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ABSTRACT 

The nonlinear saturation of the dissipative trapped-ion mode is analyzed . 
. I 

The basic mechanism considered is the process whereby energy in long wave-

. length unstable modes is nonlinearly coupled via E x B convection to short 

wavelength modes stabilized by Landau damping due to both circulating and 

trapped ions. In the usual limit of the mode frequency small relative to the 

effective electron collision frequency, a one-dimensional nonlinear partial 

differential equation for the potential can be derived, as first shown 

by LaQuey, Mahajan, Tang, and Rutherford. The stability and accessibility 

of the possible equilibria for this equation are examined in detail, both 

analytically and numerically. The equilibrium emphasized by LaQuey et al. is 

shown to be unstable. However, a class of nonlinear saturated states which 

are stable to linear perturbations is found. Included in the analysis are 

the effects of both ion collisions and dispersion due to finite ion banana-

width effects. Cross-field transport is estimated and the scaling of the 

results is considered for tokamak parameters (specifically those for the'· 

Princeton Large Torus). It is concluded that the anomalous· cross-field 

transport can be much lower than the estimate of Kadomtsev and Pogutse, for 

relevant parameters. 
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1. INTRODUCTION . 

It is well known that microinstabilities involving magneti-

cally trapped particles [1-10] represent a potentially serious 

threat to efficient plasma confinement in toroidal systems. 

Experiments now in operation, such as the Princeton Large Torus 

(PLT), are expected to reach ion temperatures high enough so that 

both electrons and ions will have orbits in the "banana" regime, 

defined by WBi/\1+ ;.. 1 I where WBi is the t.rapped-ion bounce 

frequency for oscillations between magnetic mirrors and v+ is the. 

effective ion collision frequency. Under these conditions 

it is predicted that unstable drift waves, called dissipative 

trapped-ion modes, will be generated. The threat of anomalously 

large transport [11,12] due to this instability has motivated 

detailed theoretical study of its linear [1~8] and, to a .lesser 

extent, its nonlinear [9,10,13] properties. The purpose of this 

paper is to consider mode-coupling mechanisms for saturation, 

in much more breadth and detail than previously [10]. 

The dissipative trapped-ion mode is a low frequency, 

electrostatic drift wave propagating 1n the electron diamagnetic 

direction. The wave is destabilized by electron collisions and 

stabilized by ion cc>llisional damping [ 1, 4] and Landau damping 

' 
due to both ci'rculat:ing [ 3, 4] and trapped [ 5] ions. Ellipticity 

of the torus [5], toroidal gradient drifts [7], and impurity 
. . 

density gradients iitt the direction of the electron and primary 
t 

ion species density'\ gradients [ 8] have been demonstrated to be 

stabilizing. Most qf the theoretical treatments cited have been 
I' 

carried out in the r;fdially local limit. The basic assumption 

., 

.. 
... 
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here is that radial excursions of the trapped particles are 

negligible; i.e. the mode is localized in a region small 

relative to the plasma radius but large relative to the banana 

width. The linear radial problem has been studied by Gladd 

and Ross [6], who found that magnetic shear exerts an additional 

stabilizing influence. Since she~r is not a key ingredient of 

the coupling mechanism we discuss, we use the local approximation 

for simplicity. We will only consider the coupling of flute-like 

modes at radii where the modes have appreciable amplitude, 

viz. between mode rational surfaces [4,6]. 

Since proposed operating parameters of PLT, T - 10, and 

future generation tokamaks fall in the regime where the trapped-

ion instability is theoretically predicted to appear, under-

standing the nonlinear saturation and the concomitant anomalous 

transport is very important. However, comparatively little 

research has been done on the nonlinear saturation [9,10,13]. 

2 
The y/k estimate of the diffusion coefficient, first proposed by 

Kadomtsev and Pogutse [11], is widely accepted as an upper limit 

(y ie: the linear growth raLe· uf the fastest growing mode with 

wavenumber k). The physical arguments of Kadomtsev and Pogutse 

are based on quasilinear estimates of the level of turbulence 

necessary to give rise to sufficient diffusive loss (provided by 

turbulent~ x ~convection) to effect net stabilization [12]. 

Jablon proposed that electrostatic detrapping of marginally 

trapped ions can nonlinearly saturate the instability at a 

fluctuation level low enough to give substantially less 

transport than the Kadomtsev-Pogutse estimate [9]. LaQuey, 
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Mahajan, Rutherford and Tang (LMRT) [10] considered a slab model 

first proposed by Kadomtsev and Pogutse [11,12], and demonstrated 

that the instability can be saturated by the nonlinear E x· ~ 

coupling of energy from unstable long-wavelength modes to 

short-wavelength modes which are stabilized by ion Landau damping 

for sufficiently weak temperature gradients: 

LMRT found coherent, saturated 

states composed of many Fourier modes, on the basis of 

which they estimated particle transport. However, the stability 

or accessibility of those equilibria was not investigated. Ehst 

has qiven a general survey of some of the saturation mechanisms 

for the trapped-ion mode [13]. 

In this paper we reconsider and extend the model of LMRT. 

We begin with the field-line averaged continuity, momentum, and 

quasineutrality equations, introduce slab coordinates, treat 

collisions with a Krook model, and include in an ad hoc but 

reasonable fashion the important kinetic effects of ion Landau 

damping [3-5] and finite ion banana-width effects .. Then, 

following LMRT, we construct a relatively simple model nonlinear 

equation for the electrostatic potential [Eq. (7)]. The linearized 

equation gives the correct linear dispersion relation (with the 

omission of more complicated linear effects such as toroidal 

gradient drifts, noncircular cross-sections, and impurities). 

The correct dependence of the .linear dispersion relation on the 

effective ion collision frequency has been lost because of the 

crudeness of the collision operator [4]. However, most of the 
' • 
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·essential linear features of the mode are reproduced accurateJ..y 

by our. modei. .· Its simplicity permits us to find analytic . 

solutions of the t'ime-dependent equation which descriJ?e th~ 

nonlinear evolut·ion of the instability for spec.l,.al cases and also 

analytic solutions describing various saturated states. 

We have made a detailed ~tudy of the stea~y-state solutions 

of the model equation. In particular, we consider the. stability 

and accessibility of v~rious equilibria. Accessibility is •,. 

determined by constructing both analytic and numerical time-
; : ~. . 

dependent solu~ions which trace the growth of the instability 

from thermal level to its eventual saturation. Several analytic 

techniques are employed in studying the stability of equilibria. 

The conclusions are in excellent agreement with the numerically 

observed behavior. The influences of ion collisions and 

dispersion due to finite ion banana-width on the satura.tion are 

.also analyzed. Ion collisions are found to unif~rmly .lower all 

linear growth rates but not to fundamentally alter.the nonlinear 

saturation. Dispersion is found to be unimportant in particular 

regimes of experimental in~erest. 

The paper is organized as follows. In Section 2 the detailed 

deve,lopment of the model equations desc.ribing the nonlinear 

evolution of the mode is reviewed. The nonlinear saturated 

states found by LMRT are discussed in Section, 3, and their 

stability and accessibility are investigated. In Section 4 

• 
important e:t:fects due to ion collisions and disper~ion are 

considered. The level of anomalous cross-field t~ansport is 

calculated in Section 5 and compared with the estimate of 
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Kadomtsev·and Pogutse. This section also contains a discussion 

of the scaling of our results for general tokamak parameters. 

Finally, the results and conclusions of our analysis are 

briefly summarized in Section 6. 

2. Formulation of the Model Equations 

In this section we motivate and justify the use of the slab 

model and fluid equations first proposed by Kadomtsev and 

Pogutse [11,12]. Basically, this involves a four-fluid model 

consisting of circul~ting and trapped ions and electrons. 

Continuity and momentum equations are employed with the high 

frequency bounce motion of the trapped particles averaged over, 

and a Krook collision operator is used. Closure is effected by 

invoking quasi-neutrality, appropriate for this long wavelength, 

low frequency electrostatic mode. The kinetic effects of .. ion 

Landau damping and finite i1:::m banana-width are then incorporated. 

The trapped-ion mode is supported by the magnetically 

trapped ions and electrons whose unperturbed densities are given 

approximately by nT . - e: 112n , where n is the equilibrium e,1. o o 

total number density and £ = riR is the inverse aspect ratio. 

Since small-angle collisions are particularly effective in 

scattering trapped particles into the loss cone v,, > e: 112v£ , 

the effective collision frequencies are enhanced and defined by 

eff I d - eff . I [ 12] h d f v = v E an v+ = v. = v. £ • T e moe, requency e e 1. 1 v = 
w

0 
is much less than both the trapped-ion bounce frequency wBi 

and the effective electron collision frequency v , but is much 

• .. 
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larger than the effective ion collision frequency v+ In ... t:act, 

the mode frequenc'y is so low that it is much smaller than .the 

product of the parallel wavenumber with either the electron or 

ion thermal velocity. As a consequence, the circulating particles 

respond adiabatically to p6tential fluctuations; The trapped 

particle densities 

distributions nT . 
e,J. 

tend to collisionally relax to Boltzmann 

1/2 
- E n exp(+e~/T). Following Kadomtsev and 

0 -

Pogutse [12], we pos£ulate two dimensional f~uid equations for 

the trapped particle fluid densities nT . and velocities. e,J.. 

VT . , and for the electrostatic potential. ~hese equations . -e,J. .·. . 

describe the quasineutrality condition and the conservation of 

particles and momentum in the limit of taking the average.s in . 

time over the bounce motion and in space along a field line. 

The continuity equations are for T ,= T. _ T 
e J. 

anT ./at + v·(nT . vT ·) e,J. . - e,J. -e,J. 

(l) 

The right-hand ~lde of Eq. (1) describes the collisional 

relaxation of the trapped particle densities to the values they 

would acquire if ~ varied at a rate slow compared to both effective 

collision frequencies. In the present case where 

.v >> a/at - w ·, this relaxation model predicts that, to lowest 
0 

'· 
order in le¢/TI and lw /v I, the 

0 ·-

given by T 1/2 n ~ E n exp(e~/T). 
e o 

trapped-electron density is 

The ions have a small effective 

collision frequency v+ << w
0

; nevertheless, the trapped ions also 

tend toward a Boltzmann equilibrium but at a rate slow compared 

to the mode frequency. The trapped-ion density is the.refore 
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determined by the simultaneous solution of the equations for the 

fluctuating potential and the moments of the electron and· ion 

distribution functions. In writing Eq. ( 1) 1 we have made a 

particular choice of gauge: Jd
3

x cf>(x) = 0 . 
. -

The momentum equation satisfied by all four fluid species is 

n .rn. (at+V. ~'iJ)V. J J -J - -J 
= n.q.(-'iJcf>+V.xBc- 1

) -'iJ•P. + n.m.~v .. (v.-v.) 
J J - -J - - ~J J ]LJ ]1 -J -1 

i 
(.2) 

where J. denotes the species, P. is the pressure tensor, q. is the 
::: :J ·- J 

charge , n . i.s the number density,·· and 
J 

v . is the relative collision 
J1 

frequency. As a result of a spatial average along the field-

line and the neglect of shear, the magnetic field in Eq. (2) is 

uniform. For the sake of simplicity we assume that the plasma 

is isothermal, and omit temperature perturbations. 

Because the mode frequency is so low, w
0 

<< k·" (T/mi) l/2 , 

1/2 
ku (T/me) , electron and ion free-streaming parallel to ~ ensure 

that the number densities for the circulating ions and electrons 

are given to good approximation by their quasi-steady equilibrium 

1 (1 l/2 ) (+ t+.jT) . 1 (I h va ues - £ n exp _e~ respect1ve y. ons ave been 
0 

taken to be singly charged.) Closure is effected by the 

quasineutrality condition: 

(3) 
.•. 
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We solve Eqs. (1), (2), and (3) perturbatively, .expanding 

the dependent variables in power series expansions in <P • 

,-y We use the usual slab coordinates x = r and y = r (8-r;:/q), 
I 

t. 

' 

'.: 

where r;; a·nd e are the toroidal and peloidal angles and q is 

the safety factor or inverse rotational transform 21T/1 •. The 

magnetic field is in the z direction, and the density gradient 

is along x and assumed to be constant (Fig. 1) • The pressure is taken 

to be isotropic perpendicular to the magnetic field, which permits 

the replacement V•P.~Vp. = V(n.T) since~a;az = 0 identically. 
- :::) - J - J . 

In constructing the fluid velocities to second order, we 

use the ordering v << w << v wB. << n . where n . are . + 0 -, ~ . P.,1, '=';~ 

the cyclotron frequencies. We determine from Eq. (2) that the 

lowest order velocities are the diamagnetic drifts: 

(o) A ~--1 
V. - ycT/q.Br where r = ld ln(n )/dx . 
-J - J n n . o 

We note that 

v~0 )•VV~o) = 0 and point out that our model omits gradient and 
-J --J 

curvature drifts, which modify the linear theory [7] and 

could therefore also influence the nonlinear anAlysis. The 

first order, perturbed velocities are 

V. ::: cz ?C V<P+ Vp. /n. q. ·. B , 1) A r ( ) , 1 >J -1 
-J . - - J J J 

The second term on the right~hand side of Eq. (4) is an effective 

polarization drift and is smaller than the first term by 

O(w /Q.). The relative fluid drift velocities are no laraer than 
0 J 

( 4) 
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the order of the largest fluid velocity at each order in the 

perturbation expansion. Therefore, collisional drag has very 

little influence on v~l) for v+ << n. , and to good 
-J ,- 1,e 

approximation V~l) ~ c;~[V~+(Vp./n.q.} (l}]B-l . To next order 
-J - - J J J 

the momentum equation gives 

- [(n.m.)-
1

vp.J (
2

} +' (q./m.c)v~ 2 >xB , 
J J - J J J -J -

whose solution is 

The polarization drifts and collisional drag have been again 

neglected in the limits w << n. and v. << n. . These results 
0 J J J 

can now be used in solving Eq. (1} to second order in the 

perturbed quantities. 

As a consequence of the slab geometry, the contributions to 

the fluid velocities due to pressure gradients do not lead 

to a divergence of the flux, i.e. 

~· [njc;x(njqj}-l~pj]B-l = (c/qjB}~· (zx~pj} = 0 identically, 

to all orders in ~- We assume that the mode has radial 

structure of characteristic length equal to the spacing between 

mode rational surfaces [6]; then kxrn is large compared to unity :• 

but much smaller than v jw or n.jw for PLT parameters 
- 0 1 0 

(see Section 5}. In these limits one can use Eqs. (4} and (5} 

to demonstrate that the nonlinearity in the continuity equation 
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ar1s1ng from the divergence of the flux due to the ponderomotive 

force m. v~l) •'ii'V~.l) is smaller than the dominant nonlinear 
J •v) --J 

terms arising from 'ii'•[n~ 1 )v~ 1 )] by O[(k r )
2

1k V*/n.ll <<1, 
- J -J x n y J 

where v* = -(£112 ) (cT/eB) [aln(n
0

)/ax] is the trapped electron 

diamagnetic drift velocity. The dominant terms .coming from 

the divergence of the flux in the continuity equations thus arise 

2 from the cBx'ii'¢/B drift velocity. Correct to second order, 

the continuity equation now becomes 

Eqs. (3) and (6) are the model equations proposed by 

LMRT [10]. With the orderings v_ >> a;at- kyV* >>_v+ and 

le¢/TI << 1, it then follows that the fluctuating potential 

~ = e¢/T satisfies the nonlinear partial differential equation 

(7) 

Nonlinear contributions to Eq. (7) from radial (x) derivatives 

of ~ are smaller by (kxrn)kyV*/v_ than_ the nonlinear term 

retained. These neglected nonlinear terms are still larger than 

.those due to the ponderomotive force by (k r ) -ln. jv ~ 10 
x n 1 

for kx ::: 'ITky (see Ref. 6) and expected PLT parameters 

(n
0 

= 1014 cm- 3 ,c = 1/4, B =50 kG,T = 1 keV and m./m = 3600). 
1 e 

They have been included in a preliminary two dimensional study [14]. 
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Linearization of Eq. (7) followed by Fourier analysis yields 

a linear·dispersion relation for the dissipative trapped-ion 
. ·2 

mode in the fluid limit: w = wR + i(wi/v-- v+), where 

2 
wR = kyV* . The mode is unstable for wR > v_v+. As the mode 

amplitudes grow, long wavelength modes nonlinearly couple tq 

shorter wavelength modes with larger linear growth rates, 

resulting in increased steepening as t~oo As discussed in 

Ret. 10, Ey. (7) suggcotc th~t therP is a. transfer of wave energy 

from long to short wavelengths; but without additional physics 

there is no mechanism for saturation. 

At this point, we appeal to the linear kinetic theory of 

this mode for important effects omitted in the fluid description. 

We incorporate two kinetic phenomena which play a crucial role 

in saturating the instability: Landau damping from circulating 

and trapped ion resonances [3-5], and finite ion banana-width excursions 

[6,12]. For sufficiently weak temperature gradients, the mode 

is now stabilized at short wavelengths by Landau damping. 

Finite banana excursions lead to small dispersive corrections 

to the mode frequency. The saturated mode amplitudes are 

insensitive to dispersion.unless dispersion produces frequency 

mismatches in the coupling of the linear unstable modes.comparable 

2 to the characteristic linear growth rates w~v- . The effec~ 

of dispersion is reactive, however: although it causes the mode 

amplitudes to saturate at higher levels, it does not fundamentally 

alter the physics of the saturation mechanism. A quantitative 

discussion of the influence of dispersion appears in Section 4. 

.. 

.. 
:-.· 
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It is convenient to transform to the frame moving with the 

trapped-electron diamagnetic drift velocity: n - y - V*t · 

~ Next, we follow Ref. 10 and include the effect of Landau damping 

by circulating ions [4] and by ·trapped-ion bounce resonances[S): 

YLD = A' (1 ) 
4 4 3 . 

- 3n./2 k V*/wB. , 
1 y . 1. 

where A' is a numerical factor and ni - d ln(Ti)/d ln(n
0

) < 2/3 

to ensure damping. 

In describing the effect of Landau damping,·we have 

restricted the structure of the model parallel to ~ to be that 

which admits the largest linear growth rates, i.e. the most 

flute-like mode. For purpos~s of a radially local treatment, 

this amounts to assuming k 11 = (lq - m)/qR ::: l/2qR in evaluating 
'- . 

the Landau damping by the circulating ions. However, because 

the structure along the field line [4,6,7,9] is taken to have a 

considerable constant component f (e) ::: ( 1 + cose) , the nonlinear 

coupling of the modes does not vanish upon taking the bounce 

average. We emphasize that the detailed rigorous development 

of these considerations is outside the scope of the simple, 

two-dimensional Kadomtsev-Pogutse fluid equations. 

Includ.iny Landau damping, Eq. (7) in nondimensional form is 

( 8) 



' 

where T :: w2t;v 1 s 
0 

d - I 2 an v = v v+ w
0 

• 

-14-

We have also defined 

2 
a = A' (1 - 3n. /2) (w /wB.) v /wB. 1 which measures the strength 

1 0 1 1 

of Landau damping relative to the destabilizing electron 

collision term. Poloidal periodicity over the length 2rrr 

requires that solutions of Eq. (8) satisfy boundary conditions 

~(s) = ~(s + 2rr). The terms a~/dT + a~ 2/as lead to steepening 

and wave breaking in the absence of stabi1iziuy Lt!LUIS. '!'he 

electron collisional term a 2 ~;as 2 destabilizes shorter wavelength 

modes preferentially and therefore aggravates wave steepening. 

Ion collisions v~ are unable to stabilize short wavelength modes, 

and Landau damping aa 4~;as 4 is ~equired to effect overall 

saturation. 

We consider both analytic and numerical solutions of Eq. (8) 

in the following sections. As an introduction, we outline here 

the types of numerical runs which were performed and the 

principal conclusions drawn from them. Appendix 1 contains a 

br~ef discusssion of the numerical method employed for 

integrating Eq. (8). The integrations have been performed for 

both odd parity modes (Fourier sine series) and mixed parity 

solutions, both with and without collisions, and for a wide 

range of physically reasonable a (Sec. 3). We have also 

integrated the extension of Eq. (8) to include a dispersive 

(Sec. 4). As initial conditions we used either 

low level noise (constant amplitude times random phase) in 

all the Fourier components or analytically predicted equilibria 
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possibly with small perturbations superimposed. Fox: fixed a., 

many of the runs were performed with both kinds of initial 

conditions.· If a final state can be reached from random noise, 

then that state.is·accessible; the evoll,ltion of perturbed 

analytic equilibria yields· information about the stabiTi·ty of 

those equilibria. 

In the long time, nonlinear regime of Eq. (B), we observe 

two qualitatively distinct _types of behavior: either time­

independent states in whi·ch only one linearly unstable mode and 

its stable first harmonic are sigJ)ificantly excited ("two-

mode equilibria"), or time varying but bounded_states whose 

spectral components appear to shift periodically between 

several adjacent two-mode states whose fundamental is near the 

fastest growing linearly unstable mode. We describe these 

time-varying states ·as "bouncy." Which state is actually 

observed depends on the value of a. in a way which we can 

predict analytically (Sec. 3). 

The analytic equilibrium stressed by LMRT [10] is never 

observed.as the final state, even when inserted as.an initial 

condition. This implies instability of that equilibrium and is 

an important conclusion of this work; we verify.this.result 

analytically (Sec. 3). These results are insensitive to the 

presence of ion collisions (Sec. 4). They also persist 

qualitatively in the dispersive limit, although saturation 

occurs at higher amplitudes in that, case (Sec. 4 )_. We comment 

further on the details of the numerical experiments in what. 

follows. 
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3. Saturated States: Dispersionless and Collisionless (v++O) Limit 

The simplest saturated states of the trapped ion mode occur 

when effects due to dispersion and ion collisions are negligible. 

In this Section we construct solutions of Eq. (8) in the limit 

v+O and rev.iew the two basic steady-state solutions ( a;at+O) 

discussed in Ref. 10. We then extend the study of Eq. (8) 

by examining the stability of the nonlinear equilibria and the 

time development of the mode toward a· stable equilibrium or away 

from an unstable equilibrium. Assumin9 that the instability 

grows from low level random noise,. we address the question of 

accessibility by directly integrating Eq. (8) with a small 

emission term present. For a few simple cases, we can construct 

time-dependent analytic solutions of Eq. (8). More generally, we 

integrate Eq._ (8) by numerical means. 

The periodic boundary conditions allow the Fourier 

representation ljJ(~,"t) =""[a (l)sin(nf,;) + s (-r)cos(nf,;)]. This 
L.J n n 
n 

general form admits the possibility of mixed parity solutions, 

i.e. partly anti-symmetric (a ~ 0) and partly symmetric n 

(s ~ .0) n solutions about f,; = 0. Eq. (8) is evidently of odd 

parity since changing the signs of f,; and ljJ leaves the equation 

invariant. Thus the odd parity modes a (T)sin(nf,;) couple only 
n 

to themselves. However, 1n. mixed parity wave packe·L::; Lhere i.s 

coupling of even and odd parity modes to .one another. This allows 

the possibility of steady-state solutions with finite group 

velocity. Substitution of the Fourier expansion into Eq. (8) 

gives 
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as /aT - y s = n ~Is a - s a n n n · ~ \ m+n m m .m+n 
m·, , 

- s a ) m n-m. 
(9a) 

m n-m , aa0 /aT - y0 a0 = (n12)E~msn-m + 2smsm+n + 2amam+n -
m 

a a ) 
... (9b) 

h
. . . 2 4 

were ·y ·= n -an·~ n 
v c:md t:be InQde:- amplitu,d~s. are taken to 

vanish identically fQX' nQn-posltive. index: .· .s.n s:. an·:; 0 for 

n < 0 • 

.. 

. . . ·'We first conside,; .solutions where linearlJ unstable modes 

. ·, ,.ap' sp. are stabili.zed by ~ouplift9~ t~ t.~~+r. (larnped harmonics 
.·'!·. . 

a2p'sap ~ This situation can .. ari.Se in two. ways. For v = o, 

a is the only free ~rameter. When .. ·1/.4 .< a < 1 only· the p = 1 . 
,• .• ·. 

modes are unstable.: ~he quodratic nonliaearity then couples the 

' stable p :: 2 harmonics tp the p = 1 mocie~-~-. ~ balance of ener9y 

· flow can be achieved, aEtsurbtg soturation. In fact, a similar 

process can occur even when many modes are unstable. For 

· 0 < a < 1/4 the relative mode spacing around.the most unstable 

modes, p~ (2a)-l/2 , is given by p-l ~ (2a) 112 which may not 

be infinitesimal for typical tokamak para~ters (Sec •. 5). 

Then, if the linearly unsta~le modes are assumed to grow from a 

small initial level, the most unstable modes will so~n acquire a 

much larger amplitude than their neighbors, i.e. mode selection 

occurs. The harmonics of the most unstable modes, 2P ~ (2/a) 1/ 2 

are stable and will be nonlinearly excited to higher levels than 

their stable neighbors, saturating the g.ro~th of the most 
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unstable modes. Thus,: because of the mode selection, "two-mode" 

equilibria can also arise for systems far from marginal stability: 

0 < a < 1/4 . Of course, in such saturated states th~ higher 
. . 

harmonics 3p,4p, •.. are also excited. Their amplitudes are small 

however, relative to the dominant p and 2p modes. 

The most general equilibrium composed of modes p and 2p 

must allow for the possibility of a group velocity u: 

~(~:T) = ~(~- UT), which using Eq. (8) with v = 0 gives 

0 • (10) 

The coupled mode equations derived from Eq. (9) then become 

. ap s s a + s 2 a 
p p 2p p p 

-pu 
y 

= p p 
-.s a s s + a a

2 p p p 2p p p 

a2p s2p 2·s a 
p p 

-2pu - y = p (11) 2p 2 2 -s ·a s - a 2p 2p p p 

In the drifting frame the origin of coordinates can be chosen so 

that s = 0 • Then solving Eqs ~ (11) , one obtains p 

a = 2p = - I 2 2 2 and ypy2p p + u ' 

For 2y P + y 2p =I 0 the drift velocity u . 
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must vanish, and the equilibrium is described by . 

(12) 

. For 2yp + y 2p = 0 (ap2= 1/3) the dr~ft velocity u is indeterminate, 

and the truncation of the higher harmonics becomes suspect. 

However, the solutions Eq. (12) for u = 0 are allowed, 

correspond to minimum total energy E = (1/2)2: m
2

(a
2

+s
2

) = (l/2)ypjy 2PI 
m m m 

+ 2y 2 , and are in fact observed as the final state in the direct 
p . . 

numerical integrations of Eq. (8) whenever time-independent 

states exist. A steepened wave form typical of this class of 

equilibria is shown in Fig. 2. 

As stated earlier, the numerical integrations reveal that 

time-independent states do not exist for some values .of a. 

This suggests that the two-mode states are unstable for these 

a We now verify this analytically. The linear stability 

theory of the basic two-mode equilibria is straightforward. 

From· (9b), the mode coupling equation for odd parity solut.ions 

can be written 

00 

aaR./<h = yR.aR:- (l/2)t~ 
l 1 = -oo 

where a =-a 
-R. R. Linear perturbations oaR. then satisfy 

00 

dOa /dT = y Oa - m ~ a Oa 
m · m m L.J R. 1n- R. (13) 

['= -oo 

The replacement a;aT-+-iw yields the eigenvalue equation. 
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we choose a two-mode equilibrium with fundamental mode 

number i = L. It is convenient to scale L from·the problem by 

" " 
dividing Eq. (13) by L3: a -p a /L p ' oap -

" 2 
oa /L , w = w/L , p 

f = a.L
2

. The 
" /L2 yp - and £ - m/L . We also define yp ' 
characteristic equation then becomes 

det ( i~ ~ + ~) = 0 , (14) 

where Iij = oij and Dij(E,f) = yP.+(N+l~i)oij- [£+(N+l-i)]ai-i , 

and we retain in the equilibrium the amplitudes anL'n=l,2, ... ,N. 

For a particular f, solutions of (14) for w which lie in the 

lower half~plane for all £ are stable. The heavily damped 

nature of the high harmonics allows one to truncate the matrix in 

Eq. (14) at a finite, reasonably small order. 

The only calculation which is analytically tractable 

corresponds to the case with perturbed mode amplitudes 

(oam , oaL-m , oaL+m). However, for m/L << 1 these modes are 

all linearly unstable. There is no stable eigenvalue in this 

case; couplings to the damped modes oa2L+m, etc., must be 

included in the analysis, which must now be treated numerically. 

For the numerical computations to determine the stability of 

two-mode eq~ilibria, we hav~ found it adequate to choose N = 4 

. [we compute the equilibrium amplitudes a
3

L , a
4

L perturbatively 

using the values (12)]. By taking proper account of the 

symmetries of (14), we can then deal with the truncated 5 x 5 

matrix describing the system composed of oam·' oaL+m, ~a2L+m" 
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The results are displayed in Fig. 3. The ·~bi~issa· d~sciribes the 

possible fundamental mode numbers L of the equilibri'~·; the 

ordinate describes the Landau damping parameter ·a· • Stable 

ranges of a. for integr'al L are shown by the vertical solid 

lines. Since these regions do not overlap for the values of L 

shown on the graph, certain a.'s are always unstable. Very 

roughly, the stable range of a. is given by 0.6 < a.L 2 
< 0.7 . 

This is in agreement with the numerical results. For values of 

a. which fall outside the predicted sta.bili ty window, time-

dependent "bouncy" states are observed: In these bouncy 

states, mode configurations are observed to wander or bounce 

from one grossly perturbed two-mode equilibrium to another 

after a period of rapid linear gr6wth. For these cases the 

time-averaged total energy for the final state is observed to 

-2 scale as E = (1/4 .±. 1/S)a. for moderate a.. 

When an a is Ghosen which is predicted to be stable for 

a characteristic mode number L, it is generally observed 

that the numerical solutions actually achieve that time- , 

independent two-mode equilibrium, given sufficient time. For 

example, the lMRT parameter a. = 0.01 corresponds to a stable 

L = 8 configuration, which is observed numerically. For 

a. < lo- 3 
there can be more than one two-mode equilibrium falling 

within.the stability window 0.6 < a.L 2 <.0.7. Numerical 

integration has verified the stability of the equili~rium determined 
-3 

by a. = 10 and L = 25 when subject to linear perturDation. 

Fig. 2 illustrates the ·evolution of a twenty mode syst~ of .odd parity 

with ~ = 0.05, initially in an L = 3, two-mode equilibrium. According to 

Fig. 3, there is no stable two-mode equilibrium possible for ·this system. 
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Fig. 2 illustrates the. growth of m = 1 and m = 2 perturbations leading 

to a new equilibrium. An examination of the Fourier amplitudes of the final 

state reveals that all.nodes are excited, but preferentially those even 

indexed nodes of long wavelength. The scaling of the total energy, . which 
. . . ~ 

for the two-node equilibria with v = 0 and L = 1/ (2a) l/2 .(corresponding to 

the most unstable node) is given by E = (l/2)yL !Y2L! + 2yL
2 = 3/8a

2 
, is 

-2 still proportional to a with a numerical factor of 0(1/4). 

It should be noted that ~he predlclluus of ~table equilibria 

are valid only in the limit of very long time. In certain cases 

where modes were excited from steady low_level emission of random 

noise, the system of modes did not in_ fact settle into steady 

configuration even when stable equilibria w.ere predicted: 

apparently "bouncy" states were obtained here as well. We 

believe that in these yases the numerical integrations have 

perhaps not been-carried long enough. Clearly, the. time spent 

in wandering or bouncing before settling on a.stable co11figuration 

is sensitive to initial conditions. Its scaling with a is 

uncertain because the characteristic linear growth rates scale as 

a-l , but the density of two-mod~ equilibria scales as a~ 1/2 

which exerts an opposite influence as a is changed. If the· 

system approaches close enough to a stable two-mode equilibrium,. 

then the mode configuration snaps into atH.l remains in that stalJle 

steady state. ,. 

To understand in some detail how the modes develop linearly 

in time and eventually saturate by harmonic generation, we 

analytically integrate Eqs. (9) for the case of two odd parity 

Fourier ·modes: 



-23- . 

~. For (2a)-l/2 ·< L < a-l/2 and v+O, we have 4 < IY 2i/2~LI · < oo; · 

we are thus motivated to make the approximation 

' 

jaa2L/aTj - j2yLa2LI << jy2La2LI· The harmonic is then driven 

by the fundamental a La2/y and Eqs. (15) can be immediately 
2L ::: L 2L ' 

integrated to give 

(16) 

Thus aL grows exponentially at rate yL and excites its 

harmonic at ra-te 2yL . The growth of both modes is essentially 

exponential in time until the last e-folding when the nonlinearity 

in Eq. (15) for aL is finally of sufficient magnitude to saturate 

. growth. 

In a similar manner, Appendix 2 considers the more complicated 

mode structurP. r.omposed of unstable odd parity modes with 

indices m,l, and l+m and heavily damped modes 2-t.-m , 2l, 2.t+m, 

2.t+2m, and 2l+3m. This system is shown to have no steady-state 

With a = 0 the familiar 
m 

two-mode equilibrium (a.e_,a2.e_) or (a.t+m,a2.t+2m) can be achieved. 

For a ':f 0 the "bouncy" behavior, which characterizes the 
m 

nonlinear oscillations of the mode amplitudes observed at 

effective saturation in some of the numerical integrations, is. 

mimicked in a simple fashion. 
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3.2 LHRT Equilibrium 

In this section we discuss a second class of equilibria of 

Eq. { 8 ), originally derived and emphasized by LMRT [ 10]. These 

multi-mode equilibria consist o~ a 

wavenumber near m~rginal stability 

rapid spatial variation with 

k - l/a1/ 2r , modulating y . . 

factors to satisfy the periodic boundary conditions, and 

couplings to the harmonics n;a1/ 2r , n = 2,3, •.. LMRT believed 

these equilibria to be the only ones relevant for situations far 

from marginal stability {a<< 1), the regime of most physic~l 
·'. 

interest. Transport estimated on.this basis is generally 

optimistic, i.e. it is smaller than that computed from the two-mode 

equilibria [10] and gene~ally smaller· than the Kadomtsev-Pogutse 

estimate. 

However, there are important deficiencies in the LMRT 

treatment. The magnitude of the transport depends on a parameter 

m, 0 ~ m < l, extremely sensitive to ::>mdll changes in a . For 

m+l the transport diverges and the ordering assumed by LMRT 

is violated. LMRT estimated transport by considering the largest 

m for which the fundamental orderings were expected to hold. 

In view of the near divergence, however, this procedure is 

both dangerous and somewhat arbitrary. Furthermore, LMRT did 

not address the important q~estions of stability and accessibility 

of the equilibria. 

In fact, we demonstrate both analytically and numerically 

that the ·LMRT equilibria are always unstable. Therefore, such 

states are not expected to be observed experimentally. We 

further prove that both the two-mode equilibria and· the LMRT 

. .._ 
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states emerge from a complete multiple space scale analysis of 

Eq. (8) for small a • In fact, for a critical. valpe of 

f = a.t 2 = f = 1 - l/12.t2 , the LMRT state coalesces with a c 

two-mode equilibrium composed ·of modes varying as sin(ls) and 

sin(2.ts). 

A review of the LMRT equilibrium construction and a 

discussion of the coalescence with the two-mode equilibrium are 

presented in Appendix 3. Here, we formulate and solve the problem 

of the stability of the LMRT equilibria. We follow LMRT in 

making the multiple space-scale decomposition 

l)J(I;;-r> = A(s,-r> + Im[C(s,-r)exp(i.t_s>1 + Im[c2 (s,-r)exp(i2.ts)1, (17) 

where A is real, C and c 2 are generally complex, and A, C, and c 2 

are slowly varying relative to exp(i.ts): laln A/as I= O(l) << .t, 

etc. We insert Eq. (17) into Eq. (8) with v+o and equate the 

coefficients of l,exp(ils), and exp(i2ls) to obtain three 

coupled nonlinear equations for A, C, and c 2 : 

(18a) 

( a;a'[ > (C/2i) + (a/ a ~ + i.t ) [- i ( AC ltC •) + .ty .t C/2 

II 

+ C'lrC2/2] + 3fC /2.t = 0 (18b) 

( a;a-r) (c2/2;i) + (a/as + 2ii.) I [ 2AC2 + (1 - 12f) c~ J /2i 

+ (.e.~ 2.t c2 + 12fc;;.e) /41 = 0, (18c) 
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where primes denote derivatives with respect to t;, . In 
•n 

writing (18c) Eq. (18) .we have neglected C and defined 

A :: (3f - 1)/2. For the remainder of this section it will be 

adequate to take A= 1 (see Appendix 3). We assume that 

a/aT= 0(1) and y 2 t = 0(1) (for f sufficiently far from 1/4). 

It is then clear from (18c) that to dominant.order in 1/! 

c . 2 
2 "' 

~ c ;.ty . 2! (l~) 

We thus neglect the last term in (18a)~ Expressions for the 

equilibrium (ajaT = 0) quantities A and c are given in Appendix 3. 

In the linear stability analysis we examine only those 

perturbations retaining the form of (17); we ignore possible 

decays into waveforms of different fundamental wavenumber , 
t ~ t. This is sufficient since even this restricted 

configuration is always unstable. Perturbing (lBb} and using 

(19) yields 

+ (a;at;,+ii) 1-i(Aoc+coA-oc') + .e.~.e.oc/2 

+ Jf6c" ;J.e + [21 c 12ruo (sc;c )c ... I c 12ocJ /?F~ al 
(20) 

.lt is convenient to define oD - oC/C :: oP + io~ ; upon inserting 

this into (20) and using the equilibrium equations, we find 

that many terms proportional to oD vanish. Ordering in 

1/i, separating real and imaginary parts, and. replacing 

a/aT~-iw 1 we find finally that 
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-iwoA + (a/aE;) (oA'+2AoA+Icl
2

op) = o , (2la) 

oA = o P' , (2lb) 

. H 2 . A 

-iwop/2- l[-o~'+3(op +2p'op')/2l +.lei op/ly2ll = o, (2lc) 

where p' = Re(C'/C). We insert (2lb) into (2la) and integrate 

to obtain 

(22a) 

op' (O) = op' (rr) = o , (22b) 

where ll is an integration constant. We impose periodicity on ~ 

and average (2lc) over 0 to 1T : 

Integrating the second term by parts using the equilibrium 

boundary condition A(O) = A(rr)=O, we can rewrite (23) as 

(2 3) 

(24) 

where F is a linear functional of its argument. Eqs. (22) and 

(24) constitute a linear eigenvalue problem, somewhat complicated 

by the spatial dependence of the equilibrium. 
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one case, however, can be treated exactly, and yields 

useful insight. Namely, at the coalescence point for the LMRT 

and two-mode ·equilibria, we ·show in Appendix 3 that A = 0 and 

c = 1, so that (22) simplifies to 

_l.l ' (25) 

where Q~(w) = 1- iw. Eq. (24) becomes 

(iw/2 + l/~2 .e.) (op) = o . (26) 

One possible eigenvalue emerges immediately from (26): 

w = 2i/y
2

l , which is purely damped since y 2l < 0 . The general 

solution of (25) is 6p =A cos(Qt) + ~;n2 , where A is a 

constant. This satisfies the boundary condition op' (0) = 0. 

Satisfying the boundary condition at s=TI leads to the eigenvalue 

condition _op' (TI) = 0 = -QA sin (Qn), which implies Q=n , where 

n = +1, +2, .•. ,or w=i(n2-l). There is evidently instability 

for lnl > 1. Our orderings break down for lnl > l, but the 

presence of unstable roots within a circie of radius O(l) 

demonstrates the instability of this particular equilibrium. 

The presence of multiple unstable eigenvalues suggests 

that the entire class of LMRT_equilibria 0 < m < 1 (see Appendix 

3) is unstable, since the equilibrium is smoothly varying and 

the eigenvalues should thus be smooth functions of m. However., 

it might happen that as m+l the eigenvalues could move into 

regimes of the complex plane where our orderings are questionable. 

. -
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We therefore examine the general case as well. 

It is convenient to use a Nyquist technique. We note 

that for arbitrary w the boundary value problem Eq. (22) will 

have in general no nontrivial solution, since unless _W i~ an_eigen-

value we cannot satisfy all bf the boundary conditions s~taneou,sly. 

However, consider the modified problem formed by inserting. an 

impulsive source on the right-hand side of (22): 

where D is to be determined. Continuity is imposed on 

op at ~0 : [op]s = 0; and op is given an arbitrary normalization; 
0 

op(O) = 1, which is allowed because the perturbation is linear. 

We retain the original conditions F{op} = 0, op' (0) = op' (rr) = 0. 

We then have five conditions to be imposed on the solution op · 

of an inhomogeneous, linear, second-order differential equation, 

with one unknown constant ll, ·in two adjacent domains. · Therefqre, 

a nontrivial solution exists to this new problem for all complex 

w; this solution determines 0 as D(w) = [op']s . Furthermore, 
0 

since D vanishes identically when w is an eigenvalue, D(w) = 0 

is an effective dispersion relation. This function can thus 

be plotted in the usual way_as a function of the Nyquist 

contour in Fig. 4a. If D encircles the origin, an unstable 

root lies within the contour (assuming no poles·are enclosed 

as well). These ideas can be formulated in a form quite 

suitable for numerical analysis by using a Green's function 

technique (Appendix 4). 
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In general the dispersion function D may have poles as 

well as zeros .. This. is illustrated in Appendix 4 by the form of 

D for the coalesced equilibrium. Since the Nyquist method 

actually provides only the difference in the number of zeros 

and poles encircled, the Nyquist plot may not encircle the 

origin even though the contour encloses an unstable eigenvalue. 

This problem is easily dealt with by deforming the Nyquist 

contour (Fig. Sa}. 

In Fig. 4b we show the topology of the numerically 

computed Nyquist plot for m = 0.1? and the. contour of Fig. 4a 

with nondimensional radius equal to five. The plot encircles 

the origin, indicating instability. For m = 0.23 the modified 

contour in Fig. Sa is deformed around the poles of D(w) 

and indicates an unstable e~genvalue (Fig. Sb). Proceeding in 

this way, we can in fact demonstrate that all the LMRT equilibria 

are unstable with eigenvalues lwl ~ 0(1), which are within the 

limits of validity of the. theory. 

We have verified these analytic predictions by numerical 

experiments. The LMRT equilibria are never observed when the 

partial differential equation (8) is integrated in time with 

random noise as initial condition. Furthermore, we have. 

employed the LMRT equilibria as initial values, perturbed 

these equilibria slightly, and examined their subsequent 

evolution in time. · In every case, the equilibria decay 

immediately, either into time-independent two-mode equilibria or 

into .. bouncy .. saturated states. Fig. 6 shows the ·results of a 

computer experiment portraying the evolution of a perturbed 
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coalesced·equilibrium. Appearing in Fig. 7 are the results of a 

computer experiment following the decay of a perturbed LMRT 

wave form using parameters close to those for the wa.ve form'·. 

displayed in Fig. 1 of Ref. 10. The·re is an increase. in. the · 

total field energy in both cases, and the peaks of the energy 

spectra move to longer wavelength, closer to the mos~ unstable 

modes. 

4. Dispersion and Ion Collisions 

In this section we expand ou~ discussion of the saturation 

of the trapped-ion mode to include additional linear effects, 

namely the dispersion produced by finite ion banana excursions and 

the dissipation due to ion collisions. Since the saturation 

mechanism investigated in this paper relies on nonlinear 

processes mediating a balance between opposing linear effects 

destabilizing and stabilizing the modes, additional linear 

features of the mode may have a strong influence on the 

nonlinear saturation. We demonstrate that dispersion does not 

fundamentally alter the saturation mechanism. It does, however, 

provide an effective impedance which can inhibit mode coupling 

and result in saturation at significantly higher mode amplitudes 

for sufficient dispersion [15]. We also find that, aside from 

uniformly decreasing the growth rates of the unstable modes 

and further stabilizing the damped modes, ion collisions do not 

significantly affect the nonlinear saturation of systems far 

from marginal stability (a<< 1). 
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4.1 Dispersive Effects 

For T - T. := T important dispersive effects arise 
e - 1 

from the delocalization due to the finite ion banana-wid~h. 

The periodic component of the average effective delocalization 

length perpendicular to the field line is given by the ion. 

banana-width p.q/e:1 / 2 , where .p. is the ion gyro-radius [16]. 
1 1 . 

In the l.imit w << wB. , the linear dispersion relation 
1· 

including the ion banana-width correction, but omitti.ny Landau 

damping, is given by [6] 

2 w-w* 
= -:=T72 w+iv e: 

w+w* 
+ w+1v 

+ 

where w* = -k (cT/eB) [aln(n )/ax] is the electron diamagnetic y 0 

drift frequency and b = ~k2 + k2 )p~q2 e:-l << 1 . In obtaining 
· X y 1 

(2 7) 

Eq. (27) ~· we have assumed that the bounce motion and therefore 

the periodic component of the ion banana excursions have an 

approximately harmonic time dependence, which with the usual 

Bessel function identity and subsequent expansion for small 

argument b gives a correction of characteristic form (1-b) in 

the term arising from the trapped-ion response. 

1/2 The real part of the frequency becomes RA(w)= E w*(l-b)/2 . 

If the linear,_, radial· structure of all the modes corresponds to 

the lowest mode found by Gladd and Ross [6), then the frequency 

l/2 2 2 2 
shift 6w = -e: w*k p.q /2e: can be absorbed by a fu!ther change 

X 1 

of reference frame and the radial mode structure otherwise 

ignored, provided we consider only the local nonlinear evolution 

. ' 
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far from radial nodes. Detailed consideration of radial effects 

is def~rred to"a future study. Dispersion is then_modeled in 

the r~dially local, one dimensional approximation by adding 

3 3 2 2 2 
to Eq. (8) the term oa tjljat; , where o ::: (v /w ) (p.q /£r ) 

- 0 l 

measures the approximate relative level of dispersion: 

0 . ( 2 8) 

We expect the influence of dispersion to become significant 

when the nonlinear three-wave interactions.of the unstable modes 

1/2 -l/2 . (index m < a- ) with the linearly damped modes (m > a - ) 

acquire frequency mismatches comparable in size to the characteristic 

rates of the three-wave interactions. From Eqs. (15) and (16), 

these rates are of order twice the linear growth rates 6f the 

unstable modes. For v+O this is equivalent to balancing the 

a2 tjJ/ui;, 2 term with the oa 3 tjJ/'dt; 3 term in Eq. (28) for 

-1/2 la/at;l - m- a We conclude that dispersion will have a 

significa~t influence on the saturation for o;a1/ 2 ~ 1 

We evaluate this condition for expected PLT tokamak parameters 

and typical plasma profiles in the next section. 

Dispersive corrections from the rea} part of the dielectric 

response of the barely trapped and circulating ions, the -

imaginary part of whose response gives the Landau.damping,·can 

also be important. However, because of the dependence on k
11 

and 

thus on shear, we defer detailed study of these effects to a 

future publication. We proceed on the basis that inclusion of 

these and other dispersiv~ corrections only modifies the radially 

local parameter dependence of o. 
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In the dispersive limit, two-mode equilibria with a 

finite group velocity u are possible. We use Eq. (28) with 

v~o and rewrite Eqs .. (10) and (11) to obtain the steady-state, 

coupled-mode equations: 

pa a
2 p . p 

(29) 

2 pa p , 

where we have again set 

g1ve 

s = 0. 
p 

Eqs.' (29) are readily solved to 

and a 2 
p 

-1 ( 2 )2 2 = - y2pyp 6P +u - y2pyp/p , 

and 

As o-+0, these solutions join smoothly onto the earlier 

two-mode equilibrium configurations Eqs. (12). The total 

energy of the drifting steady state is larger than for the 

nondispersive case: 

E = 2 2/2 p ap 

·-

(30a) 

(30b) 

(31) 

. 2 2 
where B = 36(2-y2 /2y )y /(y2 +2y ) > 0 . The first two terms p p p p p 

on the right-hand side of Eq. (31) scale as p 4 . Therefore 

the last term, which represents the additional saturation 
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energy due to dispersion, ·scales relative to the sum of the· 

.t'2p.2 =_.t'_2/"' first two terms as u u "" for p = o (a-1 / 2 ). .-·.Th~ri, in .. · 

. · agreement with our earlier estimate, the influence of dispersion 

is appreciable when 6/a l/2 ~ 0(1) 

' 

2 . 
we remark that for modes such that y 2p + 2yp-+0 (ap:::l/3), 

u and the amplitudesa and s 2 apparently diverge. In this 
. p. p 

limit it is invalid to truncate the higher harmonics ·3p,4p,~ .. 

In general, dispersive equ_ilibria are expected to have amplitudes 

and group velocities as continous functions of a . In any ~ase, 

nonlinear saturation evidently occurs at a higher level than in 

.the.absence of dispersion. Relatively large amplitude ,.·. 

equilibria can be achieved which are consistent with our theory 

provided that the group velocity remains small, i.e. 

V* , and provided ~¢/TI=Iw £ 1/2 ~/v I<< 1 . 
0 -

. In 

the limit lui >> op2 , the latter condition becomes 

le¢/TI=· olw0£l/~u/v_l << 1. · When the equilibria are highly dis-· 

persive, incoherent processes [9,13], which are complementary to 

the resonant mode-coupling considered here, are presumed to 

play more of a role in the saturation. 

Direct numerical integrations·of Eq. (28) confirm that 

again the two-mode equilibria achieved by harmonic_ generation 

arc the relevant mode c.:.:uufigurations. Eqs. (30) describe the 

steady states obtained when the mudes are excited by steady 

random emission at low level and when judicious choice of a is 

made so that ll-3ap
2

1 is finite. The arguments pertaining-to 

Eq. (16) made earlier (Sec. 3) describe in sp{rit the acces~ibility 

of the two-mode states·with finite dispersion. The main 
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difference is that dispersion steadily mixes phase and 

imposes a reactive load on the mode coupling. 

4.2 Ion Collisions 

The principal effect of ion collisions is to uniformly 

2 2 
reduce the linear. growth rates, Im(w) =kyV*/v_- yLD- v+ 

2 4 
or nondimensionally ym = m -am - v (see Fiy. 8). If the 

effective ion collision frequency is sufficiently high 

(v > l/2a), the trapped-ion instability is suppressed altogether. 

Thus for instability, ion temperatures will have to be high 

2 
enough so that v+ << wBi and v+ < w

0
/4av These considerations 

based on the linear theory help to define the relevant plasma 

conditions for the mode and serve as starting point for our 

examination of its nonlinear saturation. 

Fig. 8 illustrates how ion collisions could subtly alter 

nonlinear stabilization by mode coupling. In the absence of 

collisions, mode coupling effectively transfers wave energy 

from unstable longer wavelength modes to an energy sink at 

shorter wavelengths provided by Landau damping. If v > 1, 

ion collisions can supply an additional energy sink at long 

wavelength, which is accessible by three-wave decay of the 

linearly unstable waves. We examine a new class of equilibria 

made possible by the energy sink at long wavelength, but we 

determine that they are not accessible and are unstable. 

A simple analytic treatment can be given which is 

appropriate for systems with finite rather than infinitesimal 
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a, where a < 1. In the nondispersive limit we hypo.t[le-~ize 

steady-state solutions of Eq. {8) composed of three 'pdd·. parity 

Fourier modes (p,2p,3p), since the ion collision term does not 

mix parity. The co~pled-mode equations obtained from Eq .. {9), 

aa ;aT - y a = pa a 2 + pa2 a 3 p p p p p p p , 

2 
- -pa + 2 a a 3 p p p p 

{32) 

have steady solutions {ajaT - 0), which are most simply given in 

the limit IY /y 3 I << 1 by p p 

or 

-yp/p,and a3p = ~(3yp/py3p)(-ypy2p)l/2 
{33a) 

ap = +(-r2py3p/3P2)1/2., a2p = -y3p/3P , and a3p = ±(-y2py3p/3P2)1/2 

{33b) 

The validity of Eqs. {33a) fEqs. { 33b) ] requires that -y y 2 > 0 
p p 

[-ypy2p < 0] and that the mode amplitude a 4p is so heavily 

damped that it can be neglected. 

The solutions described by Eqs. {33a) are the same as the 

l:.wo-mude equilibria described by Eq. {12), the finite amplitude 

, 
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of a
3

p serving as a small correction. However, we now realize 

that these s.teady-state solutions generally apply for y ~ 0 . p ~ 
/ 

.provided that -ypy2P > o. The ~et of solutions Eqs. (33b) 

can arise for y 2p ~ O.if -y2py 3p > 0. Eqs. (32), or Eq. (8) 

-
more generally, will govern the time development of the· mode 

amplitudes excited from low levels initially and will determine 

the accessibility of a steady state. 

We investigate the accessibility of the three-mode 

y < 
p 0 and -y 3p >> y 2p > 0. 

' 

configuration in which y 3p << 

To lowest order in IY;~ a;aTI , a 3 is quasi-steadily driven by 
p 

the beat a a 2 . p p Eqs. (32) can be expressed in the form 

3 I 1-l a ~ - p Y3p ap 2p 

During the linear growth phase a
2 

- a
2 

(O)exp(y2 T),we . p p - p 

(34a) 

(34b) 

(34c) 

observe that for a 2PCO) < 0 Eq. (34b) describes the exponential 

dccrcaac of a at a rate faster than the exponential increase p 

of a 2P . This causes a 3p to decrease as well, and no saturation 
• 

of the growth of a 2p is possible unless the stable harmonic 

a 4p is included. 

For a 2p ( 0) > 0, Eqs. ( 34b) and ( 34a) describe the 
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concomitant. growth of modes ap and a 3p , driven by the decay 
• ~r. 

of the expone·ntially. growing mode ·a2p to ap and the' subsequent 

beating of a
2

p with ap to excite a 3p The amplit.lldes of· the 

three modes will st·abilize at the values given by Eqs. ( 33) 

if the right-hand sides of Eqs. (34b) and (34c) can vanish 

simultaneously. In Eq. (34b) the amplitude a 2p determines the 

growth of ap . It is evident that if all three modes are 

excited initially from low level, ap first decreases in 

magnitude, since aln a /aT < 0 for a 2 < lY IP-l . For . p P. p 
-1 -1 . 

IYPIP ·< a2p < 1Y3pl (3p) 'aln ap/()T > o. However, before 

ap can sufficiently grow to attain an equilibrium value, a 2p 

I I -1 
overshoots the value y

3
p (3p) resulting in a1n ap/aT < 0 

which further destabilizes a
2

p as described by Eq. (34c) . 

. Numerical integrations verify the overshoot and runaway phenomena 

described here. 

We remark that the harmonic generation of the damped 

mode a
4

p omitted in Eqs. (32) to (34) proceeds at rate 2y
2

p . 

Thus the excitation of a familiar two-mode equilibrium 

(2p,4p) occuL·s on the time scale of the linear exponential growth 

of the mode a 2p when the mode a 4p is included; therefore, 

overshoot and runaway of a
2 

cannot really occur. Furthermore, 
p . 

we observe that when a system of modes is initially prepared 

in one of the three-mode states described by Eqs. (33) for 

y p , y 3p < 0 and y 2p > 0, the mode configuration is unstable to 

the' formation of a (2p, 4p) equilibrium (see Fig. 9) . 
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we have also investigated the influence of ion collisions 

on the LMRT equilibria. Because the LMRT solutions are composed 

of weakly damped or weakly growing modes with a particular 

ordering of parameters, the nondimensional ion collision 

frequency v cannot exceed 0(1), otherwise there will be no 

linearly unstable modes. We have extended the LMRT equilibrium 

solutions to include v = 0(1) by means similar to those 

discussed in Section 3, 1-\.ppendix 3 aH<l Rb!f. 10. D.i.rect rmmerienl 

integrations of Eq. (8) with these new equilibrium solutions as 

initial conditions disclose, however, that ion collisions do 

not stabilize the LMRT equilibria. The LMRT equilibria are 

again unstable to the growth of modes with faster linear growth 

rates (Sec. 3), which subsequently form steady two mode 

equilibria or time-dependent superpositions of two-mode states. 
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5. Cross-Field Transport and Scaling for Tokc;tmak Plas~as 

5.1 Transport Coefficient for Radial Flux 

In this section we consider the enhanced radial transport· 

that arises due to the trapped-ion mode and examine in detail the· 

scaling of our results with physical parameters. ·In particular, 

the transport levels for saturation via cohe.rent mode coupling_ 

are compared to the transport levels based on turbul~nt_ sat.uration 

predicted by Kadomtsev and Pogutse [11,12]. We also determine 

the range of plasma parameters for which our various. assumpti.ons 

are valid, and we calculate the dependence of important 

dimensionless parameters on the relevant plasma parameters. 

The 

the flux 

coherent, radial transport is determined locally by ·· 

~TvT·~~' where the brackets indicate an average 
"- e-e / 

over the 
-1 2rrr T T " 

poloidal angle, i.e. (2rrr) 1.
0 

dy(n v ·x) . 
e-e 

Because of the poloidal periodicity, the contribution to the 

average flux from the diamagnetic fluid velocity vanishes 

identically to all orders in e~/T. The poloidal average is 

equivalent to a time average over many oscillation periods. 

The circulating electrons respond adiabatically, and therefore 

do not give rise to an average radial flux. To lowest order 

the radial transport is driven by the E x B drift and is given 

by 

(35) 
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and the transport coefficient is 

The contributions to the flux from n~(O)V~( 2 ) induced by the 
J -J 

ponderomotive force have been assumed small, an assumption 

which is justified later in· this section. 

T . f ~ f We construct n. 1n terms o ~ rom Eqs. (3) and (6) by 
1 

eliminating nT assuming le<t>/TI << l and v 
e 

>> w >> v . 
0 + 

T 
is straightforward to show that ne 

T 
n. 

1 

where ¢ = e<P/T • 

= n~-2n ¢(1-£ 1/ 2 ) and 
1 0 

Substitution of Eq. (37) into (36) yields 

It 

(36) 

(37) 

which agrees with a derivation from quasilinear kinetic theory. 

The transport coefficient i·s therefore directly proportional to 

2 2 2 2 
<(a~~;at.;) > ,=L: m (a +s )/2 ,.which is just the nondimensional 

m m m 

energy E expressed in terms o~ the Fourier coefficients 

introduced preceding Eq. (9). Kadomtsev and Pogutse have 

suggested a transport coefficient due tb incoherent, turbulent 

' .. 
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processes which is given by DKP- (r/R}
5

/
2

(cTe/eB}
2
/4vern

2 

which we will compare with Eq. (3.8}· in the following. 

5. 2 Sca·ling of Results for Tokwnak Plasmas 

For purposes of application we consider reference parameters 

typical for PLT operation: n ~ 10
14

cm-3 , B = 50kG, £ = E(a)=l/3, 
0 0 

m./m = 3600, a= 45cm , R = 135cm, n. = 1/2 q
0 

= q(O) = 1.25, 
l. e l. 

'and T = T(O) = 1. keV. 
0 

As was defined following Eq. (8), 

a= A' (l-3n./2) (w /wB.} 2v /wBT .• If we use the conventional 
l. 0 l. ~ l. 

definition wBi = £
112 Vi/qR , where Vi is the ion thermal velocity, 

and refer to the literature for the contributions to Landau 

damping from the trapped [5] and the circulating [4] ions, we 

obtain A' : 40. We recall that w = V*r-l = £ 112 p.V./4r r 
o · l. l. n 

For PLT parameters p. = 0.13T(keV} 1/ 2B(50kG}-l and 
l. . . 

ve ~ 4 x 105 n(l014cm- 3}T(keV}- 3/ 2 . Hence 

a~ 5.5 x l0-
4

q
3 £-7 12 Rr~2n(lo 14cm- 3)a(sokG)-2T(kev)-1 (1-3ni/2). 

{39} 
To maintain the validity of the fluid treat:nent, it is required that 

k d ~ Im w < y V * an consequently that a be not ·too small, viz. a > w 
0
/v _ 

For typical plasma profiles and parameters a is of order 

10-3 or 10-2 . Similarly , we find that 

( 40) 
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and 

( 41) 

both of which have been assumed small. 

In Section 2 the model, one-dimensional partial differential 

equation, Eq. (8), is derived assuming that the ponderomotive 

nonlinearity is small compared to the neglected terms involving 

x derivatives coming from 'V•[n~ 1 )v~ 1 )] , which in turn are 
. - J -J . 

assumed small compared with the retained terms containing the y 

derivatives from '1/• [n~ 1 )v~ 1 )] . The validity of the latter 
- J -J 

assumption depends on 

k r w /v << 1 , x n o -

and the former on 

Q./(.k r v) >> 1 . 
1 x n -

Gladd and Ross r6] have investigated the linear radial mode 

structure of the trapped-ion mode and have shown that 

(42) 

( 4 3) 

kx - TI/b.r
8 

where b.rs is the spacing between mode rational 

surfaces: 11r = (l dq/dr)-
1

, and .tis the toroidal mode number. 
R 

We use f!q ::: m - 0 (a -l/f) , where m is the peloidal mode number, and 

rd [ln,(q)] /dr = 0 (1) to ·;obta.iri;'~k r - 0 (nk r ) 
·· x n y n 

1/2 r ja r 
n 

Excluding the exact center of the cross-section, there is a large 

fraction of the plasma volume over which r /r = 0(1). Then 
n 
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k r x n 
for 

typical PLT parameters· ( £. ~ 1/4 .. and q ~ 2. 5 )·. We use Eq. ( 40) 

and n.;v = 1.2 X 10 3 £B(50kG)T(keV) 3/ 2ri(l0 14cm-3)-l to 
1 - . . 

evaluate the inequalities (42) and (43): 

and 

rl./(k r v ) ~ lOT(keV)n(l014cm- 3)-l/2 >> 1 , 
1 x n -

(44a) 

( 44b) 

using B = 50kG, £ ~ 1/4, and q : 2.5. These inequalities are 

well satisfied for PLT parameters and justify the one-dimensional 

model. 

In our analysis we further assume that e¢/T is small. 

In the absence of dispersion we have found that the saturated 

amplitude scales as ~ ~ a~12 which gives e~/T ~ £1/ 2w
0
/v 1/2 

a or 

e¢/T ~ 102 cll/4 (l--311i/2)-l/2 R-3/2q-1/2n(lul4cm-3)-3/2T(kev)3. 

(45) 

For parameters typical of the heart of the PLT profile: £ ~ 1/4, 

q ~ 2.5, and r /R ~ 1/3, Eqs. (39) and (41) give 
n 

and 
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Thenle¢/TI being small depends on wo/v_ << 1, and we find that 

This level is competitive with the estimates for saturation by 

means of electrostatic detrapping [9,13]. Because· 

nA.~ :: l0 6n(lo 14cm- 3)-l/2T(keV) 312 , the thermal fluctuation 

level is small by comparison, viz. 

Our numertcal 

studies of Eq. (8) indicate that the saturated amplitudes are 

insensitive to noise at this relative level. 

In order that the trapped-ion mode be linearly unstable, the 

effective ion collision frequency must not be too large, 

v < w
2
;2av. (see Sec. 4). + () 

1/2 Using v+ = (m /m.) v e 1 

m./m = 3600, and Eqs. (39) and (41), we determine that the 
.1 e 

condition for instability is 

2av v+/w~ ~ 3 x l0-
6

q
3

R
3 ~- 912n(lo 14cm- 3 ) 3T(kev)- 6 ~-3ni/2) < 1. 

( 4 6) 

We note that the l.h.s. of (46) is a sharply decreasing function 

of temperature and inverse ~spect ratio and increases dramatically 

with increasing density. 

We recall from Section 4 that the nonlinear saturation is 

relatively insensitive to dispersion provided that 6 < a 112 

and that the quantity ll-3ap2
j is not too small. For intermediate 
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sized a typical for PLT plasma parameters, e.g. Ci. = 0 .·or , 

we find that l3ap2-li>0.08; and .therefore the two-mode, drifting 

equilibrium solutions· described by' ·Eqs. (30) are well-behaved. 

Dispersive effects due to finite ion banana-width will then 

be of little consequence if · 

( 4 7) 

We can now remark that evidently the relative influences of 

dispersion and ion collisions both decrea~e as the plasma 

temperature increases, which make those simplest considerations 

of the mode saturation appearing in Sec. 3 relevant in the high 

temperature limit. The radial transport in the collisionless and 

nondispersive limits can be compared to Kadomtsev and Pogutse's 

DKP by use of Eq. (38): 

D/DKP- 2.1 x l0
7
r!(£/qR)

6
(1-3ni/2)-

2
B(sokG)

2 
n(lo

14
cm-

3
)-

4
T(kev)

7 

( 4 8) 

We can now summarize the various validity conditions 

w << w B. , w << \! , v < w2 j2av , and o < a l/2 and the 
o 1 o + o·· 

condition that the calculated transport be more optimistic than 

the Kadomtsev and Pogutse prediction D < DKP . We use Eqs. (42), 

(43), (46), (47), and (48) to'determine a set of critical central 

temperatures as functions of x ~ r/a where the conditions become 

equalities~ For purposes of illustration we employ PLT 

parameters and reasonable plasma density and temperature profiles, 
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n(x) = n (l-x2 ) , q(x) = q (l+x
2

) , and T(x) = T (L-x
2

)
1

/ 2 : · o ·o · o 

theri rn = a(l-x
2

)/2x ~nd ni = .ne = 1/2 . For th~. given profiles 

we then obtain 

w << w . + T << TB 2.4 X lo
2

( 
£ 0 aB r (l·-·x2) 3/2 

= -
0 bl + 0 qo (l+x2)2 

3.4 X 10 4 (l-x2)3/2 

(l+x2)2 

w << v + T << T 
0 - + 0 ( 

nuBRa) 2/5( l-x2 )3/10 = 
- 0.53 1/2 ---2-

€:0 X 

' 

(49) 

(

n q R)l/2 
v < 

2
12 T > T = 0.08 : 3j 2 x-

314 (l+x
2

)
112 = + wo av_ t o + 

0 
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and 

. ). 6/7 - 0 .lo(:ooR . 
4/7 .n . 
0 

I 

.2 6/7 
(T+x ·) · 

2/7 (1 . 2) 1/2 x · -x 
= 

14 -3 where the density is in units of 10 em , the magnetic field is 

in units of 50kG and the temperatures are in keV. 

The central temperatures determined by Eqs. (49) are 

tabulated for three radial locations in Table 1. The column 

for:.:T
0 

< TB has been omitted since the condition w
0 

<< wb. is 
]_ 

easily satisfied everywhere in the profile except at the limiter. 

Table 1 indicates that the trapped-ion mode will occur throughout 

a substantial volume of the PLT plasma for central temperatures 

in excess of 4 or 5 keV. For these temperatures the fluctuating 

potential will saturate at levels e<t>/e:T < 0 (O .1). Dispersive 

effects seem to be small over a large part of the cross-section, 

but significant for x < 0.5. We note here that Table 1 is 

somewhat misleading on the subject of transport, because the 

transport coefficient relative to the Kadomtsev~Pogutse estimate 

Eq. (48) scales very sharply .with respect to temperature, 

7 
D/DKP a: T • For example, a central temperature of T = 4keV 

0 

would allow the trapped-ion mode to occur for x > 0. 75; t.he 

saturation would probably be nondispersive, 

6 << ~l/2 ~ 0(0~05), and result in a relative transport 
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TABLE 1. CRITICAL CENTRAL TEMPERATURES (KEV) FOR PRINCETON LARGE 

TORUS PLASMA PARAMETERS.AND PROFILES. 

X 

.25 

• 5 

. 75 l 

25 

14 

10 

T << T 
0 

48 

30 

20 

T > T 
0 + 

4.4 

3.7 

233 

12· 

1.0 

To < TKP 

3.8 

4.0 

5.7 
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coefficient D/DKP ~ (4/5.7)7 
::: 0.1 .. How.ever, for higher 

central temperatures, D/DKP rapidly incr~a:ses and other nonlinear 

effects become important. Because of the requirements 

T << T and T << T_ , our basic theoretical model begins 
0 cp 0 

to break down in such a temperature range. Note.that for larger 

devices as R increases the range of applicability of the theory 

also increases. 

6'.' CONCLUSIONS 

We have presented a detailed study of the saturation of 

the dissipative trapped-ion mode by the mode coupling of 

unstable long-wavelength modes to modes at shorter wavelength 

stabilized due to Landau damping by trapped and circulating ions. 

We have found that stable "two-mode" equilibria can be 

achieved by means of harmonic generation of short wavelength, 

stable modes. However, the multi-mode steady states emphasized 

by LaQuey et al are always unstable. 

These results were obtained analytically and verified by 

detailed numerical experiments. In particular, the numerical 

studies have verified that coherent, two-mode steady states can 

be excited from steady emission of random noise. Even when 

there is competition between two or more two-mode configurations 

in the time-asymptotic state, the effective saturated amplitudes 

and wave energies scale approximately as a single two-mode 

equilibrium. 

Although ion collisions are important in the linear 

stability theOry of the mode,· we have shOwn that, other than 



.. 

-52·-

uniformly decreasing the growth rates of all modes, they do not 

• 
fundamentally influence the saturation mechanism. With 

regard to finite ion banana-width dispersive effects, we conclude 

that dispersion does not alter the basic saturation mechanism. 

~owever, it can inhibit mode-coupling and drive the saturated 

amplitudes to much higher and possibly inaccessible levels, if 

the dispersion produces a relative frequency shift compa:~able to 

the 11near qrowth rates ot the most unstable modes. 1n ·the 

dispersive limit, other complementary saturation mechanisms, 

e.g. electrostatic detrapping and quasilinear profile modification, 

may dominate. 

Finally, we have applied our considerations to expected plasrra 

profiles and parameters for PLT and determined in detail the limits of 
, ··. 

applicability of our rrodel. Of particular interest, we have calculated the 

enhanced radial transport due to the trapped-ion mode and have compared it 

with Kadomtsev and .1:-'ogutse' s rough estimate. We find that the relative 

transport is extrerrely sensitive to temperature, 0/0KPa: T7 . For PLT 

central temperatures high enough to overcome the instability 

threshold determined by ion collisions and Landau damping for 

r > U.5a; it is required that T > 4keV; and we find that the 
. 0 

relative transport is small: 0 < O.lOKP . For T > 6keV , 
0 

0 >> OKP and other nonlinear effects can become important. 

Note, however that with increasing temperature the theoretical 

model employed begins to break down. We also note that when 

mode coupling provides the dominant saturation mechanism, the 

saturated amplitudes and transport levels (for PLT parameters) 

are competitive with the best estimates of those corresponding to 

saturation by electrostatic detrapping [13]. 
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APPENDIX 1. Numerical Algorithm for Coupled-wave Equations 

Our n·umerical integrations have made use· of a computational 

scheme sugge~t~d by F.W. Perkins. Th~ linear variations of th~ 

mode amplitudes are analytically absorbed into an integrating 

factor, leaving the nonlinear variations to be integrated 

approximately.. . The latter frequently make more. modest demands 

on the time step for numerical integrations, since they often 

occur on a time scale lower than the linear variations. 

Eqs. (9) can be generalized to include the parity mixing 

effect of dispersion and written in the symbolic form 

( 1.1) 

where~= (s1 ,s2 , ... ,a1 ,a2 , ... ); ; is a linear tensor operator 

corresponding to linear growth, dissipation, and dispersion; 

and E (~) is the vector corresponding to the nonlinear terms in 

Eq. (9). The integrating factor or.propagator is exp(-LT) which 

leads to the result, 

(1. 2) 

The numerical integration of the nonlinear term on the right-hand 

side of Eq. (A.2) can then be. done by various standard algorithms. 
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APPENDIX 2 •. Competition of Two-mode Equilibria 

We now cons.ider analytically the time dependence ·of more 

complicated· mode structures·. One multi-mod~ configuration with 

some flavor of nandispersive systems far f~am marqinal stabjlity (a<< 1), 

but simple enough to permit analytic progress, consists of 

unstable odd parity modes am,a.e.., and a.e.+m and heavily damped 

modes a 2.e.-m , a 2.e. , a 2l+m , a 2l+2m , and a 2.e.+ 3m . We consider 

the case where m << .e. > (2a) -l/2 , i.e. the coupling of two 

unstable modes of nearly maximum linear growth rate to a longer 

wavelength mode of weaker growth rate. For IY 2.e./2y.e.l >> 1 the 

damped modes are driven by the unstable, longer wavelength modes,· 

from Eqs. (9) 

( 2 .1) 

and 

To good approximation Eqs. (9) also give 

oa /oT - y .a m mm 

( 2. 2) 

':1 /a oa ao + 0 2 -1 3 0 (20 ) -1 2 ' (}a.e. T - Y.e.a.e. ... -<- m -<-+m .(.. y2.e.a.e. + .(.. .{.+m yU+maL+-ma.e. 
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-1/2 0 2 For m << .t and .t ~ (2a) , ym/2y.e. ~ O(m/~) << 1. Therefore 

am is nonlinearly excited by the beat of a.e. wi.th a.t+m , and 

during the early linear growth of the mode amplitudes 

-1 
am - m(y.e.+Y.t+m) a .e. ai+m . 

-1 
.a steady state, a -my 

However, if the system can achieve 

m- m It is straightforward to 

demonstrate that a steady-state solution of Eqs. (2.2) with 

mode amplitudes a , a.t , and al+ · all finite requires that m . m 

Y.t+m < 0 in contradiction to the original hypothesis. (Sec. 6 

discusses equilibria where ym , Y.e. > 0 and y.t+m < 0 .) If 

am is allowed to vanish, a.e. and ai+m are uncoupled and the 

familiar two-mode steady solutions (a.e.,a2.e.> or (ai+m'a2.e.+2m> 

can be recovered. 

l"or finite a ,Eqs. (2.1) and (2.2) describe the time 
m 

dependence of this multi-mode configuration and imitate in 

a simplified fashion the behavior of the numerical integrations 

-2 
of Eqs. (9) for a = 0(10 ) and thirty or more modes. Since 

Y 2.e. , Y 2.e.+m , Y 2.e.+ 2~ < 0 , the growth of modes a.t and a.t +m 

is necessarily limited by the nonlinear coupling to damped 

modes as described in Eqs. (2.2). The difference in signs in 

the cross-coupling terms .tarnal +m and - (f.+m) amal precludes the 

continued growth of am and is responsible for the nonlinear 

oscillations of the amplitudes of the linearly unstable modes. 
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Eqs. (2.1) and (2.2) thus serve as a simple model for the mode 

competition occuring in the computer studies in which either 

time-dependent, "bouncy" saturations persist or the configurations 

seem to snap into steady, two-mode equilibria. 

APPENDIX 3. Coalescence of LMRT and Two-Mode Equilibria 

We review here the multiple space-scale construction of 

the LMRT equilibria [10], and. discuss their coalescence with th(: 

two-mode equilibria. We begin with Eqs. (18a), (18b), and (19) 

arid set a/aT = 0 and c = lc lexp(i~) to obtain to dominant order 

in 1; l 

( 3. la) 
I 

A= >. a;ar,; lnjcj , ( 3. lb) 

(3.lc) 

where b is a real integration constant. The appropriate 

boundary conditions are A{O) = A{TI) = 0 and ~(0) = ~(n) = 0 . 
II 

We have already assumed that C,C /C = 0{1). We then see from 

(3.lc} that to satisfy the periodic boundary conditions we must 

h 
A 2 2 -1 

ave Yl = 0{1/l), or f = 1- 0(12l) . Thus, we can set 
A 

f ::: 1 {A.::: 1) everywhere except in y l in (3.lc). For notational 

convenience, we now replace jcj~c By combining {3.lb) with 

{3.la), we find· 
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Using (3.2) and (3.lc), we can also write 

where b 
0 

A A 

- 12{(1-f) = a~ is the square of the 

(3.2) 

(3.3) 

fundamental amplitude of the two-mode equilibrium corresponding 

to the given values of f and l. Periodicity i3 imposed on ~ 

in integrating ( 3. 3) from 0 to rr: 

where< f(l;)> = rr-l~crr d[,f(t:) • It is clenr that a two··mode 

2 equilibrium is indeed a solution of (3.2) and (3.3): C =b =b 
0 

Eqs. (3.lb) and (19) provide the remaining information 

A= 0 and c2 = -lyl. 

The LMRT equilipria are defjned to be those nontrivial 

solutions of (3.2) and (3.3) for which b t b 
0 

There is a 

simple interpretation of these which comes from the formal 

(3.4) 

similarity of (3.2) to a particle trapped in a potential we+l. 

We can write 

" c = -av;ac , 
\ . 

v (c) (3.5) 
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This potential is sketched in Fig. 10. The boundary conditions 

in Eq. (3.2) require the "particle" to move across the well in 

a "time" TT (Fig. 10) •. The two-mode equilibria correspond to 

the particle being stationary at the bottom of the well. 

Eq. (3.5) is readily integrated: 

(3.6) 

where C((l) = cl I C(TT) 

-1 

This fixes 

c2 = 2TT K(m) I where m and K(m) is the complete 

elliptic function of the first kind, 0 < m < 1. Then 

-1 1/2 -2 c 1 = 2TT K(m) (1-m) , and b = 4TT K(m) (1-m/2) In terms of 

the Jacobi elliptic.function nd, Eq. (3.6) is written 

(3.7) 

This satisfies (c2 ) = 4TT- 2K(m)E(m), with E(m) t,he complete eJliptic 

integral of the SP.mnn k i nn. Eq. ( 3. 4) then dete:tmines b (b. ) , or 
u 

m(f,l) .- In particular, at m = 0 we have b = c = 1, and from 

Eq. (3.4) b = 1 • This is consistent with a two-mode equilibrium 
0 

for which f = 1 - 1/12!2 . The domains of existence of the two 

classes of solutions are iilustrated in Fig. 11. 

Eqs. (3.lb) and (3.7) provide the result 



-60-

In this form, the functional behavior is not transparent. If 

one combines a small parameter expansion (m < < 1) of ( 3. 6) with 

the requirement that the amplitude of C be exactly maintained 

for all m, one has approximately the simpler forms 

C(Cm) ::: c
1 

(m) + t.(m) sin2
(E:/2) and A(E.:,m) ::: (1/2) · t.(m)si.n(t:) 

where .6 (m) - c
2 

(m) - c
1 

(m) .. These forms are a.dequate for a wide 

range of m < 1 . 

APPENDIX 4. Green 1.S Funct1on Solut1on tor the Dispersion Function 

D(w) 

We formulate here the solution for the dispersion function 

D(w) in a form suitable for numerical analysis. It is convenient 

to introduce the Green 1 s function G (s , s 1 ) which satisfies the 

equations 

(4.1a) 

and, with (a;at:)G(~ ~~) - G 1 (s, ~~) 

G I ('IT ' s I) = 0 ·' ( 4 .lb) 

1 im G 1 
( s 1 + E , s • ) - G 1_ ( s 1 

- E , ~ 1 
) = 1 • 

E+o 
"(4.lc) 

The solution of (22) with source function added is then 

(4.2) 



' 

-61-

We define g(l;) = G(~.~.0 ) and I(~) 'l~.d~' G(~.~'). The 

normalization op(O) = 1 allows the replacement of~ using 

(4.2): 

Finally, applying F{op} = 0 from Eq. (24), we obtain 

( 4. 3) 

D = F{I} I [g(O)F{I} - I(O)F{g}] • We recall that the solution 

of D(w) = 0 gives the desired dispersion relation describing the 

stability of the LMRT equilibria. 

The auxiliary functions g and I satisfy boundary value 

problems which are solved by the superposition of the solutions 

of easily computable initial value problems. In particular, if 

L(g,h,k) = 0 , where g (0) = 1, g' (0) = 0, h(i; ) = k' (i; ) = 1 , 
0 0 

and'h'(i;.) = k(i; ) = 0 , we have 
0 0 

- k I ( 7T) h ( 0 ] IV 

and V = .~· (~0 )k' (rr) + ~(~0 )h' (rr} • f0(~) is the Heaviside unit-step 

function.] In similar fashion, if L I
1 

= 0 where r 1 (n) = 1 

and I i ( 0 ) = 0 , and if I 2 = 0 where I 2 ( 0 ) = 0 and I 2 ( 0·) = 0 , 

then we find 
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As an example of these considerations, we find for the 

uniform, coalesced equilibrium (see Appendix 3) 

D(w) = sin(Qn)j{Qcos[Q(n-~ )] - sin(Qn)} , where n2 (w) = 1- iw. 
0 

We see here explicitly that the dispersion function can have 

poles as well as zeros, the implications of which in the 

context of a Nyquist analysis are discussed in the text. 
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Fig. 1. Relation of slab to toroidal coordinates showing 
mutually orthogonal density gradient ~n0 (x), magnetic field ~, 
and diamagnetic drift velocity y* . 
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Fig. 2. Time development (T = 0.5, 2.5, 5.0, e:uid 7.5) of 
a perturbed "two-mode" equilibrium: (p, 2p, 3p, ... ) , p = 3; 
a= 0.05. There are 20 Fourier sine modes present. The equilibrium 
is linearly perturbed by modes m = 1 and 2, and is unstable to the 
formation of a steady configuration in which all the modes are 
excited. 
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Fig. 3. Stability windows for "two-mode" equilibria 
shown as vertical bars at fundamental mode numbers L for 
values of the rel'a.t.i,'re Landau damping parameter a. • 
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762108 

Fig. 4(a). The usual Nyquist contour. (b) The topology 
of the Nyquist plot for m = 0.15 and radius of semicircle in 
(a} equal to 5. The plot encircles the origin ~nee in the 
positive sense, indicating an unstable pole within the w contour 
of (a) . 
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763176 

Fig. 6(a). Time develop­
ment (T = o.s) of an m = 1, 
linearly perturbed coalesced 
"two-mode" and LMRT equilibrium 
(p,2p), p = 10 and a= O.Ql; 
there are 25 Fourier sine 
mod~s present. A stable 
(aJ1. = 0.64) "two-mode" 
equilibrium is generated 
(JI,; 2J1., ... ), J1, = 8. 
(b) Time development 
(T = 0, 1.9, 2.0) of the · 

.same equilibrium,but linearly 
perturbed inst.ea.d by the . 
steady emission of low level 
noise. The asymptotic state 
i~ time-dependent or "bouncy" 
w1th average energy obeying 
the "two-mode" scaling. 

762107 

Fig. 59(a). The modified 
Nyquist w contour necessary 
when the dispersion function 
has both zeros and poles. The 
locations of a typical zero 
and pole are indicated. 
(b) The topology of the Nyquist 
plot form= 0.23 and the 
modified (indented) w contour 
of (a). Instability is in­
dicated. Also shown by the 
dashed line is the plot of the 
unmodified, semicircular w 
contour. The D(w) plot does 
not then encircle the origin, 
indicating an equal number of 
zeros and poles encircled by 
the w contour. 
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Fig. 7. Time development (T = 0, 0.1, 0.2, 0.3) o:f a 
linearly perturbed LMRT equilibrium 

~(;,o) = KTI-l nd(Kn-1 ;ik) [k 2sn(KTI-lG!k)cn(Kn-l;!k) 

+2,(1-k2 ) 112sin(a-ll2; +~ a 1 / 201- (rt1 / 2/3) [Kn- 1 (1-k2 ) 1/ 2 ] 2sin(2a-l/2 ;) 
·;,,rhere a = 0. 010 2 8, k = 0. 9 9 8 4, K ( k) = 4. 2 6, ~ = 1. 3 9, and 
36 Fourier sine modes were employed. This corrccponds closely 
tu the Wave form shown in Fig. 1 nf Reg. 10. The equilibLlum 
is ui'l::stable and approaches the stable "two-mode" equilibrium 
in Fig. 6 for T > 5. 
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Diagram of the nondimensional linear growth rate 
- \) as function of mode number m(ky = mjr with 
v+v_!w~ . The flow of wave energy is schematically 
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Fig. 9. Time development (T = 0., 1.0, 2.0) of an m = 8 
perturbed three-mode equilibrium (p, 2p, 3p), with p = 2 ~· 
a = 0.04, v = 3.5, and 10 odd parity Fourier modes. The 
in1tial configuration is unstable to the formation·of two­
mode equilibrium (l, 2i), i = 4. 
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Fig. 10. The classical· potential well whose derivative is 
the second·[ ternt of:,:.~q. ( 3. 2) . 
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Fig. ll(a}.' The branches of the nonlinear eigenvalue 
equation, Eq. (3.4}. The orderings required for the LMRT branch 
are not valid outside of region A. (b) A blowup of region A 
in (a} for the fundamental mode number L = 8. The coalescence 
of the two-mode and LMRT branches is apparent. 




