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Two Plasmon Parametric Decay 

in a Slightly Inhomogeneous Plasma 

by 

J. J. Schuss and T. K. Chu 

Plasma Physics Laboratory, Princeton University 

Princeton, New Jersey 08540 

ABSTRACT 

The convective parametric decay of an incident 

electromagnetic wave (w , k ) 
0 0 

into two plasmons at 

w = w in a slightly inhomogeneous plasma of scale 
p 

length L is considered. Asymptotic solutions for 

the fields are obtained which show that for 

L/A >> (w AD/VA ) 2 , where v is the plasmon damping 
0 p 0 

rate, the homogeneous-plasma decay criterion must be 

satisfied by the pump field for instability . 

.------NOTICE------, 
Thi' rrput was prepared as an JS.:.C.IlUftt of ~ork 
sponsored by the United States Government. Ne1ther 
the United States nor the United States Energy 
Research and Development Administration, nor any of 
their emplOyed, nor any uf thdr eontrocton, 
subcontracton, or their employees, makes any 
warnnty, express or impUed, or assumes any legal 
fiabllity or responsibility for the accuracy, completeness 
or usefulneu of any information, apparatus, product or 
procu1 dilct.,t.trl. nr rr.prt.sents thilt I" we woulll nut 
infringe privately owned rights. 

P:e~ented at the 17th Annual Meeting of the Plasma Physics 
D1v1sion of the American Physical Society, St. Petersburg, 
Florida, 10-14 November 1975. 

QlSTRIBUTION OF THIS DOCUM'ENT IS UNLIMITED ~ 



-2-

: ~· . ' 

There h~s been much interest recently in parametric 
,. 

instabilities :in inhomogeneous media, especially in relation 

to the possib~l~ty of absorbing an incident laser beam by 

1-4 5 parametric decay into two plasmons. Rosenbluth solved 

the general inhomogeneous problem and found that in order for 

the decay waves to grow to an appreciable level, 2 
y

0 
/V1V2K 

must be much greater than unity, where v1 and v2 are 

respectively the group velocities of the two decay waves, 

Kx ~ Ik. is the sum of the wave vectors of the three waves, 
l l .. 

and is the coupling coefficient. In this paper we 

solve Rosenbluth's equations for the two plasmon decay case 

2w ) 
p 

in ··the 1 imi t of 

the damping terms. We only consider the convectively unstable 

case, since Rosenbluth showed that no absolutely unstable 

waves arise (or finite K . 'r,he resulting solutions shed 

light on the transition between the homogeneous and inh~mo-

geneous regimes 

condition when 

and predi~t a damping determined threshold 

2 L/1..
0 

>> 3rr (wpA. 0 /v,A
9

) , where v is the 

plasmon damping coefficient, and 
. -1 

J:, _ [ ( 1/n) (dn/dx)] . 

. ' 
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We arrive at Rosenbluth's form of the relevant equations 

by using the equations of Lee and Kaw6 and expressing 

where ¢+ is the 

decay wave potential at frequency w = w+ ~ wp and 

1 aa+;axl << 11l+a+l 

holds. We obtain 

a a+ 

---ax + ra+ = 

a a 
ax- ra = 

where r = v 
2 

311 o"D wp 

ek k~E 
Yo = 0 0 

3>. 0
2m w 2k 2 

e o 

k 2 + ~ 2 
~ II o 

A similar form for the other wave ¢_ 

yoa- exp ( iK
2
x

2
) (la) 

-y a 
0 + exp ( . 2) -l~X (lb) 
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w = w 1 + -2 2 ( X) 
p po L 

xk 
0 

KX 
61. 2L~ 2 -

D Jlo 

at x=O . 

is the coupling coefficient and E 
0 

is the incident wave field. 

We have required ~k. = 0 
1 1 

at x = 0 . In order for this WKB 

approximation to be valid, the cutoff layer (where 1l = 0) must 

be far away from ~he coupling region. 

If we let a+ (x) = b_
1 

(x) · exp (iKx 2 /4) nnd a (x) = b (x) • 

exp (-iKx 2 /4) , we get 

'\ 2b 2 2 
a + (' 2 + K 4~) --oX2 + b+ \~ I Yo 0 ( 2) 

where X = x - 2if/K 

we get 

( 3) 

By fourier transforming, we find the exact solution 

g (X) ( 
.k2 iY 

2 
) 

= fdk exp ikX + ~K - ~ tnk ( 4) 

This integral in k space must be taken between two points at 

which the integiand is zero. Ther~ is also a branch point at 

the origin which must not be cii::cl'EfO. Figure 1 shows how the 

path of integration may be picked~~ 

• • 

• 
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For large lXI we may evaluate g(X) asymptotically. 

We have two saddle points, one at k1 = -KX and another at 

k2 ~y 0 2/KX. The appropriate integration paths are shown in 

Fig. 2. Using these paths, we can approximately evaluate 

the integral for !KX2 ! >> l , and we get the connection for-

mulas for the region X << 0 to that of X >> 0 : 

if 2 2 

[-rx + i(y~ )2n1Kx1) + exp -K 

2 l/2 

~ 2 
2 iyo 

2 iy 4 iy 2 2 

CKY~ 2) ltt"4X + iKX + 0 0 
Q.n I YKoX 1-exp 4 K + -32 K 2K X 

< ) 

2 

[ 
ir

2 (Y ) exp -r:x + K - i ~ 2niKXI 

( 5) 

where K < 0 . The first term (in the left side region) for 

"Y,o 2) 

x << 0 corresponds to a plasmon propagating toward the coupling 

region. The x << 0 solution shows that this wave is amplified 

by exp in crossing to x >> 0 , in agreement with 

·5 
Rosenbluth's work. The second term for x << 0 is the reaction 

of the other wave ~ on ~+ and decreases like 1/x . For 

the region x >> 0 we have ignored this term, since it is 

smaller by 2 exp(ny /K) , where 
0 

We again note 

that Eq. 5 is only valid when the region of large parametric 

coupling is far away from the cutoff layer. The cutoff layer is 

located at x c 

is limited by 

= 3.A 2LkJ 2 
D II 0 

2 2 
KX < "(

0 
/K 

, and the parametric-coupling region 

or equivalently by xp = (2Y c/kJ 31. 0 
2

L11 
0 

2 . 

Thus, x > x when 2Y < k c p 0 0 
This condition is equivalent to 
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( 6) 

Or, letting k>.' 
- D 

0.2 - £ I 

.,.. 

1 v 
0 1 2E -- < 

vth 
( 7) 

where -- eE /mttl 
0 0 

is the electron velocity due to the pump, 

To find the threshold condition for net growth of the decay 

waves, we rewrite Eq. (2) as 

where 

a2b 2 
+ + b (-~2· + Y 2 + S.:.4 - ir lt:.)' = o 
~ ' + 

2 
y 

2 
=y 

1 

r 

r 2 
1 

!Kil/2 

F;. ·~ -1Kil/2x 

( 8) 

' 
·we now require 

2 2 
Y << rl and r 

1 
~ y

1
) , and neglect 

the t;, 2;~ and ~i/2 terms. This is valid for large ( when r 1 , 

y
1 

>> 1 and when t;, << 4r
1 

. We then get as a soluti6n 

(9) 

• I' 

.) • 

• 

I 

·.~ 

.-. 
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where y = ir 1 
1/3 

~ 
_ y2/r 2/3 . In Fig. 3 we show the paths 

1 

in the complex k plane used to evaluate b+(~) We now assume 

that 2 273' 1 that asymptotically evaluate Y /rl >> , so we may 

b+(~) for IYI large for all ~ . The integral in Eq. (9) has 

k -- +_yl/2 . two saddle points at For si~plicity we choose path 

2 in Fig. 3. Figure 4 shows how the saddle points move in the 

complex plane as ~ varies for both y
2 

> 0 and y
2 

< 0 . If 

path 2 crosses a given saddle point, it picks up a contribution 

where [, is close to c ...,0 

( )

l/2 

~/2 (10) 
I Y0 I 

y = y when ~ = ~ , and e 
0 0 

is 

i · the angle of the steepest descent path. 
4 

' 

,.., 

Figure 4a shows the behavior of the integral of path 2 for 
'0 

as changes. The angular position of the relevant saddle 

point rotates between ~n/4 < 8 < n/4 . Equation (10) then shows 

that this solution always decays and is not parametrically unstable. 

Figure 4b showc the behavior of this snlnt.ion for 2 y > 0 • For 

~ > 0 , the solution picks up the saddle point at 8 - n/4 and the 

solution decays with growing ~ . As ~ crosses zero, the lower 

saddle point becomes exponentially small compared to the upper one. 

The upper saddle point then changes the behavior of b+(~) from 

damping to growth as ~ crosses zero. For ~ < 0 , path 2 picks 

up the lower saddle point and b+(E,) again damps with ~ . Thus, 

for 
2 

y > 0 the decay waves travelling toward x=O first grow, 

picking up energy from the pump, and then decay as they travel 

away from x=O , dumping their energy into the plasma. It is 
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also apparent that for convective instability when 

(homogeneous limit), y
0 

must be greater than r . 

2 
yl >> 1 

This threshold conditiQn Y > r 
0 

is relevant for sllghtly 

inhomogeneous plasmas. Using Eq. (1), we see that 

2 
.}0 

K 

and that y
0 

= r. requires 

k v = 4v 
., 0 0 

(11) 

. J 12) 

Thus, when Eq. (i2) is satisfied, we find that the condi.tion 

2/ >> 1 Yo K is equivalent to 

· ~ >> 3rr __E__Q_ 
\

w A ) 2 
./.. v .A 

0 

'(13) 

When Eq. (13) is. satisfied, Eq. (12), automatically becomes the 

more stringent threshold condition which must be satisfied for 

instability. F~r example, 

T = 50 ev , and L = 10 em e 

18 a plasma with n = 2.5xl0 

has L/A - 10 3 
(w .A

0
/VA ) 2 

0 p 0 

-3 em 

for 

Ao = 10.6 microns; Eq. (12) is then 'the relevant decay threshold. 

Finally, we· may estimate the spa.tial extent of the 

instability. To do this, we use Eq. (5) and consider only the 

case y
0 

>> r and 2 
Yo /K >> 1 . We assume that the plasmon 

grows from the noise by a factor in a reqion 

near x = 0 . T.J::le plasmon then continues to propagate until 

damping brings i.t back to the noise: J;;.evel at X = X • w To find 

I 
' 1 
P. 

• 
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xw, we must match the growth factor, exp (ny
0

2/IKI) , to the 

decay factor, exp (-fx) 

2 
nyo 

TKT 

or 

::: 

We obtain 

( 14.a) 

(14b) 

where x is approximately the width of the region where the 
w 

decay waves are strong. 

and as r decreases . 

x thus increases as 
w 
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Fie. 1. Path of integration along which Equation (4) is 
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lm k 

x<<o 

lm k 

" 

(a) 

2 
Yo· 

X= X- 2 i r 
K 

Path of Integration 

(b) 

-KX 

Bra:nch Cut 

Path of Integration 

x>>o 

756184 
Fig. 2. Paths of integration for finding the connection 

·~formula of Equation (5) I for X.>> 0 and X << 0. 
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?ig. 3. Paths ~f integration for solving Equation (9). 
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(a) lm k 

X= Saddle Point 

lm k 

{<<o 

= Path of Integration 

Saddle Point Located 

t k= ··fll/3 c-~ a ~ ~2/3 
I 

7 7D!- -- = Path of S~.~dle Point 

7561Hl 
Fig. 4. Asymptotic evaluation of Equation (9). The dotted 

line shows how t.he saddle P,Oints mov.~ as ~ goes from +oo to -oo. 
In (a) the real part of yl/2 at the saddle point is always >0 and 
the solution always damps with increa.sing C In (b) the real pa:r;J; 
of yll2 at the u~per saddle poi~t ch~nges from positive to negat~ve 
as ~ crosses zero' indicating net grq~.th and instability. 
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