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SUMMAR.Y 

Further s tud ies  have been made'of f ac to r s  influencing the  r a t e  of 

r e j ec t ion  from t rue  solut ion of excess silica contained i n  geothermal 

brine.  

si l ica scal ing include degree of supersaturation with respect t o  silicic 

a c i d  monomer, concentration of dissolved salt,  br ine  pH and temperature. 

Most of the measurements were made a t  95*C, an especial ly  per t inent  

temperature because it approximates that of a hot br ine a f t e r  flashing. 

Concurrent analyses f o r  s i l ic ic  acid monomer and t o t a l  dispersed 

Prominent influences on the  course of t h i s  precursor s tep  i n  
/ 

sil ica i n  a 2% brine a t  95OC 

monomeric si l ica concen 

monomer. Consist 

eventually precipi ta ted 

ealed a growth and decay of non- 

osed on t h e  disappearance of 

(as f l o c  o r  as sca le ) ,  while t he  

onomer concentration proached a sa tura t ion  value a r a c t e r i s t i c  of 

br ine  composition and temperature. The observed se ce suggests t h a t  

monomer combines with polymeric species, and the  lat ter grow and aggregate 

i n t o  f locculent  silica o r  scale. A prac t i ca l  implication of these r e s u l t s  

is t h e  possible  re ta rda t ion  of scal 

polymerization. 

ion of s i l i c a  

Simulated geothermal brines,  Le., solut ions supersaturated with 

respect t o  silica at 95OC and cont 

correspondirig t o  a commonly encountered source temperature (in the 

v i c i n i t y  of 30OoC) were prepared reproducibly. 

ing Na*, K? and Cast- i n  a r a t i o  

With a l l  s i l i c i c  acid i n  



. .  

t r u e  solut ion i n i t i a l l y ,  simulated br ines  typ ica l ly  exhibited 
(Ld 

a period of 

slow react ion p r io r  t o  the  onset of r e l a t ive ly  rapid monomer disappearance. 

The rate of decay of sil ica monomer concentration Ci.e., rate of r e l i e f  of 

supersaturation) increased s igni f icant ly  with increasing level of i n i t i a l  

supersaturation, t o t a l  s a l i n i t y  of t he  brine, and pH ( r e l a t i v e . t o  pH 4). 

1sothermal.dilution of the  supersaturated br ine resul ted,  as anticipated,  

i n  a pronounced decrease i n  the  rate of polymerization. 

descr ipt ion of t he  system requires  a c l  

among several species of dispersed sili 

spec i f i c  e f f e c t s  of ion ic  solutes,  

are planned for the  near term. 

A more complete 

def in i t ion  of in te rac t ions  

the  role of temperature, and 

Experiments t o  obtain t h i s  information 

The introduction of addi t ional  surface for heterogeneous nucleation, 
- 

* .. 
i n  t he  form of g lass  wool o r  quartz powder, had no s ign i f i can t  e f f e  

the course of monomer disappearance. 

have been produced simultaneously with separation of a si l ica f l o c  - a 
s o f t  scale and a coherent, o r  hard scale. 

Increased br ine  s a l i n i t y  and pH favor hard scale formation at 9S°C. 

Two l imi t ing  types of adher 

I n  preliminary observations, 

Studies a t  higher temperatures, corresponding t o  hot br ines  before 

f lashing,  and requiring the use of pressure equipment, have t o  da te  provided 

less d e f i n i t i v e  information than tests a t  95OC. 

relate t o  lessened con t ro l l ab i l i t y  of s i l ica  concentration and of scaling. 

It is hoped t o  circumvent these experimental d i f f i c u l t i e s  through elimina- 

t i on  of the vapor phase, with continuous volume compensation f o r  solut ion 

withdrawn during brine sampling. 

The problems encountered 

Use of autoclave techniques has the  
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potent ia l  advantage 
'L, 

of achieving even closer  correspondence of synthetic 

br ine  t o  na tura l  geothermal brines. Thus, pB can be fixed through control 

of the  CO2 pressure, making possible the  elimination of the  acetate buffer 

generally employed i n  the  work a t  95OC. 
- 

The program plans f o r  the coming period include de ta i led  char- 

ac te r iza t ion  5 of scales and prec ip i ta tes  produced isothermally and those 

formed under a thermal gradient between subs t ra te  and brines. Additionally, 

the dependence of si l ica sca l e  formation on prevail ing hydrodynamic condi- 

t i ons  and on the  nature of t he  subs t ra te  w i l l  be studied. Also, because 

it is  poten t ia l ly  f r u i t f u l  from t he  standpoint of scale prevention, a study 

w i l l  be made of f ac to r s  that determine whether excess s i l ica  aggregates t o  





I 

I. INTRODUCTION 

In t h e  f i r s t  six months of t h i s  program, we gan a detai led study 

of t h e  k ine t i c s  of polymerization of si l icic acid i n  geothermal br ines  

for t he  following reasons: 

(a) Monomeric s i l ic ic  acid i s  the only thermodynamically 
s t a b l e  si l ica so lu te  species i n  neut ra l  and acid brines. 

S i l i c a  scale formation is a mechanism by which a br ine  
can be rel ieved of supersaturation with respect t o  
dissolved monomeric silica. 

) A t  two conceptual extremes, 

(b) 

may be an e s sen t i a l  precursor t o  scaling, o r  it may 
proceed i n  p a r a l l e l  with scaling; i n  e i the r  case, t h e  
processes are interconnected, and knowledge of t he  
de ta i led  relat ionship would indicate  whether poly- 
merization ought t o  be inh i t e d  o r  accelerated i n  
order t o  re ta rd  scaling. 

Purely empirical s tudies  of s i l i c a  scaling, while use- 
f u l  i n  defining p rac t i ca l  conditions under which scale 
is prone t o  form with spec i f ic  geothermal f lu ids ,  do not  
provide ins ight  i n t o  the  chemical mechanisms involved. 
An.understanding of react ion mechanisms is essent ia l  
to the design of new methods t 

(d) 

l leviate  scaling. 
t 

i za t ion  work i n i t i a t e d  

e a range of conditions and br ine  compositions expected 

e previous report  period was 

i n  p lan ts  f o r  extract ing power o r  h 

addition, we examined the  the-dependent d i s t r i b u  

several  species of dispersed 

(i.e., a molecule containing 

co l lo ida l  aggregates, p rec ip i t a t e  and scale. 

sca l e  formation and characterization was a lso  in i t i a t ed .  

search of t he  per t inent  technical l i t e r a t u r e  on silica scaling was a l so  made. 

A complementary study of 

Some fur ther  
LJ 
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1. Preparation of Simulated Geothermal Brine 

As noted i n  the  previous report ,  the  inadvertent ( i n i t i a l )  presence 

of-oligomeric o r  polymeric silica accelerates  the  rate of disappearance of 

excess monomer, Since na tura l  geothermal br ines  contain l i t t l e  o r  no 

oligomer o r  polymer when they are in  equilibrium with rock (Weill and 

Bottinga, 1970), it is necessary i n  accurately simulating these br ines  t o  

make sure  that they do not  i n i t i a l l y  contain appreciable quant i t ies  of 

oligomeric o r  polymeric s i l i c a .  The react ion of s i l ic ic  acid with molyb- 

da t e  allows the detect ion of small quant i t ies  of oligomeric o r  la rger  

amounts of polymeric s i l i c ic  acid (the latter by difference,  i f  t o t a l  

s i l i c a  i s  known). Hence, we were able  t o  evaluate various methods of 

rw 

Five techniques for  preparing simulated br ines  were outlined i n  

the  last  repor t  . 
present report ing period. 

All but the u l t r a f i l t r a t i o n  were evaluated during the  

(1) 

(2) 

Rapid cooling of a superheated, undersaturated brine. 

Isothermal evaporation of water from an undersaturated 
solution. 

(3) Rapid mix ine  solut ion of sodium meta- 
silicate i n t o  an ac id ic  chloride brine. 

\ 

(4) U l t r a f i l t r a t i o n  of a solut ion prepared as i n  method (3). 



O n  t h e  bas i s  of Baumann's (1959) experiments, we assumed t h a t  

method (5 )  would prove superior, although it was recognized t h a t  the  

method would introduce unwanted methanol i n t o  the  brine.  

experiments indicated tha t  rapid acid hydrolysis of t he  ester produced 

unexpectedly lar,-ge amounts of oligomer, 

bes t  be overcome by d i lu t ing  the  ester with excess methanol. 

reasons, it was  decided t o  abandon method ( 5 ) .  

In  fact, however, 

This undesired e f f ec t  can probably 

For these 

I 

others  i n  stoppered bot t les .  

of about 30 sec by spraying through a nozzle. 

(3) Solution (c) was then added t o  the  react ion vessel. 

Immediately following s tep  (3), an a l iquot  of t he  solut ion was mixed with 

the  molybdate reagent f o r  silica monomer and oligomer analysis. 

The concentrations of the  various species i n  a simulated br ine  

prepared as described are: LJ 
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M - 
Ca*: 0.070 2.81 c1- 0.315 11.17 

Na+: 0.221 5.08 CH3COO' 0.091 5.37 

I+: 0.045 1.76 CH-jCOOH: 0.016 0.96 

H q S i O 4 :  0.017 (1034 ppm Si02) pH: 5.15 ?. 0.05 at'95'C 

The Na+/Ca*/I$ r a t i o  is 3.00/0.95/0.61, on a molar basis,  which is c lose  

o t h e  r a t i o  3/1/0.6 appropriate t o  a na tura l  b r ine  having a source tempera- 

l i n e a r  with t i m e  (i*e., f i rs t -order  k ine t ics )  t o  a t  l e a s t  99% extent of 



reaction, indicat ing the  absence of measurable quant i t ies  of oligomer. 
'ci 

The calculated f i rs t -order  rate constant i s  1.3 min-1 a t  2SoC, i n  agree- 

ment with the  value (1.41 f 0.07 min-1) previously reported by us for 

monomeric silicic acid. 

undersaturated br ine  had the  same rate constant with molybdate. 

S i l i c i c  acid prepared by cooling a superheated, 

Repeatabil i ty of delivered volume f o r  t he  30 y 1  micropipette w a s  

f 1.3%. The precis ion of t he  spectrophotometric measurement of monomeric 

oligomer, " to t a l  dispersed silica," and precipi ta ted material. Sy 

solut ion which is removed and subjected t o  depolymerization preparatory 

t o  analysis.  
\ 

5 



de tekmine t o t a l  dispersed silica, 1 000 ml of the  solution is 

reacted with an equal volume of solution containing 0.m NaOH and 0,lM 

EDTA. 

p l a s t i c  container. 

solve any oligomer, polymer, and co l lo ida l  or  f l o c  par t ic les ;  t he  EDTA is 

used t o  complex the  calcium ion and so prevent prec ip i ta t ion  of calcium 

compounds. 

The resu l t ing  mixture is allowed t o  stand overnight i n  a stoppered 

The purpose of t he  NaOH is t o  depolymerize or dis- 

Duplicate determinations indicated t h a t  depolymerization was  

the  time-varying absorption due t o  the formation of the  EDTA complex from 

6 



Table I 

A Typical Determination,of Tatal  Dispersed Silica 

Correction due t o  
Optical  Density Molybdate-EDTA Corrected Optical 
a t  360 (400) nm Complex Density at 360 (400) nm 

15 0.702 (0.206) 0.184 (0.01OJ 

*Estimated silica concentrations are 1061 ppm and 1024 ppm, based on t h e  
corrected op t i ca l  dens i t i e s  a t  360 and 400 nm, respectively. Based on 
the  concentration of monomeric s i l ic ic  acid i n i t i a l l y  present (%.e., 
p r i o r  t o  polymerization), the  solut ion ac tua l ly  contained 1034 ppm Si02. 

7 





u 
111. SURVEY OF FACTORS AFFECTING RATE OF MONOMER 

' DISAPPEARANCE AT 95OC 

1. Effect  of Brine Dilution 

In order t o  simulate the e f f e c t  of d i lu t ing  a geothermal brine with 

ater -- or ,  conversely, concentrating a brine by f lashing -- the  br ine 

described i n  Section 11.1 was di luted during preparation by adding 0.5, 

of disappearance of monomeric s i l i c ic  acid at 3OoC 

le, a t  

t o  reduce t h e  i n i t i a l  excess monomer concentration by half increased by a 

f ac to r  of four when the  i n i t i a l  concentration of monomer w a s  reduced from 

1550 ppm t o  1050 ppm. 

I n  the  experiments reported here, d i lu t ion  of the  reference br ine 

with respect  t o  dissolved s i l ica  a l so  decreased the  

dissolved salt. This, of course, is precisely w h a t  

added t o  a hot geothermal br ine i n  an e f f o r t  t o  re ta rd  sca le  formation. 

The e f f ec t  of varying br ine  s a l i n i t y  a t  fixed monomer concentration is 

centrat ion of 

urs  when water i s  

. 

I 
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0 120 

Fig. 1: Pol zation of si l ica a t  95 % 20 C I  an 
Curve A represents a 2.1% brine. 
duplicate run. 
diluted with water by 10, 20, and 30 per cent, respectively. 

The half-shaded circles show a 
Curves B, C,  and D represent the same i n i t i a l  brine, 



two measures of t he  rate of monomer disappearance may be used t o  compare 

d i f f e ren t  solutions:  

supersaturation, t1I2; and (b) the  f i rs t -order  rate constant, b b s ,  tha t  

f i t s  t he  observed data  a f t e r  the  i n i t i a l  period of slow k ine t ics  (see next 

section).  These measurements of t h e  r a t e  are shown as a function of b r ine  

(a) the  t h e  required f o r  r e l i e f  of half  t h e  i n i t i a l  

. 

reac t ion  rate and br ine  d i lu t ion  a r e  as follows: 

i l u t i o n  of the  r e f e r  

reac t ion  rate by a fac tor  of four. 

The r a t e  equation 

describe t h e  r a t e  of monomer disappearance. There is considerable 
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disagreement over the value of n, and n equal t o  1, 2 and 3 have been 

suggested. The data  reported here are c l ea r ly  inconsistent with n equal 

t o  2 o r  3. Indeed, t he  rate of decrease of monomer wi th  time is nearly 

constant f o r  a considerable portion of the react ion (see Fig. l), which 

suggests zero-order'kinetics. A somewhat be t t e r  f i t  t o  the  data  can be 

obtained by assuming n equals 1 after the i n i t i a l  pe 

The simplest mechanism consistent with n equals 1 is first-order 

react ion of monomer with polymeric product t o  produce a larger ,  but 

equally reactive, product. 

is assumed t o  be zero order: 

The back reaction of polymer t o  give monomer 
1 

(4) 
k l  M + P - P  

- 1 I,. 

- = - klm)  (PI - k2@) ( 5 )  d t  

At equilibrium, d(M)/dt = 0, so t ha t  

klW,q(P) - k2@) (6) ' 

and @),q - kZ&l (7) 

By t h i s  mechanism, the  monomer concentration decays t o  a characteristic 

f i n a l  value t h a t  i s  independent of its i n i t i a l  value. 

may now be simplifed 

The rate equation 

which is of the  same f 

(9 )  

The integrated form 

I, 



(10) = &bs(t - to) 

where i s  the  i n i t i a l  concentration of monomer. Representative p lo t s  

of Eq.'(10) are shown i n  Fig. 3. Because of the  i n i t i a l  period of slow 

react ion,  t h e  quant i t ies  to have pos i t ive  values. The least-squares l i n e s  

f i t  t he  da ta  poin ts  within the  one percent experimental e r r o r  f o r  values - 

of t h e  f r ac t ion  of monomer unreacted, [(M) - @)eq]/[@l)o - between 

0.85 and.0.25. Above about 0.85 (during the "induction" period), the rate 

of disappearance o f  monomer is re l a t ive ly  slow; below 0.25, the  rate again 

ecomes r e l a t i v e l y  slow, perhaps due t o  agglomeration of polymer. 

I n  a t r u e  f i rs t -order  reaction, b b s  should be independent of t h e  

This i s  not t r u e  i n  the  present case, i n i t i a ' l  concentration of monomer. 

however. 

fac tors ,  i n c l  

of monomer it I f .  

order  with respect to  monomer during a given k i n e t i  

of b b s  on initialmonom 

u As'shown i n  t he  following sections,  &bs depends on several  

ing salt  concentration, pH, and the  i n i t i a l  concentration 

Thus, while the react ion rate is approximately f i r s t -  

un, t h e  dependence 

concentration indicates that the overall 

ce of react ion rate on monomer concentration is greater  than first 

In terms of the  mechanism above, t h i s  may be explained as a 

ce of t h e  concentration of polymeric nuclei  (P) on t he  i n i t i a l  

concentration of monomer. . These nuc le i  are presumed t o  form during the  

i n i t i a l  period of slow reaction. 

3. Effects  of Supersaturation and Total Sa l t  

I n  the  experiments j u s t  described, the  t o t a l  concentration of NaCl, 

CaC12, and KC1 varied between 20,800 and 16,000 ppm. I n  order t o  deternine 

14 





whether t h e  salt content itself has a s igni f icant  influence of t he  rate of 

disappearance of monomer, a more concentrated simulated br ine  was prepared. 

For t h i s  purpose, solut ion (c) i n  Section 11.1 was replaced by 2 volumes 

of a solut ion containing 2.601M NaCl, 0.338M KC1, 0.656M CaC12, and 0.267M 

The i n i t i a l  concentrations of the  various species i n  t h i s  br ine 

were as follows: 

cas+: 0 . 2 1 9 ~  c1-: 1 . 49614 

Na+: 0.985M CH$OO-: 0.076M 

Kt': 0.15Ol-l CH3COOH: 0.013M 

tIqsi04: 0.0143M (862 ppm S 5.28 2 0.10 a t  95% 
, 

r 

The t o t a l  concentration of NaCl, K C l w a s  90.3 g/l .  
- . -.. 

As can be-seen i n  Table I1 and Fig. 4, the e f f e c t  of increased salt  

content was dramatic: the  rate of disappearance of monomer i n  Run E was 

much f a s t e r  than i n  Run C, i n  which t h e  i n i t i a l  concentration of monomer 

w a s  comparable. 

I?&, e, or C1' - has a strong accelerating effect  on the reaction rate. 

On t h e  othe concentration of monomer (276 ppm) was 

depressed below the  equilibrium value (ca. 400 ppm) appropriate t o  d i l u t e  

brines. Thus, t h e  apparent s r sa tura t ion  i n  Run E (594 ppm) was  in te r -  

mediate between those of Runs and B (Table 11). If the  rate constant, 

b b s ,  f o r  disappearance of monomer depends on supersaturation, @I) - Qeq, 

This r e s u l t  suggests t h a t  one or more of t he  ions* - Ca*, 

\ 

Recent preliminary experiments, not complete a t  the  time of t h i s  report ,  * 







then the  accelerat ing e f f ec t  of sa l t  may, i n  pa r t ,  be due t o  its e f f ec t  on 

f i n a l  monomer concentrat 

n order t o  estimate separately the react ion order with respect t o  

salt  content and supersaturation, addi t ional  experiments (Runs F and G, 

Table 11) were performed. 

uents of t he  br ine  w e r e  kept the same. 

order with respect  t o  salt  concentration can be obtained by comparing 

Runs C and G, i n  which the  supersaturations are the  same. I f  b b s  is 

pressed as a function of t o t a l  sa l t  concentration, (S), 

The proportions of t h e  three  chlor ide consti t-  

A rough estimate of t h e  reaction 

b b s  = k' (S)' -? (11) 

t h e  order of t he  reaction with respect t o  s a l t ,  then 

log  k b s  log k' -I- p log@) (12) 

A comparison-of the  rate constants f o r  

Similarly, a comparison of the  rate constants f o r  Runs F and B o r  F and A 

(here the  supersaturations are not qu i t e  t he  same) gives p = 0.9 and 

p = 0.8, respectively. 

s C and G gives p = 2.0. 

It is clear that pa 6e comparisons of this s o r t  cannot be used 

t o  obtain accurate estimates of the reac 

is  t o  f i t  a l l  the  measurements of b b s  t 

n order. A better approach 

su i t ab le  k ine t i c  equation, 

o equally simple expressions are 

kobs e k(S)' [ (13) 

b b s  ss k(S)P [@f)z - @)&I (14) 

Only the second equation has been used t o  f i t  t h e  data,  since it i s  more 

near ly  consis tent  with the  assumption t h a t  the dependence of kobs on 

i n i t i a l  monomer concentration is re la ted  t o  the  formation of polymeric 

9 
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monomer during the  “induct ion” period % when the  back reaction 

of polymer t o  monomer should be negligible.  

In t eg ra l  values of p (0-2) and q (1-6) have been used t o  f i t  the  

observed rate constants by t r ia l  and error.  

maximum e r ro r  (? 20%) was not possible with p = 0 o r  p = 2. 

assuming t h a t  t he  react ion is f i r s t  order with respect t o  salt concentra- 

t i o n  (p = l), it was found t h a t  a l l  seven measured values  of t h e  rate 

constant could be f i t t e d  t o  the  same expression, within e r ror ,  with q - 4. 
The standard deviation is 15%, and a l l  calculated values  of b b s  agree 

with those given i n  Table I1 within 21%. 

q are assumed (q = 3 o r  q = S), the  standard deviation is still  below 

20%, but more than one value of b b s  exceeds the expected maximum devia- 

t ion.  

react ion rates i n  these runs are too l a r g e  f o r  accurate determinations 

of b b s .  I f  these runs are excluded, the  reaction orders  p = 1 and q = 5 

or  6 f i t  t h e  remaining f i v e  values of 

A f i t  within the  expected 

However, by 

If smaller or la rger  values of 

cp’) Runs A.&d E show the  .largest deviations, perhaps because the  

with a standard deviation of 

only 10%. 

These r e s u l t s  ind ica te  tha t  t h e  effect of br ine  f lashing on the  

rate of react ion should be substantial .  

t h e  salt  concentration and monomer concentration increase,  due t o  l o s s  of 

water, and the  equilibrium concentration of monomer decreases due t o  the 

changes i n  temperature and sa l in i ty .  

a l so  a f f e c t  the  rate constant d i rec t ly ,  although our 

and those of Rothbaum and Wilson (1975) indicate  tha 

r e l a t i v e l y  small. 

Flashing has several  consequences: 

P 

The decrease in  temperature 

ata (Section W-1) 

t h i s  ‘effect i s  
1 

I n  addition, f lashing of C02 would increase the  br ine 



pH. 

namely, an increase i n  the rate of disappearance of excess monomer. 

Each of these consequences of br ine flashing has t h e  same re su l t ,  

I The strong accelerat ing effect of added salt i s  unexpected, since 

t h e  l i terature (e.g., Baumann, 1959) indicates  t h a t  no ion has as great  

a c a t a l y t i c  e f f ec t  on t h e  rate of disappearance of monomer as hydroxide, 

f o r  which a tenfold increase i n  concentration produces about a tenfold 

increase i n  rate. 

To summarize our r e s u l t s  with 9SoC, pH 5 brines  having a fixed 

proportion of chlorides,  t he  rate of disappearance of excess monomeric 

si l ica i s  approximately proportional t o  t o t a l  s a l in i ty .  

proportional t o  a high power (3 t o  6 )  of t h e  i n i t i a l  monomer concentra- 

t ion.  

regard t o  react ion orders  but, c lear ly ,  fur ther  def in i t ion  of t he  rate of 

monomer disappearance on in i t ia l  monomer cgncentration and s a l i n i t y  is 

a worthwhile mcperimental goal. 

4. 

The rate is a l s o  

A t  t h e  present time, it is not possible t o  be more precise  with 

S i l i c a  Solubi l i ty  Versus Brine Concentration 

A potent ia l ly  useful  by-product of our work with various sa l t  

concentrations is a set of preliminary values of f i n a l  monomer concentra- 

t i o n  a t  95OC. 

last  sampling (approximately 24 hrs  a t  95OC), the measurements represent 

the  dependence of amorphous s i l ica  so lub i l i t y  on br ine  composition. 

a mimimum, since monomer disappearance had essent ia l ly  ceased i n  each 

case, the  measured f i n a l  concentrations permit estimate of apparent 

monomer supersaturation, the  driving force  f o r  silica scal ing and 

precipi ta t ion.  

Insofar as equilibrium had been reached a t  the  times of 

As 

kd 



Depression of apparent si l ica so lub i l i t y  by added s a l t  w a s  appre- 

c iable .  

include da ta  from t h e  l i t e r a t u r e  fo r  the so lub i l i t y  of amorphous silica 

in  water a t  95OC. 

l a rge r  than the  probable contribution of t he  decrease i n  a c t i v i t y  of water 

with increase i n  s a l t  concentration. Although Iler (1973) indicates  that 

the  s t a t e ’ o f  hydration of monosilicic acid i n  water is unknown, it is 

customary t o  r resent  t he  dissolut ion of amorphous si l ica i n  water by 

Results t o  da t e  are given i n  Table I11 and Fig. 5, which also 

The observed sa l t i ng  out of sil ica monomer is much 

I 

Si02 (amorphous) + 2H2O (a )  $ SqSiO4 (aq.) (15) 

Keel aqGSiO4/aZ~20 (16) 

&i where 8 represents  thennodynamic ac t iv i ty .  

Based on the  above hydration-dehydration equilibrium, Barnes and 

Rimstidt (1975) have emphasized the  value of d i lu t ing  t h e  hot  geothermal 

b r ine  with water i n  order t o  increase the  a c t i v i t y  of water and, accord- 

ing t o  Eq. (16), the  so lub i l i t y  of si l ic ic  acid monomer. 

of salt concentration on the  a c t i v i t y  coeff ic ient  

si l icic acid has generally been overlooked. 

amorphous silica according t o  Eqs. (15) and (16) should be  given by 

A possible effect 

of the  mono- 

Thus, t he  so lub i l i t y  of 

, 

(17) 

i t y  with which t o  estimate the  contribution of 

t he  a2 fac to r  t o  the  observed sa l t i ng  out were not found i n  the  aiid H20 

22 
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Total Salt** Concentration, 
as equiv./l ~1'- Remarks 

This work, Run A 

This work, Run H 

' This'work, Run E 

Extrapolated from 
9ooc 

' Extrapolated from 
8OoC 

Okamoto et al. Extrapolated from 
9ooc 

Elmer and Nordberg 470 -- 

Kitahara (1960) 375 -- 
(1958) 

pH 5.0 - 5.3; silica solubility not expected to be sensitive t o  pH over a wide range below pH 9, 

Does not include electrolyte anion (usually acetate) added for buffering. 

* 
** 

I__ 
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l i t e r a t u r e  f o r  br ines  having our proportions of NaC1, K C 1  and CaC12. 

Instead, values of aH20 i n  NaCl br ines  a t  95°C were extracted from data 

by Barnes and Rimstidt (19751, Crerar (1974), and Helgeson (1969), and 

values of 8 H  0 i n  CaC12 br ines  a t  95OC were estimated from data given by 

\ 

2 I 

Barnes and Rimstidt (1975). Calculated e f f ec t s  of t he  a2w20 term on the 

f i n a l  concentration of monomer are compared with observation i n  Fig. 5 

a t  the  same s a l t  concentration, a s  C l -  normality. 

monosilicic acid in these br ines  would have t o  be 4 o r  grea te r , ' r a ther  

than 2, i n  order t o  y ie ld  the  observed sa l t i ng  out by reduction i n  water 

The hydration number of 

a c t i v i t y  alone. 

would be expected t o  diminish the  e f f e c t  of water ac t iv i ty .  

Moreover, p a r t i a l  hydration of t he  so l id  silica phase 

. 

An a l t e rna t ive  explanation l i e s , i n  an increase i n  the  a c t i v i t y  

c coef f ic ien t  of - the  neu t r a l  s i l ic ic  a c i d  so lu te  species (yqSio4 i n  Eq. 

(17)) brought about by t h e  added sblt.  

on this point. 

The l i t e r a t u r e  is not de f in i t i ve  

Thus, Hutchinson (1975) and Reed (1975) observed a sal t ing-  

- i n  of silica in geothermal brines from t h e  Salton Sea area. By contrast ,  

&to and Kitano (1968) found a reduced so lub i l i t y  f o r  amarphous silica 

i n  s.ea water (about 27% reduction as  compared t o  s o l u b i l i t y  i n  d i s t i l l e d  

water) and an even more marked salting-= in 1 N  NaCl (about 5.4% NaCl 

brine) 

s a l t s  on a c t i v i t y  coeff ic ient  

of nonelectrolytes,  Long and McDevit (1951) present data  showing sal t ing-  

- out of most nonelectr 

is t h a t  t h e  l o g a r i t  

i s  proportional t o  the  concentration of the  s a l t ,  logy = - kC. 

ytes  i n  aqueous solutions The general behavior 

f the a c t i v i t y  coeff ic ient  of t h e  nonelectrolyte 

The sign 

LJ 



and magnitude of the  proportionali ty constant are determined pr incipal ly  

by t h e  e f f e c t  of t he  nonelectrolyte on the in te rac t ion  between solvent and 

ion ic  solute.  For aqueous systems, k i s  usually posit ive,  resu l t ing  i n  

a lower s o l u b i l i t y  of nonelectrolyte with increasing salt. concentration, 

f o r  si l icic ac id  i n  brines. 

acid in t h e  Long and McDevit paper is carbon dioxide. 

of logycoz can. 
following r e s u l t s  are found f o r  25OC: 

The c loses t  chemical analog of aqueous s i l ic ic  

From t h e i r  p lo t s  

vs. salt  concentration (g-equiv/l, o r  normality), the  

1-34 NaCl: l o~Cog(aq . )  0.11, Yco2(aq0) 1.29 (18 1 
1.5' "1: 10gYco2 (aq. = 0.155 9 YCOZ (aq, = 1.43 (19) 

An increase i n  the  act ivi t  coeff ic ient  of aqueous monomeric si l ica of 

comparable magnitude could explain the  marked decrease of f i n a l  monomer 

concentration i n  the  .strong br ines  (Fig. 5). 

5. Effect of pH 

The pH range of na t  thermal br ines  , with br ines  

d s a l i n i t y  generally having t h e  lowest pH ( E l l i s ,  of highest  temperatur 

1970). Most of t h e  experiment 

5.15 f 0.10 ( 9 5 O C )  in an acetate-buffered brine. 

acetate t o  acetic acid WES generally maintained a t  5.7. 

capacity of acetic acid falls off rapidly above pH 5.2, so t h a t  another 

buffer (with pKa grea ter  than that  of ace t i c  acid) 

eported here were carr ied out a t  pH 

The molar r a t i o  of 

The buffering 



Hydroxide has a well-known c a t a l y t i c  e f f ec t  on silica polymeriza- 

As noted i n  our previous report ,  l i t e r a t u r e  values of the  reaction 

The mechanism 

U 
t ion.  

order with respect t o  hydroxide range between 0.5 and 1.0. 

of t he  c a t a l y t i c  e f f e c t  is believed t o  involve the  the  react ion of ionized 

s i l ic ic  acid (H3SiO4' o r  HsSiO5' i n  the  case of the  monomer) with un- 

ionized silica species. 

As discussed i n  Section 111.3, added sa l t  a l so  causes an approxi- 

mately f i r s t -order  acceleration of t h e  rate of monomer disappearance. 

Preliminary experiments indicate  t h a t  t h i s  e f f e c t ' i s  due mainly t o  chloride. 

It is conceivable t h a t  chloride, l i k e  hydroxide, can bind t o  s i l ic ic  acid,  

giving rise t o  a charged complex 

with neut ra l  s i l ica species. 

but i n  t h e  l imi t ing  cases it is expected tha t  t he  observed rate constant 

would depend on salt and hydroxide'in e i ther  serial o r  p a r a l l e l  fashion: 

erhaps &,SiO4C1-) tha t  reacts rapidly 

There are many mechanistic poss ib i l i t i e s ,  

u 

)Eo: - m):ql (20) 

o r  (21) 

I n  the  case of p a r a l l e l  c 

t i o n  orders with respect t o  sal t  and hydroxide should be less than one. 

l y s i s ,  Eq. (21), t he  observed ef fec t ive  reac- 

To obtain e x p l i c i t  information on the  influence of pH, experiments 

using the  acetate buffer  w e r e  carr ied out a t  t h e  lower pH of 4.20. 

r e s u l t s  are shown i n  T Results of 

dupl icate  runs i n  Fig. 6(b) i l l u s t  

can be  obtained i n  experiments of t h i s  nature. 

disappearance of monomer a t  lower pH (upper curves) i s  so slow, we did not 

The 

Figs. 6Ca) and 6(b). 

te the degree of reproducibi l i ty  t ha t  

Because the  rate of 

Isl 
\ 



Table XV' 

Data Summary f o r  95OC Kinetic Runs: Tests for pR and Specific Buffer Effects 

Half -Lif e Initial 
lionomer Apparent Total Salt 1 Ac' or. HAC or of Excess First Rate 

- Run Concentration Supersaturation Concentration CI' pH Buffer Mal" W l -  Monomer Rate Constant 
(d1) b/l) (dl) W l )  (min) (kobs, min-1) 

20.8 0.315 5.13 AC 0.089 0.018 60 0.0178 

18.9 0.286 5.05 Ac 0,081 0.016 90 0.0144 

0.0076 17.3 0.262 5.10 AC . 0,074 0.015 160 

16.0 0.242 5.25 Ac 0.068 0.014 286 0.0045 

1\ 

I) 

C. 

rw D 03 

I 

H 21.3 0.345 4.19 AC 0.037 0.064 - 0.002 

I 965 22.9 0.371 4.21 Ac 0.040 0.068 - 0.001 

J 103 6 22.8 0.372 5.24 Mal 0.012 0.010 35 0 0320 

K 888 16.3 0.234 5.16 Mal 0.019 0.025 67 0.0187 

L 877 498 19.0 0.310 4.79 Mal 0.0083 0.0097 163 0.0095 ' 

M 892 513 19.7 0.339 4.85 None - - 109 0.0099 
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TIME; MINUTES . TIME, MINUTES 

Fig.  6: The effect of pH (acetate buffering) on monomer disappearance, .at two i n i t i a l  Si02 concentrations. 
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obtain accurate estimates of the  rate constant. 

s t a n t  is  roughly a f ac to r  of ten greater  a t  pEi 5.1 than a t  pH 4.2 f o r  

However, the  rate con- 
U 

runs i n  which t h e  sa l t  concentration and monomer supersaturation-are the 

same, The r a t i o  of hydroxide ion activities, calculated from the  known 

ra t ios*  of acetate t o  acetic acid, I s  9.8 2 0.8, so t he  apparent order of 

react ion with respect t o  hydroxide is c lose  t o  1.0. 

appear t o  r u l e  ou t  p a r a l l e l  ca ta lys i s ,  Eq. (21), although fur ther  s tudies  

are c l e a r l y  needed. 

This r e s u l t  would 

B a m n n  (1959) used leic acid as a buffer i n  his s tudies  of silica 

polymerization. 

l ike  acetate (but unlike citrate o r  phthalate), it does not prec ip i ta te  

Our own preliminary tests indicated its su i tab i l i ty :  

Ca*, and its e f fec t ive  pR, under the  experimental conditions is about - 
- 

tate. Maleat buffer should, there- 

fore ,  be e f f ec t ive  a t  95OC up t o  pH 6.0, 

To inves t iga te  a, possible spec i f ic  buffering agent e f fec t ,  k ine t i c  

runs were car r ied  out near pH 5 using the  maleate buffer. 

are shown in Table IY and Figs. 7 and 8. 

The r e s u l t s  

Based on a comparison of f i r s t -  

red brine, corrected to  

(approximately) pH, 

I 

ance i s  1.7 t 0.7 times greater  

s difference i n  rates, i f  real, is 

ed by a pH s h i f t  between the two 

The hydroxide a c t i v i t y  r a t i o ,  c 
observed pH values, is 8.9 2 2.0. 

a te ly)  from the  

kd 
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95OC are a t  f au l t .  

designed fo r  high temperature measurement w i l l  be employed i n  confirmatory 

To test t h i s  poss ib i l i ty ,  a pH electrode special ly  

:o t he  foregoing, attempts were made t o  carry out 

k ine t i c  runs i n  unbuffered brines. 

s ince t h e  pH tends t o  d r i f t  randbmly. 

pH s t ab i l i zed  a t  4.85 2 0.05. 

10% of t h e  interpolated rate constant f o r  a run car r ied  out i n  an ace ta te  

buffer  a t  pR 5.15 at  the  same supersaturation and salt  concentration, 

although t h e  hydroxide concentration i n  Run M is a f ac to r  of 2 smaller. 

It appears, therefore,  t h a t  the  acetate buffer i n h i b i t s  the rate of monomer 

Such runs are experimentally d i f f i c u l t  

In Run M (see Fig. 8), however, t h e  

The rate constant in t h i s  run i s  within 
. -  

- - 1 ... LJ disappearance. Maleate buffer appears t o  have a smaller inh ib i t ing  e f f ec t ,  

but it must be noted t h a t  thy ace ta te  concentration i s  considerably l a rge r  

than the  maleate concentration (see Table IV). 

are based on a small number of k ine t i c  runs, and s ince pHmeasurements 

a t  95°C are not as accurate as a t  room temperature 

be regarded as tentat ive.  

I -  

Since these comparisons 

I n  na tu ra l  geothermal brines,  t he  buffering ac t ion  is presumably 

To use t h i s  due t o  the  e f f e c t s  of CO2, HCO3', C , and si l ic ic  acid. 

* buffering system he laboratory nd hence eliminate the  effects of 

"foreign" buffer  

so as t o  mainta 

carr ied out i n  the autoclave, and the  pH was regulated by controll ing the  

pecies -- it i 
02 atmosphere. 

cessary t o  use a pressure vessel  

U! 
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IV. EFFECT OF TEMPERATURE ON MONOMER DISAPPEARANCE 

Water Bath Experiments 

Since the  equilibrium so lub i l i t y  of amorphous silica h c r e a s e s  with 

II_ 

1. 

temperature, t he  temperature e f f ec t  on rate of monomer disappearance a t  a 

given i n i t i a l  s i l ica  concentration includes a change i n  supersaturation 

and a change i n  the  rate constant. In  order t o  determine the  e f f ec t  of 

temperature on the  rate constant alone, polymerization r a t e s  should be 

compared a t  t h e  same si l ica supersaturation. 
- 

Figure 9 compares the rates of monomer disappearance a t  78°C and a t  

95OC f o r  experiments with similar i n i t i a l  supersat&rations. 

b r ine  was somewhat more supersaturated (580 v 

and a l s o  s l i g h t l y  higher in  pH (5.19 vs. 5.05).  

The 78OC 

- 
Either of these f ac to r s  

I d  lead t o  a higher rate of monomer disappearance f o r  t he  78OC 

experiment. 

disappearance i n  the  78OC experiment would be expected t o  be about 38% 

faster than i n  the  95OC experiment. 

supersaturation shoul 

experiment 

Based on the known e f f e c t  of pH, the  maximum rate of monomer 
\ 

Similarly, the  difference i n  the  

lead t o  a %17% higher maximum r a t e  f o r  the 78OC 

Since the  rate constants a r e  comparable i n  these two experiments 

(Fig. 9 ) ,  an increase i n  r a t e  with increasing temperature is indicated. 

Roughly, the rate enhancement f a c t o r  i s  1.6 f o r  a 17OC rise i n  temperature. 

Accordingly, t he  ac t iva t ion  energy f o r  monomer disappearance i n  the post- 

induction period appears t o  be less than tha t  f o r  a typical  chemical 

l%r 
35 



F i g .  9: 
the vertical  axis portrays supersaturation. 
78O C and pH 5 . 1 9 .  

The ef fect  of temperature on mononer disappearance. Note that 
The c irc les  show a test a t  

T squares show a test at 9 5 O  C and pH 5.05. 

36 



reaction. 

obtained f o r  our resu l t s .  This r e s u l t  is  comparable t o  the  value of about 

1 0  kcal/mole obtainable from the experimental f indings of Kitahara (1960). 

2. Autoclave Fzperiments 

Qualitatively,  an act ivat ion energy of about 7 kcal/mole is 

, 

I n  t h e  previous report ,  i t  w a s  noted that i n  attempts t o  prepare a 

simulated br ine  by dissolving amorphous silica i n  the  autoclave a t  a 

r e l a t i v e l y  high temperature (22OO0C), a r ing  of hard scale formed a t  t h e  

liquid-vapor interface.  

it t o  be comprised 03 anhydrous s i l i con  dioxide (103 2 3% SiOz), and its 

x-ray d i f f r ac t ion  pa t te rn  was tha t  of a-quartz. The formation of quartz 

may explain our i n a b i l i t y  t o  prepare solutions that were s l i g h t l y  under- 

saturated with respect  t o  amorphous s i l i c a  (e.g., 800 ppm Si02) a t  and 

above 200°C,-& that the  so lub i l i t y  of quartz a t  200°C is less than 300 

ppm. It was  surpr is ing t o  f ind  r e l a t ive ly  rapid formation of quartz at  

these temperatures: scale r ings  formed within a few hours a t  and below . 
250%. 

from simulated geothermal brines in pressure apparatus, a further brief 

account of experimental d i f f i c  

. 

Chemical ana lys i s  of a sample of t h i s  scale showed 

/ 

Since others  may be studying, or preparing t o  study silica scal ing 

s encountered i n  the  present work may 

The design of t h  utoclave heating jacket  onducive t o  some- 

what uneven heating of the  autocl 

t h a t  quartz fonnation might have 

However, heating the  autoclave uniformly i n  an oven a t  22 

prevent formation of a scale ring. 

11s. Consequently, it was thought . 

i t i a t e d  a t  l o c a l  

These la rge ly  negative observations 



m y  yet  have some va 

hot br ine  undergoing flashing. 

e i f  a correlat ion can be made with the  case of a 

A scale r ing  could a l so  have been produced by the  evaporation of a , 

f i lm of solut ion when the  l iqu id  l eve l  was lowered during sampling. Use 

of a Teflon l i n e r  should re ta rd  scale formation i f  t h i s  were the  case and 

he Teflon surface retained i ts  hydrophobicity. Unfortunately, the  

A t  2OO0C, the  l i n e r  was Teflon l i n e r  tended 

r e l a t i v e l y  s table ,  and sca le  formation w a s  g rea t ly  reduced. 

o d is in tegra te  a t  25OoC. 

However, we 

ere not  ab le  t o  dissolve more than 700 ppm Si02 a t  t h i s  temperature, 

out  of 800 ppm Si02 o r  grea te r  or ig ina l ly  introduced i n t o  the  brine. 

We a l so  attempted t o  eliminate incidental  scale formation by use 

of an internal s t a i n l e s s  steel l i ne r ,  which w a s  covered by a d r ip  shield 

so t h a t  condensate would, i n  theory, run down t h e  l i n e r  w a l l s  and redissolve 

any scale, 

with solution, so that heat would be t ransferred evenly t o  t h e  solut ion 

The space between the  autoclave w a l l  and the l i n e r  w a s  f i l l e d  

i n  the l i n e r ,  This method successfully prevented sca le  formation, and Si02 

concentrations as high as 1100 ppm w e r e  achieved. However, evaporation 1 
I 

of water from t h e  solut ion i n  the  l i n e r  and condensation i n  the  outer  

solution, o r  vice versa, made it impossible t o  prepare a br ine  with a 

ta rge t ted  concentration of Si02 and salt; fur ther ,  concentration changed 

e r r a t i c a l l y  as water evaporated from one pa r t  of the system and condensed 

i n t o  the  other. 

value of the  data  obtained. 

These d i f f i c u l t i e s  ser iously impaired the  quant i ta t ive 

Thus, we are not ye t  i n  a posi t ion t o  report  

rate data  f o r  temperatures higher than 95OC. 
i 
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V. SILICA PRECIPITATION mD SCALE FORMATION 
w 

One of t he  most important questions i n  t h i s  study i s  whether 

s i l ica  sca l ing  involves deposition of monomer, deposition of la rger  

aggregates, o r  both. W e  have t r i e d  severa l  experimental approaches t o  

t h i s  question. 

t o t a l  dispersed s i l i ca ,  so as t o  obtain a measure of the  rate of 

F i r s t ,  w e  have followed the  rate of disappearance of 

deposit ion.  

surface area of t he  system w a s  considerably increased by the addition 

Second, w e  have carr ied out experiments i n  which the  t o t a l  

r quartz wool. Third, w e  have used f i l t r a t i o n  t o  bracket the  

s i z e s  of the  polymeric s i l i ca  species.  

I n  the,2% br ines  a t  pH 5, the  t o t a l  dispersed s i l i ca  remained 

sensibly coiistant (i.e., within experimenta r ro r )  f o r  several hours, 

by which t i m e  t he  concentration of monomer had dropped t o  within 100 ppn: 

of t h e  equilibrium value (Fig. 10). This behavior implies e i t h e r  t ha t  

l a rge  p a r t i c l e s  are not formed continuously from the  outset ,  o r  t ha t  

t h e i r  aggregation is slow. 

more s a l i n e  br ines  (42.6 and 90.3 g / l  sa l t ) ,  a pronounced decrease i n  

t o t a l  dispersed s i l i ca  w a s  observed because, within the t i m e  of observa- 

t ion ,  the  react ion had gone much fur ther  toward completion. 

as shown i n  Figs. 11 and 

slow u n t i l  the  concentration of monomer had almost reached its f i n a l  

I n  the  polymeriz t i on  runs car r ied  out i n  the  

? 

the  rate of t h i s  decrease was r e l a t ive ly  
\ 

e i n  t o t a l  dispersed i l i ca  then took place. I n  

diagnost ic  experiments with pyrex o r  soft-glass wool present, the rate u 
40 
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Fig. 11: 
with 90.3 g/1 total salt, at 95 2 2" C and pH 5.28 3- .10 . The polymerization and deposition of s i l i c a  i n  Run E, 
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L, 
of  disappearance of t o t a l  dispersed s i l ica  w a s  again negl ig ib ly  small, and 

no gain i n  the  mass of t he  wool was observed. When the concentration of 

t o t a l  dispersed s i l i ca  w a s  followed f o r  several hours more, t h e  m a s s  of 

t he  wool increased, concurrently with a crease i n  t o t a l  dispersed 

s i l i ca .  Experiments designed t o  disclos  e ther  the  observed Si02 de- 

creases were due t o  f i l t r a t i o n  by t h e  wool o r  t o  sca l ing  d i r ec t ly  from 

aqueous species  indicated tha t  f i l t r a t i o n  of suspended s i l i ca  f locs  w a s  

responsible f o r  the  decrease. Experiments with pyrex wool are cbnsis- 

t e n t  with a p i c tu re  i n  which the  decrease of t o t a l  dispersed s i l i ca  is 

pr inc ipa l ly  by agglomeration and s e t t l i n g  ra ther  than ,by d i r ec t  adhesion 

of  monomer o r  polymer. 

The t i m e  lapse p r i  p rec ip i ta t ion  c la ined by assum- 

t the  polymeric p a r t i c l e s  t h a t  formed a t  an e a r l y  s t age  of t he  
~ - u  

react ion grow by addi t ion of monomer o r  by agglo 

eventually reach a s i z e  a t  which they are mass 

enough t o  f locculate ,  sett le o r  deposit. 

p a r t i c l e  s i z e s  at  which prec ip i ta t ion  occurred, 

experiments has been in i t i a t ed .  As shown i n  Fi 

of t h e  react ion,  a 0.1 micron mil l ipore f i l  

ra t ion ;  the p a r t i c l e s  

enough o r  adherent 

To determine the magnitude of 

series of f i l t r a t i o n  

13, by the  mid-stage 

removed over 80% of the  

on-monomeric s i l i ca  from dispersion. A t  a later s t age  of t h e  reaction, 

t h e  average p a r t i c l e  s i z e  

(0 .8  micron) removed ab0 % of t h e  s i l i ca  i n  suspension 

experiments, while not ye 

of p a r t i c l e s  can be estimated, c lear ly  ind ica te  t h a t  the polymeric par t i -  

such t h a t  a much la rger  pore s i z e  f i l t e r  

e t h e  rate of growth 

tbi 
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b 
cles are extremely large,  a t  the upper .end of the range of t he  sizes 

usual ly  termed col loidal .  A 0.1 micron diameter si l ica p a r t i c l e  con- 

t a i n s  about 10 mi l l ion  monomeric uni ts ;  s t i l l  la rger  pa r t i c l e s  should 

settle rapidly.  

It is clear from these experiments that the  t e r m  "polymerization" 

misnomer. There is no evidence f o r  t he  continued existence 

of units small enough t o  be termed polymeric, although it is  possible 

that they exist a t  very low concentrations and play a r o l e  i n  the  dis- 

appearance of monom 

r e l a t i v e l y  small number of l a rge  co l lo ida l  pa 

rap id ly  i n  the  earliest s tages  of reaction.< 

Most probably, monomer adds primarily onto a 

cles, which are formed 

In t h i s  discussion, we have considered the  extent of scal ing t o  
~ -6 

be represented by t h e  decrease i n  t o t a l  silica measured a f t e r  a short  

t i m e  has been allowed f o r  se t t l ing .  

gelat inous,  and is probably similar t o  the  "soft scale" found i n  t h e '  

f i e l d  (Marsh, 1975). 

p a r t i c l e s  which would settle regardless of t h e i r  tendency t o  adhere. 

This def in i t ion  may not  be su i tab le  f o r  the  

i n  a geothermal system. 

formation under minimum flow conditions. 

The form of the  prec ip i ta te  is 

However, our operating def in i t ion  regards as scale,  

low of brine t h  

However, i t  is a useful measure of maximum scale 

The type of scale formed i n  these experiments may not  be d i r e c t l y  

re la ted  t o  the  more prevalent "hard scale" found i n  the  f i e ld .  

egun invest igat ions i n t o  the  conditions under which hard scale can form, 

From preliminary studies,  i t  appears that formation of hard sca le  is 



favored by higher pH and by the  presence of a cooled surface. Garrett 

Research and Development Go. (1975) s imilar ly  obtained coherent scales  

on cooled probes a t  a pB generally near 7 and with br ine  consti tuents i n  

omparable proportions t o  those i n  our experiments. 

Characterization of Scales 

These include s o f t  and hard scales and silica f l o c  f i l t e r e d  from the  

b r ine  at  the termination of runs. Energy dispers ive analysis  by scanning 

analysis ,  

silica. 

but peaks were-invariably a l so  located f o r  C l  i n  these cases, so that 

t h e  presence of these cat ions is thought t o  r e f l e c t  traces of res idual  

salts from t h e  brine. 

Ca-silicates is thought t o  be minor. 

A l l  scale samples w e r e  found t o  be pr incipal ly  amorphous* 

Traces of Na, K, and Ca were detected from energy spectra,  

Correspondingly, the  presence of any Na, K, or  

t h a t  was found 
t o  contain a-quartz. 

14 
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There are many areas within the  scope of the  program t h a t  are 

deserving of fur ther  

' solving a l l  of athe following problems, w i t h  t he  ant ic ipat ion,  i f  success- 

f u l ,  of acquir ing a good understanding of t he  phenomenon of s i l i ca  

scal ing.  

cedures o r  o the r  means f o r  reducing the  amount or e f f e c t  of s i l i ca  

sca l ing  i n  ac tua l  operations. 

tent ion.  We currently plan t o  put  e f f o r t  i n t o  

W e  should then be i n  a posi t ion t o  recommend changes i n  pre- 

By way of approaching t h i s  goal, w e  intend 

o Obtain more de ta i led  information on t h e  p a r t i c l e  s i z e  dis- 
t r i bu t ion  of dispersed s i l i ca  during disappearance of 
s i l i c i c  ac id  monomer. 

Q, F u r t h e r  ident i fy  t h e  fac tors  determining whether excess 
s i l i ca  is re jec ted  from geothermal b r ine  as pa r t i cu la t e s  
or  as s o f t  o r  hard scale. Included i n  t h i s  port ion of the  
study w i l l  be spec i f i c  subs t ra te  e f f ec t s ,  thermal contrast ,  
f i l t r a t i o n  of t h e  growing s i l i ca  pa r t i c l e s ,  and incorpora- 
t i o n  of b r ine  consti tuents.  . 

Characterize the  si l ica scales and precipitates, produced 
i n  t h e  laboratory,  with respect t o  morphology, c r y s t a l  
s t ruc tu re ,  mechanical proper t ies  and de ta i led  chemical 
composition ; make comparison with si1 
from se lec ted  f i e l d  

Establ ish which of the  major b r ine  const i tuents ,  i f  any, is 
responsible, f o r  t he  observed acceleration of monomer 
disappearance with increasing s a1 t concent ra t ion.  
Additionally, inves t iga te  t h e  influence of se lec ted  minor 
const i tuents  of geothermal br ines  suspected of having t h e  
capabi l i ty  t o  influence t h e  course of excess s i l ica  
reject ion.  
i ron ,  and magnesium. 

Round out t h e  study of pH and temperature e f f ec t s  on the  

- -c 

o 

scales and deposi ts  

e 

Included i n  t h i s  category are f luoride,  aluminum, 

o 

bd 



kine t ics  and course of monomer disappearance, especial ly  
i n  the  direct ion of higher temperature and pH. 
junction with t h i s  work, make an e f f o r t  t o  overcome 
experimental d i f f i c u l t i e s  incurred by use of an autoclave, 
and conduct experiments with the  exclusion of the vapor 
phase. Further, acquire su i t ab le  techniques f o r  u t i l i z i n g  
CO -buffering, thereby removing rel iance upon a r t i f i c i a l  
buffer  agents. 

Obtain b e t t e r  def in i t ion  of the quant i ta t ive e f f e c t s  of 
salt  and s i l i c a  concentrations on the k ine t ics  and course 
of s i l i c a  re ject ion from supersaturated brine. In  t h i s  
connection, es tab l i sh  more firmly the  var ia t ion of f i n a l  
monomer concentration with s a l t  concentration - i f  possible,  
a t  two o r  more br ine compositions and temperatures of 
interest .  

Extend and re f ine  t h e  ana ly t ica l  model of monomer 
disappearance, including delineation of events occurring 
during the incubation period. 
a r a t iona l  framework f o r  quant i ta t ive expression of t he  
r a t e  of r e l i e f  of supersaturation. 

Develop a comprehensive rate expression exhibi t ing the  
f&c&ional dependence of the r a t e  of approach of t h e  

a l l  concentrations and br ine  properties known t o  be of 
significance.  

In  con- 

o 

o 

As a minimum goal, produce 

0 

. mono-silicic acid concentration t o  its f i n a l  value on 
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