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Nonlinear' Saturation of the Dissipative
Trapped-Ion Mode by Mode Coupling
'( A\
Bruce I. Cohen, John A. KrommesT
W.M. Tang, and Marshall N. Rosenbluth1~
Plasma Physics Laboratory, Princeton Uﬁiversity

Princeton, New Jersey 08540

ABSTRACT
The nonlinear saturation of the dissipative trapped-ion mode is analyzéd.
The basic mechanism considered is the proéess whereby energy in long wave-

. length unstable modes is nonlinearly coupled via E X § convection to short
wavelength modes stabilized by Landau damping due to both circulating and
trapped ions. In the usual limit of the mode frequency small relative to the
effective electron collision frequency, a one-dimensional nonlinear partial
differential equation for the potential can be derived, as first shown
by LaQuey, Mahajan, Tang, and Rutherford. The stability and accessibility
of the possible equilibria for this equation are examined in detail, both
analytically and numerically. The equilibrium emphasized by LaQuey et al. is
shown to be unstable.l However,'a class of nonlinear saturated states which
are stable to linear perturbations is found. Included in the analysis are
the effects of both ion collisions and dispersion due to finité ion banana-
width effects. Cross-field transport is estimated and the scaling of the
results is considered for tokamak pérameters (specifically those for the

Princeton Large Torus). It is concluded that the anomalous cross-field

)

transport can be much lower than the estimate of Kadomtsev and Pogutse,'for’
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1. INTRODUCTION .

It is well known that microinstabilities involving magneti-
cally trapped particles [1-10] represent a potentially serious
threat to efficient plasma confinement in toroidal systems.
Experiments now in operation, such as the Princeton Large Torus
(PLT), are expected to reach ion temperatures high enough so that
both electrons and ions will havé orbits in the "banana" regime,
defined by wBi/y > 1 ' where w,. is the trapped-ion bqunce

+ Bi
frequency for oscillations between magnetic mirrors and v, is the.

+
effective ion collision frequency. Under these conditions

it . is predicted that unstable drift waves, called dissipative
trapped-ion modes, will be generated. The threat of anomalously
large transport [11,12] due to this instability has motivated

" detailed theoretical study of its linear [1-8] and, to a .lesser
extent, its nonlinear [9,10,13] properties. The purpose of this
paper is to consider_mode—coupling mechanisms for saturation,

in much more breadth and detail than previously [10].

The dissipative trapped-ion mode is a low frequency,
electrostatic drift wave propagating in the electron diamagnetic
direction. The wave is destabilized by electron collisions and
stabilized by ion callisional damping [1,4] and Landau damping
‘due to both circuiéﬁing [3,4] and trapped [5] ions. Ellipticity
of the torus [5], toroidal éradient drifts- [7], and impurity
density gradients ﬂn the direction of the electron and primary
ion species densitf&gradients [8] have been demonstrated to be
stabilizing. ' Most Qf tﬁe theoretical treatments cited have been

r
carried out in the radially local limit. The basic assumption

\'.
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here is that radial excursions of the trapped particles are
negligible; i.e. the mode is localized in a region small
relative to the plasma radius but large relative to the banana
width. The linear radial problem has been studied by Gladd

and Ross [6], who found that magnetic shear exerts an additional

- stabilizing influence. Since shear is not a key ingredient of

the coupling mechanism we discuss, we use the local approximation

for simplicity. We will only consider the coupling of flute-like

modes at radii where the modes have appreciable amplitude,
viz. between mode rational surfaces [4,6]. |

Since proposed operating parameters of PLT, T - 10, and
future generation tokamaks fall in the regime where the trapped-
ion instability is theoretically predicted to appear, under-
standing the nonlinear saturation and the qoncomitant anomalous
transport is very important. However, comparatively little
fésearch has been done on the nonlinear saturation [9,10,13].
The y/k2 estimate of the diffuéion coefficient, first proposed by
Kadomtsev and Pogutse [l1l1], is widely accepted as an upper limit
(y 1ie thc linear growth rale ol the fastest growing mode with
wavenumber k). The physical arguments of Kadomtsev and Pogutse
are based on quasilinear_estimates of the level of turbulence
necessary to give rise to sufficient diffusive loss (provided by
turbulent E x B convection) to effect net stabilization [12].
Jablon proposed that electrostétic detrapping of marginally
trapped ions can nonlinearly saturate the instability at a
fluctuation level low enough to give substantially less

transport than the Kadomtsev-Pogutse estimate [9]. Lééhey,



Mahajan, Rutherford and Tang{(LMRT)[lO] considered a slab model
first proposed by Kadomtsev and Pogutse [11,12], and demonstrated
that the instability can be saturated by the ndnlineér E x B
coupling of energy frqm unstablevldng?wavelenéth modes to
short-wavelength modes which are stabilized by ion Landau damping
for sufficiently weak temperature gradients:
nili d ln(Ti)/d ln(no) < 2/3. LMRT found coherent, saturated
‘states composed of many Fourier‘modes, on the basis of |
which they estimated particle transport. However, the stability
or accessibility of those equilibria was not investigated. Ehst
has given a general survey of some of the saturation mechanisms
for the trapped-ion mode [13].

In this paper we reconsider and extend the model of LMRT.
We begin with the field-line averaged continuity, momentum, and
quasineutrality equations, introduce slab coordinates, treat
collisions with a Krook model, and include in an ad hoc but
reasonable fashion the important kinetic effects of ion Landau
damping [3-5] and finite ion banana-width effects. . Then,
following LMRT, we construct a relatively simple model nonlinear
equation for the electrostatic potential [Eq. (7)]. The linearized
equation gives the correct linear dispersion relation (with the
'omission of more complicated linear effects such as toroidal
gradient drifts, noncircular cross-sections, and impurities).
The correct dependence of the,iinear dispersion relation on the
effective ion collision frequency has been lost because of the

crudeness of the collision operator [4]. However, most of the



-essential linear features of the mode are reproduqed gcqurately
by our model.. Its simplicity permits us to find anglytié ' ‘
solutions of the time-dependent equation which describevthe '
nonlinear evolution of the instability for special'cases andﬁalso
analytic solutions describing various saturated states.

We have made a_detailed study of the steady-state solutions
of the model equation. 1In particular, we consider the stability
and accessibility qf various equilibria. Accessibi;ity is
determined by constructing both analytic and numerical_pimgr‘ ;h
dependent solutions which trace the growth.of the instabilitg.
from thermal level to its eventual saturation. Several analytic
techniques are employed in studying the stability.of equilibria;
The conclusiéﬁs are in excellent agreemept with the nume;ically
obse;ved behavior. The influences of ion collisions and
dispersion due to finite ion banana—width on the saturation are
~also analyzed. Ion collisions are found to unifgrmly_lower'ayl
linear growth rates but notrto fundamentally alter the nonlinear
saturation. Dispersion is found to be unimpor?ant in Qarticular
regimes of experimental interest.

The paper is organized as follows. In_Section 2 the”detallgd
development of the model equations describiné‘the nonlinear
evolution of the mode is reviewed. The nonlinear saturated
states found by LMRT are discussed in Section!3, and their
stability and accessibility a?e investigated. 1In Section 4
important efﬁects dué to ion collisions and dispersion are
considered. The level of anomalous cross-field transport”is

calculated in Section 5 and compared with the estimate of
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Kadomtsev ‘and Pogutse. This section also contains a discussion
of the gcaling of our results for general tokamak parameters.
Finally, the results and conclusions of our analysis are

briefly summarized in Section 6.

2. Formulation of.the Model Equations

In this section we motivate and justify the use of the slab
model and fluid equations first proposed by'KadomtsevAand
Pogutse [11,12]. Basically, this involygs a four-fluid model
consisting of circulating and trapped ions and electrons.
Continuity and momentum equations are employed with the high
frequency bounce motion of the tra?ped particies averaged over,
and a Krook collision operator is used. Closure is éffected by
invoking guasi-neutrality, apprépriate for this long wavelength,
low frequency electrostatic mode. The kinetic effects of ion
Landau damping and finite ion banana-width are then incofporétéd.

The trapped-ion mode is supported by the magnetically
trapped ions and electrons whose unpertﬁrbed densities are given
’ T 1/2

. ~ E where n_ is the equilibrium
e,i Ng o+ o S g

total number density and € = r/R is the inverse aspect ratio.

approximately by n

Since small-angle collisions are partiéularly effective in

scattering trapped particles into the loss cone v, > El/zvl ’

‘the effective collision frequencies are enhanced and defined by

- .eff _ .- eff _ . .
VEVTT = ve/e and v, = v," = vi/e [12]. The mode  frequency

Wy is much less than both the trapped-ion bounce frequency Woy

and the effective electron collision frequency v_ o, but is much

L
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~collision frequency v
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lafger than the effective ion collision frequency v, - In. fact,
the mbde freguendy is so low that it is much smaller than the
product of the parallel wavenumber with either the electron or

ion thermal velocity. As a consequenée, the circulating particles
respond adiabatically to potential fluctuations. The trapped |
particle densities tend to collisionally relax to Boltzmann

1/2

distributions nT . ~ E

e i n exp (+e¢/T) . ‘Following Kadomtsév and -

Pogutse [12], we postulate two dimensional fluid equations for
the trapped particle fluid densities nZ i and velocities.

’
VT » and for the electrostatic potential. These equations

~e,l

describe the quasineutrality condition and the conservation of
particles and momentum in the limit of taking the averages in

time over the bounce motion and in space along a field line.

The continuity equations are for Te:= Ti~5 T
T : T T T 172
. + . . . = - . -— . .
ane’l/at v (ne,l Ye,l) Voo [ne’l e “n exp(ie¢/f>}.

(1)

‘The right-hand side of Eg. (1) describes the collisional

relaxation of the trapped particle dénsities.to the values they
would acquire if ¢ varied at-a rate slow compared to both effective
collision frequencies, 1In the present case wheré

v_ >> 3/3t - W, this relaxation model predicts that, to lowest

order in |e¢/T| and Iwo/vnl, the trapped-electron dénsity is

. T , .
given by n, = el/zno exp(e¢/T). The ions have a small effective

+ << Wi nevertheless, the trapped ions also

tend toward a Boltzmann'equilibrium but ‘at a rate slow compared

to the mode frequency. The trapped-ion density is therefore

-



determined by the simultaneous solution of the equations for the
fluctuating potentiai and the moments of'the electron and ion
distribution functions. In writing Eq. (1), we have made a
particular choice of gauge: fd3§ ¢(x) =0 .

The momentum equation satisfied by all four fluid species is

njmj(at+ijy)yj = njqj(‘Y¢+ij§c_l)-Y-5j + njij;“ji(Yj'Yi) ’

‘ : 1 : (2)
whére i denotes the species, gj is the pressure tensor, 3 is the
- charge, nj is the number density,iand vji is ﬁhe relatiVevcollision
frequency. As a result of a spatial éﬁerage along the field-
line and the neglect‘of shear, the magnetic field'in Eg. (2) is
uniform. For the sake of simplicity we assume that the plasma‘
is isothermal, and omit teﬁperature perturbations.

Because the mode frequenéy is so low, Wy << kﬁ(T/mi)l/z,
k“(T/me)l/z, electron and ion free-~streaming parallel to.g ensure
that the number densities for the circulating ions and éléctrons
are given to.goéd approximation by their quasi-steady equilibrium

values (1 - el/z)n

o ©XP(+e¢/T) respectively. (Ions have been
taken to be singly charged.) Closure is effected by the

quasineutrality condition:

a7 <1_€1/2)no exp (e4/T) = nl + (1_61/:2),1O exp(-e¢/T) . (3)
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We solve Egs. (1), (2), and (3) perturbatively, .expanding
the dependent variables in powerbseries expansions in ¢ . -
We use the usual slab coordinates x = r and vy = r(8-z/q),
where ¢ and 6 are the toroidal and pdloidal angles and q is
the safety factor or inverse rotational transform 2w/1. . The
magnetic field is in the z direction, and the density gradient
is along x and assumed t§ bé constant (Fig. 1). The pressure is taken
to be isotropic perpendicular to the magnetic field, which permits
the replacement Y-zj+ij = Y(an) since:3/3z = 0 iden?icallyf’
In constructing the fluid velocities to second order, we
use the orde;ing v+ << wor<< v_’ Wpy << Q".' where Qeii are
the cYcldtron frequencies. We determine from Eg. (2) that the

lowest order velocities are the diamagnetic drifts:

Y;o)z ycT/qurn where r §‘|d-£n(no)/dx|_l . We note that
Y§O)'YY;O) = 0 and point out that our model omits gradient and

curvature drifts, which modify the linear theory [7] and
could therefore also influence the nonlinear anélysis. The

first order, perturbed volocities are

(L - (1) |5-1
yj ~'czx[Y¢+(ij/njqj) ]B

_ 2y +(0) o (1) h -
(qj/mjﬂj) (8t+yj oy) [Y¢+(ij/njqj) _ (4)

The second term on the right-hand side of Eqg. (4) is an effective

polarization drift and is smaller than the first term by

O(wo/Qj). The relativeAfluid drift velocities are no laraer than
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the order of the largest fluid velocity at each order in the

perturbation expansion. Therefore, collisional drag has very

little influence on v for Ve <<y and to good o
~ 14 ’
approximation Yél) ~ czse[ch+(ij/njqj)(:L)]B-l . To next order

the momentum equation gives
(1) (1) -1 (2) . (2)
X =V, . . - .m, Vp. + ./m.c)V." "' xB
0% -¥Vy -TYy [(nJ J> ~p3] dy/myc) ¥y B

whose solution is

(2) _ . (1) (1) S\ (2) A :
Yj -<c/qu>zX[ijj YYj + (nj ij) ] . (5)

The polarization drifts and collisional drag have been again
neglected in the limits w, << Qj and vj << Qj . These results
can now be used in solving Eq. (1) to second order in the
perturbed quantities.

As a consedquence of.the slab geometry, the contributions to
the fluid velocities due té pressure gradients do not lead
to a divergence of the flux, i.e.
Y.[njc;x(njqj)-lij]B—l - (c/qu)Y-(;xYpi) = 0 identically,
to all orders in ¢. We assume that the mode has radial
structure of characteristic length equal to the spacing between
mode rational surfaces [6]; then ern is large compared to unity "
but much smaller than v_/wo or Qi/wo for PLT parameters

(see Section 5). 1In these limits one can use Egs. (4) and (5)

to demonstrate that the nonlinearity in the continuity equation
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arising from the divergence of the flux due to the ponderomotive

force m, Vgl)-val)
J ~] ~~]

2
terms arising from Y-[nél)ygl)] by O[(ern) |kyV*/Qj|] <<1 ,°

is smaller than the dominant nonlinear

where V, = -(81/2) (cT/eB) [aln(no)/ax] is the trapped electron
diamagnetic drift velocity. The dominant terms coming from

,the divergence of the flux in the continuity equations thus arise
from the chY¢/B2 drift velociﬁy. Correct to second order,

the continuity equation now becomes

T ~ T _ T _ 1/2
ane’i/at + c(zxy¢/B) Yne,i = .v_'+[% , = € n, exp(ie¢/T)}.
' ‘ (6)
Egs. (3) and (6) are the model equations proposed by
LMRT [10]. With the orderings v_ >> 3/93t - kyv* >> v, and

|e¢/T| << 1, it then follows that the fluctuating potential

® = ep/T satisfies the nonlinear partial differential equation

2 V, .42

ek 3% * 392 90 =
+ VvV + 102 + 172 oy + Vv, % =0 (7)

ot * vy

Nonlinear contributions to Eq. (7) from radial (x) derivatives
of ¢ are smaller by (ern)kyv*/v_ than the nonlinear term

retained. These neglected nonlinear terms are still larger than

1

those due to the ponderomotive force by (ern)- Q./v_ 2 10

for kx ~ nky'(see Ref. 6) and expected PLT parameters

14 -3

(no = 10 cm “,e = 1/4, B = 50 kG,T = 1 kevV and'mi/me = 3600),

They have been included in a preliminary two dimensional study [14].
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Linearization of Eq. (7) followed by Fourier analysis yields

a linear ‘dispersion relation for the dissipative trapped—ion

mode in the fluid limit: w = g + i(w';/v_ - v,), where
wyp = k V, . The mode is unstable for w2 > v v,. As the mode
R ™y A . R -+ ’

amplitudes grow, long wavelength modes nonlinearly couple to
shorter wavelength modes with larger linear growth rates,
resulting in increased steepening as t+» . As discussed in.
Retﬂ 10, Ey. (7) suggcotc that there is a. transfer of wave energy
from long to short wavelengths} but without additional physics
'there is no mechanism for saturation.

At this peint, we appeal to the linear kinetic theory of
this mode for important effects omitted in the fluid description.
We incorporate two k;netic phenomena which play a crucial role
in saturating the instability: Landau damping from circulating
and trapped ion resonances [3—5], and finite ion banana-width exeursions
[6,12]. For sufficiently weak temperature gradients, the‘mode
is now stabilized at short wavelengths by Landau damping.

Finite banana excursions lead to small dispersive eorreetions
to the mode frequency. The saturated mode amplitﬁdes are
insensitive to disﬁersion'unless dispersion produces. frequency
mismatches in the coupling of the linear unstable modes comparable
to the characteristic linear growth rates wé/v_ . The effect
" of dispersion is reactive, however: elthough it causes the mode
amplitudes to saturate at higher levels, it does not fundamentally
alter the physics of the saturetion mechanism. A quantitative

discussion of ‘the influence of dispersion appears in Section 4.
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It is convenient to transform to the frame moving with the

y - Vv, t .

trapped-electron diamagnetic drift velocity: n-
Next, we follow Ref. 10 and include the effect of Landau damping
by circulating ions [4] and by trapped-ion bounce resonances(5]:
Ypp = A' (1 - 3”1/2) kgVa/upy +
where A' is é numerical factor’and n, = d ln(Ti)/d 1n(no) < 2/3
to ensure damping. N
In deseribing the effect of tandau damping, we have
restricted the structure of the model parallel to B to be that
which admits the largest line;r growth rates, i.e. the ﬁost
flute-like mode. For purposes of a radially léggl treatment,
tpis amounts to assuming ky, = (ﬁq'— m) /qR = 1/2gR in evaluating
the Landau damping by the ci?culating ions. However, because
the structure along the field line [4,6,7,9] is téken‘to have a
considerable constant component f£(8) = (1 + cose); the nonlinear
coupling of the modes does not vénish upon taking the bounée
average. We emphasize that the detailed rigorous development
of these considerations is outside the scope of the simple,

two-dimensional Kadomtsev-Pogutse fluid equations.

Including Landau damping, kgq. (7) in nondimensional form is

4 2
JT% + V) + %%? =0, . (8)

3
AN
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w = Vv,/r ,

1/2
/ wO)Q, o

where T = wit/v_, E = n/r, v = (v_/¢e

and v = v_v+/w§ . We have also defined
a = A' (1 - 3ni/2)-(wo/mBi)2\)_/wBi , which measures the strength
of Landau damping relative to the destabilizing electron
collision term. Poloidal periodicity over the length 2nr
requires that solutions of Eq. (8) satisfy boundary conditions
W(E) = Y(E + 2m). The terms 3y/d7 + 3y2/3E lead to steepening
and wave breaking in the absénce of stabiliziny lerws. 'Thé
electron collisional term azw/agz destabilizes shorter waveiength
modes preferentiaily and therefore aggravates wave steepeﬂing.
Ion collisions v§ are unéble to stabilize short wavelength modes,
and Landau damping a34w/8£4 is required to effect overall
saturation. |

We consider both analytic and numerical solutions of Eg. (8)
in the following sections. As an introduction, we outline here
the types of numerical runs which were performed and the
principal conclusions drawn from them. Appendix 1 contains a
'brief discusssion of the numerical method employed for
integrating Eq. (8).‘ The integrations have been performed for
both odd parity modes (Fourier sine series) and mixed parity
solutions, both with and without collisions, and for a wide
range of physically reasonable o (Sec. 3). Wé have also
integrated the exténsion of Eq. (8) to include a dispersive
term aa3w/ag3 (Sec. 4). As initial.conditions we used either
low level noise (constant amplitude times random phase) in

all the Fourier components or analytically predicted equilibria
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possibly with small perturbations superimposed. For fixed a,
many of the runs were performed with both kinds of initial
conditions.: If a final state can be reached from random noise;

then that state. 1s acces51b1e, the evolutlon of perturbed

those equilibria.

In the long time, nonlineér regime qf Eq. (8), we observe’
two qualitatively distinct types of behavior: either time—. |
independent states in which only one linearly unstable mode and
its stable first harmonic are significéntly excited ("two-
mode equilibria"), or time varying but bounded states whose‘
~spectral components appear to shift perioaigally between
several adjacent two-mode states whose fundamenta; is near the
" fastest growing linearly unstable mode. We describe these |
time-varying states as "bouncy." Which state‘is actually
observed depends on the value of o in a way'which we can
predict analytically (Sec. 3).

The analytic equilibrium stressed by LMRT [10] is never
observed. as the final étate, even when insertea.as.an initial
condition. This implies instability of that equilibrium and is
an important conclusion of this work; we verify"ﬁhis'result
analytically (Sec. 3). These results are insensitiVe to the
presence of ion céilisions (Sec. 4). They also persist {
qualitatively in the dispersi&e limit, although saturation
occurs at higher amplitudes in that:'case (Sec. 4). We comment
further on the details of the numerical ekpefiments in what.

follows.
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3. Saturated States: Dispersionless and CollisionleSS‘(v++0) Limit

The simplest saturéted states of the trapped ion mode occur
when effects due to dispersion and ion collisions are negligible.
In this Section-we construct solutions of Eg. (8) in the limit
v»>0 and review the two basic steady-state solutions (3/3t-0)
discussed in Ref. 10. We then extend the study of Eq. (8)
by examininé the stability of the nonlinear equilibria and the
time‘develdpment'of the mode toward a stable equilibrium or away
from an unstable equilibrium. Assuming that the instability
grows from low level random noise, we address the question of
accessibility by directly integfating Eq. (8) with a small
emission term present. For a few simple cases, we can construct
time-dependent analytic solutions of Eq. (8). More generally, we
integrate Eq..B (8) by numerical means.

The.periodic boundary conditions allow the Fourier
representation Y (&,1) =§:[an(r)sin(n£) + sn(T)cos(nE)]. This
general-form admits the 5gssibility of mixed parity solutions,
i.e. partly anti-symmetric (an # 0) and partly symmetric
(sn # 0) solutions about & = 0. Eg. (8) is evidently of odd
parity since changing the signs of £ and y leaves the.equation
invariant. Thus the odd parity modes an(T)sin(ng) couple only
to themselves. Howévér, in mixed parity wave packets Lhere is
coupling of even and odd parity modes to .one another. This allows
the possibility . of steady-state solutions with finite group
velocity. Substitution of the Fourier expansion into Eq. (8)

gives
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'g% 3.1 "TworMode" Equilibrium

. - = - : - 9
asn/ 9T Yn%n ‘nZ(smﬂxam sma.m-l-n sman-m.) . ( ‘f")'
m". : .
aan/ar,— Ynan = (n/z)is(fmsn-m + Zsmsm+n.+ 2amam+n - aman_m)’(gb)

m

2

p where-th= n® - gt~ v and the mode. amplitudes are taken to

vanish identically~fQ2 non~positive index:i,sn E.an“i 0 for

n<o0.

“We €irst cons;der solutiqns whe:e L;neaglg unstable modes

"?!a are stabalized by caupling to thgsr damped harmenics

P

29 2p ';- This situation can arise in two ways. For v = 0,

' 0 is the only free param@taz. When 1/4 < o < 1 only the p = 1.

- modes are unstable.. The quadtatic nonlinearity then couples the

stable p = 2 harmonics to the p = 1 mode®; a balance of energy

‘flow can be achieved, aes@ring saturation. 1In fact, a similar

process can occur even when many modes are unstable. For

0 < a < 1/4 the relative mode spacing around the most unstable

modes, p ~ (2a)-1/2, is given by p-1 ~ (2a)l/2 which may not

be infinitesimal for typical tokamak parameters (Sec. 5).

Then, if the linearly unétable modes are'aSSumed to grow from a

small initial level, the most unstable modes will'sopn acquire a

much larger amplitude than their neighbors, i.e. mode selection

occurs. The harmonics of the most unstable modes, 2p = (2/a)1/2

.are stable and will be nonlinearly ekcited to higher levels than

their stable neighbors, saturating the growth of the most.
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unétable modes. Thus, because of the mode selection, "two-mode"
equilibria can also arise for systems far frbm marginal stability:
0 < o < 1/4 . Of course, in such saturated states the higher
harmonics 3p,4p,...aie also excifed. Their amplitudes are small
however, relative to the dominant p -and 2p modes.

The most general equilibrium composed of modes p and 2p
must allow for the possibility of a group velocity u:,
Y(&.1) = (£ - ut), which using Eq. (8) with v = 0 gives
82 84 2

Vo, a30 B (10)
g gt % - S "

u
uAaE+

The coupled mode equations derived from Eq. (9) then beccme

P P P 2p 2pp
-pu - Yp = p ,
- Sp ap Spszp + apiazp
#2p ®2p "#5p%p
=2pu - sz | =p ) ' | . :(il)
“Sop 'aép sg - a

In the drifting frame the origin of coordinates can be chosen so
that S5 =0 . Then solving Egs. (11), one obtains

- - . 2 _ 2 2
a0 Yp/P ¢+ Spp =ow s ag = - vy, /p” + 2u° , and

_(sz + sz)u =0 . For 2y +.&2p # 0 the drift velocity u

(-
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must vanish, and the equilibrium is described by .

I 1/2 - . - _ o L,
a, = i( Ypsz) /P v 3y, = TYL/P 4 S, = Sy | 0. | (12)

_For 2y =0 (ap2= 1/3) the drift velocity u is indeterminate,

p T Yop
and the truncation of the higher harmonics becomes suspect.
However, the solutions Eqg. (12)4for u = 0 are allowed, |
correspond to minimum total energy E = (1/2)), mz(a;+si) = (l/Z)Yp|Y2p|
+ ZYS , and are in fact’observed as the finafnstate in the direct
numerical integrations of Eq. (8{ whenever time-independent
states exist. A steepened wave form typical of tﬁis class'of
equilibria is shown in Fig. 2.

As stated earlier, tﬁe numerical'integratioﬁs reveal that
time—indepéndent states do not exist for some valuesiéf o. |
This suggests that the two-mode states are unstable for'theser
060 . We now verify this énalytically. The lineér stabilify
theory of the basic two-mode equilibria is straiéhtforward.

From: (9b), the mode coupling equation for odd parity solutions

can be written

0

— — ‘ -
da, /0T = vya, - (1/2£ 3y _grdge s
£' = -
where a_, E--a‘L . Linear perturbations <Sa2 then satisfy
3da /3T = y_da_ - m§ a,da o | ~ (13)

The replacement 3/371>-iw yields the eigenvalue equation.
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We choose a two-mode equilibrium with fundamental mode

number & = L. It is convenient to scale L from the problem by

A A I\_— 2

dividing Eq. (13) by L3: a =a/L , 8a_ = Sa_/L , = w/L° ,
R ' ‘ P p P P
Yp = yp/L2 , and € = m/L . We also define f = aLz. The
characteristic equation then becomes

det(id) I + D) =0, - (14)

= = 6. : +1-i C .

where Iij dij and Dij(e,f) Yﬁ+(N+171)613 [e+ (N+1 1)]a1_l ,

nL,n=l,2,...,N.

For a particular £, solutions of»(l4) for w which lie in the

and we retain in the equilibrium the amplitudes a

lower half-plane for all € are stable. The heavily damped
nature of the high harmonics allows one to truncate the matrix in
Eg. (14) at a finite, réasonably small order.

The only calculation which is analytically tractable
corresponds to the case with perturbed mode amplitudes
(Gam . ©Ga , Sa ). However, for m/L << 1 these modes are
all linearly unstable. Thére is no stable eigenvalue in this

casé; couplings to the damped modes § etc., must be

aZLim !

included in the analysis, which must now be treated numerically.
For the numerical computations to determine the stability of

two-mode equilibria, we have found it adequate to choose N = 4

.[we compute the equilibrium amplitudes a v 341, perturbatively

3L
using the values (12)]. By taking proper account of the

symmetries of (l1l4), we can then deal with the truncated 5 x 5

m t ] . + : . .
atrix describing the system composed of Gam_, <SaLim ’ §a2Lim
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The results are displayed in Fig. 3. The'abscissa"déscribes the
possible fundamental mode numbers L of the equiiibria;'the
ordinate describes the Landau damping parameterxdh.;“Stable
ranges’of'a'for integral L.are shown by the vertical solid
lines. Since these regions do not overlap for'thefvalues of L
shown on the graph, certain a's are aiways unstable. 4Very.
roughly, the stable range of o is given by 0.6 < aLz < 0.7 .:
This is in agreement with'the numerical results. For values of
'a. which fall outsideAthe predicted stability window, time-
dependent "bouncy" states are observed In these>bouncy |
states, mode configurations are observed to wander or bounce
from one grossly perturbed two-mode equilibrium to another
after a period of rapid linear growth. For these cases the
time-averaged total energy for the final state is observed to
scale as E = (1/4 + 1/8)01—2 for moderate .

When an a is chosen which is predicted to bc stable for
a characteristic mode number L, it is generally observea
that the numerical solutions actually achieve that tihe-,
independent two-mode equilibrium, given sufficient'time.A For '
example, the LMRT parameterAa = 0.01 corresponds to a stable

L 8 configuration, which is observed numerically. For

a < 10 there can be more than one two-mode equilibrium falling

within'the stability window 0.6 < aL? < 0.7. Numerical

~

>

integration has verified the stability of the equilibrium determined

-3
by o = 10 and L = 25 when subject to linear perturbation.

Fig. 2 illustrates the evolution of a twenty node system of odd parity

with o = 0. 05 initially in an L = 3, two~node equilibrium. According to

Fig. 3, there is no stable two—mode equilibrium possible for this system.



-22-~

Fig. 2 illustrates the -growth of m = 1 and m = 2 perturbations leading

to a new equilibrium. An examination of thevFourie: amplitudes of the final
state reveals that all modes are‘excifed, but preferentially those-even -
indexed modes of long‘wavélength. The scaliﬁg of the gotal energy, which
for the two-mode equilibria with v = 0 and L = 1/(2a)l/2 {corresponding- to
the most unstable mode) is given by E = (1/‘2)YL IYZL' + 2YL2 = 3/8(12 , 1is
still proportional to o 2 with a numerical factor of 0(1/4).

It should be notéd that the predicliuns of stable cquilibria
are valid only in the limit of very long time. In certain cases
where modes wére’excited from steady léwﬂlevelAemission of random
noise, the system of‘modes did no£ in fact settle into steady
configuration even when stable equilibria were pfedicted:
apparently "bouncy" states were obtained here as well. We
believe that in these c¢ases the numerical integrations have
perhaps not been carried long enough. Clearly, the. time spent
in wandering or bouncing before settling on a stable configuration
is sensitive to initial conditions. 1Its scaling with a is L
uncertaiﬁ because the characteristic linear growth rates‘scale as
a—l . but the density of two-mode equilibria scales as a;l/z
which exerts an opposite influence as a is changed. If the
system approaches close enough to a stable two-mode eqﬁilibrium,
then the mode‘configuration snaps into and remains in that stable
steady stat?.

To understand in some deéail how the modes develop linearly
'in time and eventually saturate by harmonicAgenerétion, we
analytically integrate Egs. (9) for the case of two odd parify

Fourier modes:
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e L2
aaL/ar - a_ = La,a 2 BaZL/aT - Yopd,p = ~Lap. . (15)

Y13, T Marfyy

1/2

For (2a) < L < a—l/z and v+0, we have 4 < lyz’/ZVL['<“w;'

L
we are thus motivated to make the approximation

|8a2L/arl ~ |2yLa2L| << |Y2La2L|' The harmonic is then driven

2 _ }
~ . 1
o1, * LaL/y2L , and Egs. (15) can be immediately

by the fundamental a

integrated to give

) :
[La; (0) /v, Jexp (2, T)

2
aZL(T) ~ LaL(ﬁ)/Y2L ~

. 2_2 . -1,
1-L aLSO)(YL|Y2L|) [1 exp(ZYLT)]
' (16)
Thus a, grows exponentially at rate Y, and excites its
harmonic at rate ZYL . The growth of both modes is esseﬁtially

exponential in time until the last e-folding when the nonlinearity

in Eq. (15) for a  is finally of sufficient magnitude to saturate

L
~growth.

In a similar manner, Appendix 2 considers the more complicated
mode structure composed of unstable odd parity modes with
indices m,£, and £+m and heavily damped modes 2£-m , 2£, 2{+m,
2£+2m, and 2£+3m. This system is shown to have no steady-state
with a_,a,, and a, all finite. With a_ = 0 the familiar

m +m “m

two-mode equilibrium (az,azz) or (al,'+ ) can be achieved.

m,a2£+2m
For am # 0 the "bouncy" behavior, which characterizes the
nonlinear oscillations of the mode amplitudes observed at

effective saturation in some of the numerical integrations, is.

mimicked in a simple fashion.
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3.2 LMRT Equilibrium

In this section we digéuss a second class of equilibria of
Eq. (8)r originally derived and emphasized by LMRT [10]. These
multi-mode equilibria consist of a rapid spatial varigtion with
wavenumber near marginal stability ky ~ l/alzzr , modulating
factors to satisfy the periodic boundafy conditions, and

couplings to the harmonics n/OLl/2

r ,, n=2,3,...LMRT believed
these equilibria to be the only ones relevanf fof situations far
from marginal stability (a << 1), the rggime of most physical
interest. Transport estimated on_ this basis is generally
optimistic, i.e. it is smaller than that computed from the two-mode
equilibria [10] and generally smaller than the Kadomtsev-Pogutse
estimate.

However, there are important deficiencies in the LMRT
treatment. The magnitudé of the transport depends on a parameter
m, 0 <m < 1, extremely gsensitive to small changes in a . For
m>1 the transport diverges and the ordering assumed by LMRT
is violated. LMRT estimated transport by considering the largest
m for which the fundamental orderings were expected to hold.

In view of the near divergepce, however, this procedure is
both dangerous and somewhat arbitrary. Furthermore, LMRT did
not address the important questions of stability and accessibility
of the equilibria.

‘In fact, we demonstrate Both analytically and numerically
that the LMRT equilibria are always unstable. Therefore, such
states are not expected to be observed experimentally. We

further prove that both the two-mode equilibria and the LMRT
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states emerge from a complete multiple space scale analysis of A
Eq. (8) for small d . Iﬁ fact, for a critical value of |
£ = aiz ='fc =1 - 1/1222:, the LMRT state coalesces witﬁ‘a
two-mode equilibrium composed of modes varying as sin(ﬂg):and
sin (2LE). |

A review of the LMRT equilibrium constructién and a
discussion of the coalescence with the two-mode equilibrium are
presented in Appendix 3. Here, we formulate and solve the problem

of the stability of the LMRT equilibria. We follow LMRT in

making the multiple space-scale deqomposition
Y(E,T) = A(E,T) + Im[C(E,T)exp(iLE)] + Im[CZ(E.T)exp(iZZE)], (17)

where A is real, C and C2 are generally complex, and A, C, andAC2
are slowly varying relative to exp(ilf): |31n A/3E = 0(1) <<'¢,
etc. We insert Eg. (17) into Egqg. (8) with v+o and equate the
coefficients of 1l,exp(ifE), and exp(i2£§) to obtain three

coupled nonlinear equations for A, C, and C2:

3A/IT + (3/3&)(A' + a2+ |c|?/2 + lc2|2/2) =0, - (18a)
(3701 (cr2i) + (a/0g + iﬂ)[-i(Ac -.xcj + £§£C/2
+ 3£C /28 + c*cz/z] -0, (18b)

(3/3T)(C2/2i) + (a/0g + 2iL)

[2AC2 + (1 - 12f)C; ]/21

+ (KYZKCZ + lZsz/K)/4= = 6, | (18c)
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where primes denote derivatives with respect to E.. In
writing (18c) Eq. (18) we have neglected c" and defined ‘
A = (3f - 1)/2. For the remainder of this section iﬁ will be
adequaﬁe to take A = 1 (see Appendix 3). We assume that
9/3t = 0(1l) and ;22 = 0(1l) (for f sufficiently far from_1/4);

It is then clear from (18c) that to dominant order in 1/£

S = Cz/.ﬂ;zz . | | (19)
We thus negléct the last term in (lSa);' Expressions for the
equilibrium (9/91 = 0) quantities A and C are given in Appendix 3.
In the linear stability analysis we examine only those
perturbations retaining the form of (17); we ignore possible
decays into waveforms of different fundamental wavenumber
K'# £. This is sufficient since even this resfricted
configuration is always unstable. Perturbing (18b) and using

(19) yields

0 ='(a/ar)(aC/zg + (a/3g+ik) }-i(A6C+C6A—6C') +.£;£6C/2

+ 3£5C /20 + [IICIZRO(6C/C)C+|C|ZGC]/?!YZ£: i
(20)

It is convenient to define 8§D = 8C/C = §p + iS¢ ; upon inserting
this into (20) and using the équilibrium equations, we find

that many terms proportional to 6D vanish. Ordering in o
1/¢, separating real and imagingry parts, and'reélacing

3/3t>-iw , we find finally that
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_iwsh + (3/3E) (sA'+2A8A+|c|%8p) = 0 , , . (21a)
5A = 8p' , | (21b)

iwsp/2 - L[-8¢'+3(8p +2p'8p") /2L +'|c|28p/z§2£] =0, (21c)

where p' = Re(C'/C). We insert (21b) into (2la) and integrate

to obtain

- .2 .
d d 2 . .
L 8p = [——— + 28 == + |C| j;w]Gp = plw) , : (22a)
W aE dE‘ _ ( )
§p'(0) = §p'(m) =0 , o (22b)

where p is an integration constant. We impose periodicity on ¢

and average (21lc) over 0 to 7 :
0 = in {8pp/2 + 3 Qaspd + :’5}1 {cl?se . © (23

Integrating the second term by parts using the equilibrium

boundary condition A(0) = A(m)=0, we can rewrite (23) as
el = e, ~aly 2 o ‘
0 = b}ép} = <(1w/2 - 3A'+Y2£|C| )éd> ' ‘24)

where F is a linear functional of its argument. Egs. (22) and
(24) constitute a linear eigenvalue problem, somewhat complicated

by the spatial dependence of the equilibrium.
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One case, however, can be treated exactly, and yields

useful insight. Namely, at the coalescence point for the IMRT

and two-mode equilibria, we show in Appendix 3 that A = 0 and
C = 1, so that (22) simplifies to
" 2 —

Sp" + Q76p = u , (25)
where Q@(w) = 1 - iw. Eq. (24) becomes

(iw/z + 1/Y2£) <§é> =0 . . , : (26)
One possible eigenvalue emerges immediately from (26):

w = 2i/y2£ , which is purely damped since Yop < 0 . The general

solution of (25) is §p = A éos(QE) + u/Q2 , where A 1is a
constant. This satisfies the boundary condition 8p'(0) = 0.
Satisfying the boundary condition at £=7 leads to the eigenvalue
condition §p'(m) = 0 = -QA sin(Qm), which implies §{=n , where
n=+1, +2,...,0r w=i(n2—l). There is evidently instability
for |n| > 1. oOur orderings break down for |n| > £, but the
presence of unstable roots within a circlte of radius 0({)
demonstrates the instability of this particular equilibrium.

The presence of multiple unstable eigenvalues suggests
that the entire class of LMRT.equilibria.O <m < 1 (see Appendix
3) is unstable, since the equilibrium is smoothly varying and
the eigenvalues should thus be smooth functions of m. However,
it might happen that.as m>1 the eigenvalues could move into

regimes of the complex plane where our orderings are questionable.



-29— \

We therefore examine the general case as well.

It is convenient to use a Nyquist technique. We note
that for arbitrary w the boundary value problem Eq. (22) will
have iﬁ generai no nontrivial solution, since unless .W is.an.e;gep-
value we cannot satisfy all of the boundary conditions-simultaneously.
However, consider the modified problem formed by inserting an
impulsive source on the right-hand side of (22):

AN

Lo = ulo) + p(u) 8 (eg) (o < gy < 1)

where D is to be determined. Continuity is imposed on .
Gp'at EO: [6p]g = 0; and 6p is given an arbitrary normalization:
o
1, which is allowed because the perturbation is linear.

§p(0)
We retain the original conditions F{ép};=0, dp'(O) = S§p'(w) = 0.
‘We then have five conditions to be imposed on the solution Sp -
of an inhomogenéous, linear, second-order differential equation,
with one unknown constant u, in two adjacent domains. ' Therefore,

a nontrivial solution exists to this new problem for all complex

w; this solution determines D as D(w) = [dp']g . Furthermore,
since D vanishes identically when w is an eigegvalue, D(w) = 0
is an effective dispersion relation. This function can thus
be plotted in the usual way as a function of the Nyquist
contour in Fig. 4a. If D encircles the origin, an unstable
root lies within the contour (assuming no poles are enclosed
as well). These ideas can be formulated in a form quite

suitable for numerical analysis by using a Green's function

technique (Appendix 4).



-30-

In general the dispersion function D may have poles as
well as zeros. This is illustrated in Appendix 4 by.the form of
D for the coalesced équiliﬁriUm. Since the Nyquist method
actualiy provides only the difference in the number of zeros
and poles encircled, the Nyquist plot may not encirclekthe
origin even though the contour encloses an unstable eigenvalﬁe.
This problem is easily dealt with by deforming the Nyquist
contour (Fig. 5a).

In Fig. 4b we show the topology of the numerically
computed Nyquist plot for m = 0.15 and’fhe.contour of Fig. 4a
with nondimensional radius equal té five. The plot encircles
the origin, indicating instability. For m = 0.23 the modified
contour in Fig. 5a is deformed around the poles of D(w) |
and indicates an unstable eigenvalue (Fig. 5b). Proceeding in
this way, we can in fact demonstrate that all the LMRT equilibria
are unstable with eigenvalues |w| = 0(1), which are within the
limits of validity of the theory.

We have verified these analytic predictions by numerical
experiments. The LMRT equilibria are never observed when the
partial differential equation (8) is integrated in time with
random noise as initial condition. Furthermore, we ha&e.
employed the LMRT equilibria as initial values, perturbed
these equilibria slightly, and examined their subsequent
evolution in time. In every éase, the equilibria decay
immediately, either into time-independent two—mode'equilibria or
into “bOuhcy" saturated states. Fig. 6 shows the results of a

computer experiment portraying the evolution of a perturbed
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coalesced ‘equilibrium. Appearing in Fig. 7 are the results of a
computer experiment following the decay of a perturbed LMRT

wave form using parameters close to those for the wave form . -.
displaYed in Fig. 1 of Ref. 10. There is an increase in.the -
total field energy in both cases, and the peaks of the energy
spectra move to longer wavelength, closer to the most unstable

modes.

4. Dispersion and Ion Collisions

In this section we expand our discﬁsSion of the saturation
of the trapped-ion mode to include additional linear effects,
namely the dispersion produced by finite ion banana excursions and
the dissipation due to ion collisions. Since the saturapion
mechanism investigated in this éaper relies on nonlinear
processes mediating a balance between opposing linear effects
destabilizing and stabilizing the modes, additional linear
features of the mode may have a strong influence on the
nonlinear saturation. We demonstrate that dispersion does not
fundamentally alter the saturation mechanism. It does, however,
provide an effeétive impedance which can inhibit mode coupling
and result in‘saturétion at significantly higher mode amplitudes
for sufficient dispersion [15]. We also find that, aside from
uniformly decreasing the growth rates of the unstable modes
and further stabilizing the démped modes, ion collisions do not
significantly affect the nonlinear saturation of systeﬁs far

oy

from marginal stability (o << 1).
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4.1 Dispersive Effects

For T ~ T. = T important dispersive effects arise
e .

from the delocalization due to the finite ion banana-width.
The periodic component of the average effective delocalization,

length perpendicular to the field line.is'given by the ion.

/2

banana-width piq/e1 ' where-pi is the ion gyro-radius [16].

In the limit w << W the linear dispersion relation

Bi- '
including the ion banana-width correction, but omittiny Landau

damping, is given by [6]

w-w w+w . ’
2 _ * X * _ . )
1/2 = w+iv * iy (l b) ’ . (27)
€ - +
where w, = —ky(qT/eB)[aln(no)/ax] is the electron diamagnetic
drift frequency and b = (ki + ki)piqze-l << 1 . In obtaining ‘

Eq. (27), we have assumed that the bounce motion and therefore
the periodic component of the ion banana excursions have an
approximately harmonic time dependence, which with ;he usual
Bessel function identity and subsequent expansion for smail
afgument b gives a correction of characteristic form (1-b) in
the term arising from the trapped-ion response.

The real part of the frequency becomes Re(m)= ﬁl/zw*fl—b)/Z .

If the linearhiradial'structure of all the modes corresponds to

the lowest mode found by Gladd and Ross [6], then the frequency

l/zw*kipiqz/ZE can be absorbed by a further change

shift Aw = =-¢
of reference frame and the radial mode structure otherwise

ignored, provided we consider only the local nonlinear evolution



=33~

far from radial nodes. Detailed consideration of radial effects
is deferred to'a future study. Dispersion is then modeled in
the radially local, one dimensional approximation by adding
to Eq. (8) the term‘633w/3£3 , where § = (v_/wo)(piqz/erz)-
measures the approximate relative level of dispersion:

2 4 33w

2
%£.+ 370 4 o2V 4y 4 2% 4 W _ . (28)
) 1 k3 43 3¢

We expect the influence of dispersion to become significant
when the nonlinear three-wave interactions‘of the unstable modes

_1/2) with the linearly damped modes (m > a-l/z)

(index m < a
acquire frequency mismatches comparable in size to the characteristic
rates of the three-wave interactioné. "From Egs. (15) ana (16),
these rates are of order twice the linear growth rates of the
unstable modes. For v+0 this is equivalent to balancing the-
9°9/06% term with the 63°y/3£> term in Eq. (28) for

15/36] ~ m ~ o */?

We conclude that dispersion will have a
significant influence on the saturation for G/ml/z > 1
We evaluate this condition for expected PLT tokamak parameters

and typicalAplasma profiles in the next section.
Dispersive corrections from the real part of the dielectric

response of the barely trapped and circulating ions, the
imaginary part of whose response gives the‘Landau'damping,‘can
also be important. However, because of the dependence on k"‘and
thus on shear, we defer detailed study of these effects to a
future publication. We proceed on the basis that inclusion of
these and other dispersive corrections only modifies the radially

local parameter dependence of §.
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In the dispersive limit, two-mode equilibria with a
finite group velocity u are possible. We use Eq. (28) with
v+0 and rewrite Egs. (10) and (11) to obtain the steady-state,
coupled—mode equations:
—(6p2+ u)pa = ps, a_ , -y_a a
p 2pp PP P 2p
(29)

2
2p ~ YopPap T~ P2 P

where we have again set sp = 0. Egs. (29) are readily solved to

give
2 -9 -1( 2 )2 2
. = = = = + = - ) +u - '
255 Yp/P ' Syp (Gp u), and ag YopYp 0P .szYp/P
(30a)
and
u= -8 28 + / +2 = 26p2(1—2a a/(°ap2—l) | (30b)
P (Yp sz) (sz Yp)- p
As §+0, these solutions join smoothly onto the earlier
. two-mode equilibrium configurations Egs. (12). The total
energy of the drifting steady state is larger than for the
nondispersive case:
2 2 2( 2 - 2) A ‘ 2 2.6
= + 2 a + s = 2 + 2y + BS ’
E = p“a /2 P lagy * syp)= vy lvy/ Yp B8P (31)
wheré B = 36(2—# /2y )Yz/(Y +2vy )2 > 0 . The first two terms
2p” 'p"'P" " 2p T p :
on the right-hand side of Eqg. (31) scale as p4. Therefore

the last term, which represents the additional éaturation
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energy due to dispersion, ‘scales relative to the sum of the:

2.2 -1 .
first two terms as 6 p ==62/a for p = O(a /2). ~-Then, in .

agreement with our earlier estimate, the influence of dispersion

172 5 o1y .

is appreciable when §/a
We remark that for modes such that Y2p + 2yp+0 (ag::1/3),

u and the émplifudes.ap énd s:p apparently diverge. In this

limit it is invalid to truncate the higher harmonics - 3p,4pP,...

In general, dispersive equilibria are expected to have amplitudes

and group velocities as continous functions of o« . In any c§se,

nonlinear saturation evidently'occurs at a higher level than in

.the absence of dispersion. Relatively large amplitude

equilibria can be achieved which are consistent with our theory

provided that the group velocity remains small, i.e.

1/2

|w§ur/v_| <<. V, , and provided b¢/T|z|woe‘ w/v_|<< 1. ' In

the limit |u| >> 6p2, the latter condition becomes
]e¢/T|=.O|woel/2u/v;| << 1.  When the equilibria are highly dis-
persive, incoherent processes [9,13], which are complementary to
the resonant mode-coupling considered here, are presumed to

play more of a réle in the saturation.

Direct numerical integrations of Eg. (28) confirm that
again the two-mode equilibria achieved By harmonic generation
arc the relevant mode counfigurations. Ekgs. (30) describe the
steady statcs obtained when the mudes are excited by steady
random emission at low level and when judicious choice of o is
made so that |l—3ap2| is finite. The arguments pertaining to
Eg. (16) made earlief (Sec. 3)Adescribe in_spfrit”the acceséibility
of the two-mode states with finite dispersion. The main -

\
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difference is that dispersion steadily mixes phase and

imposes a reactive load on the mode coupling.

4.2 TIon Collisions

The principal effect of ion collisions is to uniformly

i 24,2 _ _
reduce the linear growth rates, Im(m).fkyv*/v_ Yip ~ V4
or nondimensionally Yo = m2 - am4 - v (see Figy. 8). If the

effective ion collision frequency is sufficiently high
(v >1/2a), the trapped-ion instability is suppressed altogether.
Thus for instability, ion temperatures will have to be high

enough so that v << wy, and v, < m§/4av_ . These considerations

. based on the linear theory help to define the relevant plasma
conditions for the mode and serve as starting point for our
examination of its nonlinear saturation.

Fig. 8 illustrates how ion collisions could subtly alter
nonlinear stabilization by mode coupling. In the absence of
collisions, mode coupling effecﬁiVely transfers wéve energy
from unstable longer wavelength modes to an energy sink at
shorter wavelengths provided by Landau damping. If v>1,
ion collisions can supply an additional energy sink at long
wavelength, which is accessible by three-wave decay of the
linearly unstable waves. We examine a new class of equilibria
made possible by the energy sink at long wavelength, but we
determine that they are not accessible and are unstable.

A simple analytic treatment can be given which is

appropriate for systems with finite rather than infinitesimal
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o, where o < 1. In the nondispersive limit we hypothesize
steady-state solutions of Eq. (8) composed of three odd parity
Fourier modes (p,2p,3P), since the ion collision term does not

mix parity. The coupled-mode equations obtained from Eq. (9),

2a /9t - a = pa a + a
o/ YpPp T P9%2p T PA2p%3p

X )
9 9T - a = - + 2 a a 32

Ba oT -~ a = - a a
3p/ Y3p%3p 3p p 2p '

have steady solutions (3/3t = 0), which are most simply given in

the limit << 1 by~
imit |y /v3,] y

o 1/2 _ _ v Y172
= i( Ypsz) /P 1 ay, = -Y,/p,and a5, = i(3Yp/PY3p)( Ypsz)
(33a)
or
2\1/2 2\1/2
= 4 |- . = - = -
(33b)

The validity of Egs. (33a) {Egs. (33b)] requires that —ypy2p3> 0

-y sz < 0] and that the mode amplitude a is so heavily

P
damped that it can be neglected.

4p

The solutions described by Egs. (33a) are the same as the

two-mode equillibria described by Eq. (12), the finite amplitude
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of a3p serving as a small correction. However, we now realize
that these steady-state solutions generally apply for Yp 2~0

_provided that ‘YpYZp >'O. The set of solutions Egs. (33b)
can arise for .Y2p 2 0.if -szy3p > 0. Egs. (32), or Eg. (8)
more generally, will govern the time developmeht of the mode
~émp1itudes excited from low levels initially and will determine
the accessibility of a steady state.

We investigate the accessibility of the three-mode
configuration in which Y3p << Yp < 0 ind -Y3p >> sz > 0.
To lowest order in |Y;; 3/at| , a3p is quasi-steadily driven by

Egs. (32) can be'expressed in the form

the beat a, .

ea ap 2p

a, =~ -3_|v |_1 a_a (34a)
3p © p''3p P 2p

va_/at = |p(1-3_[v. |"ta, Ja, - |y ||a (34b)
P~ | p' 3p 2p/ 2p P p

da, /3T =~ (Iy | - 6p2|Y |_1a2)a - pa2 (34c)
2p 2p 3p p/ 2p p

During the linear growth phase a ~ azp(O)exp(szT),we

2p
observe that for azp(O) < 0 Eq. (34b) describes the exponential

decrcase of ap at a rate faster than the exponential increase

of a,_ . This causes as, to decrease as well, and no saturation

2p

of the growth of a is possible unless the stable harmonic

2p

a is included.
4p

For aZp(O) > 0, Egs. (34b) and (34a) describe the
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concomitant growth of modesap and a3p , driven by the decay
of the exponentially growing mode‘a2p to-ap and thé.gubsequent
- beating of ap with‘ap to eXcite‘a3p'. The amplitﬁdes.bf-thé
three modes will stabilize at the values given by Eqs. (33)
if the right-hand sides of Egs. (34b) and (34c) can vanisH'yﬂ
simultaneously. In Eqg. (34b) the amplitude 25 determines the
growth of ap . It is evident that if all three modes are
excited initially from low level, ap first decreases in

' magnitude, since 31n ap/ar < 0 for a2pa< }yp]p_l . For

|yp|p_l< a2p < |Y3p[(3p)7% 91ln ap/BT > 0. However, before

ap can sufficiently grow to attain an equilibrium value, a2p
overshoots the value |Y3pl(3p)—l resulting in 9dln ap/ar <0
which further destabilizes a2p as described by Eq; (34c).
- Numerical integrafions verify the overshoot and runaway phenomena
described here.

We remark that the harmonic generation of the damped
mode a4p omitted in Egs. (32) to (34) proceeds at rate 2Y2p .
Thus the excitation of a familiar two-mode equilibrium
(2P,4P) occurs on the time scale of the linear exponential growth

when the mode a is included; therefore,

4p

cannot really occur. Furthermore,

of the mode a2p

overshoot and runaway of a2p

we observe that when a system of modes is initially prepared
in oné of the three-mode states described by Egs. (33) for

Yo, Y3p< 0 and Y2p > 0, the mode configuration is unstable to

P
the formation of a (2p,4p) equilibrium (see Fig. 9).
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We have also investigated the influence of ion collisions
on the LMRT equilibria. Because the LMRT solutions are composed
of weakly damped or weakly growing modes with a particular
ordering of parameters, the nondimensional ion collision
frequency v cannot exceed 0(1l), otherwise there will be no
linearly unstable modes. We have extended the LMRT equilibrium
solutions to include v = O(lf by means similar to those
discussed in Section 3, Appendix 3 and Ref. 10. Direclt numerical
integrations of Eq. (8) with these new equilibrium‘solutions as
initial conditions disclose, however, that ion collisions do
not stabilize the LMRT equilibria. The LMRT equilibria are
again unstable to the growth of modes with faster linear growth
rates (Sec. 3), which subsequently form steady two mode

equilibria or time-dependent superpositions of two-mode states.
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5. Cross-Field Transport and Scaling for Tokamak Plasmas

5.1 Transport Coefficient for Radial Flux

In this section we consider the enhanced radial transport’
that arises due to the trapped-ion mode and examine in detail the’
scaling of our results with physical parameters. -In particular,
the transport levels for saturation via cohe;ent mode coupling
are compared to the transport levels based on turbulent saturation
predicted by Kadomtsev and Pogutse [11,12]. We also determine
the range of plasma parameters for which our various;assumptipns
are valid, and we calculate the dependence of important
dimensionless parameters on the relevant plasma parameters.

The coherent, radial transport is determined locally by =

the flux <;2V2' >>, where the brackets indicate an average
\ e~

_, 2T7r oo A
over the poloidal angle, i.e. (27r) 4) dy(neye-x)

Because of the poloidal periodicity, the contribution to the
average flux from the diamagnetic fluid velocity vanishes
identically to all orders in e¢/T. The poloidal averaée is )
equivalent to a time average over many oscillation peiiodé.
The circulating electrons respond adiabatically, and therefore
do not give rise to an average radial flux. To lowest order
the radial transport is driven by the E x § drift and is given

by

]
]

@z(l)yz(l).;> = (c/B) <r1€(1);xY¢';> 2 1 » o (39)
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and the transport coefficient is

AL O J 3 -1 - ST (1)
D = - Qxeye-x//(ano./BX) =z (c/B) (ano/BX) \\e Vy¢> (35)

T(0)

. T (2
The contributions to the flux from nj (2)

V.

induced by the
- ponderomotive force have been assumed small, an assumption
which is justified later in this section.

We construct nz in terms of ¢ from Egs. (3) and (6) by

eliminating nz assuming |e¢/T| << 1 and v_o>> Wy >> V. It
T T 1/2
is straightforward to show that n, = ni—2no®(l—e / )y and
nT zel/zn + 2%n (1 - cl/2/2 + v /v ) = 2n (V. /rv ) ed,/9%
i lo) “ fe) 4 FRAR g o %/ - J 5
+ 2no(V*/rEl/2\)_)8¢2/8£ + ... (37)

where ¢ = e¢/T .

Substitution of Eg. (37) into (36) yields

2172 7).\ 32 [0\ [ wp |2 ‘
. T € a0 _ € c'l ay
D = ( Z_B) v_ <\(W) ) v ( \)—) \reB) <\(3£) /,/) ! (.38)

which agrees with a derivation from quasilinear kinetic theory.

The transport coefficient is therefore directly proportional to
<(3w/3£)2> a~=2:mrr12(ar:fl+:~.‘.r2n)/2 ,-which is just the nondimensional
energy E expressed in terﬁs 6f the Fourier coefficients
introduced preceding Eq. (9). Kadomtsev and Pogutse have

suggested a transport coefficient due to incoherent, turbulent
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. . : 5/2 N2 2
processes which is given by Dyp ~ (r/R) (cTe/eB) /4\).ern ,

which we will compare with Eg. (38) in the following.

5.2 Scaling of Results for Tokamak Plasmas

For purposes of application we consider reference parameters
typical for PLT operation: ng ® 10]'4cm-3 , B = 50kG, e, = e(a)=1/3,
mi/me = 3600, a = 45cm , R = 135cm, ny =1/2 , d, = g(0) = 1.25,
‘and To = 7(0) = 1 keV.

As was defined following Eq} (8),

2 T : .
= ' -
o A' (1 3ni/2)(wo/wBi) V;/wBi . fo we use the conventional

definition w_. = €1/2
B1

and refer to the literature for the contributions to Landau

Vi/qR , where vy is the ion thermal velocity,

damping from the trapped [5] and the circulating [4] ions, we

obtain A' T 40. We recall that wo = V*r—l = el/zpivi/4rnr .
For PLT parameters Py = 0.13T(keV)l/zB(SOk(‘;)_l and
Vo~ 4 X 105 n(1014cm—3)T(keV)“3/2 . Hence

(<]

o =~ 5.5 % 10-4q3 6_7/2Rr;2n(1014cm—3)B(50kG)—2T(kev)—l(l-3ni/2)
N (39)

To maintain the validity of the fluid treatment, it is required that

In1u><kyv; and consequently that a be not too small, viz. al/z > wo/v_ .

For typical plasma profiles and parameters a is of order

3 2

107> or10 ° . similarly , we find that

_ -2 -1-1 1/2 -1
w/wg, = 3.25 x 107 qe r_ T(keV) / B(SOkG) (40)
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and

wo/v_ = 2.5 83/2(rrn)-lT(keV)5/2n(1014Cm-3)-lB<5Ok(%—l / (41)

both of which have been assumed small.
In Section 2 the model, one-dimensional partial differential
equation, Eqg. (8), is derived assuming that the ponderomotive

nonlinearity is small compared to the neglected terms involving

x derivatives coming from V°[n§l)vél)] + which in turn are
assumed small compared with the retained terms containing the y

(1), (1)

derivatives from V~[nj ] . The validity of the latter

~

assumption depends on

k F0/V_ << 1, (42)

and the former on

Qi/( xrnv_) >> 1 .- (43)

Gladd and Ross [6] have investigated the linear radial mode
structure of the trapped—io? mode and have shown that

ke ~ 'rr/Ars , where Ars is the spaciné_between mode rational
surfaces: Ar = (£.dq/dr)-l, and £ is the toroidal mode number.
We use £9g =z m ~ O(a_l/?), where m is the poloidal mode number, and
rd [1n(@)1/dr = 0(1) to obtain'k.r = O(rk r) = r /al/2c

Excluding the exact center of the cross-section, there is a large

fraction of the plasma volume over which rn/r = 0(1). Then
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kr - mkr ~aa /2 = o0)rkev) 2010 en3) "2 for
X' n y n |
typical PLT parameters (e = 1/4 and q = 2.5). We use Eqg. (40)
3 4 -3.-1

and Qi/v_ =1.2 x 10 eB(SOkG)T(.keV)3/2n(10l cm ) to

evaluate the inequalities (42) and (43):

14 -3,-3/2

ernwo/v_ 6 x410_3T(keV)3n(10 cm ) << 1 (44a)

gnd

14 -3.-1/2

Qi/(ernv_) ¥ 10T (keV)n (10 g@ >> 1, ~ (44Db)

)
using B = 50kG, € * 1/4, and g ¥ 2.5. These inequalities are-
well satisfied for PLT parameters and justify the one-dimensional
model.

In our analysis we further assume that e¢/T is small.
In the absence of dispersion we have found that the saturated

1/2 1/2

amplitude scales as ¢ -~ q_l/zwhich.gives ed/T ~ € wo/v_ o or

ed/T ~ 102 811/4(1=3ui/2)‘1/2 R‘3/2q'3/2n(1ul4cm'3)'3/2T(kev)3.

(45)

For parameters typical of the heart of the PLT profile: € ~ 1/4,

q ~ 2.5, and rn/R ~ 1/3, Egs. (39) and (41) give

4 1

oo 0.07(1—3ni/2)n(101 cm_3)T(keV)_
and

wo/v_ z 2.1 % 10—4n(1014cm-3)_lT(keV)5/2 .
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Then|e¢/T|béing small depends on wo/v_.<< 1, and we find that

les/T| = 0.4 x 10'3(1-3ni/2)'1/2n(1014Cm'3)'3/2T(keV)3.

This level is competitive with the estimates for saturation by

méans of electrostatic detrapping [9,13]. Because:

nkg v 10‘61:1(10]'40111_3)nl/ZT(keV)3/2 , the thermal fluctuation
level is small by comparison, viz.

4 —3)1/4

lad/T| < 0(10” )n(10tden -3/4

T (keV) .  Our numerical
studies of Eg. (8) indicate that the saturéted amplitudes are
insensitive to noise at this relative level.

In order that the trapped-ion mode be linearly unétable} the
effective ion collision frequency must not be too large,

v, < wi/Zav . (see Sec. 4). Using v = (me/mi)l/zv_ '

+
mi/me = 3600, and Egs. (39) and (41), we determine that the

+
condition for instability is

2av_v+/wi x 3 X 10_6q3R3 8—9/2n(1014cm_3)3T(kev)—6(l—3ni/2> < 1.

(46)

We note that the 1l.h.s. of (46) is a sharply decréasing function
of temperature and inverse aspect ratio and increases dramatically
with increasing density.

We recall from Section 4 that the nonlinear saturation is
1/2

relatively insensitive to dispersion provided that § < «

and that the quantity |1—3dp2| is not too small. For intermediate



-47-

sized a typical for PLT plasma parameters, e.g. d = 0.01 ,

we find that'|3ap2—l|>0.08; and therefore the two-mode, drifting
equilibrium solutions described by Egs. (30) are well-behaved.
Dispersive effects due to finite ion banana-width will then

be of little consequence if

6/al/2 0.6 ql/2 e-l/4rl/2(rn/r)2n(1014cm£3)l/zT(keV)-l <1
(47)

We can now rema:k that evidently the relative influences of
dispersiop and ion collisions both decrease as the plasma
temperature increases, which make those simplest considerations
of the mode saturation appearing in Sec. 3 relevant in the high
temperature limit. AThe radial transport in the collisionless and
nondispersive limits can be compared to Kadomtsev and Pogutse's

DKP by use of Eq. (38):

2
D/D._ = 2.1 x 107r;11(€/qR)6(1—3ni/2)—2B(50kG)

KP n<lol4cm-3)-4T(keV)7

(48)

We can now summarize the various validity conditions

1/2 and the

2
Wy << Wpy » W <<V, V< w,/2av_ , and §< a

condition that the calculated transport be more optimistic than

the Kadomtsev and Pogutse pfediction D <D . We use Eqgs. (42),

. KP
(43), (46), (47), and (48) to determine a set of critical central
temperatures as functions of x 3 r/a where the conditions become

equalities. For purposes of illustration we employ PLT

parameters and reasonable plasma density and temperature profiles,
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2 2
n (x) =,no(l—x2) » a(x) = q (1+x") , and T(x) = T_(l-x )1/2
then r_ =Aa(l-x2)/2x and n, = ng = 1/2 .. For the given profiles

we then obtain

£ aB 2 o .2.3/2
w, << w . 7T << T, = 2.4 X 102( o ) (1-x") -

o) bi o B q0 (l+x2)2
2
3.4 x 10% 1l1§7)2/2 '
(1+x7)
1/2 .
R g n _ 1/12
- 00 0 1/12 x 2.1/2 _
le¢/']’_‘| << 1 Z TO <<' T¢ = 0.17(——;2__—) EIO X (1+x7) =
0
6X—ll/12(l+x2)l/2 ,
nUBRa 2/5 l-x2 3/10
wo << \)_ z TO << T_ = 0.53(—3—]7— X2 ) =
o)
21.5x'3/5(1—x2)3/1° ,
(49)
1/2
R
2 _ "5% -3/4 2\1/2
vy <wg/2av_ > T > T =0 08( 373) X 1+x
€o
2.36x /4(l+x2)1/2 ,
, 1/4 2\ 2 2\1/2
1/2 _ 1/4 1/2 1-x (l+x )
6 < Qo ;*TO > TD 0.144 EO (Rqo O) ‘;-& (
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and
f{a r\8/7  n4/7 L ‘(1’+le 6/7
D < Dy 2 Ty < Typ = 0.10{2— 53T 3T 2177 T
Kp © o a B x 7 (1-x7)
2.36 (1+x2) /7
® ’
27T (12 172
14 -3

where the density is in units of 107 "cm ~, the magnetic field is
in units of 50kG and the temperatures are in keV.

The central temperatures detgrmined by Egs. (49) are
tabulated for three radial 1ocatiohs in Table 1. The column
for-'_*To <TB has been omitted since the condition Wy << Wy s is
easily satisfied everywhere in the profile except at the limiter.
Table 1 indicates that the trapped-ion mode will occur throughout
a substantial volume of the PLT plasma for central temperatures
in excess of 4 or 5 keV. For these temperatures the fluctuating
potential will saturate at levels e¢/eT < 0(0.1). Dispersive
effects seem to be small over a large part of the cross-section,
but sighificant for x < 0.5. We note here that Table 1 is
- somewhat misleading on the subject of transport, because the
transport coefficient relative to the Kadomtsev-Pogutse estimate
Eq. (48) scales very sharply with respect to temperature,

7

D/DKP « T° . For example, a central temperature of To = 4keV

would allow the trapped-ion mdde to occur for x > 0.75; the

saturation would probably be nondispersive,

. 1/2 . . .
§ << a /"i 0(0.05), and result in a relative transport
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TABLE 1. CRITICAL CENTRAL TEMPERATURES (KEV) FOR PRINCETON LARGE

TORUS PLASMA PARAMETERS. AND PROFILES.

.25 25 48 6.9 233 - 3.8

.75 | 10 20 i 3.7 i 1.0 ‘ 5.7
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coefficient D/Dyp _<_‘(4/5.7)~7 ~ 0.1 . .However, for higher
central temperatures, D/DKP'rapidly increases and other nonlinear
effects become important. Because of the requirements

T, << T o and T, << T_ , our basic theoretical model begins

to break down in such a temperature range. Note that for larger

devices as R increases the range of applicability of the theory

also increases.

6. CONCLUSIONS

We have presented a detailednstudy of the saturation of
the dissipative trapped-ion mode by the mode coupling of
unstable long-wavelength modes to modes at shorter wavelength
stabilized due to Landau damping by trapped and circulating ions.
We have found that stable "two-mode" equilibria can be
achieved by means of harmonic generation of short Qavelength,
stable modes. However, the multi-mode steady states emphasized
by LaQuey et al are always unstable.

These results were obtained analytically and verified by
detailed humerical experiments. In particular, the numerical
studies have verified that coherent, two-mode Steady states can
be excited from steady emission of random noise. Even when
there is competition between two or more two-mode configurations
in the time-asymptotic state, the.effective saturated aﬁplitudes
and wave enefgies scale approiimately as a single two-mode
equilibrium.

Although ion collisions are important in the linear

stability theory of the mode, we have shown that, other than
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uniformly decreasing the growth rates of -all modes, they do not
fundamentally iéfluénce the saturation mechanism. With

regard to finite ion banana-width dispersive effects, we conclude
that dispersion does not alter the basic saturation mechanism.
However, it can inhibit mode-coupling and drive the saturated
amplitudes to much higher and possibly inaccessible levels, if
the dispersion produces a relative frequency shift comparable to
the linear growth rates ot the most unstable modes. 1h the
dispersive limit, other complementary saturation mechahisms,

e.g. electrostatic detiapping and'quasilinear profile modification,
may dominate.

Finally, we have applied our considerations to expected plasma
profiles and parameters for PLT and determined in detail the limits of
applicability of our model. Of particular intérest, we have calculated the
enhanced radial transport due to the trapped-ion mode and have compared it
with Kadomtsev and Pogutse's ioﬁéh estimate. We find that the relative
transport is éxtrenely sensitive to temperature, D/DKPOC T7 . For PLT
central temperatures high enough to overcome the instability
threshold determined by ion collisions and Landau damping for
r > 0.5a;, it is required that TO i'4kev; and we find thaf the
relative transport is small: D < O.lDKP . For TQ'> bkev ,

D >> DKP and other nonlinear effects can become important.
Note, however that with inéreasing temperature the iheoretical
model emplo&ed begins to break down. We also note that when
mode coupling provides the dominant saturation mechanism; the
saturated amplitudes and transport levels (for PLT parametersi

are competitive with the best estimates of those corresponding to

saturation by electrostatic detrapping [13].
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APPENDIX 1. Numerical Aléorithﬁ for Coupled-wave Equations

Ou£ numerical integrations have made use of a computational
scheme suggested by F.W. Perkins. The linear.variationS'of the
mode amplitudes are analytically absorbed into an integrating
factor, leaving the nonlinear variations to be integrated
approximately. . The latter_frequently make more modest demands
on the time step for numerical integrations, since they often
occur on a time scale lower than the linear variations.

Egs. (9) can be generalized to include the parify mixing

effect of dispersion and written in the symbolic form

8y/3T = L-y =3 (xg) , (1.1)

~

where ? = (sl,sz,...,al,az,...); L is a linear tensor operator
corresponding to linear growth, dissipation, aﬁd dispersion;
and ) (y) is the vector corresponding to the nonlinear terms in

Eg. (9). The integrating factor or propagator is exp(-LtT) which

leads to the result,

lg(HAT) = exp(im)-[\g (v) +fﬂ‘f at'exp (—éri) > (?)Hr'] . (1.2)

5 o ~.

The numerical integration of the nonlinear term on the right-hand

side of Eg. (A.2) can then be done by various standard algorithms.
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APPENDIX 2. Competition of Two-mode Equilibria

We now consider analytically the time dependence of more
‘complicated mode structures. One multi-mode configuration with
some flavor of nondispersive systems far from marginal stability (a << 1),
but simple enough to permit analytic progress, consists of
and a and heavily damped

L’ £+m

20 a2£+m ' a2£+2m , and a2£+3m . We consider

-1/2

unstable odd parity modes a .a

modes Aypem * 2

the case where m << £ > (2a) , i.e. the coupling of two
unstable modes of nearly maximum linear growth rate to a longer
wavelength mode of weaker growth rate. For |Y2£/2y£| >> 1 the

damped modes are driven by the unstable, longer wavelength modes,’

from Egs. (9)

o ofore -1 2 S
Asp_m * £(2£ m)(YZZYzﬂ-m) an@, » a,, = £Y2£ a, s

~ AR n -1 2
822+m ~ (2£+m) Yo20+m 22%2+m ' ®2042m ° <£+m) Y2p0+2m a£+m ’
(2.1)
and'
a 3 (£+m 2£+3m)(y Y -1 a a2
2£+3m 2£+3m'2£+2m m £+m °
To good approximation Eqs. (9) also give
aam/ar = Yl © ma£a£+m_,
(2.2)

2

a N 2 -1_3 -1 2
aaﬂ/aT Ypap, = Zama£+m + L Yopd, t+ £(2£+m) 20 +m22 +me
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sa;, /ot -

+ (£+m)2 -1 3
£4-m

x -(£+m)ama Y2p+2m Zp+m

Yo +mog +m 2

o ,
+ (“‘“) (2“’“) Y ;£+m 2% +m

1/2 ’ Ym/ZYK ~ O(m/'e)27<< 1. Therefore

For m << £ and £ =~ (2a)
a_ is nonlinearly excited by the beat of ap with Ap ym ’ and
during the early linear growth of the mode amplitudes

3 -1 A . A .
a_ =~ m(yz+y£+m) apap, . - However, if the system can_achleve

-a steady state, a =~ My = oapap, ... It is straightforward to
demonstrate that a steady-state solution of Egs. (2.2) with
mode amplitudes a. ap and az+m‘all finite requires that

Yoim < 0 in contradiction to the original hypothesis. (Sec. 6

discusses equilibria where y_, v, > 0 and Ypem © 0 .) If

4
a is allowed to vanish, ap and ap o 2T€ uncoupled and the
familiar two-mode steady solutions (ap,a,,) or (§C+m'a2@+2m)
can be recovered.

For finite a_»Eqgs. (2.1) and (2.2) describe the time
dependence of this multi-mode configuration and imitate in
a simplified fashion the behavior of the numerical integrations
of Egs. (9) for a = 0(10-2) and thirty or more modes. Since
Yor * Yopam * Y2£+2m < 0 , the growth of modes a, and 2 im
is necessarily limited by the nonlinear coupling to damped
modes as described in Egs. (2.2). The difference in signs in

the cross-coupling terms £a and —(£+m)ama precludes the

)4
continued growth of a. and is responsible for the nonlinear

a
m £ +m

oscillations of the amplitudes of the linearly unstable modes.
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Egs. (2.1) and (2.2) thus serve as a simple model for the mode
competition occuring in the computer studies in which either
time-dependent, "bouncy" saturations persist or the configurations

seem to snap into steady, two-mode equilibria.

APPENDIX 3. Coalescence of LMRT and Two-Mode Equilibria
We review here the multiple space-scale construction of
the LMRT equilibria [10], and discuss their coalescence with the

two-mode equilibria. We begin with Egs. (18a), (18b), and (19)

b

arid set 93/93t 0 and C = |Clexp(i$) to obtain to dominant order

in 1,2

a' + 2% + |c|?/2 = b2, (3.1a)

A = ) 3/3¢ 1n|C]| , (3.1b)
' _.‘ ZA A 2, " I

Ap' = 1/2) Yo+ (178 |c| /Yop * 3f|c| /|c] ( (3.1c)

where b is a real integration constant. The appropriate

0 and ¢(0) = ¢(m) = 0 .

boundary conditions are A(0) = A(m)

We have already assumed that C,C /C 0(l). We then see from

(3.1c) that to satisfy the periodic boundary conditions we must

have Yp = O(l/ﬂz), or f =1 - 0(12112)_l Thus, we can set
f x1 (Ax1) everywhere except in Yp in (3.1lc). For notational
convenience, we now replace |C|»C . By combining (3.1lb) with

(3.1a), we find



¢+ (1/2) c(c?—b) =0 ,.c'(b) = C'(n) =on o (3.2)

Using (3.2) and (3.1lc), we can also write

o' = (1/241)[Kbo - C2) + 18(b—C2)] P | }3,3)

~

where bO = -KYKYZK z 122(1-£) a% is the square of the
fundamental amplitude of the two-mode equilibrium correspondihg
to the given values of f.and L. Periodicity is imposed on ¢

in integrating (3.3) from 0 to T:
2 2 ' '
0 = (bo - < >) + 18<b - <L >) , (3.4)

where < f(&)> = 'n-lfﬂ d&f(€) . It is clear that a two-mode
equilibrium is indeedoa solution of (3.2) and (3.3): Cz=bo=b .
Egs. (3.1b) and (19) provide the remaining information
A f 0 and C2 = _£§£ . |

The LMRT equilibfia are defined to be those nontrivial
solutions of (3.2) and (3.3) for which b # bo . There is a
simple interpretaﬁion of these which comes from the formal

similarity of (3.2) to a particle trapped in a potential well.

We can write

¢ = -sv/ac , v(c) = (1/8)c2(c2 - 2b) : (3.5
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This potential is sketched in Fig. 10. The boundary conditions
in Eq. (3.2) require the "particle" to move across the well in
a "time" w (Fig. 10).  The two-mode equilibria correspond to
the particle‘being stationary at the bottom of the well.

Egq. (3.5) is readily integrated:

" £/2 =fcc dé[(cg - z2‘>(z2 - ci)]—l/z , (3.6)
1 - |

where C(@) =C, , C(m) C and b =?(Ci + C%)/Z . This fixes

1 2 '
c, = Zﬂ—lK(m) , wherem = 1 - (Cl/Cz)2 and K(m) is the complete
elliptic function of the first kind, 0 < m < 1. Then
Cl = 21r_]'K(m)(l-m)l/2 , and b = 4n—2K(m)(l—m/2) . In terms of

the Jacobi elliptic function nd, Eq. (3.6) is written
c(g) = 2n-lK(m)(l-m)l/2 nd(ﬂ‘lK(m)Im) . (3.7)

This satisfies <C2> = 4ﬂ—2K(m)E(m), with E(m) the complete elliptic
integral of the second kind. Eq. (3.4) then determines b(bo) ; Or )
m(f,i} ." In particular, at m = 0 we have b = C = 1, and from
Eq. (3.4) bo =1 . This is conéistent with a two-mode equilibrium
for which £ =1 - 1/121’.2 . The domains of existence of the two
classes of solutions are illustrated in Fig. 11.

Eqs.‘(j.lﬁj and (3.7) provide the result

A(E) = ﬂ_lmK(m) nd(n-nglm) sn(ﬂ—lEKlm)cn(nilﬁK[m).



-60-

In this form, the fﬂnctionéi behavior is not tranéparent. If
one combines a small.parametef expansidn.(nl << 1) of (3.6) with
the requirement that theAampiitude of C be exactly.maintained
for all m, one haé approximately the simpler forms

C(E,m) ~ C.(m) + A(m) sin?(£/2) and A(E,m) = (1/2) A(m)sin(£) ,

1 ¢

where A(m) = Cz(m) - Cl(m) . - These forms are adequate for a wide

range of m < 1

APPENDIX 4. Green's Function Solution for the Dispersion Function
D(w) |

We formulate here the solution for the dispersion function
D(w) in a form suitable for-numerical analysis. It is convenient

to introduce the Green's function G(§¢ , £') which satisfies the

equations
L(g)a(e,e) =6(e - &) (4.1a)
and, with (3/98)G (& ,E') =G'(E,E") ,
Gi(o, ') = G'(ﬂ ,g') =0, .(4.;b)
Lin c'(g" + ¢, €') - o (g ;'e, £) =1 . (4.1¢)

The solution of (22) with source function added is then

8p = ufﬂ ag' o(g,e') + pele,g ) . | (4.2)
lo) .
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' m
We define g (&) E’G(Elgo) and I (&) 5'/~ dg' G(£,&£') . The
0 _

normalization §p(0) 1 allows the replacement of u using

(4.2):

Sp = I(E)/I (0) + D[g(&) - I‘(«‘E)g(o)/l(o)] (4.3)

Finally, applying F{8p} = 0 from Eg. (24), we obtain
D =F{1}/ [g(0)F{I} - 1(0)F{g}] . We recall that the solution
of ﬁ(w) = 0 gives the desired dispersion relation describing the
stability of ﬁhé LMRT equilibria. |

The auxiliary functions g and I satisfy boundary value
problems which are solved by the superposition of the solutions
of easily computable initial wvalue problems. In particular, if
L(3,h,k) = 0, where g (0) =1, 3'(0) = 0, h(E)) = k'(§) = 1,

and'H'(g ) = k(g)) = 0 , we have
g(E) = 08, = )9 (E) + 6(8 = £ )g (&) .
with g (&) = =k' (1)g(&)/D , g, (L)) = G(E ) [h' (MK(E)

- k' (mh(g)1/0 ,

and D ?.5'(Eo)k'(w) + G(EO)h'(ﬂ) . [0(E£) is the Heaviside unif—step

function.] In similar fashion, if L I, = 0 where I,(0) =1

1

and Ii(O) = 0, and if I, = 0 where 12(0) = 0 and Ié(o)

il
o
-

then we find

I(E) = [1j(MI, (&) - I5(MI,(E)1/I](m) .



-62—

As an example of these considerations, we find for the
uniform, coalesced equilibrium (see Appendix 3)
D(w) = sin(Qn)/{Qcos[Q(w—Eo)] - sin(Qm)} , where Qz(w) =1 - iw .
We see here explicitly that the dispersion function can have
poles as well as zeros, the implications of which in the

context of a Nyquist analysis are discussed in the text.
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’ Va Y=r(g-¢/q)

" 762110

Fig. 1. Relation of slab td toroidal coordina?es ;howing
mutually orthogonal density gradient Yno(x), magnetic field B,
and diamagnetic drift velocity V, .

0 ' WJ/ZJ 7r/IZ ¢ 31rl/4 T

763177

Fig. 2. Time development (1t = 0.5, 2.5, 5.0, and 7.5) of
a perturbed "two-mode" equilibrium: (p, 2p, 3p,...), P = 3;
o = 0.05. There are 20 Fourier sine modes present. The equilibrium
is linearly perturbed by modes m = 1 and 2, and is unstable to the

formation of a steady configuration in which all the modes are
excited.
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Fig. 3. Stability windows for "two-mode" equilibria
shown as vertical bars at fundamental mode numbers L for
values of the relative Landau damping parameter o .
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762108
Fig. 4§a). The usual Nyquist contour. (b) The topology
of the Nyquist plot for m = 0.15 and radius of semicircle in
(a) equal to 5. The plot encircles the origin once in the

positive sense, indicating an unstable pole within the w contour
of (a).
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762107
Fig. 59(a). The modified
Nyquist w contour necessary
@ ©

when the dispersion function
has both zeros and poles. The
locations of a typical zero

and pole are indicated.

(b) The topology of the Nyquist
plot for m = 0.23 and the
modified (indented) w contour

4

of (a). Instability is in-
() ﬁ\\— dicated. Also shown by the
dashed line is the plot of the
?;iggﬂiggﬁg unmodified, semicircular g
==~ UNMODIFIED NYQUIST | (b) contour. The D(uw) plot does
CONTOUR (a) OR not. then encircle the origin,
PLOT (b) indicating an equal number of
- zeros and poles encircled by
ggq&g?pON““m ' the w contour.
12 /f 1725 II/‘ //\ //\\‘
763176 9{ // /' /' // \
Fig. 6(a). Time develop- T / / [
ment (t = 0,5) of anm = 1, {

linearly perturbed coalesced
"two-mode" and LMRT equilibrium

(p,2p), P = 10 and a = 0.01;
there are 25 Fourier sine

modgs present. A stable

(a2€ = 0.64) "two-mode"
equilibrium is generated

(&, 2%,...), 2 = 8.

(b) Time development

(t =0, 1.9, 2.0) of the
.same equilibrium,but linearly
perturbed instead by the

steady emission of low level
noise. The asymptotic state

is time-dependent or "bouncy"
with average energy obeying '
the "two-mode" scaling.

0 74 73
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-1

w(a o) = Km
+2(1-k2) /2

sin(u

nd(K'rr_l

£-+ﬁ o
0.9984, K(k) = 4.26, u = 1.39, and

-1/2

where o = 0.01028, k
36 Fourier sine modes were employed. This correcponds closely
to the wave form shown in Fig. 1 of Reg. 10. The agquilibrium
is unstaple and approaches the stable "two-mode" equilibrium

in Fig. 6 for t > 5.

Fig.
Ym = 5 - am
parameter V
presented.
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Diagram of the nondimensional linear growth rate
- v as_function of mode number m(k,, = m/r with
v+v_/mo . The flow of wave energy is schematically
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763178

Fig. 9. Time development (t = 0., 1.0, 2.0) of an m = 8
perturbed three-mode equilibrium (p, 2p, 3p), with p = 2.
a = 0.04, v = 3.5, and 10 odd parity Fourier modes. The
initial configuration is unstable to the formation of two-

mode equilibrium (&, 28), 2 = 4.

v(c)

4
T

¥/2b v% /b J2b C—

1-b%8

o TWO-MODE EQUILIBRIA (vV=-b%/8)
-=—LMRT FQUILIBRIA
{-b78<V<0)
762111

Fig. 10. The classical potential well whose derivative is
the secondi term ofiEq.(3.2). '
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The branches of the
The orderings required for the LMRT branch

are not valid outside of region A.

in (a) for the fundamental mode number L = 8.
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nonlinear eigenvalue

(b) A blowup of region A

The coalescence

of the two-mode and LMRT branches is apparent.
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