A4

- CREEP ANALYSIS OF STRUCTURES USING A NEW

EQUATION OF STATE TYPE CONSTITUTIVE RELATION

- Virendra Kumar and Subrata Mukherjee

MASTER

ERDA Report No: CO00-2733-2

September 1975

Department of Theoretical and Applied Mechanics
Cornell University

Ithaca, N.Y. 14853

‘DISTRIB‘UTI-ON OF THIS DOCUMENT IS UNLlM‘lT‘ED&Q)




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



ABSTRACT

» Achmputational scheme is presented for the analysis of a certain
class of problems involving creep of metals at elevated teﬁperatures.
The high temperature noneléstic behavior of materialé is assumed to
obe& a new mechanical equation of state type gonstitutive relation

fecentiy proposed by Hart. As an illustration, the prbblem of creep

of a closed-ended thick-walled cylindef under internal and external

; pressures is analysed employing the proposed computational scheme and
> .

Hart's equation of state approach. The results obtained are compared

qualitatively with the results of classical strain hardening and time

hardening theories of creep and the experimental results obtained earlier
by other researchers. The proposed computational scheme is found to be
very efflclent from the view point of both computatlonal tlme and effort.
In regard to the equation of state approach, 1t is found that in addi-
tion to the general features of these classical creep theories, it is
also capable of taking into account the effect of prior deformation his-

tory on subséquent creep behavior by simply specifying the initial dis~ -

7£.L tribution of a single state variable called hardness.
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' INTRODUCTION

The study of high temperature inelastic behavior of metalshas re-

ceived remarkable sttention in the recent years. This growth of inter-

est 1s mainfy because of the vast technological applications of metals

+

at elevated temperatures, especially in the nuclear power industry. In
particular, great emphasis has beéﬂ laid recently upon the development
6f constitutive relations for representing the time dependent inelastic
behavior of metals which is highly nonlinear and hereditary in natﬁré.

Various theories of creep, as describea by Rabotnov [1] and Penny

- and Marriot [2], have been proposed in the past to represent this com-

~ plex phenomenon of creep of metals. Of all these theories, strain harden-

ing and time hardening laws are most commonly used at present for creep

- analysis of structures. Krempi [3,4] and Onat and Fardshisheh [5] have
a criticaliy examined these classical theories and have concluded that

~ they are incapable of representing all the salient features of high

temperature deformation behavior of metals. For example, the strain

hardening and the time hardening theories do. not take into account the

" effect of prior deformation history on subsequent creep behavior, and
:bbth of them are incapable of representing a softening of the material

" which accompanies creep recovery. These theories are, therefore, in-

adeQuate for analysis of structures subjected to complex mechanical and

* -thermal loadings at elevated temperatures.

Several modifications have been suggested to remedy such'drawbacks’

of classical theories and to obtain a more faithful representation of

the high témperature deformation behavior of metals. 1In this paper we

. shall concentrate on one.such'modern théory; namely the equation of
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'State approach due to Hart [6,7]. This theory involves the use of

'certain well définea state variables which depend upon thé previous .
deformation history. A novel feature of this theory is its ability

- to incorporate in a simple way the difference between geometrically

‘ 1den§ical.spe¢imens with differeﬁt ipitial deformation stgte;, e.g.
"Setween anneaied and cold worked specimens. The basic assumptions under-
'A lying thé uniaxial constitutive relation for félatively steady ioading
have been justified experimentally for various metals and alloys by
Hart, Ii and their coworkers [6-15]. Also, uniaxial constant load creep ex-
periments at 250° C have been performed by Ellis, Wire and Li [15] on

1100 Aluminum alloy specimens with different initial states. The re-.
:sults they have reported are in good agreement with theofetical predic-
fions;

In regard to the application of Hart's theéry to multiaxial states

'4of stress situations, the present authors have recentlj analyzed the
' problem of creep of a thick-walled spherical shell under steady internal

and external pressureé [16]. The aim of this éaper‘is twofold: (i)~fo
.present a general computational technique for solving boundary value

problems arising in creep anaiysis of structures involving materials
~that obey either Hart's constitutive relation or classical strain or

fime hardening type creep theories,_and (2) to analyze the problem of

.éreep of a closed-ended thick-walled c&linder subjected to steady inter-

nal end external pressures-using the proéoéed computational method and
Hart's constitutive relation for fhe cylinder material;A The results
obtained are compared qualitatively with the time'ha}dening results of John- -
son [17] and’ Smith (18], and the strain hardening and experimentai results

. of Taira [19, 20] and their coworkers. The main features of Hart's theory
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" are discussed and enéouraging conclusions are drawn regarding the pro-

' posed computational'scheme.

\

l; .EQUATIONFOF STATE APPRCACH DUE TO HART

. In this section we shall outline the basic features of Hart's theory.

. A detailed description can be found in references - [6, T].

4 Wé shall concentrate our éttention on the constitutive laws govern-

'ing grain matrix deformation. For situations under consideration the

contribution due to grain boundary sliding is neglible and ié, therefore,

" pot included in the present formulation of Hart's theory [T7]. The ac-

. cumilated total strain due to grain matrix deformation, et, at any time

. can be decomposed into three components:

_et' = € +e®s e? ' ' - (1.1)

" where c¢® is the elastic strain which is related to stress by Hooke's

law; 3 is the anelastic Strain, a stored strain that is completely recoverable

P

eventually upon unloading; and €~ is the completely irrecoverable and

a

© path dependent permanent strain. The anelastic strain rate €~ is

. which €

' appreéiable for relatively short times following abrupt changes of load

' gAand'plays a very important role in cyclic loading. In case of relatively

steady loading, however, we can use the transient free relationship in

<8

L

0. In what follows we consider steady loading situations

‘where we ighoré.the anelastic strain €> and consider only the elastic

P

strain €€ and permanent strain €*. It should be pointed out that eP

) represents the completely irrecoverable component of strain and includes

the time independent as well as the time dependent piastic strains in a

classical sense.




)  Re1aiation tests have been performed by Hart, Li and their co-
" workers [8-15] on various metals and alloys at different temperatures.

The results reported indicate that for samples of the same material

at the same’ temperature but with different initial states, the log o-log &P

- curves form a one parameter family. Moreover, it is observed that in
each case.the family of curves can be generated by translation, without
Ce © rotation, of a single master curve along a straight line. Thus, the

family of curves obey on equation of state of the type

o = y(0¢P) o (1.2)

~

there o* is a well defined state variable, called hardness, which

chafacterizes the present deformation staté of the material. The
A.hardness a£ certain time t depends upon thé deformation histor& upto

tine t.. Cléarly, the hardness of a specimen increases with the

amount of cold work and remains constant in a process where e? is

held constant (as is approximately true in a relaxation test). Each

'reia¥ation curve is, thérefore, regarded as a constant hardness curve.

The researchers mentioned above_havebalso conducted a series of
stréin hardening tests at'con;tant strain rates. It is found that the
4':growth rate of hardness & is a functioﬁ of ¢ and o only. Based

- upon these experiments Hart et al have obtained the following expres-

. sions for the equation of state and the kinetic law:

'é'p = A(q,o*) = (o /&) exp(-Z/RT)cb(_c/d*) | RN
5 = Bloo) = oT(ee) ~' | o @y

In the above f is an arbitrary coefficient with dimensions of freQuency,
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"R'Ais the gas constant, G is the isothermal modulus of rigidity and is

Ag function of temperatgre, m is a material constant with a value between
3 and 8, z ié a measure of thermal activation energy and is a function
of temperature alone, T is.tempergture, and ¢ and T are measured
functions;of their arguments. The explicit forms of ¢ -and T :for
'11001Aluminumvwill be presented later.. Note that there ié né rate in-
dependent-yeild ;tress and that the currentvvélues of c,'&* end T
'uniqgely détermine the permanent strain rate and the rate of growth of
hafdness.

The three dimensional generalization of the aﬁove constitutive re-
ilations is obtaiﬁed in a straightforward manner. In keeping with con-
Ecepts of iﬁcremental plasticity Hart [7] defines two invariants as
&ollcws: |

(1.5)

‘P [2 :P sP | BRI o o S '
e.i = /3 €35%13 I . ‘1.6)

" where s, is the deviatoric stress tensor

13
13 = %5 ~ 3 %kkPij e

In the ab§ve a repeated index implies summatioﬁ over that index and sij '
48 the Kronecker delta. .i ?"i«' | '

It is ndﬁ'assumed that the invariants o. and €P defined above
by equations (1.5) and (1.6) are related io each other;thrOugh the hard;
ness c* according to equations (1.3) and (1.h4). f;nally, a flow rule

rélating the‘permanent strain rate to the deviatoric stress tensor is

- glven b&
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Equétions (1.5)-(1.8) must reduce to (1.3)-(1.4) for the uniaxial

case. In order to assure this, Hart's equations as given in‘[7] have

been modified by propef.numerical factors.
[
2. GENERAL METHOD OF ANALYSIS OF CREEP PROBLEMS

We now present a general computational method for analysis of creep

problems. Although the schéme presented uses Hart's constitutive rela-

‘tion, we shall see later that its application to classical strain or

time 'hardening type theories is straightforward. Since in this paper
we are mainly concerned with relatively steady processes, the snelastic
st&ain‘component e? is ignored. Thﬁs,_the total strain et is the
sum of eiastic strain € ~and permanent strain - eP, The fotal strain
rates et ﬁust satisfy tﬁe.éompatibility condition

t ét .t .t .t

UL xY = Gt Saya5 T Ca,ge T Sk = 0 (B2)

<

where é is the strain rate tensor with cartesian components éij and

VvV is the gradient operator defined as

3

Y N L
B! *2 *3
gm beiﬁg the triad of orthogonal unit vectors.. Since gf-= §f + é?,
the compatibility equation (2.1) can be written as
¥xé¥xv = vxPxy S (2e2)

The elastic strain rates are related to stress rates by Hooke's law




',A,e've I o | SRR A. (2_.3)

and thé permanent strain rates to stresses by Hart's constitutive relation

A T CT-DIPa o T (=)

2 o ~

where G and u are the shear modulus and Poisson's ratio respectively,

I is the unit tensor, g 1is the stress tensor with cartesian components

0332 ‘and B =tr g = q- Substitution of (2.3) and (2.4) into (2.2)
yields
‘ ' * '
Y ux A £ 8DIxY - yxBAetlgay (@5)

. The étress rates must satisfy the equilibrium equation

~

g - 4 L (246)

where F is the given body foice per unit volume; In (2.6) the inertial
termé are neglected-because we are considering only quasifsteady pro-
cesses. Finally, the hardness evolvesvwith.time accofding to the kinetic.
law | | B

T

Fowed e

. The boundary condition is

where n is outward unit hormal to the boundary and T ié the bre-

scrlbed surface traction vector.
The inltlal deformation state of the solld should be spec1f1ed

by'prescribing the hardness ¢ (xi,O). The deformation history prior




b0 time £ -0 is campletely taken into account by specif?ing

‘16*(Xi,0) and the ihitial pennanent.strains are taken'to.be ZEero.

(In most cases the initial hardness distribution would be uniform through-
out the material i.e. o*(x,,O) = constant. But nonhomogeneous ini- |
tial hardness may be 1ntroduced durlng fabrlcatlon of the structure

‘such as due to machining and forming processes) Since gp 0 at

t = 0 the stresses and strains at time t = 0 are given'by the cor-
respondlng elastlc solution of the problem. Thus, the initial con-

dltlons are

' _ o e | _ 0 Pro Ay * _ *®
g(xi,o) = g (xi) y € (Xi,o) = E, (Xl) ’ ,ev (Xi,o) =0, 0 (xi)o) = Uo(xi)

(2.9)
where g?(xi) and g?(ri) correspond to the elastic solution'at
t = 0. In other words, g? and g? are obtained by solving the fol-

lowing. system of equations:

- 55(e - B D e B CED)
Vx [’ - g DI xY = 0 _ o (2.12)
290 - :. '_ : .4 T (2-1.2)'
Lo - | L (e

Here E? 'is the body force per unit volume at t = O.
The proposed computational scheme proceeds as follows: the initial
‘stresses and-strains are first obtainéd by solving the elasticity prob-

. *
_ lem governed by equations (2.10)-(2.13). Once 2? and o  are known,

\ i —————_ = etr= 8 P




.'the stress and hardness rates at t = 0O dre obtainéd by solving the

- set of linear, inhomogeneous, partial differential éduations (2.5)-
(2.7) subject to the boundary condition (2.8). The sfresses and
hardness a#; then obtained at a new time At by using,for example, the
" Euler's met';hod ElAt = ’g?+ ’élt:o..xAt and ol = o:+ Er*l teo X &b
~(higher order integration methods such as the fourth-order Runge-Kutta
'method may dlso be used to obtain glAt and °¥IA$)° These new stresses
and hardness are now used to obtain the rates at time At and so onyg
and the process continued upto the desired finai time. Thus, knowing
the stress and hardness at time +t, the rates at time t are obtained
_b; solving the boundary value problem (2.5)-(2.8), and then the stresses
and hardness at time t + At are obtained by using 2't+a¢ = g|t_+ élt x At

. ¥
l

: * *
~and o It+At =0 lt + o0 |,x Ot or some other suitable integration scheme.

t

. It should be pointed out that the boundary value problem (2.5)-(2.8) can

Be solved analytically only for a few cases. For complicated problems,

one may have to use finite difference or finite element methods to solveA

_-the boundary valﬁé problem (2.10)-(2.13) for initial stresses and the

boundary velue problem (2.5)-(2.8) for stress and hardness rates. The

strain history is obtained by using equations (2.3) and (2.4). Choice

of time step At is found to be very crucial in the_compﬁtation. Initial

time steps mist be small because the rates are rathef high in the beginhing.
If classical creep theories are used, equatlon (2.4) should be sult-

abably modified and equation (2.7) dropped. For example, equatlon (2.4)

g
should be replaced by P _ 35~ s for strain hardening theory,

~ 2 fo
3 gt(d}t)
=2 o

Mme
z’d

and by s for time haidening theory.




3. GOVERNING EQUATIONS FOR THICK-WALLED CYLINDER

- Let us now consider the equations governing the creep behavior of a

closed-ended thick-walled cylinder subjected to constant internal and

H

. {
' external pressures as shown in Fig. 1. Because of cylindrical symmetry,

the tangential dispalceﬁent compongnt U, is zero. The end effects
:ére-neglected and the'solution is assumed to be valid sufficiently far
'frcm the ends. Therefore, the radial displacement componént u, is

a function of the radius r and time t only. The kinematic equations

for non-vanishing strains are

.~ . 5 du, . . . : o
' ?r'+ €& = 7 ‘ ' . (3.1)
Gg + 619) = ?r' o ' (3.2)

. e P auz : .
T ' 4 - (3:3)

where u, is the axial cbmponent of the diSplacement{ The equilibrium

equations in radial and axial directions are

9o,

Fxl-""%("e"’r) =0 o - B
B o o - S
[ g2 dr = x(a7p-b7a) o - (3.5)

" where & and b are internal and external radii of the cylinder and
p end q are the internal and external'preséures fespectively.. The

elastic strain components are governed by Hooke's law




e = Ao- 1+u<°+% ) H N € X

4 r 2G T
e 1 U o, ' . ' oo )
. | €q = 55[09- i:ﬂ(°f+°5+°z)] _ o (3-7)
€S = L o, :_lu'(cr+oe+oz)] - . L (3.8) .

The permanent strain rates are governéd by the flow rule

I D 3 &P 1,eP ' ,
€ = 35y = 3oy, - 69
D 4 2D
.épe = g— %)89 = %(%') (209-crr-cz) : (3.20).
éP _ 3_(é__ s - .J;(EE) (20:~0_-0 ). - | | - (3 11)
z 2‘'c¢’z 2' o z r 07 . )

At this point we assume that there is no creep in the axial direction, i.e.
& -0 - - : T (Ba2)

Johnson [17], Taira [19, 20] and their coworkers have supported this

a}sstdnption by arguing that ég is so small compared to éf_

and ¢5 that
it can be neglected for all practical purposes. Smith [18], however, has
teken axial creep into account ahd has analyzed the problem using a conrpli-
cated finite difference procedﬁre. His resﬁl‘bs also indicate that élz)

is negligible compared to ég and ég- Note that equation (3.12) impl-i‘es
that pla.n‘e cross sections do not remain plane and the compatibility »condi_—

tion in the z  direction is not satisfied just like for the plane stress

- case of classical elasticity. Equation (3.12) together w1th (3.11) gives




- Tt is shown in Appendix A that the above relation for o, satisfies the

equilibrium.equation in the axial direction (3.5)-

The im’raria_nts. o and €° now become
o = V3(og-0,)/2 ==V3 s, T (3.14)
€% = 2¢PAl3 ~ | (3.15)

Equation (3.15) follows from the condition of incompressibility of per-

S

-manent strains, el 4 ég = 0. Note that o¢ and ¢P are, by defini-

T
tion, positive quantities. The boundary conditions are

h |
1 e(et) = e, g eE) =0 T - (3.16)

and the initial conditions, with ef(r,o) - eb(r,0) = 0, are given by
the Lame's solution to the corresponding elastic problem. The initial

stress distributions, therefore, are

- 2.2
0.(r,0) = 21 2[f5L2.1>-b2q- 22 (p-0)] | (3.17)
A b -a » r : A ‘
- g(r,0) = b21 zlaap-b2q+ aag (p-a)] - (3.18)
. . -8 L r . . .
0,(r,0) = [ay(r,0)oe(r,0)1/2 = (PprP)/(P-e7)  (3:19)

" Finelly, the initial distribution of hardness must be specified

o' (z, 0) = o) : S . (3-20)
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)., METHOD OF SOLUTION TO THE CYLINDER PROBLEM
The equations'p?esented in the preceeding section can be solved
nﬁmericaily.to obtain the desired solution. However, if these equa-
rtions>are used in their present form, the computational procedure is
_complex and ipvolves solving a succession of nonligear two-point bound-
“ary &élue prdblans at each time..’Usiné the ideas outlined in Section 2,
we préséht”héréaa scheme for manipulating these equations.so that they
redupe to an initial value problem in time at each radius r. Since, in
geﬁeral, solutibns of initial value problems are computationally much
simpler than of two-point boundary value problems,Athis method results

iih a substantial saving in computational fime and effort.

Using equations (3.1) and (3.2) and separating the elastic and

{
| .

ipermanent components, the compatibility equation in terms of strain
| . .

roo

.rates can be written as

%S A N

. '.e € .p ’p‘ . A |

E -ég-T 35 = £ tégrr 5 . (4.1)
Noting that Sg = =Sp» the equilibrium equation (3.4) can be rewritten

in terms of rates of the mean stress g = (°f+°9+°é)/3 and the deviatoric
~ stresses as ' '

dg_ - o8

= - cwoEh B ()

’

'We now replace the elastic strain rates“in-(h.l) in terms of ér and %n'

using (3.6)-(3.8), and use (4.2) to eliminate am in favor of 'ér' The

right hand side of (4.l) is written in compact formlbyxusing the incom-

pressibility relation ég = -éz. This gives

st bt ; o I LI UITTIOILL LTI



"/'7-) - 13, 2.0 "
Eéﬁ«%ﬂré?(r 5) = - FEE ) ~ - (k3)

. _which can be integrated to yield

E +a'é£ - H(E)/F | o ' ) ~(u.uj

.. r.
“where '
| o = 26(1+u)/(2-u)

and H(t) is an as yet undetermined function of time. This function
can be obtained by using the equilibrium equation (4.2). Using

o, =5, + and integrating (4.2) gives
: : bér :
(a ) - (6 )t & =0 - (k1)
a : o
which, for constant internal and external pressures, simplifies to
b r( .. . o | ‘

Using (4.6) in (4.4), we can solve for H(t). Resubstituting for

H(t)'.into (4.4) gives

) - * p . ra .
2 be o .
. <P 2a2b : 1 T o
s = P22 . = [ =ar . (4. 7)
r b o (b2-a2 r2 2 T '

So far we have used all the equations except those relating the
permanent strain rates to the stresses (319-3.12, 1.3) and the kinetic

law (1.4t). Using the equation of state (1.3) toéetﬁér with the equa-

P

‘$ions (3.14) and (3.15) for the invariants ¢ and €7, we cbtain

e o er o e e+ oy bt et 5 e man A e g e 504 A WL S TSR TR
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& - J3(—> : exp(-z/m>¢<- 1) m8)

(o

|

Substituting (4.8) into (4.7) gives us an equation for é; as a

L ' N
function of s, and o . In the kinetic law (1.L4), we substitute for

* s .
¢P in terms of s, end o using (3.14) to obtain an equation for

i ' *

oK * . . .
.o in terms of S, and o . Thus, our final equations for S.. and o©

assume the following forms

1.

¥ m '/3 s

s aB &) el Eo(- =)
o

A2 1 PR
| Lrieyre k.

- )rgar<G> xp(- (-9)
% * m '
5 = (%) £ exp(- z5)0(- )o - ~/'3s 0 *) - (b.10).

The initial condition for S, is given by
sr(r,Oj = '4"[0'6(1':0)'0'1.(1')0)]'/2 ' | ("}'n)

where of(r,o), ce(r,o) are given by (3.17) eand (3.18) respectively.

* B
The initial hardness distribution o (r,0) is given by (3.20).
‘ leen the initial stress and hardness disturbution, equations (4.9)

and (4.10) are used to calculate the rates § (r,O), o (r,O) These

 rates are then used to obtain s (r,Am), o (r,Am) after a small time

interval Ax by using a suitable integration scheme. These, in turn
‘are resubstltuted into (&.9), (h 10) to obtain § (r,Am), o (r,Am) and

the process continued as long as desired. Once sr(r,t), g (r,t) are




‘-knoﬁn, the complete stress history is obtained from the following eéuations

. ' r S (Tl,t) . '

o (r,t) = 2 ———adn-p T (k2)

/‘ . a N .

I : , .. S .

op(r,t) = -2s_(r,t) + o.(r,t) B R
‘ q:;r(r’,t) = [o;(r,t)+oe(r,t)]/2 o o (ll».l’-l-)

':Equation (4.12) follows from the. equilibrium equation written in

terms of s and o, (see (4.2)) and the boundary condition (3.16),

" The strain history can now be obtained using equations (1.3), (3.6)-(3.12).

We now introduce the followihg nondimensionalization:

- - - - ¥*
e = _Or/l? sy Og = UQ/P » 0, = UZ/P s 0O = G /P ’
gr = Sr/P. P) 59 = SQ/P ’ o = U/p ’ qQ = Q./P )
- a = a/p > c-} = G-/'p E E = r/a. ) K = b/a A . . (h-lS)

Using these nondimensionalized variables, the equations (4.9), (4.10),
(3.17)-(3.20) and (k.12)-(k.14) become

. = ¢ ~%m NER:
io- BB @) enl- Dol =)

G o

K2 -l k1 E¥ m z §r :

(K ) ") :{ —g'(—c_}') £ exp(~ zr)o(- )de (4.16)
% =¥ m V3 & ' : " ~ .
0 = (—) £ exp(- RT)QS(- —Iy5 (- ~/'3ps »Do ) © (kaT)

G ' ri . & |

P




5.(8,0)
0g(¢,0)

0,(€,0)

3*(§:0)
o,.(¢,t)

CA(RY)

0, (¢, t)

1
2

(1 2. Ko(1g)
-k“gq- —5(1-q)]

k-1 3

‘ 2
{173 55(1-3))
K =1 3

(1-623)/(x%-1)
o (E) -
2 [ —an -1

’2§r(§)t) +'af(§)t)

[Ef(ﬁyt>+69(§:t)]/2

(b8

(h.195
B (h.éo)- :
(k.21) -

- (k.22)

(k.23)

(b.24)

Let us next consider the situation when a large amount of plastic

strain has developed, i.e. k?jl >> kijl (we are assuming here that

the strains are still within the domain of infinitesimal strain theory).

, . *
Then it mey be plausible to assume that the hardness o has reached

'the saturation limit and changes very slowly with time so that it can

be regarded asAstationary for all practical purposes. Under these con- - -

ditibns, the stresses can be assumed to have reached a stationary state

where they no longer change in time.

The procedure for calculating

the stationary stresses oi(r), og(r), oz(r) is given in Appendix B.

i e
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5. BEHAVIOR of 1100 ATUMINIUM ALLOY' = *

The above analysis has been carried out in terms of the functions

‘ * * _
¢(a/c ) and I'(o/o ), the explicit forms of which depends upon the ma-

terisl of interest. As an illustration, we shall consider a cylinder

" of 1100 Alumimm alloy at 250°C. Ellis, Wire and Ii [15] have found

" experimentally that the equation of state (1.3) and the kinetic law

(1.4) for 1100 Al. alloy at 250°C can be represented by the equations

. *m * <1/
'éP = () (3 | | (5.1)

(5.2)

n
~~
I
K
|
Q
>
3

'f D = 105'(')3ps:i.(sec)l/m at 250°C

1.17 x 10°°(psi)P 0.

>
]

* .
In these equations, ¢ and o ere in units of psi and t is in seconds.

ﬁote that
X
[£ exp(-z/RT)1/®

end that (5.1), (5.2) ere valid for temperatures > sbout 1/3 of

‘ : *
the mslting temperature for which o > o . The shear modulus and Poisson's

ratic for this material at 250°C are [21]
. ¢ = 3.234 x 10 psi, ©u = .0.358

-18 -

- ’ e e T o o et vy e mn m smerg v ¢ & e e e At e = M rar n e e . * n ma- i t




' The equations (4.16) and (4.17) for 1100 Al. alloy now become

. I m =* ' ;1/k'
;. Bl >(1n<- )
r Jé s :
) r
K= ¥ -1/x . o 4
. _%'?__15 Ii t(" (1n(~ ) as (5:3)
(N -l) £ET 1 D : 3 Sr ’
.o . % m % .21/A O—Jg s )5
¥ o o - X
s = (%) (in(- ) AR——mm— (5-4)
T B W3S so-t -
: r
where D/p and A= Ap -8 The‘cdrresponding équationé for the

stationary state are given in Appendlx B.

6. RESULTS AND DISCUSSIONS

. Numerical calculations have been carried out for an 1100 Al. cylin-
der‘at 250°C with x, the ratio of external and internal radii, equal
Ato 2. ﬁhe internal pressure is takenito be 1250 psi (except for curve
I, Fig. 6), the external pressure zero, and several distributions of
ﬁhe initial hardness c:(r) are considered.

" The Runge-Kutta method of order four has been used for solving
the system of equations (5.3) and (5.4) subject to the initial conditions
(4.18)~(4.21). The integrals in (5 3) and (k.22) have been evaluated
psing Simpson's rule. For numerlcal purposes, the nondlmen31ona11zed

* . shell thickness, k-1, has been divided into 20 equal segments. .The'
. computations have been carried out on an IEM 370/168 éémputer.
Figs. 2,3 and 4 show the distribution of radial; circumferential
'aﬁd axigi st;esses across a cross-sectidn normal to the cylindéf axié;

. fThe variation of stresses is qualitatively similar to that obtained from

50w RS St RS- [ P
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" time hardening (17, 18] and strain hardening [19, 20] theories. It is

observed that stress redistribution occurs during creep and the stresses

tend towerd a statiohary state. The corresponding stress distribufion
curves for 1100 Aluminum Alloy using time and strain hardening theorles‘
could not be obtained bécause the parameters for thls materlal required
fdr applying these classical theories are not available. Thus, a quanti-
pative comparison with results from classical theories was not poseible.

The effect of initial state, i.e. initial hardness distribution, is

‘shown in Figs. 2-L4 by assuming two different initial values of uniform

hardness. The initial hardness level characterizes the initial state

of a specimen and is determined by its previoﬁs mecﬁanicai»and thermai
history. The former is 10% cold worked while the latter is lightiy cold
worked. We observe, as expected that the hoop and axial stresses (Figs.
3, 4) in the softer cyllnder relax faster than in the hardened cylinder.
The ability to easily distinguish between different initial states is a
novel featurevof the equatien of state approach.

_The initial hardness distribution for the cases shown in Figs. 2-h4 -

'.'Ti~is taken to be uniform and it is found that the cylinder hardens with

. ereep. However, the change in hardness is too small to be evident with-

-in plotting eccuracy. ‘This is a consequence of the fact that the initial

. . . ¥ .
hardness level in these cases is such that & , from equation (5.2), is

very small. It is concievable that a sphere made of some other material,
.with the same level of initial hardness,will harden appreciably as it

- creeps.

4 In order to see how the theory predicts'hardening.with creep‘we con-

. sider next a cylinder which is hardened inside and soft outside. In

- -
particular, we choose the distribution ob(g) = 1.5 o(¢,0). The results
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7. CONCLUSIONS

. material can be taken into account by simply specifying the initial dis- ‘

-~

.
’ v

“are shown in Fig. 5. We observe that the softer portions of the cylinder

harden much more than the initially hardened inside.

Fig. 6.shows the creep of the inner radius with time for five dif-
ferent caseé. _For the same pressure (1250 psi) the amount of creep
decreases with increase in level of uniform initial hardness (III, IV,
V). A cylinder with-vafigble,iniéial hardness (II) givén by
'Sz(g) = 1.5 3(5,0) is much less rgsistant to creep than a correspond-
ing uniformly hardened cylinder (IV). Finally, a comparison of (I) with

(V) shows the highly nonlinear effect of internal pressure. Similar

_results were obtained by the present authors for the creep of a sphere

[16] end by Li et al for uniaxial creep [15].

Choice of time step is very crucial in the computation and variable

time steps are necessary. The initial time steps must be small because

the rate of creep is higher in the beginning. The computational scheme
used is very efficient. Typical computing time for the results pre-
.sented in Figé. 2-4, for example, is approximately 20 seconds on an

IBM 370/168."

The equation of state approach due to Hart has been previously veri-
fied experimentally for relatively steady, uniaxial loading for various
metals and alloys. An important new feature of this theory is that the

effect of prior deformation history on subsequent creep behavior.of the

tribution of a single space variable called hardness.
In this paper we have presented an efficient computational scheme

for'analysis~of creep of materials obeying classical or'equation of

et o + gt v s

- -




Astafe type constitufive laws. As an example, tﬁe problem of creep .

of a closed-ended thigk cylinder under steady internal and external

- pressures has been solved using Hart's Constitutive laws. Results

for various specified levels of initial hardness are presentéd. It

is found that the results are qualitatively similar to those obtained
ffom éiassicai theories, and, as expected, hardened cylinders resist
creep more efficiently than softer_ones. It ié anticipatéd that an
extegqed version of this theory including the anelastic strain com-
poﬂent:will provide a better model than the presently available clas-
sical theories for inelastic analysis of structures:subjected to cyclic

loading at elevated temperatures.

i
;
T
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APPENDIX A

The equilibrium equation (3.4) can be written as

- Using the equation (3.13) that o, = (cf+ce)/2,»the above relation and

.- thus the condition of axial equilibrium, namely equation (3.5), is

-23 <

. da
-0=I‘r
% r or
‘which éives
: 1 9,2
%t % = T 5;(r Oi)
v.l : .
the boundary conditions (3.16) we get
N o
§ o 2nf roidr = nf r(cf+oe)dr
| | & a
| b
! - 3,2
= nf 5;(r Of)dr
‘a
2 2
= a(pa”-qb")
satisfied.
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APPENDIX B ©

When the elastic strains are negligible compared to permanent strains,
 the compatibility equation (4.1) together with the relation égs = égs

f
‘leads to i

222 - o

where the added superscript s denotes the stationary state. Integration

" of the above with respect to r gives

-~

éf‘s = - \/.3 K/2r2 > éps = K/r2 (B-l)

where. K is a positive constant to be determined later. Assuming that
the function ¢ in (1.3) is invertible and denoting the inverse by ¢-l,

it folloﬁs from (1.3) that

F o (/0™ Lep(a/r)) e
sﬁbstitution of (B.1l) into.the above gives

& - o*s¢'itxr'2(c*8/a>'m zexp(z/RT)] . (8-3)

Using the above and (3.14), the equilibrium equation (3.4) can be written as

¥ - - - -
-gf-- 21 o*s¢’l[Kr~2(c*§/G)-m %eXP(Z/RT)] = 0

N3 T
" Integration of the above with respect to r toegther with (3.16) gives

ok -




- v emmel ot r *s '- . : ' .
) = 2L 6T (o)™ Fexp(z/RTMN - B

| (B.4)
J3 a B

" The unknown constant K can be determined by imposing the second of the

boundary conditions (3.16). This gives the equation

-

9 A |
7 % o k02 (0 %/c)™ zexp(z/RM)lan -p+q = O - (B.5).
3 ' :

27
a

The. above equatioh can be solved for K by some numerical procedure

" such as the Newton-Raphson method. The equations (3.14) and (B.3)

gives the following expression for cz;

*s =1

. »o!g(r) = :/‘,2; g ¢ [Kr-e(c*s/G)“m %exp(z/RT)] + oi(r) (B.6)

Introducing the following additional nondimensionalized variables

‘-8 -S

8/ -5 s s - =8 s '
o, = a/p 5 G5 = o/p 5, U, = /o, & = o/p D

the:equatioﬁs (B.5), (B.4t) and (B.6) can be written respectively in the forms

27 57 B (5/8) ™ Lexp(z/RT))an -1+ G = O (.8)

31 1 . o - L

2 - 2L g2 5 L /RT)] | |

@) = =/ T ¢ [Rn™" (/G | foole/fmlan -1 | (B.__9)

T(e) = f; 3 M I (7 /0 gen(a/ED)] + T(E), - (B.10)
- ’2'

where K = Ka . Thus, to determine the sfationary state of stresses,




first the equation (B.8) is solved numerically for K. Then the stresses
Gi(g) and 3;(5) are obtained from the equations.(BQ9) and (B.10) re-

. spectively. The stress Ez(g) is given by the expression

i
l‘.
For 1100 Aluminum alloy we realized from (5.1) that

- o = o Sexpl- (e ml

1

ps -\ *S/

D) (B.12)

Using the above along with the nondimensionalization (B.T), the equations

(B.8)~(B.10) can be written as

Kk ¥s

J_i- ! Lexpl [k (5 S/D)mx]dn -1+3a =0 (8.13)
2 Foxs \ x '

ae) = ffg{—nﬂp[ KN (3 s/D) Jan - 1 (B.14)

s5(e) = fi SSLENAGEEA™M L F ) (315)

. ~%s . R .
For the special case where o is uniform, th above equations reduce

~to the following simplified forms:

-¥s : ‘ R
,}i °T [E(K)-E( )]-l+q=0. (.16)
-s 1 7S * 2\ . | ‘
ao.(¢) = 5 r (B, (k)-E (7)1 -1 . (BaT)
432(_5) .= fa '&*sexp[-éelK*] + 3‘;(5) | o (B.18) |
: 3 o , S

() = [SS(ea5(e))/2 - o (em)
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where K =K (o s/D)m and El(w) is the exponential integral defined as

'El(cn) = fwix-?i(‘—’il dq. _ . o (B.19)
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Figure 1.

Figure 2.

- Figure 3.

Figure L.

Figure 57

Figure 6.
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FIGURE CAPTICONS N
Thick-wailed'cylinder with closed ends subjected to internal

pressure.

Veriation of af with 't and t for p = 1250 psi,

. P ="250° C and two hardness levels:

‘3:(§)=8-h93 (i.e. 10% cold work) and 3§(§)=3-h6h (i.e. 1.5 6(1’0))'

Variation of g, with & and t for p = 1250 psi,
-¥

T = 250° C and the hardness levels ob(g) = 8.493 and

-

5.(8) = 3.46h.

Variation of ‘G with ¢ and & for p = 1250 psi,
. -¥

T = 250° C and the hardness levels 06(§> = 8.493 and

Tn(e) = 3.56h.

Growth of hardness with time for p = 1250 psi, T = 250° C

: % -
and variable initial hardness ob(g) = 1.50(¢,0).

Radial displacement at the inner radius, u(l,t), plotted as

function of time at 250° C for the cases:

- (I) p = 2000 psi, a:(g) = 5.308 (i.e. 10% cold work);
(I1) p = 1250 psi, G.(&) = 1.55(,0), :
(111) p = 1250 psi,,B:(E) =2.771 (i.e. 1.20(3,0)), '

(IV) p= 1250 psi, By(e) = 3.4k (i.e. 1.53(1.0))

-

1250 psi,

Q
—
Coouve
~
|

= 8.493 (i.e. 10% cold work)
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C Filgure 2. Variation of Er with ¢ and t for p = 1250 psi, T = 250° C and two hardness levels:

So(€) = B.493 (1.e. 10% cold work) and Go(e) = 3.16h (i.e. 1.53(1,0)).
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Figure 5. Growth of hardness with time for p = 1250 psi,
T = 250° C and variable initial hardness

8:(5) = 1.50(¢,0).
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" Figure 6. Radial displacement at the inner radius, u(l,t) plotted as
' function of time at 250° C for the cases:

(1) p-= 2096 psi, E:(g) = 5.308 (i.e. 10% cold werk),
(11) " p = 1250 psi, '3:(5‘)-..,: 1.55(¢,0),. -
(II1) P _ 1250 psi; Gz(g) = 2.77 (i.e. 1.25(1,0)),

(IV) b - 1250 psi, G(t) = 3.46h (i.e 1.55(1.0))

‘ (V) D= 1é50 psi, E:(g) = 8.493 ('i.e'.". 10% cold work)




