21-Il-K2q+  E (1- ) 1 (4.19)
K -1

f oz(%,O) = (1-K2 )/(K2-1)              (4.20)

6*(&,0) = 3 (t)       -           (4.21)
.l

g E_(n, t)

Er(%,t) -2 f 1
dn - 1 (4.22)

1 9

ae(%,t) -2Er(£,t) +.-ar(£,t)
(4.23)

3%(t,t) Iar(%'t)+88(t,t)]/2
(4.24)

Let us next consider the situation when a large amount of plastic

1-p I te istrain has developed, i.e.  Fij l >> Fij I   (we are assuming here that

the strains are still within the domain of infinitepimal strain theory).

*
Then it may be plausible to assume that the hardness a has reached

the saturation limit and changes very slowly with time so that it can

be regarded as stationary for · all practical pdrposes.  Under these con-

ditions, the stresses can be assumed to have reached a stationary state

where they no longer change in time.  The procedure for calculating

S,
the stationary stresses  a (r), a (r), az<r) is given in Appendix B.

e.1.--#.V-i-.....F.....,..,-- .--
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5.  BEHAVIOR of 1100 ALUMINIUM ALLOY'

The above analysis has been carried out in terms of the functions

0(a/a*)    and   I'(a/a*), the explicit forms of which depends  upon  the  ma-

terial of ihterest.  As an illustration, we shall consider a cylinder

of 1100 Aluminum alloy at 250'C.  Ellis, Wire and Li [15] have found

experimentally that the equation of state (1.3) and the kinetic law

(1.4) for 1100 Al. alloy at 250'C can be represented by the equations

*m * -1/X
dp     (aD) (117 00)

(5.1)

*m * -1/X *  05.*

0       (lr) (ln .1-)     « A -RB (5.2)
G

  where  m = 5, 1 = .11, 5 = 7.82, 0 = 12.5,

D = 10 psi(sec) at     2500 C
5.03 ,1/m

and

A =  1.17 x 1020(psi)B-5.

*
In these equations, a  and a are in units of psi and  t  is in seconds.

Note that

G
D                   1/m

[f exp(-z/RT)]

and that (5·1),  (5.2) are valid for temperatures 2 about  1/3  of
*

the melting temperature for which     a    >  a  . The shear modulus and Poisson 's

ratio for this material at 250'C are [21]

6G     3·234 x 10 psi, B .0.358

- 18 -
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The equations (4.16) and (4.17) for 1100 Al. alloy noi; become

-

-* m -*    -1/1
o.           A.,F#    (a_)   (ln(-     a      ) )
-

Sr     2    5      4=3 Er..

-1/1
-   2„2  -1- fkliz)m(ln(-   f )) di (5·3)

(E2-1) to l E 5 43 Er -

-* m -*       . 21/1       (-4-3    s)8
3*  =      (.2-)   (ln(-        a     ))          A       -*0 -lr (5.4)

5      43 Er        a
5-8w:here  5 = D/p  and  A - Ap .  The corresponding equations for the

stationary state are given in Appendix B.

6.  RESULTS AND DISCUSSIONS

Numerical calculations have been carried out for an 1100 Al. cylin-

der at 250'C.with  x, the ratio of external and internal radii, equal

to 2.  The internal pressure is taken to be 1250 psi (except for curve

I, Fig. 6), the external pressure  zero, and several distributions of

the initial hardness  aQ(r)  are considered.

The Runge-Kutta method of order four has been used for solving

the system of equations (5.3) and (5.4) subject to the initial conditions

(4.18)-(4.21).  The integrals in (5.3) and (4.22) have been evaluated

using Simpson's rule.  For numerical purposes,  the nondimensionalized

shell thickness, K-1, has been divided ·into 20 equal segments.  The

computations have been carried out on an IBM 370/168 computer.

Figs. 2,3 and 4 shaw the distribution of radial, circumferential

and axial stresses across a cross-section normal to the cylinder axis.

The variation of stresses is qualitatively similar to that obtained from

ry-.



time hardening [17, 18] and strain hardening [19, 20] theories.  It is

observed that stress redistribution occurs during creep and the stresses

tend toward a stationary state,.  The corresponding stress distribution

curves for 1100 Aluminum Alloy using time and strain hardening theories

could not be obtained because the parameters for this material required

for applying these classical theories are not available.  Thus, a quanti-

tative comparison with results from classical theories was not possible.

The effect of initial state, i.e. initial hardness distribution, is

shown in Figs. 2-4 by assuming two different initial values of uniform

hardness.  The initial hardness level characterizes the initial state

of a specimen and is determined by its previous mechanical and thermal

history.  The former is 10% cold worked while the latter is lightly cold

worked.  We observe, as expected, that the hoop and axial stresses (Figs.

3,4) in the softer cylinder relax faster than in the hardened cylinder.

The ability to easily distinguish between different initial states is a

novel feature of the equation of state approach.

The initial hardness distribution for the cases shawn in Figs. 2-4

is taken to be uniform and it is found that the cylinder hardens with

creep.  However, the change in hardness is too small to be evident with-

in plotting accuracy.  This is a consequence of the fact that the initial

hardness level in these cases is such that  &, from equation (5.2), is

very small.  It is concievable that a sphere made of some other material,

with the same level of initial hardness, will harden appreciably as it

creeps.

In order to see how the theory predicts hardenin< with creep we con-

sider next a cylinder which is hardened inside and soft outside.  In

particular, we choose the distribution  (E) = 1.5 3(£,0). The results

----I   "                                                                                                                                                                                                                                                                                       F"'r-
1
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are shawn in Fig. 5.  We observe  that the softer portions of the cylinder

harden  much  more  thin the initially hardened inside.

Fig. 6 shows the creep of the inner radius with time for five dif-

ferent cased.  For the same pressure (1250 psi) the amount of creep

decreases with incraase in level of uniform initial hardness (III, IV,

V).  A cylinder with variable.initial hardness (II) given by

30(E) = 1.5 3(&,0)  is much less resistant to creep than a correspond-

ing uniformly hardened cylinder (IV).  Finally, a comparison of (I) with

(V)  shows the highly nonlinear effect of internal pressure.  Similar

results were obtained by the present authors for the creep of a sphere
.

[16] and by Li et al for uniaxial creep [15].

Choice of time step is very crucial in the computation and variable

time steps are necessary.  The initial time steps must be small because

the  rate of creep is higher  in the beginning. The computati onal scheme

used is very efficient.  Typical computing time for the results pre-

sented in Figs. 2-4, for example, is approximately 20 seconds on an

IBM 370/168.

7.  CONCLUSIONS

The  equation of state approach  due  to Hart  has been previously  veri-

fied experimentally for relatively steady, uniaxial loading for various                i.

r

metals and alloys.  An important new feature of this theory is that the                '

effect of prior deformation hist6ry on subsequent creep behavior of the

material can be taken into account by simply specifying the initial dis-
1,

tribution of a single space variable called hardness.

In this paper we have presented an efficient computational sdheme
C.

for analysis of creep of materials obeying classical or equation of

r--"--.-
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state type constitutive laws.  As an example, the problem df creep

of a closed-ended thick cylinder under steady internal and external

pressures has been solved using Hart's Constitutive laws.  Result
s

for various specified levels of initial hardness are presented.  I
t

is found that the results are qualitatively similar to those obtained

from classical theories, and, as expected, hardened cylinders resist

creep more efficiently than softer ones.  It is anticipated that a
n

extended version of this theory including the anelastic strain com-

ponent will provide a better model than the presently available claa-

sical theories for inelastic analysis of structures subjected to cyclic

loading at elevated temperatures.
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,  APPENDiX A· ' '

The equilibrium equation  (3.4)  can be written  as

8ar
Ce - Cr r -3F

which gives

1 8
%   +    ar             F  5(r2 or )

Using the equation (3.13) that  az = (or+Ge)/2, the above relation and

the boundary conditions (3.16) we get

bb
2*fradr *I r(cr+ aG)drZa a

bibzmpcr2 or,dr

a

,(pa2_qbe)

thus the condition of axial equilibrium, namely equation (3·5), is

satisfied.
e
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APPENDIX B '

i

When the elastic strains are negligible compared to perma
nent strains,

.PS .PS

the compatibility equation (4.1) together with the relation
  €e = er

i
leads to    

3.2.ps)             0r-l r €or-  r

where the added superscript  s  denotes the stationary stat
e.  Integration

of th6 above with respect to  r  gives

.PS
- ,/3 K/2r2   ,   €         K/r2                               (B.1)

•ps
€
r

.

where. K  is a positive constant to be determined later.  As
suming that.

the function 0  in (1.3) is invertible and denoting the inverse by 0-1,

it follows from (1.3) that

as           0*s4-l[dps(0*s/G)-m   exp(z/RT) 1 (B.2)

Substitution of (B.1) into the above gives

as                 0*s*-l[Kr-2(0*s/G)-m  exp(z/RT)] (B.3)

Using the above and (3.14), the equilibrium equation (3.4) can be written 
as

a as
r        2  1  0*s*-1[Ki'-2(0*s/G)-2   exp(z/RT)]            0

-3F-41 r

Integration of the above with respect to  r  toegther with (
3.16) gives

- 24 -
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r *s
as(r)    =    -2   f .2- 0-1[Kn-2( 0*s/G)-m  exp(z/RT]dn  - p (B.4)

/38 9 .

The unknown constant  K  can be determined by imposing the second of the

boundary conditions (3.16).  This gives the equation

b *s
-2 5 2   0-liEn-2(0*s/G)-m  exp(z/RT)]dn - p +.q      O                 (B.5) a n .
The.above equation can be solved for K  by some numerical procedure

such as the Newton-Raphson method.  The equations (3.14) and (B.3)

gives the following expression for  ae;

0 (r) 2  *s0-l[Kr-2( 0*s/G)-m  exp(z/RT)] + a (r) (B.60-G

43

I6troducing the following additional nondimensionalized variables

3: = a:/p , 3: = 4/p , -0: - a:/p , -as . «s/p (B.7)

the equations (B·5), (B.4) and (B.6) can be written respectively in the forms

K -*S

-2 J ·2_0- [29-2(3*s/8)-m  exp(z/RT)]dil -1+    = 0 (B.8)
431 9

E-*S
3 (1)  =  -2. f L 0-*[271-2(3*s/8)-m  expiz/RT)]dn - 1 (B.9)

619
and

3:(1)  =  -2 -0*st-1[29-2(-0*s/8)-m  exp(z/RT)] + 3 (t), (B.10)
/3

where  f = Ka-2.  Thus, to determine the stationary state of stresses,

r7=
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first the equation (B.8) is solved numerically for  R.  Then the stresses

;s(E)  and  ae(E) are obtained from the equations (B.9) and (B.10) re-

spectively. The stress  -a (E)
is given by the expression

2(t) = [-a (t)+-a (t)]/2 (B.11)
"

For 1100 Aluminum alloy we realized from (5.1) that

as = 0*sexp[-(2ps)-1(0*s/D)mwl (B.12)

Using the above along with the nondimensionalization (B.7), the equations

(B.8)-(B.10) can be written as

K *S
--X 2X, *s,  mx                                (B.13)-2-   I    2-exp[-K       n        (3      /5)         ]d n    -1   +                       0

431 9

E -*S mX
- (t)      =        2    f   az-exp[-2-kn21(3*s/5)       ]dil -1 (B.14)

4  1 4

6 (t) -2 -0*s[-R-)'£21(3*s/5)mA] + -a (t) (B.15)
,/3

-*S
For the special case where a is uniform, the above equations reduce

.

to the following simplified forms:

-*S

-1   .i--   [El(K )-El(112XK )] -1+      0                (8.16)
,/3   A

-*S
1 0 21 *

3:(i) -  T  [El(K*)-El(& K) ] -1 (B.17)
/3

ae(E)
2  -3*sexp[-i K] + 3 (i) (B.18)

21 *

,/3

./.--:=A:==..1
F .r-
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*   --1 -*S mX
where K=K  (a /5)    and El(co)  is the exponential integral defined as

El(m) = fexpi-71) dn (B.19)
CD

I

rr=
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FIGURE CAPTIONS              .

Figure 1.  Thick-walled cylinder with closed ends subjected to internal

pressure.

Figure 2. Variation  of    3     with    'E    and    t    for    p  =  1250  psi,
.

T = 2500 C  and two hardness levels:

 ft)=8.493 (i.e. 10% cold work) and  (t)=3.464 (i.e. 1.5 3(1,0)).
Figure 3.  Variation of  ae  with  &  and t  for p = 1250 psi,

T = 250' C and the hardness levels   (i) = 8.493 and

30(E) = 3.464.
Figure 4.  Variation of  a  with  g  and  t  for  p = 1250 psi,

Z

T = 250° C and the hardness levels   ( E ) = 8.493 and

B (t) = 3.464.

Figure 5.  Growth of hardness with time for  p = 1250 psi, T = 250° C

and variable initial hardness  a (E) = 1.53(&,0).
Figure 6.  Radial displacement at the inner radius, u(l,t), plotted as

function of time at 250' C for the cases:

(I)   p = 2000 psi, 3 (E) = 5·308 (i.e. 10% cold work),

(II)  p = 1250 psi, 3 (i) = 1.53(&,0),

(III) p = 1250 psi, .3 (t) = 2.771 (i.e. 1.23(1,0)),
(IV)  p = 1250 psi, 3*(E) = 3.464 (i.e. 1.53(1.0))

(V)   p = 1250 psi, a (El = 8.493 (i.e. 10% cold work)
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Figure 1.  Thick-walled cylinder with closed ends
 subjected to internal pressure.

!

6                                                          C ..

&

...

.

-*.

L                                               
                                                

  :r m.



111

,.

F.

/

.,

'

I

1.0                                         1.0.                     -
©6)=8.493 Go (6)=3.464

t =0                  '                                      t= 0
.

0.8
t = 1 hr. 0.8

t = 1  hr.

t = 10 hrs. t = 10 hrs.
0.6 stationary 0.6 stationary

state - state          , ·
-Cg                                                                                                                                                               -cyr

0.4 0.4
..'

0.2 0.2

ao 111111111 00
1.0 1.2 1.4 1.6 1.8 220 1.0 1.2 14 1.6 1.8 2.0

6                           6
Figure 2. Variation  of  Br  with  E  and  t  for  p  =  1250  psi,   T  =  250'   C  and two hardness levels:

 (t) = 8.493 (i.e. 10% cold work) and  (&) = 3.464 (i.e. 1.53(1,0)).
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Figure 3.  Variation of ae with E and t for p = 1250 psi, T = 2500 C and the hardness levels:
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  Figure 6.  Radial displacement at the inner radius, u(1, t) plotted as
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·                   function of time at 250' C for the cases:

(I)   p = 2000 psi, a (g) = 5.308 (i.e. 10% cold work),
(II) -p = 1250 psi, 3 (E) = 1.53(&,0),
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(III). p = 1250 psi,  (1) = 2.771' (i.e. 1.23(1,0)),
. (Iv)  p.= 1250 psi, 30(1) = 3.464 (i.e 1.53(1.0))
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