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Tunable Far Infrared Laser Spectroscopy 

of van der Waals Bonds: Ar-NH, 

Dz-IIung Gwo 

ABSTRA. r 
Hyparfina rasolvad vibration-rotation-tunneling spectra of Ar-NH., 

and (NH,) 2, generated in a planar supersonic jet, have been measured 
with the Berkeley tunable far infrared laser spectrometer. Among thj 
seven rotttionmlly assigned bands, one baud belongs to Ar-NH,, and the 
other six belong to (NH,),. 

To facilitate the interaolecular vibrational assignment for 
Ar-NH., a dynamics study aided by a permutation-inversion group 
theoretical treatment is performed on the rovibrMttonal levels. The 
rovibrational quantum number correlation between the free internal 
rotor limit and the semi-rigid limit is established to provide a basic 
physical picture of the evolution of interaolecular vibrational 
component states (K manifolds}. An anomalous vibronically (not just 
rovibronically) allowed unique Q branch vibrational band structure is 
predicted to exist for a near prolate binary complex containing an 
inverting subunit. 

According to the model developed in this work, the observed band 
of Ar-NH, centered at 26.470633(17) cm*" can correlate only to either 
(1) the fundamental dimeric stretching band for the A, states with the 
NH, inversional quantum number v,-l, or (2) the K -0 - 0 subband of 
the lowest internal-rotation-inversion difference band. Although the 



estimated nuclear quadrupole coupling constant favors a tentative 

assignment in terms of the first possibility, a definitive assignment 

will require more far infrared data and a dynamical model 

incorporating a potential surface. 
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Chapter 1 

A Review of the Study of Small van der Vaals Complexes 

The interactions involved in chemistry may be roughly classified 

into covalent and noncovalant (ionic and intermolecular) ones. The 

borderline between them cannot be clearly defined. The covalent 

interaction results in the formation and dissociation of molecules. 

On the other hand, the noncovalent interactions cause Che associations 

and dissociations between molecules. (Here, "molecules" in a general 

sense also include atomic, polyatomic ions and closed-shell atoms.) 

Various names have been given to Intermolecular interactions, 

viz., weak, physical (in contrast to "strong" and "chemical" used to 

describe covalent interactions) and van der Waals (vdW). However, 
i 

because "weak" interaction is confusing with that involved in nuclear 

ft decay, and "physical" interaction implies something coo general and 

chus misleading, we, following the suggestion by Hobza and Zahradnik 

[1], prefer "vdW interactions" as the proper name for the 

intermolecular interaction. The molecular clusters held by vdW 

interactions will therefore be called "vdW complexes". 

From this connotation, vdW interactions are then involved in 

almost all chemical and physical phenomena in which more than one 

purely covalent system are implicated. Systems ranging from molecular 

dimers to condensed phases, and processes from molecular inelastic 

collision energy transfer, molecular photofragmentation, and 

solvation, to phase transitions and interphase interactions are all 
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related to vdW interactions. The ubiquity of the intermolecular vdW 

interactions makes the study of them fundamentally important. Due to 

their simplicity, the study of small vdW complexes such as dimers and 

trimers, i.e. the smallest possible pieces of condensed phases, 

naturally becomes a convenient starting point for the investigation of 

vdW interactions. 

In terms of electronic configuration of the constituent 

molecules, small vdW complexes include vdW ions, vdW radicals, and vdW 

molecules. In terms of binding energy, vdW complexes range from 

strong ionic vdW complexes such as H.O-Na [2-4] to weakly bound 

molecules such as He, (5]. In other words, their binding energy can 

be close to that of a typical covalent bond (40-200 kcal/mole) [6], or 

as low as a tenth of a kcal/mole. Among the various possible vdW 

molecules, the hydrogen-bonded (H-bonded) vdW molecules are a special 

class with binding energies of a few kcal/mole, for example, about. 5 

kcal/mole for (HjO), [7,8]. The binding energies of the "true" vdW 

molecules are usually 1 kcal/mole or less (5], 

Due to their generally smaller stabilities and consequently 

shallower binding potential surfaces, vdW complexes have larger 

amplitude and more anharmonic intermolecular vibrations and tunneling 

motions. For example, the HC1 diatomic subunit of the linear Ar-HCl 

complex is estimated to exhibit an approximately 40 vibrational 

amplitude in the first intermolecular vibrational (E bend) state of 

Ar-HCl [9-11]. And the two HF subunits in the slightly L-shaped 

H-bonded (HF). complex exhibit donor-acceptor role interchange 

tunneling motion [12]. 
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Under the Born-Oppenheimer approximation that the electrons take 

no time adjusting their motions to follow the nuclear motions, the 

potential energy of a molecular system is a function only of the 

nuclear configuration. This implies that the nuclei can "sense" and 

move on a potential energy surface of well defined geometry, which 

contains all the structural and dynamical information of the system. 

Therefore, the study of vdW interactions is equivalent to the study of 

the geometries of the intemolecular potential energy surfaces 

(abbreviated as "potential surfaces" in the following). The foci of 

the study have thus been experimentally measure, theoretically account 

for, and predict such geometries. 

The theoretical study has two mainstreams, viz., the perturbation 

theories, and ab initio calculations [1]. The former provides 

insights to the various physical contributions to the vdW interaction. 

The latter serves as theoretical methods to directly predict the 

geometries of the potential surfaces. On the other hand, the 

experimental mainstream [13,14] has recently been dominated by 

spectroscopy thanks to its capability of probing the intermolecular 

nuclear motions which are direct manifestations of the potential 

surfaces. 

In spite of having a solid quantum mechanical foundation, the 

state-of-the-art theoretical studies have serious difficulties in 

accurately predicting the potential surface for vdW dimer system with 

more than four electrons [15,16]. On the contrary, experimental 

measurements, spectroscopy in particular, become more and more 

powerful tools to probe the potential surfaces. A famous example is 
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the semiempirical determination of the potential surface for Ar-HCl by 

inverting only spectroscopic data* [17]. Hopefully, the semiempirical 

potential surfaces can be accumulated enough someday to resuscitate 

the theoretical studies. 

Several excellent review articles on theoretical and experimental 

approaches to vdW interactions have been published recently 

[1,13,14,18-22]. In the following two sections presented Is a brief 

summary of only the basic ideas involved In pure theories (first 

principles) (Section 1.1), and semiempirical studies (Section 1.2) in 

the investigation of vdW complexes. 

1.1 Theoretical Approaches 

It has been well known that the four major contributions to vdW 

interactions can be classified as electrostatic, induction, 

dispersion, and exchange repulsion energies [13,22]. The first three 

of these are long range attractive interactions, while the exchange 

repulsion dominates at short range. The potential surfaces result 

from the combinations of these long and short range interactions. 

The long range interactions are, according to the theory of 

electrostatics, proportional to sums of certain powers of 1/R, where R 

is the inter-subunit distance [23]. Among them, the electrostatic and 

induction interactions [24] have classical analogues, whereas the 

dispersion interaction is purely quantum mechanical in nature. The 

dispersion energy [25] is due to the intermolecular electron 

correlation effects arising from the interaction between the 

fluctuating instantaneous multipole moments. The quantum mechanical 
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exchange repulsion results from the charge overlap and the Pauli 

exclusion effects between the electron clouds of interacting 

molecules, and drops exponentially with R. 

This partitioning of vdW interaction into the above four 

individual contributions originates from the exchange perturbation 

theory (Section 1.1.1.2) treatment. The four parts are individually 

well defined only at long range, where the mixed interaction terms 

generated by the perturbation treatment are negligibly small, the In 

other words, the partitioning is arbitrary to some extent. 

All the aforementioned fundamental theoretical understandings of 

the vdW interactions were laid down in the first few decades of the 

century [22]. Briefly reviewed will be only the fundamental ideas and 

basic problems of the current theoretical efforts which mainly include 

perturbation theories (Section 1.1.1) and supermolecular ab initio 

calculations (Section 1.1.2). Being still in the stage of 

"mathematical games" and thus of little practical use, more 

sophisticated theoretical treatments extended from these fundamental 

ideas will not be discussed. Also reviewed are the fundamental ideas 

of group theoretical studies (Section 1.1.3), which have been 

mathematically the most straightforward and, in terms of physical 

insights, most important theoretical treatments so far. This is true 

particularly for H-bonded systems. 

1.1.1 Perturbation Theories 

1.1.1.1 Polarization Perturbation 

In the standard perturbation treatment of a vdW dimer, the sum of 
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the two subunit Hamiltonians constitutes the zero-order Hamiltonian. 
All the intermolecular interaction operators are then collectively 
treated as the perturbation. Consequently, the simplest, zero-order 
wave functions are the direct products of the orthonormal wave 
functions of the two individual Hamiltonians. Since each electron is 
associated with one or the other subunit in the wave function 
expression (and therefore is "polarized"), this method is also called 
"the polarization approximation". 

It is noted that these wave functions are not antisymmetrized 
with respect to inter-subunit exchange of electrons as required by the 
Paul! exclusion principle. Thus, as an Intrinsic problem, it fails to 
generate the short range exchange repulsion energies [26-28], 
However, this method is successful in providing interaction energies 
in the long range region, where the non-antisymmetric zero-order wave 
function should be « good approximation. 

The polarization approximation is one of the fundamental 
formalisms used to calculate individual contributions to the 
intermolecular binding energy. This becomes clear when the 
perturbation energies of the first and second orders (E and E ) 
are written explicitly as [22,29] 

E ( 1 ) - <*(A)*(B)|Vint|*(A)*(B)>. (1.1.1.1-1) 
|<*(A)*(B)|V, l*(A)*(B')>|: 

int1 

f(2)_ _ 2 ' v"' v"" int1 

B'^B «(B') - e(B) 
|<*(A)*(B)|Vin(.|*(A')*(B)>|2 

AVA «(A') - «(A) 



|<*(A)*(B)|V. |*(A')*(B')>|2 

- 2 2 
BVB A'*A («<A') - «-(A)] + t«(B') ~ e(B)] 

(1.1.1.1-2) 

where V. is the sum of all intermolecular interaction operators, 
int 

|»(A)»(B)>'s are the direct product wave functions for the dimer with 

subunits a, b in |*(A)> and j*(B)> states, respectively, and «(A) and 

e(B) etc. are the corresponding energy eigenvalues of the free subunit 

states. 

The two most widely used forms for V. have been the multipole 

expansion and partial wave expansion of the exact interaction 

operator. 

The multipole expansion is an approximation which is 

asymptotically correct for infinite inter-subunit distance R. 

According to the wave functions being coupled in Equation (1.1.1.1-1) 

and (1.1.1.1-2), this expansion assigns straightforward physical 

meanings to E' , E* ' in the limit of infinite R. For example, E' ̂  

is obviously the electrostatic energy. The first two terms of the 
(2) E expression are the induction energies, and the last term of the 
(2) E expression is the dispersion energy. But, for finite R, as 

required for actual dimers, this expansion makes the second and higher 

order terms divergent. Moreover, it does not account for the short 

range charge overlap effects [30,31], 

In order to obtain the missing charge overlap effects while 

keeping the various interactions obtained in the multipole expansion 

convergent, the partial wave expansion of the interaction operator can 

be used [32-36]. For example, in the simplest case of an atom-atom 
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system, the expansion of a given energy contribution can be written as 

[22] 

min[l 1.] 
E- 2 S £ t(l ,1. ,m) 
1 -0 1.-0 m--min[l ,1. ] * a b l a' b' 

where 1 and 1. are the angular momentum quantum numbers of subunit a 

and b with respect to laboratory space, and m is the projection 

angular momentum. These individual components, «(1 ,1. ,m), may be 

correlated to the multipole expansion terms E* by multiplying E^ 

with the scaling functions, which are generally R and relative 
(2) orientation dependent. For the divergent E ' and higher order terms 

in the multipole expansion, these functions have damping effects. 

Also predicted in E ' and E by the partial wave expansion are some 

extra "spherical" partial wave components such as «(0,0,0), <<1 ,0,0), 

and <(0,1. ,0) which have no such connection with the multipole 

expansion. Since no exchange effects have been included, these short 

range components can be attributed only to charge overlap effects. It 

is noted that there is no definitive reference with which to 

distinguish the short range charge overlap effects from induction and 
(2) dispersion energies because E is divergent in the limiting case of 

infinite R (in the multipole expansion). 

According to the above expressions for E and E , it is 

realized that, in practical calculations within the polarization 

approximation, the exact wave functions of the free subunits are 

essential. 

The SCF wave functions are one-electron functions, which neglect 

the intra-subunit electron correlations. The correlation energy 
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within a classical molecule is on the order of 1 eV per electron (23 

kcal/mole) [37], and usually orders of magnitude higher than any vdW 

bonds. Even if the inter-subunit electron correlation energy is only 

one per cent of that of the intra-subunit, electron correlation still 

contributes a nonnegligible fraction to the intermolecular force. Not 

properly taking account of such large intra-subunit correlation 

energies, the SCF wave functions are not expected to accurately 

produce the small inter-subunit correlation energies. This is usually 

a serious problem in treating certain vdW molecules where the dominant 

interaction is the dispersion energy, which is intrinsically due to 

electron correlation. 

A tremendous amount of effort has been made to calculate the 

individual contributions, based upon these relatively crude 

approximations. The main scheme has been the double perturbation 

theory (38-42], which estimates some intra-subunit correlation effects 

[38]. How physically meaningful these mathematical results are still 

remains an important question. There are two major difficulties 

inherent in the polarization approximation scheme: (1) in terms of 

formalism, all the exchange effects are neglected, and (2) in terms of 

application, accurate zero-order wave functions are unavailable. It 

should also be stressed that even if the exact zero-order wave 

functions are available, the calculation does not yield a physically 

correct result because the zero-order wave functions are not 

antisymmetrized. In other words, it is a theoretical framework, 

providing an incomplete physical picture, rather than a practical 

method to accurately calculate any individual contribution. 
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1.1.1.2 Exchange Perturbation 

In order to include the exchange effects in the perturbation 

treatment, there have been two kinds of symmetry adaptation schemes, 

viz., the "weak" and "strong" adaptations. In the strong adaptation, 

the antisymmetry is introduced starting from the first order energy. 

In the weak adaptation, it starts from the second; in other words, the 

first order expression is still obtained within the polarization 

approximation. 

As a simple example of symmetry adaptation, the first order 

energy of the strong adaptation can be written as (22] 

( 1 ) <»(A):;B)|VlntA|^(A)»(B)> 

<*(A)*(B)|Vint|*(A)*(B)> 

where A is the standard total antisymmetrization operator for the 

complex. (It is emphasized that A is for all fermions involved: 

electrons, protons etc. For example, A for H„ must produce the 

exchange antisymmetry between the two protons.) This expression can 

then be changed algebraically into two parts: (1) the electrostatic 

interaction, as previously obtained in the polarization approximation, 

and (2) its exchange counterpart, the first order exchange repulsion 

energy. Similarly in the second order term, after either a strong or 

weak adaptation, there exist not only the induction and dispersion 

energies, available in the polarization approximation, but also the 

exchange induction, and exchange dispersion energies. As expected, 

these exchange counterparts are all short range interactions. 
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The weak adaptation is physically incorrect because it does not 

consider the antisymmetry for thff first perturbation term. It exists 

only due to some historic interest for theoretical comparisons. For 

instance, it is found that the weak adaptation fails, but the strong 

one succeeds, to produce reasonable induction and exchange induction 

contributions at the SCF level of the theory between small 

closed-shell atoms [43-45]. 

The strong adaptation schema is able to further predict the 

existence of short range exchange counterparts of the three basic 

contributions simultaneously. However, this is a success only in 

terms of formalism, but not of practical application yet still because 

of the previously mentioned limitation of the SCF wave functions. 

1.1.2 Supermolecular ab initio Calculations 

Currently most of the pure ab initio calculations for small vdW 

systems are designed to calculate the energy difference (AE), defined 

as 

AE- E a b - <e(A) + e(B)) (1.1.2-1) 

where E .is the energy of the vdW complex, c(A) and c(B) are the 

energies of its constituent subunit A and B [1,13,22]. In other 

words, ab initio calculations are performed for the subunits and the 

"supermolecule" complex Itself, respectively. Because this involves 

direct ab initio calculations and no individual contributions to the 

vdU interaction can thus be studied, this scheme is often described as 

a "brute force" one. 



12 

There are many benefits available from this scheme: (1) 

convergence problems of the aforementioned perturbation treatments are 

avoided, (2) inter-subsystem electron exchange effects are inherent in 

ab initio calculations. However, these benefits have been 

overshadowed by several disadvantages: (1) correlation inaccuracy 

arising from the SCF wave functions, (2) basis set superposition error 

(BSSE). 

Most supeir.?olacular ab initio calculations are also performed at 

the straightforward and inexpensive SCF level. Since, as mentioned in 

Section 1.1.1.1, any SCF calculation will fail to properly include the 

intra-subunit correlations and the "supermolecular" dispersion, 

corrections are thus required. Basically there have been three kinds 

of corrections: (1) semiempirical corrections, (2) perturbation theory 

corrections (Section 1.1.1), and (3) configuration interaction (CI) 

corrections. Of course, semiempirical corrections already represent a 

failure of the theoretical methodology, and are thus avoided by 

purists. The double perturbation treatments can take account of 

certain intra-subunit correlations (3f ,. But since the double 

perturbation treatments are also based on the SCF wave functions, the 

very concept of the correction must be seriously questioned. Thus 

these perturbation treatments are, in some tense, "blind" corrections. 

On the other hand, there has been no reasonable agreement between the 

experimental data and the results of the various expensive CI schemes, 

except for the very small systems such as He-H, [15,16]. One of the 

obvious problems of a truncated CI expansion is that the limiting 

energy of an infinitely separated supermolecule is unequal to the sum 
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of the subunit energies [4b]. 

In supemolecular calculations for a vdW dimer, the respective 

subunits experience * lower energy in the enlarged diner basis set 

because the basis functions of one subunit increase flexibility of the 

basis set for the other. This Mathematical artifact results in an 

extra attractive contribution, which is usually named BSSE. This 

phenomenon is particularly serious.'for the cases of weak dimers using 

small b*r,sis sets [47,48]. Mostly BSSE is corrected for by the 

counterpoise method [49], in which the calculations for respective 

subunits are performed in the presence of the baais functions of the 

other subunit in the same relative position as in the dimer. Of 

course, if a very large basis set is someday allowed by the computer, 

BSSE will no longer be significant. This ideal has already been 

achieved for some small vdW systems at the SCF level [50], 

According to Equation (1.1.2-1), this method require* a 

subtraction between energies (i.e. E . and (c(A) + c(B))) that are 

many orders of magnitude larger than the vdW interaction energy <AE). 

However, according to the aforementioned basis set problems, none of 

E . and <c(A) + <(B)) can be calculated with an accuracy smaller than 

or even close to that of AE. Therefore the supermolecular 

calculations have been practically not quite useful. 

Recently, considerable improvement on the ab initio route has 

been made by Dykstra ec *1 [51]. However, it still needs more 

extensive examination before . 

1.1.3 Group Theoretical Studies 
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In view of the fact that the above numerical calculations are 

difficult that only crude results' can be obtained from them, it is 

pragmatic to extract some relevant results purely from symmetry 

considerations. There are two kinds of symmetry groups that are most 

important for small isolated molecular systems, viz., the point groups 

and permutation-Inversion (PI) groups [52]. For vdW complexes 

containing more than one nucleus of a given kind, it is the PI groups 

that are most useful in Che state symmetry labelling and in the 

application of the labelling to understand intermolecular processes; 

generally the point group is of little use. 

The molecular point group, based on the symmetry of Che well 

defined equilibrium structure of a system, consists of elements that 

properly and improperly rotate [53] the molecular vlbronic (not 

rovibronic) variables. (Reflections (ff's), inversion (1), and 

improper rotations (S's) are all examples of improper rotations [54].) 

Since all the symmetry elements, such as rotation axes and reflection 

planes, used by the point group are defined in the rotating, and thus 

noninertial, molecule-fixed coordinate system, the corresponding 

symmetry operations should not act on the system rotational 

coordinates. If they do, all the noninertial forces (centrifugal and 

Coriolis forces) resulting from the noninertial rotating coordinate 

system would be altered by such symmetry operations. Since the system 

energy is thus changed, these symmetry operations cannot commute with 

the rovibroiiic Hamiltonian. Therefore the symmetry species of the 

molecular point group can be used to label and classify only the 

low-lying vihronic states of semi-rigid molecules, which have well 
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defined equilibrium structures. 

The specific PI group used for a molecular system is named the 

molecular-symmetry (MS) group. The MS group, based on the 

experimentally observed feasibility of the molecular motions 

corresponding to the possible group elements, consists of three kinds 

of elements apart from the identity operation: (1) permutations among 

the experimentally indistinguishable nuclei, (2) parity (space-fixed) 

inversion of the spatial coordinates (polar vectors [55]) of all 

electron(s) and nuclei within the system, (All spin coordinates are 

left unchanged because they are axial vectors [55].) (3) the 

mixed-product operation of such permutation and space-fixed inversion. 

(It is noted that any permutation commutes with the inversion 

operation.) 

In terms of the Hamiltonian expression, each PI operation of the 

MS group affects one or a set of certain rovibronic variables. 

Generally, the kinetic motions of different rovibronic variables 

interact with one another through the potential energy coupling terms, 

which are totally symmetric functions of the corresponding rovibronic 

variables. In other words, the zero-order states of the same symmetry 

under the MS group formed by direct multiplication of the zero-order 

wave functions corresponding to the motions involved can interact 

among themselves such that the zero-order energy level distribution is 

perturbed. 

More generally, recalling that every term in the Hamiltonian of 

an isolated system must be totally symmetric, for the interaction 

building block <i|v|j> to be nonzero the state |i> and |j> must have 
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the same symmetry. Adding terms of rovibronic variable(s) that can be 

affected by any FI operation of the current MS group to the 

Hamiltonian will result in a shifting of the energy levels, but not 

splittings. One of the most important application of the MS group is 

thus to eliminate any extraneous numerical calculations for potential 

couplings between basis functions of different symmetry species [52], 

If the added term is a function of the rovibronic variable(s) that 

cannot be affected by the current MS group operation but by other PI 

operation(s), then energy level splittings will occur, and the MS 

group needs to be enlarged to Include the required new PI 

operation(s). 

However, due to the limited number of nuclei in the system the MS 

group has an upper limit for its size, which is the "complete nuclear 

permutation inversion" (CNPI) group. The CNPI group is a PI group 

purely based on the complete chemical formula of the system; according 

to the formula, all conceivable combinations of all-particle inversion 

and nuclear permutations are included as elements. Once the MS group 

has reached its limit, the CNPI group, all further added terms can 

cause only energy level shiftings, but no splittings. 

According to the definitions of the MS group, its PI operations 

(elements) have effects on all the spatial rovibronic (not just 

vibronic) coordinates, but leave the total energy and Hamiltonian 

unchanged. As a result, the symmetry species of the MS group can be 

used to classify the rovibronic states, in which several kinds of 

motions, even tunneling motions, could be highly mixed. This is the 

crucial advantage of the MS group over the point group. This is also 
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why the MS group is referred to as a "true" symmetry group, whereas 

the point group is an "approximate" symmetry group [52]. 

A comparison between the effects of a point group operation (a 

reflection) and a PI operation ((23)) on the total energy of the 

system is made in Figure 1.1.3 for an equilateral triangle molecule. 

In the upper diagram (a), keeping the system rotational coordinate 

intact, the point group a reflection of the vibrational (vibronic) 

coordinates changes the Coriolis force on each circularly "vibrating" 

nucleus. According to its definition, the Coriolis force on each 

nucleus is in the direction of vxu, where v is the instantaneous 

velocity of each nucleus with respect to the rotating molecule-fixed 

coordinate system, and u is the angular velocity vector of the 

rotating system with respect to the laboratory space. Classically 

speaking, after the reflection, the Coriolts force decreases the 

restoring force and thus lower the vibrational energy of each 

vibrating nucleus. In the lower diagram (b), the (23) operation on 

the rovibrational (rovibronic) coordinate obviously has no effect on 

the system energy. 

Usually weakly bound complexes do not have a single well defined 

equilibrium structure, as required by the point group treatment. In 

addition, since the potential barriers among their large amplitude 

motions are small, the various inter- and even in.ra-subunit dynamical 

(rovibronic) coordinates are usually coupled together, and various 

tunneling motions might occur. The MS group treatment can better 

exhibit its advantages for such systems, for it can provide many 

physical insights before accurate numerical calculations are 
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Figure 1.1.3 
A comparison between the effects of a point group a reflection and a 
HS group (23) permutation on a rotating (as indicated as the circular 
arrow in the middle of each molecule) triatomic molecule with 
equilateral triangle equilibrium structure. All the nuclei are 
circularly vibrating *s indicated. The directions of the Coriolis 
force are Indicated as straight arrows. 
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unavailable. In Chapter 3 is presented the application of the MS 

group theory to FIR spectra of the Ar-NH- complex studied in this 

thesis work. 

1.2 Semieapirical Studies 

Semiempirical potential surfaces are obtained by fitting 

experimental data to parameterized functional forms. Such surfaces 

are characterized by two features: (1) the parameterization provides 

the flexibility to fit the experimental data which usually sample the 

intermediate regions (basically the lower part of the potential well), 

which are most difficult for current theories, (2) the functional 

forms can be designed to follow the necessary theoretical constraints 

in the regions which have not been accessed by experiments (usually 

long and short ranges). As more experimental data sampling additional 

regions of configuration space are available, more theoretical 

constraints will be withdrawn from such potential surface syntheses. 

In other words, the ultimate goal is to obtain purely experimental 

potential surfaces. 

It is crucial that semiempirical potential surfaces are available 

especially when their theoretical counterparts cannot be put into 

practical use. This is because they can serve as (1) ever-improving 

standards or goals for the theoretical studies and (2) starting points 

for various applied calculations, in which only the geometries of the 

potential surfaces are required. As a result, extensive and intensive 

experimental studies probing the vdW systems have been undertaken for 

many years with the ultimate goal of producing such potential 
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surfaces. 

1.2.1 Useful Experimental Data 

Since vdW interactions are involved in almost all chemical 

phenomena involving two and more classical molecular subunits, various 

types of experimental data contain information about the potential 

surfaces [13,56]. For the purpose of semlempirlcally synthesizing 

potential surfaces, the value of the data depends upon (1) if an 

economical data-to-potential Inversion scheme is available, and (2) if 

the data is detailed enough to make the resulting potential surfaces 

contain the most detailed information, such »s intermolecular 

anisotropy. By such criteria, two types of data have been shown to be 

superior, viz., molecular beam scattering data, and spectroscopic 

data, which will be briefly discussed below. (Little information on 

the anisotropy is contained in measurements of virial coefficients. 

The information extracted from transport and relaxation properties are 

generally expensive for heavier molecules [13].) 

1.2.1.1 Data from Molecular Beam Studies 

In molecular beam experiments, the total elastic cross sections 

(measured as a function of collision energy) give information mainly 

on the spherically symmetric part of the potential, while the 

inelastic (state-to-state) cross sections characterize the anisotropic 

as well as spherical aspects [57]. However, due to the quality of the 

experimental data, inversion of the anisotropy has not been 

extensively employed to date. Some anisotropy information on the 
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repulsive part of the potential is reflected in the damping of quantum 

diffraction oscillations of differential or integral cross sections. 

Since such oscillations are possible only for collision systems with 

small reduced mass, such as those involving He, its generalization to 

heavier systems is difficult. On the other hand, certain information 

on the anisotropy of the well part of Che potential is reflected in 

the damping of the rainbow oscillations [57], which are more obvious 

for heavier systems. But this type of Information is not sensitive 

enough to the many intricate features on the usually multidimensional 

potential hypersurface. As a result, in terms of obtaining 

anisotropy, molecular beam studies are practical only for light 

dimeric systems involving H, or He. However, this is complementary to 

the spectroscopic studies because the complexes containing He or H« 

are difficult to generate due to their weak binding energies. Of 

course, it is complementary in a more general sense that, in terms of 

the geometry of the potential surfaces, the molecular beam scattering 

data is more sensitive to the repulsive part, and the spectroscopic 

data mainly to the "well" part of the potential surface. 

A general problem characteristic of the molecular beam study is 

that the data reduction usually does not yield a potential surface 

more conclusively than that obtained from spectroscopic data. This is 

because the least squares fit, an inexpensive routine for 

spectroscopic data, is still relatively impractical for scattering 

data. However, the scattering data always serve as tests for trial 

potential surfaces synthesized using other data, particularly 

spectroscopic data. 
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1.2.1.2 Data from Spectroscopy * 

Since the distribution of intermolecular eigenstates is a direct 

and detailed manifestation of the topology of the potential "well", 

spectroscopy has dominated the study of small vdW systems in recent 

years. In terms of spectral region, the microwave (<1 cm ), infrared 

(IR: 1000 to a few thousand cm ), and particularly far infrared (FIR: 

10 to a few hundred cm ) have been the most valuable. In terms of 

sample source, the most popular two are: free jets (or molecular 

beams) and bulk gases. (Although low temperature (<30 K) rare gas 

matrices have also been popular sample sources, they are impractical 

in determining the intermolecular eigenstates because the matrix 

perturbations are on the same order as the intermolecular binding 

energies of interest.) 

Due to the extremely low effective temperatures obtained in 

molecular beams and free jets, the lower states involved in the 

spectroscopic transitions are usually within the lowest ground 

intermolecular vibrational state of the vdW complex. (Here, the 

"lowest" is emphasized because different intermolecular potential 

wells are associated with all high frequency vibrations of the 

classical subunits.) The use of free jets (or molecular beams) can 

thus greatly reduce the "hot band" spectral congestion caused by the 

relative high temperature bulk gases [58], and thus simplify the 

spectrum assignment. 

Currently the most useful combinations between the spectral range 

and the sample source are: microwave-free-jet, FIR-free-jet, 
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IR-free-jet, and IR-bulk-gas. Basically, the microwave-free-jet 

spectroscopy probes mostly the loVest ground intermolecular 

vibrational states, vhich sample the bottom (near equilibrium) part of 

the lowest potential wells. Thus far it has been so prolific, with 

approximately 100 complexes having been studied [14], that it is the 

lowest parts of intermolecular potential surfaces that are now better 

understood. The FIR-free-jet spectroscopy measures not only the 

lowest ground but also the excited intermolecular vibrational states, 

which sample much more of the potential walls. Due to the large 

anharmonicity of the intermolecular potential wells, intermolecular 

vibrational transitions generally have favorable Franck-Condon 

factors. In order to investigate the global feature of the lowest 

potential w«ll without any "contamination" by the high frequency 

vibrations of the subunit(s), the FIR-free-jet spectroscopy has 

obviously become the most promising tool. As revealed in the 

"satellite" combination bands (hot bands), the IR spectroscopy 

accesses the intermolecular vibrational states associated with high 

frequency vibrations of the classical subunit(s), and thus samples the 

lowest and some higher intermolecular potential wells simultaneously. 

It thus provides the dependence of the vdW interaction on the subunit 

vibrational coordinate. As a result, all these experiments complement 

themselves. The above discussion by no means implies that the 

congested "hot band" data provided by bulk gas samples are relatively 

useless; starting with the free jet experiments is simply an easier 

and logical approach. 

The most useful spectroscopic constants, extracted from the 
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1kHz-resolution microwave experiments, are rotational constants, 

dipole moments, and nuclear quadfupole coupling constants. (Of 

course, other higher order spectroscopic constants such centrifugal 

distortion constants are also important to test trial potentials.) On 

the other hand, in the state-of-the-art FIR and IR experiments, the 

nuclear quadrupola coupling constants are not always available due to 

the MHz-resolution obtained [14]. 

Generally speaking, the spectroscopically measured molecular 

constants of an intermolecular vibrational state of one isotopomer are 

not enough to determine the structure of that state conclusively. 

Since the electronic structure of each subunit is generally only 

slightly distorted by the weak vdW interaction, the structural 

determination can usually be reduced to the determinations of 

inter-subunit distance (R) and relative orientation (e.g. three Euler 

angles for binary complexes). This approximation greatly decreases 

the number of structural variables and thus the number of isotopomers 

that have to be studied by microwave spectroscopy for the purpose of 

structural determination. Since the vdW complexes generally have 

large amplitude motions, the ground vibratlonally averaged structures 

thus determined generally are quite different from the equilibrium 

structures, as opposed to the case of semirigid molecules. For weakly 

bound complexes, the area on the potential surface sampled by the 

equivalent large amplitude motion is different among the isotopomers; 

the area sampled by an intermolecular vibrational state of a lighter 

isotopomer includes and thus is larger than the area by the 

corresponding state of a heavier isotopomer. Different isotopomers 
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exhibit different vibrationally averaged structures. The microwave 

studies for a few isotopomers, if available, thus serve as a practical 

way to determine whether large amplitude motions occur in the ground 

intermolecular vibrational states. For a relatively rigid complex, 

the averaged structures of the isotopomers of the ground 

intermolecular vibrational state can also be used to extrapolate to 

the equilibrium structure. 

Within th* approximation that the subunlts remain unperturbed, 

the inter-subunit orientation can also be obtained from the 

measurement of the dipole moments and nuclear quadrupole coupling 

constants of the complex. This is valuable especially when the 

isotopic substitution study is impractical or not available. For 

example, classically speaking, in a dinar of dipolar molecules, the 

measured dipole moment of the complex is the projection of the 

vectorial sum of the two individual dipole moments on the principal 

axis of the complex. But the actual measured value, with induction 

and higher order effects neglected, is an expectation of the dipole 

projection over the sampled potential surface [59], which needs to be 

determined. Similarly, the nuclear quadrupole coupling constants, 

available when the complex contains nucleus with spin Ifcl, also 

involve the expectation values of the cosine square of the relative 

orientation angles [59], Therefore, unless the complex is rigid, the 

measured dipole moment and n>* Tear quadrupole coupling constants 

should not be inverted to give the inter-subunit equilibrium 

orientations directly, but rather serve as values that need be 

reproduced by trial potential surfaces. 
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1.2.2 Available Intermolecular Fotentials 

In the wide variety of existing vdW complexes ranging from "true" 

vdW molecules to vdW ions, the study of potential surface has so far 

been focused mainly on small neutral atom-molecule and 

molecule-molecule vdW systems. The binding energies of such systems 

fall within the range of a few kcal/mole or les*. So far the 

potential surface of He-H. is the only case successfully studied by ab 

initio calculations. No theoretical calculation seems generally 

promising for other simple vdW complexes with more electrons at least 

in the near futuie. Currently, semiempirical syntheses of potential 

surfaces are playing more important roles. 

Most of the existing semiempirical potential surfaces have been 

obtained for complexes with binding energy less than 1 kcal/mole. The 

reason is that, for weakly bound complexes, it is easier to obtain a 

large fraction of the intermolecular energy level distribution, and 

thus the global features of the potential surface. Since the 

potential surfaces of many relatively stronger systems, such as 

H-bonded dimers, still cannot be synthesized due to inadequacy of 

available experimental data, in these cases it is advantageous to 

organize the obtained energy level distributions with physical 

insights. An important approach is fit the distribution to a 

parameterized energy eigenvalue expression derived from a 

parameterized secular equation corresponding to an effective 

Hamiltonian. The basic idea can be elucidated in the following 

example. The resulting energy (E) level distribution of a two-level 



system containing state |1> and |2> perturbed by a Hamiltonian 

operator P can be obtained by solving the following secular equation: 

<11P j1>-E <l|P|2> 

<2|P|l> <2|P|2>-E 

a-E c 

c b-E 
- 0. 

Conversely, empirically fitting the parameter (c; a and b are assumed 

to be known.) corresponds to measuring the Hamiltonian matrix element 

(<l|p|2>). In other words, even when the explicit expression of the 

perturbation operator (P) is unknown, some physical insights of the 

Hamiltonian are still available. For large and complicated secular 

calculations for vdW systems, the use of MS group symmetry 

consideration can eliminate many off-diagonal terms. Great 

simplification is thus achieved in Hougtn's classic work on (K„0), 

[60], As to the Hauiltonian itself, such a method usually assumes the 

"high barrier limit", in which the complex is as semi-rigid as a 

normal classical molecule, and all tunneling notions are perturbations 

treated as above. Therefore it in intrinsically better for relatively 

strongly bound complexes. 

Table 1.2.2 is a list of the potential surfaces obtained in 

recent years. They are divided into several classes, each of which 

has basically a chronological listing of Che potentials belonging to 

different complexes; the later the potential appears, the better it 

is. Most of them are semiempirical, but f*v theoretical ones (e.g. 

the CEPA potential for He-N.) are also included if their seuiempirical 

potential surfaces exist. These theoretical potential surfaces are 

either unsuccessful or experimentally unconfirmed. Also listed are 



Table 1.2.2 A list of semiempirical and theoretical potential 
surfaces of prototypical vdU diners. Also included are the data types 
used in the semienpirical synthes'es and various experimental tests. 
(Abbreviation list is shown below the table.) 

(data used) (potential) (test(s)(g/b:good/bad)) 

inert gas-H.: 

Ar-H2, Ar-D 2 

partially resolved 
near 1R [65] 

<•)* [66,67] 

above data 
seraiampirical C,, 
Ha-Ar potential, 

BC3<6,8) [68] H,,Ar scat(g) [69) 
trnap(g) [70] 
nucl hypf(b) [71-73) 
0 2,Ar acat(b) [74,75] 

above data, TT,(6,8) [77] totationally inelastic 
except low rain IR, (w/ new di»p damp. scat(g) [74] 
low T mix near IR [76] extended to Kr-H„, mixed virl coeff(g) 

X-H.) * [78,79] 
trnsp, rlx(g) [80,81] 

inert gas-HCl: 

Ar-HCl 

MW, RF [82,83] HWK [84] HC1 pres broad(b) [85] 
(single min near 
Ar-HCl configuration) 

HC1 rot 
pres broad [85] 

(-} [85,86] 

above data, M3 [88] HC1 pres broad(g) 
mixed 2nd virl (bottom similar to 
coeff [87] HWK, more anisotropic 

wall, featureless 
around Ar-CIH region) 

Ne-HCl 

MW [89] M5 [89] 
(enough for complete (2nd min near He-CIH) 
angular range) 



Ar-HCl 

29 

above data 

HW (102-106] 
(no data itnsitiv* 

M5 (89] 
(constrained 2nd 
nin near Ar-CIH, 
as predicted by 
seaienpirical and 
ab init io calc. 
[90-92] extended 

H_,Ar scat(g;better than 
M3> [93,94], 
near IR(g) [95] 
FIR(g) (9-11,96-99] 
(FIR-->2nd nin 
conclusively [100]) 

to Kr-HCl, Xe-HCl) 
above data H6 [101] 

inert gas-HF: 
X-HF, (X- Ar, Kr, Xe) 
(-1 [107] 
(accurate near 

near IR(b) 
(expecting well deeper by 

bu A-rn ivgiuu/ structure) 10-20 cm"1 [108]) 
HF-HF 

MW.RF [109,110] (-) [HI] 
(accurate around 
the ain) 

near IR [112,113] 
(not used) 

(ab initio] 
(high level) 
[114.115] 

inert gas-N„ and -<v 
He-N2 

total DCS [116] KSK (116] 
(anisotropy too 
weak) 

rot rlx(b) 

(semiempirical) KKM3 [117] 
(anisotropy 
increased) 
HTT [118], 
HFD1 (119] 
HFD2 [119] 
(extended to Ar-N„ 
Ne-N2) (all bad) 

scat(b) 
virl coeff(b) 
trnsp(b) 
SBE cross section(b) 
[120,121] 
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[CEPA] [122] 
(too shallow, 
short range might 
be approximately 
close) 

vib rlx(b) 

(semiempirical) (-1 (123] 
(isotropic part) 

H3SV [124] (generally bad) 

He-02 

total DCS (116] 
relative, absolute ICS 
[125] 

[•) [125] 
(isotropic) 

above data, 
(in)elastic DCS [126] 

(•) [126] 
(anisotropic, 
fine structure 
predicted [127]) 

(no test) 

Ar-02 

high energy ICS, 
glory scat, 
low rsln IR [128] 

{-> [128] 
(fine structure, 
RF Zeeman spec 
predicted (129,130]) 

above data, 
new DCS [131] 

(-) [131] 
(extended to 
Ar-N2) 

Zeeman spec [132] 
(better than the 1st) 

inert gas-linear polyatomic molecule: 

He-C02, He-N20, He- C2 N2 
total DCS, 
following only for 
He-C02: 2nd virl 
coeff, viscosity, 
diffusion coeff, 
ICS [133] 

(•) [133] 
(all anisotropic. 
good short range for 
He-C02) 



He-CO„ 

31 

above data, 
pres broad, other 
trnsp [134] 

<-} [134] differential energy loss 
spec for rotationally 
inelastic collision(b) 
[135] (-->anisotropy of 
its repulsive part needs 
aodification) 

He-C02> He-C2H2, He-OCS 

above data, {•) [136] 
better total DCS [136] 

(He-CO, too weakly 
bound, no spec available) 

Ar-CO, 

MW, 2nd virl coeff, 
mean-square torque 
[137] 

(•I [137] 
(strong wall 
anisotropy, good 
•in region; 
T-shape equil 
structure, elsewhere 
uncertain) 

total DCS(b) [138] 
(••>small well anisotropy) 

Xe-C02 

MB differential 
energy loss spec [139] 

{-) [139] 
(large well anisotropy) 

inert gas-SF,: 
Ar-SFg, Kr-SF6 

total DCS (rainbow 
oscillation) 
diffusion coeff, 
viscosity, 2nd 
virl coeff [140] 

(•) [140] 
(well anisotropy 
better determined 
than for He-SF,. 
nearly isotropic, 
equil structure has 
3-fold axis) 

He-SF6, Ne-SFfi 

total DCS 
(diffraction 
oscillation), 
diffusion coeff, 
viscosity, 2nd 
virl coeff 140] 

<-) [141] 
(repulsive wall 
anisotropy better 
determined than for 
Ar-SF6, Kr-SF6 

early isotropic, 
equil structure has 
3-fold axis) 
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inert gas-CH^ t" 
Ar-CH. 4 

total DCS [142] (-} [142] 

Ne-CH., Ar-CH. 4 4 
above data, 
viscosity, 2nd virl 
coeff [143] 

(•) [143] (Isotropic) 

Ar-CH^ 

MB differential 
energy loss spec [144] 

(•) [144] 
(aquil structure has 
3-fold axis) 

He-CH4 

SCF, {•) [146] MB ICS (g) and 
tnultipole expansion (anisotropic) rotationally 
[14S] inelastic CS (b:near 

repulsive region) 
with resolved 
diffraction oscillations, 
energy loss spec (b) [146] 

Abbreviations: 
calc: calculation(s) coeff: coefficient 
CS: cross section 
disp damp: dispersion damping function 
DCS: differential cross section 
equil: equilibrium ' ICS: integral cross section 
MB: molecular beam rain: minimum 
MW: microwave spectra 
nucl hypf: nuclear hyperfine constants 
pres broad: pressure broadening 
rlx: relaxation data rot: rotation 
rsln: resolution scat: scattering data, 
SCF: self-consistent field calculation 
spec: spectrum T: temperature 

trnsp: transportation properties 
vib: vibrational virl: virial 

,1-1: no specific name for the potential 
[name]: no specific name for the potential, but the theoretical 

method is indicated by the name bracketed. 
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the types of experimental data used in the synthesis of the potential 

surface, and post-synthesis tests*. Strong interactions obviously 

exist between the experimental measurements and the syntheses of 

potential. A general fact is that spectroscopy always provides the 

best data for the synthesis (e.g. the conclusive determination for 

Ar-HCl, purely based on FIR spectra), while other methods provide 

reasonable post-synthesis testing data. A synthesis without including 

high resolution spectroscopic data is usually a failure (e.g. the use 

of only low resolution IR spectroscopic data causes the failure of the 

BC,(6,8) potential for Ar-H,). For very isotropic systems (e.g. 

Ne-HCl), microwave data can sample all angular coordinates on the 

potential, while for anisotropic systems (e.g. Ar-HCl), including FIR 

or IR data is a necessity. 

Among the various small prototypical vdW complexes, such as 

indicated in Table 1.2.2, so far only Ar-H„, Ne-HCl and Ar-HCl have 

semiempirical potential surfaces determined conclusively for most of 

the "intermediate" range in the well. Similar semiempirical potential 

surfaces have been synthesized for their heavier inert gas analogues. 

However, in order to be confirmed, these extended syntheses, for which 

less spectroscopic data are used, require more experimental 

examinations, particularly FIR and IR spectroscopy. Of course, 

including those in this table, all other prototypical systems need to 

be measured spectroscopically to accurately establish their potential 

surfaces. Although the semiempirical synthesis is still in its 

infancy in terms of the number of conclusive potential surfaces 

obtained, it is becoming a promising "industry". 
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1.3 Demonstrative Achievement of High Resolution FIR Spectroscopy: 

Ar-HCl Potential Surface 

Spectroscopy measurements, particularly in the FIR, have become 

an important method for the semiempirical syntheses of potential 

surfaces. Such a key role played by the high resolution FIR 

spectroscopy was first demonstrated in its probing of Ar-HCl, the 

prototypical anisotropic vdW complex, which has attracted most 

extensive experimental studies [9,61]. 

Hutson and Howard semiempirically synthesized several potential 

surfaces for Ar-HCl by performing a simultaneous least squares fit in 

different parameterized functional forms (basically Maitland-Smith 

forms) to several types of data, including molecular beam scattering, 

HC1 rotational line broadening, second virial coefficients and 

molecular beam electric resonance (MBER) spectra. In terms of 

fitting, two equally good potential surfaces, labelled as M3 and M5, 

were then obtained. The major difference between the two surfaces is 

in the number of potential minima. The M3 potential has only one 

minimum at the Ar-HCl linear configuration. However, the MS potential 

has a secondary minimum at Ar-C1H linear configuration. This implies 

that all the above experimental data together are inadequate to 

determine the global topological features of the potential. 

Later our research group measured the FIR Stark spectra of the 

first three intermolecular vibrational states of Ar-HCl, viz., the 

lowest 2 bend, £ stretch and n bend state distributed from 25-34 cm 

(10,11,61-64), with -MHz resolution. Employing these FIR measurements 
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along with the ground state microwave data from MBER, Hutson fitted a 
new double minimum potential (M6)*, which is well determined in most of 
the attractive part. [17] The question of a single minimum or double 
minima was then answered very clearly. This represents a breakthrough 
in the determination of the intemoltcular potential surfaces because 
only spectroscopic data are included in the fit. [61,9] 

Based upon such inherent superiority of the high resolution FIR 
spectroscopic data to other non-spectroscopic data, it is desirable to 
extend these measurements to more complicated vdW complexes using 
tunable FIR direct absorption spectroscopy. It is noted in Table 
1.2.2 that, except for the unlisted atom-atom systems, only the 
potential surfaces for atom-diatom systems have ever been determined 
successfully. In terms of both geometric and spectroscopic 
complexity, as well as physical interest, it is logical to study an 
atom-symmetric-top system as the next step in the process. 
Consequently, the Ar-NH, complex, which is clearly one of the best 
candidates, becomes the target of this thesis work. 
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Chapter 2 

Berkeley Tunable Far-Infrared/Planar Jet Laser Spectrometer 

2.1 Spectrometer 

The Tunable far infrared (FIR) laser system and the supersonic 

planar jet configuration have been described in previous papers [1-4] 

and Laughlin's dissertation [5], and will be discussed only briefly in 

the following. 

The schematic diagram of the spectrometer is shown in Figure 2.1. 

The tunable monochromatic FIR radiation used la generated by mixing 

the output of an optically pumped, selectable fixed frequency FIR 

molecular gas laser (shop built) with that of a YIG-tuned microwave 

oscillator (HP 8673B) system. A discharge pumped C0„ mid-infrared 

laser (Apollo 150), with maximum power ISO W, serves to longitudinally 

pump the FIR laser. The CO. laser is line tunable, among 

approximately 100 different CO. vibration-rotation transitions, using 

a grating at one end of the laser cavity. The zero order beam from 

the grating is sent to a spectrum analyzer (Optics Engineering) to 

identify the pump laser line. Over 60 different simple organic 

molecules, including their deutero-derivatives, can be pumped to 

produce over 2000 discrete FIR laser frequencies from 10-200 cm [6]. 

In this work, HCOOH was used to produce the 692.9513 GHz, 761.6087 

GHz, and S64.38S7 GHz laser lines, and DCOOD for the 787.7565 GHz 

laser line. The FIR laser output, with FWHM approximately 100 kHz, is 

directed through a polarizing Michelson dlplexer into a cornercube in 
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Spectrometer. 
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which a GaAs Schottky barrier diode together with a contacting 0.001 

in. diameter whisker antenna are mounted. The FIR laser radiation is 

thus coupled onto the diode through the antenna. In the meantime, 

tunable microwave radiation is also coupled onto the diode either 

through the whisker mount or through the post on which the diode is 

located. The microwave tuning range from 2-26 GHz from the microwave 

oscillator is extended to 2 to 75 GHz by using frequency doublers 

(Spacek Ka2X, Honeywell V2200N) combined with a travelling wave tube 

amplifier (Hughes 8001H12). Due to the nonlinaarity of the voltage 

vs. currant characteristic curve of the diode, the fixed frequency FIR 

and tunable microwave radiation are mixed, and the resultant tunable 

FIR sidebands are generated at the sum and difference of the FIR laser 

and the microwave frequencies. Consequently, tunable first order FIR 

sidebands are produced from 2-7S GHz on either side of the FIR laser 

line. In other words, a 5 cm tunability is carried by each fixed 

frequency FIR laser line. Both the FIR carrier, viz., the laser 

frequency component, and the sidebands radiate from the cornercube 

back through the diplexer, which then separates the sidebands from the 

much more intense carrier. In the 30 cm region, the resultant total 

power of the two sidebands is approximately 100-200 fill on the 

strongest FIR laser lines. Both sidebands are collimated together and 

sent through the planar supersonic jet expansion in which the van der 

Uaals (vdW) complexes are generated due to the well known cooling 

effect. The absorption signals are detected with a liquid helium 

cooled InSb hot electron bolometer (Cochise Instruments) with typical 
-12 -13 1/2 sensitivities of 10 -10 W/Hz ' . Accordingly, a power/noise 
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ratio exceeding 10 for an integration time of one second can be 

obtained. The microwave radiatidn and thus the FIR sidebands are 

frequency modulated at 100 kHz with a frequency deviation 125 kHz. 

The absorption signals from ttie bolometer are lock-in (SR 519) 

demodulated at twice the modulation frequency. A minicomputer 

(Digital PDP11/53) is used to help control the scanning and sere che 

data. 

When the transition moment is about 1 Dtbye, the stronger 

transitions absorb at least 0.1X of tha sideband power. According to 

the estimated power/noise ratio this implies that the best signal to 

noise is expected to b* larger than 1000. Since both sidebands pass 

through the expansion, which one that causes an absorption must be 

determined. By slightly changing the FIR laser frequency to the red, 

for example, i.e. slightly increasing the laser cavity length, the 

upper sideband absorption will require a higher microwave frequency, 

however the lower sideband a lower microwave frequency. In other 

words, by "pulling" the FIR laser the shift direction of the 

absorption peak with respect to the scanning microwave frequency 

identifies the sideband. Of course, the FIR laser can also be pulled 

to the blue, with opposite peak shifts. The FIR laser has to be reset 

to the peak of its gain curve after the laser pulling. However, 

because the FIR laser is not locked, such resetting actually dominates 

the uncertainties in the absolute measurements of the absorption 

frequencies. This uncertainty is estimated to be about 0.5-1.0 MHz. 

Nuclear quadrupole hyperfine structures generally appear in one scan, 

typically 10 MHz, and is not affected by the laser pulling. The 
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uncertainties in the quadrupole constants is mainly due to the 

spectrum resolution; the hyperfine structures are only partially 

resolved for Ar-NH-. 

The planar supersonic jet expansion is generated by passing a gas 

mixture through a 1.5"x0.001" stainless steel slit housed in a large 

vacuum chamber. The vacuum is maintained by a 2850 cfm roots blower 

(Edwards EH4200) backed with two 175 cfm mechanical pumps (Edwards 

E2M275) In parallel. Limited by the 40'x8" PVC pipe connecting the 

vacuum chamber and the roots blower, the effective pumping speed is 

estimated to be 1600 cfm. Typical operating conditions are 700±200 

Torr behind the slit nozzle with a chamber background pressure 

approximately 90120 mTorr. The gas mixture generally consists of a 

molecular species of interest seeded in a carrier gas (such as a noble 

gas), which could also be a constituent of the vdW complexes. For 

example, 1-3X NH,-in-Ar mixtures are used in the studies of Ar-NH, and 

(NH,),. To avoid too many higher molecular clusters, higher 

percentage is not used. Tine planar expansion has two major advantages 

over the pinhole expansion: (1) Che detection sensitivity is greatly 

increased by increasing the effective pathlength and the total number 

of sampled vdW complexes, (2) Doppler linewidth is reduced by a factor 

of one order of magnitude due to the "alignment" effect of the planar 

flow. 

The sub-Doppler line width make many rotational fine structures 

and part of nuclear hyperfine structures to be resolved even in FIR. 

Typical linewidth ranges from 200-400 kHz. Since the frequency 

modulation deviation is 125 kHz, which is smaller than the measured 
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linewidth, the artefact broadening due to the modulation scheme is 

negligible to a first approximation (see Figure 2.2.1.2.3-5 in Section 
15 —3 2.2.1.2.3). According to the total densities of about 10 cm in 

the probed region of the expansion estimated in similar experiments on 

Ar-H.O [7], the pressure broadening should contribute less than 100 

kHz to the linewidth. In addition, the time-of-fight broadening is 

estimated to be 75 kHz. These estimations indicate that the residual 

Doppler broadening effect dominates the linewidth. 

2.2 Lock-in Stabilization of the cv CO, Laser 

The frequency stability of the FIR laser depends mostly upon that 

of die pump CO. laser [8]. The stabilization of the CO, laser is thus 

important to the operation efficiency of the spectrometer as well as 

accuracy of the measured FIR spectral frequencies. The two most 

popular methods for locking the CO, laser have been: (1) frequency 

locking with an etalon, and (2) power locking with a lock-in 

stabilizer, such as Lansing lock-in stabilizer (Model 80.21S). 

The etalon frequency locking uses the transmission of the CO, 

laser output through an etalon with its mirror spacing thermally 

stabilized to establish high frequency precision. The etalon spacing 

is ramped over a short distance centered at its mean value. The 

dithered transmission is then detected and inverted electronically 

into a feedback signal to the piezoelectric translator (PZT) which 

controls the CO, laser cavity length to within one wave length of the 

laser. In other words, the CO, laser is locked at the frequency 

corresponding to the mean etalon mirror spacing. This scheme, using a 
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Burleigh etalon (Model #CFT-500IR), has proven effective elsewhere 
with a measured drift in the FIR -output frequency of approximately 100 
kHz/hour [8,9]. However, despite its critical requirement for 
alignment to avoid multimode transmission, the majir disadvantage is 
cost; the etalon alone is about $15,000. 

The power locking with a conventional lock-in stabilizer involves 
the modulation of the laser PZT and the demodulation of the 
corresponding electronic signal of the detected dithered laser output 
power into a dc correction which is fed back to the PZT. Since the 
CO, laser output power is a strong function of its output frequency 
(determined by the cavity length), it is the frequency corresponding 
to *-he maximum output power that is locked. However, this locking 
scheme a.-;.o has its Jravbackt; the maximum power operating point is 
generally close to the most noisy spot, due to certain resonances (few 
hundred kHz and up) of the lasing gas electric discharge, moreover, it 
is usually not at the CCv frequency optimum for optically pumping the 
FIR laser. 

As a result, a new and versatile offset locking scheme for the cw 
CO. laser has been designed and put into practical use on the 
spectrometer. Typical drift in the FIR output frequency achieved by 
this method is approximately 73 kHz/hour, which is better than 
obtained from the expensive etalon locking scheme. Since the locked 
operating point can be set selectively to almost anywhere on the CO, 
laser output power profile (*s a function of its laser frequency), the 
noisy spots can basically be avoided to greatly facilitate the 
spectrometer operation. 
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2.2.1 Principles of Offset Lock-in Stabilization 

Here the design concepts for an electronic offset lock-in 

stabilization system will be introduced. Being generally applicable 

to any dc-controlled system with a sufficiently short response time 

constant to allow the modulation, the principles of the new scheme 

will ba explained with terminology that is not specific to the laser 

system. But when appropriata Che corresponding terminology for laser 

systems will also be incorporated. 

The new designs are modifications to the conventional lock-in 

stabilization scheme. They help to stabilize a dc-controlled system 

at any point on its characteristic curve (system output, a physical 

variable as a function of input dc voltage), as opposed to 

conventional lock-in stabilization, which locks only at one of the 

local extreme (maxima or minima). As a starting point for 

modification, the basic principle of conventional lock-in 

stabilization will be briefly reviewed. The new design will then be 

explained with some geometrical arguments. 

2.2.1.1 Conventional Lock-in Stabilisation 

A conventional lock-in stabilizer consists basically of three 

parts: (1) a If lock-in amplifier, which generates the modulation sine 

wave and demodulates the periodic response of the dc-controlled 

system, when necessary, into a correction dc voltage, (2) a dc power 

supply, which provides the controlling dc bias voltage for the system 

before the correction, and (3) a voltage adder, which superimposes the 
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correction dc and the power supply bias voltages together to form a 

corrected controlling dc voltage That maintains the average output oi 

the system. 

The graphical example, shown in Figure 2.2.1.1, further 

demonstrates the mechanism. Without losing generality, the 

characteristic curve of the system to be stabilized is assumed to be a 

Gaussian function of the controlling dc bias. In the case of a laser 

system, this could be the output power profile as a function of the 

dc-bias-controlled cavity length or of the corresponding laser 

frequency. Suppose that the bias is originally intended to be set at 

the maximum (point H in Figure 2.2.1.1) of the curve, but the 

operating point drifts to the left (point L) of the maximum. 

According to the periodic response (trace 1) of the system at point L, 

the stabilizer generates a correction dc voltage (trace 1') to the 

existing dc bias (at point L) to force the operating point back toward 

the maximum, at which the periodic response of the system generates no 

dc correction (trace m'). For the case of drifting to the right of 

the maximum, a similar but opposite returning dc correction can be 

obtained because the periodic response of the system is basically ISO0 

out of phase with respect to on the left. The stabilization at the 

maximum can therefore be achieved. The disappearance of the dc 

correction at the maximum is due to the fact that the dc output of a 

If lock-in amplifier is proportional to the amplitude of the 

fundamental modulation frequency (If) component in its input with the 

signed proportionality constant controlled by the lock-in phase 

setting. However the fundamental frequency of the system output at 
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Figure 2.2.1.1 
Mechanism of conventional If lock-in stabilizer. 
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the maximum of the symmetric Gaussian function is the second harmonic 

of the modulation frequency. Here, the term locally "symmetric" 

should be emphasized because only in such cases is the maximum the 

same as the locked point, as will be further demonstrated in Section 

2.2.1.2. If it is locally asymmetric, a shift is generally expected 

between the locked point and the local extremum. (The stabilization 

at a local minimum is analogous except that the demodulation phase of 

the lock-in amplifier needs to be 180° out of phase, as opposed to 

that for a local maximum, in order to switch the signs of the dc 

correction.) 

Briefly speaking, a conventional lock-in stabilizer can be 

considered as a local-extremum locator, within a shift, on the 

characteristic curve of a dc-controlled system. The key role is 

played by the demodulation of the If lock-in amplifier which can be 

thought of *s a If (fundamental) frequency amplitude extractor with 

adjustable proportionality. It should also be particularly noted that 

it is where the dc correction switches sign that a locking can take 

place. (A more mathematical .cture of conventional lock-in 

stabilization is available in Section 2.2.1.2.1 and 2.2.1.2.2.) 

2.2.1.2 Concepts for the New Designs 

It will be shown that offset locking using a lock-in stabilizer 

can be achieved either by adjusting the modulation amplitude or by 

modifying the response from the system to be controlled. The 

amplitude-controlled offset locking scheme hes its intrinsic 

limitations. However, the response-modification scheme is flexible 
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and versatile. 

In order to provide a mathematical language for the discussion, 

simulations of a lock-in amplifier in the If and 2f mode will be 

proposed first. 

2.2.1.2.1 Mathematical Simulation of a Lock-in Amplifier 

It is baneficial to take a detailed look at the function of a 

lock-in amplifier [10], The kay component of a standard lock-in 

amplifier is its demodulator, which inverts the amplitudes of the 

input frequency components only at certain multiples of the modulation 

frequency (If) into corresponding dc voltages that constitute the 

demodulator output. The inversion proportionality at each multiple of 

If is dependent on (1) the demodulation mode (If or 2f), (2) the 

multiple value considered, and (3) the demodulation phase. For 

example, the If demodulation of a third harmonic, shown in Figure 

2.2.1.2.1, generally generates a nonzero dc voltage, which is 

modulation phase dependent with a period of 2*/3 and 6 sign switching 

phase per 2*. It can be shown that in the If mode the demodulator 

inverts the amplitudes of all odd multiples of If, including the 

fundamental frequency, into dc voltages, whereas in the 2f mode the 

same applies to all even multiples of If. However, some standard 

lock-in amplifiers have an input frequency filter, which, when the 

amplifier is set in the If and 2f mode, passes only the If and 2f 

compontnt, respectively, among the multiples of If. (A high Q or very 

narrow bandwidth is unnecessary for the filter because in terms of 

frequency component the demodulator can be considered as an extremely 
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Demodulation Signal 

v 
Correction 

Figure 2 .2 .1 .2 .1 
Phase-optimized i f demodulation of a third harmonic. 
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narrow "gridpass" inverter.) Such a combination of the input filter 

and the demodulator makes the lock-in amplifier in the If mode 

generates a dc voltage proportional to the amplitudes only of the 

input fundamental frequency. Similarly, such a lock-in amplifier in 

the 2f mode generates a dc proportional to the amplitude of the input 

second harmonic. 

Being an amplitude extractor for the If or 2f component of the 

input temporal signal, the functions of a lock-in amplifier can be 

simulated as being proportional Co the following linear integral 

transformations (within a proportionality, which are linearly 

dependent on the phase-independent gain of the lock-in amplifier): in 

If mode, 

L X
A f(x). 

wt-zir 

•yCx.A,*)- (f(x 

wt-2* 

+ Acos(wt)) cos(wt + 4)] d(ut), 

0 (2.2.1.2.1-1) 

in the 2f mode, 

L 2
A f(x)-

wt-2* 

Fj'Cx.A,*)- J [f(x + Acos(wt)) cos(2wt + *)] d(wt). 

Wt-ZJT 

/(x.A,*)- [f(> 

0 (2.2.1.2.1-2) 

A A 
where L. and L. are the corresponding linear operators, f(x) stands 

for the characteristic curve of the system being measured, A is 

one-half of the modulation depth, u is the modulation frequency in 
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radians/second, the dummy variable t is the time in seconds, and <j> is 

the relative phase setting. (Here, F-' and F,' are not derivatives of 
A A 

F1 and F„.) L, and L„ are linear basically because integration is a 

linear operation. In both integral transformations, the modulation is 

accounted for by incorporating Acos(ut) as an additional part of the 

independent variable, x, of f(x) in the integrand, whereas the 

idealized demodulation at If and 2f, with no electronic gain involved, 

is given by the cos(wt+l) and cos(2wt+^) as multiplicative factors of 

the integrands. 

Such integral expressions for demodulation can be deduced by 

using the orthogonality among all cos(nwt)'* and sin(nwt)'s, with n 

being any nonnegative integer (11]. Both integral transformations can 

be considered as the "inner product" of the modulated function, 

f(x+Acos(wt)), with the demodulation references, i.e., cos(ut+4) and 

cos(2ut+4), respectively. In other words, these two integral 

transformations can be further thought of as the "projections" of 

f(x+Acos(wt)) onto the "unit vector" functions, cos(ut+#) and 

cos(2wt+4). Consequently, Equations (2.2.1.2.1-1) and (2.2.1.2.1-2) 

are fully justified for simulating the lock-in amplifier as an 

amplitude extractor for If and 2f component of the input temporal 

signal. 

Because the integrations are taken over wt for one full cycle 

(2*) both transformations correspond to an infinitely long time 

constant for the lock-in amplifier. As a result, both F ' and F ' are 

functions of x and the two panel-adjustable variables, +, A. Using 

the Taylor expansion for f(x+Acos(wt) in polynomials of Acos(wt), 
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along with the aforementioned orthogonality, the expressions 

(2.2.1.2.1-1) and (2.2.1.2.1-1} cfen be rewritten as 

F1'(x,A,^)- 2w COS* Fl(x,A) (2.2.1.2.1-3) 

where 

wt-2* 
1 f 

i\(x,A)« [f(x + Acos(wt)) cos(wt)] d(ut), 
1 2* J (2.2.1.2.1.3a) 

and 

F2'(x,A,*)- 2* cos* F2(X,A) (2.2.1.2.1-4) 

where 

wt-2*r 

(x.A)- [f(> 
2" J 

F.(x.A)" | [f(x + Acos(wt)) cos(2wt)J d(wt), 
Z 2* 

0 (2.2.1.2.1-4a) 

respectively, which Indicate that * affects only the signed gain and 

therefore the sign of the lock-in output functions. If F,(x,A) and 

F_(x,A) are further defined as the lock-in output functions with the 

phase dependent gain (cos*) and the phase independent gain (G) both 

equal to one, then the lock-in output functions S.(x,A,*,G) and 

S2(x,A,*,G) in the If and 2f aode, respectively, can be generally be 

written as 

S.(x,A,*,G)- G cos* F.(x.A) (2.2.1.2.1-5) 
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and 

S2(x,A,*,G)- G cos^ F2<x,A). (2.2.1.2.1-6) 

In other words, apart from the signed gain, the geometry of the 
lock-in outputs, F. and F„ (abbreviations of F,(x,A) and F_(x,A)) 
defined in Equations (2.2.1.2.1-3a) and (2.2.1.2.1-4a), and thus the 
places where thay switch signs are basically determined by both the 
modulation amplitude A and tha characteristic curva f(x). Howavar, it 
is impossible to separata tha individual affects of A and f(x) on the 
geometry of F, or F,. This can ba shown more explicitly by the Taylor 
expansions of F. and F, in polynomials of A: 

F,(x,A>- S 
1 n-1 

'f(x) 
'2n-l ^ n - l ) -•A 2n-l (2.2.1.2.1-7) 

where 

2 , 1 - 1 2n(n-l)!n! 
(2.2.1.2.1-7a) 

and 

F.(x.A)- 2 
* n-1 

d ( 2 n )f(x) 
C„ • 2n d x(2n) -•A 2n (2.2.1.2.1-8) 

where 

C -
2 n 22n(n-l)!(n+l)! 

(2.2.1.2.1-8a) 
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All terms in these expressions are cross terms between A raised to 

some power and a derivative of f (It). 

2.2.1.2.2 Limitations of the Modulation-Amplitude-Controlled Scheme 

Since F1(x,A) and F-(x,A) are functions of A, it might seem 

possible that the offset locking can be achieved simply by adjusting 

the modulation amplitude with conventional If lock-in stabilization. 

However, this is not always feasible, as will be explained in the 

following. 

Any function, g(x), can be decomposed into an even, f (x-a), and 

odd part, f (x~a), with respect to any position at x-a, viz., 

f(x-a) + f(-(x-a)> f(x-a) - f(-(x-a)) 
g(x)- f(x-a)- + 

2 2 

- f (x-a) + f (x-a). (2.2.1.2.2-1) 
e o 

With the geometry unaffected, Expression (2.2.1.2.1-3a) for F. can 

then be rewritten as 

F.(x-s.A)- 2 
1 n-1 

d<2n-1>[f,(x-s)+fo(x-s)) 
C2n-r d x(2n~l) * A 

(2.2.1.2.2-2) 

with the origin shifted to one of the local extreme of f(x) at x-s. 

It is noted that it is the even part, f (x-s), of f(x-s) that 

contributes the oddness of F. about x-s, whereas the odd part, 

f (x-s), that contributes the evenness of F,. The reason is that an o 1 
odd order, (2n-l), differentiation switches the parity about x-s. 
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The limitations of the amplitude-controlled offset locking at If 

will be shown for the cases with 'locally symmetric and asymmetric 

extrema, respectively. Here, the "local" is defined to be the 

modulated region [s-A,s+A] at the extremun (x-s). The local functions 

and their symmetry will then be dependent on the modulation amplitude 

A. In addition, within the local region, the only extremum will be 

located at x-». 

For the case with locally symmetric extremum, the corresponding 

local f (x-s) vanishes completely, but at lease one local odd 
d<2n-l) f ( x _ f ) 

75—rr* function exists. As a result, as long as the value 
d x(2n-l) 

d ( 2 n - l ) f o ( x _ t ) 

of A constrains all the local ,n .. derivatives to remain 
d x(2n-l) 

zero, x-s is always a point where F. switches sign; no continuous 

offset locking starting from x-s is possible. As a trivial example, 

in the case of a symmetric characteristic curve such as a Gaussian 

function, adjustment of the modulation amplitude completely fails to 

shift the locked point from its maximum. 

However, fo. z'r > case with a locally asymmetric extremum, at 

d<2n~->f <x-s) 
least a local TT— , - becomes nonzero. According to Equation 

d x u n 1 ; 

(2.2.1.2.2-2), the necessary condition for x-s to be a sign-switching 

point, i.e. F.-O at x-s, is now violated. If there is a transition 

from being locally symmetric to asymmetric with continuously 

increasing value of A, the disappearance of sign-switching at x-s 

implies only that such a sign-switching point has shifted continuously 
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to its neighborhood already. In other words, for many cases, there 

will be a threshold value for A to be effective in such offset 

locking. Being system-dependent, such threshold of A could be so 

large that it might become an intolerable perturbation to the system. 

In addition, the shift direction of the locked point will be 

controlled basically by the geometry of f(x) instead of A, 

Such system-dependent limitations definitely need to be avoided in 

a versatile offset locking scheme. Consequently, in terms of the 

expressions for F,(x,A) and F,(x.A), a modification of f(x) is the 

only remaining choice for offset locking with lock-In stabilization. 

(A similar discussion, using Equations (2.2.1,2.1-6) and 

(2.2.1.2.2-1), can be made for a 2f lock-in stabilization and similar 

system-dependent limitations for amplitude-controlled offset locking 

are to be obtained.) 

2.2.1.2.3 Geometric Arguments for the Response-Modification Schemes 

2.2.1.2.3 (A) If Modification Slanting the Baseline of the 

Characteristic Curve 

Previously, f(x) was referred to as the characteristic curve of 

the system. In the following discussion, the true characteristic 

curve will be denoted by T(x), as opposed to the effective (modified) 

characteristic curve f(x) "seen" by the lock-in amplifier of 

stabilization system. 

For most practical applications, the modulation amplitude A is 

made small enough to reduce the unwanted perturbation due to the 

modulation itself or to reflect the true characteristic response T(x) 
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of the system as much as possible. Usually A is thus smaller than the 
typical widths of the features of-T(x) and thus of f (x), i.e. A « l . 
In addition, the coefficients, C, , and C, , decay fast for higher 
order terms in the expansions (Equations (2.2.1.2.1-7) and 
2.2.1.2.1-8)) for both F, and F-. This is indicated by the numerical 
values of the first few coefficients listed in Table 2.2.1.2.3. 
Therefore, for most applications, the leading term of the expansions 
for F. and F„ should be a good first order approximation, viz., 

df(x) 
F,(x,A)« »A (2.2.1.2.3-1) 

1 dx 
d ( 2 )f(x) , 

F2(x,A)a -jr .**. (2.2.1.2.3-2) 
dx 

Without getting into an involved mathematical analysis, the major 
physical insights for the response-modification scheme can be 
extracted from the behavior of the derivatives of f(x) using this 
approximation. 

Because conventional If lock-in stabilization fails to 
offset-lock the system continuously from an extremum about which the 
characteristic curve is locally symmetric, it is interesting to take a 
look at the behavior of a Gaussian function located on straight 
baselines of different slopes, as shown in Figure 2.2.1.2.3-1 (a)-(d), 
along with the corresponding first derivative -urves in Figure 
2.2.1.2.3-2 (a')-(d'). In (a), an Gaussian function G(x-s) centered 
at x»s is depicted. In (b), the symmetric G(x-s) is distorted with 
its maximum shifted toward a newly generated minimum by a slightly 
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Table 2.2.1.2.3 
The numerical values of the first few coefficients, C„ . 
and C, , in the expansions (Equations (2.2.1.2.1-7) and 
2.2.1.2.1-8) for both Fj and Fj. 

'2n-l '2n 

1 
2 
3 
4 

0.S00000 
0.12S000 
0.007813 
0.000011 

0.125000 
0.010417 
0.000326 
0.000005 
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Figure 2 .2 .1 .2 .3-1 (a)-(d) 
Behaviors of a Gaussian function located on straight 
baselines of different slopes. 



(b-> 

( C ) 

(d') 

Figure 2 . 2 . 1 . 2 . 3 - 2 (a 1 ) (d 1 ) 
The corresponding f i r s t der ivat ive curves of Figure 
2 . 2 . 1 . 2 . 3 - 1 ( a ) - ( d ) . 
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slanted baseline m(x-s) with slope a. Such a phenomenon can be 

confirmed by Figure 2.2.1.2.3-2 fb'), in which the two intersections 

between the derivative curve and the x axis correspond to tte two 

extrema in (b). It is noted that the height of the horizontal 

baseline in (b') and thus the positions of the extrema can be 

controlled by the slope m of the slanted baseline in (b). However, 

when the slope is increased, as shown in Figure 2.2.1.2.3-1 (a)-(d), 

the maximum and minimum will first approach each other, then coalesce 

into an inflection point, and finally disappear. A similar phenomenon 

can be imagined if the slope of the baseline is increased negatively. 

As a result, as long as the slope is under our control, the existence 

and direction of the offset locking with conventional lock-in 

stabilization should be no longer limited by the requirement for local 

asymmetry about an extremum of the true characteristic curve T(x). 

With the true characteristic curve f(x) left unmodified, the next 

question is how to create such an effective baseline with adjustable 

slope to "cheat" the conventional lock-in stabilizer. The "cheating" 

characteristic curve f(x) can be expressed as 

f(x)- T(x) + m(x - s) (2.2.1.2.3-3) 

where x-s is the position of one of the extrema of T(x), from which 

offset locking is to be performed. It will be shown that the s is not 

critical in the expression of the baseline later. The corresponding 

temporal response at a specific position x-x due to a modulating sine 

wave with amplitude A can then be obtained by replacing x with 

x +Acos(tot), i.e. o 
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f(x + Acos(wt))- T(x + Acos(wt)) + m(x + Acos(ut) - s). o o . o 
(2.2.1.2.3-4) 

This equation suggests that, by adding a slanted baseline, the only 

modifications are the two Fourier components of the original temporal 

response, viz., the "dc" and fundamental frequency component. Being 

never detected by a lock-in amplifier, the change in "dc", m(x -s), is 

not of concern. Interestingly, it is noted that the change in the 

amplitude of the fundamental frequency component, which is to be 

detected, is a function of the slope n of the baseline, as indicated 

by the uAcos(wt) term. Conversely, also in a more operational sense, 

the slope m (-A'/A) can be controlled practically by superimposing an 

in-phase and amplitude preselected sine wave, A'cos(wt), at the 

modulation frequency onto the true temporal response T(x +Acos(wt)) 

from the system while x is changing. (Here, 180 out of phase is 

also considered as "in phase" because it corresponds to a negative 

amplitude.) If the intended offset locked point is located at x-s', 

this slope-controlling sine wave must exactly annihilate the 

fundamental frequency component of the true system temporal response 

T(x+Acos(wt)) at x-s'; the value of F,(x,A) corresponding to the 

effective (cheating) characteristic curve f(x)-T(x)+m(x-s) at x-s' 

must be zero, so that no corresponding dc correction is generated. 

However, the lack of a dc correction at a nonextremum point still does 

not ensure that offset locking can occur. The dynamical requirement 

for locking at x-s' is that x-s' must be a sign switching point for 

the F.,(x,A) in order to provide the returning dc corrections of 
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opposite signs in the opposite neighborhoods of x-s'. As a result, 

such schemes fail to offset lock the system at the places where 

F.(x,A) are the extrema. According to Expressions (2.2.1.2.3-1), this 

df(x) 
requirement suggests that the effective should switch sign at 

dx 

the Uniting position of the locked point as A asymptotically 

approaching to zero. In other words, the Uniting locked point can 

never be an inflection point of f(x). Here, the inflection points are 

also tiiose of T(x) because the effective slanted straight baseline has 

no effect on their position(s). 

Since (1) the lock-in amplifier Is in the If node, and (2) the 

preset input reference for generating a dc correction is served by an 

added cheating sine wave, such a schene will be naned "If ac 

modification". As opposed to this schene, "If dc modification" is the 

scheme in which a direct dc reference corresponding to the sine wave 

reference is enployed to bias the lock-in anplifier output in the 

stabilization. Basically, both If ac and dc modification result in 

the same offset stabilization, and will be called "If modification" in 

the following. 

2.2.1.2.3 (B) Decoupling the Effect of Gain on the Locking Position 

Special care must be taken for the If dc modification. With the 

f(x) substituted by the expression (Equation (2.2.1.2.3-3)) of the 

effective characteristic curve (one with slanted straight baseline), 

the expansion for P.(x,A) (Equation (2.2.1.2.1-?)) becomes 

F.(x,A)- F.T(x,A) + mA/2 (2.2.1.2.3-4) 
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where F._(x,A) has the same expression as the F-(x,A) in Equation 

(2.2.1.2.1-7) with f(x) replaced by T(x), and therefore is the 

original F.(x,A) corresponding to the true characteristic curve T(x). 

With Equations (2.2.1.2.3-4) and (2.2.1.2.1-5) combined, the 

corresponding output dc correction curve (S.(x,A,G,*)) of the lock-in 

stabilizer can be expressed as 

S^x.A.G,*)- G cos* (F1T(x,A) + mA/2]. (2.2.1.2.3-5) 

Here, the mA/2 term can be thought of as either a preset reference dc 

or the dc resulting from a preset reference sine wave. Although mA/2 

is dependent on A, since any reference ac or dc signal can be actually 

adjusted, mA/2 can be denoted by a single variable R to emphasize its 

role as an independent variable in the operational sense. Equation 

(2.2.1.2.3-5) can thus be rewritten as 

S^x.A.G.*)- G cos* [F1T(x,A) + R p ) . (2.2.1.2.3-6) 

For a locking position to exist, there are two requirements for 

S,(x,A,G,*) along the x axis direction: (1) S. must switch sign at 

this position, and (2) the slope of S. at this position must have the 

right sign for the correction to converge into rather than diverge 

from this position. According to Equation (2.2.1.2.3-6), such sign 

switching is determined only by the bracketed part, and the sign of 

the slope of S, is determined by that of the product of cos* and the 

bracketed part. (G's of most lock-in systems are positive.) The 

"candidate" locking positions thus include the correction convergent 
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as well as correction divergent points because their 

convergent-divergent roles can be* switched simply by switching the 

sign of the lock-in panel-controlled parameter cos*\ (It is noted 

that the panel phase reading (#') is generally unequal to the 4> value 

in this discussion. However, there exists the one-to-one relationship 

between them.) 

In terms of actual operation, once the modulation amplitude A 

(and thus F,_(x,A) are determined), the preset reference signal R (ac 

or dc) alone controls *ll the candidate offset locking positions. On 

the other hand, as indicated by the Gcoi*T,_(x,A) term, with A fixed 

first, the net gain Gcos^ independently controls the slope of S,, 

which reflects the correction efficiencies about the candidate locking 

points. In other words, once A and the sign of cos*1 are fixed, the 

correction convergent position(s), if exists, and the stabilization 

efficiency around it are respectively controlled by the preset 

reference signal R and the net gain (Gcos^). 

Since, as Indicated by Equations (2.2.1.2.1-7) and (2.2.1.2.1-8), 

A is always inevitably involved with every aspect of the output 

performance in any lock-in system, no attempt will be made to decouple 

the effect of A from those of G, 4, and R on the locking position and 

stabilization efficiency. Therefore, for both ac and dc modification 

scheme, Equation (2.2.1.2.3-6) represents the ideal that requires the 

reference signal be synchronously tuned with the net gain. 

The feature that different independent parameters are used to 

control different performance variables automatically accompanies the 

If sc modification because it must be performed before the lock-in 



74 

stabilization stage. In order to preserve this feature for the If dc 

modification, that must be performed after the lock-in demodulation 

stage, the reference dc (Gcos*R ) has to be synchronously tuned with 

both cos* and G. Here, "both" must be emphasized; otherwise, the 

effects of the net gain (Gcos*) and the reference dc on the locking 

position and the stabilization efficiency will be nixed up. This can 

be shown by the following exanple, a slightly modified version of 

Equation (2.2.1.2.3-6), 

S^x.A.G,*)- G cos* F1T(x,A) t O R p 

- G (cos* F1T(x,A) + R p] (2.2.1.2.3-7) 

in which the reference dc (GR ) is synchronously tuned only with G, 

but not cos*. Apparently, the locking position is determined not only 

by the preset reference dc (R ) but also by * in this case. This 

requirement can also be illustrated by the exanples in Figure 

2.2.1.2.3-3. Similarly, if there are more than one gain-tunable 

stages, denoted by their gains G, (i- 1, 2, etc.), then the reference 

dc should be synchronously tunable with each of the G.. 

2.2.1.2.3 (C) 2f Demodulation — A Complement to If Modification 

The corresponding 2f ac and dc modification can be imagined 

analogously following the discussion for If modification schemes, and 

will not be discussed in detail. Two major and conceivable 

differences for 2f modifications are: (1) if ac modification is used, 

an in phase and amplitude adjustable second harmonic, A"cos(2o>t), of 

the modulation frequency can serve as an ac input reference, (2) it is 
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(l.a) Gcos*[F1(x,A) + R p] 
Sana locking position. 
Diffarant stabilization afficiancy. 

(l.b) Gcos^F1(x,A) + R 
Diffarant locking position. 
Diffarant stabilization afficiancy. 

Figura 2.2.1.2.3-3 
Diffarancas batwaan synchronous and nonsynchronous 
tuning of tha post-damodulation rafarenca dc (R ) 
with tha pra-damodulation nat gain (Gcos0). 
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(2 . a) 

Gcostf[F 1(X,A) + R p ] 

Same locking posi t ion , when cos0 keeps the sane s ign. 
Different s t ab i l i z a t i on efficiency. 

(2-b) 

Gcos$F.(x,A) + R 
Different locking position, if existing, for different 

cos$. 
Different stabilization efficiency. 

Figure 2.2.1.2.3-3 (Continued) 
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where F„(x,A) crosses the x axis that can be locked (It never offset 
locks the system at the extrema of F_(x,A)). 

Although If modification schemes are, in principle, capable of 
offset locking the system almost everywhere on a typical physical 
characteristic curve, there do exist places where such schemes fail. 
Apart from tha theoretical example of tha inflection points of f(x) or 
T(x) in the small amplitude limit, a practical problem is illustrated 
in Figure 2.2.1.2.3-4, in which tha F,(x,A) corresponding to the 
effective characteristic curve f(x) has two nearby intersections x. 

and x«, with the x axis, where tha offset locking is allowed. Since 
tha proper lock-in phasa settings for offset locking tha system at x. 
and x- ara 180° out of phasa, tha offset locking can occur only at one 
intersection at a time. The directions of tha corresponding dc 
corrections in regions R,, R, «nd R,, separated by x. and x. ara 
represented by the arrows shown balow tha x axis. An affective offset 
locking is indicated by a head-on contact of two such adjacent arrows 
(solid). For example, in the case of locking the system at x-x,, it 
is noted that the effective stabilization can take place only in 
regions R. and R„; once the system drifts to region R-, the operating 
point will be pushed to the right and eventually out of the picture to 
seek for another lockable position, which may not exist. Generally 
speaking, Che stabilization range terminates at the first point where 
F.(x,A) "crosses" (not just intersects) the x axis on either bide of 
the intended locked point, which is also such a crossing point. The 
actual problem is that if two such crossing points are too close 
together, as in the current example, then the effective dynamic range 
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Fa(x,A) 

• >e *a" *i + • 

Figure 2.2.1.2.3-4 
A practical problem, in which the Fjfx.A) corresponding 
to the effective characteristic curve f(x) has two nearby 
intersections x 1 and x 2 with the x axis. 
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for either crossing point to become the intended locked point will be 

seriously limited. 

This problem can be solved by complementing the If modification 

scheme with the 2f lock-in stabilization. The reason is that where 

Fj(x,A) is an cxtremum or equivalently where If modification fails is 

usually near where F„(x,A) crosses tha x axis (not juat equal to 

zero), as indicated in Figure 2.2.1.2.3-5 in which many F^(x,A)'a and 

F2(x,A)'a corresponding Co different modulation amplitude A for a 

Gaussian charactariatic curve are depicted together. Thia la apparent 

by considering tht small amplitude limit, in which any sign switching 

point of F2(x,A) is exactly an extremua of F.(x,A). Since moat of the 

offset locking can be achieved by If modification, In order to 

complement it, we employ only 2f lock-in stabilization, not 2f 

modification schemes. Of course, using both If and 2f modification 

schemes is an "overkill". 

2.2.2 Architecture of the Offset Lock-in Stabilisation System 

Based upon the above geometric arguments, in addition to the 

conventional If lock-in stabilization capability, a versatile offset 

lock-in stabilization scheme should have the following two selectable 

basic functions: (1) the If ac or dc modification and (2) the 2f 

lock-in demodulation. In other words, there are two pcssible 

combinations, i.e. either with the If ac or If dc modification 

incorporated. They will be named the "ac offset scheme" and "dc 

offset scheme", respectively. 
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A=2 Figure 2.2.1.2.3-5 
Fjfx.A)^ and F2(x,A)'s corresponding to different Modulation amplitude A for a Gaussian characteristic curve. The Modulation 
amplitudes indicated are in unit of the FWIIM of the Gaussian 
function. The computer graphics are based upon Equations 
(2.2.1.2.1-3a) and (2.2.1.2.1-4a). (A: Modulation amplitude. 
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2.2.2.1 ac Offset Scheme 

The ac offset scheme, as shown in Figure 2.2.2.1, consists of two 
parts: (1) the system response modification circuit and (2) the 
lock-in stabilizer, which is capable of both If and 2f mode (as 
opposed to the conventional lock-in stabilizer which operates only in 
the If mode). Since the stabilizer involved is still conventional in 
terms of the arrangement of its principal components (enclosed in the 
dashed line in Figura 2.2.2.1), only tha system response modification 
circuit will be briefly discussed. 

The modification circuit has two signal channels summed up by a 
voltage adder (VAl in Figure 2.2.2.1), which leads to tha input of the 
lock-in stabilizer, i.e., the input of the built-in lock-In amplifier. 
These two channels are: (A) the detector channel and (B) the reference 
channel. 

i.ie purpose of the detector channel is to extract only the If 
component in the system temporal response. This elimination of all 
harmonics of If is unnecessary fo~. tha lock-in stabilization stage; 
however, this is necessary for signal processing which relies on 
visually recognizing If. This channel consists of a voltage gain 
tuner, followed by a frequency filter centered at If. The gain tuner 
should be set at a value which is small enough to not saturate the 
following electronic stages but large enough for monitoring (at M.) 
and processing purpose. This is the reason why the gain tuner had 
better be capable of both amplification and attenuation (unless the 
detector signal level is known beforehand, *% in the case of offset 
locking the CO. laser). As to the frequency filter, its type (such as 
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Figure 2.2.2.1 
Block diagram for the If ac modification plus 2f demodulation 
scheme. 
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lowpass or bandpass, Butterworth or Chebyshev [12], etc.) and 

specifications (such as bandwidth*and pole-number [12]) are not 

critical in the design. This is because the major filtering of the 

offset stabilization scheme is conducted by the lock-in stabilizer 

instead, as indicated by the following two facts: (1) due to the 

modulation on a generally nonlinear system characteristic curve at a 

constant frequency If, the system temporal response is basically a 

linear combination of the If component plus its harmonics with the 

amplitude distribution evolving with time while the modulation center 

varies, and should, in principle, be free of other frequency 

components, (2) the lock-in amplifier (in the If mode) in tlv lock-in 

stabilizer is theoretically a single frequency component (If) 

invertor. Therefore, for monitoring and processing the If component, 

the only requirements for the filter are: (1) its bandwidth covers 

only the If component among If and the harmonics, (2) the Bode plot 

[12], gain vs. frequency, and consequently the corresponding phase vs. 

frequency plot of the filter should be flat around the If frequency, 

so that no amplitude envelope "ringing" and phase fluctuation effect 

might occur due to the practical slight change in the If component. 

Since the lock-in amplifier is a phase sensitive detector, such phase 

fluctuations could cause serious problem in locking stability. The 

second requirement implies that if a bandpass filter centered at If is 

used, a high Q value should be avoided; if a lowpass filter is used, 

the -3dB point should not be too close to the If freqvency. 

On the other hand, the reference channel is to generate a 

reference sine wave for the If component extracted by the detector 
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channel to annihilate. If the input of this channel is directed from 

a pure sine wave generator, such *as the built-in modulation oscillatoi: 

of the lock-in stabilizer, this channel should consist of a voltage 

gain tuner and an in-series phase shifter. The phase shifter should 

have a tuning range a little over 360 , so that a local continuous 

tuning is possible about any phase reading. If the input of this 

channel is provided by a periodic non-sine wave (e.g. square wave) 

generator, then a frequency filter centered at If will be necessary to 

extract a pure sine wave form at If. For similar reasons, the 

requirements for this filter should be the same as those for the one 

in the detector channel. 

Both channels are directed to the inputs of a voltage adder (VA1 

in Figure 2.2.2.1), which is followed by a voltage attenuator. Since 

the reference sine wave is equivalent to the negative wave form of the 

If component of the system response at the intended offset locked 

point, the adder actually subtracts this If component from the 

post-filter only remaining frequency component, the If component, of 

the detector temporal response. Here an voltage attenuator rather 

than a more versatile gain tuner is used. The reason is that there 

usually exists an input voltage amplifier (not attenuator) in most 

lock-in amplifiers. This voltage attenuator along with the built-in 

input amplifier of the lock-in stabilizer can control the signal level 

to be demodulated, and therefore can affect the dc correction 

efficiency of the stabilizer. Since the correction efficiency should 

be high enough to correct any system fluctuation in time and low 

enough to avoid "overshooting" in correction, this post-adder voltage 
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gain tuning is critical in terms of locking stability. Because the 

signal level could have been rais'ed up by the two gain tuners of the 

detector and reference channel, extra attenuation factor might be 

needed in the design. Ideally, the minimum attenuation factor should 

be at least enough to compensate the maximum amplification factors of 

the two gain tuners. 

Of course, all the modification circuit should be bypassed when 

the 2f demodulation is in use. 

2.2.2.2 dc Offset Scheme 

The dc offset scheme, shown In Figure 2.2.2.2, is also based on a 

standard lock-in stabilizer. For If dc modification, a volta^ adder 

(VA2), which sums up the lock-in correction and the reference dc, is 

incorporated between the output of the lock-in amplifier and the 

voltage adder (VAl) of the lock-in stabilizer. The preset reference 

dc, which corresponds to R in Equation (2.2.1.2.3-6) within a 

proportionality constant, is provided by a tunable voltage power 

supply (PS2). In order to be synchronously tuned by the net gain of 

the lock-in stabilizer, the preset reference dc is then directed to a 

lock-in-gain-controlled (G-controlled) and an in-series 

lock-in-phase-controlled (^-controlled) voltage gain tuner before 

being added to the lock-in correction signal. 

The gain (G) tuning on a typical lock-in amplifier is generally 

unipolar. This makes the G-controlled gain tuner unipolar. On the 

other hand, according to Equation (2.2.1.2.1-S), the ^-controlled gain 

tuner should be linearly controlled by the value either of cos4 or of 
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|cos^|. For the case of cos<£, since the polarity of the tuned 

reference dc (not the preset one)* can be determined simply by the 

lock-in phase (4) adjustment, the tunable PS2 power supply need be 

only unipolar. In other words, PS2 must be a bipolar one for the case 

of |cos^|. However, since 4 is usually optimized tc b. ±* (not the 

actual i reading on the lock-in panul) . .rst ii* tira., of actual 

operation, it is always more convenianc to render the sign switching 

capability to a bipolar PS2. 

Similarly to the ac offset scheme, when 2f demodulation is in 

use, the above modification circuit for the lock-in correction must be 

detoured. 

2.2.3 Application to the cw CO, Laser Stabilisation 

2.2.3.1 Actual Stabilisation System 

Since (1) no attempt was made to modify a commercial If lock-in 

stabilizer, as required by the G-controlled and ^-controlled gain 

tuner in the dc offset scheme and (2) it is always more convenient and 

efficient to monitor ac signal on an oscilloscope than dc signal on a 

voltmeter, we adopted the ac offset scheme to offset lock the CO, 

laser. It seems that few people are interested in locking a 

dc-controlled systems around their inflection points. Currently no 

commercial lock-in stabilizer with both If and 2f mode exists. The 2f 

demodulation capability was therefore not included in the prototype 

stabilization system (Figure 2.2.2.1). 

The grating zero order beam of the CO, laser, used for laser line 

identification, is now directed to a liquid nitrogen cooled HgCdTe 
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detector (Infrared #88-2549). (Caution: Never ever use the detector 

to detect the laser first order output, which is usually stronger than 

100W and more than enough to burn the detector.) The detector 

built-in preamp signal is then processed with the response 

modification circuit. The modification circuit, including the 

detector channel, the reference channel, Che voltage adder (VA1), and 

the post-addar attenuator ara all built In one box, the actual circuit 

schematic of which is shown in Figures 2.2.3.1-1 (a)-(e). The 

"cheated" lock-in stabilizer is Lansing Model 80.215 with the 

modulation frequency factory-preset at 518 Hz. The circuit for 

connecting the lock-in stabilizer to the PZT of the CO, laser is put 

in a separate box with proper protection circuit (Figure 2.2.3.1-2) 

suggested by the Lansing instruction manual. 

Since the modification circuit (Figure 2.2.3.1-1) was homebuilt, 

some comments for the circuit design will be made briefly. But no 

explanation of the detailed electronic mechanism will be given, 

because basically only standard operational amplifier (op amp) 

circuits are employed [12,13]. The function of each electronic stage 

will simply be noted below the corresponding part of the circuit 

diagram in Figure 2.2.3.1-1 (a)-(c). 

The input signal of the reference channel is derived from the 

Monitor Sync connector (on FP/L), which is a 20 v pk-to-pk 518 Hz sine 

wave source. (FP/L stands for "front panel of Lansing".) Such a 

large amplitude makes that only attenuation is required in the 

reference channel. Because the dc level associated with this sine 

wave is negligibly small, this input is dc coupled. The first stage 
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of the reference channel, consisting of a current limiting resister 

and a ±15+0.7 v diode-pair voltage catcher [12], is to protect the 

following stages and the ±15 v circuit power supply. This large 

aaplitude input is attenuated with an on-board pot (PI) to ensure that 

no voltage saturation occurs in this channel, particularly in the next 

frequency filtering stage. Tlv linearity of the voltago pot tuning is 

provided by (1) its preceding op asp voltage follower, which raises up 

the input impedance of the pot by orders of magnitude, and (2) the 

relatively large input impedance of the following filtering stage, 

which is at least an order of magnitude larger than the pot resistance 

rating. (Since the only purpose of all the voltage followers in the 

circuit is for voltage transfer Impedance matching to avoid nonlinear 

interactions between consecutive linear stages such as in the current 

case, all the rest voltage followers will be neglected in the 

discussion.) The SIB Hz btn^oass filtering stage is incorporated to 

"purify" the signal from the Monitor Sync connector (on FP/L), which 

is at least contaminated by a small third harmonic of the fundamental 

518 Hz component. 

The pure sir* wave thus obtained As further attenuated and then 

phase shifted to become the required r*£*rmc* sine wave. The 

attenuation is adjusted with a 10T voltage pot (P3), which is 

panel-controlled (Gain/Ref knob on FP/M). ("M" stands for the 

modification box.) The phase shifting is achieved by three in-series 

stages: the first two are 0°-100° shifters, the third one is a ±1 gain 

selector (±1/Ref toggle switch on FP/M). The net shifting range of t 

in thus [-200°,+200°], which is, as required, over 360°. Ideally, the 
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two 0 —100 shifters can be controlled synchronously by a single high 

^solution pot. However, in this*prototype circuit two separate 

panel-controlled low resolution pots (a^/Ref and ^./Ref knob on FP/M) 

are used instead for this purpose. 

Tha detector channel also has a protection input stage, similar 

to that of the reference channel. But now tha input ia ac coupled. 

The reason ia that tha small signal from tha datactor praamp genarally 

needs to ba amplified, and any dc component associated with tha praamp 

output, if not eliminated first, could causa the saturation-clipping 

of tha ac signal either within or after tha amplification stage. 

(This ac coupling feature was important particularly when the offset 

stabilization scheme was tasted on different IR detectors.) The 

amplification stage is panel-controlled (Gain/Oat aalector on FP/M, 6 

position) from 0-50 dB by 10 dB step size. The continuous tuning 

between these fixed amplification factors is achieved with the 

attenuator after the 518 Hz bandpass filtering stage. In terms of 

actual operation, this continuous tuning between the selectable 

discrete gain is unimportant because (1) the amplitude of the 

reference sine wave can always be continuously adjusted to match that 

of the detector channel sine wave, amplified (discretely) only for 

oscilloscope monitoring, (2) the stabilization efficiency, affected by 

the signal level before the lock-in demodulation stage, can always be 

throttled by the post-adder attenuation and the lock-in input 

amplification. The incorporation of this attenuation is only for a 

quick circuit test which employs the 20 v pk-to-pk sine wave, provided 

by the Monitor Sync connector (on FP/L) (the only sine wave source in 
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this stabilization system), as the inputs of both the detector and 
reference channel. 

2.2.3.2 Operation 
Introduced In the following is an efficient offset locking 

procedure, which gives not only the least interactions among the 
controlling parameters (knobs and switches) but also the best offset 
locking quality. Although the introduction of the procedure looks 
long due to the accompanied reasonings, the procedure itself is only a 
10 minute Job. To facilitate the discussion, the panel layout is 
shown in Figure 2.2.3.1-1 (e). 

Step (1) Set up the system as specified in Figure 2.2.2.1. 
Connect an oscilloscope (Scope A) to the Monitor Signal connector (BNC 
on FF/L), and set the Monitor selector (on FP/L) to the Demod 
(demodulation) position. Connect a dual trace oscilloscope (Scope B) 
to the Mon/Ref and Mon/Det connector (BNC's on FF/M). (Set the 
Mon/Out-or-Mon/Det selector (toggle switch on FP/M) to the Mon/Det 
position.) 

Step (2) Turn the Att/Det knob (on FP/M) all way up. (This is a 
knob only for circuit testing.) For monitoring convenience as will be 
shown later, the triggering phases of the two traces on Scope B are 
suggested to be set to differ by 180 , and the gains of the two traces 
had better be always the same. Monitor Scope B to check if the 
reference channel signal is a sine wave free of distortion. If 
distortion can be visually recognized, adjust pots PI and P2 on CB/H. 
("CB" stands for circuit board.) 
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Step (3) Set a PZT modulation amplitude. Usually, a modulation 

amplitude at about 10 v is an empirically reasonable starting point. 

Lansing has two modulation signal outputs: the Low Mod (0-15 v) and 

High Mod (0-150 v) SHV BNC connectors on BP/L. <BP stands for back 

panel.) Now the Low Mod connector should be used for better tuning 

resolution. Since this amplitude is not directly monitored, its 

adjustment is achieved by turning the Mod Amplitude control (recessed 

pot on FP/L) to approximately 2/3 of the full tuning range from zero. 

Step (4) DeCarmine the CO, laser PZT bias to be locked. Set the 

Function selector (on FP/L) to the Manual position, and then adjust 

the Bias (0.2-1.6 kv) knob (on FP/L) until an optimal (a compromised) 

FIR laser performance is obtained in terms of its output power, mode 

quality, and the noise level. It is noted that the C0„ laser, on 

whatever the laser line, usually has a noisy spot close to where it 

has the maximum power. Therefore, to obtain enough locking stability, 

the bias at the maximum power should be avoided in this initial 

setting. (This is part of the reason to offset lock the CO, laser. 

If a spot with a little higher power than this preset value is really 

needed, a fine readjustment of the bias by tuning the reference sine 

wave amplitude is available in step (8) (Case (8c))). Two 

longitudinal C0 2 laser modes are within the PZT bias tuning; there 

always exist two equivalent optimal biases, separated approximately by 

0.5-0.7 kv, depending on the aging of the PZT. It is suggested that 

we select the lower value one. (Because the stabilization usually 

drives the locking PZT bias to higher values to compensate the thermal 

expansion of the laser cavity, this selection will provide more 
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clearance for locking bias drifting.) The voltage separation between 

the two longitudinal modes should be remembered as a reference for 

step (9) (Lansing Mode Juap). 

Step (5) Annihilate the If component of the detector channel. 

Adjust the Gain/Ref, •'l/Ref, ̂ 2/Ref knobs and ±1/Ref selector (on 

FP/M) to make the two sine waves (from the Mon/Ref and Non/Det 

connector) monitored on the dual trace oscilloscope have the same 

amplitude but 180° out of phase with each other. This corresponds to 

exactly overlapping these two traces on the oscilloscope. (Remember 

the trace settings for Scope 8 in step (1).) For better matching 

between these two sine waves, if allowed by the noise level, this 

adjustment can begin with a larger gain of the detector channel, 

controlled with the Gain/Oet selector (on FP/M). (Of course, the 

annihilation can also be monitored at Mon/Out (on FP/M). But this 

does not provide the relative deviation of the detector channel signal 

from the reference sine wave.) 

Step (6) Optimize the lock-in demodulation phase (4,). This can 

be achieved by (a) disconnecting the detector signal from and putting 

a 50 0 BNC terminator on the detector channel input (Input/Det 

connector on FP/M), and (b) using the phase matched and fluctuation 

free reference sine wave alone to optimize the corresponding Lansing 

Demod signal on Scope A by adjusting the +X toggle switch (on FP/L), 

which adds * to *\, and the 0 -180° Phase control (recessed pot on 

FP/L). (Here, the "+A", given by the Lansing Company, is a name that 

does not make sense to the author.) Generally, the Demod signal with 

4. uncorrected is a 2f periodic wave train with the functional form 
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A,sin(2>rft) within the interval t: [*,/(2jrf) , (#.+*)/( 2wf) ] as one 

period. Here, A, is the amplitude of the Demod signal. Apart from 

the gain, the optimal Lansing Deaod signal, which provides the highest 

lock-in correction efficiency, should be either the -|sin(2jrft)| or 

|sin(2*ft)| wave train. (Of course, the worst Demod signal is with 

±sin(2*ft) within t:[-l/(4f),+l/(4f)] as one period because it can not 

be inverted into any dc correction.) It is noted that the lock-in 

demodulation phase uncertainty thus obtained should be to within 0 or 

n. Now, reconnect the detector preamp signal to the Input/Det 

connector. 

Step (7) Trv to lock the CO, laser. Turn the Function selector 

(on FP/L) from the Manual to the Set position and then to the Stab 

position. 

Step (8) Confirm if the locking does occur. In terms of the FZT 

bias, shown on the panel meter of Lansing, there could be three cases: 

(8a) the bias starts drifting away from the preset value in one 

direction, (8b) the bias starts oscillating about the preset value, 

(8c) there is no obvious change in the bias. 

Case (8a), a failure, can also be revealed by that the 2f 

periodic Demod signal (on Scope A) starts evolving with a nonzero dc 

component. For this case, there are two possible causes (if no 

mistakes has been made in steps (1)-(?)). The first passible cause Is 

that the demodulation phase needs to be changed by n. We can thus 

return the Function selector (on FP/L) back to Manual, and restart it 

from step (4) (the bias optimization). Since the PZT bias does not 

drift much in such a short time, the new optimal bias should be close 
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to the original one. But in step (6) (the demodulation phase 

optimization) only to change the +A toggle switch (on FP/L) setting is 

required. If drifting still happens after step (7), then the cause 

could be that the preset PZT bias is too close to one of the extrema 

of the F.(x,A). We return the Function selector (on FP/L) to Manual 

again, then vary the Bias control (on FP/L) about the preset position 

while monitoring Scope B. If the amplitude of the detector channel 

sine wave (on Scope B) as a function of the PZT bias is found to have 

a maximum around the preset bias position, this cause is then 

confirmed. In such a situation, because the 2f demodulation 

capability is not incorporated In the current stabilization scheme, 

the only resort is to select a new, nonoptiaal, but lockable preset 

PZT bias which still provides reasonably good optically pumping for 

the FIR laser. Since typical PZT Modulation amplitude is much smaller 

than the typical width of the feature of the CO. laser gain profile 

(the characteristic curve f(x)) as a function of the PZT bias, usually 

little shifting(s) of the extremum (extrema) of the corresponding 

F.(x,A) can be made by increasing the modulation amplitude A. (See 

Equation (2.2.1.2.3-1).) Therefore, it is suggested that we restart 

it from step (4) to avoid the extremum, instead of step (3) to change 

the modulation amplitude. 

Case (8b) implies a bad quality locking with dominant periodic 

"overshooting" corrections. This overshooting oscillation is because 

the signal level before the lock-in demodulation stage is too large; a 

large positive correction always needs to be followed by a large 

negative correction, and vice versa. This case can also be revealed 
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by Scope A and B simultaneously: the amplitude A, of the Demod signal 

A.|sin(2jrft)| on Scope A will oscillates between the two signs; the 

amplitude of the detector channel sine wave on Scope B will oscillate 

about that of the reference channel sine wave. (Remember the trace 

settings for Scope B in step (1).) This situation can be improved by 

decreasing either (i) the gain before the demodulation stage or (ii) 

the PZT modulation amplitude until Che dominant periodic oscillation 

begins to disappear and a smaller random bias fluctuation, if 

observable, about the preset PZT bias starts to dominate. To decrease 

the pre-demodulation gain, it is suggested to adjust only the Att/Out 

knobs on FP/M and the Input Gain on FP/L, and Co leave Che gains of 

both detector and reference channel unchanged. When decreasing the 

pre-demodulation gain, there should not be any accompanied change in 

the preset PZT bias, Che center of the oscillation or fluctuation. 

Such a accompanied change could imply that the resultant dc correction 

has been too small to lock the CO, laser in time. If this happens, an 

in-time increase in the gain could amve it; otherwise, it is required 

to restart it from step (4) all over again. Strictly speaking, the 

lowering of the modulation amplitude A should not be used to remove 

this oscillation because the If lock-in stabilization correction 

output function S.(x,A,^,G) is a nonlinear function of A; a change in 

A could cause a change in the offset locking bias. (See Section 

2.2.1.2.2) However, when A is small, the change in A might not have 

such a sensitive effect on the locking bias. Actually, this 

sensitivity can be easily tested by monitoring the FIR laser 

performance as a function of A. 
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Case (8c) implies the offset stabilization is either a success, 

or a failure with an obscurely slow PZT bias drifting. This can be 

tested by (i) slightly changing the PZT bias with the Bias control (on 

FP/L) or (ii) slightly varying the amplitude of the reference sine 

wave on Scope B with the Gain/Ref knob (on FP/M). If it is a 

successful locking, in test (i), with tha manually bias varying as a 

perturbation, tha laser will return to the preset operating position; 

in test (ii), tha system will "chase" to match tha new reference 

setting. Actually, tha latter la a batter practice because it also 

helps to reoptimize tha PZT bias, particularly whan it takes a while 

to do steps (5)-(7). If the locking is successful, it is fun to see 

how efficiently the detector channel sine wave follows the reference 

sine wave bein£, manually varied. But do not make the amplitude of the 

reference sine wave too much larger than the preset value because 

otherwise the locking stability might be reduced (Sea Section 

2.2.1.2.3 (C).) or the locking position might even disappear (See 

Section 2.2.1.2.3 (A).) 

Step (9) Set up the Lansing Mode Jump. Because, as previously 

explained, the locking bias almost always drifts toward higher 

voltages, the bias will start getting trapped upon reaching its 

limiting value at 1.6 kv. In this situation, generally, the Demod 

signal on Scope A will have a dc component, and the two traces on 

Scope B will not exactly overlap. To avoid such a fake locking in the 

PZT bias, it is suggested to use the Mode Jump of Lansing. (See 

Lock-in Stabilizer Model 80.215 Instruction Manual.) In principle, 

the step size of the Mode Jump should be close to one longitudinal 
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mode step so that their difference can be automatically compensated by 

the stabilization. (Here, the "node step" is the voltage separation, 

obtained in step (4), between two equivalent operating points of two 

adjacent longitudinal nodes). Any chosen step size should be tested 

with the Manual Mode Jump as following while the C0„ laser is being 

locked. The jump should be triggered in the direction that can 

accommodate the step size. After a short while, if needed, the PZT 

bias should bt either relockad tt certain value or trapped at 0.2 kv 

or 1.6 kv, a limiting position. (It is possible that the bias will be 

locked with the sane reference sine wave at an inaquivalent operating 

point of the original or adjacent longitudinal mode.) Further 

correction for the step size will be required until the corresponding 

Manual Mode Jump can result in relocking the bias at the equivalent 

operating point of the adjacent longitudinal node. Once the step size 

is determined, set the Mode Jump fron Manual to Automatic. (Of 

course, it is even better if the step size corresponds to two 

longitudinal mode steps because the number of the Mode Jumps, which 

are interference to spectrum scanning, can be reduced by SOX in any ' 

cases. However, in order to test such a large step size, we need to 

wait until the locked bias drifts to the positions close to either end 

of the Bias range.) 

2.2.3.3 Performance 

This ac offset scheme for the CO. laser has been successfully 

tested on over a dozen CO,-laser-pumped FIR laser lines. (Mostly were 

tested on the FIR Laser Electric Resonance spectrometer {14,15], which 
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is worse in terms of laser power and noise level of both the C02 and 
FIR lasers. According to the resultant FIR laser performance, this 
technique can actually quintuple the number of laser lines available 
on that experiment.) So far no optimal CO. pumping line has been 
found close to tha inflection point of its gain profile, where the If 
modification is difficult and tha 2f demodulation ia needed. In each 
casa, without any stabilization control raadjustad, tha stabilization 
lasted as long as tha cooling of tha IR detector or as long as the 
oparator's interest. In othar worda, once tha stabilization schema is 
sat up correctly (in about 10 minutes), at least tan hour locking is 
guaranteed. The FIR frequency drift rata is approximately 75 
kHz/hour, which is a little better than tha best available from an 
ctalon locking scheme [8,9]. However, tha cost of the response 
modification box, lass than $100, is more than two orders of magnitude 
cheaper than that for a qualified atalon. 
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Chapter 3 
14 Far Infrared Vibration-Rotation-Tunneling Spectroscopy of Ar- NH, 

3.1 Introduction 

The establishment of general rules governing vdW interactions on 

a molecular level is essential in understanding condensed phases and 

inter-phase interactions. Although various small vdW complexes have 

been studied, only few general rules have so far been deduced. 

Unexpectedly, detailed spectroscopic studies of the gas phase 

NH,-containing binary complexes have destroyed one such important 

rule. 

One might think intuitively, according tc the definition of 

hydrogen bond (H-bond) [1], that NH, can act not only a« a H-bond 

donor but also as an acceptor, respectively due so the relatively 

strong electronegativity and the Available e1»ctron lone pair of the N 

atom; in other words, NH, can in principle, be a Lewis acid (H-bond 

donor) as well as a Lewis base (H-bond acceptor) [2]. However, this 

guess has been experimentally found to be only partially correct. [3] 

The role of NH, in binary vdW complexes that htrve been studied, 

mostly by microwave spectroscopy, can be classified into three types 

[3]. The first type consists of linearly H-bonded systems such as 

H3N-HCN [A], H3N-HC1 [5], HjN-HBr [6], HjN-HOH [7], H.jN-HCCi; [8), and 

HJN-HCFJ [9], in which the NH, subunit behaves clearly as a H-bond 

acceptor or Lewis base. In these cases, the partners of the NH, 

subunit ranges from strong (e.g. HCN) to extremely weak Lewis acids 
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(e.g. CHF,). The second type contains the T-shaped complexes tf.N-CO, 
[10], and H.N-N-0 [11], which *re* non-H-bonding systems but in which 
the NH, subunit behaves as a Lewis base pointing its lone pair toward 
the middle of its linear partner. The third type are those in which 
the Lewis acid-base roles are indeterminate, such as CO-NH^ [12], the 
tree-internal-rotor system Ar-NH- [13-15], and the bent (NHj) 2 

[16,17]. Interestingly, all the subunits, viz., CO, Ar, and NH 3, 
involved in ii type can form nearly linear H-bonds with HF, H ?0, 
except in the case of Ar-H,0 [18] whose structure has -/><• been 
determined conclusively. In other words, so far no experimental 
evidence has Indicated that NH, can be a H-bond donor yet. 

This is different from other prototypical H-bonding molecules, 
viz., the first r w hydrides HF and H,0, which can ace as both H-bond 
donor and acceptor. As first pointed out by Nelson [3], this can be 
illustrated further by considering the vdW stereochemistry of the six 
binary complexes that can be formed by HF, H„, and NH,. If it is 
assumed that (1) the completes have linear H-bonds with the basic 
H-bond acceptor pointing i lone pair of electrons toward its partner, 
and (2) the trend of donating H-bonds is: NH, < H,0 < HF, then, as 
shown in Figure 3.1-1, the predicted structures of five of these 
complexes are in essential agreement with experimental results, except 
in the case of (NH,)-. It is noted that (NH,). is the only complex, 
among the six, in which Nh, needs to donate a H-bond, and also the 
only case that contradicts the prediction. 

This strange behavior of NH, has attracted a great deal of 
experimental and theoretical interests as well as much controversy, 
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Figure 3.1-1 
Linearly H-bonded struccuras of the binary complexes from the 
prototypical first row hydrides, HF, H.O, NH,. High-resolution 
spectroscopy has established these structures to be correct except in 
the case of NH, dimer. (From D.D. Nelson, Jr., C.T. Fraser, and W. 
Klenperer, Science 231, 1670 (1987).) 
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particularly over the structure of (NH-),. 

Many theoretical calculations [3,19] of the (NH3>2 potential 

surface either preassume or produce a nearly linear H-bonding 

structure (Figure 3.1-2(a)) as tha global minimum, and in one 

calculation [20] a C,, centro-symmetric structure (Figure 3.1-2(c)) 

has baan predicted to be a local minimum. However, recent microwave 

spectroscopic studies [16,17] of two lntamolacular vibrational states 

of (NH,), and one of (ND,), by Klemperer and coworkers indicate that 

(NH,), has a bent equilibrium structure (Figure 3.1-2(b)), which is in 

conflict with almost all theoretical calculations. (Only the 

post•experiment theoretical "prediction" by Sagarik at *1. [21] 

produces a similar structure.) Their two major experimental results 

are: (1) the ground intermolecular vibrational state shows rigidity, 

as confirmed by isotopie substitutions, and (2) tha small dipole 

moment projection (i , 0.75 D, are found along the a principal axis of 

the dimer. These imply that p basically results from the vectorial 

addition of the two monomer dipole moments with a bent and relatively 

rigid configuration. Otherwise, if linear H-bond is assumed (and 

higher order electric interactions can be ignored), then this 

projection should be approximately 2 D instead. Consequently, this 

result rules out both the nearly linear (Figure 3.1-2(a)) and 

centrosymmetric (Figure 3.1-2(c)) H-bonded structure. 

After these microwave studies, some theoreticians [22], instead 

of economically preassuming a nearly linear or a centrosymmetric 

structures, carried out a geometry optimization on the potential 

surface at the SCF level for (NH,), and other first and second row 
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Figure 3.1-2 
Possible structures of (NH.),: 
(a) theoretical (nearly) linear structure, 
(b) experimentally observed bent structure, as an intermediate between 

the two theoretical structures shown in (a) and (c), 
(c) theoretical centro-syiMtetric structure. 
(Adapted from A.O. Buckingham, P.U. Fowler, J.M. Hutson, Chem. Rev. 
88, 963 (1988).) 
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hydrides. They found that (NH,), is a rather special and extremely 
difficult case; when the basis set is small, a centro-symmetric 
structure is the global minimum, a nearly linear structure is a saddle 
point, whereas when the basis sat is relatively large, there is a role 
switching between tha two structures. Although other higher order 
calculations [20,23] were made, no agreement on tha relative 
orientations of cha equilibrium geomatry and avan the number of minima 
on tha potential surface have baan achieved. Certain calculation [20] 
showed that tha conversion energy between tha linear and 
centro>symmetric structures are extremely low that tha predicted 
geometry ia sensitive to the correlation anargy calculatad. All these 
indicate the difficulty of the structural prediction, and conflict 
with the existence of rigidity effects shown by tha microwave studies. 
Theoreticians [24] therefore suggested that (1) the measured u be 
interpreted as an average value due to large amplitude motions on the 
relatively flat multibarrier potential surface, and (2) many torsional 
motion couplings do not lead to spectroscopic splittings. Basically 
this implies that the n measured by Klemparar cannot be interpreted 
in terms of a straightforward classical vector model, and the 
equilibrium structure thus derived could be incorrect. It is also 
shown that although p is a strong function of the relative 
orientation between the two NH, subunits within an electrostatic 
model, approximately equally good structural reassignment* can be made 
with one of the torsional angles varying from 0°-60°. In terms of the 
apparent rigidity, the discrepancy between theories and experiments 
therefore remains. 
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Nelson et al. [25] then made a MS group theoretical study for the 

energy level splittings due to rotational-tunneling motions. This 

study illustrates that even when certain torsional tunnelings are 

allowed, the tunneling splittings could still be missing and a 

classical semirigid rotor type microwave spectrum could be observed. 

So far, perhaps, the most meaningful theoretical results is that 

the (NH,), complex does provide a serious challenge to theoreticians. 

In order to understand these anomalous behaviors of NH,, experimental 

studies of its potential surface are then required. 

Because of the simplicity of the Ar atom as a featureless probe 

for the behavior of the NH, subunlt, Ar-NH,, instead of (NH,),, 

clearly becomes the starting point for a detailed experimental study 

of the weak binding of NH,. Due to the suggestion, by microwave 

spectroscopy [1A,1S], that NH, subunit of Ar-NH, is essentially an 

inverting, free internal rotor even in the ground intermolecular 

vibrational state, its potential surface is expected to be relatively 

isotropic. A further characterization of the global features and 

finer details of the potential surface becomes a more intriguing 

challenge. Since FIR spectroscopy directly samples the intermolecular 

vibrational states, which can then be inverted into the potential 

surface, we use the state-of-the-art tunable FIR laser technique 

described in Chapter 2 to probe the system. 

In this work, we report a study of an intermolecular vibrational 
14 -1 

transition of Ar- NH, at 26.470633(17) cm . The ground state of 

this band was studied previously by Nelson et si. and Lovas et al. 

using molecular beam electric resonance experiments and pulsed nozzle 
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Fourier transform microwave spectroscopy. [13] The obtained molecular 
constants of the upper vibrational state are also consistent with the 
nearly free internal rotor model. The molecular constants, the 
permutation-inversion group theory, the selection rules, and the 
quantum number correlation were all used to make a tentative 
assignment of this vibrational band and to extract information about 
tha intarmolacular potential surface, 

3.2 Experimental 
Used In the range from 21 to 28 em on tha tunable FIR/planar 

jet spectrometer were four fixed frequency FIR laser lines, i.e. 
692.9514 GHz, 761.6083 GHz, 584.3882 GHz from HCOOH, and 787.7555 GHz 
from DCOOD [26]. About 350 transitions (sea Appendix Tabla 5 for the 
approximately 250 rotationally ur.assigned lines) were observed over 
this region. A stick spectrum of these lines with observed 
intensities is shown in Figure 3.2. At least two different vdW 
species, viz., the Ar-NH, and (NH-), complexes, were observed in the 
supersonic expansion from a 700 Torr 3X NH.-in-Ar mixture through a 
1.5" long and 0.001" wide room temperature slit into a chamber at 
approximately 100 mTorr. Although most of the observed lines were 
catalogued using a 3X mixture, the signals of Ar-NH- and (NH,)„ can be 
improved threefold with 0.55S and 2X mixtures, respectively. The 
signal of Ar-NH, is in general about ten times stronger than that of 
(NH,),, and has a maximum signal-to-noise ratio of about 200. 

3.3 Spectrum Rotational Assignment and Analysis 
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Figure 3.2 
Computer reproduction of the far-ir spectrua observed in a 3Z 
NH3-in-Ar mix. 

er. 
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14 A. K : 0 «- 0 subband of the near prolate Ar- NH, complex centered 

at 26.470633(17) cm was identified and shown to have the same lower 
state as that observed previously by microwave spectroscopy [13]. The 
observed subband structure is shown in Figure 3.3 as a stick spectrum. 
Twenty three transitions (Table 3.3-1) have been assigned to this 
subband. The results of the fit are given in Table 3.3-2. The 
standard deviation of the fit of six parameters to 23 lines is 1.1 
MHz, which is consistent with the uncertainty due to laser frequency 
drift. The P(7) line at 751 GHz was obscured by the atmospheric water 

14 absorption at 7S2 GHz in the unpurgad optical path. N Nuclear 
14 hyperfine structure from the N quadrupole interaction was only 

partially resolved for each of these spectral lines, as is evident in 
the P(2) line shown in Figure 3.3. In the fit, the upper state 
nuclear quadruple coupling constant (•<?$..') W M fit with the ground 
state constant («<?<?") fixed at the value from the microwave study, 
in which the hyperfine structure was much better resolved. Over 
ninety other far Infrared lines in the 7 cm Interval measured have 
been assigned as vibration-rotation-tunneling (VRT) transitions in 
(NH,)-. Their rotational analyses will be given separately in 
Reference 27. 

3.4 Croup Theoretical Preparation for Vibrational Assignments 
The transformation properties of the nuclear coordinates of 

Ar-NH, under the permutation inversion (PI) operations of the D_. (M) 
molecular symmetry group (Appendix Table 1, character table) will be 
discussed first. The methodology of the coordinate transformation 



Tabic 3.3-1 
Observed Jt -0 *• 0 subband transitions of Ar-NH, 

TRANSITION OBS. FREQ. O-C 
J' *-' V •- j» ', (MHz) (MHz) 

1. 14 0 14 IS 0 IS 696307.0 -0.6 
2. 13 0 13 14 0 14 703581.0 1.2 
3. 12 0 12 13 0 13 710717.0 0.1 
4. 11 0 11 12 0 12 717728.5 -0.3 
5. 10 0 10 11 0 11 724623.0 -0.1 
6. 9 0 9 10 0 10 731405.0 -0.8 
7. 8 0 8 9 0 9 738080.5 -0.7 
8. 7 0 7 8 0 8 744653.3 0.6 
9. 5 0 S 6 0 6 757492.3 1.4 
10. 4 0 4 S 0 5 763758.7 -0.5 
11. 3 0 3 4 0 4 769926.4 -0.4 
12. 2 0 2 3 0 3 775992.7 -0.3 
13. 1 0 1 2 0 2 781957.7 1.0 
14. 0 0 0 1 0 1 787816.4 0.2 
15. 1 0 1 0 0 0 799215.0 -0.1 
16. 2 0 2 1 0 1 804748.7 -1.0 
17, 3 0 3 2 0 2 810170.0 -1.0 
18 4 0 4 3 0 3 815476.5 0.8 
19. 5 0 5 4 0 4 820661.7 1.5 
20. 6 0 6 5 0 5 82S718.0 -2.4 
21. 7 0 7 6 0 6 830652.9 1.3 
22. 9 0 9 8 0 8 840105.1 0.9 
23. 10 0 10 9 0 9 844610.8 -0.8 
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Table 3.3-2 
Spectroscopic constants (in MHz) of the observed 
VRT band of Ar-NH,. The uncertainties In the 
parentheses are two standard deviations. 

The observed band 

Lower state: Ground state: 
(B"+C»)/?. 2876.927(94) 2876.849(2) 

V 0.08644(27) 0.0887(2) 

««v 
Upper state: 

0.350(8) 

Upper state: 
{B'+C')/2 2822.87(11) 

V 
V 

0.10225(48) 
-30.5(16) x 10""6 

• * « ' -0.8 C 

This work. Rotational constants are determined in a 
sinultaneous fit of both the upper and lower states. 

Reference [13]. 
c 14 
The upper state N nuclear quadruple coupling 
constants were obtained by fixing the lower state 
constants at the values froa Microwave spactroscopy. 



H2) 120 

2<.0«51 (ewT1) 2C06S4 

21.67 

Figure 3.3 -1 
3' Upper: A 10 MHz scan showing P(2) of the 26.47 cm band of Ar-NH 

14 with N nuclear hyperfine structure partially resolved. 
Lower: A stick spectrum of the internolecular vibrational band with 

the actual observed intensities indicated. 
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employed was first introduced by J. Hougen [28). The transformation 

properties of the rotational wave* functions and inversion coordinate 

will also be derived. 

3.4.1 Coordinate Definitions 

The NH, aubunlt-fixed CarteaIan coordinate ay»ten la defined in 

Figure 3.4.1-1. lea origin la the center of naaa of cha aubunit. If 

the C, symmetry la assumed for the NH, aubunit, than the thraa axes 

can ba apacifiad aa follows: 

y : parallel to the plana defined by the equilibrium positions of 

the thraa hydrogens, and in tha direction of the vector 

pointing from the equilibrium position of H3 to that of H2, 

x : parallel to tha plane defined by tha equilibrium poaitlons of 

the three hydrogana, and pointing toward 111, 

z : determined by the right-hand rule fro* x and y axes, and is 

collinear with the C, symmetry axis of NH,. 

The atomic coordinates, R. (i-Ar, N, 1, 2, and 3), with respect 

to the laboratory-fixed coordinate system are defined aa followa: 

RAr" Rcm + s - 1(V2,» d.* d)[-(« t/M)Rk] 

" Rcm + Sd"X(-(»,/M)Rk] (S d
_ 1- S _ 1 ( ) f d , . d . ^ ) . * d-*/2); 

_, (3.4.1-1) 
Ri^Ar- Rcm + S V/2.*d,*d)[<..Ar/M)Rk] 

+ s' 1^.^.^)^^) + 0̂ (7)] 
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» 

f 
/ 

(-) 

t 
0 
I 

Figure 3.6.1-1 
Definition of the NH, subunit-fixed Cartesian coordinate system, and 
the angle coordinate (7) of the NH, inversion motion. 7 is the angle 
between the positive x axis and the vector pointing from the 
equilibrium position of N to that of HI. 7 has the same sign as the 
z coordinate of the equilibrium position of N. 



+ s'ht^-r) + dt-(7)3, (s s
_ 1- s 1(x,.•,.*,» 

(3.4.1-2) 

position vector of atom 1 (1-Ar, N, 1, 2, 3) or the center of 
mas* of the complex (i-cm) with respect to tha 
laboratory-fixed coordinate system, 
rotation matrices, following the convention of Wilson, Decius 
and Cross [*9], 

X \ Z 

x [ c,*c#c^-Bxsf cxct*4+*xe+ ~cx*9 

*ix,*,+)m y -sxclc^-cjfs^ -sxc#s^+cxc# sysl 
z [ ntci *IM+ C§ 

(3.4.1-3) 
where c-cosine, s-sine. The X, Y, Z correspond to the 
Cartesian coordinates of the laboratory-fixed system; the x, 
y, z are the Cartesian coordinates of the rotating body-fixed 
system. S. describes the orientation of the Ar-NIL 
pseudo-diatomic frame with respect to the laboratory-fixed 
coordinate system, y, is chosen arbitrarily to be */2. 
Similar"y, S describes the orientation of the NH, subunit 
with respect to the laboratory space with $ , 4 fixing the 
C, axis of NH,, and x tha rotation about the C, axis. 
mass of the NH, subuni*, 
mass of Ar atom, 
total mass of the Ar-NH, complex, 
distance between the Ar atom and the center of mass of the 
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NH- subunit, (see Figure 3.4.1-2) 

k: unit vector pointing froli the Ar atom to the center of mass 
of the NH, subunit, (see Figure 3.4.1-2) 

7: NH, inversion coordinate, defined in Figure 3.4.1-1. 7 is 
the angle between the poaitivc x axis and the vector 
pointing froa the equilibriua poaition of N to that of HI. 7 
has tha aaae algn aa tha z coordinate of the "equilibrium" 
poaition of N (see below). 

»i°<7): equilibrium poaition vector of atom 1 in the NH, aubunit 
with reapact to tha aubunit-fixed coordinate aystea; a vector 
function of 7, defined aa 

" X ^ - 7 ) " " +X i°(+7) " 

• ^ ( - 7 ) - y ^ T ) • +yt°<+7> 

. * i 0 ( - 7 ) . . -V<+7> . 

The large amplitude NH, inversion diaplaceaent is inherent in 
such an "equilibrium" poaition vector. Therefore, it is the 
equilibrium position only when 7 is held at a constant. 
Since it is a vector function of 7, its length, |a.°(7)|, may 
vary with the inveraional motion. 

d,(7): aoniztversional Displacement vector of atom i of the NH, 
subunit with respect to the subunit-fixed coordinate system; 
defined similarly as a,"(7) aa 

d xi<^> X a 

d ^ - 7 ) - d y i C 7 ) • +d y i (+7) 

• d , l ™ • • - d *i< + ^> 
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Figure 3.4.1-2 
Definitions of distance R, unit vector k, and Eulerian angles # r, xv 

center of aass.) for Ar-NH,. (c. 
Section 3.6.1. 

f r will be simplified as f from 
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Since both a. (7) and d.(7) are polar vectors [30], they 

have similar defining expressions in terms of y. 

3.4.2 Coordinate Transformations 

3.4.2.1 Effect of Permutation (without *) on R 

Since any permutation among Che three H's has no effect on R. , 

it is straightforward that 

. -1 R A r > R C B + S > /2 ,# d , « d H0» A r /M>Rk] 

- original RA].. (3 .4 .2 .1) 

3.4.2.2 Efface of Permutation-Inversion (PI) on R. 

Apparently, the net effect on R._ of any PI operation with * 

explicitly involved will be Che same as that of the * operation 

itself. Therefore, 

* A r - j S — > -R C B + (S~1(V2,#d.#d)(-Nd"1)][-(mj/M)RJNdk) 

- -(original *A_)» 

where 

and 

+ 1 0 0 

v Nd _ 1- 0 - 1 0 

. 0 0 + 1 

' 0 ' 

k- 0 • 

1 

(3.4.2.2-1) 

(3.4.2.2-2) 

(3.4.i.2-3) 

Here, k is a unit vector for the displacement vector used in the 

pseudo-diatomic model; it has the same coordinate expression with 
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respect to the pseudo-diatomic frame coordinate system before and 
after the * operation. 

Equation (3.4.2.2-2) can be derived as follows: Using the 
convention of Wilson, Decius and Cross, with y,"*/2, we get 

Sd"1- • ~ W . ' d . # d > -
-sid -c#dc*d s# dc* d 

SI CI. 
(3.A.2.2-4) 'd v'd 

On the other hand, [S~ l<w/2,# d l* d)(-H d~ 1)) (-[-Sj"1^"1]) in Equation 
(3.4.2.2-1) la the equivalent proper rotation [31] of the * operation 
with respect to the laboratory-fixed coordinate system. By doing the 
following substitutions in Equation (3.4.2.2-4) for » d , 

'd """> " " #©V 
*d _ > * + *d' 

its explicit form can thus be obtained as 

i-VVi-
+ s ' d -"d<*d ~ s , d c ' d 

-<*d - " d ^ d - s , d s ' d 

+sr -ci. 
Because 

(3.4.2.2-5) 

sd_1- - v - v V i 
- (-Dis^i't-s^"1], 
(V S. and S d are orthonormal, 8. -S. ), 

(3.4.2.2-6) 

ith the use of Equations (3.4.2.2-4) and (3.4.2.2-5) for S. and 
[S.~ Nj ], the explicit expression for N ~ (Equation (3.4.2.2-2)) 
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can then be verified. 

Geometrically, Figure 3.4.2/2 serves as a visual verification for 

the explicit expression of the rotation operation [~N.] (see Equation 

3.4.2.2-2), which represents a rotation of the pseudo-diatomic frame 

about its y axis by 180 . 

3.4.2.3 Effect of tht * Operation on * t <1- N, 1, 2, 3) (Figure 

3.4.2.3) 

The transformation of the NH, nuclear coordinates under the * 

operation ii as follows: 

R i ^ - > - * „ + [« d" 1(-" d" 1)]l» d(" A r^>»k] 
+ [ S ^ - M , * " 1 ) ] ! ^ 0 ^ ) + ^(-7)] 

- - R « - [» d"V Il I"d<"Ar^ M > R k] 
(3.4.2.3-1) 

[S s" 1N s #~ 1J[N i #(. l°(+7) + d^+7))] 

- -(original R^, 

where 

N, and k: same as derived previously for R , 

N •. equivalent improper rotation [31] of the * operation with 

respect to subunit-fixed coordinate system, with its explicit 

expression being 

s* 

+ 1 0 0 

0 + 1 0 

0 0-1 

(3.4.2.3-2) 
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NH, 

Figure 3.4.2.2 
Effect of the * operation on the pteudo«diatoaic frame coordinate 
systea. 
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t t 

f »/ 
at I / 

Ar 

Figure 3 .4 .2 .3 
Effect of the * optration on R. ( i - N, 1, 2, 3). 
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(The determinant values of +1 and -1 are characteristic of 
proper and improper rotation matrices, respectively.) 

a. (—7) and d. (-7): new equilibrium position and displacement 
vector of atom i with respect to the new subunit-fixed 
coordinate system after the * operation. 

Equation (3.4.2.3-1) can ba verified as follows: The first two 
terms, referring to the center of mass of the NH, subunit, can be 
obtained similarly as in the previous case of tha * operation on R.. 
The third term can be justified with Figura 3.4.2.3, which shows the 
equivalent proper rotation, with respect to the laboratory-fixed 
system, of the NH, subunlt-fixed coordinate system causes a rotation 
about z axis by 180°, i.e. 

s" l<V'.-V 7T7> •"lta..#-.v<-V*> (3.4.2.3-3) 
[R„] 

.-1, 

where [R *] and N . are the corresponding proper and improper s* 
rotation, with 

l O - O" 1 <- -".*- -".*~l)-
-1 0 0 1 
0-10 
0 0+1 

It is also apparent, from Figure 3.4.2.3, that a, (+7) and d.(+7) are 
changed into 

•i'c-y) <- Ns*»i°(+-r)) (3.4.2.3-4) 

and 
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d.("7) <- N s*d.(+ 7)). (3.4.2.3-5) 

As a result of Equations (3.4.2.3-2) through (3.4.2.3-5), Equation 
(3.4.2.3-1) is justified. 

3.4.2.4 Effects of the (23) and (23)* Class Operations on R £ (i-N, 1, 
2, 3) (Figure 3.4.2.4-1) 

The individual equivalent proper rotations for the 
pseudo-diatomic frame under the (23) pair permutation and the * parity 
inversion can be expressed as 

d d [R°] d [R/] d d 

Similarly, those for the NH, subunit-fixed coordinate system are 

„-l (X s.# s.# s) ,, > S s M ( 2 3 ) 

1 xs ] 

— * — > s " I M , „ ~l<-* _ 1 ) 
i D *i S (23) S* 

where 

-1 
(23) 

' zs 

+ 1 0 0 
0 - 1 0 
0 0-1 

(- S - 1[R "j" 1), 
> j l y, J '> 

(- M ( 2 3 ) ) 

and 

s* l zs 

+ 1 0 0 
0 + 1 0 
0 0-1 
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t I 
f:lyt v 

Figure 3.4.2.4-1 
Eff«cc of tht (23v ?nd (23)* operation on R (i- N, 1, 2, 3). (D: 
pseudo-diatoalc. : subunit.) 
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Here, M.„-. and N # are proper and inproper rotation matrix, 

respectively. We will keep using* M for proper matrices, and N for 

improper matrices in the follow!:. ̂. (It is noted that (23) 

corresponds to an improper rotation under C- (H), while to a proper 

rotation under D-. (M).) 

The change in the equilibrium poaition of each nuclear coordinate 

od NH, is derived as follows: 

N: 

•M°<+7>-
t„°(+7> "• N 

JL2H * "(23)S <*T> 

(-

0 
0 

L -*w°<+7) J 
- V«ir» 

"> V(23)V<+» 
- M, '(23)*N ("*7) 

(N . and H.,,. are both diagonal, therefore 

they commute.) 

- «N°(+7)). 

HI: 

•1°(+7>-

x^C+7) 

^ V T ) 
~^-> H ^ ^ V T ) 
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' x1°<+7> " 

c- 0 

. -V(+7> . 

* - u • °t l 
> M <23)*1 ( n r ) 

<- \ * * 1 <-»> 
- * 1°(+7)). 

H2: 
• 2°<+7) -*&)-> M 2 3 a 3°(+ 7) 

<-

(23)' 
+x3°<+7) 
-y3°<+7) 

L -«,°(+7) J 

± - > N.*M(23)*3°^> 
"* i231*3 * " ' 

H3 : (Do a (23) permutation in tha abova a2°(+7) expression.) 

• 3°(+7) - t 2 ^ - > M ( 2 3 )a 2°(+7) 

•i->M ( 23 ). 2
0(-7). 

In other words, the expressions for the changes in the 
equilibrium positions are of the following form: 

«i°<+7) - m i " > " < 2 3 )« j
0<+T) (3.4.2.4) 

— > M(23)V<-*> 
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where i»j or I»*j depends on if atom i is involved in the permutation 

operation or not. Other simpler -forms are available only when the C, 

point group symmetry of the NH- subunit is introduced. 

Since a 's and d's ar* both physical vectors, the general 

expression for them are similar; the transformation of d, under (23) 

and (2D)* should be Expression (3.4.2.4) with all *i°'s replaced by 

d,. Because there is no equilibrium geometric restrictions on d's as 

on a°*s, d's generally do not map simply into d,(±-y). For example, 

for N atom, 

y - 7 > -*"*-> M ( 2 3 ) d N ( + 7 ) 

J L _ > Ns* M(23) dN ( + 7 )- M(23)V - 1 , )-
and for H2, 

d 2( +7) - S m ~ > " ( 2 3 )« 3<+7> —*-> H ( 2 3 )0 3<-7). 

The effects of the (23) and (23)* operation on R. (i-N, 1, 2, 3) 

can then be summarized as follows: 

*N - L m - > Rcm + S d
_ 1K- A r/«)^] 

+ ^ ^ ^ V ^ + M(23) dN< +^ 
- original 1^, 

R 1 - i ^ - > R c n ) + Sd~1[(mAr/M)Rk] 

+ ' S . " 1 M ( 2 3 ) " 1 H * 1 ° < - T ) + M(23) dl ( +?» 
- original R., 
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R 2 - ^ - > R c K + S d- 1t(m A r/M)Rk] 
+ I Ss" l M(23)" 1^ M(23)*3° ( +T> + M(23) d3< +1' )] 

- original R., 

R 3
 ( 2 3 ? > original R 2 

(Same expression as that for R, under (23), but with 
subscripts 2, 3 switched), 

«H - i 2 m > -Rc„ + I» d" l<V l>l' 1d <"Ar^ ) t tl 
+ [•."1"(23)"l<H,i*^>»aIT0(4T> + M ( 2 3 ) V " ' > ] 

~ S," l M(23rV 1[ N.* M(23)<*N 0< +T> + V + ^ 
- -(original RJJ), 

R x < 2 3>*> -(original R ^ 
(same expressions as those for R-. under (23)*, but with 
subscript N replaced with 1), 

R 2 M m > - Rc» + [« d' l<-" d" 1>]l» d<- A r^)»] 
+ f Ss~ l M(23)~ 1 (- N.*~ l ) J t M<23)*3° (-^ ) 

+ M ( 2 3 ) d 3 ( - 7 ) ] 

" - Rc- ~ >d" 1< B*V l>« k 

" S." l M(23)" 1V" 1^.* M(23) (-3 0 ( +^ + d 3 < + ^ 
- -(original Rj), 

R 3 < 2 3>*> -(original Rj) 
(same expressions as those for R. under (23)*, but with 
subscripts 2, 3 switched). 
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The effects of the (13), (13)*, (12), and (12)* operation on R i 

(i-N, 1, 2, 3) can be derived with the same scheme. The proper 
rotation matrices, H.^-. and **..„., are given in Table 3.4.3-1. Due 
to the fact that their rotation axes are not collinear with anv 
Cartesian coordinate axis of the NH. subunit-fixed system as in the 
case of M._,., both cf them are nondiagonal. (See Figure 3.4.2.4-2 
for the cases of (13) and (13)*.) However, they are symmetric, and 
therefore, like **,,«., can commute with M . (diagonal). 

3.4.2.5 Effects of the (123) and (123)* Class Operations on Rj (i-N, 
1. 2. 3) (Figure 3.4.2.5) 

The individual equivalent proper rotations for the 
pseudo-diatomic frame under the (123) cyclic permutation and the * 
parity inversion can be expressed as 

- o m > s - i S_1(w/2,# ..*.) a - - d 

[R ] tR "1 r '̂V'' 
Similarly, those for the NH, subunit-fixed coordinate system are 

s ~ l / y , # s (123) -1-1 
S (X s,» s.* s> > S f N ( 1 2 3 ) 

[R < 2 / 3 ^ ] 1 zs ' 

* >S.' 1M _ 1 (-N ~ 1 ) , , R *. s (123)v "s* 
1 zs ' 

where 

M(123)" s<<2/3)w,0,0)-

-1/2 +73/2 0 
-73/2 -1/2 0 
0 0 + 1 
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(+*.) 

Figure 3.4.2.4-2 
<a> Effect of tht (13) and (13)* operation on &. (1- N. 1, 2, 3). 

(D: pseudo-diatonic. S: tubunit.) 
(b) Top vi«w of tht HH. tubunits in (a). 
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Figure 3.4.2.5 
(a) Effect of the (123) and (123)* operation on X (i- N, 1, 2, 3). 

(D: pseudo-diatomic. S: subunit.) 
<b) Top view of the NHj aubunits in (*). 
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The effects of the (123) and- (123)* operation on Rj (i-N, 1,2, 
3) are summarized as follows: 

^ - Q m > R c » + Sd" 1t<"Ar' M> R kl 

- original ft^; 

ft1-^li>Rcm + 8 d" 1[(» A r/M)Rk] 
+ 8." l M<123f l l H<123)'2 0 ( +*> + «(123) d2< +^ 

- original Rjl 

» 2 < 1 2 3>> original * 3 

(same expression as for ft. under (123), but with 
subscript 1 raplacad by 2, 2 by 3); 

similar to ft, under (123), 

ft3 < 1 2 3>> original ftji 

*N m m > -*c. + |S d" 1(-H d" l»|M d(» A r/M)RkJ 
+ l ,," l , l<123)" l (-".*' l>»I aM 0<- T> 
+ N.* M(123) dN^>J 

- -(original « N ) ; 

*1 m m > -*ca
 + [S d" l(-M d"* 1 )l[ Kd<»Ar/ M > R kl 

+ t S." l M(123)" I<- , ,.*" 1»lV(123)*2 0 < +-' ) 

+ V ( 1 2 3 ) d 2 < + ^ 
- -(original Rg); 
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R 2 < 1 2 3>*> -(original R 3) * 

(same expression as for R. under (123)*, but with 

subscript 1 replaced by 2, 2 by 3); 

similar to R, under (123)*, 

R 3 i!2212> -(original R^. 

The affects of the (132) and (132)* operation on R., (i-N, 1,2, 

3) can be obtained similarly. 

3.4.3 Suraury of Coordinate Transformations 

The equivalent proper rotation matrices for all the PI operations 

are listed in Table 3.4.3-1. The equivalent rotations, the 

corresponding transformations of the Eulerian angles and the NH, 

inversion coordinate are listed in Table 3.4.3-2. It is noted that 

there are two sets of Eulerian angles, one for the pseudo-diatomic 

frame, one for the NH, subunit; they are the same as those for the 

diatomic system and for the unperturbed NH, monomer, respectively. 

The equivalent motions (or motion) for each PI operation, shown 

in Table 3.4.3-3, can be obtained unambiguously from Table 3.4.3-2. 

Basically, all PI operations (with and without * ) , except for the 

identity operation E, involve the NH, internal rotation. The pair 

permutation (with or without *) causes an internal rotation along an 

axis normal to the C_ axis, the cyclic permutation (with or without *) 

causes such a rotation along the C, axis. The end-over-end 
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Table 3.4.3-1 
The equivalent proper rotation matrices for all the PI operations 
of the n

3_(M) group for Ar-NH,. 

( -N d >- S<ir,w,*> -

ME- 8 (0 ,0 ,0 ) -

M ( 2 3 ) ' *<°»"'«*>" 

M ( 1 3 ) - S((2/3)*,ir,»0-

M (12)" S <<V3>".*.*)-

M ( 1 2 3 ) - S((2/3)*,0.0>-

M(132)~ S < ( V 3 ) » . 0 , 0 ) -

- 1 0 0 

0 + 1 0 

0 0 - 1 

+ 1 0 0 

0 + 1 0 

0 0 + 1 

+ 1 0 0 

0 - 1 0 

0 0 - 1 

-1/2 -jl/2 0 
-jl/2 +1/2 0 
0 0 -1 

-1/2 +73/2 0 
+73/2 +1/2 0 
0 0 -1 

' -1/2 +V5/2 0 
-73/2 -1/2 0 
0 0 +1 , 

" -1/2 -73/2 0 
+73/2 -1/2 0 
0 0 + 1 

The rotation matrix S follows the convention of Wilson, Decius 
and Cross [29], Its variables are expressed in the format as 
Six.*.*)-



Table 3.4.3-1 (continued) 

ME*~ < _ N s * ) M E " ><*.0.0)8(0,0,0)- S(w,0,0)-

- 1 0 0 

0 - 1 0 

0 0 + 1 

M <23 ) * " ( " N t * > M ( 2 3 ) ~ «<«.0.0)«(0,ir, ir)- S(ir,*,ir) 

- 1 0 0 

0 + 1 0 

0 0 - 1 
M ( 1 3 ) * " ( " N * * ) M ( 1 3 ) " S(»r,0.0)S((2/3)ir,ir.ir)- S((5/3)*. ir , ir) 

+1/2 +73/2 0 

+73/2 -1 /2 0 

0 0 - 1 

M (12)*" ( " N i * ) M ( 1 2 ) " •<».0.0)»<(*/3)«r,«.ir)- S(w/3,ir,jO 

+1/2 -73/2 0 

-73/2 -1/2 0 

0 0 - 1 

M(123)*~ ( ~ N s* ) M (123)~ «<«.0.0)S((2/3)«.0,0)- S((5/3)ir,0,0) 

+1/2 -jl/2 0 

+73/2 +1/2 0 

0 0 + 1 

M(132)*~ ( " N s* ) M (132)" S ( W . 0 .0 ) S ( (V3>" .0 .0 ) - S(ir/3.0.0) 

+1/2 +/3/2 0 " 

-73/2 +1/2 0 

0 0 + 1 



145 

Table 3.4.3-2 
The equivalent rotations, the explicit transformations of the 
Eulerian angles and the NH, inversion coordinate for Ar-NH, 
under the D-. (M) group operations. 

PI E (23) (13) (12) (123) (132) 
Op. 
Frame 
Rot. R° R° R° R° R° R° 

New 
*d w/2 w/2 */2 »/2 */2 n/2 

'd 'd 'd 'd 'd 'd 'd 
<d *d *d <d *d *d *d 

NH3 

rot. R° R " xs R * R(2/3)« R * %/3 
R (2/3)* B (V3)« 

R2S 

New 
X, X, -X, -(V3)«-JC S -(2/3)ir-Xa (2/3)*+^ (4/3)*+;^ 

' . '. *"'. "-'. *"'. '. '. 
*. *. *+<« * +<s * +*. *n '. 

NH3 

Inv, 7 ~7 -y ~7 +7 +7 
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Table 3.4.3-2 (continued) 

PI E* (23)* (13)* (12 )* ( i 2 3 ) * (132)* 
Op. 

Frame 
Rot. R y * R y * 

\" " / 
» / V 

New 
X d * /2 » /2 */2 */2 * /2 ir/2 

'd *~'d *~'d *"'d * - ' d *"'d * - ' d 

*d * + ' d * + ' d * + *d * + * d * + * d * + ' d 

^ i r * * „ (5/3)ir */3 
R o t

 R " Ry. V « <5/6>* R M « 
New 
*a * + x i *""*« -<f/3)-Xs ir/3-^ (5/3)*+xt */3+x g 

'. 'a *"'. *"'« *"'. '. '. 

*. 's * +*. * +<s **'. *. ', 

NH 3 

Inv. -7 +7 +7 +7 



147 

Table 3.4.3-3 
The equivalent notion(s) for each class of the PI operations under 
the D_, <M) group for Ar-NH«. 

Class Equivalent Hotion(s) of 
in Frane NH, subunit 
D, h<M) * 

e-o-e rotation internal rotation Inversion 
nomal to C, along C, 

E 

(123) x(2*/3)* 

(23) x(») X 

E* x<»* x<«) X 

(123)* x(ir> x<2*/3) X 

(23)* x(w) x(«) 

*Th. number in parenthesis is the rotational angle. 
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(abbreviated as e-o-e in the following) rotation is generated only by 

parity inversion *. Because both* the * and the pair permutation are 

rotation sense-reversing, both can invert the NH- subunit. As a 

result, when both are involved in a PI operation, for example, (23)*, 

the inversion coordinate will remain intact. 

3.4.4 Transformation Properties of the Rotational Basis Functions 

By direct substitution of the Eulerian angle transformations of 

Table 3.4.3-2 in the standard symmetric top rotational basis functions 

|j\m,k> [32], the transformation properties of the rotational basis 

functions of the NH. internal rotor and the pseudo-diatomic frame can 

then be determined. 

3.4.4.1 NH- Subunit Symmetric Top Rotational Basis Functions 

The transformation properties of the NH, subunit symmetric top 

rotational basis functions, |j,n.,fc>, are summarized in Table 

3.4.4.1-1. If we use \j,m,,k > and \j,m.,-k > as a basis, we can thus 
' j c ' j c 

readily obtain the symmetry species for the NH, internal rotation as a 

function of j and k (Table 3.4.4.1-2). (Here, we reserve K to c 

represent the projection angular momentum along the a principal axis 

of the complex. Therefore, instead of the conventional symbol K, k 

is used.) 

3.4.4.2 Pseudo-Diatomic Frame Rotational Basis Functions 

Since any geometrically linear system can be treated as a special 

case of symmetric top with the symmetric top quantum number k equal to 



149 

Table 3.4.4.1-1 
The transformation properties of the symmetric top rotational basis 
functions of the NH, internal rotor. 

D 3 h(M) 
class 

Eauivalant 
rotation 
of NH, 
subunit 

IJ."J.* C>' U.-j-V 

E R° |j.»j.*c> |j."j.-*c> 

(123) R (2/3)» axp(ike(2/3)ir)|j,aiJ,fcc> axp<ifcc<-2/3)ir)|j,mJ,-fcc> 

(23) R * Rxs (-l)J|j,aj,-lec> < - 1 > J I J . « J . * C > 

E* R * Rzs <-l> kc|j,« J t* e> (-l)*c|j,mJt-Ac> 

(123)* R (5/3)* 
zs exp(i(-2/3)wkc)|j,aJ,kc> «xp(i<2/3)ir*c)|j,niJ,-Ac> 

(23)* R * ys <-l> J +*c| J.•,.-*<,> mJ*kc\j.mj.ke> 

The quantum numbers are arranged in tha order of \J,m,k>. 
k is assumed to be nonnegative integer. 
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Table 3.4.A.1-2 
The NH, subunit internal rotational synunetry 
species under D-.(M) as a function of j and 
k quantum number. 

k Symmetry species c under n
3 n < M ) 

( even j A,' 
odd J A ' ^ uuu j "2 

1, 6n±l* E" 

2, 6n±2 E' 

6n±3 Al" • V 
6n Ax' • A 2 ' 

n: positive integer. 
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zero, we use |l,m.,0> to represent the rotational basis function of 

the pseudo-diatomic frame. Here,' I and m. are the angular momentum 

and its corresponding projection with respect to the laboratory-fixed 

coordinate system. According to either Table 3.4.4.1-1 or -2, the 

resultant transformation properties are shown in Table 3.4.4.2. 

Because only the parity inversion * can affect the pseudo-diatomic 

Euler angles, the only transformation effect on the basis functions is 

a multiplicative factor (-1) , as expected for any diatomic molecule. 

This makes the pseudo-diatomic rotational basis function transform as 

totally symmetric A ' under the D*L(M) group for even 1, and as A." 

for odd 1. In other words, the only symmetry effect of the 

pseudo-diatomic rotational basis function is parity reversal (' «-» ") 

for odd 1. 

3.4.5 Transformation Properties of the NH, Subunit Invarsional Wave 

Functions 

Free NH, is well known to have a juble well potential along the 

inversion coordinate. Due to the fact that the potential function is 

symmetric with respect to the origin of the inversional coordinate, 7, 

all inversional wave functions with even v. (NH, inversional quantum 

number) are symmetric, i.e. |v.(~y)>—+\v.(+y)>, and functions with odd 

v are antisymmetric, i.e. |v.(~y)>~-\v.(+y)>. In other words, the 

molecular symmetry group, D,, (M), of Ar-NH, has no effect on the 

inversional wave functions with even v.. This makes the even v. 
i 1 

furf.-ions have A.' symmetry. On the other hand, the odd v. wave 

functions all transform as 7 which, according to the transformation 
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Table 3.4.A.2 
The transformation properties of the rotational basis functions 
of the pseudo-diatomic frame. 

D3h(M) 

class 

Equivalent 
rotation 
of frame 

li.^.O* 

id R° | i ,m r 0> 

(123) R° | i , n r 0 > 

(23) R° 12 .n 2 . 0> 

E* 
" / 

( - l ) 1 | 2 ,m 2 , 0> 

(123)* 
* / 

( -D 1 | i , » r o> 

(23)* » / ( - D 1 | i , i 1 , o > 

The quantum numbers are arranged in the order of |«/,o,Jc>. 1 and 
a. are the angular momentum and its projection of the 
pseudo-diatomic frame with respect to the laboratory-fixed 
coordinate system, and k is assumed to be zero as required for 
any linear system. 
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properties of 7, shown in Table 3.4.3-2, transforms as A 2". 

3.5 Zero-Order Energy for the Free Internal Rotor Limit 
In order to provide the basis for the construction of the 

zero-order energy level diagram, the kinetic energy expression will be 
derived in detail, and the interactions among different kinetic 
motions through the intermolecular potential (the ultimate goal and a 
principal unknown) will also be discussed qualitatively. 

3.5.1 Derivation of the Kinetic Inergy Expression 
If we assume that all the atomic mass m., including electron(s) 

and nucleus, is located at each nucleus (Assumption 1), then the 
kinetic energy T , can be expressed as 

2 v ; # i (3.5.1-D 

where the summation is taken over all the atoms in the complex (i-Ar, 
N, 1, 2, 3). Since (1) we are concerned only with the ground vibronic 
state and the first inverslonal state <v,-l or v,-0~ (33]) of the NH, 
subunit and (2) the large amplitude inversion displacements are 
already inherent in a. (7), the displacement vectors d,(7), which 
describe all the noninversional vibrations, can be eliminated in the 
following calculation (Assumption 2). But it is remembered that 
|a.°(7)| is dependent on 7, and therefore, the N-H bond length is 
still allowed to stretch during the NH, inversional motion. However, 
this is the stretching involved in the definition of the equilibrium 
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position a. (7), and should not be nixed up with the N-H stretching 

vibration, accounted for by d,(7)\ In other words, Equation (3.4.1-2) 

is simplified to be 

RiHAr- Rc» + Sd 1«»*V«>*1 + S , " V < ^ <*.*.l-2> 

Substituting the aquations (3.4.1-1) and (3.5.1-2) for tht position 

vectors R.'s with respect to the laboratory-fixed coordinate system, 

we can rewrite 2T as o 

2V J "AA. <P» e l> 
+ (p dR 2(S d" 1k) t(S d~ 1k) + 2M<,Rft(Sd""1k)C(Sd"1k) 

+ Mdft2<Sd"1k)t(Sd"1k)] (part 2) 

• £ • JI*," l* J
0<7> • •," la j

0<7)] t Ii.^« j
0<7) 

+ Ss~1ij°(7)] (part 3) 

+ 2S J, jtS i- 1. j
0(7) +S i- 1i j

0(7)) t[& c n, 
+ (m A r/M)RS d

_ 1k + d» A r/M)RS d
_ 1k] (part 4) 

(3.5.1-3) 

where the summation over i is taken for all the atoms in the complex, 

the two summations over j are taken over for the atoms in the NH, 

subunit. And M, is defined to be m m /M, the reduced mass of the 

pseudo-diatomic frame. (Since the time derivative (') operation 

commutes with the transpose and the inverse operations, the symbols 

used in the equation do not take care of the order of operations among 
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them.) 

The expression of 2T is arranged into four parts. With the use 

of the center of mass conditions for the NH- subunit, i.e. 

S m.a.°< 7)- 0 
J J J 

and consequently 

E m.i.°(7)- 0. 
J J J 

Part 4 thus vanishes. Part 1 corresponds Co the kinetic anargy of the 

center of nass of the Ar-NH, complex. 

Part 2 corresponds to the internal kinetic energy of the 

pseudo-diatonic franc. This becoaes obvious whan Part 2 is 

abbreviated as 

M d[RS d
_ 1k + R S ^ k ] 2 

or 

n^ddtS^lO/dtl 2. 

Because (S. k) mist be perpendicular to its tangent velocity, 

(S, k), due to the rotation, it is noted that 

(* d" 1k) t(8 d" 1k)- 0 

and therefore the second tern of Part 2 vanishes. On the other hand, 

(Sd~ k) C(S d~ k) in the third tern of this part is equal to one. This 

can be understood by thinking of it as the inner product between the 

rotated unit vector, (S. k). and itself. This can also be verified 
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algebraically as follows: 

(S d
_ 1k) C ( S d

_ 1 k ) - k ^ " 1 ) C<S d
- 1k) 

- k^.CS. k) (v S. is orthonormal.) 
- k C k 
- 1. 

Consequently, the internal kinetic energy of the frame is just a sum 
of two terms: 

(1) the dimeric e-o-a rotational energy, 
2,A-l,.,t,A-l,,;( , n Q 

2 
"dR ( Sd k ) t ( V k ) > * n d 

(2) the dimeric stretching energy, u,& . 

Fart 3 of the 2T expression can be rewritten as 

S a j[d(S t~ 1a j
0(7))/dt] t[d(S s" 1a J°(7))/dt]. 

Since in (1) the summation is taken over the atoms in the NH, subunit, 
and (2) (d(S a.°<7))/dt] is the velocity of atom j with respect to 
the NH, subunit-fixed coordinate system, it is recognized that Fart 3 
corresponds to the NH. internal kinetic energy. To elucidate its 
physical meaning, Part 3 is further expanded as 

Z mjtr./VjOc,) + S s- 1i j
0( 7)) tts s- 1a j°( 7) + Ss-1;j°<7)] 

- 2 m j K a j 0 ^ ) ) ^ " 1 ) ' + (i j°(7)) t(S s
- 1) C] 

j V V 7 ) + , . " V < 7 ) 1 
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+ s » j ( ; j

0 ( 7 ) ) t ( s s - 1 ) t s s - l i

j

0 < - ' ) 

+ s» j(. j
0( 7)) t(s a- 1)V l i

j°^> 
+ 2 n j(a j

0(7)> t(S s" 1> tS s" 1a j
0(7). (3.5.1-4) 

Each tern will be examined in the following. 
By inserting the matrix product I S . which equals the identity 

matrix, in the first term of the right hand aide of Equation 
(3.5.1-4), this term becomes 

S - J U J
0 ( 7 ) ) t < * g " l ) V S ° < 7 > 

- X m j[(a j
0(7)) t(S,) tS 1

t][S 18 g~ 1. J°(7)J 

- S • j[S aS s"* 1a J
0(7)] t[S jS i" 1a J

0(7)]. (3.5.1-5) 

Let us consider the physical significance of the column matrix 
[S S >{°(7)] in the above equation. (The following calculation, up 
5 5 J 

to Equation (3.5.1-9) is in parallel with a treatment for rigid 
molecules given in Reference 33, p.31-32.) Since S is orthonormal, 

S S C- E (identity matrix). (3.5.1-6) 

If time derivatives are taken on both sides of Equation (3.5.1-6), it 
becomes 
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• t • t S S + S S - 0. s s s s 

Therefore, 

s s c- -s s t 

s s s s 
- "(8 S t ) t . s s 

In other words, the product matrix S S is antisymmetric, and can be 

written in the following form: 

(3.5.1-7) 

With the definition of the rotational matrix S, Equation 3.4.1-3, it 

follows from the above equation that 

» X 1- *inxs»'s
 - »in»1cosjfJ»is, 

" 0 ""zs w ys 
s s c -V s u zs 0 ^ x . 

™Xi> 

L y , 
w x . ° 

wys" C 0 SX,'*s + * i n ' s
s i n X s

, * 1 > 

zs C 0*V^s + V (3.5.1-8) 

Thus the w , u>, w are recognized (according to Reference 29, 

p.281-2) to be the Cartesian components (with respect to the NH, 

subunit-fixed system) of the total angular velocity w of the NH, 

subunit-fixed system. With Equations (3.5.1-7) and (3.5.1-8), it can 

be verified that 

' s A " l , j 0 ( ^ - v , j 0 ( 7 ) ' (3.5.1-9) 
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[S S a.°<7)] is then known to be the velocity of atom j with respect 
S S J • 

to the laboratory-fixed system. Therefore, with the expression in 
Equation (3.5.1-5), the first term is realized to correspond to the 
rotation of the NH. subunit. 

The second term of the right hand side of Equation (3.5.1-4) can 
also be simplified as 

- S » J ( i J
0 ( T » t ( a j ° ( 7 ) ) . (3.5.1-10) 

The result indicates that this t e n corresponds to the NH. lnversional 
motion. Since C, symmetry is assumed for the NH, subunit (If the 
perturbation due to Ar is negligible. (Assumption 3)), all three 
a.°(7)'s of the three H's are confined in the three a planes of NH,, 
and a N (7) is on the C, axis. Thus, with Assumptions 2 and 3, they 
are allowed to move only symmetrically and synchronously, as specified 
by j and the common variable 7. This Is the reason why (a. (7)) on 
the right hand side of Equation (3.5.1-10) can only be the inversional 
velocity. 

Because the inner produf J commutative, the last two terms in 
Equation (3.5.1-4) are equal to each other. We will consider only the 
third term, which can be rewritten as 

2 m j(. j
0(7)) t($," 1)V 1.j° (->> 

-2m j[S sS s- 1. j
0(7)! ta j°(7> 
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n r O, .,t" O, v 2 m [w xa (7)] a (7) j J s J J 
2m j[a j°(7)xi j°(7)] t<- s. 

(Equation (3.5.1-9) is used.) 

When expanded more explicitly, the last expression becomes 

a N[a N°(7)xa N
0<7)] tu. I + m^X l« k

0(7>>« k
0<T>) ti» 1 

where the summation Is taken over the three H's. Since *»°(7) *nd 
a°(7) are collinear with each other along the C, axis, their cross 
product and, therefore, the first term vanish. Due to the C, symmetry 
among the three H's, the vectorial summation in the second term 
becomes a null vector. This can be visualized by thinking that all 
three cross products, (a. °(7)xi. °<7>], are on a plane perpendicular to 
the C- axis, and can be mapped into one another by the C, rotations. 
Thus the second term also vanishes. 

As a result, in the total kinetic energy expression, there 
is no inner product between [S «,°(7)] and (S a.°(7)]. Since 
these are the velocities due to the NH. internal rotation and 
inversion, respectively, it implies that under our assumptions there 
is no Coriolis coupling between the two motions. However, when the 
NH, subunit is partially deuterated and therefore loses its C, 
symmetry, such a Coriolis coupling term will appear. 

3.5.2 Summary of the Kinetic Expression 
The assumptions used in the derivation of the total kinetic 

energy expression of the complex are summarized below: 
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(1) All the atomic mass, including electron(s) and nucleus, is 

concentrated at each respective nucleus. 

(2) The NH, subunit can access only its ground vibronic state and 

the first inversional state (v,-l or v--0 ). The 

displacement vectors, *,(?), are therefore not considered. 

(3) The perturbation due to Ar is negligible. C, symmetry Is 

assumed for the equilibrium geometry of the NH. subunit. 

Since we are not interested In the center of mass kinetic energy 

of the complex, the internal kinetic energy (T) defined as 

2T- 2T -Sm.(i ) % o . l cm c . * ^M cm 

will be used in the subsequent discussions. 

In summary, 2T can then be written as 

2T- M / 2 + *i dR 2(S d" 1k) t(S <,~ lk) 

+ s » j(« j°(7» t(S,'" 1>V 1*j 0 <" r > + S • j< ij°^)) t(* J
0<'r». 

(3.5.2) 

The four terms, in the order of their appearance in the above 

expression, correspond to: 

(1) dimeric stretching vibration (stretch), 

(2) dimeric end-over-end rotation (e-o-e rot.), 

(3) NH, subunit internal rotation (int. rot.), and 

(4) NH, inversional motion (inv.). 

3.5.3 Potential Energy 
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When not in the free internal rotor limit, the potential energy 

V(R,7,x ,8 ) of the complex is a-function of the dimeric stretching 
coordinate (R), NH, inversional coordinate (7), and subunit relative 
orientation coordinates (Eulerian angles x_. *_i D u t n o t <*_)• ( S e e 

Figure 3.4.1-2.) Here, y , '_. i- « • defined by the following 
rotational matrix relation: 

S(xr,9r,4r)' «<X§,#a.#g> •"1(9/2,$d,44L). (3.5.3-1) 

That the potential is a function of two, instead of three, Eulerian 
angles is due to tha symmetry of the Ar atom with respect to the 
a-principal axis, connecting the Ar atom and the center of mass of the 
NH, subunit. 

In the frt* inttrnMl rotor limit, the NH, subunit experiences an 
isotropic potential, which is not a function of the relative Eulerian 
angles (y and I ). (Assumption a) However, the isotropic potential 
still needs to be a function of R and 7 to maintain (1) the formation 
of the dimer and (2) the inversional vibration of the NH, subunit. In 
other words, 

V(R,7.X r,# r) > V f r ( R , 7 ) . (3.5.3-2) 
(in the free internal rotor limit) 

When the corresponding frequencies of the dimeric stretching vibration 
and NH. inversion differ by at least an order of magnitude, an 
adiabatic approximation can be applied, and the zero-order V f (R,7) 
can further be separated into two parts, i.e. 

V f r(R.7) > Vs°(R) + V^ly) (3.5.3-3) 
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where V °(R) is the zero-order dimeric stretching potential and V (7) 
is the zero-order NH. double-well inversion potential. (Assumption b) 

Since the predicted stretching frequency (approximately 35 cm 
[13]) and the inversion frequency (approximately 0.7 cm ) do differ 
by more than an order of magnitude, Expression (3.5.3-3) will be used 
to construct the zero-order energy level diagram. 

3.5.4 Total Energy 
Although there Is no explicit cross term among the four motions 

in the kinetic expression (Equation (3.5.2)), they do share certain 
common variables, as summarized below: 

(1) stretch : R, 
(2) e-o-e rot.: R, # d, # d > 

(3) int. rot. : * t > # s, (or # d, * d. xr, # r ) , 7, 
(4) inv. : 7. 

The introduction of the lntermolecular potential V(R,7,Y ,* ) will 
then couple these four motions together. For exanple, the dimeric 
stretching vibration and e-o-e rotation are directly coupled through 
the stretching coordinate (R), and similarly, the NH, internal 
rotation and inversion directly couple through the Inversion 
coordinate (7). It is noted that since the potential is not a 
function of I. and *., the e-o-e and NH, internal rotation are not 
directly coupled through any rotational coordinate, but rather 
Indirectly through R and 7. In other words, the Coriolis coupling 
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between the e-o-e and NH, internal rotation, which makes K no longer 

an exact good quantum number, results from the potential coupling 

through R and 7. (Here, K is the conventional symbol for the 

projection magnitude of the total angular momentum J on the a 

principal axis of the complex.) Basically, the better the potential 

can be approximated by Equation (3.5.3-3), the better the K quantum 

number is. 

When the potential can be approximated by Equation (3.5.3-3), the 

stretching vibration and «-o-« rotation have a zero-order coupling 

through V °(R); on the other hand, the NH, internal rotation and NH., 

inversion through V. (7). In this zero-order picture, the total 

energy (E) of the complex can then be organized as follows: 

E- IT,tretch<R> + V.°<R> + T.-o-e<R;»d-<d>l + 

tTlnt.rot.<*d'*d;*r-V^ * Tinv. <*> + V i ° ( ^ 
(3.5.4-1) 

where the four T terms correspond to half of the four kinetic terms in 

Equation (3.5.2), respectively. It is noted that the last three terms 

correspond to the energy of free inverting-rotating NH,. 

Since the corresponding stretching vibration frequency is 

actually on the order of a few tens cm , as opposed to the e-o-e 

rotational constant on the order of e few GHz, the coupling between 

the stretching vibration and e-o-e rotation through V °(R) should be 

small. ("Assumption" c) As a result, T (R;f.,(l.) can be 

approximated by T e . o - e ( R a v : W < _ T'e-o-e < ,d ,*d > > w i t h v a r i a b l e R 

replaced by its vibrat' lally averaged value R ; the first two terms 
in Equation (3.5.4-1) can thus be grouped together and treated as the 
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dimeric stretching vibration energy (E , ). On the other hand, 
because the low lying rotation-Inversion energy level distribution of 
the free NH, has been well known, there is no need to decouple the 
internal rotation from the inversion to obtain a zero-order energy 
level diagram. However, in order to facilitate the derivation of the 
symmetry species of the zero-order wave function, the variable 7 of 
T, will be replaced by Its inversionally averaged value 7 
lilt • t O t • civ 

a'*' Tint.rot. <'d'*d !*r''r ! T ) b , c o n " 
Tlnt.rot. ( Jd^d : j fr''r iT.v>- T'lnt.rot.^.''.'V*d» t 0 l n d l c * t e a 

decoupling between the internal rotation and the inversion. 
(Assumption (d)) Therefore, the sun of the last two terms will become 
the pure inversional energy (E. ). In other words, Equation 
(3.5.4-1) in this limit can be written as 

E- E.tr.tch<R> + T'e.o..<'d'<d> + 

+ T'lnt.rot.<V W d > + Einv.^>' < 3- 5-*" 2> 

which constitutes the construction basis of the free internal rotor 
limit zero-order picture. As a direct result, the zero-order wave 
function is therefore a product of those corresponding to these four 
motions. 

Apart from the assumptions used in the derivation of the kinetic 
energy expression (suisiitarized in Section 3.5.2), four other 
assumptions employed in reaching Equation (3.5.4-2) are summarized as 
follows: 

(a) The NH, subunit is in the free internal rotor limit. 
(b) The corresponding stretching vibration frequency is at least 
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an order of magnitude higher than the corresponding NH, 

inversion frequency. 

(c) The corresponding stretching vibration frequency is at least 

an order of Magnitude higher than the corresponding complex 

a-o-a re ation frequency. 

(d) No coupling is assumed between the internal rotation and the 

inversion. 

Hera, assumption! (a)-(c) have supporting experimental evidence; 

however, assumption (d) la only an artifact. It is these assumptions 

or, equivalently, Equation (3.5.4-2) that we imply by "zero-order". 

The free internal rotor assumption alona does not fully account for 

"zero-order". 

As an aside, the iMotroplc potential, generally expressed by 

Equation (3.5.3-2)), in the free internal rotor limit does not 
necessarily have its R and 7 coordinate well decoupled; it is the 

ideal zero-order potential, expressed by Equation (3.5.3-3), that can 

make K an exact good quantum number. 

3.6 The Unperturbed Case 

3.6.1 Zero-Order Intermolecular Vibrational Level Diagram 

Frorc the microwave spectrum of the ground state [13-15], it was 

established that the complex is very close to the free rotor limit. 

This was deduced mainly from two observations: (1) Inconsistent 

calculated values obtained for the polar angle (I) derived from the 

measured <P.(cos*)> and <P.(cosf)>, respectively, (2) an extremely 
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long Ar-NH, bond distance (3.8723 A), which is longer than any 
conceivable combination of vdW radii if the Ar atom is in one of the 
dihedral planes of the NH- subunit with two closer H's at equal 
distance. (To simplify the notation, I defined in Section 3.5.3 will 
be replaced with I from now on.) In order to provide the basic 
language for describing the nearly free internal rotor system and to 
facilitate the intemolecular vibrational assignment of the spectrum, 
the zero-order intermolecular vibrational energy level diagram for the 
complex is required. 

Since the inversional motion of the NH, subunit has apparently 
been observed in the microwave spectrum of the ground intermolecular 
vibrational state of the complex [13-15], th« molecular symmetry group 
required to describe the dynamics of the complex is D,. (M) (Appendix 
Table 1, character table), the group of the NH, monomer [32]. This is 
apparent either from the detailed discussion in Section 3.4 or simply 
by considering the fact that D,, (H) permutation Inversion group is the 
maximum group (complete nuclear permutation inversion (CNPI) group) 
allowed in terms of its chemical formula, and none of its subgroups 
have an operation corresponding to an NH, inversional motion [32,33], 

Based upon Equation (3.5.4-2), two main features of the 
zero-order picture are thus: (1) the total energy of the complex is 
given by the summation over the four different motions, (2) the 
zero-order wave function is just the product of the wave functions 
representing these four motions, which then clearly establishes the 
physical meaning of each zero-order energy state. This last result is 
used below to deduce the symmetry species under the D« h(M) group for 
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each zero-order state. Since the molecular symmetry group is 

employed, the symmetry species of* any zero-order rovibronic wave 

function should be the sane as that of the corresponding true wave 

function which the zero-order function can continuously evolve into. 

The zero-order energy level diagram for the low lying 

intermolecular vibrational states constructed according to the above 

arguments is shown in Figure 3.6.1. It is arranged into four columns, 

each of which represents a set of the lowest internal rotational 

states of the NH, subunit with different combinations of the dimeric 

stretching and NH, inversional quantum number, denoted by v and v., 

respectively. The internal rotational energy levels shown in each 

column are arranged in the conventional order for an oblate synunetric 

top, with levels grouped into stacks of different k values [34]. 

Here, if J is the angular momentum quantum number of the NH. subunit 

with respect to a space-fixed coordinate system, k is the absolute 

value of the projection of the angular momentum j along the C, axis of 

NH,. The relative heights among the four columns are determined by 

the associated stretching and inversion energies. In other words, 

column two ((v ;v.)-(l;0)) is higher than column one (<v ;v )-(0;0)) 

by an energy corresponding to the dimeric stretching frequency, which 

has not been determined conclusively by experiment. Similarly, the 

two columns on the right, both with one additional quantum in the 

inversional mode, are replicate of columns one and two, but shifted 

upward by the NH, inversional frequency (about 24 GHz or 0.8 cm 

135]). 

Symmetry species of the D,, (M) group (Appendix Table 1, character 
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60 
A1'(2,0) 

E"(2,l) 

40 

20 

A2"(2.0) 

I'(2,2) 
Aa'(l,0) 

E'(2,l) 

«"(2.2) 
*!"(!,0) 

A 2M1,0) 

»"U.l) 

A1'(0,0) 

«"Upl) 

*l'<0.0) 

Aj"(l,0> 

I'd.D 

*2"(o.o) 

i'(i.i) 

Aj"(0,0) 

< W ! (0.0) (1.0) (0.1) (1.1) 

Flgur* 3.6.1 
Zaro-ordar lntanolacular vibrational anargy laval dlagraa for 
Ar-NHj. 
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Table 3.6.1 
Snnetry species of the zero-order internolecular 
vibrational states as a function of internal rotation 
and inversion quantum nuaber. 

kc v i 
•van odd 

f avan j 
0 1 V A " A 2 

{ odd J A2* A " *1 
1, 6n±l* E" E' 
2, 6n±2 E' E" 
6n±3 A x" • A 2" A 2' • Aj' 
6n V • V A " • A " 

*2 * A l 
n: positive integer. 
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where S represents the intermolecular vibrational symmetry species 

under the D,. (M) group, and (v ;v. ;j,k ) are the dimeric stretching, 

subunit inversion, and subunit rotation quantum numbers as previously 

defined. 

3.6.2 Rotational Energy Laval Manifold of a Zaro-Ordar Intermolecular 

Vibrational Stata 

As a basic rafarcnca for the intermolecular vibrational band 

pattern expected for a diner containing one nearly free internal 

symmetric-top rotor, we will first examine the general features of the 

rotational energy level manifolds of he zero-order intermoleculaf 

vibrational states. 

In the free internal rotor limit, no coupling is assumed between 

the e-o-e rotation (1) and internal rotation (j). As a result, all 

zero-order internolecular vibrational states have the same 

diatomic-like rotational energy level manifold, characterized by the 

same pseudo-diatomic rotational constant (B+C)/2= B. Each rotational 

level of the manifold can thus be labelled unambiguously with the 

corresponding e-o-e rotational quantum number (2) as in Figure 3.6.2. 

In other words, J is used to label the intermolecular vibrational 

state, or the corresponding whole rotational manifold, whereas 1 is 

used to label tie levels within the manifold. 

To determine the symmetry of the total rovibrational wave 

function for each level of the rotational manifold, we multiply the 

intermolecular vibrational state symmetry (shown in Figure 3.6.1) by 

that of the e-o-e pseudo-diatomic rotational wave function, i.e. 
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1 • J 

2_A2:_1.2.3 

l_A21.0,l,2 
0—A2JL 1 
A2'(0;0;1,0) 

I J 

3-_A2JL3 

2_A 2^2 

A_^21_1 
o_^2:_o 
A,"(0;1;0,0) 

Figure 3.6.2 
Schematic rovlbrational laval aanifolds for tha A,'(0;0;1,0) 
(upper) and A,"(0;1;0,0) state (lower). 
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A.' for even 1 rovibratlonal levels, 

A 1
M for odd 2 rovibratlonal levels, 

according to Section 3.4.4.2. In terns of symmetry species notation, 

the only effect of the e-o-e rotational wave function is thus a change 

of the superscript ('«-•") on the intermolecular vibrational state 

symmetry only for all odd 2 levels. In other words, both even and odd 

1 levels have the sane symmetry species as that of the intermolecular 

vibrational state, except that the odd 1 levels are of opposite 

parity. 

Since (a) the total angular •omentum J (J-J+l) is a good quantum 

number even in the perturbed cases, where neither J nor j is, and (b) 

the usual AJ optical dipole selection rules and the AJ-0 

intermolecular interaction selection rule (see Section 3.6.3) should 

always hold, it is important to label each rotational level also with 

all possible associated J values, such as in Figure 3.6.2. In 

addition to the degeneracy described by the intermolecular vibrational 

symmetry species (A, E, etc.), in terms of the number of associated J 

values, all nonzero 1 e-o-e rotational levels of any nonzero j 

intermolecular vibrational state are accidentally degenerate, with 

22+1 J-degeneracy when lsj (i.e. J-|j-2|, |j-2+l|, \j-l+2\, •••, j+2) 

or 2J+1 7-degeneracy as lij. Here, the "degeneracy" includes only 

those which are to be broken by the anisotropic intermolecular 

potential, but not the spatial degeneracy of each J, which is not of 

concern, k of the intermolecular vibrational state is not involved c 
in this addition scheme because it is only an internal quantum number 
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of the NH, subunit. Consequently, in the free rotor limit, the J 
labelling of the rotational manifold is determined only by 1 and by 
the j value of the internolecular vibrational state, and is 
independent of both internolecular vibrational state symmetry species 
and k . 

c 

In the present context, "accidentally degenerate" implies that 
the degeneracy of aach zaro-ordar e-o-e rotational lavel labelled with 
1 can ba broken by the intermolecular potential aniaotropy without 
affecting its original symmetry. Since, under one molecular symmetry 
group, an irreducible representation can never be a linear combination 
of irreducible representations of different symmetry apecias, the 
resultant nonzero-order states must retain tha same symmetry as that 
of their common original zero-order ltvtl. For example, a triply 
J-degenerate zero-order E", I»l rotational level of a J-l 
intermolecular vibrational state can split Into three E" rotational 
states corresponding to J-0, 1, 2. In fact, this splitting should 
actually be considered as separata shifting* of three distinct E" 
states, instead of a splitting of a single triply degenerate E" state. 
This is consistent with the requirement that no splitting, but only 
shifting may occur for the zero-order states [32], when the proper 
molecular symmetry group is used. If there is no accidental 
degeneracy but splitting does occur, then a higher order group must be 
used. However, since in the present case the maximum group, i.e. the 
CNPI group, is in use, the J-degeneracy of the zero-order state must, 
therefore, be accidental. 

It should also be noted that a given J-0 rovibrational state does 
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not necessarily have the same parity as its intermolecular vibrational 

state. In the J-l coupling scheme, the J-0 rotational state obviously 

correlates to 1-j. Therefore, whether the J-0 rovibrational state has 

the same or opposite parity as the intermolecular vibrational synunetry 

species depends on whether the j of the intermolecular vibrational 

state is even or odd. lOf course, the 2-0 rovibrational state always 

has the same synunetry, Including parity, as the corresponding 

intermolecular vibrational state.) 

3.€.3 Selection Rules 

3.6.3.1 Optical Selection Rules 

The optical selection <.ules under D-. (M) can be derived directly 

from its character table (Appendix Table 1) [32]. Since the A." 

symmetry associated with the electric dipole operator corresponds 

purely to a parity switch, by considering the symmetry product for the 

transition moment, the rules can readily be "visualized" from the 

character table as follows: 

A^CO) «-x- A ^ O ) , 

A2"(12) — A2'(12), 

E"(6) ~ E'(6). 

These imply that only the rovibrational states with the same symmetry 

but opposite parities can be connected by a single-photon transition. 

It is noted that the parity selection rule 

I _ n 
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is inherent in the above relations. Here, the numbers in parentheses 
are the proton nuclear spin statistical weights (Fermion statistics), 
indicating that all states of A, symmetry are forbidden, whatever the 
associated parity is. Of course, Chase rovibronic selection rules 
should always be used along with the single-photon selection rule, 
AJ-0, ±1, which is a requirement under the spatial three-dimensional 
pure rotation group [32], K(spatial), an intrinsic molecular symmetry 
group to any isolated molecule when no nuclear spin I Is considered in 
the Hamiltonian. (It is emphasized chat both D,.(M) and K(spatlal) 
are exact molecular symmetry groups with respect to the rovibronic 

Hamlltonlan, and should bs distinguished from any naar symmetry group, 
such as the D,. point group and molecular three•dimensional pure 
rotation group K(mol). [32]) 

According to the parity alternation feature of the rovibrational 
levels associated with each increment of 1 by one within a zero-order 
intermolecular vibrational state, the intermolecular vibrational 

selection rules are then simply: 

A 2 ~ A 2 
E «- E. 

Since the optical interaction between A, and E is forbidden, the 
relative position: of the A, states and E states can navar be 
determined by absorption spectroscopy, except through the analysis of 
perturbations. 

3.6.3.2 Inter-State Interaction Selection Rules 
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The potential operator (V) of an isolated system, free of 

external field, is required to be invariant and then totally synunetric 
under any feasible symmetry operation of D3i.(M) and K(spatial). 
Consequently, a necessary, but insufficient, condition for the 
interaction matrix clement <l|v|2> in the perturbation theory to be 
nonzero is that states |l> and |2> must ba of the same symmetry 
species under both groups. Since different total angular momentum 
quantum numbers (J, in the J-l coupling schema) correspond to 
different symmetry species in K(spatial), tha interacting states not 
only need to have exactly tha same symmetry species in D,. (H), but 
also tha same J. In othar words, at whatavar level of coupling In the 
wavefunctions, only states of tha same D-. <M) symmetry and the tame J 
can be mixed and thus "repelled" by one another when further 
intermolecular potential terms are introduced. [32,35] 

In such a cot r.-.t, these general inter-rovibrationai-seata 
interaction selection rules have already covered both the Fermi 
resonance [34] and Jahn's Coriolis selection rules [34], which have 
less rigorous implications because the vibronic near symmetry species 
of the point group are employed instead. 

3.6.4 Intermodular Vibrational Transitions in the Free Internal 
Rotor Limit 

To elucidate the intermolecular vibrational branches allowed in 
the free internal rotor limit, small characters n, o, p, q, r, s, t, 
etc. will be used to label them in terms of hi, in the same way that 
P, Q, R are conventionally used for £J, with Ai-0 corresponding to q 
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branch. For example, t branch corresponds to AI-+3. As will be 

shown, even though J is always a'good quantum number in the j-1 

coupling scheme, 1 is more convenient than J for describing the 

rovibrational spectrum in the free internal rotor limit. 

As an example, we consider the A,'(0;0;1,0) «- A_"(0;1;0,0) 

intermolecular vibrational transition, which corresponds to a NH, 

inversion-rotational transition (see Figure 3.6.1; the schematic 

zero-order rotational manifolds are shown in Figure 3.6.2.) In the 

upper A '(0;0;1,0) state, due to the j+1 vectorial addition with j-1, 

each 1>0 level of the rotational manifold is accidentally triply 

degenerate, with J-2-1, 1 and 1+1; the 1-0 level is nondegenerate with 

J-j-1. Mow, following the optical selection rules for parity and J, 

three branches can be obtained with A2--2, 0, and +2, respectively 

(i.e. o, q, s branches). (In this particular case, the parity 

selection rule is inherent in the J selection rule. However, this by 

no means implies that the parity selection rule can be neglected; 

generally, both selection rules are necessary in the perturbed cases.) 

It is interesting that the P, Q, R branch transitions are now 

regrouped into a pattern of three new branches in the free internal 

rotor limit. The o-q-s to P-Q-R branch evolution between the two 

limits for this vibrational transition will be discussed in Section 

3.7.6 on the perturbed cases. Because of the same relative spacings 

within both upper and lower rotational manifolds, the q branch 

consists of a single peak (superimposed lines) in the free internal 

rotor limit. 

If other intermolecular vibrational transitions are examined 
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similarly, the Ai selection rule in the free internal rotor limit can 

be readily deduced. In general, "for an allowed intermolecular 

vibrational transition vith J and j . as the upper and lower state J, 

if the two intermolecular vibrational states are of the same parity, 

then all odd Al branches with |Ai|sj +jj+l can exist; if of opposite 

parity, then all sv»n Al branches with |Al|sj +j,+l are present. For 

example, the E'(0;0;2,2) +• E"(0;0;1,1) intermolecular vibrational 

transition should have m,o,q,s,u branches corresponding to Ai--4, -2, 

0, +2 and +4, respectively, because J +J.+1-4. However, E"(1;0;1,1) «-

E"(0;0;1,1) should have n, p, r, t branches corresponding to AI--3, 

-1, +1, +3. It can be shown that the spectral line spacing of a 61 

branch is 2B|Al|, where B is the pseudo-diatomic rotational constant, 
2 and the band center gap of a Al-±k (k>l) branch pair is 2B[k + k]. 

It can be verified that the existence of a q branch in the free 

internal rotor limit is an indication that the corresponding internal 

inversion-rotational transition is originally allowed for the free NH, 

monomer; if q is missing, then it is originally forbidden. Here, 

"allowed" or "forbidden" is defined in terms of the most unrestrictive 

selection rules, given in Section 3.6.3.1, under D-, (M) and K(spatial) 

for the NH, monomer, not of certain classical approximate selection 

rules which help to distinguish strong transitions from the rest. 

(For example, certain NH. transitions forbidden by the approximate 

rotation selection rule Afc -0 are allowed by the rules given in 

Section 3.6.3.1. However, these "allowed forbidden" transitions fire 

in principle weaker. [32]) 

It is also interesting to scrutJ-iize a special case, the limiting 
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band pattern of the E'(0;1;1,1) •- E"(0;0;1,1) transition, vMch 

corresponds to a NH, monomer inversional motion. According to the Al 

selection rule, three branches, i.e. o, q, and s branches are 

expected. However, since the two zero-order intermolecular 

vibrational states are separated only by approximately 24 GHz [35], 

while the pseudo-diatomic rotational constant (B) is 2.8 GHz, one 

might ask how far tha high I transitions of tha o branch can extend. 

Actually, in the zero-order rovibrational level diagram (Figure 

3.6.4(a)), the upper and lower states are reversed for all high 1 

transitions starting with o(3). This rasults in a necessary o branch 

"reflection" bandhaad at zero frequency (Figure 3.6.4(b)). 

Interestingly, this bandhead structure is not due to the usual 

noninertial effects. (Actually, as can be readily verified, this 

reflection effect occurs for any band structure that reaches zero 

frequency in both perturbed and unperturbed cases.) This is a special 

Intermolecular vibrational transition also because there will be many 

inter-state interactions within tha manifold of the two zero-order 

vibrational states when the anisotropic potential is introduced (see 

Section 3.7.6). This gives rise to an unusually complicated spectrum, 

as has been observed in microwave by Nelson at al [14,15], but is not 

yet theoretically understood. 

3.7 Perturbed Cases 

It will be shown that due to the near prolate top configuration 

of the complex the K manifolds can be considered as the appropriate 

evolving units for the energy level correlation between the free 
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(a) (b) 

Figure 3.6.4 
(a) the zero-order rovibrational level distributions for the 

E'(0;1;1.1) - E"(0;0;1.D inversional transition. The 
reversing of the upper and lower rovibrational states are 
indicated by arrows. 

(b) the zero-order internolecular vibrational band derived from 
(a) energy level distribution, showing a bandhead at zero 
frequency. (The intensities indicated are arbitrary.) 

a ( J+CJ 

o H N n 
w w w w 

S o o o 

20 

(CHZ) 



183 

internal rotor limit and semi-rigid limit. The quantum number 

correlation between the two limits will then be established under both 

C,v(M) and D,_(M). Finally, the qualitative aspects of the 

intermolecular rovibrational transitions will be discussed. 

3.7.1 Highly Near Prolate Top 

Due to the snail nans of the hydrogen atom, the Ar-NH, complex, 

approaching any rigid structure in the limit of high anisotropy, will 

be a ntar prolate top. (Of course, two trivial exceptions are when 

the C. axis of the NH, and a-principal axis of the complex are 

collinear; they are exact prolate tops.) This can be verified by 

considering the numerical values of the rotational constants, or of 

the corresponding principal moments of inertia, if a rigid model is 

assumed for the complex. 

In order to simplify the derivation and the expression of the 

inertia tensor for the complex, the (right handed) Cartesian 

coordinate system is defined with its y and z axis (in the direction 

of k in Figure 3.4.1-2) in the plane spanned by the C, axis of the NH, 

and the a-principal axis of the complex. The inertia tensor (I) can 

then be shown to be 

" I. + pR 2 0 0 
b,s 

I- 0 I. C2# + 1 S2» + JIR2 (I. - I )CeS8 b.s c,s r y b,s c,s' 
0 ^h . " Ir «>C'S» K J2f + K J?8 

D , S C , S D,S C,S 

(3.7-1) 

where I. and I are the moments of inertia of the NH, monomer, the 
D, S C,S 3 

subunit which is assumed to be unperturbed, along its b- and 
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c-principal axis; ft is the reduced mass of the pseudo-diatomic frame; 

R and S are as previously defined; C and S denote cosine and sine. 

Due to the D . symmetry of the momental ellipsoid of the NH, 

monomer, in terms of * (Figure 3.4.1-2), the inertia tensor I of the 

complex should be symmetric with respect to 6-0 and 90 (and thus 

180° and 270°), as also indicated by Equatir a (3.7-1). Si.v.* '.he 

principal moments of inertia, i.e. the three roots of <« secular 

equation corresponding to the matrix in Equation (3.7-1), are either a 

constant or a aonotonie function of I within the range of [0°,90°], 

the l.'s (i-a, b and c) and the corresponding rotational constants for 

these two configurations (4-0°, 90°) are thus the boundary values for 

the rigid model. The principal moments of inertia for all possible 

rigid configurations therefore vary in the following two set of 

limiting values: 

»- 0° > #- 90° 

(*- 180° < ) 

collinear T-configuration 
configuration 

decreasing 

* c , s (3.7-2a) * b , s (3.7-3a) 

2 constant . 
b b , S (3.7-2b) b b ' s (3.7-3b) 

, increasing -
I - I. + /iR > 1 - I + MR . 

c D , s (3.7-2c) c c , s (J.7-3c) 

(Actually, for such special configurations with *-0° and 90°, these 
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expressions can be "visualized" directly from Figure 3.4.1-2 by using 

the parallel axis theorem for moment of inertia [31], without 

employing Equation (3.7-1).) 

If R is substituted in the above expressions for I*'s by the 

distance estimated from the microwave spectrum [13] (or from this 

work), the corresponding rotational constants can be estimated as 

follows: 

for collintar configurations (two symmetric tops), 

A- 189 GHz - 6.3 cm"1, 

5- C- 2.849 GHz; 

for T-shaped configuration (the most asymmetric top), 

A- 298 GHz - 9.9 cm"1, 

B- 2.849 GHz, 

C- 2.834 GHz. 

The corresponding asymmetry parameter K (•(2fl-A-C)/(A-C)) [33,34] for 

the latter, the most asymmetric configuration possible, can be 

approximated by [-1+2(B-C)/A], where 2(B-C)/A is only on the order of 
~4 10 (Here, because the large difference between the numerical 

uncertainty of A and those of B and C, no direct evaluation of <c is 

made.) This indicates that the complex even at its most asymmetric 

configuration is still a highly near prolate top. 

The typical change in vdW bond length (R) between the ground and 

the first few excited intermolecular vibrational states is within few 

percent [13,40]. In addition, in the expressions for I. and I 
2 (Equations (3.7-2b,c) and (3.7-3b,c)), the pR term is two orders of 
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magnitude more dominant than I. and I , which characterize the 
D,S C,S 

internal rotation. As a result, -the feature of being a highly near 

prolate top in the rigid model can then be extended to any floppy 

model, in which the inter-subunit relative orientation, distance, and 

the NH, inversional coordinate are not fixed. 

3.7.2 K Rotational Manifolds as Evolving Units under C 3 y(M) between 

the Two Limits 

Since the evolution of rovibrational levels between the free 

internal rotor limit (defined together with the zero-order limit in 

Section 3.6.2) and the semi-rigid limit Is of concern, a clear 

definition is required for "semi-rigid". "Semi-rigid" means that only 

harmonic vibrations with infinitesimally small amplitudes are allowed. 

[29] Such a definition gives rise to two phenomena: (1) the 

vibrational motions can be separated from the overall rotations and 

(2) the independent vibrational normal modes can exist. The 

connotations for the NH, subunit and the overall complex need further 

clarification. 

It is noted that, whether the semi-rigid NH, subunit has C, 

point group symmetry or not, the NH, inversion, allowed by a 

semi-rigid planar NH,, can never be achieved by a semi-rigid nonplanar 

NH. with an infinitesimally small amplitude in the inversional 

coordinate (7). Consequently, in the semi-rigid limit, if the NH, 

subunit is planar, then the molecular symmetry group of both the 

subunit itself and the complex will be D,. (M); if it is nonplanar, the 

mole :ular symmetry group will be C, (M). (Of course, the use of these 
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groups by no means implies that the complex is necessarily 

semi-rigid.) 

In the following discussion, the "semi-rigid NH," is further 

defined to have C, point group symmetry. This definition necessarily 

quenches the inversional motion completely, and makes the molecular 

symmetry group of the complex become C-(M). However, in terms of the 

complex configuration, "C.fM) semi-rigid", or generally "semi-rigid", 

needs to be distinguished from "C, semi-rigid". The former implies 

an arbitrary semi-rigid relative configuration between the Ar and C, 

semi-rigid NH- subunit; however, as a special case of the former, the 

latter further requires that the Ar atom be on the C, axis of the NH, 

subunit. Therefore, there are two different kinds of C, semi-rigid 

configurations for the complex: one with the Ar atom attached directly 

to the N atom, the other to the plane formed by the three H's. (The 

following discussion makes no difference between these two kinds of 

C, semi-rigid configurations.) An important result from these 

definitions is that whenever the complex is described as semi-rigid, 

the molecular symmetry group of the complex must be C, (H), instead of 

D,. (M), because we do not consider the case in which the NH, has a 

semi-rigid planar structure. 

According to Section 3.7.1, it is known that the feature of 

Ar-NH. being a highly near prolate top is insensitive to the rigidity 

of the complex. This makes the complex always similar to a diatomic 

molecule in many aspects. It is noted that in the j-1 coupling scheme 

the absolute projection value K of the total angular momentum J(-j+l) 

onto the complex a principal axis is basicmlly due to the internal 
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angular momentum j. Therefore, j and K of the complex play the roles 

analogous to those of the diatonic electronic angular momentum L and 

its absolute projection value A onto the diatomic figure axis, 

respectively. {36] More or less noraal rotational level distribution 

is thus expected for each K ; the rotational J-stack for each K 

should be basically characterized by the pseudodiatomic rotational 

constant B, in a similar way that the J-stack for each A is by the 

diatomic B constant. It is also expected that different K'* can 

interact with each other and be mixed by the noninertial forces, i.e. 

the Coriolts and the centrifugal distortion forces, when the complex 

is rotating. However, according to the experience with diatomic 

molecules, we do not think such K mixings are a dominant feature in a 

first approximation. In other words, X should be a nearly good 

quantum number for this floppy but always highly near prolate top 

complex. 

(Because K is a quantum number purely of rotational motion, not 

of the NH. inversional motion which extends the molecular symmetry 

group from C, (M) to D,_(M), we will keep the discussion first in 

terms of C, (M).) 

In terms of the energy level correlation between the two limiting 

cases each X rotational manifold should constitute an evolving unit, 

as further supported by the following facts. As can be readily 

verified for any symmetric (and thus near symmetric) top, no 

rovibrational states in one K rotational manifold of a semi-rigid 

vibrational state share both the same symmetry and same J. [32] 

Consequently, within such a manifold, there is no "internal repulsion" 
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to be reduced when the potential evolves toward the free internal 

rotor limit. It is noted that the two states corresponding to a 

doubly degenerate E (in C, (M)) rovibrational state do not interact 

with each other. Therefore, such two degenerate states are considered 

as one rovibrational state in the above statement. In addition, since 

the inter-subunit distances corresponding to any physically reasonable 

lntermolecular potentials should be on the same order (few A*s), the 

rotational constant B(-C) and thus the state density of each X 

rotational manifold should be relatively insensitive to the potential 

variation. As a result, the rovibrational levels corresponding to a 

given K are basically "held" together and evolve as a unit: between 

the two limiting cases. 

When the intermolecular anisotropy is rsduced, the "repulsions" 

that give rise to the classical distribution of the semi-rigid 

vibrational states and the JC rotational manifolds therein can only be 

decreased. Furthermore, as expected from the physical significance of 

K (the absolute projection value of J on the a principal axis), all 

K should ultimately be in the framework of the free NH, rotational 

levels. As a result, when the complex is far from the semi-rigid 

limit, the distribution of the K rotational manifolds correlating to 

a vibrational state in the semi-rigid limit can no longer be 

approximated by the well-known rotational energy (E ) expression for 

a semi-rigid near prolate top, [34] 

Erot" [ (* + C)/2]J(./+1> + [A - (B + C)/2]KM

2. (3.7.2) 

In other words, the vibrational states in the semi-rigid limit fail to 
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evolve together as units between the two limits. This makes the 

structurally informative rotational A • cmstant unavailable through 

this equation. However, in the free internal rotor limit the 

distribution scale between the K manifolds is two orders larger than 

that (the complex B value) within each K manifold. This makes the K 

manifolds behave more like evolving units. 

When the complex approaches the free internal rotor limit, there 

should be a higher chance for two K rotational manifolds to 

intercross or interact with each other as functions of the potential 

evolution. The statement that the JC rotational manifolds evolve as 

units should be further clarified by considering such intercrossings. 

Accordingly, we examine the interaction between an A- X -0 and an 

AjOA, JC -1 rotational manifold, as depicted in Figure 3.7.2-1. Here, 

the symmetry species of the JC rotational manifold is defined to be 

the overall symmetry of the level(s) with the lowest J(-JC) in the 

manifold. It is found that, although there exist the deflections of 

the interacting rovibrational levels, each JC rotational manifold 

structure appears to "penetrate" the Interaction region as an evolving 

unit before and after the interaction region. (It is noted that the 

If values cannot be defined in the Interaction (mixing) region.) More 

importantly, according to the standard textbook discussion on system 

of two interacting states [34,35], it can be inferred^that it is not 

only the manifold structure but also the associated physical 

significance (wave functions) of each interacting K rotational 

manifold that has the "penetrating capability"; the farther from the 

interaction region, the less each K manifold is "contaminated" by its 
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Jt-1 

Figura 3.7.2-1 
Schautic rapraaantatlon of tha Intaractlon batvaan an A, JC -0 and 
an A-ftA, R -1 rotational aanlfold undar C, (N). (Tha x axla 
corraaponda to ona of tha variablaa that control tha potantlal 
•volution.) 
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interacting partner. Similar observations can be made for the 

intercrossing between two K manifolds with the same K value and same 

symmetry. Although in this case all rotational levels in each 

manifold are deflected in the interaction region, the above remarks on 

the wave function "penetrating capability" still hold. In other 

words, treating the K aanifolds as the evolving units is based on the 

evolution of the associated wave functions rather than of their actual 

rovibratlonal levels. 

All these facts suggest Chat a correlation diagram between the 

two limiting cases can be established with the K rotational manifolds 

as the evolving units. 

3.7.3 Splittings of Zero-Order Interaolecular Vibrational States into 

K Vibrational Component States under C, (H) 

Since, according to the C, (H)-D,. (M) symmetry species 

correlation table (Appendix Table 4) or the fact that C, (M) is a 

subgroup of D.. (H), there will be further energy level splittings when 

the molecular symmetry group evolves from C, (M) into _,. (M). 

Therefore, any further splitting complications can be considered to 

occur within each evolving unit, the K rotational manifold, instead 

of between them. 

Again we will derive the overall picture only under C- (M) for 

the moment. As will be shown below, when the intermolecular potential 

is introduced, each zero-order intermolecular vibrational state which 

involves the NH, free rotational Motion can split into several K 

rotational manifolds, each of which correlates to a K stack of a 
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different classical near prolate top vibrational state in the 
,-emi-rigid limit. In such a context, each K rotational manifold can 
be considered as a vibrational coaponant state with respect to either 
Unit. 

Now, we examine first the rotational manifolds of the zero-order 
intermolecular vibrational states in C« (M), In such a case, the two 
columns on the left of the zero-order intermolecular vibrational level 
diagram, Figure 3.6.1, coalesce with the two on the right into two new 
columns corresponding to (v ,v,)-(0,X) and (l,X), where "X" is used to 
reflect that the NH, inversional motion is quenched and thus the 
associated quantum number becomes indeterminate. Consequently, each 
resultant vibrational level is labelled with two symmetry species in 
D-. (M), which correspond to ona species in C, (M) according to the 
symmetry species correlation (Appendix Table 4). 

For example, the A2'(0;0;1,0) and A1"(0;l;1.0) state in D 3 n(M) 
becomes the A2(0;X;1,0) state in C 3 y(M). (The notation S (v ;vJ;J,fc ) 
for the zero-order intermolecular vibrational state is still preserved 
under C, (M).) Similar two-to-one species relationship can be 
observed for each zero-order rovibrational level of the A2(0;X;1,0) 
vibrational state. Since its J equals 1, based on the discussion in 
Section 3.6.4, each of its zero-order 1 rovibrational level, except 
the 2-0 level, is triply ./-degenerate, with the associated J-l-1, 1, 

2+1. As indicated in Figure 3.7.2-2, such accidental ./-degeneracy of 
three states of the same symmetry will be removed basically due to the 
pairwise interactions between every other 2 levels, according to the 
same-symmetry-satfe-J inter-state interaction selection rules (Section 
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A2(0;X;1,0) 

-M-l- * 

Figure 3.7.2-2 
Schematic representation of the splitting of the A,(0;X;i,0) state 
into a JC -0 and 1 coaponent state by the anisotropy of the 
intermolecular potential. 
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3.6.3). 

To simplify the discussion on the splittings of the A2(0;X;1,0) 
state, it is assumed that all other zero-order internolecular 
vibrational states are located sufficiently far away and their 
influences on A,(0;X;1,0) can then be neglected. Since the 
vibrational state distribution is a continuous function of the 
potential evolution, this assumption will not hamper tha generality of 
the result thus derived. Under this assumption, the naeataary raault 
according to tha previously Justified requirement that the K 

rotational manifolds be tha evolving units is as follows: As 
indicated in Figure 3.7.2-2, the triply degenerate zero-order 
rovibrational states with a given 1 shift respectively into 
rovibrational states only of two Jf rotational manifolds, viz., J-l-l 
of a K-0 manifold and J-l, 1+1 of a Jt -1 manifold; the only 
nondegenerate zero-order 2-0 state becomes one of the two J-l levels 
of the K -1 manifold. In other words, the A2(0;X;1,0) vibrational 
state can split into one A. X -0 and one A^ftA, *."1 rotational 
manifold. (It is remembered that the semi-rigid K-1 (or more 
generally >0) stacks should have symmetry which is totally two 
dimensional.) Similarly, the E(0;X;1,1) state can be shown to split 
into one E K-0 manifold and two E Jf-1 manifolds. 

Even according to the schematic correlation in Figure 3.7.2-2 
whose rotational stacks are all drawn to scale with BJ(J+1), it is 
apparent that generally there is a naeassary distortion associated 
with each K manifold approaching the free internal rotor limit. 
(This is "necessary" distortion because we have already assumed the 
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influence due to the K manifolds (or manifold) correlating to other 

zero-order intermolecular vibrational states is negligibly small.) To 

the first approximation, the only distortion-free K manifold should 

be that of the zero-order intermolecular ground vibrational state 

A1(0;X;0,0). Although the K manifolds are described as distorted in 

the free internal rotor limit, actually the distortion is in the 

opposite direction. It is remembered that the J-level regularity 

within and the independence among the semi-rigid K manifolds are the 

limiting phenomena due to th* limiting anisotropic intermolecular 

potential; the "normal" K manifolds in the semi-rigid limit actually 

result from the distortion of the accidentally degenerate and 

apparently "distorted" zero-order K manifolds. 

If similar examinations are made for other zero-order 

interotolecular vibrational states under C- (M), the rules of their 

splittings can be summarized in Table 3.7.3. The symmetry species of 

each K vibrational component state used in this table is still as 

previously defined in Section 3.7.2. For example, the K -1 component 

state in Figure 3.7.2-2 has A^SA, symmetry, which corresponds to the 

two nondegenerate rovibrational states of J-l in the manifold. 

Consequently, the symmetry species dimension of the K vibrational 

component state is the same as that of the overall species of the 

rovibrational state(s) corresponding to each J within the manifold. 

(As an afterthought, by counting the number and the symmetry species 

dimensions of the K component states in Table 3.7.3, it can be found 

that the degeneracies due to both K and k have been fully accounted 
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Table 3.7.3 
The correlation between the zero-order interaolecular 
vibrational states and their JC vibrational component 

s tate (s ) (or the K^ rotational manifolds). 

zero-order —> number and symmetry of 

vibrational state X^-0 JĈ nO <JCa:[l,J]> 
manifold(s) manifold(s) 

Aj (*c-0, even J) one A,* one (Aj • Ag) 
A 2 (*c-0, odd J) one A, one (Aj • A 2> 
E (*c-l. 3n±l) b one E two E'a 

(Ax • A 2) (*c-3n) 
f one A. 
1 one A 2 

two (Ax • A 2)'s 

*Th. symmetry species refers to that (those) of the 
level(s) of the lowest J in the rotational manifold. 
n: positive integer. 
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for.) 

It is noted that for any K rotational manifold with a symmetry 
species associated with subscript, i.e. the A., A., or A^CA. * 
manifold there is always a subscript alternation feature for the 
rotational symmetry species associated with each increment of J by 
one. Of course, no subscript alternation can be made for the K 

manifolds with E symmetry. Therefore, as long as the symmetry of the 
K manifold is known, the symmetry species of any J in the manifold 
can be quickly figured out. Although this rule might seem trivial 
under C.(M), it la such simplicity that justifies the convenience of 
the use of the K manifold symmetry thus defined. 

The splittings of the zero*order intermodular vibrational 
states into different K manifolds can also be Justified in terms of 
the C, (M) symmetry species of the free NH, rotational states. By 
first assuming that the e-o-« rotation is quenched and only the NH, 
subunlt is allowed to rotate, we recognize that Che NH. subunit is in 
an intermolecular potential with Cm symmetry about the complex a axis. 
In terms of symmetry, this phenomenon is therefore equivalent to the 
Stark effect [35] of the free NH. (without Inversion yet). 
Consequently, each ptrieyundtfintd (J*0,k ) NH, rotational state will 
result in 2j+l "first order Stark component states", corresponding to 
its 2J+1 possible projections (a.'s) on the complex a axis; however, 
each parlty-dtfintd <>"0,*c) state will result in J+l "second ordtr 

Stark component states", corresponding to the J+l possible absolute 
projection values (|m.|'s). In order to determine the associated 
parity, the C.(K)-D 3 h<M) symnetry correlation table can then be used. 
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It is found that A., correlates only to positive parity, A, only to 

negative parity, and E to both (parity-undefined). As a result, each 

(j,*„-0) state splits into J+l conponent states; all (/,*• >0) states 

into 2j+l component states. When the e-o-e rotation is "turned on", 

each of these component states will correlate to a K rotational 

manifold. This result is than in agreement with Table 3.7.3. 

The relative positions of the JC manifolds originating from a 

zero-order intermolecular vibrational state depend on the geometry of 

the intermolecular potential function. Since no particular functional 

form has yet been assumed for the potential, the relative position of 

the K -0 and JC -1 component state, shown in Figure 3.7.2-2, is 

arbitrary. However, by using the correspondence principle, 

qualitative arguments on the ordering of the K-0 and X —1 component 

state can be made for the special case of the A„(0;X;1,0) state with 

k-0, when in the slightly perturbed cases. (Here, "slightly" implies 

that the dominant interaction is still between these two component 

states.) If the equilibrium configuration is T-shaped between the NH, 

C- axis and the complex a-principal axis (for example, when the 

Legendre P_(cos») [37], instead of other P(cos») with ™*2, dominates 

the potential), then the K -1 state is more likely to be lower than 

the JC -0 state. This can be understood by considering the 

corresponding classical motions of the K-0 and JC -1 state, shown in 

Figures 3.7.3 (al) and (a2). Since * c-0 in the A2(0;X;1,0) state, the 

J-l can be ascribed to an internal libration or rotation about an axis 

perpendicular to the C, axis. The corresponding internal rotation of 

the K -1 state always senses the minimum of the classical potential, 



JC - 0 
* 

A- •-

(«2) 

V 1 C3 ---5—-0 
(M) 

V 1 ' 

(•1) (bl) 

Figure 3.7.3 
Corresponding classical Motions of the JC -0 and 1 coMponent state of 
the A2(0;X;1,0) interamlecular vibrational state: 
(al) and (a?.) correspond to the JC -1 and 0 Motions, respectively, when 
the complex has a T-shaped equilibrium configuration, shown in (a), 
(bl) and (b2) correspond to the JC -0 and 1 Motions, respectively, when 
the complex has a linear equilibrium configuration, shown in (b). 

© o 
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as opposed to that of the K -0 state which passes at least two 
internal rotation barriers per cycle of the internal rotation. As a 
result, the K -1 state is lower than the K -0 state. Similar a a 
arguments can be applied to the case when the C, and a-principal axis 
are collinear in the equilibrium structure (for example, the Legendre 
PjCcosf ) dominates the potential). As indicated in Figures 3.7.3 
(bl) and (b2), only the JC -0 motion can probe the potential minimum, 
which the motion corresponding to X -1 never experiences. Therefore, 
the relative position between the K -0 and 1 state is reversed. 
(However, when the state is complicated by nonzero k , which 
represents a classical internal rotation about the C, axis, the above 
qualitative arguments cannot be generalized easily.) 

3.7.4 K Correlation under C, (M) between the Two Limits 
Since, along the whole path of a correlation between any two 

limits, there is only one single point that is physically existent, 
establishing such an evolution type correlation is merely a 
construction that provides more insights to the complex. The 
numerical models which assume different evolution paths for the 
potential produce different evolutions of the state distribution. Any 
such numerical models are acceptable as long as they can account for 
the state distributions at the following three places: the two 
limiting cases defined and the position corresponding to the actual 
complex. Therefore, generally it is the qualitative aspects, rather 
than the quantitative aspects, of the evolution type correlation that 
are more significant. Due to this reason, the correlation in this 
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section will be made only in terms of the quantum numbers belonging to 

the two limiting cases along with* the symmetry species of the 

molecular symmetry group, which is temporarily assumed to be C, (M). 

In other words, the correlation to be discussed is mainly to indicate 

the physical significance connections between the states in the two 

limits. A state (quantum number) correlation t*ble, instead of the 

state correlation curves, will be constructed. 

Because the two limiting cases do not belong to the real world, 

they need be artificially but reasonably defined, as already done for 

the free internal rotor limit, before any correlation can be made. 

Now, it is time to define the semi-rigid limit for the complex. In 

this limit, Ar and NH, can be assumed to combine togetl.er in various 

ways with different semi-rigid configurations, vibrational 

frequencies, etc.. However, since it is the quantum number 

correlation that is to be constructed, any quantitative specification, 

such as the semi-rigid vibrational frequencies, becomes unnecessary. 

In order to facilitate the physical meaning assignment to the 

semi-rigid energy levels, as will be shown below, the only 

specification required is the complex configuration. 

Within the semi-rigid limit, the energy level distribution is 

still a continuous function of the variation of the internal 

potential. In other words, the state correlation can also be 

established, at least in principle, for any two semi-rigid 

configurations. Because in this limit the vibrations are well 

separated from the overall rotations, such correlations should have 

the vibrational states, or, equivalently, the corresponding near 
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prolate top rovibrational manifolds, as the largest evolving units, 

each of which can be characterized by the K quantum numbers and the 

associated rotational constants [34]. This fact allows us to select 

any semi-rigid configuration as the reference point to be correlated 

directly to the free internal rotor limit. If we are interested in 

any other semi-rigid configuration, for example, the one corresponding 

to the minimum of the actual intermolecular potential, then a 

secondary correlation starting from the reference semi-rigid 

configuration can always be established within the semi-rigid limit. 

In such a secondary correlation, the classical discussions on the 

Fermi resonance and Coriolis interactions between different semi-rigid 

vibrational states should apply. Since such secondary correlation is, 

in principle, always feasible, and is a relatively well understood 

topic, without losing any generality, we will focus the discussion 

only on the simplest correlation between the free internal rotor limit 

and the semi-rigid limit. Therefore, the C, configuration which is 

similar to the ground state CH.C1 is naturally chosen for the 

reference semi-rigid limit, because this exact prolate top structure 

provides the exact physical meanings to the K stacks in each 

semi-rigid vibrational state. 

Now, we begin to consider such a correlation between these two 

particularly chosen limits. With the NH, inverslonal motion quenched, 

under C. (M) onV the dimeric stretch and internal rotation, hindered 

or not, can be involved in the intermolecular motions. However, it 

has been shown that the zero-order dimeric stretching wave function 

with any stretching quantum number v is totally symmetric (Section 
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3.6.1). Therefore, in order to derive the correlation in terms of the 

quantum numbers and symmetry species, only the evolution of the pure 

internal rotational states into the semi-rigid limit needs to be 

examined, because this correlation can be duplicated for each value of 

v . On the other hand, being equivalent to an extremely hindered NH. 

internal rotation, the semi-rigid bending vibration, without any 

internal vibration in the NH, subunit, of the reference C„ v semi-rigid. 

configuration is worth particular attention for the correlation 

purpose. Due to the C. structural symmetry, this bending vibration 

mod* must be doubly degenerate, and thus should have E as its symmetry 

species because E is the only two dimensional species available under 

C. (M). The same result can be obtained if a rigorous symmetry 

analysis is performed for the corresponding vibrational displacement 

vectors. In the semi-rigid Unit, this doubly degenerate vibration 

corresponds to a two dimensional (2-D) isotropic harmonic oscillation 

[38], which can be exactly specified by the bending quantum number 

(v.) and the associated angular momentum (l h). 

Therefore, more accurately speaking, the correlation being sought 

for is between free internal rotational quantum numbers J, k and the 

semi-rigid bending vibrational quantum numbers v., 1. through the 

symmetry species in C, (M) and the near prolate top K quantum 

numbers. 

The symmetry species of the free internal rotation states as a 

function of j and k can be readily derived from Table 3.4.A.1-2 along 

with the C, (M)-D-.(M) symmetry correlation table (Appendix Table U). 

(Of course, it can also be derived by using the standard symmetric top 
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wave functions under C, (M), as in Section 3.4.4.1 under D,, (M).) The 

results are summarized in Table 3". 7.4-1. 

On the other hand, the symmetry species of the semi-rigid bending 

states as a function of v. and 1. can be deduced as follows: As can 

be found in almost any standard textbook on quantum mechanics [38], 

the energy of a 2-D isotropic harmonic oscillator can be expressed as 

(v.+D&w, where w is the fundamental angular frequency; each v. level 

is (v.+1)-fold degenerate to account for the v.+l different, signed 

vibrational angular momentum quantum numbers (or number) ±1. with 

l.-v., v.-2, v.-4 0 or 1. At * direct result of the fact that 

angular momentum (along the axis perpendicular to the 2-D vibrational 

plane) operator L commutes with the Hamiltonian, the wave function 
z 

corresponding to each (VL.1L) should have only the multiplicative 

factor exp(i±2.*>) that is dependent on 2. and the corresponding 

angular coordinate <p. Therefore, in order to find the symmetry 

species of a v. vibrational level, we do not n*?d to bother to employ 

the v.+l complete wave function expressions as the basis set in the 

symmetry reduction. Instead, the v.+l functions of the form 

exp(i±l.<p) with 1L-V.. VJ.~2, V.-4, .... 1 or 0, will suffice the 

purpose. Furthermore, we do not need to derive the transformation 

properties of <p under C, , required by the symmetry reduction; it is 

recognized that for the particular C, semi-rigid configuration the 

transformation properties of <p under C 3 v(M) are equivalent to those of 

X listed in Table 3.4.3-2. (However, this by no means implies that 

these two coordinates have the same physical significance.) 

The C. (M) symmetry species as a function of v. and 2. thus 

http://Vl.1l
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Table 3.7.4-1 
The NH, jubunit internal rotational symmetry 
species under C- (M) as a function of j and 
k quantum numbers. 

k c Symmetry species 
under C»y(M) 

[ even j 

I odd j 

A l 
A 2 

1, 3n±l* E 
3n A 1 « A 2 

n: positive integer. 
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derived are summarized in Table 3.7.4-2. (In Herzberg (Vol.2, p.127) 
[34], the point group symmetry spfecies under C, is given as a 
function only of v, . Since there exists the isomorphism [32] between 
the point group and the permutation-inversion group, in terms of v. , 
the results derived in this work need ba consistent with those listed 
in Harzbarg.) 

In order to facilitate the discustion, as opposed to the notation 
S (v ;v,\J,k ) for the zero-order intermolecular vibrational states in o s i c 
the fraa internal rotor limit, the notation 

will ba introduced for the semi-rigid banding vibrational states, 
listed in Table 3.7.4-2. Hera, S is the symmetry species of the 
vibrational state corresponding to one sat of (v. ,2.); the square 
brackets are used to remind that it is in the semi-rigid limit. 
Although this definition makes all the states with Ift-3n (n:positive 
integer.) denoted by [A.tA.](v. ,3n), with its reducible double 
degeneracy emphasized, it must be recognized that this single notation 
corresponds to two vibrational lnvmls if any anharmonicity is 
introduced. 

Due to the invariance of the symmetry species associated with 
each state and thus those with the K rotational manifolds (the 
evolving units) throughout the whole evolution, to make the 
correlation, the K symmetry species should be derived not only as a 
function of J and k (Section 3.7.3) but also of v. and I.. Because 

C DO 
the rotational symmetry species of a semi-rigid vibrational state with 
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Table 3.7.4-2 
C, (M) symmetry species, as a function of the bending 
quantum numbers (v. and I.), of the semi-rigid bending 
vibrational states of Ar-NH, with a CH,CI-like exact 
symmetric top configuration. 

2fr 
0 1 2 3 4 S 6 

V 6 [A^* 
... 

[E] |E] [A^2 

V 5 [E] [A L«A 2] (E] 

V 4 [A LJ [E] [E] 

V 3 (E) (A^J 
V 2 1*!] IE] 
V 1 [E] 

v° [ALJ 

Square brackets are used to remind that the species 
inside is the semi-rigid vibrational, instead of 
rovibrational or zero-order intemolecular vibrational, 
symmetry. 
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symmetry [S] are the direct product of the well understood ground 

state rotational symmetry species* [32] and S, the K symmetry species 

can be readily obtained under C, (M), as tabulated in Table 3.7.4-3. 

[32] As a result, the bending state JC symmetry species in the 

semi-rigid limit can then be deduced, from Tables 3.7.4-2 along with 

•3, as a function of JC (or JC <±)) and [S](v.,2.), where ± denote the 

sign for 1. associated with the JC rotational manifold. 

By combining Tabic 3.7.3 (the splittings of the free internal 

rotational states into the JC rotational manifolds) and Tables 

3.7.4-2, -3 (the JC rotational manifolds contained in the semi-rigid 

bending vibrational states), the correlation under C, (M) between the 

S (v ;v,-0;j,k ) states (with v_ fixed) in the free internal rotor 
O S 1 C M 

limit and the [S](v. ,1.) states in the semi-rigid limit can be 

established. There are two different frameworks for this correlation; 

one is in the format of J vs. k , as depicted in Table 3.7.4-4, the 

other is of v. vs. i.. It is the former that will be employed in the 

following discussion. This is because we definitely do not think that 

the complex is close to the semi-rigid limit. 

Under this choice, the symmetry species S are arranged in an 

array of J vs. k , with all free internal rotor states of the same j 

aligned horizontally to indicate the generality of this correlation 

for either a prolate or oblate top as the Internal rotor; the 
S (v -0;v -X;j,Jc ) notation is not used, but is inherent in such an o s i c 

array. For convenience of finding the numerical regularities among 

different quantum numbers, the JC rotational manifolds, represented in 

the format of JC , or JC (i), are put in the order of increasing K . 
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Table 3.7.A-3 
C, (M) symmetry species of the X rotational manifolds 
in the semi-rigid limit as a function of K , the sign 
for 2. , and the symmetry species (S] of the bending 
vibration. 

5i 
|S] 0 3n+l* 3n+2 3n+3 

(A1] A x E E Aj«A2 

[A2) A 2 E E A ^ 

[ E (-) [ A ^ (-) [ E <-) 

n: nonnegative integer. 
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Table 3.7.4-4 
Quantum number correlation, under C- (M), between the zero-order 
intermolecular vibrational atatea S_(v ;v.-0;J,fc ), with v fixed, in 

O 3 1 C S 

the free internal rotor limit and the bending vibrational atatea 
[S](v.,1.) in the aemi-rigld limit. 

(The aymmetry apeciea S are arranged in an array of J va. k ; the 
aymbol S (v ;v.-0;j,k ) itaelf la not uaed. The evolution unita, the o * l c 
K rotational manifolda, are repreaented in the format of K, K (+), 

and K (-), where (+) and (-} denote the aign for I.. Baaically, these 
K symbols are inaerted between S and (S](v. ,2.) to indicate their 
roles as the evolving unita. [AA] ia an abbreviation for (A1«A„].) 



* 0 ) . | E J ( 4 . 4 ) 
3 . |AA| (5 .3 ) 
2 ( - ) . i E J ( 6 . 2 ) 
K * ) . | E ) ( 7 . 1 ) 

Aj 0 , [AjKB.O) 

4 , | A A H 3 . 3 ) ; ( - ) . [ E J ( 5 . 5 J 
3 ( - ) . | E ] ( 4 . 2 ) ; ( + ) . [ E | ( 6 . 4 ) 
2 ( * ) . | E | ( 5 , 1 ) ; (AA](7,3) 
1. | A 1 ] ( 6 . 0 ) ; ( - ) . ( E 1 ( 8 . 2 ) 

E 0 , ( E | ( 7 . 1 ) 

Aj 0 

3 . [AAK3.3) 3 ( - ) . ( E | ( 2 . 2 ) ; ( + ) | E l ( 4 , 4 ) 
2 ( - ) . | E ] ( 4 , 2 ) 2 ( + ) , | E ] ( 3 . 1 ) ; (AA](5.3) 
1 ( » ) . | E ) ( 5 , 1 ) 1. | A , J ( 4 . 0 ) ; ( - ) I E J ( 6 . 2 ) 

lAjKe.O) E 0 . [EJ(5 ,1) 

4 ( - ) . | E l ( 2 . 2 ) ; [AA](6.6) 
3 ( + ) . | E ) ( 3 . 1 ) ; ( - ) . [ E J ( 7 . 5 ) 
2 . | A , 1 ( 4 . 0 ) ; ( * ) . I E ] ( « . 4 ) 
K - ) . [ E J ( 5 . 1 ) ; (AA)(7.3) 

E 0 . [ E ] ( 6 . 2 ) 

3 ( + ) . [ E l ( l . l ) ; ( - ) . [ E l ( 5 . 5 ) 
2 . [ A . l < 2 . ( » ; < • ) . I E K 6 . 4 ) 
K - ) . I E 1 ( 3 . 1 ) ; [AAJ(5,3) 

E 0 . [EJ<4.2) 

AJWAJ 0 . 

4 ( + ) . | E ) ( l , l ) ; ( + ) . ( E ] ( 7 . 7 ) 
3 . IA ] ( 2 , 0 ) ; |AA1(8,6) 
2 ( " ) . | E ) ( 3 . 1 ) ; ( - ) . | E ) ( 7 . 5 ) 
1 ( + ) . | E ) ( 4 . 2 ) ; ( + ) . [ E | < 6 . 4 ) 

[AAJ(5.3) 

V*2 °-

3 . IA.KO.O); IAAK6.6) 
2 ( - ) . l E l ( l . l ) ; ( - ) , l E l ( 5 , 5 ) 
I ( 4 ) , | E ] ( 2 . 2 ) ; ( + ) . I E | ( 4 , 4 ) 

IAAH3.3) 

A l ° -

2 ( - ) . [ E J ( 2 . 2 ) 
K * ) . I E J ( 3 , 1 ) 

^ 1 ( 4 . 0 ) 

2 ( + ) . ( E | ( l . l ) ; (AAK3.3) 
1 . IA J ( 2 . 0 ) ; ( - ) . [ E J ( 4 . 2 ) 

E 0 . |E1 (3 .1 ) 

2 . IA | ( 0 . 0 ) ; ( * ) . | E 1 ( 4 . 4 ) 
K - ) . l E J ( l . l ) ; |AA](3 .3) 

E 0 . | E ] ( 2 . 2 ) 

U O . | E | ( l . l ) 1. 
0 . [AJK2.0 ) E 0 . 

I A 1 J ( 0 . 0 ) ; ( - ) , | E J ( 2 . 2 ) 
[ E l ( l . l ) 

* ! 0 . I A J K O . O ) 

it - 0 
c 

* - 1 
c 

k -2 
c 

k - 3 



213 
Basically, these K symbols are inserted between S and [S](v. ,1.) to 
indicate their roles as the evolving units, when two semi-rigid 
bending states are put ia a row of the sane K , the left one is chosen 
to be of lower v. and 1. value, and thus is associated with the lower 
K rotational aanifold in the actual spitting. [AA] is an 
abbreviation for [A-AA,]. Instead of [A,]«[A2], [A.**,] eaphasizea 
(1) that these two states share the saae banding vibrational quantum 
numbers in the semi-rigid Halt, and (2) the connection between Tables 
3.7.4-2 and -4. 

This correlation, starting froa the free internal rotor liait, 
can ba concisely summarised as follows: (1) tha j value determines the 
allowed range for K^ to be [0,J] (Section 3.7.3), (2) for each Kf 

value, J and k determine the correlated v. and 1. , i.e. 

< V I 6 ) - (|2j - \KM ±kc\\, \KM * fce|) (3.7.4-1) 

(When K >0 and * c>0, there exist two sets of (Vj,.l6).). (3) J?a *nd * c 

determine the correlated vibrational symmetry [S], i.e. 

[S]- [ A ^ ] . for \Kt T fcc|-

L [E] 

f 0 
3n (n: positive integer.), 
3n±l 

(3.7.4-2) 
and (4) if arranged as in Table 3.7.4-4, with the [E] states always 
appearing in pair vertically, the lower [E] in each pair will be 
associated with (+) and the upper [E] with (-) when K >0; no sign will 
be attached when K -0. 

Several features of the correlation that greatly facilitated its 
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derivation will be discussed in the following. 

Classically speaking, due to the fact that J-j+1, where the e-o-e 
1 is perpendicular to the a principal axis of the complex, the 
projection J of J (with K as the projection magnitude) on this axis 
can be ascribed to that of the NH, internal rotation j. Because j is 
basically the sum of two different angular momenta: one (k ) 
associated with the NH. internal rotation along the C- axis of the 
subunit, the other with the rotation of the subunit C. axis itself. 
In the C. semi-rigid limit, the former will coincide with the a axis 
of the complex, while the projection vector of the latter on the same 
axis will correspond to the bending angular momentum 1. . In other 
words, in this limit, the projection vector J should be accounted for 
by the col linear vectorial sum of k and 1. . This implies that 

V I^TkJ. (3.7.4-3) 

which is contained in Equation (3.7.4-1). Based on this equation, the 
expression for v. in Equation (3.7.4-1) becomes a necessary result if 
the symmetry species of the evolving JC manifolds are considered. 

In terms of JC symmetry, there are several paradoxes. The first 
one is that all the JC -0 manifolds in the k -0 column correlate to the 

m C 

bending states only with (A,] symmetry, irrespective of the symmetry, 
A. or A,, of the free internal rotor states the K manifold originate 
from. This is a unique feature if compared with other JC -0 manifolds 
which always connect the (SI bending states to the free internal 
rotor state of the same symmetry S . Another paradox is that the 
nondegenerace [A.] bending states can actually correlate to a doubly 
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degenerate E or two nondegenerate A free internal rotor states. 

As reflected by the similarity between the two upside-down 

half-pyramidal state distributions in Tables 3.7.4-2 and 3.7.4-4, if 

only K -0 manifolds are concerned with, there is a one-to-one 

correspondence between the semi-rigid bending states and the free 

internal rotor states. 

It is also Interesting to examine how all the K manifolds 

(stacks) belonging to a semi-rigid banding state distribute themselves 

among the free internal rotor states. It is found that Table 3.7.4-2 

is basically an infinitely many upward repetitions of the [S] symmetry 

distribution along tha slanted lower right edge of the table. This 

implies that the JC distributions, on Table 3.7.4-4, of all of the 

bending states on this lower right edge of Table 3.7.4-2 can be 

treated as a repetitive unit on Table 3.7.4-4. Of course, according 

to the alternately state missing feature in each 1. stack of Table 

3.7.4-2, there should be an increment of v. by two accompanied with 

each upward increment of the unit distribution. 

In finding this unit correlation distribution in Table 3.7.4-4, 

we will start from [A,](0,0) and follow the state ordering along the 

lower right edge of Table 3.7.4-2. The correlation scheme is simply, 

under the condition of Equation (3.7.4-3), always connect the 

currently lowest available K in the semi-rigid limit to the currently 

lowest available K of the same value in the free internal rotor 

limit. (This scheme necessarily consists with the requirement that 

the symmetry species of each rovibrational state is invariant 

throughout the whole evolution between the two limits.) This makes 
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the K manifold distribution of [A](0,0) propagate in a single 

direction, following the slanted edge of the free internal rotor state 

distribution. However, all the K distributions of other bending 

states with 2.>0 have two branches, corresponding to ±2. , 

respectively. The right branch still follows the lower right edge of 

the free internal rotor state distribution; the right branch generally 

propagates downward first, and eventually daflectad to become parallel 

with its right branch at the same J value as its origin, the K -0 

location. If v. is odd, then the left branch corresponds to +2. and 

the right one to -2.; if v. is even, then the above relations are 

reversed. 

The resultant correlation table indicates an important fact that, 

within a semi-rigid bending state, a lower K manifold is not 

necessarily lower in the free internal rotor limit. It is noted that 

the K >0 manifold(s) in the right branch btfor* the "deflection point" 

have to be lower in energy than the K*-0 manifold of the same bending 

state; the intercrossing (but not necessarily the symmetry and J 

dependent interaction) between these (this) K >0 manifolds (or 

manifold) and the K -0 manifold becomes a necessity in the evolution. 

(Another energy level reversing phenomenon could occur is when the 

internal rotor is a prolate top, which is not our case. This is 

because, on the same j level in the free internal rotor diagram, the 

AT̂ -0 manifold with a higher k (more to the right of the same j level) 

corresponds to a lower v. in the semi-rigid limit (see Table 3.7.4-4); 

however, the higher the k^, the higher the corresponding energy level 

in the free internal rotor limit.) 
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Gsnerally, when the semi-rigid limit does not have a C, 

configuration, the bending vibration loses the 2-D isotropy of the 

corresponding harmonic oscillation, although, according to the 

definition of "semi-rigid", each vibrational direction still has the 

harmonicity (harmonic force constant) of its own. In such a case, v. 

and I. are no more exact good quantum numbers; as a result, no direct 

or axace (J,k )m(v.,l.) quantum number correlation, as shown in Table 

3.7.4-4, can be made between the free Internal rotor limit and any 

Interested non-C, semi-rigid limit. This is true even when the 2-D 

isotropy accidentally remains for such a non-C, semi-rigid 

configuration. The reason is that the (classical) k vector is not 

colllnttr with the principal a axis of the complex, which is the 

figure axis for the C, semi-rigid limit; although v. and 1. still 

happen to be good quantum numbers, no simple quantum number 

relationship, such as Equation (3.7.4-3), exists. Of course, if it is 

insisted to establish an evolving picture like table 3.7.4-4 starting 

from the free internal rotor limit to a non-C, semi-rigid limit, we 

should remove all the v. and 2. quantum numbers from the table, only 

with the symmetry species (S and [S]) and the K splittings from each 

free internal rotor state left. It is noted that the symmetry (SJ of 

the semi-rigid bending state should be maintained although the bending 

quantum numbers are removed. This is because that, for correlations 

within semi-rigid limit, the evolving unit is basically each 

vibrational state with its rovibrational structure, the inside K 
a 

stacks, "moving" as a whole; the semi-rigid vibrational symmetry [S] 

should be invariant. This reflects the fact that the C, semi-rigid 
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limit used in Table 3.7.4-4, plays the central role as a "relay 

station", which can be used to start a secondary correlation to any 

other configuration within semi-rigid limit. 

3.7.5 K Correlation undar 0,. (M) between the Two Limits a Jn 
The correlation relationship undar D,. (M) between the free 

internal rotor limit and tha semi-rigid limit can ba generalized from 

its analogua under C, (M). (However, cara must be taken because it is 

not a straightforward matter of duplicating the C« (M) correlation 

table (Table 3.7.4-4) for even and odd v., respectively, and replacing 

all symmetry species by those of D,,(M).) First of all, it is noted 

that the NH, lnversional motion, that extends the molecular symmetry 

group to D,.(M), is not allowed in the semi-rigid limit. Therefore, 

it is again the inversion-free semi-rigid bending vibrational states, 

as used in Table 3.7.4-4 under C. (M), that are to be correlated to 

the free internal rotor states, which are now the NH, 

rotation-inversion states. In other words, the number of the bending 

states in the semi-rigid limit remains the same, while the number of 

the intermolecular vibrational states In the free Internal rotor limit 

is doubled. Since this correlation should be duplicable for any pair 

of v,-2n and 2n+l (n: nonnegative integer) and any stretching quantum 

number v , the following discussion will be made only for v.-O, 1 and 

v -0. 
s 

The natural schematic C. (M)-to-D,. (M) ro* ' rational correlations 

for the lowest three free internal rotation states, shown in Table 

3.7.4-4, are depicted in Figures 3.7.S (a)-(c), respectively. That 



A ^ O I O I O . O ) 

D 3 h(H) / C 3 v(M) 

J^fl^iL^- 3 
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<») (J.*c)-(0,0). 

Figure 3.7.5 
The C, (M)-to-D._(M) rovibrational correlations for the lowest three 
lowest three free internal rotor states shown in Table 3.7.6-4 for: 
(*) <j.Jcc)-(0,0). (b) <j,*c)-<1.0), and (c) <j,*c)-(l.l). 
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they are "natural" Is based on the following operational phenomenon. 

Assume that in the beginning such*correlations are made arbitrarily, 

and the only rule followed is that levels of the same symmetry and 

sane J on both sides are connected (with straight lines). However, 

Figures 3.7.5 (a)-(c) will always be the final schematic correlations, 

if the following two steps are performed: (1) according to the 

sana-synnetry-same-J interaction selection rule, create a "noncrossing 

intersection" (similar to those in Figure 3.7.2-1) for each pair of 

mutually interacting correlation lines that inttrcross each other, and 

(2) straighten all such resultant noncrossing correlation curves. (Of 

course, such straightening is unnecessary only for the rovibrational 

correlation purpose. However, it helps us to visualize the resultant 

K manifolds under D,, <M), which are to be defined.) a in 

Because K is a quantum number purely of rotational motion, not 

of the inversional motion that extends the molecular symmetry group to 

D,, (M), the definition of the K manifolds under *>3h(M) needs to be 

clarified. (Since more rovibrational levels are generated under 

D-. (M), usually there are nore than one way to conceptually group them 

into manifolds. For example, two well separated manifolds might be 

considered as a superposition of two internilly split manifolds.) By 

looking at Figures 3.7.5 (a)-(c), one nay naturally choose each 

rotational nanifold that apparently evolves as a whole to be one K 

manifold under D.. (M), no mattet how many superimposed rotational 

J-stacks are included in such a K manifold. The X value is chosen 
a a 

to be the same as its correlated value under C, (M) because, in 

principal, the inversional motion should not change the value of any 
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rotational quantum number. For example, in Figure 3.7.5 (c), there 
are two K -0 and two K -1 manif ol"ds under D_, (M), as opposed to the a a Jn 
correlated one K -0 and two K -1 manifolds under C_ (M). (Although 
this is purely for convenience for the moment, this definition for K 

can actually be physically justified, as will ba shown later.) 
It is noted in Figures 3.7.5 (a)-(c) that each rovlbrttlonal 

state in either limit, except the 1-0 states in the free internal 
rotor limit, is degenerate: in the free internal rotor limit, ic is 
the sccldtnttl J-degeneracy due to the J-l vectorial addition; in the 
semi-rigid limit, it is the degeneracy caused by the inversional 
motion. (However, the latter does not necessarily correspond to the 
inversional degeneracy of v.-O and 1, respectively, as will be 
explained in the following.) Therefore, both limits of this 
correlation consist of many divergent sources of the rovibrational 
levels and thus the K manifolds under D-. (M), as opposed to the 
corresponding correlation under C, (M) (Table 3.7.4-4) in which only 
the free internal rotor limit contains the divergent sources. 

As can be imagined according to Figures 3.7.5 (a)-(c), it is the 
inversional splitting in the free internal rotor limit that 
"dissociates" each C, (M) rovibrational level into two D-. (M) levels. 
However, the inversional motion does not always split each C, (M) K 

manifold into two D,.(M) JC manifolds thus defined; as exemplified by 
Figure 3.7.5 (c), the inversional motion "turns on" only the e-o-e 
rotational splitting in each of the two K -1 manifolds. Such 
phenomena for the lowest six (J,k )'s are summarized in the schematic 
representation shown in Table 3.7.5, in which the D,.(M) * 
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correlations are represented by different segments. According to the 

actual energy scales for the inve'rsional motion and the e-o-e 

rotation, this table shows the following important facts: (1) each 

C, (M) JT -0 manifold of the <j,fc X)) states and all C,„(M) K jv a c J" a 
manifolds of the (j,k-0) states will invcrsionally split into two 

D,. (M) K manifolds belonging to v,-0 and 1, respectively, and (2) 

each C, (M) K >0 manifold of the (J,* X)) states only shifts as a JV a c 
whole into one D-. (M) K manifold, but associated with small e-o-e 

rotational splittings, as reminded by the double-segments in Table 

3.7.5. 

The use of segments in Table 3.7.S also indicates how the (2j+l)2 

degeneracy of each internal ij,k ) state is removed in the perturbed 

cases under D, h(H); 2J+1 is due to the internal rotation, 2 to the 

internal inversion. Importantly, this result under D„. <M) is 

consistent with the physical picture of a "miniature Stark effect", 

previously applied under C. (M) (see Section 3.7.3.). Since each free 

internal rotation-inversion state under D,. (M) has defined-parity, 

each of them should split into j+1 "Stark" component states. Our 

choice for one K manifold under D-. (M) is thus physically justified. 

Like Table 3.7.4-4, Table 3.7.5 is also applicable to the cases 

in which the semi-rigid configuration does not have C, point group 

symmetry if only the bending quantum numbers v. and 1. are ignored. 

(See the last paragraph of Section 3.7.4.) 

3.7.6 Intermolecular Vibrational Transitions 

As indicated by the (j,k )-(vfa,J.) quantum number correlation 
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tables (Tables 3.7.4-4 and 3.7.5), the X manifolds originating from 

the sane intermolecular vibrational state actually belong to different 

semi-rigid bending vibrational states, respectively. Therefore, each 

single zero-order internolecular vibrational level will eventually be 

"delocalized" by the limiting anisotropic potential into an energy 

scale that covers several seni-rigid bending states, which is 

typically few hundred to several thousand en For similar reasons, 

the spacings among the intermolecular vibrational states (if always 

artificially defined by their singly correlated K -0 manifolds) will 

also follow the same trend. This Is consistent with the inter-state 

"repulsions" required by the sane-symmetry-same-J interaction 

selection rules when further anisotropic potential is introduced. As 

a result, the actual inter-* transitions should have higher 

frequencies than predicted by the zero-order picture. In other words, 

in Figure 3.6.1, the internal NH. inversion-rotation energy scales 

serve as the lower bounds for the corresponding transitions; however, 

this is not true for the stretching scale, which has not been 

determined by experiment conclusively. 

Given in Section 3.6.3.1 were the most unrescrictive 

rovibrational optical selection rules, which allow many transitions 

forbidden by some approximate selection rules for the semi-rigid 

limit. Among these approximate rules, we are concerned particularly 

with AX . The AX -0 pure rotational selection rule and AX -0, ±1 a a r a 
rovibrstional selection rule [39] for the semi-rigid (exact or highly 

near) prolate top should be relaxed for this highly near prolate but 

floppy complex. This is because these classical AX rules are based 
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on the restrictive assumption that the molecular dipole, or its 

averaged effective vector, is collinear with the top axis. However, 

this is unnecessarily true for the current case, in which the NH-

dipole moment is allowed to move away from the complex a axis to a 

large degree. Therefore, we expect this near prolate top complex to 

follow the rules followed by tha semi-rigid asymmetric top [39], 

although it is not semi-rigid at all; in other words, AJT̂  should be 

even for the a type transitions, and odd for tha b or c type 

transitions. Tha "a, b and c type" refer either to the averaged 

dipole direction of a given intermolecular vibrational state or to the 

direction of an intermolecular vibrational transition moment, or 

generally to a mixture of both. As a result, the associated 

intensities are highly dependent on the internal dynamics of the 

complex. If it is close to the free internal rotor limit, the NH, 

inversion-rotation selection rules 

A/c -0 and c 
Av.:odd 

might still play a dominant role in determining the stronger 

intermolecular vibrational transitions. (This implies that bands with 

a q branch should be stronger when near this limit.) 

Since the K manifolds are the evolving units between the two 

limits under either C, (M) or D,. (M), the discussion will be focused 

on the qualitative aspects of the transitions between different K 

manifolds originating from either the same or different intermolecular 

vibrational states. (It could be misleading to call the transitions 
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between the K manifolds related to the same intermolecular 
a 

vibrational state "overall rotational" transitions because of the 

state mixing and the actual energy scale involved.) Without 

introducing any conceptual bias, these transitions will generally be 

called "inter-JC transitions". 

In order to facilitate the application of the AJ selection rule, 

we define V-stack(s)" to exist within a D..CK) JC manifold as follows 

(see Figures 3.7.S (a)-(c)): Each JC -0 manifold consists of a single 

./•stack; however, each JC >0 manifold consists of two ./-stacks, i.e. a 

lower one (J.-stack) and an upper one (J -stack) basically 

superimposing on each other, both starting from J-X . (Of course, 

"upper" or "lower" is determined by the relative positions of their J 

level origins in the free internal rotor limit, because their relative 

positions could be switched during the evolution between the two 

limits.) This might not seem to be a necessary definition before 

examining the (j,k-3n) states (n:positive integer). This is because, 

for such states, each J in a JC -0 manifold corresponds to two, instead 

of one, irreducible symmetry species, and each J in a K >0 manifold to 

four, instead of two; each J in these ./-stacks thus defined therefore 

corresponds to two independent symmetry species (A '®A ' or A "©A"), 

instead of one. Such a same-./-doublet of a ./-stack defined for the 

(j.k -3n) states evolves basically as a small unit; as can be 

indicated by a correlation, similar to Figure 3.7.S, such a 

same-J-doublet must correlate to a single level in both limits; its 

splitting induced by the same-symmetry-same-J interactions with other 

states should generally be snail. 
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Importantly, within each J-stack thus defined, there is a parity 

alternation associated with each "increment of J by one; for the 
(j,k -3n) states, the two irreducible symmetry species of a 
same-J-doublet must have the sane parity. The symmetry species of 
such a J-stack will be defined to be that (cr those) associated with 
the lowest J in the stack. This is similar to the symmetry definition 
for Che K manifolds, which is Che tofl symmetry corresponding to the 
lowest J(-JC). This stakes the symmetry of a X X ) manifold under 
D.. (M) be Che direct sum of Che symmetry of J -stack and that of the 
J,-stack. 

Once we know the symbol S (v :v.;J,k } of the zero-order 
O * A ~ C 

intermolecular vibrational state, as those shown in Figure 3.6.1, the 
D.. (M) symmetry of any rovibrational level originating from it can 
then be quickly deduced as follows: The S (v-0;v,;J,lc) state can 
split into j+1 Ka manifolds under D 3 h(M) with JC^-j, J-l, j-2, .... 2, 
1, 0. The symmetry species of the nonzero JC manifolds with even j - K 

are all {S )«{{S )"); those of the rest with odd J-K are all 
o o a 

(<So)"}®(S }. Here, the symbol ()" denotes a parity switching 
operation. The symmetry notation is in the format of 

(J.-stack symmetry)•(J -stack symmetry); 

otherwise, a single J-stack is implied. (For example, the differences 
in the number of stack(s) implied should be made among (A.")9(A.'), 
Aj^SAj", and {A 1

,«A 2').) The symmetry of JC -0 manifold (./-stack) is 
affected also only by the evenness or oddness of J: S for even j , 

(S )" for odd j . Because of the parity alternation feature of the 
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J-stacks, the symmetry of any rotational level can then be readily 
determined by the symmetry of the* stack thus derived. For example, 
the symmetry of the K -3 manifold originating from the 
A"®A "(0;0;j-3,3) zero-order intermolecular vibrational state should 
be (A."®A2"}«{<A1"«A2")") because J-JT is even; the symmetry of the 
J -stack is thus the second term <Aj"«A "K-Aj'GA * which is the 
symmetry of its lowest J (»X-3) and all other odd J'* in the 
J -stack; all even J'n can only be A."•A.". 

The above scheme provides an efficient and systematic method to 
figure out the symmetry of each rovibrational state without referring 
to any correlation diagram like Figures 3.7.5 (a)-(c). The n

3 n ( M ) 
symmetry species of the J-stacks, thus derived, for the lowest seven 
(J>*c)'« are shown in Figure 3.7.6. Since the transitions between two 
different K manifolds can generally be "decomposed" into few 
inter-J-stack transitions, the J-stack symmetry species, shown in 
Figure 3.7.6, are thus useful in determining the existence of P, Q, R 
branches involved in an inter-ff transition. 

Because a K manifold can consist of a J,-stack and » J -stack, a 1 u 

we have to specify which ./-stack of the K manifold is involved in the 
P, Q, R branches. To do this, symbol like P will be employed; the 
subscript and superscript position are used for the lower and upper K 

manifold, respectively; t v« subscript and superscript themselves (I or 
u) denote which ./-stack of the X uanifold is involved. Therefore, 
P represent a &/--1 branch connecting the J -stack of the lower K 

manifold to the J.-stack of the upper K manifold. Other symbols like 
Q., R , etc. can be understood similarly. 
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Since only the parity selection rule and AJ rule are required t 

determine the rotational fine structure for an allowed inter-K 
a 

transition, in deducing the general rule for the existence of certain 

P, Q, R branches we can ignore the parity independent part of the 

synnctry symbol, which is predetermined by the inter-Jf transition 

considered. The existence of Che P, Q, R branches as a function of 

the J-stack parities and AJT involved in an inter-JC transition is 

given in Table 3.7 6*1. It is noted that when this table is applied 

to an inter-* transition with the two K manifolds each originating 

from a S (vs;v.;j,/. -3n) state (n:positive integer), we should double 

the number of each type of branch shown on the tabIs if all the 

same-J-doublets split. 

A special feature indicated by Table 3.7.6-1 is that a unique Q 

branch is allowed without being "accompanied" by a P and R branch, as 

opposed to the familiar semi-rigid polyatomic vibrational bands, in 

which only the Q branch has ever been found to be missing. This is 

because the AJ-±1 selection rules are overridden by the parity 

requirement under D,. (M). Such anomalous unique Q branch transitions 
connect only the K -0 manifolds either between or within the (J,k >0) a c 
states, but not the (j,k-0) states (see Figure 3.7.6). It should be 

noted that for the <j,Je-3nX)) states such a Q branch band is likely 

to slightly split into two if the same-J-doublets in the J-stacks are 

slightly split. (These unique Q branches are surprisingly entire 

vibrational bands.) It is noted that if these unique Q branch bands 

occur in the case of Ak -0 and Av,:odd, they are not only 

rovibronically but also vibronically allowed. Of course, 
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Table 3.7.6-1 
The existence of the P, Q, R branches as a function of the 
J-stack parities and £JC involved in an inter-K transition. 

a a 
(Z: an arbitray J-stack synuetry) 

upper 
J-stack 
lower 
J-stack 

AJt even / odd even / odd 

P.Q.R 
type 

P,R / Q / P,R 

upper 
J-stack Z'»Z" 

(ZH«Z') 
lower 
J-stack Z' 

AJC even / odd 

Z' 
(Z") 

Z'®Z" 

even / odd 

P.Q.R P l ,Q u ,R l / P " ^ 1 , ^ 

type (P u.Q l.R u / P 1 ^ 1 ) 

W l ' Pu'VRu 
( Pu-Ql'R» f P 1 ' < W 

upper 
J-stack Z'©Z" Z"®Z' 

lower 
J-stack Z'©Z" 

bX. even / odd 

Z'®Z" 

even / odd 

P.Q.R P U . Q X . R U / P l . Q U . R X P \ Q

 U . R l / P U . Q ^ R u 

^ u ' TI u ' u ^u u u , x u ' u ' u '^u u 

type P ^ W / Pl

U.Ql

l.»1

tt ^ W / Pl' V V 
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"vlbronlcally allowed" implies the intensities of these bands must be 
strong. 

If such a unique Q branch band occurs within one (j,k X)) state, 
or, equivalently, between the associated v.-0 and 1 zero-order state, 
it can be assigned to a first approximation as a pure inversional 
transition (see Figure 3.7.6). However, auch pure internal 
inversional transitions, with JC -0 *• 0, within tha (J,fc -0) states are 
forbidden by symmetry, even if tha A,' and A." syanetry are also 
allowed. This suggests that classically tha NK- invaralon must ba 
"triggered" by an internal rotation about tha C, axis of tha subunit. 
This is reasonable because auch an internal rotation tends to increase 
the H-N-H bond angle by the associated centrifugal diatortion force, 
which makes the NH, sore planar and thus closer to the other inverted 
configuration; however, if the internal rotation is about an axia 
perpendicular to the C, axis, then the H-N-H will be decreased. (As 
an aside, it is reminded that not all the free internal rotor limit q 
branches correlate to such unique Q branch vibrational bands.) 

To estimate the complexity of some low lying intermolecular 
vibrational transitions, we first take the perturbed E'(0;1;1,1) *• 
E"(0;0;1,1) transition as an example, which was observed in microwave 
but hardly rotationally assigned [14,15). According to Table 3.7.6-1, 
the four JĈ  manifolds (Figure 3.7.6, Table 3.7.5) and thus six 
inter-Jt transitions involved in this case should result in totally 
nineteen branches, including six P, six R and seven Q branches. (The 
extra Q is due to the previously explained inversional transition.) 
In other words, the Q branch like cluster observed at about 20 GHz 
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could be either of the seven branches. (Of course, which one is a big 

question.) It is also remembered that, as can be generalized from the 

discussion in Section 3.6.A, the zero frequency should serve as a 

branch reflection point and thus a necessary pseudo-bandhead for the 

extremely low lying vibrational bands. (It is "pseudo" because the 

vibrational band still can have its real bandhead, which is caused by 

the noninertial forces.) Although this is not a general complication 

for the intemolecular vibrational transitions, the reflected spectral 

distribution definitely further complicates the current band patterns, 

according to the sample temperature. 

We now examine, as another example, the FIR A,'(0;0;1,0) «-

A«"(0;1;0,0) transition in the perturbed cases. (The microwave 

transition between the Jf —0 and 1 manifolds originating from the 

A '(0;0;1,0) state will not be considered.) Based on Figure 3.7.6 and 

Table 3.7.6-1, the K-0 *• 0 transition will have P and R branch; the 

JĈ -1 •• 0 transition will have all P l, Q u and R 1 branch. (If A ^ and 

A " symmetry species are also allowed, such as in the case of Ar-ND,, 

then the P, Q, R branch for this intermolecular vibrational transition 

will be doubled.) 

Of course, these examples represent the lowest and thus the 

simplest cases for the microwave and FIR transitions, respectively; 

according to Figure 3.7.6, the distribution density of the P, Q, R 

branches (themselves) will increase "exponentially" for higher FIR 

transitions. 

Since &X can be any feasible signed Integer, the minimum lower J 

(J" . ) of the P, Q, R branch and the P-R branch gap should be 
ml n w« 
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affected by the lower K (JC ") and AK value. These relations are 
given in Tables 3.7.6-2(a) and <b"), respectively, as a reference. 
(The P-R branch gap given is for the cases where the rotational 
structureis characterized dominantly by the rotational constant B and 
the lower and upper B are close in value.) However, we should not 
take the regularity of the spectroscopic rotational structure for 
granted; if the complex is close to the free internal rotor limit, 
each P, Q, R branch should be distorted into the regular "framework" 
of the tl (o, q, s, .... or n, p, r, t, ...) branches. This can be 
manifested, as an example, by the o-q-s to P-Q-R branch evolution 
relationship (Table 3.7.6-3) for the A2'(0;0;1,0) «- A2"(OjljO,0) 
intarmolecular vibrational transition. In this case, the o and s 
branch evolve into a P and R branch, respectively, with the 
rotational line spacings shrinking from 4£ (»2B|A2|) to 2fl; more 
dramatically, a single q branch diverges into three distinct branches, 
interestingly, belonging to two inter-/C transitions in the semi-rigid 
limit. Since the q branch divergence cannot be achieved all at once, 
in most of the perturbed situations both the K- 1 «- 0 and 0 *• 0 
transition bands must be asymmetrically distributed about its own band 
center. In other words, the regularities, in the equal spectral line 
spacing, of both Ai and AJ branch patterns can never be available 
simultaneously, even when no Interactions among different K manifolds 
are seriously involved. 

3.A Intermolecular-Vibrational Assignment of Observed Spectrum 
It will be shown that the observed band centered at 26.470633(17) 
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Table 3. 7.6-2(a) 
The minimum lower J V* 1 . ) of the mm p. Q, R branch as a 
function of the 6K 

a 
value and lower K (K " ) . 

J" . of nin 
P branch Q branch R branch 

M^>0 Jt «+AJC +1 V+"- V 
£JCs-0 ^"+1 V V 
txa<o V V 'a" 

Table 3.7.6-2(b) 
The P-R branch gap as a function of tha AJT value and lower 
K (K") when (1) the rotational structure is characterized 
dominantly by the rotational constant B and (2) the lower 
and upper 0 are close in value. 

P-R branch gap 

6K >0 2£(2JC "+AK +2) 

LKs-0 2fl(2JC "+2) 

AJCa<0 2B(2K -+1) 
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Table 3.7.6-3 
The o-q-s to P-Q-R branch evolution for the 
A '(0;0;1,0) «- A,"(0;1;0,0) interaolecular vibrational 
transition. 
free internal rotor liait seal-rigid liait 

o branch 

q branch (one peak) 

s branch 

P branch 
' Q u branch 
R branch 

, P branch 
R branch 

KM-l *• 0 

| V 0 * 
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cm , reported in this work, can correlate only to one of the 

following two zero-order transitions: (1) A,"(v-l;v.-l;0,0) «-

A "(O;v.-l;0,0), the fundamental dineric stretching band for the A, 

states with v.-l, (2) the Jt̂ -0 «- 0 subband of A2'(0;0;j-1,0) *• 

A2
M(0;v.-l;0,0), the lowest internal-rotation-inversion difference 

band (see Figure 3.6.1). It is noted in Table 3.7.S that the second 

transition does not correlate to the fundamental bending transition 

but to Its second harmonic in the semi-rigid limit. Since this 

measured K subband is the first FIR data on Ar-NH, and therefore no 

reliable semiempirical potential showing principal global features for 

the complex can have been synthesized to test the assignment, further 

determination between the two possibilities will be made only 

tentatively at the end of the section. 

Similar to the ortho and para H, molecule [36], it is expected 

that the A, and E states, with different nuclear spin statistical 

weights (see Section 3.6.3.1), transform into each other extremely 

slowly in collisional process, such as in the free Jet expansion. 

(The symmetry species used in the following are those of D-.(M). They 

might look like those of C, (H) when the superscripts, denoting 

different parities, are removed for abbreviation.) Therefore, it is 

meaningful to consider the overall energy level distribution ms a 

superposition of two independent distributions, viz., one for the A, 

states and the other for the E states. Each of the two distributions 

has its own "pseudo-ground" state. They are pseudo because none of 

the two ground states, viz., the A2"(0;1;0,0) and E"(0;0;1,1) state, 

has all intermolecular vibrational quantum numbers zero. 
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According to the 35 cm fundamental stretching frequency 

estimated roughly from the ground* state centrifugal distortion 

constant [13], we can reasonably assume for the zero-order picture 

that the states with the stretching quantum number v -1 are at least 

10 en higher than their counterpart states with v -0; column two and 

four (v -1) in Figure 3.6.1 should be shifted upward by at least 10 

cm with respect to column one and three (v -0). In other words, the 

first intermolacular-vibratlonally excited state in the g*ro~ord*r A, 

state distribution and the second excited state in the zero-order E 

state distribution are at least 10 cm higher than their individual 

pseudo-ground state. Since the typical effective rotational 

temperature of the free jet is about S K (kT-100 GHz-3 cm ), only 

three intermolecular vibrational states should be significantly 

populated: viz., the two pseudo-ground states and the E'(0;1;1,1) 

state, which is only about 20 GHz (-0.2 kT) above and thus should be 

approximately equally populated as the E pseudo-ground state. In the 

zero-order picture, the population of any other higher intermolecular 

vibrational state should thus be less than few percent of those of the 

three states. 

The population among the intermolecular vibrational K component 

states in the perturbed cases will be examined as follows: According 

to the (j,k )-(.vb,1.) quantum number correlation under D,.(M) (Table 

3.7.5), the more the intermolecular anisotropy is introduced, the more 

the energy level splitting features are dominated by the semi-rigid 

limit high frequency bending vibrations, as indicated by the 

correlated v. quantum numbers. Importantly, it is noted that the 
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accompanied quenching of the inversional splittings (only 24 GHz [35]) 

is on a much smaller energy scale* and should be "swamped" easily by 

the above principal splitting features. As a result, to a first 

approximation, the Jt manifolds basically tend to evolve upward with 

respect to the ground lntemolecular vibrational state. This is 

apparent for the K manifolds correlating to a nonzero v. because of 

the necessity of approaching the corresponding high frequency 

vibrational states of the semi-rigid limit. On the other hand, same 

trend for the K manifolds correlating to v.-O can be found readily if 

the semi-rigid limit K manifolds distribution, specified by Equation 

3.7.2, is considered; it is noted that the large rotational constant A 

(-6.3-9.9 cm~ , see Section 3.7.1) of the complex will dominantly 

characterize the relative distribution among the K manifolds in this 

limit. Therefore, if only states of the same stretching quantum 

number v are considered and no perturbation due to states of other v s s 

is involved, all the excited lntermolecular vibrational K component 

states, possibly except the four correlating to the E"(0;0;1,1) and 

E*(0;1;1,1) state, should have less population than in the zero-order 

limit. 

However, the barely rotationally assigned and vibrationally 

unassigned irregular Q branch observed at -19-20 GHz and other 

microwave transitions scattered between 13-21 GHz [14,15] should 

belong to the six possible inter-IC transitions among the four K 

component states originating from the E"(0;0;1,1) and E'(0;1;1,1) 

state. This "finalist" assignment is based on (1) the quantum number 

correlation (Table 3.7.5), (2) the predicted distribution complexity 
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among these E states (Section 3.7.6), (3) the electric dipole 
selection rules (Section 3.6.3.1)*, and (4) the typical beam 
temperature. This spectroscopic evidence confirms that at least the 
lower three of the four K component states should be close together 
within few tens GHz and thus significantly populated in the actual 
perturbed system. This should not be considered as a trivial 
assignment because these four JC component states do correlate to 
three different semi-rigid bending quantum numbers, v.-0, 1, and 2. 

When perturbations between states of different v 's (0 and 1 for 
the current case) are considered, certain states might "accidentally" 
have a higher population than in tha zero-order state. However, that 
is not a general trend for most of the K component states. 
Consequently, the most possible lower intermolecular vibrational 
component state of the observed band should still be those that 
correlate to the lowest three zero-order intermolecular vibrational 
states. 

Since the 26.470633(17) cm" band is composed of very regular P 
and R branch transitions, as indicated by the small number of 
rotational constants required to obtain a 1 MHz standard deviation in 
the fit, it is impossible that this band could have one of the four 
irregular K manifolds, belonging to the two E states, as its lower 
state. Furthermore, the rotational constants of the lower state of 
this band match fairly well with those of a regular ground state 
observed in microwave [13]. In other words, the lower state of this 
band can be conclusively assigned to be the lowest K -0 component 
state, the only K manifold originating from the zero-order 



244 
A2"(0;1;0,0) state. 

According to the optical selection rules A, «-• A_ and A, *-x-» E 

(see Section 3.6.3.1), we can then focus the discussion only on the A. 

state. The next higher A. state in the actual perturbed system tan 

correlate only either to A2'(0;0;J-1,0) or to A«"(v -l;v,-l;0,0) in 

the zero-order Unit, depending on the fundamental stretching 

frequency. The upper state of the observed band is thus most likely 

to correlate to one of these two zero-order states. This is because 

(1) as previously explained, the K-0 and 1 nanifold of the 

A2'(0;0;1,0) state should basically evolve upward (>19 en ) (unless 

there is "accidental" perturbation due to other states, for example, 

of the sane A, syanetry but with different v ), and (2) the energy of 

the A "(1;1;0,0) state is sentiall_ contributed by the dineric 

stretching notion, whose frequency is estimated to be higher than 10 

en For sinilar reasons, all other excited A- internolecular 

vibrational states in perturbed cases seen to be too high for the 

observed 26.5 en band center. In other words, the observed band 

could be correlated to either of the following three transitions: 

for A2'<0:0;1,0) - A2"(0;1;0,0): 

K -0 - 0, 

I - 0; 

for A2-(1;1;0,0) «-'A2"(0;l;0,0): 

Jf -0 - 0. 
a 

All these transitions have P and R branches; in addition, the K -1 *• 0 
a 

transition also exhibits a Q branch (see Tables 3.7.5, 3.7.6-1 and 
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Figure 3.7.6). Although both the K -0 *• 0 and 1 <- 0 transitions have 
R branches starting with R(0), there is a difference between their P 
branches; for K -0 «- 0, it begins with P(l), whereas for JC —1 •• 0, it 
starts with P(2). Because of the confiraed existence of P(l) in the 
26.470633(17) cm band (Figure 3.3), we can eliminate the possibility 
of the JC —1 «- 0 transition. Thus we are left two possible assignments 
which are both AC-0 *• 0 and different only in the upper X component 
state. 

As previously explained, the upper state assignment will be made 
only tentatively between the two possibilities. Three apparently 
supportive evidences for the A2"(1;1;0,0) state as the upper state 
will be presented below. 

For this tentative assignment A,"(l;l;J-0,0) *• A 2"(C;l;j-0,0), 
neither of the two intermolecular vibrational states involved should 
have complication due to the rotational coupling with j; each 
rotational state is nondegenerate with J-2. In terms of the spectral 
line spacings, even the corresponding p and r branch structure In the 
free internal rotor limit would be similar to the correlated P and R 
branch structure in the semi-rigid limit. This band structure should 
also exhibit distortion relatively ins*nsittv» to the potential 
variation because there are no accidentally degenerate zero-order 
rovibrational states as in the A,'(0;0;j-l,0) state (see Section 
3.6.2). This is consistent with the high degree of regularity in the 
observed band pattern. 

Another supporting evidence for the tentative intermolecular 
vibrational assignment is obtained from the calculated change in the 
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effective distance between Ar and NH, in the lower and upper state. 

If a pseudo-diatomic model is assumed, the effective distance can be 

calculated directly from the (B+<7)/2 rotational constant for each 

state. [13] The results are: 

3.8358A fez lower state (A2"(0;1;0,0)), 

3.8723A for upper state. 

As indicated, there is about a one percent increase in distance for 

the observed band. Of course, such an increase is only a necessary 

condition for the fundamental stretching transition. However, we do 

not rule out the possibility that in other nonstretching transitions 

the upper state could also exhibit a longer affective distance than 

the lower state, especially when an accurate potential surface is not 

available for the system. In other words, this is relatively weak 

evidence for the tentative assignment. 

However, it is noted that these two effective distances are 

essentially consistent with the free internal rotor model; both values 

are longer than any combination of the atomic vdW radii taken from 

standard inorganic textbooks (2] if the only structural requirement is 

that two H's of NH, are at equal distance and closer than the third H 

with respect to Ar. 

Additional supporting evidence for this assignment is provided by 

the estimated polar angle index, derived from the measured *qQ of 

the upper state. If the perturbation of the electronic environment of 

the N atom due to the Ar atom is small and can be neglected, eqQ can 

be expressed in the usual way [13] 
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eqQ*a" e l Q N H 3

< p

2

( - c o s e ) > 

- ( -4 .09 MHz)<(3cos 2 #-l) /2>. 

The polar angle index can then be defined as 

« 2- cos*"1t<cos2»>1/2), 

where the subscript 2 is a reminder that it is related to <P,(cos#)>. 

For reasonably small banding amplitude, #, approximates <*>. However, 

for large amplitude motion, #« will lose this physical meaning as <9> 

and become a characteristic index for different internal rotational 

states in the free internal rotor limit. Since the Ar-NH, system is 

close to this limit, the internal rotational wave function can be 

approximated by the standard symmetric top rotational function 

\j,a,k>, with J-j, m-±A, and k~±k , where the nonnegative quantum 

number A represents K of the complex. Simply speaking, the 

rotational wave function of the NH. symmetric top is described in a 

coordinate system fixed with the complex pseudo-diatomic frame. With 

this wave function, the *„ index can then be calculated. The 

calculated results for some low lying internal rotational states is 

given in Table 3.8-1. 

As expected, *„ is dependent only on j and A, but not on k . 

Consequently, the same results can be applied to the free internal 

rotor limit atom-diatom systems, which have zero equivalent * . It is 

noted that these calculated f, indices are well separated and thus 

could be used for internal rotational state identification to some 

extent. The *« indices of the ground states, low lying bending (or 



Table 3.8-1 
Theoretical free rotor limit of the S„ indices for 
low lying internal rotational states of an 
atom-symmetric-top system. 

?.4S 

92 internal rotational state J,±A,±kc> 
54.7° S <v ;v ;0,0), a K-0 state 

0 S 1 ft 
0,0,0> 

39.2° K-0 component of S (v ;v.;1.0) 
•t O S J. 

1,0,0> 
39.2° K -0 component of S (v ;v.;l,l) a o s i 1,0,±1> 
63.4° K -1 component of S (v ;v.;1,0) 1,±1,0> 
63.4° K -1 component of S (v ;v,;1,1) 

• O S X 
1,±1,±1> 
1,±1.:F1> 
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internal rotational) states of soae binary vdU complexes, and the 
upper state of the intermolecular stretching band of this work are 
listed in Table 3.8-2. We find that even the relatively more hindered 
Ar-HCl, the worst exaaple in the table, still exhibits values of #„ 
that are quite different for the lowest K -0 and 1 bending states; 
importantly, these values are not too different from the their 
theoretical values. The deviation of the f, f o r Ne-HCl, * nearly free 
internal rotor system, is within 3.5°. Therefore, the #, values, 
58.3° and 52°, obtained for the two states involved in the Ar-NH 3 

stretching band support the S(v <;v i;0,0) «- S(v jVjjO.O) assignment, 
which is in agreement with the tentative assignment. 

Since this is the first tiae that the #, index is used to 
identify the Jf value for a highly near prolate coaplex in the nearly 
free internal rotor limit, the generality of this method still needs 
to be further examined. Hopefully, the answer can be improved by one 
more step when a reliable potential surface for Ar-NH, is available. 

Although the above evidences might seem more supportive to the 
Kg-0 manifold of the A "(H;1;0,0) state than of the A *(0;0;l,0) state 
as the uppr.' state, we cannot rule out the possibility that these 
evidences ar«> just accidentally more in favor of this tentative 
assignment.. It should be emphasized again that we need to measure 
more FIR intermolecular vibrational bands to initiate the iteration 
between the spectroscopic investigation and the semiempirical 
synthesis of the potential, and such an iteration is the only way to 
rigorously test the intermolecular vibrational assignments of the 
observed bands. 
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Table 3.8-2 
The measured 9„ indices of the ground states and low 
lying bending (or internal rotational) states of some 
diners. The values in parentheses are the free rotor 
limits of f. indices taken from Table 3.8-1. 

Ar-HCl Ne-HCl Ar-NH3 

ground (42j ground [42] 
4 2 o a (54.7°) 52° (54.7°) 
lowest £ (AT -0) band 
[*0] * 
41° (39.2°) 

lowest II (K -1) bend 
[41] * 
58° (63.4°) 

The discrepancy is not surprising, because the ground state 
is deep in the potential well. 
It is in the ground internal rotational state, if in the free 
internal rotor limit. 

ground [13] 
58° (54.7°) 
upper state of 
this work . 
(ground state) 
52° (54.7°) 
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Chapter 4 
Concluding Remarks 

Tha first high resolution vibration-rotation-tunneling 
transitions of Ar-NH, and (NH,), w r e identified in tha dense spectra 
of a NH.-in-Ar mix In a continuous planer supersonic jet measured by 
the Berkeley tunable far infrarad (FIR) laser spectrometer. Among the 
seven rotttiontlly assigned banda, the one centered at 26.470633(17) 
cm was identified in this work to be of Ar-NH,. [1] (Tha other six 
bands belong to (NH,),. Their analyses and study will be preaented in 
H. Havenith's Ph.D. dissertation [2] and Reference 3.) However, 
approximately 2S0 spectral lines over the -7 cm wide spectrum still 
remain rotationally unassigned; they could belong either to these two 
or to other higher complexes. The promising probing capability of 
this state-of-the-art technique for small van der Waals complexes was 
once again confirmed. 

Since so far no semlempirical synthesis of the potential surface 
for Ar-NH, has ever been proposed, it is natural to start with a group 
theoretical study. In order to facilitate the intermolecular 
vibrational assignment, a basic dynamics study aided by a rigorous 
permutation-inversion group theoretical treatment was made on the 
rovibrationsl levels. According to this study, the zero-order 
picture, viz., the free internal inverting rotor limit, of the complex 
was carefully defined. The rovibrational quantum number correlation 
(see Section 3.7.5) between this and the classical semi-rigid limit 
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was then established for this highly near prolate binary complex. 
This correlation not only providers a basic (nonnumerical) physical 
picture of the evolution of its interaolecular vibrational component 
states (K manifolds) between the two limits, but also predicts 
qualitatively the high complexity in its spectrum. 

According to the spectral range probed so far and the results of 
the group-thaory-aidad dynamics study, an intermolecular vibrational 
assignment was made; the observed band centered at 26.470633(17) cm 
can correlate only to one of the following two zero-order transitions 
(see Figure 3.6.1): (1) the fundamental dimeric stretching band for 
tlr.i A, states with the NH, inversional quantum number v - 1 , viz., 
A 2"(v s-l;v i-l;0,0) •- A 2"(0;v 1-l;0,0), (2) the Jf̂ -0 «- 0 subband of the 
lowest Internal-rotation-inversion difference band, A,'(0;0;j-1,0) «-
A "(0;v -1;0,0). Although based on several factors, particularly the 
measured nuclear quadrupole coupling constant, a tentative assignment 
was made in favor of the first possibility, a definitive determination 
is currently impossible for the following reasons. 

Because the complex is closer to the nearly free internal rotor 
limit, the group-theory-aided hi. "i >arrier limit treatment, introduced 
in Hougen's classic work on (HVO), [<*), is definitely Inappropriate. 
Therefore, to initiate the iteration between the spectroscopic 
investigation and the semiempirical synthesis of the potential is the 
only resort. Since this intermolecular vibrational band is the only 
assigned FIR data on Ar-NH., no reliable semiempirical potential for 
the complex has been synthesized. It is essential to obtain a minimum 
amount of spectroscopic data on the potential along each of the four 
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intennolecular rovibrational coordinates, viz., one for the dimeric 
stretch, one for the NH, inversion, and two for the internal NH, 
rotation. In other words, more FIR spectroscopic study will be 
required before a trial potential showing principal global features 

can be proposed and tested against further FIR spectroscopic data; 
only further verification of the spectroscopic predictions from such a 
potential modal can determine whether the tentative assignment can be 
justified. 

Currently the most interesting and most badly needed transitions 
are the following three FIR K subbands (see Figure 3.6.1): JC -0 *• 0, 
K -1 »-0of A '(v -0;v,-0;J-l,fc -0) «- A "(0;1;0,0), and Jt-0 «- 0 of 
a i M 1 c i a 

A-"(1;1;0,0) *- A2"(0;1;0,0). The former two subbands reflect the 
potential basically along the internal rotation coordinates, whereas 
the last reflects that along the dimeric stretching coordinate. In 
terms of state population In a -5 K jet expansion, these transitions 
are the most accessible ones; in terms of the intermolecular 
vibrational assignment, they are also the simplest because of the 
small numbers of JC subbands originating from their zero-order 
intermolecular vibrational states. It is expected for Ar-NH, that an 
internal rotation transition-moment should be larger than a stretching 
transition-moment if both motions are not strongly mixed; the relative 
intensities between the two Jf-0 *- 0 subbands might constitute a 
spectroscopic evidence for their intermolecular vibrational 
assignments and thus provide a clue for the first potential synthesis. 

On the other hand, further investigation of the six JF subbands 
of the E^OjVj-l;!,!) «- E"(0;v.-0;l,l) transition In the few tenths 
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cm to few cm region should in principle be crucial to the 

understanding of the potential along the NH, inversional coordinate. 

However, conventional microwave spectroscopy, probing approximately 1 

cm and below, can hardly cover the whole structure of an 

intermolecular vibrational band, which is typically a few cm wide at 

the low jet temperatures. This is true even when the bend center is 

located below 1 cm and the psaudo-bandhaad at zero frequency is 

"forced" to occur. In addition, according to the derived quantum 

number correlation, we do expect at least some of theae K subbands to 

have a band center a little higher than 1 cm However, the 

spectroscopic technique in the 1-10 cm region is still Immature and 

under development. As a result, the tunable FIR apectroscopy is still 

indispensable to investigate these two E states, which have to be 

involved as the lower states of the FIR transitions. However, the 

complexity in their rotational level distributions, as has been 

theoretically predicted and partially revealed in the microwave study, 

could pose a problem for the spectroscopic rotational J assignment. 

The Stark tuning at low field and microwave-FIR double resonance are 

suggested to diagnose the J values. 

In the future FIR investigation of Ar-NH-, the definition of the 

intermolecular vibrational band pattern needs to be broadened. 

Interestingly, by using the quantum number correlation derived in this 

work and the optical selection rules under the molecular symmetry 

group and the three dimensional pure rotational group, the first 

vibronicslly (not rovibronically) allowed unique <? branch vibrational 

band [S] was theoretically predicted to exist for such a binary 



complex with an inverting subunit. This anomalous spectroscopic 
phenomenon, hopefully experimentally confirmed, should revise the more 
than half-century old conventional concept about the vibronically 
allowed band pattern. There could have been spectroscopic evidences 
from our lab for such a special phenomenon. The rotational J 

assignments for these "candidates" are still in progresa. 

In view of the fact that a symmetric top can ba correlated to 
either an asymmetric top (distorted symmetric top) or a linear system 
(with symmetric top K quantum number equal to zero), Ar-NH,, an 
atom-symmetric-Cop complex, ahould be considered as the next 
prototypical van der Waals complex aftar Ar-HCl. In addition, since 
structurally Ar-NH, behaves like half of a (NH,), complex, which has 
recently been a controversial topic, the atudy of Ar-NH, will 
definitely teach us certain aspects of the (NH,), dynamics. 
Therefore, further study of the tremendously interesting Ar-NH, 
complex is highly encouraged. 
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Appendix Table 1 
Character table of the D_. (M) molecular symmetry group. 

D 3 h(M) E (123) (23) E* (123)* (23)* 

number 1 2 3 1 2 3 
of class 
element(s) 
A ' • 
Al ' 

1 1 1 1 1 
A ' • Aj . 1 -1 1 1 -1 
E*: 2 -1 0 2 -1 0 
A " • Al • 1 1 -1 -1 -1 
A " • A 2 . 1 -1 -1 -1 1 
E": 2 -1 0 -2 1 0 
"Adapted from P.R. Bunker, 'Molecular Symmetry and Spectroscopy' 
(Academic Press, New York, San Francisco, London, 1979). 

Appendix Table 2 
Multiplication table between the synaetry species of D_.(M) group. 

V V E' A " A l A " 
A 2 

E" 
A * Al V V E' A " A l A " 

A 2 
E" 

A ' 
A2 

A ' 
A 2 V E' A " 

A 2 
A " A l E" 

E' E* E' Al ®A2 
•tuE' E" E" A 1"ffiA 2"©E" 

A " Al A " Al V E" Al' V E' 
A " A 2 A " 

A2 V E" V V E' 
E" E" E" Aj-SJAg »®E" E' E' Aj'fflAj'ffiE' 



Appendix Table 3 
Character table of the C, (M) molecular symmetry group. 

C 3 v(M) E (123) (23)* 

number of 
element(s) 
In the class 

1 2 3 

*1! 1 1 1 

V 1 1 -1 
E: 2 -1 0 
Adapted from P.R. Bunker, 'Molecular Symmetry and Spectroscopy' 
(Academic Press, New York, San Francisco, London, 1979). 

Appendix Table 4 
The C, (M)-D,. (M) symmetry correlation table.* 

C 3 v(M) D 3 h(M) 

A 1(12) b A1'(0) © A2"(12) 

A2(12) A2'(12) • A1"(0) 

E(12) E'(6) S E"(6) 

From P.R. Bunker, 'Molecular Symmetry and Spectroscopy' 
(Academic Press, New York, San Francisco, London, 1979). 
The number in parentheses is the nuclear spin 
statistics for Ar-NH,. 
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Appendix Table S 
Observed spectral lines which have not rotationally 
assigned. 

Frequency* (GHz) Relative . FIR 
Intensity Laser # 

520.488 15 4 
531.462 500 4 
531.666 35 4 
562.418 26 4 
573.070 26 4 
573.163 70 4 
5/3,281 10 4 
573.287 10 
593.546 160 
595.952 17 
605.765 20 
616.996 35 
626.0793 19 
626.1885 7 
626.1913 43 
626.4381 44 
626.6093 17 
627.1473 190 
627.4393 22 
627.9589 15 
628.5501 16 
628.8633 36 
629.0737 10 
629.0765 156 
629.3393 20 
629.5781 290 
629.6561 63 
629.7993 47 
630.3269 52 
630.8049 10 
630.8065 290 
631.5293 144 
631.542S 61 
631.6277 33 
631.7265 64 
632.0133 33 
632.3265 15 
632.7253 295 
633.8457 19 
634.7985 19 
635.4661 210 
635.6993 10 
635.7421 12 
636.0553 18 



264 

Appendix Table 5 (continued) 

Frequency (GHz) Relative * FIR 
Intensity Laser # 

636.3021 15 
636.8277 25 
636.8313 7 
637.0713 45 
637.1221 10 
637.2725 53 
637.2761 28 
637.4621 140 
637.5573 43 
637.6321 90 
637.7773 28 
637.9053 SO 
637.9953 8 
638.0673 84 
638.3413 60 
638.4513 26 
638.5753 78 
638.6425 41 
638.7033 335 
638.9145 40 
641.4093 16 
642.5205 13 
643.1369 24 
643.2493 13 
643.4761 23 
643.6125 17 
644.599 210 
644.651 30 
652.0717 60 
653.2469 156 
653.4633 .< 370 
654.7707 21 
654.8253 16 
655.5969 24 
655.644 20 
656.0979 375 
656.3439 570 
656.3751 24 
656.9277 20 
657.2393 19 
657.6353 38 
658.3173 29 
658.6399 390 
658.6463 36 
658.6887 38 
659.1113 18 



Appendix Table S (continued) 

Frequency (GHz) Relative * FIR 
Intensity Laser # 

659.3637 96 
659.5461 45 
659.6633 71 
660.0993 84 
660.6253 104 
660.6539 53 
660.7023 138 
661.2793 70 
661.3117 76 
661.5799 26 
661.8883 36 
661.9661 40 
662.1023 295 
662.7037 70 
663.6177 38 
663.1233 48 
664.2093 19 
664.2513 25 
664.3003 21 
664.9023 425 
665.8333 94 
667.1913 39 
667.8943 40 
668.1913 36 
668.7758 50 
669.3213 47 
670.5823 464 
672.5513 61 
672.7923 153 
673.3053 100 
673.3078 564 
773.5073 28 
674.6453 93 
677.5263 60 
678.0088 220 
678.9157 250 
678.9266 114 
680.2733 24 
680.8640 17 
681.5693 50 
681.5733 285 
681.7573 53 
683.7043 36 
684.1283 70 
686.1348 34 
687.1158 120 
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Frequency (GHz) Relative • FIR 
Intensity User # 

687.1233 24 
687.7344 93 
689.3083 16 
689.7113 34 
690.0343 41 
690.1053 133 
694.023 70 2 
695.1907 70 2 
695.6543 20 2 
697.2167 36 2 
697.3703 74 1 
697.7307 116 2 
697.9467 16 2 
698.2767 16 2 
698.S719 60 2 
699.8195 33 2 
702.0443 40 1 
702.1327 17 2 
702.1727 9 2 
702.2379 38 2 
702.3567 14 2 
703.0167 10 2 
703.1047 13 2 
703.1307 18 2 
703.1533 154 1 
703.4047 15 2 
704.1939 26 2 
704.3075 9 2 
704.7773 24 1 
705.102 20 2 
705.3688 66 1 
705.3903 134 1 
705.6443 166 1 
706.5287 14 2 
706.5293 100 1 
706.9163 68 1 
707.4636 105 1 
709.0207 54 1 
710.1567 16 2 
710.6513 50 1 
711.0123 126 1 
713.4583 96 1 
715.9513 120 1 
716.3793 61 1 
716.9843 40 1 
717.6163 26 1 



Appendix Table 5 (continued) 

Frequency (GHz) Relative * FIR 
Intensity Laser # 

718.7773 116 1 
719.3371 20 2 
720.7847 18 2 
721.1826 17 2 
725.4953 95 
726.482 30 
727.4487 13 
728.3559 22 
728.8333 50 
730.092 40 
730.9193 12 
731.4393 14 
735.1747 37 
736.414 30 
737.9697 22 2 
738.8187 18 2 
738.8207 IS 2 
739.1607 54 2 
739.5567 13 2 
739.6687 33 2 
743.1157 16 2 
743.5637 13 2 
744.9997 32 2 
746.7677 32 2 
747.0197 33 2 
747.1337 26 2 
748.0913 7 
749.2229 20 
749.2289 15 
749.8447 19 
750.4433 9 
755.9567 15 
764.3817 46 2 
765.2587 36 2 
766.6687 100 2 
768.8017 36 2 
769.7097 15 2 
774.669 50 3 
774.8261 9 2 
774.8279 16 2 
776.8806 35 2 
776.9967 420 2 
778.4607 88 2 
779.3507 68 2 
779.5647 16 2 
779.6587 8 2 
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Appendix Table 5 (continued) 

Frequency (GHz) Relative« FIR 
Intensity Laser # 

779.7827 10 2 
779,8567 9 2 
780.4117 16 2 
787.4307 210 2 
788.1447 46 2 
788.7527 30 2 
793.7407 14 2 
796.3867 30 2 
797.9567 112 2 
803.1847 12 2 
809.204 20 2 
809.227 20 2 
810.177 45 3 
816.3667 17 2 
816.5607 15 2 
817.8807 10 £ 
819.0207 9 2 
819.2087 20 2 
820.7447 19 2 
823.8031 15 2 
825.4075 13 2 
825.5567 48 2 
827.0767 14 2 
827.3567 10 2 
828.7747 20 2 
829.8895 32 2 
844.608 30 3 
The frequencies shown were obtained in the search mode 
of the experiment, and have not been measured to their 
best accuracy (<1 MHz) available. Although most 
frequencies listed have four digits after the decimal 
point, their typical accuracy is estimated to be ±1 
MHz. 
The reference for the relative Intensity is 
arbitrarily chosen. It is remembered that the 
uncertainty ir the intensity is considerably large. 
The laser numbers, 1-4, represent the following FIR 
laser lines: 

1: 692.9514 GHz, HCOOH 
2: 761.6083 GHz, HCOOH 
3: 787.7555 GHz, DC00D 
4: 584.3882 GHz, HCOOH 


