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ABSTRACT

The convective parametric decay of an incidenf
electromagnetic wave (wo,ko) into two plasmons -at
w = wp in a slightly inhomogeneous plasma of scale’
length L 1is considered. Asymptotic solutions for
the fields are obtained which show that for
L/>\o >> (wp)\D/\))\O)2 , where v 1is the plasmon damping
rate, the homogeneous-plasma decay critérion must be

satisfied by the pump field for instability.
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There has been much interest recently in parametric
instabilities :in inhomogeneous media, especially in relétion
to the possibility of absorbing an incident laser beam by
parametric decay into two plasmons. - Rosenbluth5 solved
the general inhomogeneous problem and found that in order for
the decay waves to grow to an appreciable level, YOZ/VlVZK
must be much greater than unity, where Vl and V2 are
respectively the group velocities of the two decay waves,

KX = §ki is the sum of the wave vectors of Fhe three waves,
and Yo is thé coupling coefficient. In this paper we

solve Rosenbluth's equations for the two plasmon decay case
(wo =~ 2wp) in-the limit of YO2/V1V2K >> 1 , and we ino}ude
the damping terms. We only consider the convectively unétable
case, since Rosenbluth showed that no absolutely unstable
waves arise for finite k . The resulting solutions shod
light on the transition between the homogeneous and inhomo-
geneous regimes and predict a damping determined threshold
condition when L/}\o >> 3n(prD/vAQ)2 , where v 1is the

[(1/n) (dn/dx)] L

plasmon damping coefficient, and L



We arrive at Rosenbluth's form of the relevant equations

by using the equations of Lee and Kaw6 and expressing

b, = a+(x)-exp (iﬁ|+x + ik,y - iw+t) , Where ¢, is the
decay wave potential at frequency w = w, = wp and
| 3a,/9x| << |ﬁ|+a+| ." A similar form for the other wave ¢_

holds. We obtain

Eii + Ta, = y_a exp (in ) (la)
X + o - 2
oa_ _inz. :
=% ~ la_ = -y a, exp (——5——> (1b)
where T = v
2 ! _
3HIOAD wp
.- ekok_,_Eo
o 2 2,2 !
BAD m W k
2 2 2
k™ = k,” + HIO ,
_ By [ ikexeiw-t T
E (X, t) = - <e1 ox~iwpt | -1 ox+1wot) ]



Zkl = ﬁ _+tk - ﬁ L+ 3 - ___iEQ___ = kx
| o 6*D2Lﬁ|oz
U)pz = (.Upoz <l + %) [} k”O = k” at X=6

Yo is the coupling coefficient and E, is the incident wave field.
We have required ?ki =0 at x =0 . 1In order for this WKB
approximation to be valid, the cutoff layer (where ﬁl = 0) must
be far away from thé couprling region.

If we let a_ (x) = b, (x)-exp (in2/4) and a_(x) = b_(x)"

exp (—in2/4) , we get

* b, (55 by 24 X ) =0 (2)

g(X) exp (ikx’/4) ,

where X = x - 2iT/k . Letting b, (X)

we get

2
e . 2, .
- + ik X 5% Ak + ¥ ) g =0 (3)

By fourier transforming, we find the exact solution

, 2
2 1Y, ’
g(x) = [dk exp (ikx + - — an) (4)

ik™
2K

This integral in k space must be. taken between two points at
which the inteérand is zero. There is also a branch point at
the origin which must not be circled. Figure 1 shows how the

path of integration may be picked...



For large |X| we may evaluate g(X) asymptotically.
We have two saddle points, one at kl = -kX and andther at
k2==y02/KX . The apprOpfiate integration paths are shown in
Fig. 2. Using these paths, we can approximately evaluate
the integral for !KXZ! >> 1 , and we get the connection for-

mulas for the region ¥ << 0 to that of x »>> 0

ir? Yo e
«—> exp [—rx + el i(—z—)zanX| - ]

(5)

where K < 0 . The first term (in the left side region) for

X << 0 corresponds to a plasmon propagating toward the coupling
region. The x << 0 solution shows that this wave is amplified

by exp (ﬂY02/|KI) in crossing to x >> 0 , in agreement with
Rosenbluth's work..5 The second term for x << 0 1is the reaction
of the other wave ¢_ on ¢+ and decreases like l/x'. For

the region x >> 0 we have ignored this term, since it is

smaller by exp(ﬂYoz/K) , where IYOZ/K| >> 1 . We again note

that Egq. 5 is only valid when the region of large parametric
coupling is far away from the cutoff layer. Tﬁe cutoff layer is
located at X, = 3AD2LH|02 ,» and the parametric-coupling region

is limited hy kx? < YOZ/K or equivalently by Xy = Qyoﬂﬂ)3AD2LH|o

Thus, x_ > X, when 2y_ < k_ . This condition is equivalent to

[\



Or, letting kAD ~ 0.2 = ¢ ,
V "
%E\fo <1 ! ' (7)
th
where VO = eEO/mmo is the electron velocity due to the pump,
and Vih = Te/me

To find the threshold condition for net growth of the decay

waves, we rewrite Eg. (2) as

2
3°b 2
+ _i 2 £ _ Vo
5 + b+ (§-+ Yo o+ 7 11"18;) 0 (8)
L]
where 2 _ .2 _ 2
' r
r. =
1 l"ll/z
. Y,
v, =
PR
1/2
£ = -|k| /2y
i y2 2 2 (i.e x ) d neglect
We now requilire vy << Fl and Yy (i.e. Fl *y) . an g
the gz/é and ii/2 terms. This is valid for large ¢ when T
Yy >> 1 and when £ << 4T, . We then get as a solution

?b+(£) = [dk exp (ik ¥ - ik3/3) (9)

1

¢



where vy = irll/3 g - yz/F12/3 . In Fig. 3 we show the paths

in the complex k plane used to evaluate b+(g) . We now assume
that y2/F1273 >> 1 , so that we may asymptotically evaluate
b, (g) for |y| 1large for all ¢ . The integral in Eg. (9) has

two saddle points at k = iyl/z

. For simplicity we chocse path
2 in Fig. 3. Figure 4 shows how the saddle points move in the
complex plane as ¢ varies for both y2 > 0 and Y2 < 0 . If

path 2 crosses a given saddle point, it picks up a contribution

i >1/2
— T (10)
y /2

Yo

b, () - exp [i6 + 2iy /2 - 1, M3y V2 (- )|~ (

where ¢ 1is close to 50 r Y T Y, when g = Eo , and 6 1is
the angle of the steepest descent path.

Figure 4a shows the behavior of the iqﬁegral of path 3 for
y2 <0 as £ changes. The angular position of ghe relevant saddle

point rotates between -m/4 < 8 < m/4 . Equation (10) then shows
that this solution always decays and is not parametrically unstable.
Figure 4b showc the behavior of this salntian for Y2 >0 , For

£ >0 , the solution picks up the saddle point at 6 ~ 7m/4 and the
solution decays with growing £ . As £ crosses zero, the lower
saddle point becomes exponentially small compared to the upper one.
The upper saddle point then changes the behavior of b+(£) from
damping to growth as £ crosses zero. For £ < 0 , path 2 picks
up the lower saddle point and b, (£) again damps with & . Thus,
for y2 >0 the decay waves travelling toward x=0 first grow,

picking up energy from the pump, and then decéy as they travel

away from x=0 , dumping theif energy into the plasma. It is



also apparent that for convective instability when le >> 1

!

(homogeneous limit), Y, TMust be greater than T .

This threshold condition Yo, > I' is relevant for slightly

inhomogeneous plasmas. Using Eq. (1), we see that

2 2
Yo ~ 1 YQ; 1 L I (11)
o 6 C2 kOAD AD
and that Yo = I' . requires )
~::kOVO = 4v - v..( 12)

" Thus, when Eq. (12) is satisfied, we find that the condition

YOZ/K >> 1 1is equivalent to
(13)

When Egq. (13) ié‘satisfied, Eq. (12): automatically becomes the

more stringent threshold condition which must be satisfied for

instability. For example, a plasma with n = 2.5x10%8 cn”3 ,
_ _ I 3 ’ 2
Te = 50 ev , and L = 10 cm has L/)\O 10 (prD,vAo) for
Ao = 10.6 microns; Eq. (12) is then the relevant decay threshold.

Finally, weé may estimate the spatial extent of the
instability. To do this, we use Eq. (5) and consider only the
case v, >> ' and YOZ/K >> 1 . We assume that the plasmon
grows from the noise by a factor exp (WYOZ/IK[) in a region
near x = 0 . The plasmon then continues to propagate ﬁntil

damping brings it back to the noise. level at x = X, - To find

N~



2
. X . we must match the growth factor, exp (nyo /|K|) , to the
decay factor, exp (-I'x) . We obtain
2
TY '
O =~ TI'x . (14a)

or

T (14b)

where X is approximately the width of the region where the
decay waves are strong. X thus increases as Yoz increases

and as TI' decreases.

]
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Fic. 1. Path of integration along which Equation (4) is
evaluated. '
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Fig. 2. Paths of integration for finding the connection
‘formula of Equation (5), for x >> 0 &nd x << 0.
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Paths of integration for solving Equation (9).
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Fig. 4. Asymptotic evaluation of Equation (9). The dotted o
line shows how the saddle_pgints move as § goes from +« to -,
In (a) the real part of yl/2 at the saddle point is always >0 and o
the so%utlon always damps with 1ncrea31ng £. In (b) the real part ’

of y at the upper saddle point changes from positive to negative
as &£ crosses zero, indicating net growth and instability.





