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Tunable Far Infrared Laser Spectrosccpy
of van der Waals Bonds: Ar-NH3

Dz-llung Gwo

ABSTRA. 7

Hyperfine resolved vibration-rotation-tunneling spectra of Ar-NH3
and (NH3)2. generated in a planar supersonic jet, have been measured
with the Berkeley tunable far infrared laser spectrometer. Among th.
seven rotationally assignad bands, one baud belongs to Ar-NHa. and the
other six belong to (NH3)2.

To facilitate the intermolecular vibrational assignment for
Ar-NHa. a dynamics study aided by a permutation-inversion group
theoretical treatment is performed on the rovibrational levels. The
rovibrational quantum numbsr correlation betwaen the free internal
rotor limit and the semi-rigid limit is established to provide a basic
physical picture of the evolution of intermolecular vibrational
component states (K. manifelds). An anomalous vibronically (not just
rovibronically) allowsd unique Q branch vibrational band structure is
predicted to exist for a near prolate binary complex containing an
inverting subunit.

According to the model developed in this work, the observed band
of Ar-NH3 centered at 26.470633(17) Clul can corrslate only to either
(1) the fundamental dimeric stratching band for the A2 states with the

NH3 inversional quantum number v ,=1, or (2) the K.-O « 0 subband of

i
the lowest internal-rotation-inversion difference band. Although the



estimated nuclear quadrupcle coupling constant favors a tentative
assignment in terms of the first possibility, a definitive assignment
will require more far infrared data and a dynamical model

incorporating a potential surfacs,
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Chapter 1

A Review of the Study of Small van der Waals Complexes

The interactions involved in chemistry may be roughly classified
into covalent and noncovalent (ionic and intermolecular) ones. The
borderline between them cannot be clsarly defined., The covalent
interaction results in the formation and dissociation of molecules.
On the other hand, the noncovalent interactions cause the assoclations
and digsociations between moleculss. (Hers, “"molecules" in a general
sense also include atomic, polyatomic ions and closed-shell atoms.)

Various names have been given to intermolecular interactions,
viz., weak, physical (in contrast to "strong" and "chemical® used to
describe covalent interactions) and vap der Waals (vdW). However,
because "weak" interaction is confusing with that involved in nuclear
B decay, and "physical® interaction implies something too general and
thus misleading, we, following the suggestion by Hobza and Zahradnik
[1], prefer "vdW interactions” as the proper name for the
intermolecular interaction. The molecular clusters held by vdW
interactions will therefore be called "vdW complexes",

From this connotation, vdW interactions are then involved in
almost all chemical and physical phenomena in which more than one
purely covalent system are implicated. Systems ranging from molecular
dimers to condensed phases, and processes from molecular inelastic
collision energy transfer, molecular photofragmentation, and

solvation, to phase transitions and interphase interactions are all



related to vdW interactions. The ubiquity of the intermolecular vdV
interactions makes the study of them fundamentally important. Due to
their simplicity, the study of small vdW complexes such as dimers and
trimers, i.e. the smallest possible pieces of condensed phases,
naturally becomes a convenient starting point for the investigation of
vdW interactions.

In terms of electronic configuration of the constituent
molecules, small vdW complexes include vdW lons, vdW radlcals, and vdw
molecules. 1In terms of binding energy, vdW complexes range from
scrong lonic vdW complexes such as H20-Na+ [2+4) to weakly bound
molecules such as He2 {5)]. In other words, their binding energy can
be close to that of a typical covalent bond (40-200 kcal/mole) [6], or
as low as a tenth of a kcal/mole. Among the various possible vdw
molecules, the hydrogen-bonded (H-bonded) vdW molecules are a special
class with binding energies of a few kcal/mole, for example, about 5
kcal/mole for (H2°>2 {7,8). The binding energies of the “true" vdv
molecules are usually 1 kcal/mole or less [5].

Due to their generally smaller stabilities and consequently
shallower binding potential surfaces, vdW complexes have larger
amplitude and more anharmonic intermolecular vibrations and tunneling
motions. For example, the HCl diatomic subunit of the linear Ar-HCl
complex is estimated to exhibit an approximately 40° vibrational
amplitude in the first intermoclecular vibrational (Z bend) state of
Ar-HCl [9-11]. And the two HF subunits in the slightly L-shaped
H-bonded (HF)2 complex exhibit donor-acceptor role interchange

tunneling motion [12].



Under the Born-Oppenheimer approximation that the electrons take
no time adjusting their motions to follow the nuclear motions, the
potential energy of a molecular system is a function only of the
nuclear configuration. This implies that the nuclei can "sense" and
move on a potential energy surface of well defined geometry, which
contains all the structural and dynamical information of the system.
Therefore, the study of vdW interactions is equivalent to the study of
the geometries of the intermolecular potential energy surfaces
(abbreviated as "potential surfaces" in the following), The foci of
the study have cpus been experimentally measure, theoretically account
for, and predict such geometries.

The theoretical study has two mainstreams, viz., the perturbation
theories, and ab initio calculations {1]. The former provides
insights to the various physical contributions to the vdW interaction.
The latter serves as theoretical methods to directly predict the
geometries of the potential surfaces. On the other hand, the
experimental mainstream [13,14] has recently been dominated by
spectroscopy thanks to its capability of probing the intermolecular
nuclear motions which are direct manifestations of the potential
surfaces.

In spite of having a solid quantum mechanical foundation, the
state-of-the-art theoretical studies have serious difficulties in
accurately predicting the potential surface for vdW dimer system with
more than four electrons [15,16). On the contrary, experimental
measurements, spectroscopy in particular, become more and more

powerful tools to probe the potential surfaces. A famous example is



the semiempirical determination of the potential surface for Ar-HCl by
inverting only spectroscopic datd [17]. Hopefully, the semiempirical
potential surfaces can be accumulated enough someday to resuscitate
the theoretical studies.

Several excellent review articles on theoretical and experimental
approaches to vdW interactions have been published recently
[1,13,14,18-22]. 1In the following two sections presented is a brief
summary of only the basic ideas involved in pure theories (first
principles) (Section 1.1), and semiempirical studies (Section 1.2) in

the investigation of vdW complexes.

1.1 Theoretical Approaches

It has been well known that the four major contributions to vdWw
interactions can be classified as slectrostatic, induction,
dispersion, and exchange repulsion energies [13,22]. The first three
of these are long range attractive interactions, while the exchange
repulsion dominates at short range. The potential surfaces result
from the combinations of these long and short range interactions.

The long range interactions are, according to the theory of
electrostatics, proportional to sums of certain powers of 1/R, where R
is the inter-subunit distance [23]). Among them, the electrostatic and
induction interactions [24] have classical analogues, whereas the
dispersion interaction is purely quantum mechanical in nature. The
dispersion energy [25] is due to the intermolecular electron
correlation effects arising from the interaction between the

fluctuating instantaneous multipole moments. The gquantum mechanical



exchange repulsion results from the charge overlap and the Pauli
exclusion effects between the electron clouds of interacting
molecules, and drops exponentially with R.

This partitioning of vdW interaction into the above four
individual contributions originates from the exchange perturbation
theory (Section 1.1.1.2) treatment. The four parts are individually
well defined only at long range, where the mixed interaction terms
generated by the perturbation treatment are negligibly small. the In
other words, the partitioning i{s arbitrary to some extent,

All the aforementioned fundamental theoretical understandings of
the vdW interactions were laid down in the first few decades of the
century [22]. Briefly reviewed will be only the fundamental ideas and
basic problems of the current theorstical efforts which mainly include
perturbation theories (Section 1.1.1) and supermolecular ab initio
calculations (Section 1.1.2). Being still in the stage of
"mathematical games" and thus of little practical use, more
sophisticated theoretical treatments extended from these fundamental
ideas will not be discussed. Also reviewed are the fundamental ideas
of group theoretical studies (Section 1.1.3), which have been
mathematically the most straightforward and, in terms of physical
insights, most important theoretical treatments so far. This is true

particularly for H-bonded systems.

1.1.1 Perturbation Theories
1.1.1.1 Polarization Perturbation

In the standard perturbation treatment of a vdW dimer, the sum of



the two subunit Hamiltonians constitutes the zero-order Hamiltonian.
All the intermolecular interaction operators are then collectively
treated as the perturbation. Consequently, the simplest zero-order
wave functions are the direct products of the orthonormal wave
functions of the two individual Hamiltonlans. Since each electron is
associated with one or the other subunit in the wave function
expression (and therefore is “polarized"), this method is also called
"the polarization approximation"”,

It is noted that these wave functions are not antisymmetrized
with respect to inter-subunit exchange of electrons as required by the
Pauli exclusion principie. Thus, as an intrinsic problem, it fails to
generate the short range exchange repulsion energies [26-28].

However, this method is successful in providing interaction energies
in the long range region, where the non-antisymmetric zero-order wave
function should be & good approximation.

The polarization approximation is one of the fundamental
formalisms used to calculate individual contributions to the

intermolecular binding energy. This becomes clear when the

perturbation energies of the first and second orders (Etl) and E‘z))
are written explicitly as {22,29]
ED <omred) v, |9a)em)>, (1.1.1.1-1)
12
(2 _ |<ea)e®) |V, [o(a)e(B")>]
B'mB ¢(B') = ¢(B)

2
|<¢(A)¢(B)|V1nt|¢(A')¢(B)>]

A'wA e(A') = ¢(A)



’ L] 2
1<¢(A)¢(B)|vinti¢m Y®(B')>|

- Z z
B'wB A'w#A [e(A") = €(A)] + [e(B') = €(B)]
(1.1.1.1-2)
where V is the sum of all intermolecular interaction operators,

int
|¢(A)¢(B)>'s are the direct product wave functions for the dimer with

subunits a, b in |®(A)> and {&(B)> states, respectively, and ¢(A) and
¢(B) eatc. are the corresponding energy eigenvalues of the free subunit
states,

The two most widely used forms for vint have been the multipole
expansion and partial wave expansion of the exact interaction
operator,

The multipole expansion is an approximation which is
asymptotically correct for infinite inter-subunit distance R.
According to the wave functions being coupled in Equation (1.1.1.1-1)
and (1.1.1.1-2), this expansion assigns straightforward physical
meanings to E(l). E(z) in the limit of infinite R. For example, E(l)

is obviously the electrostatic energy. The first two terms of the
5(2)

£(2)

expression are the induction energies, and the last term of the
expression is the dispersion energy. But, for finite R, as
required for actual dimers, this sxpansion makes the second and higher
order terms divergent. Moreover, it does not account for the short
range charge overlap effects [30,31].

In order to obtain the missing charge overlap effects while
keeping the various interactions obtained in the multipole expansion
convergent, the partial wave expansion of the interaction operator can

be used [32-36]. For example, in the simplest case of an atom-atom



system, the expansion of a given energy contribution can be written as
[22)] )

E=2 = m;nu"lb] €(1,.1,,m)

1.-0 1b-o n-uin[l.,lb]

where 1. and lb are the angular momentum quantum numbers of subunit a
and b with respect to laboratory space, and m is the projection
angular momentum, These individual components, ‘(la'lb'm)' may be
correlated to the multipole expansion terms E(i) by multiplying E(i)
with the scaling functions, which are generally R and relative
orientation dependent. For the divergent E(z) and higher ordar terms
in the multipole expansion, these functions have damping effects.
Also predicted in E(l) and E(z) by the partial wave expansion are some
extra "spherical® partial wave components such as ¢{0,0,0), ¢(1..0,0).
and c(O.lb,O) which have no such connection with the multipole
expansion. Since no exchange effects have been included, these short
range components can be attributed only to charge overlap effects. It
is noted that there is no definitive reference with which to
distinguish the short range charge overlap effects from induction and
dispersion energies because E(z) is divergent in the limiting case of
infinite R (in the multipole expansion).

According to the above expressions for E<1) and E(z)

, it is
realized that, in practical calculations within the polarization
approximation, the exact wave functions of the free subunits are
essential.

The SCF wave functions are one-electron functions, which neglect

the intra-subunit electron correlations. The correlation energy



within a classical molecule is on the order of 1 eV per electron (23
kcal/mole) [37], and usually orders of magnitude higher than any vdW
bonds. Even 1f the inter-subunit electron correlation energy is only
one per cent of that of the intra-subunit, electron correlation still
contributes a nonnegligitle fraction to the intermolecular force. Not
properly taking account of such large intra-subunit correlation
energies, the SCF wave functions are not expected to accurately
produce the small inter-subunit correlation energies. This is usually
a serious problem in treating certain vdW molecules where the dominant
interaction is the dispersion energy, which is intrinsically due to
electron correlation.

A tremendous amount of effort has been made to calculate the
individual contributions, based upon these relatively crude
approximations. The main scheme has been the double perturbation
theory [38-42), vhich estimates some intra-subunit correlation effects
(38). How physically meaningful these mathematical results are still
remains an important question. There are two major difficulties
inherent in the polarization approximation scheme: (1) in terms of
formalism, all the exchange effects are neglected, and (2) in terms of
application, accurate zero-order wave functions are unavailable. It
should also be stressed that even if the exact zero-order wave
functions are available, the calculation does not yield a physically
correct result because the zero-order wave functions are not
antisymmetrized. 1In other words, it is a theoretical framework,
providing an incomplete physical picture, rather than a practical

method to accurately calculate any individual contribution.



10

1.1.1.2 Exchange Perturbation °~

In order to include the exchange effects in the perturbation
treatment, there have been two kinds of symmetry adaptation schemes,
viz., the "weak" and "strong" adaptations. In the strong adsptation,
the antisymmetry is introduced starting from the first order energy.
In the weak adaptation, it starts from the second; in other words, the
first order expression is still obtained within the polarization
approximation.

As a simple example of symmetry adaptation, the first order

energy of the strong adaptation can be written as [22]

<B(AYI(B)|V,  A|R(A)B(B)>

int

g1,
<B(A)®(B) |vint|w\)¢(n)>

where A is the standard total antisymmetrization operator for the
complex. (It is emphasized that A is for all fermions invelved:
electrons, protons etc. For example, A for H2+ must produce the
exchange antisymmetry between the two protons.) This expression can
then be changed algebraically into two parts: (1) the electrostatic
interaction, as previously obtained in the polarization approximation,
and (2) its exchange counterpart, the first order exchange repulsion
energy. Similarly in the second order term, after either a strong or
weak araptation, there exist not only the induction and dispersion
energies, available in the polarization approximation, but also the
exchange induction, and exchange dispersion energies. As expected,

these exchange counterparts are all short range interactions.
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The weak adaptation 1s physically incorrect because it does not
consider the antisymmetry for the first perturbation term. It exists
only due to some historic interest for theoretical comparisons. For
instance, it is found that the weak adaptation fails, but the strong
one succeeds, to produce resasonable induction and exchange induction
contribucions at the SCF level of the theory between small
closed-shell atoms [43-45).

The strong adaptation scheme is able to further predict the
existence of short range exchange counterparts of the thrse basic
contributions simultaneously. However, this is a success only in
terms of formalism, but not of practical application yet still because

of the previously mentionad limitation of the SCF wave functions.

1.1.2 Supermolecular ab initio Calculations
Currently most of the pure ab initio calculations for small vdw
systems are designed to calculate the energy difference (AE), defined

as
AE= Eab = (e(A) + ¢(B)) (1.1.2-1)

where Eab is the energy of the vdW complex, ¢(A) and ¢(B) are the
energies of its constituent subunit A and B3 [1,13,22]. In other
words, ab initio calculations are performed for the subunits and the
"supermolecule” complex itself, respectively. Because this involves
direct ab initio calculations and no individual contributions to the
vdW interaction can thus be studied, this scheme is often described as

a "brute force"” one.



There are many benefits available from this scheme: (1)
convergence problems of the aforementicned perturbation treatments are
avoided, (2) inter-subsystem electron exchange effects are inherent in
ab initio calculations. However, these benefits have been
overshadowed by several disadvantages: (1) coirrelation inaccuracy
arising from the SCF wave functions, (2) basis set superposition error
(BSSE).

Most supeirolecular ab initic calculations are also performed at
the straightforward and Llnexpensive SCF level. Since, 43 mentioned in
Section 1,1.1.1, any SCF calculation will fail to properly include the
intra-subunit correlations and the “supermolecular" dispersion,
corrections are thus required. Basically there have been thfee kinds
of corrections: (1) semiempirical corrections, f2) perturbatiza theo:y
corrections (Section 1.1.1), and (3) configuration interaction (CI;
corrections. Of course, semiempirical corrections already represent a
failure of the theoretical methodology, and are thus avoided by
purists. The double perturbation treatments can take account of
certain intra-subunit correlations {3{ . But since the double
perturbation treatments are also based on the SCF wave functions, the
very concept of the correction must be seriously questioned. Thus
these perturbation treatments are, in some sense, "blind" ctrrections.
On the other hand, there has been no reasonable agreement between the
experimental data and the results of the various expensive CI schemes,
except for the very small systems such as He-H2 {15,16]. One of the
cbvious problems of a truncated CI expansion Is that the limiting

energy of an infinitely separated supermolecule is unequal to the sum



of the subunit energies [46].

In supermolecular calculations for a vdW dimer, the respective
subunits experiwnce # Lower energy in the enlarged dimer basis set
because the basis functions of one subunit increase flexibility of the
basis set for thes other. This mathematical artifact results in an
extra attractive contribution, which is usually named BSSE. This
phenomenon is particularly serious.for the cases of weak dimers using
small hosis sets [47,48). Mostly BSSE is corrected for by the
couuterpoise method [49], in which the calculationa for respective
subunits are performed in the presence of the bauis functions of the
other subunit in the same relative position as in the dimer. Of
course, if a very large basis set is someday allowed by the computer,
BSSE will no longer be significant. This ideal has already been
achieved for some small vdW systems at the SCF level [50].

According to Equation (1.1.2-1), this method rsquires e
subtraction betwean energies {i.c¢. Eab and (e(A) + ¢(B))) that are
many orders of magnitude larger than the vdW interaction energy {AE).
However, according to the aforamentioned basis set problems, none of
E.b and (e(A) + ¢(B)) can be calculated with an accuracy smaller than
or even close to that of AE. Therefore the supermolecular
calculations have been practically not quite useful.

Recently, considerable improvement on the ab iniiio route has
been made by Dykstra et al [51]. However, it still needs mora

extensive examination bsfore .

1.1.3 Group Theoretical Studies
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In view of the fact that the above numerical calculations are
difficult that only crude results can be obtained from them, it is
pragmatic to extract some relevant results purely from symmetry
considerations. There are two kinds of symmetry groups that are most
important for small isolated molecular systems, viz., the point groups
and pernutation-inversion (PI) groups [52). For vdW complexes
containing more than one nucleus of a given kind, it is the PI groups
that are most useful in the state symmetry labelling and in the
application of the labelling to understand intermolscular processes;
generally the point group is of little uss.

The molecular point group, based on the symmetry of the well
defined equilibrium structure of a system, consists of elements that
properly and improperly rotate [53] the molecular vibronic (not
rovibronic) variables. (Reflections (o's), inversion (i), and
improper rotations (5's) are all examples of improper rotations [534].)
Since all the symmetry clements, such as rotation axes and reflection
planes, used by the point group are defined in the rotating, and thus
noninertial, molecule-fixed coordinats system, the corresponding
symmetry operations should not act on the system rotational
coordinates. If they do, all the noninertial forces (centrifugal and
Coriolis forces) resulting from the noninertial rotating coordinate
system would be alitered by such symmetry operations. Since the system
energy is thus changed, these symmetry operations cannot commute with
the rovibronic Hamiltonian. Therefore the symmetry species of the
molecular point group can be used to label and classify only the

low-lying vibronic states of semi-rigid molecules, which have well
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defined equilibrium structures.

The specific PI group used for a molecular system is named the
molecular-symmetry (MS) group. The MS group, based on the
experimentally observed feasibility of the molecular motions
corresponding to the possible group elements, consists of three kinds
of elements apart from the identity operation: (1) permutations among
the experimentally indistinguishable nuclei, (2) parity (space-fixed)
inversion of the spatial coordinates (polar vectors [55)) of all
electron(s) and nuclei within the system, (All spin coordinates are
left unchanged because they are axial vectors [55).) (3) the
mixed-product operation of such permutation and space-fixed inversion.
(It is noted that any permutation commutes with the inversion
operation.)

In terms of the Hamiltonian expression, sach PI operation of the
MS group affects one or a set of certain rovibronic variables.
Generally, the kinetic motions of different rovibronic variables
interact with one another through the potential energy coupling terms,
which are totally symmetric functions of the corresponding rovibronic
variables. In other words, the zero-order states of the same symmetry
under the MS group formed by direct multilplication of the zero-order
wave functions corresponding to the motions involved can interact
among themselves such that the zero-order energy level distribution is
perturbed.

More generally, recalling that every term in the Hamiltonian of
an isolated system must be totally symmetric, for the interaction

building block <i|V|j> to be nonzero the state |i> and |j> must have



the same symmetry. Adding terms of rovibronic variable(s) that can be
affected by any PI operation of the current MS group to the
Hamiltonian will result in a shifting of the energy levels, but not
splictings. One of the most important application of the MS group is
thus to eliminate any extraneous numerical calculations for potential
couplings between basis functions of different symmetry species [52].
If the added term is a function of the rovibronic variable(s) ttat
cannot be affected by the current MS group operation but by other PI
operation(s), then energy level splittings will occur, and the MS
group needs to be enlarged to include the required new PI
operation(s).

However, due to the limited number of nuclei in the system the MS
group has an upper limit for its size, which is the "complete nuclear
permutation inversion" (CNPI) group. The CNPI group is a PI group
purely based on the complete chemical formula of the system; according
to the formula, all conceivable combinations of all-particle inversion
and nuclear permutations are included as elements. Once the MS group
has reached its limit, the CNPI group, all further added terms can
cause only energy level shiftings, but no splittings.

According to the definitions of the MS group, its PI operations
(elements) have effects on all the spatial rovibronic {not just
vibronic) coordinates, but leave the total energy and Hamiltonian
unchanged. As a result, the symmetry species of the MS group can be
used to classify the rovibronic states, in which several kinds of
motions, even tunneling motions, could be highly mixed. This is the

crucial advantage of the MS group over the point group. This is also
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why the MS group is referred to as a "true" symmetry group, whereas
the point group is an “approximate" symmetry group [52].

A comparison between the effects of a point group operation (s
reflection) and a PI operation ((23)) on the total energy of the
system is made in Figure 1.1.3 for an equilateral triangle molecule.
In the upper diagram (a), keeping the system rotational coordinate
intact, the point group ¢ reflection of the vibrational (vibronic)
coordinates changes the Coriolis force on sach circularly "vibrating"
nucleus. According to its definition, the Coriolis force on each
nucleus is in the direction of wvxw, where v is the instantaneous
velocity of each nucleus with respect to the rotating molecule-fixed
coordinate system, and w is the angular velocity vector of the
rotating system with respect to the laboratory space. Classically
speaking, after the reflection, the Coriolis force decreases the
restoring force and thus lower the vibrational energy of each
vibrating nucleus. In the lower diagram (b), the {23) operation on
the rovibrational (rovibronic) coordinate obviously has no effect on
the system energy.

Usually weakly bound complexes do not have a single well defined
equilibrium structure, as required by the point group treatment. 1In
addition, since the potential barriers among their large amplitude
motions are small, the various inter- and even in:ra-subunit dynamical
(rovibronic) coordinates are usually coupled together, and various
tunneling motions might occur. The MS group treatment can better
exhibit its advantages for such systems, for it can provide many

physical insights before accurate numerical calculations are
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A comparison between the effects of a point group o reflection and a
MS group (23) permutation on a rotating (as indicated as the circular
arrow in the middle of each molecule) triatomic molecule with
equilateral triangle equilibrium structure. All the nuclei are
circularly vibrating as indicated. The directions of the Coriolis
force are indicated as straight arrows,
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unavailable. In Chapter 3 is presented the application of the MS
group theory to FIR spectra of the Ar-NH3 complex studied in this

thesis work.

1.2 Semiempirical Studies

Semiempirical potential surfaces are obtained by fitting
experimental data to parametsrizad functional forms. Such surfaces
are characterized by two features: (1) the parameterization provides
the flexibility to fit the experimental data which usually sample the
intermediate regions (basically the lower part of the potential well),
which are most difficult for current theories, (2) the functional
forms can be designed to follow the necessary theorstical constraints
in the regions which have not been accessed by experiments (usually
long and short ranges). As more experimental data sampling additiocnal
regions of configuration space are avallable, more theoretical
constraints will be withdrawn from such potential surface syntheses.
In other words, the ultimate goal is to obtain purely experimental
potential ;urfaces.

It is crucial that semiempirical potential surfaces are available
especially when their theoretical counterparts cannot be put into
practical use. This is because they can serve as (1) ever-improving
standards or goals for the theoretical studies and (2) starting points
for various applied calculations, in which only the geometries of the
potential surfaces are required. As a result, extensive and intensive
experimental studies probing the vdW systems have been undertaken for

many years with the ultimate goal of producing such potential
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surfaces.

1.2.1 Useful Experimental Data

Since vdW interactions are involved in almost all chemical
phenomena involving two and more classical molecular subunits, various
types of experimental data contain information about the potential
surfaces [13,56]). For the purpose of semiempirically synthesizing
potential surfaces, the value of the data depends upon (1) if an
economical data-to-potential inversion scheme is available, and (2) if
the data is detailed enough to make the resulting potential surfaces
contain the most detailed information, such as intermolecular
anisotropy. By such criteria, two types of data have been shown to be
superior, viz., molecular beam scattering data, and spectroscopic
data, which will be briefly discussed below. (Little information on
the anisotrupy is contained in measurements of virial coefficients.
The information extracted from transport and relaxation properties are

generally expensive for heavier molecules [13].)

1.2.1.1 Data from Molecular Beam Studies

In molecular beam experiments, the total elastic cross sections
(measured as a function of collision energy) give information mainly
on the spherically symmetric part of the potential, while the
inelastic (state-to-state) cross sections characterize the anisotropic
as well as spherical aspects [57). However, due to the quality of the
experimental data, inversion of the anisotropy has not been

extensively employed to date. Some anisotropy information on the



repulsive part of the potential is reflected in the damping of quantum
diffraction oscillations of differential or integral cross sectionms.
Since such oscillations are possible only for collision systems with
small reduced mass, such as those involving He, its generalization to
heavier systems is difficult. 9n the other hand, certain information
on the anisotropy of the well part of the potential is reflected in
the damping of the rainbow oscillations [57), which are more obvious
for heavier systems. But this type of information is not sensitive
eriough to the many intricate features on the usually multidimensional
potential hypersurface. As a result, in terms of obtaining
anisotropy, molecular beam studies are practical only for light
dimeric systems involving Hz or He. However, this is complementary to
the spectroscopic studies because the complexes containing He or H2
are difficult to generate due to their weak binding energies. Of
course, it is complementary in a more general sense that, in terms of
the geometry of the potential surfaces, the molecular beam scattering
data is more sensitive to the repulsive part, and the spectroscopic
data mainly to the "well" part of the potential surface.

A general problem characteristic of the molecular beam study is
that the data reduction usually does not yleld a potential surface
more conclusively than that obtained from spectroscopic data. This is
because the least squares fit, an inexpensive routine for
spectroscopic data, is still relatively impractical for scattering
data. However, the scattering data always serve as tests for trial
potential surfaces synthesized using other data, particularly

spectroscopic data.
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1.2.1.2 Data from Spectroscopy *

Since the distribution of intermolecular eigenstates is a direct
and detailed manifestation of the topology of the potential "well",
spectroscopy has dominated the study of small vdW systems in recent
years. In terms of spectral region, the microwave (<1 cm-l), infrared
(IR: 1000 to a few thousand cn-l). and particularly far infrared (FIR:
10 to a few hundred cm-1> have bsen the most va’luable, In terms of
sample source, the most popular two are: free jets (or molecular
beams) and bulk gases, (Although low temperature (<30 K) rare gas
matrices have also been popular sample sources, they are impractical
in determining the intermolecular eigenstates because the matrix
perturbations are on the same order as the intermolecular binding
energies of interest.)

Due to the extremely low effective temperatures obtained in
molecular beams and free jets, the lower states involved in the
spectroscopic transitions are usually within the lowest ground
intermolecular vibrational state of the vdWw complex. (Here, the
*lowest" is emphasized because different intermolecular potential
wells are associated with all high frequency vibrations of the
classical subunits.) The use of free jets (or molecular beams) can
thus greatly reduce the "hot band" spectral congestion caused by the
relative high temperature bulk gases [58), and thus simplify the
spectrum assignment.

Currently the most useful combinations between the spectral range

and the sample source are: microwave-free-jet, FIR-free-jet,



IR-free-jet, and IR-bulk-gas. Basically, the microwave-free-jet
spectroscopy probes mostly the lowest ground intermolecular
vibrational states, which sample the bottom (near equilibrium) part of
the lowest potential wells. Thus far it has been so prolific, with
approximately 100 complexes having been studied [14], that it is the
lowest parts of intermolecular potential surfaces that are now better
understood. The FIR-free-jet spsctroscopy measures not only the
lowest ground but also the axcited intermolecular vibrational states,
which sample much more of the potential wells. Due to the large
anharmonicity of the intermolecular potential wells, intermolecular
vibrational transitions generally have favorable Franck-Condon
factors. In order to investigate the global feature of the lowest
potential well without any “contamination" by the high frequency
viorations of the subunit(s), the FIR-frees-jet spectroscopy has
obviously become the most promising tool. As revealed in the
"satellite" combination bands (hot bands), the IR spectroscopy
accesses the intermolecular vibrational states associated with high
frequency vibrations of the classical subunit(s), and thus samples the
lowest and some higher intermolecular potential wells simultaneously.
It thus provides the dependence of the vdW interaction on the subunit
vibrational coordinate. As a result, all these experiments complement
themselves. The above discussion by no means implies that the
congested "hot band" data provided by bulk gas samples are relatively
useless; starting with the free jet experiments is simply an easier
and logical approach.

The most useful spectroscopic constants, extracted from the



lkHz-resolution microwave experiments, are rotational constants,
dipole moments, and nuclear quadrupole coupling constants. (Of
course, other higher order spectroscopic constants such centrifugal
distortion constants are also important to test trial potentials.) On
the other hand, in the state-of-the-art FIR and IR experiments, the
nuclear quadrupole coupling constants are not always available due to
the MHz-resolution obtained [14]).

Generally speaking, the spectroscopically measured molecular
constants of an intermolecular vibrational state of one isotopomer are
not enough to determine the structure of that state conclusively,
Since the electronic structure of sach subunit is generally only
slightly distorted by the weak vdW interaction, the structural
determination can usually be reduced to the determinations of
inter-subunit distance (R) and relative orientation (e.g. three Euler
angles for binary complexes). This approximation greatly decreases
the number of structural variables and thus the number of isotopomers
that have to be studied by microwave spectroscopy for the purpose of
structural Jetermination. Since the vdW complexes generally have
large amplitude motions, the ground vibrationally averaged structures
thus determined generally are quite different from the equilibrium
structures, as opposed to the case of semirigid molecules. For weakly
bound complexes, the area on the potential surface sampled by the
equivalent large amplitude motion is different among the isotopomers;
the area sampled by an intermolecular vibrational state of a lighter
isotopomer includes and thus is larger than the area by the

corresponding state of a heavier isotopomer. Different isotopomers



exhibit different vibrationally averaged structures. The microwave
studies for a few isotopomers, if available, thus serve as a practical
way to determine whether large amplitude motions occur in the ground
intermolecular vibrational states. For a relatively rigid complex,
the averaged structures of the isotopomers of the ground
intermolecular vibrational state can also be used to extrapolate to
the equilibrium structure.

Within the approximation that the subunits remain unperturbed,
the inter-subunit orientation can also be obtained from the
measurement of the dipole moments and nuclear quadrupole coupling
constants of the complex. This is valuable especially when the
isotopic substitution study is impractical or not available. For
example, classically speaking, in a dimer of dipolar molecules, the
measured dipole moment of the complex is the projection of the
vectorial sum of the two individual dipols moments on the principal
axis of the complex. But the actual measured value, with induction
and higher order effects neglected, is an expectation ;f the dipole
projection over the sampled potential surface [59], which needs to be
determined., Similarly, the nuclear quadrupole coupling constants,
available when the complex contains nucleus with spin I2l, also
involve the expectation values of the cosine square of the relative
orientation angles [59]. Therefore, unless the complex is rigid, the
measured dipole moment and n lear quadrupole coupling constants
should not be inverted to give the inter-subunit equilibrium
orientations directly, but rather serve as values that need be

reproduced by trial potential surfaces.



1.2.2 Available Intermolecular Potentials

In the wide variety of existing vdW complexes ranging from "true"
vdW molecules to vdW ions, the study of potential surface has sc far
been focused mainly on small neutral atom-molecule and
molecule-molecule vdW systems. The binding energies of such systems
fall within the range of a few kcal/mole or less. So far the
potential surface of Hc-H2 is the only case successfully studied by ab
initio calculations. No theoretical calculation seems generally
promising for other simple vdW complexes with more electrons at least
in the near futuie. Currently, semiempirical syntheses of potential
surfaces are playing more important roles.

Hosf of the existing semiempirical potential surfaces have been
obtained for complexes with binding energy less than 1 kcal/mole. The
reason is that, for weakly bound complexes, it is easier to obtain a
large fraction of the intermolecular energy level distribution, and
thus the global features of the potential surface., Since the
potential surfaces of many relatively stronger systems, such as
H-bonded dimers, still cannot be synthesized due to inadequacy of
available experimental data, in these cases it is advantageous to
organize the obtained energy level distributions with physical
insights. An important approach is fit the distribution to a
parameterized energy eigenvalue expression derived from a
parameterized secular equation corresponding to an effective
Hamiltonian. The basic idea can be elucidated in the following

example. The resulting energy (E) level distribution of a two-level
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system containing state |1> and |2> perturbed by a Hamiltonian

operator P can be obtained by solving the following secular equation:

<l|B|1>-E <1|P|2> aE ¢

=0,

<2|p|1>  <2|P|>-E ¢ b-E

Conversely, smpirically fitting the parameter (c; a &nd b are assumed
to be known.) coriusponds to measuring the Hamiltonian matrix element
(<1|P|2>). 1In other words, even when the explicit expression of the
perturbation operator (P) is unknown, some physical insights of the
Hamiltonian are still available. For large and complicated secular
calculations for vdWw systems, the use of MS group symmetry
consideration can eliminate many off-diagonal terms. Great
simplification is thus achieved in Hougen's classic work on (1{20)2
[60]. As to the Hamiltonian itself, such a method usuzlly assumes the
*high barrier limit", in which the complrx is as semi-rigid as =
normal classical molecule, and all tunneliug wmotions are periurbations
treated as above. Therefore it is intrinsically bett;t for relatively
strongly bound complexes.

Table 1.2.2 is a list of the potential surfaces obtained irn
recent years. They are divided into several classes, each of which
has basically a chronoiogical listing of the potentials belonging to
different complexes; the later the potencial appears, the better it
is. Most of them are semiempirical, but few theoretical omnes (e.gz.
the CEPA potential for He-Nz) are also included if their sewlempirical
potential surfaces exist. These theorvtical potential surfaces are

either unsuccessful or experimentally unconfirmed. Also listed are



Table 1.2.2 A list of semiempirical and theoretical potential

surfaces of prototypical vdW dimers.

Also included are the data types

used in the semiempirical syntheses and various experimental tests.
{(Abbreviation list is shown below the table.)

(data used) (potential)

(test(s)(g/b:good/bad))

inert gas-Hz:

partially resolved
near IR [65]
abova data
semiempirical C_,
He-Ar potential,

above data, TT,(6,8) [77]
except low rsln IR, (V}
low T mix near IR [76]

new disp damp.
extended to Kr-Hz.

H,,Ar scat(g) [69)
tgn-p(s) [70]
nucl hypf(b) [71-73)
D2,Ar scat(b) [74,75)
votationally inelastic
scat(g) [74])
mixed virl coeff(g)

X-H,) [78,79]
trnsp, rlx{g) [80,81]
inert gas-HCl:
Ar-HCl
Wi, RF [82,83] WK (8 HCL pres broad(b) [85]

(single min near
Ar-HCl configuration)

HC1 rot (-1 [85,86]
pres broad {85]
atove data, M3 [88)

mixed 2nd virl

HCl pres broad(g)

(bottom similar to

----------------

coeff [87] HWK, more anisotropic
wall, featureless
around Ar-ClH region)
Ne-HC1

MW [89] M5 [89)

(enough for complete
angular range)

--------------------------------------

(2nd min near Ne-ClH)
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above data M5 {89] H,.Ar scat(g;better than
(constrained 2nd  M3) [93,94],
min near Ar-ClH, near IR(g) [95]
as predicted by FIR(g) (9-11,96-99]
seniempirical and (FIR-->2nd min
ab initio calc. conclusively [100]))
[90-92] extended
to Kr-HCl, Xe-HCl)

above data M6 [101)

inert gas-HF:

X-HF, (X= Ar, Kr, Xe)

MW [102-106) {-) [107] near IR(b)
(no data sensitives {(accurats near (expacting well daeper by
to X-FH region) X-HF equil -1
structure) 10=20 cm ~ [108})
HF-HF
MW,RF [109,110) (-} {111)
(accurate around
the min)

near IR {112,113)
{not used)

{ab initio}
(high level)

[114,115]
inert gas-N2 and -02:

............ it T

total DCS [116]) KSK [116) rot rlx(b)
(anisotropy too
weak)

(semiempirical) KKM3 [117) scat(b)
{anisotropy virl coeff(b)
increased) trasp(b)
HTT [118], SBE cross section(b)
HFD1 [119) [120,121)
HFD2 [119])

(extended to Ar-N

Ne-N,) (all bad) 2’



[CEPA] [122] vib rlx(b)
{too shallow.

short range might

be approximately

close)
{semiempirical) {-) [123)

(isotropic part)

M3SV [124} (generally bad)
............ Sarte T
total DCS [116] {-} (125}
relative, absolute ICS (isotropic)
{125]
above data, (-) (126] (no test)

(in)elastic DCS (126} (anisotropic,
fine structure
predicted [127])

............ bl 2

high energy ICS, {-) [128)

glory scat, (fine structure,

low rsln IR [128] RF Zeeman spec
predicted [129,130])

above data, (-) [131} Zeeman spec [132])

new DCS [131) (extended to (better than the 1lst)
At-Nz)

inert gas-linear polyatomic molecule:

............ Rttt St T
. total DCS, {-1 [133}

following only for (all anisotropic.

He-CO,: 2nd virl good short range for

coeff| viscosity, He-COz)

diffusion coeff,
ICS [133]
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above data,
pres broad, other
trnsp [134]

above data,
better total DCS [136]

MW, 2nd virl coeff,
mear:-square torque
[137)

MB Qifferential
energy loss spec [139]

31

S T

{-) [134] differential energy loss
spec for rotationally
inelastic collision(b)
(135] (-->anisotropy of
its repulsive part needs
modification)

e ey R L

{-) [136] {(He-CO, too weakly
bound, “no spec available)

S e

(-} [137] total DCS(b) [138)

(strong well (-->small well anisotropy)
anisotropy, good

min region;

T-shape equil

structure. elsavhere

uncertain)

{-1 [139]
(large well anisotropy)

inerc gas-SFs:

------------

total DCS (rainbow
oscillation)
‘diffusion coeff,
viscosity, 2nd
virl coeff [140]

total DCS
(diffraction
oscillation),
diffusion coeff,
viscosity, 2nd
virl coeff 140]

Ar-SFG, Kr.SF

(-1 [140]

(well anisotropy
better determined
than for He-SF,.
nearly isotropgc.
equil structure has
3-fold axis)

He-SFG. Ne-SF

{-1 [141]
(repulsive wall
anisotropy better
determined than for
Ar-SF,, Kr-SF

early isotropic.
equil structure has
3-fold axis)



inert gas-CHa:

- - -4 --------------------
t-) [142]
Ne-CH,, Ar-CH,

above data,
viscosity, 2nd virl
coeff [143)

MB differential
energy loss spec [la4)

SCF,
multipole expansion
[145])

(=) [144]
(equil structure has
3-fold axis)

e L. .
{-) (146) MB ICS (g) and
(anisotropic) rotationally

inelastic CS (b:near
repulsive region)

with resolved

diffraction oscillations,
energy loss spec (b) [146]

Abbreviations:
cale: calculation(s)

coeff: coefficient

CS: cross section
disp damp: dispersion damping function
DCS: differential cross section
equil: equilibrium

MB: molecular beam

MW: microwave spectra

nucl hypf: nuclear hyperfine constants
pres broad: pressure broadening
rlx: relaxation data

ICS: integral cross section
min: minimum

rot: rotation

rsln: resolution scat: scattering data,
SCF: self-consistent field calculation
spec: spectrum T: temperature

trnsp: transportation properties

vib: vibrational virl: virial

'{-I: no specific name for the potential

[name): no specific name for the potential, but the theoretical
method is indicated by the name bracketed.



the types of experimental data used in the synthesis of the potential
surface, and post-synthesis tests. Strong interactions obviously
exist between the experimental measurements and the syntheses of
potential. A general fact is that spectroscopy always provides the
best data for the synthesis (e.g. the conclusive determination for
Ar-HCl, purely based on FIR spectra), while other methods provide
reasonable post-synthesis testing data. A synthesis without including
high resolution spesctroscopic data is usually a failure (e.g. the use
of only low resolution IR spectroscopic data causes the failure of the
BC3(6.8) potential for Ar-Hz). For very isotropic systems (e.g.
Ne-HCl), microwave data can sample all angular coordinates on the
potential, while for anisotropic systems (e.g. Ar-HCl), including FIR
or IR data is a necessity.

Among the various small prototypical vdW complexes, such as
indicated in Table 1.2.2, so far only Ar-Hz. Ne-HCl and Ar-HCl have
semiempirical potential surfaces determined conclusively for most of
the "intermediate" range in the well. Similar semiempirical potentlal
surfaces have been synthesized for their heavier inert gas analogues.
However, in order to be confirmed, these extended syntheses, for which
less spectroscopic data are used, require more experimental
examinations, particularly FIR and IR spectroscopy. Of course,
including those in this table, all other prototypical systems need to
be measured spectroscopically to accurately establish their potential
surfaces. Although the semiempirical synthesis is still in its
infancy in terms of the number of conclusive potential surfaces

obtained, it is becoming a promising "industry*.

33



1.3 Demonstrative Achievement of* High Resolution FIR Spectroscopy:

Ar-HCl Potential Surface

Spectroscopy measurements, particularly in the FIR, have become
an important method for the semiempirical syntheses of potential
surfaces., Such a key role played by the high resolution FIR
spectroscopy was first demonstrated in its probing of Ar-HCl, the
prototypical anisotropic vdW complex, which has attracted most
extensive experimental studies [9,61).

Hutson and Howard semiempirically synthesized several potential
surfaces for Ar-HCl by performing a simultaneous least squares fit in
different parameterized functional forms (basically Maitland-Smith
forms) to several types of data, including molecular beam scattering,
HCl rotational line broadening, second virial coefficients and
molecular beam electric resonance (MBER) spectra. In terms of
ficting, two equally good potential surfaces, labelled as M3 and M5,
were then obtained. The major difference between the two surfaces is
in the number of potential minima. The M3 potential has only one
minimum at the Ar-HCl linear configuration. However, the M5 potential
has a secondary minimum at Ar-ClH linear configuration. This implies
that all the above experimental data together are inadequate to
determine the global topological features of the potential.

Later our research group measured the FIR Stark spectra of the
first three intermolecular vibrational states of Ar-HCl, viz., the
lowest T bend, T stretch and II bend state distributed from 25-34 cm-1

[10,11,61-64), with ~MHz resolution. Employing these FIR measurements
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along with the ground state microwave data from MBER, Hutson fitted a
new double minimum potential (M6), which is well determined in most of
the attractive part. [17] The question of a single minimum or double
minima was then answered very clearly. This represents a breakthrough
in the determination of the intermolecular potential surfaces because
only spectroscopic data are included in the fit. [61,9]

Based upon such inherent superiority of the high resolution FIR
spectroscopic data to other non-spectroscopic data, it is desirable to
extend these measurements to mors complicated vdW complexes using
tunable FIR direct absorption spectroscopy. It is noted in Table
1.2.2 that, except for the unlisted atom-atom systems, only the
potential surfaces for atom-diatom systems have ever besn determined
successfully. In terms of both geometric and spectroscopic
complexity, as well as physical interest, it is logical to study an
atom-symmetric-top system as the next step in the process.
Consequently, the Ar-NH3 complex, which is clearly one of the best

candidates, becomes the target of this thesis work.
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Chapter 2

Berkeley Tunable Far-Infrared/Planar Jet Laser Spectrometer

2.1 Spectrometer

The Tunable far infrared (FIR) laser system and the supersonic
planar jet configuration have been described in previous papers [(1-4)
and Laughlin's dissertation [5], and will be discussed only briefly in
the following.

The schematic diagram of the spectrometer is shown in Figure 2.1.
The tunable monochromatic FIR radiation used is generated by mixing N
the output of an optically pumped, selectable fixed frequency FIR
molecular gas laser (shop built) with that of a YIG-tuned microwave
oscillator (HP 8673B) system. A discharge pumped CO2 mid-infrared
laser (Apollo 150), with maximum power 150 W, serves to longitudinally
pump the FIR laser. The 002 laser is line tunable, among
approximately 100 different CO2 vibration-rotation transitions, using
a grating at one end of the laser cavity. The zero order beam from
the grating is sent to a spectrum analyzer (Optics Engineering) to
identify the pump laser line. Over 60 different simple organic
molecules, including their deutero-derivatives, can be pumped to

L e,

produce over 2000 discrete FIR laser frequencies from 10-200 em
In this work, HCOOH was used to produce the 692.9513 GHz, 761.6087
GHz, and 564.3857 GHz laser lines, and DCOOD for the 787.7565 GHz
laser line., The FIR laser output, with FWHM approximately 100 kHz, is

directed through a polarizing Michelson diplexer into a cornercube in
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Schematic of the Berkeley Tunable Far-Infrared/Planar Jet laser
Spectrometer.
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which a GaAs Schottky barrier diode together with a contacting 0.001
in. diameter whisker antenna are mounted. The FIR laser radiation is
thus coupled onto the diode through the antenna. In the meantime,
tunable microwave radiation is also coupled onto the diode either
through the whisker mount or through the post on which the diode is
located. The microwave tuning range from 2-26 GHz from the microwave
oscillator is extended to 2 to 75 GHz by using frequency doublers
(Spacek Ka2X, Honeywell V2200N) combined with a travelling wave tube
amplifier (Hughes B001lH12). Due to the nonlinearity of the voltage
vs. current characteristic curve of the diode, the fixed frequency FIR
and tunable microwave radiation are mixed, and the resultant tunable
FIR sidebands are generated at the sum and difference of the FIR laser
and the microwave frequencies. Consequently, tunable first order FIR
sidebands are produced from 2-75 GHz on either side of the FIR laser
line. In other words, a 5 cn—l tunability is carried by each fixed
frequency FIR laser line. Both the FIR carrier, viz., the laser
frequency component, and the sidebands radiate from the cornercube
back through the diplexer, which then separates the sidebands from the
much more intense carrier. In the 30 cn-l region, the resultant total
power of the two sidebands is approximately 100-200 uW on the
strongest FIR laser lines. Both sidebands are collimated together and
sent through the planar supersonic jet expansion in which the van der
Waals (vdW) complexes are generated due to the well known cooling
effect. The absorption signals are detected with a liquid helium
cocled InSb hot electron bolcmeter {Cochise Instruments) with typical

12

sensitivities of 10 -10-13 W/Hzllz. Accordingly, a power/noise
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ratio exceeding 105 for an integration time of one second can be
obtained. The microwave radiatidn and thus the FIR sidebands are
frequency modulated at 100 kHz with a frequency deviation 125 kHz.
The absorption signals from the bolometer are lock-in (SR 519)
demodulated at twice the modulation frequency. A minicomputer
(Digital PDP11/S3) is used to help control the scanning and strce che
data,

When the transition moment is about 1 Debys, the stronger
transictions absorb at least 0,1% of the sideband power. According to
the estimated power/noise ratio this implies that the best signal to
noise is expected to be larger than 1000. Since both sidebands pass
through the expansion, which one that causes an absorption must be
determined. By slightly changing the FIR laser frequency to the red,
for example, i.e. slightly increasing the laser cavity length, the
upper sideband absorption will require a higher microwave frequency,
however the lower sideband a lower microwave frequency. In other
words, by "pulling” the FIR laser the shift direction of the
absorption peak with respect to the scanning microwave frequency
identifies the sideband. Of course, the FIR laser can also be pulled
to the blue, with opposite peak shifts. The FIR laser has to be reset
to the peak of its gain curve after the laser pulling. However,
because the FIR laser is not locked, such resetting actually dominates
the uncertainties in the absolute measurements of the absorption
frequencies. This uncertainty is estimated to be about 0.5-1.0 MHz.
Nuclear quadrupole hyperfine structures generally appear in one scan,

typically 10 MHz, and is not affected by the laser pulling. The
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uncertainties in the gquadrupole constants is mainly due to the
spectrum resolution; the hyperfine structures are only partially
resolved for Ar-NHa.

The planar supersonic jet expansion is generated by passing a gas
mixture through a 1.5"x0.001" stainless steel slit housed in a large
vacuum chamber. The vacuum is maintained by a 2850 cfm roots blower
(Edwards EH4200) backed with two 175 cfm mechanical pumps (Edwards
E2M275) in parallel. Limited by the 40'x8" PVC pipe connecting the
vacuum chamber and the roots blower, the effective pumping speed is
estimated to be 1600 cfm. Typical operating conditions are 7001200
Torr behind the slit nozzle with a chamber background pressure
approximately 90120 aTorr. The gas mixture generally consists of a
molecular species of interest seeded in a carrier gas (such as a noble
gas), which could also be a constituent of the vdW complexes. For
example, 1-3% NH3-1n-Ar mixtures are used in the studies of Ar-NH3 and

{NH To avoid too many higher molecular clusters, higher

3)2.
percentage is not used. The planar expansion has two major advantages
over the pinhole expansion: (1) the detection sensitivity is greatly
increased by increasing the effective pathlength and the total number
of sampled vdW complexes, (2) Doppler linewidth is reduced by a factor
of one order of magnitude due to the "alignment" effect of the planar
flow.

The sub-Doppler line width wake many rotational fine structures
and part of nuclear hyperfine structures to be resolved even in FIR.

Typlcal linewidth ranges from 200-400 kHz. Since the frequency

modulation deviation is 125 kHz, which is smaller than the measured



linewidth, the artefact broadening due to the modulation scheme is
negligible to a first approximation (see Figure 2.2.1.2.3-5 in Section
2,2.1.2.3). According to the total densities of about 1015 cm.3 in
the probed region of the expausion estimated in similar experiments on
Ar-HZO [7], the pressure broadening should contribute less than 100
kHz to the linewidth. 1In addition, the time-of-fight broadening is
estimated to be 75 kHz. These estimations indicate that the residual

Doppler broadening effcct dominates the linewidth.

2.2 Lock-in Stabilization of the cw coz Laser

The frequency stability of the FIR laser depsnds mostly upon that
of che pump CO2 laser [8]. The stabilization of the CO2 laser is thus
important to the operation efficiency of the spectrometer as well as
accuracy of the measured FIR spectral frequencies. The two most
popular methods for locking the CO2 laser have been: (1) frequency
locking with an etalon, and (2) power locking with a lock-in
stabilizer, such as Lansing lock-in stabilizer (Model 80.215).

The etalon frequency locking uses the transmission of the CO2
laser output through an etalon with its mirror spacing thermally
stabllized to establish high frequency precision. The etalon spacing
is ramped over a short distance centered at its mean value. The
dithered transmission is then detected and inverted electronically
into a feedback signal to the piezoelectric translator (P2T) which
controls the CO2 laser cavity length to within one wave length of the
laser. In other words, the CO2 laser is locked at the frequency

corresponding to the mean etalon mirror spacing. This scheme, using a
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Burleigh etalon (Model #CFT-S00IR), has proven effective elsewhere
with a measured drift in the FIR wutput frequency of approximately 100
kHz/hour [8,9). However, despite its critical reauirement for
alignment to avoid multimode transmission, the maj.r disadvantage is
cost; the etalon alone is about $15,000.

The power locking with a conventional lock-in stabilizer involves
the modulation of the laser PZT and the demodulation of the
corresponding electronic signal of the detected dithered laser cutput
fower into a dc correction which is fed back to the P2T. Since the
CO2 laser output power is a strong function of its output frequency
{deternined by the cavity length), it is the frequency corresponding
to the maximum output power that is locked. However, this locking
scheme a.:o has its .Jravbacks; the maximum power operating point is
generally close te the most noisy spot, dus to certain resonances (few
hundred kHz and up) of the lasing ges electric discharge, moreover, it
is usually not at the CO2 frequency optimum for optically pumping the
FIR laser.

As a result, a new and versatile offset locking scheme for the cw
CO2 laser has been designed and put into practical use on the
spectrometer. Typical drift in the FIR output frequency achieved by
this method is approximately 75 kHz/hour, which is better than
obtained from the expensive etalon locking scheme. Since the locked
operating point can be set selectively to almost anywhere on the CO2
laser output power profile (as a function of its laser frequency), the
noisy spots can basically be avoided to greatly facilitate the

spectrometer operation.



2.2.1 Principles of Offset Lock-in Stabilization

Here the design concepts for an electronic offset lock-in
stabllization system will be introduced. Being generally applicable
to any dc-controlled system with a sufficlently short response time
constant to allow the modulation, the principles of the new scheme
will be explained with terminology that is not specific to the laser
system. But when appropriate the corresponding terminology for laser
systems will also be incorporated.

The new designs are modifications to the conventional lock-in
stabilization scheme. They help to stabilize a dc-controlled system
at any point on its characteristic curve (system output, a physical
variable as a function of input dc voltage), ac opposed to
conventional lock-in stabilization, which locks only at one of the
local extrema (maxima or minima). As a starting point for
modification, the basic principle of conventional lock-in
stabilization will be briefly reviewed. The new design will then be

explained with some geometrical arguments.

2.2.1.1 Conventional Lock-in Stabilization

A conventional lock-in stabilizer consists basically of three
parts: (1) a 1f lock-in amplifier, which generates the modulation sine
wave and demodulates the periodic response of the dec-controlled
system, when necessary, into a correction dc voltage, (2) a dc power
supply, which provides the controlling dc bias voltage for the system

before the correction, and (3) a voltage adder, which superimposes the
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correction d¢ and the power supply bias voltages together to form a
corrected controlling dc voltage *that maintains the average output oi
the system.

The graphical example, shown in Figure 2.2.1.1, further
demonstrates the mechanism, Without losing generality, the
characteristic curve of the system to be stabilized is assumed to be a
Gaussian function of the controlling dc bias. In the case of a laser
system, this could be the output power profile as a function of the
dc-bilas-controlled cavity length or of the corresponding laser
frequency. Suppose that the bilas is originally intended to be set at
the maximum (point M in Figure 2.2.1.1) of the curve, but the
operating point drifts to the left (point L) of the maximum.

According to the periodic response (trace 1) of the system at point L,
the stabilizer generates a correction dc voltage (trace 1') to the
existing dc bias (at point L) to force the operating point back toward
the maximum, at which the periodic response of the system generates no
de correction (trace m'). For the case of drifting to the right of
the maximum, a similar but opposite returning dc corrsction can be
obtained because the periodic response of the system is basically 180°
out of phase with respect to on the left. The stabilization at the
maximum can therefore be achieved. The disappearance of the dc
correction at the maximum is due to the fact that the dc output of a
1f lock-in amplifier is proportional to the amplitude of the
fundamental modulation frequency (1f) component in its input with the
signed proportionality constant controlled by the lock-in phase

setting. However the fundamental frequency of the system output at
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Figure 2.2.1.1 . .
Mechanism of conventional 1f lock-in stabilizer.
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the maximum of the symmetric Gaussian function is the second harmonic
of the modulation frequency. Here, the term locally "symmetric"
should be emphasized because only in such cases is the maximum the
same as the locked point, as will be further demonstrated in Section
2.2.1.2. 1If it is locally asymmetric, a shift is generally expected
between the locked point and the local extremum. (The stabilization
at a local minimum is analogous except that the demodulation phase of
the lock-in amplifier needs to bes 180° out of phase, as opposed to
that for a local maximum, in order to switch the signs of the dc
correction.)

Briefly speaking, a conventional lock-in stabilizer can be
considered as & local-extremum locator, within a shift, on the
characteristic curve of a dc-controlled system. The key role is
played by the demodulation of the 1f lock-in amplifier which can be
thought of as a 1f (fundamental) frequency amplitude extractor with
adjustable proportionality. It should also be particularly noted that
it is where the dc correction switches sign that a locking can take
place. (A more mathematical .cture of conventional lock-in

stabilization is available in Section 2.2.1.2.1 and 2.2.1.2.2.)

2.2.1.2 Concents for the New Designs

It will be shown that offset locking using a lock-in stabilizer
can be achieved either by adjusting the modulation amplitude or by
modifying the response from the system to be controlled. The
amplitude-controlled offset locking scheme has its intrinsic

limitations. However, the response-modification scheme is flexible
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and versatile.
In order to provide a mathematical language for the discussion,
simulations of a lock-in amplifier in the 1f and 2f mode will be

proposed first.

2.2.1.2.1 Mathematical Simulation of a Lock-in Amplifier

It is beneficial to take a detailed look at the function of a
lock-in amplifier [10]. The key component of a standard lock-in
amplifier is its demodulator, which inverts the amplitudes of the
input frequency components only at certain multiples of the modulation
frequency (1f) into corresponding dc voltages that constitute the
demodulator output. The inversion proportionality at each multiple of
1f is dependent on (1) the demodulation mode {1f or 2f), (2) the
multiple value considered, and {3) the demodulation phase. For
example, the 1f demodulation of a third harmonic, shown in Figure
2.2.1.2.1, generally generates a nonzero dc voltage, which is
modulation phase dependent with a period of 2x/3 and 6 sign switching
phase per 2x. It can be shown that in the lf mode the demodulator
inverts the amplitudes of all odd multiples of 1f, including the
fundamental frequency, into dc voltages, whereas in the 2f mode the
same applies to all even multiples of 1f. However, some standard
lock-in amplifiers have an input frequency filter, which, when the
amplifier is set in the 1f and 2f mode, passes only the 1f and 2f
comport nt, respectively, among the multiples of 1f. (A high Q or very
narrow bandwidth is unnecessary for the filter because in terms of

frequency component the demodulator can be considered as an extremely
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Figure 2.2.1.2.1
Phase-optimized 1f demodulation of a third harmonic.
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narrow *gridpass" invertor.) Such a combination of the input filter
and the demodulator makes the lock-in amplifier in the 1lf mode
generates a dc voltage proportional to the amplitudes only of the
input fundamental frequency. Similarly, such a lock-in amplifier in
thg 2f mode generates a dc proportional to the amplitude of the input
second harmonic.

Being an amplitude extractor for the lf or 2f component of the
input temporal signal, the functions of a lock-in amplifier can be
simulated as being proportional to the following linear integral
transformations (within a proporcionality, which are linearly
dependent on the ghase-independent gain of the lock-in amplifier): in

1f mode,

A
Ll f(x)=
wtm2x

Fl'(x.A.i)- I [£(x + Acos{wt)) cos{wt + ¢)] d(wt),

0 (2.2.1.2.1-1)
in the 2f mode,
L £0x-
wtw2x
Fz'(x,A.i)- [£(x + Acos(wt)) cos(2wt + ¢)] d{wt),
0 (2.2.1.2.1-2)

where LlA and L2A are the corresponding linear operators, f(x) stands

for the characteristic curve of the system being measured, A is

one-half of the modulation depth, w is the modulation frequency in



radians/second, the dummy variable t is the time in seconds, and ¢ is
the relative phase setting. (Here, Fl' and Fz' are not derivatives of
A A
Fl and F2.) 1 and L2
linear operation. In both integral transformations, the modulation is

L are linear basically because integration is a
accounted for by incorporating Acos(wt) as an additional part of the
independent variable, x, of £f(x) in the integrand, whereas the
idealized demodulation at 1f and 2f, with no electronic gain involved,
is given by the cos{wt+¢) and cos{2wt+4) as multiplicative factors of
the integrands.

Such integral expressions for demodulation can be deduced by
using the orthogonality among all cos{nwt)’s and sin{nwt)’'s, with n
being any nonnegative integer [1l]. Both integral transformations can
be considered as the "inner product® of the modulated function,
f(x+Acos(wt)), with the demodulation references, i.e., cos{wt+é) and
cos(2wt+4), respectively. In other words, these two integral
transformations can be further thought of as the "projections" of
f{x+Acos{wt)) onto the "unit vector" functions, cos{wt+é) and
cos(2wt+é). Consequently, Equations (2.2.1.2.1-1) and (2.2.1.2.1-2)
are fully justified for simulating the lock-in amplifier as an
amplitude extractor for 1f and 2f component of the input temporal
signal.

Because the integrations are taken over wt for one full cycle
(2x) both transformations correspond to an infinitely long time
constant for the lock-in amplifier. As a result, both Fl' and F2' are
functions of x and the two panel-adjustable variables, ¢, A. Using

the Taylor expansion for f(x+Acos{wt) in polynomials of Acos(wt),
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along with the aforementioned orthogonality, the expressions

(2.2.1.2.1-1) and (2.2.1.2.1-1) can be rewritten as

Fl'(x,A.é)- 2% cos¢ Fl(x,A) (2.2.1.2.1-3)
where
wt=2x
1
meh [E{x + Acos(wt)) cos(wt)) d(wt),
2
0 (2.2.1.2.1-3a)
and
Fz'(x.A.d)- 2x cosé Fz(x.A) (2.2.1.2.1-4)
where
Wt=2x
1
Fz(x.A)- [£(x + Acos(wt)) cos(2wt)] d(wt),
2n

0 (2.2.1.2.1-4a)

respectively, which Indicate that ¢ affects only the signed gain and
therefore the sign of the lock-in output functions. If Fl(x,A) and
Fz(x,A) are further defined as the lock-in output functions with the
phasz dependent gain (cos¢) and the phase independent gain (G) both
equal to one, then the lock-in output functions Sl(x.A,‘.G) and
Sz(x.A.d,G> in the 1f and 2f mode, respectively, can be generally be

written as

sl(x.A.d.G)- G cosé Fl(x.A) (2.2.1.2.1-5)
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and

Sz(x.A.¢.G)- G cos¢ Fz(x.A). (2.2.1.2.1-6)

In other words, apart from the signed gain, the geometry of the
lock-in outputs, l-‘1 and F2 (abbreviations of Fl(x,A) and Fz(x.A))
defined in Equations (2.2.1.2.1-3a) and (2.2.1.2,1-4a), and thus the
places where they switch signs are basically determined by both the
modulation amplitude A and the characteristic curve £(x). However, it
is impossible to separate the individual effects of A and £(x) on the
geometry of Fl or F2. This can be shown more explicitly by the Taylor

expansions of Fl and F2 in polynomials of A:

(2n—1)
F (x,A)- z czn_l--E-?EE:T;EEZ--Azn'l (2.2.1.2.1.7)
n=1 dx
where
1
Y — (2.2.1.2.1-7a)
207l o1y 1nt
and
- a@Wgx)
Fy(x,A)= E Czn-T-Azn (2.2.1.2.1-8)
n=1 dx
where
1
C,.= : (2.2.1.2.1-8a)

22%(n-1) 1 (n+1)1
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All terms in these expressions are cross terms between A raised to

some power and a derivative of £(%).

2.2.1.2.2 Limitations of the Modulation-Amplitude-Controlled Scheme

Since Fl(x,A) and Fz(x.A) are functions of A, it might seem
possible that the offset locking can be achieved simply by adjusting
the modulation amplitude with conventional 1lf lock-in stabilization.
However, this is not always feasible, as will be explained in the
following.

Any function, g{x), can be decomposed into an even, f‘(x-a), and
odd part, fo(x~a). with respect to any position at x=a, viz.,

f(x—a) + f(=(x=a)) f(x—a) = f(=(x—a))

g{x)= f(x—a)= +
2 2

- f.(x-a) + fo(x-a)‘ (2.2.1.2.2-1)

With the geometry unaffected, Expression (2.2.1.2.1-3a) for Fl can

then be rewritten as

v d(2n'1) [ f‘(x-s)-l-fo(x‘s) | n—1
Fi(x=s,&)= 2 | C, _,» = "
1 n=1 201 dx(zn b
(2.2.1.2.2-2)

with the origin shifted to one of the local extrema of f(x) at x=s.
It is noted that it is the even part, fe(x-s). of f(x—s) that
contributes the oddness of F1 about x=s, whereas the odd part,

fo(x-s), that cantributes the evenness of F The reason is that an

1

odd order, (2n—1), differentiation switciies the parity about x=s.
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The limitations of the amplitude-controlled offset locking at 1lf
will be shown for the cases with -locally symmetric and asymmetric
extrema, raspectively. Here, the "local® is defined to be the
modulated region [s—A,s+A] at the extremum (x=s5). The local functions
and their symmetry will then be dependent on the modulation amplitude
A. In addition, within the local region, the only extremum will be
located at xu=s.

For the case with locally symmetric extremum, the corresponding
local fo(x-l) vanishes completely, but at least ons local odd
a2 g (xm)
(21

function exists. As a rasult, as long as the value

d"“‘l’fg(x-.)
dx(2n-1)

of A constrains all the local derivatives to remain

zero, x=s is always a point where F1 switches sign; no continuous
offset locking starting from xe=s is possible. As a trivial example,
in the case of a symmetric characteristic curve such as a Gaussian
function, adjustment of the modulation amplitude completely fails to
shift the locked point from its maximum.

However, fo: :r» case with a locally asymmetric extremum, at
d<2n")£f{x-l)
(1

least a local bacomes nonzero. According to Equation

{(2.2.1.2,2-2), the necessary condition for x=s to be a sign-switching
point, i.e, FI-O at x=s, is now violated. 1If there is a transition
from being locally symmetric to asymmetric with continuously
increasing value of A, the disappearance of sign-switching at x=s

implies only that such a sign-switching point has shifted continuously
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to its neighborhood already. In other words, for many cases, there
will be a threshold value for A tv be effective in such offset
locking. Being system-dependent, such threshold of A could be so
large that it might become an intolerable perturbation to the system.
In addition, the shift direction of the locked point will be
controlled basically by the geometry of f{x) instead of A,

Such system-dependent limitations definitely need to be avoided in
a versatile offset locking scheme. Consequently, in terms of the
expressions for Fl(x.A) and Pz(x.A). a modification of f(x) is the
only remaining choice for offset locking with lock-in stabilizationr.
(A similar discussion, using Equations (2.2.1.2.1-6) and
(2.2.1.2.2-1), can be made for a 2f lock-in stabilization and similar
system-dependent limitations for amplitude-controlled offset locking

are to be obtained.)

2.2.1.2.3 Geometric Arguments for the Response-Modification Schemes
2.2,1.2.3 (A) 1f Modification — Slanting the Baseline of the
Characteristic Curve

Previously, f(x) was referred to as the characteristic curve of
the system. In the following discussion, the true characteristic
curve will be denoted by T{x), as opposed to the effective (modified)
characteristic curve f(x) "seen" by the lock-in amplifier of
stabilization system.

For most practical applications, the modulation amplitude A is
made small enough to reduce the unwanted perturbation due to the

modulation itself or to reflect the true characteristic response T(x)



of the system as much as possible. Usually A is thus smaller than the
typical widths of the features of T(x) and thus of f(x), i.e. A<<l.

In addition, the coefficients, c2n-1 and cZn' decay fast for higher
order terms in the expansions (Equations (2.2.1.2.1-7) and

and F,. This is indicated by the numerical

1 2
values of the first few cosfficients listed in Table 2.2.1.2.3.

2.2.1,2.1-8)) for both F

Therefore, for most applications, the leading term of the expansions

for Fl and F2 should be a good first order approximation, viz.,
df(x)
Fl(x,A)u oA (2.2.1.2.3-1)
dx
d(z)f(x) 2
Fz(x,A)a -;;?53---A . (2.2.1.2.3-2)

Without getting into an involved mathematical analysis, the major
physical insights for the response-modification scheme can be
extracted from the behavior of the derivatives of f(x) using this
approxiﬁation.

Because conventional 1f lock-in stabilization fails to
offset-lock the system continuously from an extremum about which the
characteristic curve is locally symmetric, it is interesting to take a
look at the behavior of a Gaussian function located on straight
baselines of different slopes, as shown in Figure 2.2.1.2.3-1 (a)-(d),
along with the corresponding first derivative .urves in Figure
2,2.1.2.3-2 (a')-(d'). 1In (a), an Gaussian function G(x—s) centered
at x=5 1Is depicted. 1In (b), the symmetric G(x-s) is distorted with

its maximum shifted toward a newly generated minimum by a slightly
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Table 2.2.1.2.3
The numerical values of the first few coefficients, c2n-1

and € in the expansions (Equations (2.2.1.2.1-7) and

2n’
2,2,1.2,1-8) for both F1 and Fz.

n Con-1 Con

1 0.500000 0.125000
2 0.125000 0.010417
3 0.007813 0.000326

4 0.000011 0.000005
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Figur? 2.2.1.2.3-1 (a)-(d)
Behaviors of a Gaussian function located on straight
baselines of different slopss.
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(@")

Figure 2.2.1.2.3-2 (a') (d')
The corresponding first derivative curves of Figure
2.2.1.2.3-1 (a)=-(d).
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slanted baseline m(x—s) with slope m. Such a phenomenon can be
confirmed by Figure 2.2.1.2.3-2 ¢(b'), in which the two intersections
between the derivative curve and the x axis correspond to tle two
extrema in (b). It is noted that the height of the horizontal
baseline in (b') and thus the positions of the extrema can be
controlled by the slope m of the slanted baseline in (b). However,
when the slope is increased, as shown in Figure 2.2,1.2.3-1 (a)-(d),
the maximum and minimum will first approach each other, then coalesce
into an inflection point, and finally disappear. A similar phenomenon
can be imagined if the slope of the baseline is increased negatively.
As a result, as long as the slope is under our control, the existence
and direction of the offset locking with conventional lock-in
stabilization should be no longer limited by the requirement for local
asymmetry about an extremum of the true characteristic curve T(x).
With the true characteristic curve I'(x) left unmodified, the next
question is how to create such an effective baseline with adjustable
slope to "cheat" the conventional lock-in stabilizer. The "cheating"

characteristic curve f£(x) can be expressed as
£f(x)= T(x) + m(x = s) (2.2.1.2.3-3)

where x=s is the position of one of the extrema of T(x), from which
offset locking is to be performed. It will be shown that the s is not
critical in the expression of the baseline later. The corresponding
temporal response at a specific position X=X due to a modulating sine
wave with amplitude A can then be obtained by replacing x with

x°+Acos(wt), i.e.
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f(x° + Acos(wt))= T(x° + Acqs(wt)) + m(x° + Acos{wt) — s).

(2.2.1.2.3-4)

Thiz equation suggests that, by adding a slanted baseline, the only
modifi~ations are the two Fourier components of the original temporal
response, viz., the "dc" and fundamental frequency component. Being
never detected by a lock-in amplifier, the change in "dc¢", m(xo-s). is
not of concern. Interestingly, it is noted that the change in the
amplicude of the fundamental frequency component, which is to be
detected, is a function of the slope m of the baseline, as indicated
by the mAcos(wt) term. Conversely, also in a more operational sense,
the slope m (~A’'/A) can be controlled practically by superimposing an
in-phase and amplitude preselected sine wave, A’'cos(wt), at the
modulation frequency onto the true temporal response T(x°+Acos(ut))
from the system while X, is changing. (Here, 180° out of phase is
also considered as "in phase® because it corresponds to a negative
amplitude.) If the intended offset locked point is located at X=s',
this slope-controlling sine wave must exactly annihilate the
furdamental frequency component of the true system temporal response
T(x+Acos(wt)) at x=s'; the value of Fl(x.A) corresponding to the
effective (cheating) characteristic curve f(x)=T(x)+m(x~s) at x=s'
must be zero, so that no corresponding dc correction is generated.
However, the lack of a dc correction at a nonextremum point still does
not ensure that offset locking can occur. The dynamical requirement
for locking at x=s' is that x=s’ must be a sign switching point for

the F](x,a) in order to provide the returning de¢ corrections of



opposite signs in the opposite neighborhoods of x=s’'. As a result,
such schemes fail to offset lock "the system at the places where
Fl(x,A) are the extrema. According to Expressions (2.2.1.2.3-1), this
df(x)
requirement suggests that the effective -;;——-— should switch sign at
the limiting position of the locked point as A asymptotically
approaching to zero. In other words, the limiting locked point can
never be an inflection point of £(x). Here, the inflection points are
also tiiose of T(x) because the sffective slanted straight baseline has
no effect on their position(s).

Since (1) the lock-in amplifier is in the 1f mode, and (2) the
preset input reference for generating a dc correction is served by an
added cheating sine wave, such a scheme will be named “1f ac
modification". As opposed to this scheme, "1f dc modification" is the
scheme in which a direct dc reference corresponding to the sine wave
reference is employed to bias the lock-in amplifier output in the
stabilization. Basically, both 1f ac and dc modification result in

the same offset stabilization, and will be called "1f modification" in

the following.

2.2.1.2.3 (B) Decoupling the Effect of Gain on the Locking Position
Special care must be taken for the 1f dc modification. With the

f(x) substituted by the expression (Equation (2.2.1.2.3-3)) of the

effective characteristic curve {(one with slanted straight baseline),

the expansion for Fl(x,A) (Equation (2.2.1.2.1-7)) becomes

Fl(x.A)- FIT(X.A) + mA/2 {(2.2.1.2.3-4)
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where FlT(x,A) has the same expression as the Fl(x.ﬁ) in Equation
(2.2.1.2.1-7) with f(x) replaced by T(x), and therefore is the
original Fl(x.A) corresponding to the true characteristic curve T(x).
With Equations (2.2.1.2.3-4) and (2.2.1.2.1-5) combined, the
corresponding output dc correction curve (Sl(x.A.G.¢)) of the lock-in

stabilizer can be expressed as
Sl(x.A.G.i)- G cos¢ [FIT(x'A) + mA/2]). (2.2,1.2.3-5)

Here, the mA/2 term can be thought of as either a preset reference de
or the dc resulting frou a preset reference sine wave. Although mA/2
is dependent on A, since any reference ac or dc signal can be actually
adjusted, mA/2 can be denoted by a single variable Rp to emphasize its
role as an independent variable in the operational sense. Equation

(2.2.1.2.3-5) can thus be revritten as
Sl(x.A.G.d)- G cos¢ [FIT(x.A) + Rp]. (2.2,1.2.3-8)

For a locking position to exist, there are two requirements for
Sl(x.A.G.¢) along the x axis direction: (1) S1 must switch sign at
this position, and {2) the slope of s1 at this position must have the
right sign for the correction to converge into rather than diverge
from this position. According to Equation (2.2.1.2.3-6), such sign
switching is determined only by the bracketed part, and the sign of
the slope of 81 is determined by that of the product of cosd and the
bracketed part. (G's of most lock-in systems are positive.) The

“candidate® locking positions thus include the correction convergent
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as well as correction divergent points because their
convergent-divergent roles can be" switched simply by switching the
sign of the lock-in panel-controlled parameter cos¢. (It is noted
that the panel phase reading (¢') is generally unequal to the ¢ value
in this discussion. However, there exists the one-to-one relationship
between them.)

In terms of actual operation, once the modulation amplitude A
(and thus Flt(x'A) are determined), the preset reference signal Rp (ac
or dc) alone controls all the candidate offset locking positions. On
the other hand, as indicated by the Gcou‘FlT(x.A) term, with A fixed
first, the net gain Gcos¢ independently controls the slope of Sl.
vhich reflects the correction efficiencies about the candidate locking
points. In other words, once A and the sign of cos¢ are fixed, the
correction convergent position(s), if exists, and the stabilization
afficiency around it are respectively controlled by the preset
reference signal Rp and the net gain (Gcos¢).

Since, as indicated by Equations (2.2.1.2.1-7) and (2.2.1.2.1-8),
A is always inevitably involved with every aspect of the output
performance in any lock-in system, no attempt will be made to decouple
the effect of A from those of G, ¢, and Rp on the locking position and
stabilization efficiency. Therefors, for both ac and dc modification
scheme, Equation (2.2.1.2.3-6) represents the idcal that requires the
reference signal be synchronously tuned with the net gain.

The feature that different independent parameters are used to
control different performance variables automatically accompanies the

1f ac modification because it must be performed before the lock-in
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stabilization stage. In order to preserve this feature for the 1f dc
modification, that must be performed after the lock-in demodulation
stage, the reference dc (Gcostp) has to be synchronously tuned with
both cos¢ and G. Here, "both" must be emphasized; otherwise, the
effects of the net gain (Gcosé) and the reference dc on the locking
position and the stabilization efficiency will be mixed up. This can
be shown by the following example, a slightly modified version of

Equation (2.,2.1.2.3-6),

Sl(x.A.G,¢)- G cos¢ FlT(x'A) + G Rp
= G {cosé Flr(x.A) + Rp] (2.2.1.2.3-7)

in which the reference dc (GRp) is synchronously tuned only with G,
but not cosé. Apparently, the locking position is determined not only
by the preset reference dc (Rp) but also by ¢ in this case. This
requirement can also be illustrated by the examples in Figure
2.2.1.2.3-3. Similarly, if there are more than one gain-tunable
stages, denoted by their gains G1 (i= 1, 2, etc.), then the reference

dc should be synchronously tunable with each of the Gi'

2.2.1.2.3 (C) 2f Demodulation — A Complement to 1lf Modification
The corresponding 2f ac and dc modification can be imagined
analopously following the discussion for 1f modification schemes, and
will not be discussed in detail. Two major and conceivable
differences for 2f modifications are: (1) if ac modification is used,
an in phase and amplitude adjustable second harmonic, A"cos(2wt), of

the modulation frequency can serve as an ac input reference, (2) it is



(1.a) Gcosb[rl(x,A) + Rp]

Same locking position.
Different stabilization efficiency.

(1.b) GeosdF, (x,A) + Ry

Different locking position.
Different stabilization efficiency.

Figure 2.2.1.2.3=3
Differences hetween synchronous and nonsynchronous
tuning of the post-demodulation reference dc (R )

with the pre-demcdulation net gain (Gcosg). P
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Gcos¢[F1(x,A) + Rp]

Same locking position, when cos¢ keeps the same sign.
Different stabilization efficiency.

//\3

NN T

VAV

Gcosé?l(x,A) + R

p

Different locking position, if existing, for different
cosg.
Different stabilization efficiency.

Figure 2.2.1.2.3-3 (Continued)
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where Fz(x,A) crosses the x axis that can be locked (It mever offset
locks the system at the extrema of Fz(x,A)).

Although 1f modification schemes are, in principle, capable of
offset locking the system almost everywhere on a typical physical
characteristic curve, there do exist places where such schemes fail.
Apart from the theoretical example of the inflection points of f(x) or
T(x) in the small amplictude limit, a practical problem is illustrated
in Figure 2.2.1,2,3-4, in which the Fl(x,A) corresponding to the
effective characteristic curve £(x) has two nearby interssctions L3
and 7Y with the x axis, where the offset locking is allowed. Since
the proper lock-in phase settings for offset locking the system at ¥
and X, are 180° out of phase, the offset locking can occur only at one
intersection at a time. The directions of the corresponding de
corrections in regions Rl' Rz and RS' separated by Xy and x, are
represented by the arrows shown below the x axis. An effective offset
locking is indicated by a head-on contact of two such adjacent arrows
(solid). For example, in the case of locking the system at X=X, ic
is noted that the effactive stabilization can take place only in
regions R1 and R2: once the system drifts to region R3' the operating
point will be purhed to the right and eventually out of the picture to
seek for another lockable position, which may not exist. Generally
speaking, the stabilization range terminates at the first point where
Fl(x.A) "crossies” (not just intersects) the x axis on either side of
the intended locked point, which is also such a crossing point. The
actual problem is that if two such crossing points are too close

together, as in the current example, then the effective dynamic range
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Figure 2.2.1.2.3-4
A practical problem, in which the F, (x,a) corresponding

to the effective characteristic curve f(x) has twoc nearby
intersections 3% and x, with the x axis.
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for either crossing point to become the intended locked point will be
seriously limited. *

This problem can be solved by complementing the 1f modification
scheme with the 2f lock-in stabilization. The reason is that where
Fl(x.A) is an extremum or equivalently where 1lf modification fails is
usually near where Fz(x.A) crosses the x axis (not just esqual to
Zero), as indicated in Figure 2,2,1.2,3-5 in which many Fl(x,A)'s and
Fz(x.A)'a corresponding to different modulation amplitude A for a
Gaussian characteristic curve are depicted together. This is appareut
by considering the small amplitude limit, in which any sign switching
point of Fz(x.A) is exactly an extremum of Fl(x.A). Since most of the
offset locking can be achieved by 1f modification, in order to
complement it, we employ only 2f lock-in stabilization, not 2f

modification schemes. Of course, using both 1f and 2f modification

schemes is an "overkill®.

2.2.2 Architecture of the Offset Lock-in Stabilization System

Based upon the above geometric arguments, in addition to the
conventional 1f lock-in stabilization capability, a versatile offset
lock-in stabilization scheme should have the following two selectable
basic functions: (1) the 1f ac or dc modification and (2) the 2f
lock-in demodulation. In other words, there are two n:ssible
combinations, i.e. either with the 1f ac or 1f dc modification
incorporated. They will be named the “ac offset scheme" and “dc

offset scheme”, respectively.



F, (x,A)

A=2
Figure 2.2.1.2.3-5

F, (x,A)'s and Fz(x,n)'s corresponding to different nodulation.
afiplitude A for“a Gaussian characteristic curve. The modulation
amplitudes indicated are in unit of the FWHM of the Gaussian

function. The computer graphics are based upon Equations
(2.2.1.2.1-3a) and (2.2.1.2.1-4a). (A: wmodulation amplitude.
FWHM: full-width-at-half-maximum)
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2.2.2.1 ac Offset Scheme

The ac offset scheme, as shown in Figure 2.2.2.1, consists of two
parts: (1) the system response modification circuit and (2) the
lock-in stabilizer, which is capable of both 1lf and 2f mode (as
opposed to the conventional lock-in stabilizer which operates only in
the 1f mode). Since the stabilizer involved is still conventional in
terms of the arrangement of its principal components (enclosed in the
dashed line in Figure 2.2.2.1), only the system response modification
circuit will be briefly discussed.

The modification circuit has two rignal channels summed up by a
voltage adder (VAl in Figure 2.2.2.1), which leads to the input of the
lock-in stabilizer, i.e., the input of the built-in lock-in amplifier.
These two channels are: (A) the detector channel and (B) the reference
channel.

4ae purpose of the detector channel is to extract only the 1f
couponent in the system temporal respont=e. This elimination of all
harmonics of 1f is unnecessary fo- the lock-in stabilization stage;
however, this is necessary for signal proceasing which relies on
visually recognizing 1f. This channel consists of a voitage gain
tuner, followed by a frequency filter centered at 1f. The gain tuner
shculd be set at a value which is small enough to not saturate the
following electronic stages but large enough for aonitoring (at HA)
and processing purpose. This is the reason why the guin tuuer had
better be capable of both amplification and attenuation (unless the
derecior signal level is known beforehand, as in the case of offset

locking the CO2 laser). As to the frequency filter, its typz (such as
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Figure 2.2.2.1
Block diagram for the 1f ac modification plus 2f demcdulation
scheme.
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lowpass or bandpass, Butterworth or Chebyshev [12], etc.) and
specifications (such as bandwidth' and pole-number [12]) are not
critical in the design. This is because the major filtering of the
offset stabilization scheme is conducted by the lock-in stabilizer
instead, =25 indicated by the following two facts: (1) due to the
modulation on a generally nonlinear system characteristic curve at a
constant frequency lf, the system temporal response is basically a
linear combination of the if component plus its harmonics with the
amplitude distribution evolving with time while the moculation center
varies, and should, in principle, be free of other frequency
components, (2) the lock-in amplifier (in the 1f mode) in thr lock-in
stabilizer is theoretically a single frequency component (lf)
invertor. Therefore, for monitoring and processing the 1f component,
the only requirements for the filter are: (1) its bandwidth covers
only the 1f component among 1f and the harmonics, (2) the Bode plot
[12), gain vs. frequency, and consequentiy the corresponding phase vs,
frequency plot of the filter should be flat around the 1f fr:-quency,
so that no amplitude envelope "ringing" and phase fluctuation effect
might occur due to the practical slight change in the 1f component.
Since the lock-in amplifier is a phase sensitive detector, such phase
fluctuations could cause serious problem in locking stability. The
second requirement implies that if a bandpass filter centered at 1f is
used, a high Q value should be avoided; if a lowpass filter is used,
the —3dB point should not be toc close to the 1f freguency.

On the other hand, the reference channel ls to generate a

reference sine wave for the 1f component extracted by the detector
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channel to annihilate. If the input of this channel is directed from
a pure sine wave generator, such "as the built-in modulation oscillator
of the lock-in stabilizer, this channel should consist of a voltage
gain tuner and an in-series phase shifter. The phase shifter should
have a tuning range a little over 360°, so that a local continuous
tuning is possible about any phase reading. If the input of this
channel is provided by a periodic non-sine wave (e.g. square wave)
generator, then a frequency filter centered at 1lf will be necessary to
extract a pure sine wave form at 1f, For similar reasons, the
requirements for this filter should be the same as those for the one
in the detector channel.

Both channels are directed to the inputs of a voltage adder (VAl
in Figure 2.2.2.1), which is followed by a voltage attenuator. Since
the reference sine wave is equivalent to the negative wave form of the
1f component of the system response at the intended offset locked
point, the adder actually subtracts this 1f component from the
post-filter onl& renmaining frequency component, the 1f component, of
the detector temporal response. Here an voltage attenuator rather
than a more versatile gain tuner is used. The reason is that there
usually exists an input voltage amplifier (not attenuator) in most
lock-in amplifiers. This voltage attenuator along with the built-in
input amplifier of the lock-in stabilizer can control the signal level
to be demodulated, and therefore can affect the dc correction
efficiency of the stabilizer. Since the correction efficiency should
be high enough to correct any system fluctuation in time and low

enough to avoid "overshooting" in correction, this post-adder voltage



gain tuning is critical in terms of locking stability. Because the
signal level could have been raised up by the two gain tuners of the
detector and reference channel, extra attenuation factor might be
needed in the design. Ideally, the minimum attenuation factor should
be at least enough to compensate the maximum amplification factors of
the two gain tuners.

Of course, all the modification circuit should be bypassed when

the 2f demodulation is in use.

2.2.2.2 dc Offset Scheme

The dc offset scheme, shown in Figure 2.2.2.2, is also based on a
standard lock-in stabilizer. For 1f dc modification, a voltag adder
(VA2), which sums up the lock-in correction and the reference dc, is
incorporated between the output of the lock-in amplifier and the
voltage adder (VAl) of the lock-in stabilizer. The preset reference
dc, which corresponds to Rp in Equation (2.2.1.2.3-6) within a
proportionality constant, is provided by a tunable voltage power
supply (PS2). In order to be synchronously tuned by the net gain of
the lock-in stabilizer, the preset reference dc is then directed to a
lock-in-gain-controlled (G-controlled) and an in-series
lock-in-phase-controlled ($-controlled) voltage gain tuner before
being added to the lock-in correction signal.

The gain (G) tuning on a typical lock-in amplifier is generally
unipolar, This makes the G-contrslled gain tuner unipolar. On the
other hand, according to Equation (2.2.1.2.1-5), the ¢-controlled gain

tuner should be linearly controlled by the value either of cos¢ or of
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Figure 2.2.2.2
Block diagram for the 1f dc modification plus 2f demodulation

schene.
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|cosg¢|. For the case of cosé, since the polarity of the tuned
reference dc (not the preset one) can be determined simply by the
leck-in phase (¢) adjustment, the tunable PS2 power supp;y need be
only unipolar. In other words, PS2 must be a bipolar one for the case
of |cos¢|. However, since ¢ is usually optimized te b. #x (not the
actual ¢ reading on the lock-in parsi) ..rst i teru. of actual
operation, it is always more convenienc to render the sign switching
capabllity to a bipolar PS2.

Similarly to the ac offset scheme, when 2f demodulation is in
use, the above modification circuit for the lock-in correction must be

detoured.

2.2.3 Application to the cw coz Laser Stabilization
2.2.3.1 Actual Stabilization System

Since (1) no attempt was made to modify a commercial 1lf lock-in
stabilizer, as required by the G-controlled and g¢-controlled gain
tuner in the dc offset scheme and (2) it is always more convenient and
efficient to monitor ac signal on an oscllloscope than dc signal en a
voltmeter, we adopted the ac offset scheme to offset lock the CO2
laser. It seems that few people are interested in locking a
dc-controlled systems around their inflection points. Currently no
commercial lock-in stabilizer with both 1f and 2f mode exists. The 2f
demodulation capability was therefore not ir:cluded in the prototype
stabilization system (Figure 2.2.2.1).

The grating zero order beam of the 002 laser, used for laser line

identification, is now directed to a liquid nitrogen cooled HgCdTe



detector (Infrared #88-2549). (Caution: Never ever use the detector
to detect the laser first order output, which is usually stronger than
100W and more than enough to burn the detector.) The detector
built-in preamp signal is then processed with the response
modification circuit. The modification circuit, including the
detector channel, the reference channel, the voltage adder (VAl), and
the post-adder attenuator are all built in one box, the actual circuit
schematic of which is shown in Figures 2.2.3.1-1 (a)-(e). The
"cheated" lock-in stabilizer is Lansing Model 80,215 with the
modulation frequency factory-preset at 518 Hz. The clrcuit for
connecting the lock-in stabilizer to the PZT of the 002 laser is put
in a separate box with proper protection circuit (Figure 2.2.3.1-2)
suggested by the Lansing instruction manual,

Since the modification circuit (Figure 2.2.3.1-1) was homebuilt,
some comments for the circuit design will be made briefly. But no
explanation of the detailed electronic mechanism will be given,
because basically only standard operational amplifier (op amp)
circuits are employed {12,13]. The function of each electronic stage
will simply be noted below the corresponding part of the circuit
diagram in Figure 2,2.3.1-1 (a)-(e).

The input signal of the reference channel is derived from the
Monitor Sync connector (on FP/L), which is a 20 v pk-to-pk 518 Hz sine
wave source. (FP/L stands for "front panel of Lansing".) Such a
large amplitude makes that only attenuation is required in the
reference channel. Because the dc level associated with this sine

wave Is negligibly spall. this input is dc coupled. The first stage
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of the reference channel, consisting of a current limiting resister
and a +15+0.7 v diode-pair voltage catcher [12], is to protect the
following stages and the 15 v circuit power supply. This large
amplitude input is attenuated with an on-board pot (Pl) to ensure that
no voltage saturation occurs in this channel, particularly in the next
frequency filtering stage. T!:» linsarity of the voltaga pot tuning is
provided by (1) its preceding op amp voltage follower, which raises up
the input impedance of the pot by orders of magnitude, and (2) the
relatively large input impedance of the following filtering stage,
wvhich is at least an order of magnitude larger than the pot reaistance
rating. (Since the only purpose of all the voitage followers in the
circwit is for voltage transfer impedance matching to avoid nonlinear
interactions between consecutive linear stages such as in the current
case, all the rest voltage followers will be neglected in the
discussion.) The 518 Hz ban”>ass filtering stage is incorporated to
"purify” the signal from the Monitor Sync connector {on FP/L), which
is at least contaminated by a small tﬂi:d harmonic of the fundamental
518 Hz component,

The pure sire wave thus obtained is further attenuated and then
phase shifzed to become the required reference sine wave. The
attenuation 1s adjusted with a 10T volcage pot (P3), which is
panel-controlled (Gain/Ref knob on FP/M). ("M" stands for the
modification box.) The phase shifting is achieved by three in-series
stages: the first two are 0°-100° shifters, the third one is a +1 gain
selector (tl1/Ref toggle switch on FP/M). The net shifting range of ¢

is thus [-200°E+2OD°], which is, as required, over 360°. Idcall&. the
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two 0°-100° shifters can be controlled synchronously by a single high
12solution pot. However, in this prototype circuit two separate
panel-controlled low resolution pots (41/Ref and dz/Ref knob on FP/M)
are used instead for this purpose.

The detector channel also has a protection input stage, similar
to that of the raference channel. But now the input is ac coupled.
The reason is that the small signal from the detector preamp generally
needs to be amplified, and any dc component associated with the preamp
output, if not sliminated first, could cause the saturation-clipping
of the ac signal either within or after the amplification stage.

(This ac coupling feature was important particularly when ths offset
stabllization scheme was tested on different IR detectors.) The
anplification stage is panel-controlled (Gain/Det selector on FP/M, &
position) from 0-50 dB by 10 dB step size. The continuous tuning
between these fixed amplification factors is achieved with the
attenuator after the 518 Hz bandpass filtering stage. In terms of
actual operation, this continuous tuning between the selectable
discrete gain is unimportant because (1) the amplitude of the
reference sine wave can always be continuously adjusted to match that
of the detector channel sine wave, amplified (discretely) only for
oscilloscope monitoring, (2) the stabilization efficlency, affected by
the signal ievel before the lock-in demodulation stage, can always be
throttled by the post-adder attenuation and the lock-in input
amplification. The incorporation of this attenuation is only for a
quick circuit test which employs the 20 v pk-to-pk sine wave, provided

by the Monitor Sync connector (on FP/L) (the only sine wave source in
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this stabilization system), as the inputs of both the detector and

reference channel.

2.2.3.2 Operation

Introduced in the following 1s an efficient offset locking
procedure, which gives not only the least interactions among the
controlling parameters (knobs and switches) but also the best offset
locking quality. Although the introduction of the procedure looks
long due to the accompanied reasonings, the procedure itself is only a
10 minute job. To facilitate the discussion, the panel layout is
shown in Figure 2,2.3.1-1 (e).

Step (1) Set up the system as spacified in Figure 2.2.2.1.
Connect an oscilloscope {(Scops A) to the Monitor Signal connector (BNC
on FP/L), and set the Monitor selector {on FP/L) Fo the Demod
{demodulation) position. Connect a dual tracoggaéglloacopo (Scope B)
to the Mon/Ref and Mon/Det connector (BNC’'s on ;P/H). (Set the
Mon/Out-or-Mon/Det selector (toggle switch on FP/M) to the Mon/Dst
position.)

Step (2) Turn the Att/Det knob (on FP/M) all way up. (This is a
knob only for circuit testing.) For monitoring convenience as will be
shown later, the triggering phases of the two traces on Scope B are
suggested to be set to differ by 180°. and the gains of the two traces
had better be always the same. Monitor Scope B to check if the
reference channel signal is a sine wave free of distortion. If
distortion can be visually recognized, adjust pots Pl and P2 on CB/M.

{"CB" stands for circuit board.)



Step (3) Set a P2T modulation amplitude. Usually, a modulation

amplitude at about 10 v is an emplrically reasonable starting point.
Lansing has two modulation signal outputs: the Low Mod (0-15 v) and
High Mod (0-150 v) SHV BNC connectors on BP/L. (BP stands for back
panel.) Now the Low Mod connector should be used for better tuning
resolution., Since this amplitude is not directly monitored, its
adjustment is achieved by turning the Mod Amplitude control (recessed
pot on FP/L) to approximately 2/3 of the full tuning range from zero.
Step (4) Determine the 002 laser PZT bjag to be lucked, Set the
Function selector (on FP/L) to the Manual position, and then adjust
the Bias (0.2=1.6 kv) knob (on FP/L) until an optimal (a compromised)
FIR laser performance is obtained in terms of its output power, mode
quality, and the noise laval. JIt-is noted that the 002 laser, on
whatever the laser line, usually has a noisy spot close to where it
has the maximum power. Therefore, to obtain enough locking stability,
the bias at the maximum power should be avoided in this initial
setting. (This is part of the reason to offset lock the CO2 laser.
If a spot with a little higher power than this preset value is really
needed, a fine readjustment of the bias by tuning the reference sine
wave amplitude is available in step (8) (Case (B8c))). Two
longitudinal CO2 laser modes are within the PZT bias tuning; there
alwvays exist two equivalent optimal biases, separated approximately by
0.5-0.7 kv, depending on the aging of the PZT. It is suggested that
we select the lower value one. (Because the stabilization usually
drives the locking P2T bias to higher values to compensate the thermal

expansion of the laser cavity, this selection will provide more
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clearance for locking bias drifting.) The voltage separation between
the two longitudinal modes should be remembered as a reference for
step (9) (Lansing Mode Jump).

Step (5) Annihilate the 1f component of the detector channel.
Adjust the Gain/Ref, ¢1/Ref, $2/Ref knobs and tl/Ref selector (on
FP/M) to make the two sine waves (from the Mon/Ref and Mon/Det
connector) monitored on the dual trace oscilloscope have the same
amplitude but 180° out of phase with each other. This corresponds to
exactly overlapping these two traces on the oscilloscope. (Remember
the trace settings for Scope B in step (1).) For better matching
between these two sine waves, if allowed by the noise level, this
adjustment can begin with a larger gain of the detector channel,
controlled with the Gain/Det selector {on FP/M). (Of course, the
annihilation can also be monitored at Mon/Out (on FP/M). But this
does not provide the relative deviation of the detector channel signal
from the reference sine wave.)

Step (6) Optimize the lock-in demodulation phase (¢,). This can
be achieved by (a) disconnecting the detector signal from and putting
a 50 0 BNC terminator on the detector channel input (Input/Det
connector on FP/M), and (b) using the phase matched and fluctuation
free reference sine wave alone to optimize the corresponding Lansing
Demod signal on Scope A by adjusting the +)\ toggle switch (on FP/L),
which adds » to ‘d' and the 0°-180° Phase control {recessed pot on
FP/L). (Here, the "+)\", given by the Lansing Company, is a name that
does not make sense to the author.) Generally, the Demod signal with

‘d uncorrected is a 2f periodic wave train with the functional form
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Adsin(ant) within the interval t:[¢d/(2af),(¢d+a)/(2wf)] as one
peried. Here, Ad is the amplitude of the Demod signal. Apart from
the gain, the optimal Lansing Demod signal, which provides the highest
lock-in correction efficiency, should be either the —|sin(2xft)| or
|sin(2xft)| wave train. (Of course, the worst Demod signal is with
tsin(2xft) within t:[~1/(4f),+1/(4f)] as one period because it can not
be inverted into any dc correction.) It is noted that the lock-in
demodulation phase uncertainty thus obtained should be to within 0 or
. Now, reconnect the detector prsamp signal to the Input/Det
connector,

Step (7) Iry to lock the 602 laser. Turn the Function selector
(on FP/L) from the Manual to the Set position and then to the Stab
position.

Step (8) Confirm if the locking does occur. In terms of the PZT
bias, shown on the panel meter of Lansing, there could be three cases:
(8a) the bias starts drifting away from the preset value in one
direction, (8b) the bias starts oscillating about the preset value,
(Bc) there is no obvious change in the bias.

Case (Ba), a failure, can also be revealzd by that the 2f
periodic Demod signal (on Scope A) starts evolving with a nonzero dc
component, For this case, there are two possible causes (if no
mistakes has been made in steps (1)-(7)). The first passible cause is
that the demodulation phase needs to be changed by ». We can thus
return the Function selector (on FP/L) back to Manual, and restart it
from step (4) (the bias optimization). Since the P2T bias does not

drift much in such a short time, the new optimal bias should be close



to the original one. But in step (6) (the demodulation phase
optimization) only to change the +\ toggle switch (on FP/L) setting is
required. If drifting still happens after step (7), then the cause
could be that the preset PZT bias is too close to one of the extrema
of the Fl(x.A). We return the Function selector (on FP/L) to Manual
again, then vary the Bias control (on FP/L) about the preset position
while monitoring Scope B. If the amplitude of the detector channel
sine wave (on Scope B) as a function of the PZT bias is found to have
a maximum around the preset bias position, this cause is then
confirmed. In such a situation, because the 2f demodulation
capability is not {ncorporated in the current stabilization scheme,
the only reszort is to select a new, nonoptimal, but lockable preset
PZT bias which still.provldcs reasonably good optically pumpirg for
the FIR lascr. Since typical PZT modulation amplitude is much smaller
than the typical width of the feature of the CO2 laser gain profile
(the characteristic curve f(x)) as a function of the PZT bias, usually
little shifting(s) of the extremum (extrema) of the corresponding
Fl(x.A) can be made by increasing the modulation amplitude A. (See
Equation (2.2.1.2.3-1).) Therefore, it is suggested that we restart
it from step (4) to avoid the extremum, instead of step (3) to change
the modulation amplitude.

Case (8b) implies a bad quality locking with dominant periodic
*overshooting” corrections. This overshooting oscillation 1Is because
the signal level before the lock-in demodulation stage is too large; a
large positive correction always needs to be followed by a large

negative correction, and vice versa. This case can also be revealed
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by Scope A and B simultaneously: the amplitude Ad of the Demod signal
Adlsin(zxft)l on Scope A will oscillates between the two signs; the
amplitude of the detector channel sine wave on Scope B will oscillate
about that of the reference channel sine wave. (Remember the trace
settings for Scope B in step (1).) This situation can be improved by
decreasing either (i) the gain before the demodulation stage or (il)
the PZT modulation amplitude until the dominant periodic oscillation
begins to disappear and a smaller random bias fluctuation, if
observable, about the preset PZT bias atarts to dominate. To decrease
the pre-demodulation gain, it is suggested to adjust only the Att/Out
knobs on FP/M and the Input Gain on FP/L, and to leave the gains of
both detector and reference channel unchinged. When decreasing the
pre-demodulation gain, there should not be any accompanied change in
the preset PZT bias, the center of the oscillation or fluctuation,
Such a accompanied change could imply that the resultant dc correction
has been too small to lock the CO2 laser in time. If this happens, an
in-time increase in the gain could save it; otherwise, it is required
to restart it from step (4) all over again. Strictly speaking, the
lowering of the modulation amplitude A should not be used to remove
this oscillation because the 1f lock-in stabilization correction
output function Sl(x,A.i.G) is a nonlinear function of A; a change in
A could cause a change in the offset locking bias. (See Section
2.2.1.2.2) However, when A is small, the change in A might not have
such a sensitive effect on the locking bias. Actually, this
sensitivity can be easily tested by monitoring the FIR laser

performance as a function of A.
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Case (8c) implies the offset stabilization is either a success,
or a failure with an obscurely slow PZT bjas drifting. This can be
tested by (i) slightly changing the PZT bias with the Bias control (on
FP/L) or (ii) slightly varying the amplitude of the referance sine
wvave on Scope B with the Gain/Ref knob (on FP/M). 1If it is a
succassful locking, in test (i), with the manually bias varying as a
perturbation, the laser will return to the preset operating position;
in test (ii), the system will "chase" to match the new reference
setting. Actually, the latter is a better practice because it also
helps to reoptimize the PZT bias, particularly when it takes a while
to do steps (5)-(7). If the locking is successful, it is fun to see
how ¢fficiently the detector channel sine wave follows the reference
sine wave being manually varied, But do not make the amplitude of the
reference sine wave too much larger than the preset value because
otherwise the locking stability might be reduced (See Section
2.2.1.2.3 (C).) or the locking position might even disappear (See
Section 2.2.1.2.3 (A).)

Step (9) Set up the Lansing Mode Jupp. Because, as previously
explained, the locking bias almost always drifts toward higher
voltages, the bias will start getting trapped upon reaching its
limiting value at 1.6 kv. In this situation, generally, the Demod
signal on Scope A will have a dc component, and the two traces on
Scope B will not exactly overlap. To avoid such a fake locking in the
PZT bias, it is suggested to use the Mode Jump of Lansing. (See
Lock-in Stabilizer Model 80.215 Instruction Manual.) In principle,

the step size of the Mode Jump should be close to one longitudinal
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mode step so that their difference can be automatically compensated by
the stabilization. (Here, the "mode step" is the voltage separation,
obtained in step (4), between two equivalent operating points of two
adjacent longitudinal modes). Any chosen step size should be tested
with the Manual Mode Jump as following while the 002 laser is being
locked. The jump should be triggered in the direction that can
accommodate the step size. After a short while, if needed, the P2ZT
bias should be either relocked at certain value or trapped at 0.2 kv
or 1.6 kv, a limiting position. (It is possible that the bias will be
locked with the same reference sine wave at an lnequivalent operating
point of the original or adjacent longitudinal mode.) Further
correction for the step size will be required until the corresponding
Manual Mode Jump can result in relocking the bias at the equivalent
operating point of the adjacent longitudinal mode. Once the step size
is determined, set the Mode Jump from Manual to Automatic. (Of
course, it is even better if the step size corresponds to two
longitudinal mode steps because the number of the Mode Jumps, which
are interference to spectrum scanning, can be reduced by 50% in any °
cases. However, in order to test such a large step size, we need to
wait until the locked bias drifts to the positions close to either end

of the Bias range.)

2.2.3.3 Performance
This ac offset scheme for the 002 laser has been successfully
tested on over a dozen C02-laser-punped FIR laser lines. (Mostly were

tested on the FIR Laser Electric Resonance spectrometer [14,15], which
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is worse in terms of laser power and noise level of both the CO2 and
FIR lasers. According to the resultant FIR laser performance, this
technique can actually quintuple the number of laser lines available
on that experiment.) So far no optimal 002 purping line has been
found close to the inflection point of its gain profile, where the 1f
modification is difficult and the 2f demodulation is needed. In each
case, without any stabilization control readjusted, the stabilization
lasted as long as the cooling of the IR detector or as long as the
operator's interest. In othar words, once the stabilization scheme is
set up correctly {in about 10 minutes), at least ten hour locking is
guaranteed. The FIR frequency drift rate is approximately 75
kHz/hour, which is a little better than the best available from an
etalon locking scheme [8,9]. However, the cost of the response
modification box, less than §100, is mors than two orders of magnitude

cheaper than that for a qualified stalon.
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Chapter 3

Far Infrared Vibration-Rotation-Tunneling Spectroscopy of Ar-14NH3

3.1 Introduction

The establishment of general rules governing vdW interactions on
a molecular level is essentisl in understanding condensed phases and
inter-phase interactions. Although various small vdW complexes have
been studied, only few general rules have so far been deduced,
Unexpectedly. detailed spectroscopic studies of ths gas phase
NHa-cuntainln; binary complexes have destroyed one such important
rule.

One might think intuitively, according #< the definitiuvn of
hydrogen bond (H-bond) [1], that NH3 can act not only as a H-bond
donor but also as an acceptor, rsspectively due o ths relatively
strong electronegativity and the gzvailable e’1ctron lone pair of the N
atom; in other words, NH3 can in principle, be a Lewis acid (H-bond
donor) as well as a Lewis base (H-bond acceptor) [2]. However, this
guess has been experimentally found to be only parcially cecrrect. [3)

The role of NH3 in binary vdW complexes that have been studied,
mostly by microwave spectroscopy, can be classifiec into thrae types
[3]). The first type consists of linear'y H-bonded systems such as
H3N-HCN [a], H3N-HCI [5], H3N-H3r [6], H3N~HOH (7], H3N-HCCH {8}, and
H3N-HCF3 [9], in which the NH3 subunit behaves clearly as a H-bond
acceptor or Lewis base. In these cases, the partners of the NH3

subunit ranges from strung (e.g. HCN) to extremely weak Lewis acids
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(e.z3. CHF3). The second type contains the T-shaped complexes H3N-CO2

[10), and H N-N20 [11], which are® non-H-bonding systems but in which

3

the NH, subunit behaves as a Lewis base pointing its long pair toward

3
the middle of its linear partner. The third type are those in which
the Lewis acid-base roles are indeterminate, such as CO-NH3 [12}, the
iree-internal-rotor systsm Ar-NH3 [13-15], and the bent (NH3)2
[16,17]. Interestingly, all the subunits, viz,, CO, Ar, and NH3.
involved in .s type can form nearly linear H-bonds with HF, H20.
except in the case of Ar-Hzo {18] whose struccure has ~>t been
determined conclusively. In other words, zo far no experimental
evidence has indicated that NH3 can be a H-bond donor yet.

This is different from other prototypical H-bonding molecules,
viz., the first r w hydrides HF and Hzo. which can acc as hboth H-bond
donor and acceptor. As first pointed out by Nelson [3], this can be
illustratec further by considering the vdW stereochemistry of the six
binary complexes that can be formed by HF, H2' and NH3. If ic is
assumed that (1) the compleses have linear H-bonds with the basic
H-bond acceptor pointing 1 lone pair of electrons toward its partner,
and (2) the trend of donating H-bonds is: NH3 < H20 < HF, then, as
shown in Figure 3.1-1, the predicted structures of five of these
complexes are in essential agreement with expsrimental results, except
in the case of (NH3)2. It is noted that (NH3)2 iz the only complex,
among the six, in which Nh3 needs to donate a H-bond, and also the
only case that contradicts the prediction.

This strange behavior of Nl-l3 has attracted a great deal of

experimental and theoretical interests as well as much controversy,
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Figure 3.1-1
Linearly H-bonded structures of the binary complexes froem the
prototypical first row hydrides, HF, HZO‘ NHS‘ High-resolution

spectroscopy has established these structures to be correct except in

the case of NH3 dimer. (From D.D. Nelson, Jr., G.T. Fraser, and V.

Klemperer, Science 238, 1670 (1987).)
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particularly over the structure of (NH3)2.

Many theoretical calculatioms [3,19] of the (NH3)2 potential
surface either preassume or produce a nearly linzar H-bonding
structure (Figure 3.1-2(a)) as the global minimum, and in one
calculation [20) a c2h centro-symmetric structure (Figure 3.1-2(c))
has been predicted to be a local minimum., However, recent microwave
spectroscopic studies [16,17] of two intermolecular vibrational states
of (NH3)2 and one of (ND3)2 by Klemperer and coworkers indicate that
(NH3)2 has a bent equilibrium structure (Figure 3,1-2(b)), which is in
conflict with almost all theoretical calculations. (Only the
post-experiment theorstical “"prediction" by Sagarik et al. [21]
produces a similar structure.) Thelir two major sxperimental results
are: (1) the ground intermolecular vibrational state shows rigidity,
as confirmed by isotopic substitutions, and (2) the small dipole
moment projection By 0.75 D, are found along the a principal axis of
the dimer. These imply that s, basically results from the vectorial
addition of the two monomer dipols moments with a bent and relatively
rigid configuration. Otherwise, if linear H-bond is assumed (and
higher order electric interactions can be ignored), then this
projection should be approximately 2 D instead. Consequently, this
result rules out both the nearly linear (Figure 3.1-2(a)) and
centrosymmetric (Figure 3.1-2(c)) H-bonded structure.

After these microwave studies, some theoreticlans [22], instead
of economically preassuming a nearly linear or a centrosymmetric
structures, carried out a geometry optimization on the potential

surface at the SCF level for (NH3)2 and other first and second row
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Figure 3.1-2
Possible structures of <NH3>2:

(a) theoretical (nearly) linear structure,

(b) experimentally observed bent structure, as an intermediate between
the two theoretical structures shown in (a) and (c),

{c) theoretical centro-symmetric structure.

(Adapted from A.D. Buckingham, P.W. Fowler, J.M. Hutson, Chem. Rev.
88, 963 (1988).)



hydrides. They found that (NH3)2 is a rather special and extremely
difficult case; when the basis set is small, a centro-symmetric
structure is the global minimum, a nearly linear structure is a saddle
point, whereas when the basis set is relatively large, there is a role
switching between the two structures. Although other higher order
calculations [20,23] were made, no agresment on the relative
orientations of the equilibrium geometry and even the number of minima
on the potential surface have besn achieved. Certain calculation [20]
showed that ths conversion energy between the linear and
centro-symmetric structures are extremely low that the predicted
geometry is sensitive to the correlation snergy calculated. All these
indicate the difficulty of the structural prediction, and conflict
with the existence of rigidity effects shown by the microwave studies.
Theoreticians [24) therefore suggested that (1) the measured B, be
interpreted as an average value due to large amplitude motions on the
relatively flat multibarrier potential surface, and (2) many torsional
motion couplings do not lead to spectroscopic splittings. Basically
this implies that the B, measured by Klemperer cannot be interpreted
in terms of a straightforward classical vector model, and the
equilibrium structure thus derived could be incorrect. It is also
shown that although B, is a strong function of the relative
orientation between the two NH3 subunits within an electrostatic
model, approximately equally good structural reassignments can be made
with one of the torsional angles varying from 0°-60°. In terms of the
apparent rigidity, the discrepancy between theories and experiments

therefore remains.
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Nelson et al. [25) then made a MS group theoretical study for the
energy level splittings due to rotational-tunneling motions. This
study illustrates that even when certain torsional tunnelings are
allowed, the tunneling splittings could still be missing and a
classical semirigid rotor type microwave spectrum could be observed.

So far, perhaps, the most meaningful theoretical results is that
the (NH3)2 complex does provide a serious challenge to theoreticians.
In order to understand these anomalous behaviors of NH3, experimental
studies of its potential surface are then required.

Because of the simplicity of the Ar atom as a featureless probe
for the behavior of the NH3 subunit, Ar-NHa. instead of (NH3)2.
clearly becomes the starting point for a detailed experimental study
of the weak binding of NH3‘ Due to the suggestion, by microwave
spectroscopy [14,15), that NH3 subunit of Ar-NH3 is essentially an
inverting, free internal rotor even in the ground intermolecular
vibrational state, its potential surface is expected to be relatively
isotropic. A further characterization of the global features and
finer details of the potential surface becomes a more intriguing
challenge. Since FIR spectroscopy directly samples the intermolecular
vibrational states, which can then be inverted into the potential
surface, we use the state-of-the-art tunable FIR laser technique
described in Chapter 2 to probe the system.

In this work, we report a study of an intermolecular vibrational

transition of m--l"nu3 at 26.470633(17) em L.

The ground state of
this band was studied previously by Nelson et ai. and Lovas et al.

using molecular beam electric resonance experiments and pulsed nozzle
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Fourier transform microwave spectroscopy. [13] The obtained molecular
constants of the upper vibrational state are also consistent with the
nearly free internal rotor model. The molecular constants, the
permutation-inversion group theory, the selection rules, and the
quantum number correlation were all used to make a tentative
assignment of this vibrational band and to extract information about

the intermolecular potential surface.

3.2 Experimental

Used in the range from 21 to 28 en-l on the tunable FIR/planar
jet spectrometer were four fixed frequency FIR laser lines, l.e.
692.9514 GHz, 761.6083 GHz, 584,3882 GHz from HCOOH, and 787,7555 GHz
from DCOOD [26]. About 350 transitions (see Appendix Table 5 for the
approximately 250 rotationally unassigned lines) were observed over
this region. A stick spectrum of these lines with observed
intensities is shown in Figure 3.2. At least two different vdW
species, viz., the Ar-NH3 and (NH3)2 complexes, were obsearvad in the
supersonic expansion from a 700 Torr 3% NHa-in-Ar mixture through a
1.5" long and 0.001" wide room temperature slit into a chamber at
approximately 100 mTorr. Although most of the observed lines were
catalogued using a 3% mixture, the signals of Ar-NH3 and (NH3)2 can be
improved threefold with 0,.5X% and 2% mixtures, respectively. The
signal of Ar-NH3 is in general about ten times stronger than that of

(NH3)2. and has a maximum signal-to-noise ratio of about 200.

3.3 Spectrum Rotational Assignment and Analysis
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Figure 3.2
Computer reproduction of the far-ir spectrum observed in a 3%

NH3-in—Ar mix.
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A Ka: 0 « O subband of the near prolate Ar-leH3 complex centered
at 26.470633(17) cm_l was identified and shown to have the same lower
state as that observed previously by microwave spectroscopy [(13]. The
observed subband structure is shown in Figure 3.3 as a stick spectrum.
Twenty three transitions (Table 3.3-1) have been assigned to this
subband. The rasults of the fit are given in Table 3.3-2. The
standard deviation of the fit of aix parameters to 23 lines is 1.1
MHz, which is consistent with the uncertainty due to laser frequency
drift. The P(7) line at 751 GHz was obscured by the atmospheric water
absorption at 752 GHz in the unpurged optical path, laN Nuclear
hyperfine structure from the 1I‘N quadrupole interaction was only
partially resolved for each of these spectral lines, as is evident in
the P(2) line shown in Figure 3.3, 1In the fit, the uppsr state
nuclear quadruple coupling constant (oqQ‘.') was fit with the ground
state constant (ch“') fixed at the value from the microwave study,
in which the hyperfine structure was much better resolved. Over
ninety other far infrared lines in the 7 ci_l interval measured have
been assigned as vibration-rotation-tunneling (VRT) transitions in

(NH Their rotational analyses will be given szeparately in

32

Reference 27.

3.4 Group Theoretical Preparation for Vibrational Assignments

The transformation properties of the nuclear coordinates of
Ar-NH3 under the permutation inversion (Pl) operations of the D3h(H)
molecular symmetry group (Appendix Table 1, character table) will be

discussed first. The methodology of the coordinate transformation
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Table 3.3-1
Observed K‘-O « 0 subband transitions of Ar-NHa.

TRANSITION OBS. FREQ. 0-C
¢ ' . " " "

J K‘ X J* K"K (MHe) (MHz)

1. 14 0 14 15 0 15 696307.0 -0.6
2,13 0 13 14 0 1.4 703581.0 1.2
3. 12 0 12 13 0 13 710717.0 0.1
4,11 0 11 12 0 12 717728.5 =0.3
5.10 0 10 11 0 1n 724623.0 -0.1
6. 9 0 9 10 0 10 731405.0 -0.8
7. 8 0 8 9 0 9 738080.5 -0.7
8. 72 0 7 8 0 8 744653,3 0.6
9. 5 0 5 6 0 6 757492.3 1.4
10. 4 0 & S 0 5 763758.7 -0.5
1. 3 0o 3 4 0 4 769926.4 =0.4
12. 2 0 2 3 0 3 7175992.7 -0.3
13. 1 0 1 2 0 2 781957.7 1.0
l4. 0 0 O 1 0 1 787816.4 0.2
1s. 1 0 1 0 o0 0 799215.0 -0.1
16. 2 0 2 1 0 1 804748.7 -1.0
17. 3 o0 3 2 0 2 810170.0 -1.0
18 4 0 4 3 0 3 815476.5 0.8
19. 5 0 5 4 0 4 820661.7 1.5
200 6 0 6 5 0 5 825718.0 -2.4
2. 7 0 7 6 0 6 830652.9 1.3
2. 9 0 9 g8 0 8 840105.1 0.9
23. 10 0 10 3 0 9 844610.8 -0.8




Table 3.3-2

Spectroscopic constants (in MHz) of the observed
VRT band of Ar-NH,. The uncertainties in the

3

parentheses are two standard deviations.

The observed band®

Lower state: Ground ltntc:b
(B "+C") /2 2876.927(94) 2876.849(2)
DJ" 0.08644(27) 0.0887(2)
¢qQ..” . 0.350(8)

Upper state:
(8°'+C*)/2 2822.87(11)

D, 0.10225(48)
" -30.5(16) x 10" °
ch." -0.8°¢

%This work. Rotational constants are determined in a
simultaneous fit of both the upper and lower states.

bRcfereneo [13].

“The upper state laN nuclear quadruple coupling

constants were obtained by fixing the lower state
constants at the values from microwave spectroscopy.

119



1 »(2)
i
26,0651 (en”d) 26.0654
»2)
1{ | I | l| |l 1] 4 L] [) { 1 ] T L ’ I, I ) { L
21.67 -1 28.00
(em ) origin
Figure 3.3 21
Upper: A 10 MHz scan showing P(2) of the 26.47 cm = band of Ar-NH3,

with IAN nuclear hyperfine structure partially resolved.
Lower: A stick spectrum of the intermolecular vibrational band with
the actual observed intensities indicated.
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employed was first introduced by J. Hougen [28). The transformation

properties of the rotational wave functions and inversion coordinate

will also be devived.

3.4.1 Coordinate Definitions

The NH, subunit-Fixed Cartesian coordinate system is defined in

3
Figure 3.4.1-1, 1Its origin is the center of mazs of the subunic., If
the 03 symmetry is assumed for the Nl-l3 subunit, then the three axes

can be specified as follows:

g parallel to the plans defined by the equilibrium positions of
the three hydrogans, and in the direction of the vector
pointing from the equilibrium position of H3 to that of H2,

X_: parallel to the plane defined by the equilibrium positions of
the three hydrogens, and pointing toward U1,

2z _: determined by the right-hand rule from L and yq axes, and is

collinsar with the 03 symmetry axis of NH3.

The atomic coordinates, l1 (i=Ar, N, 1, 2, and 3), with respect

to the laboratory-fixed coordinate system are defined as follows:

Ry,= Ry + S H(R/2,0,4.8) [=(a /MORK]
- RCII + sd-lt-(l“/u>kk] (sd-l- S-I(Xd. 'd"d)' xd-*/z);
N (3.4.1-1)
Rear"Rep* S ('/2"d"d)[(!Ar/")Rk]

+ S M 0. .4000,°0) + 4, (1)
s''s'’'s i i
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(+)

Figure 3.4.1-1
Definition of the NH3 subunit-fixed Cartesian coordinate system, and

the angle coordinate (7) of the “HJ inversion motion. v is the angle
betwesn the positive Xy axis and the vector pointing from the

aquilibrium position of N to that of Hl. v has the same sign as the
z, coordinate of the squilibrium position of N.



in which

R.:
i

-R + sd‘l[(mAr/n)Rk]
+ 5. Ha ) + aim), (8o § M (x, 0,,8,))

(3.4.1-2)

position vector of atom i (i=Ar, N, 1, 2, 3) or the center of
mass of the complex (i=cm) with respect to tha
laboratory-fixed coordinate system,

rotation matrices, followins the convention of Wilson, Decius
and Cross [£9],

A Y 2
X cxclce—sxs¢ cyclsgtsycé =—cyst

8(x,0,4)m y | =sxchcé~cxsé =—sxclsptcxcé sxs? |,
z sfcé sisé ct

(3.4.1-3)
vhers cwmcosine, swsine. The X, ¥, Z corrospond to the
Carteszian coordinates of the laboratory-fixed system; the x,
y., z are the Cartesian coordinates of ths rotating body-fixed
system. sd'l describes the orientation of the Ar-NH3
pseudo-diatomic frame with respect to the laboratory-fixed
coordinate system. x4, is chosen arbitrarily to be +/2.

=1

Similar'y, ss describes the orientation of the NH3 subunit

with respect to the laboratory space with 0'. ¢’ fixing the
C3 axis of NH3, and Xg the rotation about the C3 axis.
mass of the NH3 subuni-,

: mass of Ar atom,

total mass of the Ar-NH3 complex,

distznce between the Ar atom znd the center of mass of the
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NH3 subunit, (see Figure 3.4.1-2)

k: unit vector pointing from the Ar atom to the center of mass
of the NH3 subunit, (see Figure 3.4.1-2)

v: NH3 inversion coordinate, defined in Figure 3.4.1-1. v is

the angle between the positive Xy axis and the vector
pointing from cthe equilibrium position of N to that of H1. «~
has the same sign as the z coordinate of the “equilibrium"
position of N (see balow).

|1°(1): equilibrium position vector of atom i in the NH3 subunit
with respect to the subunit-fixed coordinate system; a vector

function of v, defined as

x1°(-1) +xi°<+1)
3,°Cp= | %00 | = | %G
2% ~z,°(+7)

The large amplitude NH3 inversion displacement is inherent in
such an "equilibrium” position vector. Therefore, it is the
equilibrium pcsition only when y is held at a constant,
Since it is a vector function of v, its length, ]aiotv)l. may
vary with the inversicnal motion.

di(1): noninversional Displacement vector of atom i of the NH3
subunit with respect to the subunit-fixed coordinate system;

defined similarly as lio(v) as

4,0 +d . (+7)
di('v)- dyi(‘v) = +dy1<+1)

d,; (-7) =d,, (+7)
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Xy

AN
A s

\4‘/ C.m. of complex

,' :.c:3 axis
’ ,
’ ‘
' '\ :
4
* , Y
’
,  Cm of NH,
’
4

Figure 3.4.1-2
Definitions of distance R, unit vector k, and Eulerian angles ‘r' Xg

for Ar-NH3. (c.m.: center of mass.) 'r will be simplified as ¢ from
Section 3.6.1.



Since both aj°(~,) and d, () are polar vectors [30], they

have similar defining exXpressions in terms of v.

3.4.2 Coordinate Transformations

3.4.2.1 Effect of Permutation (without *) on RA:

Since any perautation among the three H's has no effect on RAr'

it is straightforward that

R, >R+ s'lcuxz.od.qnd)[(m“/mnkl

= original RAr‘ (3.4.2.1)

3.4.2.2 Effect of Permutation-Inversion (PI) on RAr
Apparently, the net sffect on lAr of any Pl operation with *
explicitly involved will be the same as that of the * operation

itself. Therefore,

* - -1 S SO
Ry, ——> R, + (S (n/2,0,,8)(N, )] [~(m /MOR]N )
= —=(original RAr)' (3.4.2.2-1)
where
+1 0 0
-1 _
Nd- Nd - 0-1 0 (3.4.2.2-2)
0 0+l J
and
0
k=10 [. (3.4.2.2-3)
1

Here, k is a unit vector for the displacement vector used in the

pseudo-diatomic model; it has the same coordinate expression with
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respect to the pseudo-diatomic frame coordinate system before and
after the * operation. *
Equation (3.4.2.2-2) can be derived as follows: Using the

convention of Wilson, Decius and Cross, with xd-n/2. we get

-S4, ~CICh, SO,C4,
sd"l- s’l(ufz,od.¢d)- Coy ~CISH, SIS, |.

0o s¢ c
d d (3.4.2.2-4)

1Nd-]']) in Equation

-1 -1 -
On the other hand, [§ "(x/2,0,,44) (=N, 7)) (=[-8,
(3.4.2.2-1) is the equivalent propsr rotation [31] of the * operation
with respect to the laboratory-fixed coordinate system. By doing the
following substitutions in Equation (3.4.2.2-4) for la-l.
'd -—>r - 'd'

L —>x+dy
its explicit form can thus be obtained as

+54, —CIChy —SI,CH,

[—Sd Nd ]= -Cdd -COdS¢d -SOdS¢d . (3.4.2.2-5)
0 +SOd -COd
Because
-1 _ -1, -1
Ny = S4(Sg My ']
- -1.t -1, -1
- ( l)lsd | [-Sd "d 1. (3.4.2.2-6)
gl -1t
Q. Sd and sd are orthonormal, sd sd ).
«<ith the use of Equations (3.4.2.2-4) and (3.4.2.2-5) for sd°1 and
-1

s Iy

a Ny ], the explicit expression for Nd—l (Equation (3.4.2.2-2))
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can then be verified.
Geometrically, Figure 3.4.2.2 serves as a visual verification for
the explicit expression of the rotation operation [-Nd] (see Equation
3.4.2.2-2), which represents a rotation of the pseudo-diatomic frame

about its y axis by 180°.

3.4,2,3 Effect of the * Operation on Ri {(i= N, 1, 2, 3) (Figure
3.4.2.3)
The transformation of the NH3 nuclear coordinates under the *

operation is as follows:

-1
d
-1

R (-8, 1)1 [N, (m, /MIRK]

1, 7D + 4 1)

. >R, + (S

+
(s,

- (3.4.2.3-1)
d
-1
]

- -ch - (s

N, 1IN, /)RK]
N 1IN, (8, °CH) + 4,(+1))]
= =(original Ri)'
where
Nd and k: same as derived previously for R e’

N__.: equivalent improper rotation [3l] of the * operation with

s*’

respect to subunit-fixed coordinate system, with its explicit

expression being

+1 0 O

N,-| o+ o], (3.4.2.3-2)

0 0-1
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Ar

Figure 3.4.2.2
Effact of the * operation on the pseudo-diatomic frame coordinate
systenm.



130

Figure 3.4.2.3
Effect of the * operation on li (i= N, 1, 2, 3).
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(The determinant values of +1 and =1 are characteristic of
proper and improper rotation matrices, raspectively.)
‘10(‘1) and di(-v): new equilibrium position and displacement
vector of atom i with respect to the new subunit-fixed

coordinate systen after the * operation.

Equation (3.4.2.3-1) can be verified as follows: The first two
terms, referring to the center of mass of the NH3 subunit, can be
obtained similarly as in the previous case of the * operation on nAr‘
The third term can be justified with Figure 3.4.2.3, which shows the
equivalent proper rotation, with respect to the laboratory-fixed
systenr, of the NH3 subunit-fixed coordinate system causes a rotation

about z' axis by 180°. i.e.

* 1

Yy T (3.4.2.3-3)

S (x 0.8

-1
GBS 0,8

s''s s)(-“s*

z8
(= $ Lxgrmat 400,

1 are the corresponding proper and improper

" -
vhere [st ] and N’*
rotation, with
-1 0 O
" r.=-1 N == -1 - -
[st 1= [st ] (= us* N'* ) 0-1 0

0 0+l

It is also apparent, from Figure 3.4.2.3, that |1°(+1) and di(+1) are

changed into

3,°Cm (= N 8. %G (3.4.2.3-4)

and
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d; (=7) (= N d, (+7)). (3.4.2.3-5)

As a result of Equations (3.4.2.3-2) through (3.4.2.3-5), Equation

(3.4.2.3-1) is justified.

3.4.2.4 Effects of tha (23) and (23)%* Claiss Opsrations on Ri (i=N, 1,
2, 3) (Figure 3.4,2.4-1)
The individual equivalent proper rotations for the
pseudo-diatomic frame under the (23) pair permutation and the * parity
inversion can be exprassed as

23 ~-1 * -1 -1
$y) > 8§ .
d'"d [Ro] d (R l] d

s ns2,0

Similarly, those for the NH3 subunit-fixed coordinate system are

-1 {23) -1 -1
s (xs"s"s) R ¥ > ss H(23)
xs )

* -1 -1 -1
(R a]> S’ H(23)
zs
-1 r.=1
(=5, (R,
where
+1 0 O

-1

H(23) - 0-1 0

0 0-1

and
+1 0 0

- x -
Neom <IR, "1= | 041 0

0 0-1
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Figure 3.4.2.4-1
Effect of the (23 »nd (23)* operation on li (i= N, 1, 2, 3). (D:
pseudo-diatomic. : subunit.)



Here, H(23) and Ns* are proper and improper rotation matrix,
respectively. We will keep using M for proper matrices, and N for
improper matrices in the followi: ;. (It is noted that (23)
corresponds to an improper rotation under CBV(H)' while to a proper
rotation under D3h(H)‘)

The change in the equilibrium position of each nuclear coordinate
od NH3 is derived as follows:

N:
0

aN°(+7)- 0 2, "(23)'N°(+7)

=2 (+1)

- 2.°(-1))

— o
> Ns*u(23)'N (+7)
° -
= Mgty 1
(N’* and H(23) are both diagonal, therefore
they comnmute.)
o
(= “s*'N )
= 8,°(+m),
Hl: o
X, (+7)
[ (23) )
a, (+7)= | O > H(23)'1 (+7)

=1°(+1)

134
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x1°(+1>
=] 0
—2,°¢+7)
- 2,

— °
> N<23)l1 )

(= ¥,,2,°CM)

- 2,°G),

H2:
8,0y 2 w1 0 00m)
+x3°(+1)
= | ¥°6n |

=2,°(+7)
°
—— Ns*u(23)‘3 (+y)
o
- H<23)'3 1,
H3: (Do a (23) petnut;:ion in the above l2°(+1) expression.)

23

‘3°(+7) > H(23)‘2°(+7)

°-
> H(23)‘2 7).
In other words, the expressions for the changes in the
equilibrium positions are of che following form:

3

11°(+1) 23, “(23)'j°<+7) (3.4.2.4)

. o
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where i=j or isj depends on if atom i is involved in the permutation
operation or not. Other simpler forms are available only when the C3v
point group symmetry of the NH3 subunit is introduced.

Since 2°'s and d‘s are both physical vectors, the general
expression for them are similar; the transformation of dl under (23)
and (23)* should be Expression (3.4.2.4) with all aio's replaced by
di' Because there is no equilibrium geometric restrictions on d's as

on a°'s, d's generally do not map simply into dl(tv). For sxample,

for N stom,

f23)
dy(+7) > g3y dy(+)

*
>N * (23) N(+7)- <23) N( 7)0

and for H2,

!23! *
dz(*T) (23) 3(+7) (23) 3(-7)

The effects of the (23) and (23)* operatior. on Ri (i=N, 1, 2, 3)

can then be summarized as follows:

(23)
Ry >R+ s [( /H)Rk]
+ s, 1"(23) Hag (=) + M 53 dyem)]
= original RN'

R, 23, R+ S, N(m  /MIRK]

—1 -1 o
+ [SS (23) ][‘1 (—y) + H(za)d1(+7))

= original Rl'
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(23)
R2 > Rcm + [( /H)Rk]

-1

= original R3,
—1&—> original R

R 2

(Same expression as that for Rz under (23), but with

3

subscripts 2, 3 switched),

i B Che >1[u (a /H)Rk]

cm
-1
+ [s'
-1
- -R scl (nAr/H)Rk

Chx
=1 1
%23y LI IN,* (23,<-N°(+-n + dy(+y))

-8
s
= =(original RN),

R, <22 —(original &)

(sume expressions as those for '*N under (23)*, but with

subscript N replaced with 1),

R, ~(23)%, R+ (S, (Nd )][N( /H)Rk]
-1,

[e]
(23) d,(-1]

= -ch - d nAr/H)Rk
-5, e T TN u L (8,0Cy) + dg () ]
s (23) gx  Ngwca3) %3 7Y 3\

= =(original R3) ,

3
R3 -Lz"):'> —(original Rz)

(same expressions as those for F2 under (23)*, but with

subscripts 2, 3 switched).
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The effects of the (13), (13)*, (12), and (12)* operation on Ri
(i=N, 1, 2, 3) can be derived with the same scheme. The proper
rotation matrices, H(13) and H(12)' are given in Table 3.4.3-1. Due
to the fact that their rotation axes are not collinear with anv
Cartesian coovdinate axis of the NH3 subunit-fixed system as in the
case of H(23), both c¢f them are nondiagonal. (See Figure 3.4.2.4-2
for the cases of (13) and (13)%.) However, they are symmetric, and

therefore, like H(23)‘ can commute with I‘* (diagonal),

3.4.2.5 Effects of the (123) and (123)% Class Operations on ni (i=N,
1, 2, ) (Figure 3.4.2.5)
The individual equivalent proper rotations for the
pseudo-diatomic frame under the (123) cyclic permutation and the *

parity inversion can be expressed as

*
s 1(:/2.od.¢d) —(1—3,31> ‘dl — 5, Ln, 1.
[R7] [Ry ]

Similarly, those for the NH3 subunit-fixed coordinate system are

-1 (123) . o =1,-1
S Tlxg 0. 4,) >8, M

(123)
(2/3)=
R, 42"
* =11 w "
(R al> ss " (123)< Ns* ),
zs
where -
-1/2 +J372 0
H(123)- S((2/3)x,0,0)= | =372 =172 0

0 0 +1
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(b)

3 (-z,)
Y.

Figure 3.4.2.4-2

(a) Effect of the (13) and (13)* oparation on l (1= N, 1, 2, 3).
(D: pseudo-diatomic. §S: subunit.)

(b) Top view of the NH, subunits in (a).
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Ar 2

. |
© (123)
x _>
s D:R, ( 1 \
. 2/3)%
S'Ru 73) /2 U
.
) ﬂb D.Ry ] .
p:r " \J’c S:R,, !
(5/71)% N
(a) "'u
2 Yg 1
Xs
Xy (123) (+z,)
(*l') h | —
Y
3 s 2
8] | .
\"JJQ v
-
(b) 2
Yg
(+2.)
3
Xg
1

Figure 3.4.2.5

(a) Effect of the (123) and (123)* operation on Ri (i= N, 1, 2, 3).
(D: pseudo-diatomic. 5: subunit.)

(b) Top view of the NH, subunits in (a).



The effects of the (123) and (123)%* operation on Ri (i=N, 1, 2,

3) are summarized as follows:

123 -1
r, (123), R +S, [(m AORK]
+ ‘-—1"<123)—1"N°‘*"’ MBI
= original IN;

3 -1
R, 428 0+ 5,7 ((m, A0RK]
=1 -1 o
+ 8, Moay [Maay8y (+1) + Mipoqydy (M)
= original l2;

l2 -112§l> original la

(same expression as for ll under (123), but with

subscript 1 replaced by 2, 2 by 3);

similar to 12 under (123),

13 .112§l> original ll;

p, Q2% p 4 s e, A0RK)
+ lss—l"(lza).l('“s*-l) Hay* =)

+ Ns*n(lza)dN(+1)]
= —=(original RN);

r, {123)%, R+ IS d'l(-n d.l)“"d“a /MIRK]
-1

+ [s’

-1 -1 o
Borga) (Mga DN M 00,8, (1)

+ Ns*

« =(original R2):

141
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R, (2%, _(original Ry -
{same expression as for Rl under (123)*, but with

subscript 1 replaced by 2, 2 by 3);

similar to Rz under (123)%*,

R3 112223> -(original ll).

The effects of the (132) and (132)% operation on R,, (i=N, 1, 2,

il
3) can be ohtained similarly.

3.4.3 Summary of Coordinate Transformations

The equivalent proper rotation matrices for all the PI operations
are listed in Table 3.4.3-1. The squivalent rotations, the
corresponding transformations of the Eulerian angles and the NH,
inversion coordinate are listed in Table 3.4.3-2, It is noted that
there are two sets of Eulerian angles, one for the pseudo-diatomic
frame, one for the NH3 subunit; they are the same as those for the
diatomic system and for the unperturbed NH3 monomer, respectively.

The equivalent motions (or motion) for each Pl operation, shown
in Table 3.4.3-3, can be obtained unambiguously from Table 3.4.3-2.
Basically, all PI operations (with and without *), except for the
identity operation E, involve the NH3 internal rotation. The pair
permutation (with or without *) causes an internal rotation along an
axis normal to the 03 axis, the cyclic permutation (with or without *)

causes such a rotation along the C3 axis. The end-over-end
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Table 3.4.3-1 -
The equivalent proper rotation matrices for all the PI operations
of the D., (M) group for Ar-NH,.
3h 3
-1 0 0
(-Np= S(x,x,m*= | 0+ 0
0 0
+1 0 O

HE- §(0,0,0)= 0+ 0

0 041
+1 0 0
Hy3)= $Omm= | 0-1 0
0 0-1
-1/2=f372 0]
Mepqy= S(@/mmm= | =32 4172 0
| o 0 -1
[ =172 +/372 0]
Heygy= SUW/Dmmm= | £372 72 0
0 0 -1 |

[ =172 +/3/2 0
- 5((2/3)%,0,0)= | =/372 =172 0
0 4] +1
[ =172 =fi72 ©
- 5((4/3)%,0,0)= | +/3/2 =172 0

Mi123)

¥(132)

0 0 +1

The rvotation matrix § follows the convention of Wilson, Decius
and Cross [29). 1Its variables are expressed in the format as

S(x.0.4).



Table 3.4.3-1 (continued)

-1 0 0
Mg,= (~N_, )= §(x,0,0)§(0,0,0)= §(x,0,0)= | 0 -1 ©
0 0 +1

H(23)*- (-N’*)H(za)- $(x,0,0)8(0,x,x)= S{x,x,x)

-1 0 0
- 0+1 0
0 0-1
H(13)*- (-N'*)H(13>- $(x,0,0)8((2/)x ,x w)= §((5/3)x,x,x)

[ +172 +/3/2 O
-| +f372 =12 o0
| o 0 -1
“(12)*- (-N'*)H(12>- ${x,0,0)8((&/3)n , %, x)= S(x/3,x,x)
[ +1/72 =/3/2 0

- =372 =172 o

0 0 -1
M123ya NgudM 93y S(%.0,0)8((2/3)%,0,0)= S((5/3)x,0,0)
+172 =/372 0
- | +f3/2 #172 0O
0 0 +1
M 1agys= (N q39,= 8(x.0,0)S((4/3)=,0,0)= 5(x/3,0,0)
+172 +f372 0
- | =/372 +172 0

0 0 +1
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Table 3.4.3-2
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The equivalent rotations, the explicit transformations of the
Eulerian angles and the NH3 inversion coordinate for'Ar-NH3

under the D3h(H) group operations.

PI E (23) (13) (12) 123) (132)
Op.
Frame
Rot. R® R° R® R R R®
New
Xq /2 =/2 /2 /2 /2 x/2
'd ‘d ‘d 'd 'd ‘d ‘d
b %4 %39 % s *a $a
NH3
o " 4 4 {(2/3)x (4/3)=
rot. R Rxs R(2/3): Ra'/3 st Rzl
New
Xy Xy Xg —(4/3)mx, =(2/3)wx, (2/3)mix,  (4/3)mix,
l' 0' rl' a—O' rl' 0' 0'
‘s ‘s '+‘s '+‘n '+‘s ‘s ‘s
NH3
Inv, v =y -y -y +y +v




Table 3.4.3-2 (continued)
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Pl Ex (23)*x  (13)* (12)* (123)* (132)*
Op.

Frame ] ] ]
Rot. Ry Ry Ry Ry Ry Ry
New

X4 x/2 =/2 r/2 /2 n/2 ®/2

’d "-'d a-'d r-ld '-'d r-'d '-'d
‘d w+¢d w+¢d a+¢d w+¢d w+¢d n+¢d
NH

3 " " " (5/)=x ®/3

Rot st Rys Rw/G R(5/6): st st
New

Xg Ty, *xg, ~(x/3)7x, ®/37x, (5/3)mix,  ®/34x,
0' 0’ I-" '-'s r-" 0' 0'

‘s ‘s '+‘s *+‘s '+‘s ‘s ‘s

NH3

Inv. =y +7 +v +v -y -y
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Table 3.4.3-3

The equivalent motion(s) for each class of the PI operations under
the D3h(H) group for Ar-NHS.

Class Equivalent Motion(s) of
in Frame NH, subunit
3
D3h(u)
e-0-¢ rotation internal rotation invarsion

normal to 03 along Cg

E

(123) x(2r/3)"

(23) x(n) x
E* x{=* x(n) x

(123)*%  x(x) x(2%/3) x

23yx  x(w) x(x)

*The number in parenthesis is the rotational angle.



(abbreviated as e-o-e in the following) rotation is generated only by
parity inversion *, Because botlr the * and the pair permutation are
rotation sense-reversing, both can invert the NH3 subunit. As a

result, when both are involved in a PI operation, for example, (23)%,

the inversion coordinate will remain intact.

3.4.4 Transformation Properties of the Rotational Basis Functions

By direct substitution of the Eulerian angle transformations of
Table 3.4.3-2 in the standard symmetric top rotational basis functions
|J,m.k> {32], the transformation properties of the rotational basis
functions of the NH3 internal rotor and the pseudo-diatomic frame can

then be determined.

3.4.4.1 Nﬂa Subunit Symmetric Top Rotational Basis Functions

The transformation properties of the NH3 subunit symmetric top
rotational basis functions, ]j,u ,i, are summarized in Table
3.4,4,1-1. 1f we use |j.m .kc> and |j.qj.-kc> as a basis, we can thus
readily obtain the symmetry species for the NH3 internal rotation as a
function of j and kc (Table 3.4.4.1-2)., (Here, we reserve X to
represent the projection angular momentum along the a principal axis
of the complex. Thersfore, instead of the conventional symbol X, kc

is used.)

3.4.4.2 Pseudo-Diatomic Frame Rotational Basis Functions
Since any geometrically linear system can be treated as a special

case of symmetric top with the symmetric top quantum number k equal to
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Table 3.4.4.1-1
The transformation properties of the symmetric top rotational basis
functions of the NH3 internal rotor.

b
D, (M) Equivalent |j,m, k >* o, .~k >
3h rotation Jte Joe
class of NH
subunit
]
E R |j.nJ.kc> |, =k >

123y r (¥/3" exp(ik (2/3)m |J,m).k > exp(Lk (2/3)m [Jum) =k >

@) rC -0J1y.m,,k > 0l k>

R W ~1)¥e|).a k> -1)%c|).m k>

(123)x r_ (373" exp(10-2/3)mk ) | Sk > exp(142/3)mkc ) ) ),k >

@3% R " =1 e)jm k> =% | s m, ke >

*The quantum numbers are arzanged in the order of |J,m, k>.

bkc is assumed to be nonnegative integer.
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Table 3.4.4.1-2
The NH, subunit internal rotational symmetry

species under D3h(M) as a function of j and

kc quantum number,

k Symmetry species
under Dah(H)

even j A,
0 { 1

odd Jj A,
1, ént1* E"
2, 6nt2 E’
6nt3 Al" ® Az”
én Al' ® Az'

*a: positive integer.
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zZero, we use |1,m1,0> to represent the rotational basis function of
the pseudo-diatomic frame. Here,” I and m, are the angular momentum
and its corresponding projection with respect tv the laboratory-fixed
coordinate system. According to either Table 3.4.4.1-1 or -2, the
resultant transformation properties are shown in Table 3.4.4.2.
Because only the parity inversion * can affect the pseudo-diatomic
Euler angles, the only transformation sffect on the basis functions is
a multiplicative factor (-1)1, as axpectsd for any diatomic molecule.
This makes the pseudo-diatomic rotational basis function transform as
totally symmetric Al' under the D3h(H) group for even l, and as Al"
for odd I. In other words, the only symmetry effect of the
pseudo-diatomic rotational basis function is parity reversal (' «— ")

for odd 1.

3.4.5 Transformation Properties of the NH3 Subunit Inversional Wave
Functions

Free NH3 is well known to have a .,uble well potential along the
inversion coordinate. Due to the fact that the potential function is
symmetric with respect to the origin of the inversional coordinate, <,
all inversional wave funactions with even v; (NH3 inversional quantum
number) are symmetric, i.e. Ivl(-1)>-+|v1(+1)>, and functions with odd
v, are antisymmetric, i.e. Ivi(-v)>-|vi(+1)>. In other words, the
molecular symmetry group, D3h(H), of Ar-NH3 has no effect on the
inversional wave functions with even v, This makes the even v,

fur-. cions have Al' symmetry. On the other hand, the odd vi wave

functions all transform as y which, according tc the transformation
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Table 3.4.4.2 =
The transformation properties of the rotational basis functions

of the pseudo-diatomic frame.

Dy, (M) Equivalent |1,m ,0o"
rotation
class of frame

E R® [1.m,,0>
(123) Rr° |2,m,,0>
(23) R° |2,m,,0>
x i d
Ex Ry (-1) |1,m1.0>
L P
(123)* Ry (-1)°|1,m,,0>
® 4 .
(23)* R, -1)°|1,a,,0>

2The quantum numbers are arranged in the order of |J.n.k>. l and
m, are the angular momentum and its projection of the

pseudo-diatomic frame with respect to the laboratory-fixed
coordinate system, and k is assumed to be zero as required for
any linear system.



properties of vy, shown in Table 3.4.3-2, transforms as Az".
3.5 Zero-Order Energy for the Free Internal Rotor Limit

In order to provide the basis for the construction of the
zero-order encrgy level diagram, the kinetic energy expression will be
derived in detail, and the interactions among different kinetic
motions through the intermolecular potential (the ultimate goal and a

principal unknown) will also be discussed qualitatively.

3.5.1 Derivation of the Xinetic Energy Expression

If we assume that all the atomic mass n, including electron(s)
and nucleus, is located at each nucleus (Assumption 1), then the
kinetic energy To. can be sxpressed as

2T = I -1i1‘i (3.5.1-1)

i i

where the summation is taken over all the atoms in the complex (i=Ar,
N, 1, 2, 3). Since (1) we are concerned only with the ground vibronic
state and the first inversional state (vi-l or vz-D- [33)) of the NH3
subunit and (2) the large anmplitude inversion displacements are
already inherent in lio(v). the displacement vectors d1(1), which
describe all the noninversional vibrations, can be eliminated in the
following calculation (Assumption 2). But it is remembered that
Iaio(v)l is dependent on 7, and therefore, the N-H bond length is
still allowed to stretch during the NH3 inversional motion. However,

this is the stretching involved in the definition of the equilibrium
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position lio(y), and should not be mixed up with the N-H stretching
vibration, accounted for by di(vT- In other words, Equation (3.4.1-2)
is simplified to be

R R+ sa-ll(nhr/u)kk] + s"1a1°(1). (3.5.1-2)

ivAr. “cm
Substituting the equations (3.4.1-1) and (3.5.1-2) for the position
vectors Ri's with respect to the laboratory-fixed coordinate system,

we can rewrite 2T° as

2T°- f niicntic- (part 1)

+ [udR2(§d.1k)t(§d-1k) + 2ydai(éd'1k)‘(sd'1k)
+ udis, ot o) (part 2)

-1 “1s t{z -1 o
+ ? njlﬁs -J°(1) +5, aj°(1)l i 8,°(m

+ s,'lij°(~m (part 3)

v n 13,7 % + 8,7 Ptk
+ (m, /MBS Tk + (m, MRS, TK] (pare 4)

(3.5.1-3)

where the summation over i is taken for all the atoms in the complex,
the two summations over j are taken over for the atoms in the NH3
subunit. And sy is defined to be uArns/H' the reduced mass of the
pseudo-diatomic frame. (Since the time derivative (') operation

commutes with the transpose and the inverse operations, the symbols

used in the equation do not take care of the order of operations among
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them. )
The expression of 2T° is arranged into four parts. With the use

of the center of mass conditions for the NH3 subunit, i.e.
S mal(y)=0
PR
and conseguently
L maC(y)= 0.
3 Y

Part 4 thus vanishes. Part 1 corresponds to the kinetic energy of the
center of mass of the Ar-NH3 complex.

Part 2 corresponds to the internal kinetic energy of the
pseudo-diatomic frame. This becomes obvious when Part 2 is

abbreviated as

1, .2

e+ =] ¢ =
pd[de k + de k)
or

-1 2
yd[d(RSd k)/dt}”.

Because (sd-lk) aust be perpendicular to its tangent velocity,

-1

(§d k), due to the rotation, it is noted that

s -1, .t . —-l
(Sd k) (Sd k)= 0

and therefore the second term of Part 2 vanishes. On the other hand,
(sd_lk)t(sd_lk) in the third term of this part is equal to one. This
can be understood by thinking of it as the inner product between the

rotated unit vector, (Sd_lk). and itself. This can also be verified



algebraically as follows:

-1..t . -1 t,e "1t -1
(S W (S, W)= k(S; )(S; k)
-1

t
=-k'S (Sd

a
- k%%

k) (" S, is orthonormal.)

d

-1,

Consequently, the internal kinetic energy of the frame is just a sum

of two terms:

(1) the dimeric e-o-e rotational energy,
2,8 -1 .t 2 ~1
s, K (§, k), and

(2) the dimeric stretching snergy, pdﬁz.
Part 3 of the 2T° exprassion can be rewritten as

a,18(s, s, O (1) /ax] 1, e (et
J
Since in (1) the summation is taken over the atoms in the NH3 subunit,

and (2) [d(ss-la o(1))/dc] is the velocity of atom j with respect to

]
the NH3 subunit-fixed coordinate system, it is recognized that Part 3
corresponds to the NH3 internal kinetic energy. To elucidate its

physical meaning, Part 3 is further expanded as

1 o 1 o tje -1 o -le o
? m [u‘ . (v) + S, ol (M1's, | (M) + S, a ()
> mj{(-j°(v))t(§ “he, @, es, 1y
i

I ACRE 1ij°<v>1
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o t,s =1l.ts =1 _ o
RN ORI A M g

m, Gy P s, H s Tl %

o t,s ~l.,t, =ls o
_1(‘_1 ()5, 'S, 'j (&)

CRICILCY RO (3.5.1-4)

Each term will be examined in the following.
By inserting the matrix product l.ts‘. which equals the identity
matrix, in the first term of the right hand side of Equation

(3.5.1-4), this term becomes

Zm
P ]

- Zom(a
PIRE R

(aj°(1))‘(é,'l)té,'laj°<v>

3, %, s, 8, 2]

- ? nj [slé"-l.j

o t -1_o
(17188, 8,1 (3.5.1-5)
Let us consider the physical significance of the column matrix

T §
lssss ajo

to Equation (3.5.1-9) is in parallel with a treatment for rigid

(v)] in the above equation. (The following calculation, up
molecules given in Reference 33, p.31-32.) Since s’ is orthonormal,
ssss‘- E (identity matrix). (3.5.1-6)

1f time derivatives are taken on both sides of Equation (3.5.1-6), it

becomes
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S " +858 "=o0.
s's s's .
Therefore,
s§ -85t
s"s ss

- t,t
- (s’é’ ).

In other words, the product matrix Ssﬁst is antisymmetric, and can be

written in the following form:

0 "W,y wy'

s.ést- vy 0w | (3.5.1-7)

TYys  “ns 0

With the definition of the rotational matrix §, Equation 3.4.1-3, it

follows from the above equation that

v, o ;inx.o;. - sino'cosx'-ds.

wys- cosxsoJ' + sinﬂssinx"is.

w, cos!sods + Xg- {3.5.1-8)

Thus the Weg wys' w,g are recognized (according to Reference 29,

p.281-2) to be the Cartesian components (with respect to the NH3

subunit-fixed system) of the total angular velocity wg of the NH3

subunit-fixed system. With Equations (3.5.1-7) and {3.5.1-8), it can

be verified that

[ssés'laj°(1)]- wsx1j°(1), (3.5.1-9)
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[Ssés-laj°(1)] is then known to Ef the velocity of atom j with respect
to the laboratory-fixed system. Therefore, with the expression in
Equation (3.5.1-5), the first term is realized to correspond to the
rotation of the NH3 subunit.

The second term of the right hand side of Equation (3.5.1-4) can

also be simplified as

1- o

j('j ot (5 ) J (v
s 0 t,*» 0
f'j('j ) (IJ ). (3.5.1-10)

The result indicates that this term corresponds to the NH3 inversional
motion. Since c3v synmetry is assumed for the NH3 subunit (If the
perturbation due to Ar is negligible. (Assumption 3)), all three
aj°(7)'s of the three l's are confined in the three o planes of NH3.
and aN°(1) is on the c3 axis. Thus, with Assumptions 2 and 3, they
are allowed to move only symastrically and synchronously, as specified
by j and the common variable y. This is the reascn why (ijo(y)) on
the right hand side of Equation (3.5.1-10) can only be the inversional
velocity.

Because the inner produc* .s commutative, the last two terms in
Equation (3.5.1-4) are equal to each other. We will consider only the

third term, which can be rewritten as
m (a2 & "% 7l o
T 3

1 o
- § m (s 8, 3 2,°(n] -j %
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-3 m(wxaC]%.%m (Equation (3.5.1-9) is used.)
FRENLAE 3 .

] * 0 t
- ? mj[ij (1)xaj (1] 7w,

When expanded more explicitly, the last expression becomes

uN[lN°(1)X5N°(1)ltw, + 'H: [ak°(1)xik°(1)]tw.

where the summation is taken over the three H's. Since ino(y) and
aN°(1) are collinear with sach other along the C3 axis, thelr cross
product and, therefore, the first term vanish. Due to the 03 synmetry
among the three H’s, the vectorial summation in the second term
becomes a null vector. This can be visualized by thinking that all
three cross products, [ak°(1)xik°(1)], are on a plane perpendicular to
the C3 axis, and can be mapped into one another by the C3 rotations.
Thus the second term also vanishes.

As a result, in the total kinetic energy expression, there
is no inner product between [és-lljo(y)] and [s'-lijo(v)]. Since
these are the velocities due to the NH3 internal rotation and
inversion, respectively, it implies that under our assumptions there
is no Coriolis coupling between the two motions. However, when the
NH3 subunit is partially deuterated and therefore loses its C3v

symmetry, such a Coriolis coupling term will appear.

3.5.2 Summary of the Kinetic Expression
The assumptions used in the derivation of the total kinetic

energy expression of the complex are summarized below:
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(1) All the atomic mass, inﬁ}uding electron(s) and nucleus, is
concentrated at each respective nucleus.

(2) The NH3 subunit can access only its ground vibronic state and
the first inversional state (vi-l or v2-0-). The
displacement vectors, di(v). are therefore not considered.

(3) The perturbation due to Ar is negligible, C3v symnetry is

assumed for the equilibrium geometry of the NH3 subunit,

Since we are not interested in the center of mass kinetic energy

of the complex, the internal kinetic energy (T) defined as

- t
2T= 2T, 1: ni(icn) ic_

will be used in the subsegquent discussions.

In summary, 2T can then be written as

2T= o R2 + by R (3 'lk)‘(é “Ly)
-1.t 1 o
+ ? "J('J °( (5 § j (v) + 2 'j('j °(m) ('_1 °().
(3.5.2)
The four terms, in the order of their appearance in the above

expression, correspond to:

(1) dimeric stretching vibration (stretch),
(2) dimeric end-over-end rotation (e-o0-e¢ rot.),
(3) NH3 subunit internal rotation (int. rot.), and

(&) NH3 inversional motion (inv.).

3.5.3 Potential Energy



When not in the free internal rotor limit, the potential energy
V(R,y.xr.ﬂr) of the complex is a*function of the dimeric stretching
coordinate (R), NH3 inversional coordinate (y), and subunit relative
orientation coordinates (Eulerian angles Xp» 9r, but not ¢r). (See
Figure 3.4.1-2.) Here, Xpr 'r' ‘r are defined by the following

rotational matrix relation:
S(xg 0,.8,0% SCxy.0,08,) § 1(r/2.0,.8,). (3.5.3-1)

That the potential is a function of two, instead of three, Eulerian
angles is due to the symmstry of the Ar atom with respect to the
a-principal axis, connecting the Ar atom and the center of mass of the
NH3 subunit.

In the free internal rotor limit, ths NH3 subunit experiences an
isotropic potential, which is not a function of the relative Eulerian
anglss (xr and 'r)‘ (Assumption a) However, the isotropic potential
still needs to be a function of R and v to maintain (1) the formation

of the dimer and (2) the inversional vibration of the NH3 subunit, In

other words,

V(Rlylxrl'r) —_— vfr(Ro")l (3-5-3‘2)

(in the free internal rotor limit)

When the corresponding frequencies of the dimeric stretching vibration
and NH3 inversion differ by at least an order of magnitude, an
adiabatic approximation can be applied, and the zero-order Vfr(R.y)

can further be separated into two parts, i.e.

Ve (R,y) ——> vs°(R) + "10(7) (3.5.3-3)
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where Vso(R) is the zero-order dimeric stretching potential and Vio(v)
is the zero-order NH3 double-well inversion potential. (Assumption b)
Since the predicted stretching frequency (approximately 35 cm—l
[13]) and the inversion frequency (approximately 0.7 cn_l) do differ
by more than an order of magnitude, Expression (3.5.3-3) will be used

to construct the zerc-order energy level diagranm.

3.5.4 Total Energy
Alchough there is no explicit cross term among the four motions
in the kinetic expression (Equation (3.5.2)), they do sharec certain

common variables, as summarized below:

(1) stretch : R,

(2) e-0-0 rot.: R, 4,, é,,

(3) Int. rot. : x., 0., (or d,, 64, x.. 1), 7,
{4) inv. .

The introduction of the intsrmolecular potential V(R'7'xr"r) will
then couple these four motions together. For exanpls, the dimeric
stretching vibration and e-o-e rotation are dircctly coupled through
the stretching coordinate (R), and similarly, the NH3 internal
rotation and inversion directly couple through the inversion
coordinate (y). It is noted that since the potential is not a
function of ‘d and ‘d' the e-0-¢ and NH3 internal rotation are not
directly coupled through any rotational coordinate, but rather

indirectly through R and y. In other words, the Coriolis coupling
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between the e-o-e and NH3 internal rotation, which makes Ka no longer
an exact good quantum number, results from the potential coupling
through R ané y. (Here, K; is the conventional symbol for the
prejection magnitude of the total angular momentum J on the a
principal axis of the complex.) Basically, the better the potential
can be approximated by Equation (3.5.3-3), the better the Ka quantum
number is.

When the potential can be approximated by Equation (3.5.3-3), the
stretching vibration and e-o0-e rotation have a zero-order coupling
through V’°(R); on the other hand, the NH3 internal rotation and NH3
inversion through V1°(1). In this zero-order picture, the total

energy (E) of the complex can then be organized as follows:

. ° .
B [Typraecn® * V3 (R) + T, (Ridy 8] +

. . . ©
(Tine.rot. (ar®aiXp 8,37 + Tyy (M +V,7(MN]

o

(3.5.4-1)
where the four T terms correspond to half of the four kinetic terms in
Equation (3.5.2), respecrively. It is noted that the last three terns
correspond to the energy of free inverting-rotating NH3.

Since the corresponding stretching vibration frequency is
actually on the order of a few tens cm-l. as opposed to the e-o-e
rotational constant on the order of ¢ few GHz, the coupling between
the stretching vibration and e-o-e rotation through VSO(R) should be
small., ("Assumption" c) As a result, Te_o_e(R;ﬂd.¢d) can be

approximated by T (R.v;ed,dd) (=T' (Bd.éd)) with variable R

e-o0-e& e-0-e

replaced by its viorat® .ally averaged value Rav; the first two terms

in Equation (3.5.4-1) can thus be grouped together and treated as the

l64



dimeric stretching vibration energy (E On the other hand,

stretch)'
because the low lying rotation-irversion energy level distribution of
the free NH3 has been well known, there is no need to decouple the
internal rotation from the inversion to obtain a zero-order energy

level diagram. However, in order to facilitate the derivation of the

symmetry species of the zero-order wave function, the variable y of

Tint.rot. will be replaced by its inversionally averaged value Tay
(i.e. Tint.rot.(ad"d;xr'ar;y) bescomes
Tine.vot, (Par8ai¥e !riTay) ™ tne rot, (Xg115:85"8)) to indicate a

decoupling between the internal rotation and the inversion.
(Assumption (d)) Therefore, the sum of the last two terms will become

the pure inversional energy (E ). In other words, Equation

inv,
(3.5.4-1) in this limit can be written as

E« E h(R) + T

stretc ('d"d) +

+ T'int.rot.(xs'os'¢s-‘d) + Einv.(1)' (3.5.4-2)

e-0-¢

which constitutes the construction basis of the free internal rotor
limit zero-order picture. As a direct result, the zero-order wave
function is therefore a product of those corresponding to these four
motions.

Apart from the assumptions used in the derivation of the kinetic
energy expression (sunsiarized in Section 3.5.2), four other
assumptions employed in reaching Equation (3.5.4-2) are summarized as

follows:

(a) The NH3 subunit is in the free internal rotor limit.

(b) The corresponding stretching vibration frequency is at least
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an order of magnitude higher than the corresponding NH3
inversion frequency. )

(c) The correspondi.'g stretching vibration fiequency is at least
an order of magnitude higher than the corresponding complex
e-o-e¢ r¢ ;ation fraquency.

(d) No coupling is assumed betwsen the internal rotation and the

inversion.

Heve, assumptions (a)-{c) have supporting experimental evidence;
howsver, assuaption (d) is only an artifact. It is these assumptions
or, equivalently, Equation (3.5.4-2) that we imply by “zero-order".
The frse internal rotor assumption alone does not fully account for
"zero-order".

As an uaside, the isotropic potential, generally expressed by
Equation (3.5.3-2)), in the free internal rotor limit does not
necessarily have its R and 7y coordinate well decoupled; it is the
ideal zero-order potential, expressed by Equation (3.5.3-3), that can

make X. an exact good quantum number.

3.6 The Unperturbed Case
3.5.1 Zero-Grder Intermolecular Vibrational Level Diagram

Fror the microwave spectrum of the ground state ([13-15], it was
established that the complex is very close to the free rotor limit.
This was deduced wainly from two observations: (1) inconsistent
calculated values obtained for the polar angle (#) derived from the

measured <P1(cost)> and <P2(cos')>, respectively, (2) an extremely
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long Ar-NH, bond distance (3.8723 i), which is longer than any

3
conceivable combination of vdW radii if the Ar atom is in one of the
dihedral planes of the NH3 subunit with two closer H's at equal
distance. (To simplify the notation, ‘r defined in Section 3.5.3 will
be replaced with # from now on.) In order to provide the basic
language for describing the nearly free internal rotor system and to
facilitate the intermolecular vibrational assignment of the spectrum,
the zero-order intermolecular vibrational energy level diagram for the
complex is requ.ired.

Since the inversional motion of the NH3 subunit has apparently
been observed in the microwave spectrum of ths ground intermolecular
vibrational state of the complex {13-15], the molecular symmetry group
required to describe the dynamics of the complex is Dah(H) {(Appendix
Table 1, character table}, the group of tha NH3 mononer [32). This is
apparent either from the detailed discussion in Section 3.4 or simply
by covsidering the fact that D3h(n) permutation inversion group is the
maximum group (complete nuclear permutation inversion (CNPI) group)
allowed in terms of its chemical formula, and none of its subgroups
have an operation corresponding to an NH3 inversional motion [32,33].

Based upon Equation (3.5.4-2), two main features of the
zero-order picture are thus: (1) the total energy of the complex is
given by the summation over the four different motions, (2) the
zero-order wave function is just the product of the wave functions
representing these four motions, which then clearly establishes the
physical meaning of each zero-order energy state. This last result is

used below to deduce the symmetry species under the D3h(H) group for



168
each zero-order state. Since the molecular symmetry group is
employed, the symmetry species of* any zero-order rovibronic wave
function should be the same as that of the corresponding true wave
function which the zero-order function can continuously evolve into.

The zero-order energy level diagram for the low lying
intermolecular vibrational states constructed according to the above
arguments is shown in Figure 3.6.1. It is arranged into four columns,
each of which represents a set of the lowest internal rotational
states of the NH3 subunit with different combinations of the dimeric
stretching and NH3 inversional quantum number, denoted by Ve and vy
respectively. The internal rotational energy levels shown in each
column are arranged in the conventional order for an oblate symmetric
top, with levels grouped into stacks of different kc values [34]).
Here, if J is the angular momentum quantum number of the NH, subunit
with respect to a space-fixed coordinate system, kc is the absolute
value of the projection of the angular momentum j along the C3 axis of

NH The relative heights among the four columns are determined by

3
the associated stretching and inversion energies. 1In other words,
column two ((vs;vi)-(l:O)) is hi;h;r than column one ((vs;vi)-(O;O))
by an energy corresponding to the dimeric stretching frequency, which
has not been determined conclusively by experiment. Similarly, the
two columns on the right, both with one additional quantum in the
inversional mode, are replicate of columns one and two, but shifted
upward by the NH, inversional frequency (about 24 GHz or 0.8 cm_l
(3sH.

Symmetry specles of the Dah(H) group (Appendix Table 1, character
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Figure 3.6.1

Zero-order intermolecular vibrational energy level diagram for

Ar-lm3.
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Table 3.6.1
Smmetry species of the zero-order intermolecular
vibrational states as a function of internal rotation

and inversion quantum number.

kc vi
svan odd

] { even j A’ A"

odd j Ay’ A"
1, ént1* E" E'
2, 6n2 E* E*
6nt3 Al" ® Az" 1\2' [ ] Al'
6én Al' ® Az' Az" [ Al"

a: positive integer.



vwhere S° represents the intermolecular vibrational symmetry species
under the D3h(H) group, and (vs;v};j,kn) are the dimeric stretching,
subunit inversion, and subunit rotation quantum numbers as previously

defined.

3.6.2 Rotational Energy Lavel Manifold of a Zero-Order Intermolecular
Vibrational State

As a basic reference for the intermolecular vibrational band
pattern expected for a dimer containing one nearly free internal
symmetric-top rotor, we will first examine the general features of the
rotational energy level manifolds of ‘he zero-order intermolecular
vibrational states.

In the free internal rotor limit, no coupling is assumed between
the e-o0-e¢ rotation (1) and internal rotation (j). As a result, all
zero-order intermolecular vibrational states have the same
diatomic-like rotational energy level manifold, characterized by the
same pseudo-diatomic rotational constant (B+C)/2= B. Each rotational
level of the manifold can thus be labelled unambiguously with the
corresponding e-o-e rotational quantum number (l) as in Figure 3.6.2.
In other words, J is used to label the intermolecular vibrational
state, or the corresponding whole rotational manifold, whereas 1 is
used to label tre levels within the manifold.

To determine the symmetry of the total rovibrational wave
function for each level of the rotational manifold, we multiply the
intermolecular vibrational state symmetry (shown in Figure 3.6.1) by

that of the e-c-e pseudo-diatomic rotational wave function, i.e.

172



173

1- J

342-_2'3"

2_4A,1.2.3

1__52:_0.1.2
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Figure 3.6.2
Schematic rovibrational level manifolds for the Az'(O;O;l.O)

{upper) and Az'(O;l;0.0) state (lower).
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Al' for even I rovibrational levels,

A." for add 1 rovibrational levels,

1

according to Section 3.4.4.2. In terms of symmetry species notation,
the only effect of the e-o0-e¢ rotational wave function is thus a change
of the superscript (' «+ ") on the intermolecular vibrational state
symmetry only for all odd I levels. 1In other words, both even and odd
1l levels have the same symmetry species as that of the intermolecular
vibrational state, except that the odd ! levels are of opposite
parity,

Since (a) the total angular momentum J (J=j+l) is a good quantum
number even in the perturbed casss, where neither l nor j is, and (b)
the usual AJ optical dipole sslection rules and the AJ=0
intermolecular interaction selection ruls (see Section 3.6.3) should
alvays hold, it is important to label each rotatiorial level also with
all possible associated J values, such as in Figure 3.6.2. In
addition to the degeneracy described by the intermolecular vibrational
symmetry species (A, E, etc.), in terms of the number of associated J
values, all nonzero l e-0-e¢ rotational levels of any nonzero j
intermolecular vibrational stzte are accidentally degenerate, with
2141 J-degeneracy when Isj (i.e. Jm|j=1|, |j=1+41], [j=142], eee, j+1)
or 2j+l J-degeneracy as lzj. Here, the "degeneracy" includes only
those which are to be broken by the anisotropic intermolecular
potential, but not the spatial degeneracy of each J, which is not of
concern. kc of the intermclecular vibrational state is not involved

in this addition scheme because it is only an internal quantum number



of the NH3 subunit. Consequently, in the free rotor limit, the J
labelling of the rotational manifold is determined only by I and by
the j value of the intermolecular vibrational state, and is
independent of both intermolecular vibrational scate symmetry species
and kc.

In the present context, “"accidentally degenerate" implies that
the degensracy of each zero-order e-o-s rotational level labelled with
1 can be broken by the intermolecular potential anisotropy without
affecting its original symmetry. Since, under one molecular symmetry
group, an irreducible rspresentation can never be a linear combination
of irreducible representations of different symmetry species, the
resultant nonzero-order states must retain the same symmetry as that
of their common original zero-order level. For example, a triply
J-degensrate zero-order E", I~l rotational level of a j=1
intermolecular vibrational state can split intc three E" rotational
states corrasponding to J=0, 1, 2. In fact, this splitting should
actually be considered as separate shiftings of three distinct E"
states, instead of a splitting of a single triply degenerate E" state.
This is consistent with the requirement that no splitting, but only
shifting may occur for the zero-order states [32], when the proper
molecular symmetry group is used. If there is no accidental
degeneracy but splitting does occur, then a higher order group must be
used. However, since in the present case the maximum group, i.e. the
CNPI group, is in use, the J-degeneracy of the zero-order state must,
therefore, be accidental.

It should alsc be noted that & given J=U rovibrational state does
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not necessarily have the same parity as its intermolecular vibrational
state. In the J-1 coupling scheme, the J=0 rotational state obviously
correlates to l=j. Therefore, whether the J=0 rovibrational state has
the same or opposite parity as the intermolecular vibrational symmetry
species depends on whether the j of the intermolecular vibrational
state is even or odd. (Of course, the 1=0 rovibrational state always
has the same symmetry, including parity, as the corresponding

intermolecular vibrational state.)

1.£.3 Selsction Rules
3.6.3.1 Optical Selection Rules

The optical selection .ules under Dah(H) can bs derived directly
from its character table (Appendix Table 1) [32). Since the Al"
symmetry associated with the electric dipole operator corresponds
purely to a parity switch, by considering the symmetry product for the
transition moment, the rules can readily be "visualized" from the

character‘table as follows:

AL"(0) wx= 4,7 (0),
E®(B8) « E'(6).

These imply that only the rovibrational states with the same symmetry
but opposite parities can be connected by a single-photon transition.

It is noted that the parity selection rule
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is inherent in the above relations. Here, the numbers in parentheses
are the proton nuclear spin statistical weights (Fermion statistics),
indicating that all states of Al synnetry are forbidden, whatever the
associated parity is. Of course, these rovibronic selection rules
should always be used along with the single-photon selection rule,
&J=0, t1, which is a requirement under the spatial three-dimensional
pure rotation group [32], K(spatial), an intrinsic molecular symmetry
group to any isolated molecule when no nuclear spin I is considered in
the Hamiltonian, (It is emphasized that both Dah(M) and K(spatial)
ars exact molecular symmetry groups with respect to the rovibronic
Hamiltonian, and should bs distinguished from any near symuetry group,
such as the D3h point group and molecular three-dimensional pure
rotation group K(mol). [32])

According to the parity altarnation feature of the rovibrational
levels associated with sach increment of 1 by one within a zsro-order
intermolecular vibrational stats, the intermolecular vibrational

selection rules are then simply:

A, ~ A

2 2
E e« E,

Since the optical interaction between A, and E is forbidden, the
relative positior.: of the Az states and E states can never be
determined by absorption spectroscopy, except through the analysis of

perturbations.

3.6.3.2 1Inter-State Interaction Selection Rules
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The potential operator (V) of an isolated system, free of
external field, is required to be invariant and then totally symmetric
under any feasible symmetry operation of D3h(n) and K(spatlial).
Consequently, a necessary, but insufficient, condition for the
interaction matrix element <1|V|2> in the perturbation theory to be
nonzero is that states |1> and |2> must be of the same symmetry
species under both groups. Since different total angular momentum
quantum numbers (J, in the j-1 coupling scheme) correspond to
different symmetry species in K(spatial), the interacting states not
only need to have exactly the same symmetry specie: in Dsh(M). but
also the same J. In other words, at whatever level of coupling in the
wavefunctions, only states of the same DSh(H) synaetry and the same J
can be mixed and thus "repelled" by one another when further
intermolecular potential terms are introduced. [32,35]}

In such a cor :x't, these general inter-rovibrational-state
interaction selection rules have already covered both the Fermi
resonance [34] and Jahn's Coriolis selection rules [34], which have
less rigorous implications because the vibronic near symmetry species

of the point group are employed instead.

3.6.4 Intermolecular Vibrational Transitions in the Free Internal
Rotor Limit
To elucidate the intermolecular vibrational branches allcwed in
the free internal rotor limit, small characters n, o, p, q, ¥, s, t,
etc, will be used to label them in terms of Al, in the same way that

P, Q. R are convaintionally used for AJ, with Al=0 correspcnding to q
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branch. For example, t branch corresponds to Al=+3. As will be
shown, even though J is always a good quantum number in the J-1
coupling scheme, I is more convenient than J for describing the
rovibrational spectrum in the free internal rotor limit.

As an example, we consider the A2‘(0;0;1,0) - Az'(O;l;0.0)
intermolecular vibrational transition, which corresponds to a NH3
inversion-rotational transition (see Figure 3.6.1; the schematic
zero-order rotational manifolds are shown in Figure 3.6.2.) 1In the
upper A2'(0;0;1,0) state, due to the j+l1 vectorial addition with j=1,
each 1>0 level of the rotational manifold is accidentally triply
degenerate, with J=l1-1, 1 and l+l; the I=0 level is nondegenerate with
J=j=1. Now, following the optical selection rules for parity and J,
three branches can Le obtained with Al=—Z2, 0, and +2, respectively
(i.e. o, q, s branches). (In this particular case, the parity
selection rule is inherent in the J selection rule. However, this by
no means implies that the parity selection rule can be neglected;
generally, both selection rules are necessary in the perturbed cases.)
It is interesting that the P, Q, R branch transiticns are now
regrouped into a pattern of three new branches in the free internal
rotor limit. The o-g-s to P-Q-R branch evolution between the two
limits for this vibrational transition will be discussed in Section
3.7.6 on the perzurbed cases. Because of the same relative spacings
within both upper and lower rotational manifolds, the q branch
consists of a single p2ak (superimposed lines) in the free internal
rotor limit.

If other intermolecular vibrational transitions are examined



similarly, the Al selection rule in the free internal rotor limit can
be readily deduced. In general, “for an allowed intermolecular
vibrational transition vith ju and j1 as the upper and lower state j,
if the two intermolecular vibrational states are of the same parity,
then all odd Al branches with |A1|sju+j1+1 can exist; if of opposite
parity, then all even Al branches with |al|sj +j,+1 are present. For
example, the E’(0;0;2,2) « E"(0;0;1,1) intermolecular vibrational
transition should have m,0,q,s,u branches corresponding to Al=—4, -2,
0, +2 and +4, respectively, because ju+Jl+1-4. However, E"(1;0;1,1) «
E"(0;0;1,1) should have n, p, r, t branches corresponding to Al=—3,
-1, +1, +3. It can be shown that the spectral line spacing of a Al
branch is 2B|A1|, where B is the pseudo-diatomic rotational constant,
and the band center gap of a Al=tk (k>1) branch pair is ZB[k2 + kj.

It can be verified that the existence of a q branch in the free
internal rotor limit is an indication that the corresponding internal
inversion-rotational transition is originally allowed for the free NH3
monomer; if q is missing, then it is originally forbidden. Here,
"allowed" or "forbidden" is defined in terms of the mest unrestrictive
selection rules, given in Section 3.6.3.1, under D3h(M) and K(spatial)
for the NH3 monomer, not of certain classical apprcximate selection
rules which help to distinguish strong transitions from the rest.

(For exampls, certain NH3 transitions forbidden by the approximate
rotation selection rule Akc-O are allowed by the rules given in
Section 3.6.3.1. However, these "allowed forbidden" transitions «re
in principle weaker. [32]}

It is also interesting to scruti=ize a special case, the limiting
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band pattern of the E’(0;1;1,1) « E*(0;0;1,1) transition, which
corresponds to a NH3 monomer inversional motion. According to the Al
selection rule, three branches, i.e. o, q, and s branches are
expected. However, since the two zero-order intermolecular
vibrational states are separated only by approximately 24 GHz [35],
while the pseudo-diatomic rotational constant (B) is 2.8 GHz, one
might ask how far the high I transitions of the o branch can extend.
Actually, in the zero-order rovibrational level diagram (Figure
3.6.4(a)), the upper and lower states are reversed for all high !
transitions starting with o{3). This results in a necessary o branch
"reflection” bandhead at zero frequency (Figure 3.6.4(b)).
Interestingly, this bandhead structure is not due to the usual
noninertial effects. (Actually, as can be readily verified, this
reflection effect occurs for any band structure that reaches zero
frequsncy in both perturbed and unperturbed cases.) This is a special
intermolecular vibrational transition also because there will be many
inter-state interactions within the manifold of the two zero-order
vibrational states when the anisotropic potential is introduced (see
Section 3.7.6). This gives rise to an unusually complicated spectrum,
as has been observed in microwave by Nelson et al [14,15], but is not

yet theoretically understood.

3.7 Perturbed Cazes
It will be shown that due to the near prolate top configuration
of the complex the K‘ manifolds can be considered as the appropriate

evolving units for the energy level correlation between the free
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(a) the zero-order rovibrational level distributions for the
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frequency.
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internal rotor limit and semi-rigid limit. The quantum number
correlation between the two limits will then be established under both
C3V(M) and D3h(M). Finally, the qualitative aspects of the

intermolecular rovibrational transitions will be discussed.

3.7.1 Highly Near Prolate Top

Due to the small mass of the hydrogen atom, the Ar-NH3 complex,
approaching any rigid structure in the limit of high anisotropy, will
be a near prolate top. (Of course, two trivial exceptions are when
the 03 axis of the NH3 and a-principal axis of the complex are
collinear; they are exact prolate tops.) This can be verified by
considering the numerical values of the rotational constants, or of
the corresponding principal moments of inertia, if a rigid model is
assumed for the complex.

In order to simplify the derivation and the expression of the
inertia tensor for the complex, the (right handed) Cartesian
coordinate system is defined with its y and z axis (in the direction
of k in Figure 3.4.1-2) in the plane spanned by the 03 axis of the NH,
and the a-principal axis of the complex. The inertia tensor (I) can

then be shown to be

2
Ib,s + uR 0 0

I- 0 I c2o+1 s%0+ % (I, -1 )cess

b,s c,s b,s c,s
- 2 2
0 (Ib.s Ic")COSO Ib.ss + Ic"c [

{3.7-1)

vhere Ib s and Ic g are the moments of inertia of the NH3 monomer, the

subunit which is assumed to be unperturbed, along its b- and
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c-principal axis; p is the reduced mass of the pseudo-diatomic frame;

R and § are as previously defined; C and S denote cosine and sine.

Due to the Dnh symmetry of the momental ellipsoid of the NH3

monomer, in terms of # (Figure 3.4.1-2), the inertia tensor I of the

complex should be symmetric with respect to §=0° and 90° (and thus

180° and 270°), as also indicated by Equatira (3.7-1).

S1.c= the

Principal moments of inertia, i.e. the three roots of ":»: secular

equation corresponding to the matrix in Equation (3.7-1), are either a

constant or a monotonic functien of ¢ within the range of [0°.90°].

the 11

*s (i=a, b and c¢) and the corrssponding rotational constants for

these two configurations (0-00, 90°) ars thus the boundary values for

the rigid model.

The principal moments of inertia for all ponssible

rigid configurations therefore vary in the following two set of

limiting values:

#= 0° —_— 9= 90°
(8= 180° <—)
collinear T-configuration
configuration
decreasing
Ia- Ic s > Ia- Ib s
' (3.7-2a) ' (3.7-3a)
2 constant 2
I =1 + pR > I, =1 + pR
b "b.s (3.7-2b) b "b.s (3.7-3b)
2 increasing 2
I =1 " + 4R >1 =1 + uR",
c b (3.7-2¢) e e (3.7-3¢)

{Actually, for such special

configurations with #=~0" and 90°. these



expressions can be "visualized" directly from Figure 3.4.1-2 by using
the parallel axis theorem for moment of inertia [31]}, without
employlng Equation (3.7-1).)

If R is substituted in the above expressions for Ii's by the
distance estimated from the microwave spectrum [13] (or from this
work), the corresponding rotational constants can be estimated as

follows:

for collinear configurations (two symmetric tops),
A= 189 GHz = 6.3 cn-l.
B= C= 2,849 GHz;

for T-shaped configuration (the most asymmetric top),
A= 298 GHz = 9.9 ca T,
B= 2,849 GHz,

C= 2.834 GHz.

The corresponding asymmetry parameter x (w(2B3~A-C)/(A-C)) [33,34] for
the latter, the most asymmetric configuration possible, can be
approximated by [-1+2(3-C)/A}, where 2(B—C)/A is only on the order of
IO-A. (Here, because the large difference between the numerical
uncertainty of A4 and those of 8 and €, no direct evaluation of « is
made.) This indicates that the complex even at its most asymmetric
configuration is still a highly near prolate top.

The typical change in vdW bond length (R) between the ground and
the first few excited intermolecular vibrational states is within few

percent [13,40]. In addition, in the expressions for Ib and Ic

(Equations (3.7-2b,c) and (3.7-3b,c)), the pR2 term is two orders of
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magnitude more dominant than Ib,s and Ic,s' which characterize the

internal roctation. As a result, the feature of being a highly near

prolate top in the rigid model can then be extended to any floppy

model, in which the inter-subunit relative orientation, distance, and

the NH3 inversional coordinate are not fixed.

3.7.2 x‘ Rotational Manifolds as Evolving Units under c3v(n> betwveen
the Two Linits

Since the evolution of rovibrational lsvels between the free
internal rotor limit (defined together with the zero-order limit in
Section 3.6.2) and the semi-rigid limit is of concern, a clear
definition is required for "semi-rigid", "Semi-rigid” means that only
harmonic vibrations with infinitesimally small amplitudes are allowed.
{29] Such a definition gives rise to two phenomena: (1) the
vibrational moiions can be separated from the overall rotations and
(2) the independent vibrational normal modes can exist. The
connotations for the NHé subunit and the overall complex need further
clarification.

It i{s noted that, whether the semi-rigid NH3 subunit has C3v
point group symmetry or not, the NH3 inversion, allowed by a
semi-rigid planar NH3. can never be achieved by a semi-rigid nonplanar
NH3 with an infinitesimally small amplitude in the inversional
coordinate (y). Consequently, in the semi-rigid limit, if the NH3
subunit is planar, then the molecular symmetry group of both the
subuqit itself and the complex will be D3h(H); if it is nonplanar, the

molefular symmetry group will be C3V(H). (Of course, the use of these

2
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groups by no means implies that the complex is necessarily
semi-rigid.) .

In the following discussion, the "semi-rigid NH3” is further
defined to have C3v point group symmetry. This definition necessarily
quenches the inversional motion completely, and makes the molecular
symmetry group of the complex becoms CBV(H)' However, in terms of the
complex configuration, “Cav(H) semi-rigid", or generally "semi-rigid",
needs to be distinguished from "Cav semi-rigid®, The former implies
an arbitrary ssmi-rigid relative configuration bestween the Ar and Cay
semi-rigid NH3 subunit; however, as a spacial cass of the former, the
latter further requires that the Ar atom be on the 03 axis of the NH3
subunit. Therefore, there are two different kinds of ch seni-rigid
configurations for the complex: one with the Ar atom attached directly
to the N atom, the other to the plane formed by the three H's. (The
following discussion makes no difference between these two kinds of
Cay semi-rigid configurations.) An important result from these
definitions is that whenaver the complex is described as semi-rigid,
the molecular symmetry group of the complex must be CSV(H)' instead of
D3h(H), because we do not consider the case in which the NH3 has a
semi-rigid planar structure.

According to Sectlion 3.7.1, it is known that the feature of
Ar-NH3 being a highly near prolate top is insensitive to the rigidity
of the complex. This makes the complex always similar to a diatomic
molecule in many aspects. It is noted that in the j-1 coupling scheme
the absolute projection value K, of the total angular momentum J(=j+l)

onto the complex a principal axis is basically due to the internal
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angular momentum j. Therefore, J and Ka of the complex play the roles
analogous to those of the diatcmitc electronic angular momentum L and
its absolute projection value A onto the diatomic figure axis,
respectively. [36] More or less normal rotational level distribution
is thus expected for each K‘; the rotational J-stack for each K‘
should be basically characterized by the pseudodiatomic rotational
constant 3, in a similar way that the J-stack for siach A is by the
diatomic B constant. It is also expscted that different K"s can
interact with each other and be mixed by the noninertial forces, i.e.
the Coriolis and the centrifugal distortion forces, when the complex
is rotating. However, according to the exparience with diatomic
molecules, we do not think such K; nixings are a dominant feature in a
first approximation. In other words, K; should be a nearly good
quantum number for this floppy but always highly near prolate top
complex.

(Because K‘ is a quantum number purely of rotatioral motion, not
of the NH3 inversional motion which extends the molecular symmetry
group from C3V(H) to D3h(M), we will keep the discussion first in
terms of C3V(H).)

In terms of the energy level correlation between the two limiting
cases each K‘ rotational manifold should constitute an evolving unit,
as further supported by the following facts. As can be readily
verified for any symmetric (and thus near symmetric) top, no
rovibrational states in one K; rotational manifold of a semi-rigid
vibrational state share both the same symmetry and same J. [32]

Consequently, within such a manifold, there is no "internal repulsion"”



to be reduced when the potential evolves toward the free internal
rotor limit. It is noted that the two states corresponding to a
doubly degenerate E (in C3V(H)) rovibrational state do not interact
with each other. Therefore, such two degenerate states are considered
as one rovibrational state in the above statement. In addition, since
the inter-subunit distances corresponding to any physically reasonable
intermolecular potentials should be on the same order (few A's), the
rotational constant B(~C) and thus the state density of each K.
rotational manifold should be relatively insensitive to the potential
variation. As a result, the rovibrational levels corresponding to a
given K‘ are basically "held" together and evolve as a unit between
the two limiting cases.

When the intermclecular anisotropy is raduced, the "repulsions*
that give rise to the classical distribution of the semi-rigid
vibrational states and the K‘ rotational manifolds therein can only be
decreased. Furthermore, as expected from the physical significance of
K‘ (the absolute projection value of j on the a principal axis), all
K. should ultimately be in the framework of the free NH3 rotational
levels. As a result, when the complex is far from the semi-rigid
limit, the distribution of the K‘ rotational manifolds correlating to
a vibrational state in the semi-rigid limit can no longer be

approximated by the well-known rotational energy (E_ ) expression for

rot
a semi-rigid near prolate top, [34]

- 2
Erot- [(B +€)/2)J(J+]l) + [A = (B + C)/2]K‘ . (3.7.2)

In other words, the vibrational states in the semi-rigid limit fail to

189



evolve together as units between the two limits. This makes the
structurally informative rotational A ‘onstant unavailable through
this equation. However, in the free internal rotor limit the
distribution scale between the K‘ manifolds is two orders larger than
that (the complex B value) within each K‘ manifold. This makes the Ka
manifolds behave more like evolving units.

When the complex approaches the free internal rotor limit, there
should be a higher chance for two K‘ rotational manifolds to
intercross or interact with each other as functions of the potential
evolution., The statement that the K. rotational manifolds evolve as
units should be further clarified by considering such intercrossings.
Accordingly, we examine the interaction between an A, K.-O and an
A\84, K =1 rotational manifold, as depicted in Figure 3.7.2-1. Here,
the symnetry species of the K‘ rotational manifold is defined to be
the overall symmetry of the level(s) with the lowest J(-K‘) in the
manifold. It is found that, although there exist the deflections of
the interacting rovibrational levels, each K‘ rotational manifold
structure appears to "penetrate® the interaction region as an evolving
unit before and after the interaction region. (It is noted that the
K‘ values cannot be defined in the interaction (mixing) region.) More
importantly, according to the standard textbook discussion on system
of two interacting states [34,35]), it can be inferred_that it is not
only the manifold structure but also the associated physical
significance (wave functions) of each interacting K, rotational
manifold that has the "penetrating capability®; the farther from the

interaction region, the less each K‘ manifold is "contaminated" by its
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Figure 3.7.2-1
Schematic representation of the interaction between an Az K‘-O and

an Aloaz K;-l rotational manifold under ch(H)' (The x axis

corresponds to one of the variables that control the potential
evolution.)



interacting partner. Similar observations can be made for the
intercrossing between two Ka manifolds with the same Ka value and same
symmetry. Although in this case all rotational levels in each
manifold are deflectad in the interaction region, the above remarks on
the wave function “penetrating capability" still hold. In other
words, treating the X, asanifolds as the evolving units is based on the
evolution of the associated wave functirnns rather than of their actual
rovibrational levels.

All these facts suggest that a correlation disgram betwaen the
two limiting cases can be established with the K. rotational manifolds

as the evolving units.

3.7.3 Splittings of Zero-Order Intermolecular Vibrational States into
K. Vibrational Component States under c3v(u)

Since, according to the c3v(H)-D3h(H) symmetry specles
correlation table (Appendix Table 4) or the fact that C3V(H) is a
subgroup of D3h(H). there will be further energy level splittings when
the molecular symmetry group evolves from C3V(H) into D3h(n)'
Therefore, any further splitting complications can be considered to
occur within each evolving nait, the K‘ rotational manifold, instead
of between them.

Again we will derive the overall picture only under c3v(n) for
the moment. As will be shown below, when the intermolecular potential
is introduced, each zero-order intermolecular vibrational state which
involves the NH3 free rotaticnal aotion can split into several K‘

rotational manifolds, each of which correlates to a K‘ stack of a
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different classical near prolate top vibrational state in the
cemi-rigid limit. In such a context, each K‘ rotational manifold can
be considered as a vibrational component state with respect to either
limit,

Now, we examine first the rotational manifolds of the zero-order
intermolecular vibrational states in C3V(H). In such a case, the two
columns on the left of the zero-order intermolecular vibrational level
diagram, Figure 3.6.1, coalesce with the two on tha right into two new
columns corresponding to (vi.vl)-(O,X) and (1,X), where "' is used to
reflect that the NH3 inversional motion is quenched and thus the
associated quantum number becomes indeterminate. Consequently, each
resultant vibrational level is labelled with two symmetry species in
Dah(n). which correspond to one species in c3v(n) according to the
sysmetry species correlation (Appendix Table 4).

For example, the Az'(O;O;l.O) and Al'(O;l;l.O) state in Dah(n)
becomes the AZ(O;X;I.O) state in cav(u). {The notation So(v';vl;J,kc)
for the zero-order intermolecular vibrational state is still preserved
under C3v(H>'> Similar two-to-one species relationship can be
observed for each zero-order rovibrational level of the Az(O;x;l.O)
vibrational state. Since its j equals 1, based on the discussion in
Section 3.6.4, each of its zero-order 1 rovibrational level, except
the I=~0 level, is triply J-degenerate, with the assoclated J=1-1, 1,
l+l. As indicated in Figure 3.7.2-2, such accidental J-degeneracy of
three states of the same symmetry will be removed basically due to the
pairwise interactions between every other ! levels, according to the

same-symmetry-save-J inter-state intcoraction selection rules (Section
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Figure 3.7.2-2
Schematic representation of the splitting of the AZ(O;X;"I..O} state

into a K‘-O and 1 component state by the anisotropy of the
intermolecular potential.
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3.6.3).

To simplify the discussion on the splittings of the A2(0;X;1,0)
state, it is assumed that all other zero-order intermolecular
vibrational states are located sufficiently far away and their
influences on A2(0;X;1.0) can then be neglected. Since the
vibrational state distribution is a continuous function of the
potential evolution, this assumption will not hamper the generality of
the result thus derived. Under this assumption, the necessary result
according to the previously justified requirement that the K‘
rotational manifolds be the evolving units is as follows: As
indicated in Figure 3.7.2-2, the triply degenerate zerc-order
rovibrational states with a given l shift respectively into
rovibrational states only of two X‘ rotational manifolds, viz., J=1-1
of a K‘-O manifold and J=1, i+l of a !‘-1 manifold; the only
nondegenerate zero-order I=0 state becomes one of the two J=1 levels
of the K‘-l manifold. In other words, the Az(O;x;l.O) vibrational
state can split into one Al K‘-O and one A1OA2 K‘-l rotational
manifold. (It is remembered that the semi-rigid K.-l {(or more
generally >0) stacks should have symmetry which is totally two
dimensional.) Similarly, the E{0;X;1,1) state can be shown to split
into one E K‘-O manifold and two E K.-l manifolds.

Even according to the schematic correlation in Figure 3.7.2-2
whose rotational stacks are all drawn to scale with 3J(J+l), it is
apparent that generally thers is a necessary distortion associated
with each K‘ manifold approaching the free internal rotor limit.

(This is "necessary" distortion because we have already assumed the
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influence due to the Ka manifolds (or manifold) correlating to other
zero-order intermolecular vibrativnal states is negligibly small.) To
the first approximation, the only distortion-free K‘ manifold should
be that of the zero-order intermolecular ground vibrational state
Al(O;X;0.0). Although the K‘ manifolds are described as distorted in
the free internal rotor limit, actually the distortion is in the
opposite direction. It is remembered that the J-level regularity
within and the independence among the semi-rigid K‘ manifolds are the
limiting phenomena due to tha limiting anisotropic intermolecular
potential; the “normal" K‘ manifolds in the semi-rigid limit actually
result from the distortion of the accidentally degenerate and
apparently "distorted" zero-order K. manifolds.

If similar examinations are made for other zero-order
intermolecular vibrational states under C3V(H). the rules of their
splittings can be summarized in Table 3.7.3. The symmetry species of
each K‘ vibrational component state used in this table is still zs
previously defined in Section 3.7.2., For example, the K‘-l component
state in Figure 3.7.2-2 has AIOAZ symmetry, which corresponds to the
two nondegenerite rovibrational states of J=1 in the manifold.
Consequently, the symmetry speclies dimension of the K‘ vibrational
component state is the same as that of the overall species of the
rovibrational state(s) corresponding to each J within the manifold.
{As an afterthought, by counting the number and the symmetry species
dimensions of the K‘ component states in Table 3.7.3, it can be found

that the degeneracies due to both K‘ and kc have been fully accounted



197

Table 3.7.3
The correlation between the zero-order intermolecular
vibrational states and their K‘ vibrational component

state(s) (or the K. rotational manifolds).

zero-order =—> number and symmetry of

vibrational stats X‘-O X.-'O (K‘:[I.J])
manifold(s) manifold(s)

A1 (kc-o, even j) ons Al' one (Al ® Az)
A2 (kc-o. odd J) one Al one (A1 ® Az)
E Gk =1, 3ni2) one E tvo E's

one Al. two (Al ® Az)'l
A @ Az) (k c-Sn)

om Az

*The syaaetry species refers to that (those) of the
level(s) of the lowest J in the rotational manifold.

bn: positive integer.



for.)

It is noted that for any K‘ rotational manifold with a symmetry
species associated with subscript, i.e. the Al' A2. or Alcnz K;
manifold there is always a subscript alternation feature for the
rotational symmetry species associated with each increment of J by
one. Of course, no subscript alternation can be made for the K;
manifolds with E sysmetry. Therefore, as long as the symastry of the
K. manifold is known, the symmetry species of any J in the manifold
can be quickly figured out, Although this rule might seem trivial
under c3v(H)' it is such simplicity that justifies the convenience of
the use of the L manifold symmetry thus defined.

The splittings of the zero-order intermolecular vibrational
states into different R; manifolds can also be justified in terms of
the C3V(H) synnstry spacies of the free NH3 rotational states. By
first assuming that the e-0-s rotation is quenched and only the NH3
subunit is allowed to rotate, we recognize that the N'H3 subunit is in
an intermolecular potential with C_ symmctry about the complex a axis.
In terms of symmetry, this phenomenon is therefore equivalent to the
Stark effect [35] of the fres NH3 {(without inversion yet).
Consequently, sach parity-undefined (Jno.kc) NH3 rotational states will
result in 2j+1 “first order Stark component states”, corresponding to
its 2j+1 possible projections (’J'l) on the complex a axis; however,
each parity-defined (Jno.kc) state will result in j+1 “second order
Stark componert states”, corresponding to the j+1 possible absolute
projection values (Iqu's). In order to determine the associated

parity, the c3v(H)'D3h(H) syonetry correlation table can then be used.
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It is found that A, correlates only to positive parity, A2 only to

1
negative parity, and E to both (parity-undefined). As a result, each
(j,kc-O) state splits into j+1 component states; all (j,kc>0) states
into 2j+1 component states, When the e-o-e rotation is "turned on",
each of these component states will correlate to a K‘ rotational
manifold. This result is then in agreement with Table 3.7.3.

The relative positions of the K; manifolds originating from a
zero-order intermolecular vibrational state depend on the geometry of
the intermolecular potential function. Since no particular functional
form has yet been assumed for the potential, the relative position of
the K‘-O and x;-l component state, shown in Figure 3.7.2-2, is
arbitrary. However, by using the correspondence principle,
qualitative arguments on the ordering of the K‘-O and K‘-l component

state can be made for the special case of the A2(0;X;1.0) state with
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kc-O. vhen in the slightly perturbed cases. (Here, "slightly" inplies

that the dominant interaction is still between these two component
states.) If the zquilibrium configuration is T-shaped between the NH3
C3 axis and the complex a-principal axis (for example, when the
Legendre Pz(cosi) [37), instead of other Pn(c030) with n»#2, dominates
the potential), then the K;-l state is more likely to be lower than
the K‘-O state. This can be understood by considering the
corresponding classical motions of the x;-o and K.-l state, shown in
Figures 3.7.3 {(al) and (a2). Since kc-O in the A2(0;x;1,0) state, the
J=1 can be ascribed to an internal libration or rotation about an axis
perpendicular to the C3 axis. The corresponding internal rotation of

the Ka-l state always senses the minimum of the classical potential,
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K =0
a2
Ar.-_—-_-.
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K.-l
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Figure 3.7.3

Corresponding classical motions of the K.-O and 1 component state of

the A2(0;x;l.0) intermolecular vibrational state:

{al) and (a2) correspond to the K‘-l and 0 motions, respectively, when

the complex has a T-shaped equilibrium configuration, shown in (a).
(bl) and (b2) correspond to the K.-O and 1 motions, respectively, when

the complex has a linear equilibriue configuration, shown in (b).
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as opposed to that of the Ka-O state which passes at least two
internal rotation barriers per cycle of the internal rotation. As a
result, the K‘-l state is lower than the K‘-O state. Similar
arguments can be applied to the case when the 03 and a-principal axis
are collinear in the equilibrium structure (for example, the Legendre
Pl(ccl'r) dominates the potential). As indicated in Figures 3,7.3
(bl) and (b2), only the K‘-O motion can probe the potential minimum,
which the motion corresponding to K.-l never experisnces. Thersfore,
the relative position between the K.-O and 1 state is reversed.
(However, when the stats is complicated by nonzero kc' which
represents a classical internal rotation about the 03 axis, the above

qualitative arguments cannot be generalized easily.)

3.7.4 K‘ Correlation under cav(l) between the Two Limits

Since, along the whole path of a correlation between any two
limits, there is only one single point that is physically existent,
establishing such an evolution type correlation is merely a
construction that provides more insights to the complex. The
numerical models which assume different evolution paths for the
potential produce different evolutions of the state distribution. Any
such numerical models are acceptable as long as they can account for
the state distributions at the following three places: the two
limiting cases defined and the position corresponding to the actual
complex. Therefore, generally it is the qualitative aspects, rather
than the quantitative aspects, of the evolution type correlation that

are more significant. Due to this reason, the correlation in this
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section will be made only in terms of the quantum numbers belonging to
the two limiting cases along with* the symmetry species of the
molecular symmetry group, which is temporarily assumed to be C3v(H)'
In other words, the correlation to be discussed is mainly to indicate
the physical significance connections between the states in the two
limits. A state (quantum number) correlation table, instead of the
state correlation curves, will be constructed.

Because the two limiting cases do not belong to the real world,
they need be artificially but reasonably defined, as already done for
the free internal rotor limit, before any correlation can be made.
Now, it is time to define the semi-rigid limit for the complex. In
this limit, Ar and NH3 can be assumed to combine togetler in various
ways with different semi-rigid configurations, vibrational
frequencies. etc.. However, since it is the quantum number
correlation that is to be constructed, any quantitative specification,
such as the semi-rigid vibrational frequencies, becomes unnecessary.
In order to facilitate the physical meaning assignment to the
semi-rigid energy levels, as will be shown below, the only
specification required is the complex configuration.

Within the semi-rigid limit, the energy level d@stribution is
still a continuous function of the variation of the internal
potential, In other words, the state correlation can also be
established, at least in principle, for any two semi-rigid
configurations. Because in this limit the vibrations are well
separated from the overall rotations, such correlations should have

the vibrational states, or, equivalently, the corresponding near



prolate top rovibrational manifolds, as the largest evolving units,
each of which can be characterized by the Ka guantum numbers and the
associated rotational constants [34). This fact allcws us to select
any semi-rigid configuration as the reference point tn be correlated
directly to the free internal rotor limit., If we are interested in
any other semi-rigid configuration, for example, the one corresponding
to the minimum of the actual intermolecular potential, then a
secondary correlation starting from the reference semi-rigid
configuration can always be established within the semi-rigid limit.
In such a secondary correlation, the classical discussions on the
Fermi resonance and Coriolis interactions between different semi-rigid
vibrational states should apply. Since such secondary correlation is,
in principle, always feasible, and is a relatively well understood
topic, without losing any generality, we will focus tha discussion
only on the simplest correlation between the free internal rotor limit
and the semi-rigid limit. Thersfore, the C3v configuration which is
similar to the ground state CH3C1 is naturally chosen for the
reference semi-rigid limit, because this exact prolate top structure
provides the exact physical meanings to the K; stacks in sach
semi-rigid vibrational state.

Now, we begin to consider guch a correlation between these two
particularly chosen limits. With the NH3 inversional motion quenched,
under c3v(u) onl" the dimeric stretch and internal rotation, hindered
or not, can be involved in the intermolecular motions. However, it
has been shown that the zero-order dimeric stretching wave function

with any stretching quantum number ve is totally symmetric (Section
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3.6.1). Therefore, in order to derive the correlation in terms of the
quantum numbers and symmetry species, only the evolution of the pure
internal rotational states into the semi-rigid limit needs to be
examined, because this correlation can be duplicated for each value of
Ve On the other hand, being equivalent to an extremely hindered NH3

internal rotation, the semi-rigid bending vibration, without any

internal vibrstion in the NH3 subunit, of the reference 03v semi-rigid

configuration is worth particular attention for the correlation
purpose, Due to the C3v structural symmetry, this bending vibration
mcde must be doubly degenerate, and thus should have E as its symmetry
species because E is the only two dimensional species available under
C3V(H). The same result can be obtained if a rigorous symmetry
analysis is performed for the corresponding vibrational displacement
vectors, In the scni-rigid limit, this doubly degenerate vibration
corresponds to a two dimensional (2-D) isotropic harmonic oscillation
[38], which can be exactly specified by the bending quantum number
(vb) and the associated angular momentum (lb).

Therefore, more accurately speaking, the correlation being sought
for is between free internal rotational quantum numbers j, kc and the
semi-rigid bending vibrational quantum numbers vy Ib through the
symmetry specles in C3V(H) and the near prolate top K‘ quantum
numbers.

The symmetry species of the free internal rotation states as a
function of j and kc can be readily derived from Table 3.4.4.1-2 along
with the C3V<H)'D3h(H) symmetry correlation table (Appendix Table 4).

(0f course, it can also be derived by using the standard symmetric top
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wave functions under C3V(M). as in Section 3.4.4.1 under D3h(H).) The
results are summarized in Table 3~7.4-1.

On the other hand, the symmetry species of the semi-rigid bending
states as a function of vy and 1b can be deduced as follows: As can
be found in almost any standard textbook on quantum mechanics [38],
the energzy of a 2-D isotropic harmonic vscillator can be expressed as
(vb+1)hw, where w is the fundamental angular frequency; each vy level
is (vb+1)-£old degensrate to account for ths vb+1 different signed
vibrational angular momentum quantum numbers {or number) tlb with
Ib-vb. vb-2. vb-a. vy Oor 1. As a direct result of the fuct that
angular momentum (along the axis perpendicular to the 2-D vibrational
Plane) operator ll..z commutes with the Hamiltonian, the wave function
corresponding to each (vb.lb) should have only the multiplicative
factor cxp(itlbp) that is depsndent ou Ib and the corresponding
angular coordinate ¢. Therefore, in order to find the avmmetry
species of a p vibrational level, we do not neasd to bother to employ
the vb+1 complete wave function expressiors as the basis set in the
symmetry reduction., Instead, the vb+1 functions of the form

b
purpose. Furthermore, we do not need to derive the transformation

exp(itlbv) with lb- b vb—z. v,"4, ..., 1 or 0, will suffice the

properties of p under C3v, required by the symmetry reduction; it is
recognized that for the particular c3v semi-rigid configuration the
transformation properties of ¢ under C3V(H) are equivalent to those of
Xg listed in Table 3.4.3-2. (Howevar, this by no means implies that
these two coordinates have the same physical significance.)

The C3V(H) symmetry specles as a function of vy and 1b thus


http://Vl.1l

Table 3.7.4-1
The NH3 subunit internal rotational symmetry

species under C3V(H) as a function of j and

kc quantum numbers.

k Symmetry species
under c3v(H)

sven | Al
0
\ Odd J 4'\2
1, 3nxl* E
in Al ® A2

*a: positive iateger.
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derived are summarized in Table 3.7.4-2. {In Herzberg (Vol.2, p.127)
[34), the point group symmetry species under 03v is given as a
function only of vy Since there exists the isomorphism [32] between
the point group and the permutation-inversion group, in terms of vy
the results derived in this work nesed be consistent with those listed
in Herzberg.)

In order to facilitate the discusiion, as opposed to the notation
So(v’;vl;j.kc) for the zero-order intermolecular vibrational states in

the free internal rotor limit, the notation

[5)Cvy.1p)

will be introduced for the semi-rigid bending vibrational states,
listed in Teble 3.7.4-2. Here, S is the symmetry species of the
vibrational state corresponding to one set of (v .lb); the square
brackets are used to remind that it is in the semi-rigid limit.
Although this definition makes all the states with lb-3n (n:positive
integer.) denoted by [Allazl(v y3n), with its reducible double
degeneracy emphasizi3, it must be recognized that this single notation
corresponds to two vibrational levels if any anharmonicity is
introduced.

Due to the invariance of the symmetry species associated with
sach state and thus those with the K‘ rotational manifolds (the
evolving units) throughout the whole evolution, to make the
correlation, the K‘ symmetry species should be derived not only as a
function of j and kc (Section 3.7.3) but also of v and lb. Because

the rotational symmetry species of a semi-rigid vibrational state with
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Table 3.7.4-2
C3V(M) symnetry species, as a function of the bending

quantum numbers (vb and lb). of the semi-rigid bendirg
vibrational states of Ar-NH3 with a CH3C1-11ke exact
synmetric top configuration.

%
0 1 2 3 4 5 6

a
v),=6 (a;) (E] [E] [A,94,]
V=5 [E] (A 04,] (E]
V=4 (4,1 (E] (E]
v,=3 (E) (A 04,)
vy=2 (a,) (E)
vb-l [E}
vy,=0 (A1

.Square brackets are used to remind that the species
inside is th: semi-rigid vibrational, instead of
rovibrational or zero-order intermolecular vibrational,
symmetry.



symmetry [S] are the direct product of the well understood ground
state rotational symmetry species' [32] and S, the K‘ symmetry species
can be readily obtained under C3V(H). as tabulated in Table 3.7.4-3.
[32] As a result, the bending state R; symmetry species in the
semi-rigid limit can then be deduced, from Tables 3.7.4-2 along with
-3, as a function of K‘ {oxr K‘(t)) and [S](vb,lb), where & denote the
aign for lb associated with the X‘ rotational manifold.

By combining Table 3.7.3 (the splittings of the free internal
rotational states into the K. rotational manifolds) and Tables
3.7.4-2, -3 (the K; rotational manifolds contained in the semi-rigid
bending vibrational states), the correlation under C3V(H) between the
Sa0vsivy
limit and the [S](vb.lb) states in the semi-rigid limit can be

-O;j.kc) states (with Ve fixed) in the free internal rotor

established. There are two different frameworks for this correlation;
one is in the format of j vs. kc' as depicted in Table 3.7.4-4, the
other is of v, VS. Ib. It is the former that will be employed in the
following discussion. This is because we definitely do not think that
the complex is clofe to the semi-rigid limit.

Under this choice, the symmetry species So are arranged in an
array of j vs. kc' with all free internal rotor states of the same j
aligned horizontally to indicate the generality of this correlation
for either a prolate or oblate top as the internal rotor; the
So(vs-o;vi-x;j,kc) notation is not used, but is inherent in such an
array. For convenience of finding the numerical regularities among
different quantum numbers, the X‘ rotational manifolds, represented in

the format of K‘, or K‘(t). are put in the order of increasing K‘.

209



210

Table 3.7.4-3
C3v(u) symmetry species of the K; rotational manifolds

in the semi-rigid limit as a function of K;. the sign
for lb‘ and the symmetry species [S] of the bending

vibration.
X

[s) 0 3na1* 3n+2 3n+3
(AI] Al E E A10A2
(A2] A2 E E A20A1

A, () [E () E (+)
[E] E

E (-) Ao, (-) E (=)

*a: nonnegative integer,



Table 3.7.4-4

Quantumr number correlation, under c3v<n), between the zsro-order
intermolecular vibrational states So(v';vl-o;j.kc). with Ve fixed, in
the free internal rotor limit and the bending vibrational states
(S](vb.lb) in the semi-rigid limit,

{The symmetry species S° ars arranged in an array of j vs. kc; the
symbol So(v’;vl-O;J.kc) itself is not used. The evolution units, the
X. rotational manifolds, are represented in the format of K.. X.(+).
and X.(-). vhere (+) and (=) denote the sign for Ib‘ Basically, these
K‘ symbols are inserted between So and [S](v .Ib) to indicate their

roles as the evolving units. ([AA] is an abbreviativn for [A10A2].)
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6(1),[E](4.4) 4, [AA](3,3);(-).[EI(5,5] 4(-),[E](2.2); [AA](6.6) s [E1. i) [EVT. 1)
3 MG 3O IEN6.2 ) [E1GL 30, (E1GLD: 0. E)L %) 12,00 [AA1(B.6)

2(-).[E](6.2) 2(+) [EIG.D:  [M10,3) 2, 14,0);(+), [E](8.4) 29, '£1‘3 1) [EN(7.5)
LOEIOD 1, (A6 (€102 1 thsD I 2. [ENG.20: (1) [E1(6.4)
o A 0. [A1(80) E o, oD £0, [EI(6.2) 4,94, 0. (AA1(5.3)
3, [AA1(3,3)  3(-).(E](2,2):(+)[E](4,4) 3(+) 151(1 1); (7). [E)(5.5) 3, 1€0,0);  [AA](6,6)
2(-). [E] (4.2) z(+) [EIG.D: [M1G.3) 2, (A12.0:(4). [E1(6.4) 2(), IL"I 1=, [E](5,5)
Ll (B 10 iAo EN6) 1 Mo A5 1(+), [E](2,2); (+), |E| (4,4)
"3 Ay 0. {A1(6.0) E O, e Lo, [E]4,2) Ay 0. (MG
2(-).[E)(2,2) 2(+) |=|(1 1):  (AA](3,3) 2, 1€(0,0); (+).[E])(4.4)
IOLEIGD 1. (A0 ENG D 1 B a1
J~2 A; 0, [A{)¢4,0) EO, 1:1( 1) EO0, [E](2.2)
1), (E)(1,1) 1, [A[)(0,0);(-),[E](2,2)
j-1 8,0, [A1(2,0) Eo0, hu 1)
j=0 A 0, (A;1(0,0)
kC-O kc-l kc-z kc—3
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Basically, these K‘ symbols are inserted between So and [S](vb,lb) to
indicate their roles as the evolving units. When two semi-rigid
bending states are put ia a row of the same K‘. the left one is chosen
to be of lower vy and lb value, and thus is associated with the lower
K‘ rotational manifold in the actual spitting. [AA] is an
abbreviation for [A10A2]. Instead of [A1].[A2]. [AICAZ] enphasizes
(1) that these two states share the same bending vibrational quantunm
nunbers in the semi-rigid limic, and (2) the connection between Tables
3.7.4-2 and -4.

This correlation, starting from the free internal rotor limit,
can be concisely summarized as follows: (1) the j value determines the
allowed range for K‘ to be [0,)] (Section 3.7.3), (2) for each K‘
value, j and kc determine the correlated vy and lb' i.e.

(v 1,)= (2j - |x, ¢ k. |x‘ ¥ kcl) (3.7.4-1)

(When K‘>0 and kc>0. thera exist two sets of (v .Ib).). 3) K‘ and kc

determine the correlated vibrational sysmetry (S], i.e.

(A 0

1)
[S1= { [A®4,], for |x‘ E kcl- 3n (n: positive integer.),

(E) Intl
(3.7.4-2)

and (4) if arranged as in Table 3.7.4-4, with the [E] states always
appearing in pair vertically, the lower [E] in each pair will be
assoclated with (+) and the upper [E] with (~) when K‘>O; no sign will
be attached when K‘-O.

Several features of the correlation that greatly facilitated its
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derivation will be discussed in the following.

Classically speaking, due to the fact that J=j+1, where the e-o0-e
1 is perpendicular to the a principal axis of the complex, the
projection J. of J (with X; as the projection magnitude) on this axis
can be ascribed to that of the NH3 internal rotaticn j. Because j is
basically the sum of two different angular momenta: one (kc)
associated with the ““3 internal rotation along the C3 axis of the
subunit, the other with the rotation of the subunit C, axis Ltself,
In the c3v seni-rigid limit, the former will coincide with the a axis
of the complex, while the projection vector of the latter on the same
axis will correspond to the bending angular momentunm lb‘ In other
words, in chis limit, the projection vector J. should be accounted for

by the collinear vectorial sum of kc and lb' This implies that
1= |x‘ ¥ kcl. (3.7.4-3)

which is contained in Equation (3.7.4-1). Based on this equation, the
expression for vy in Equation (3.7.4-1) becomes a necessary result if
the symmetry species of the evolving K‘ manifolds are considered.

In terms of K‘ symmetry, there are several paradoxes. The first
one is that all the K‘-O manifolds in the kc-O column correlate to the
bending states only with (Al] symmetry, ilrrespective of the symmetrv,
Ay or A,, of the free internal rotor states the K‘ manifold originate
from. This is a unique feature if compared with other K‘-O manifolds
which always connect the [Sol bending scates to the free internal
rotor state of the same symmetry So. Another paradox is that the

nondegenerate lAl} bending states can actually correlate to a doubly
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degenerate E or two nondegenerate A free internal rotor states.

As reflected by the similarity between the two upside-down
half-pyramidal state distributions in Tables 3.7.4-2 and 3.7.4-4, if
only K‘-O manifolds are concerned with, there is a one-to-one
correspondence between the semi-rigid bending states and the free
internal rotor states.

It is also interesting to examine how all the X‘ manifolds
{stacks) belonging to a semi-rigid bending state distribute themselves
among the fres internal rotor states. 1t is found that Table 3.7.4-2
is basically an infinitely many upward repstitions of the (5] symmetry
distribution along the slanted lower right edge of the table. This
implies that the K; distributions, on Table 3.7.4-4, of all of the
bending states on this lower right sdge of Table 3.7.4-2 can be
treated as a repetitive unit on Table 3.7.4-4, Of course, according
to the alternately state missing feature in sach lb stack of Table
3.7.4-2, there should be an increment of vy by two accompanied with
each upward increment of the unit diltribhtion.

In finding this unit correlation distribution in Table 3.7.4-4,
we will start from [AI](O.O) and follow the state ordering along the
lower right edge of Table 3.7.4-2, The correlation scheme is simply,
under the condition of Equation (3.7.4-3), always connect the
currently lowest available K. in the semi-rigid limit to the currently
lowest available K‘ of the same value in the free internal rotor
limit. (This scheme necessarily consists with the requirement that
the symmetry species of each rovibrational state is invariant

throughout the whole evolution between the two limits.) This makes
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the Ka manifold distribution of [A)(0,0) propagate in a single
direction, following the slanted ‘edge of the free internal rotor state
distribution. However, all the K; distributions of other bending
states with 1b>0 have two branches, corresponding to ilb,
respectively, The right branch still follows the lower right edge of
the free internal rotor state distribution; the right branch generally
propagates downward first, and eventually deflected to become parallel
with its right branch at the same J value as its origin, the K.-O
location. If vy is odd, then the left branch corresponds to +1b and
the right one to —lb; if vy is even, then the above realations are
reversed.

The resultant correlation table indicates an important fact that,
within a semi-rigid bending state, a lower L manifold is not
necessarily lower in the free internal rotor limit. It is noted that
the K‘>O manifold(s) in the right branch before the "deflection point"
have to be lower in energy than the Xa=0 manifold of the same bending
state; the intercrossing (but not necessarily the symmetry and J
dependent interaction) between these (this) X‘>O manifolds (or
manifold) and the K;-O manifold becomes a necessity in the evolution.
{(Another energy level reversing ph‘nonenon could orcur is when the
internal rotor is a prolate top, which is not our case. This is
because, on the same j level in the free internal rotor diagram, the
K‘-O manifold with a higher kc (more to the right of the same j level)
corresponds to a lower vy in the semi-rigid limit (see Table 3.7.4-4);
however, the higher the kc' the higher the corresponding energy level

in the free internal rotor limit.)
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Generally, when the semi-rigid limit does not have a C3v
configuration, the bending vibratlon loses the 2-D isotropy of the
corresponding harmonic oscillation, although, according to the
definition of “"semi-rigid", each vibrational direction still has the
harmonicity (harmonic force constant) of its own. In such a case, vy
and lb are no more exact good quantum nuabers; as a result, no direct
or exact (J.kc)-(vb,lb) quantum number correlation, as shown in Table
3.7.4-4, can be made between the free internal rotor limit and any
interested non-C,, semi-rigid limit, This is true even when the 2-D
jsotropy accidentally remains for such a non-c3v semi-rigid
configuration. The reason is that the (classical) kc vector is not
collinear with the principal a axis of the complex, which is the
figure axis for the 03v semi-rigid limit; although vy and lb still
happen to be good quantum numbers, no simple quantum number
relationship, such as Equation (3.7.4-3), exists. Of course, if it is
insisted to establish an evolving picture like table 3.7.4-4 starting
from the free internal rotor limit to a “°“‘°3v semi-rigid limit, we
should remove all the h and lb quantum nunbers from the table, only
with the symmetry species (S° and [S]) and the K. splittings from each
free internal rotor state left., It is noted that the symmetry [S] of
the semi-rigid bending state should be maintained although the bending
quantum numbers are removed. This is because that, for correlations
within semi-rigid limit, the evolving unit is basically each
vibrational state with its rovibrational structure, the inside Ka
stacks, "moving" as a whole; the semi-rigid vibrational symmetry [S]

should be invariant. This reflects the fact that the C3v semi-rigid
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limit used in Table 3.7.4-4, plays the central role as a "relay
station®, which can be used to start a secondary correlation to any

other configuration within semi-rigid limit.

3.7.5 K; Correlation under Dah(n) betwveen the Two Limits

The correlation rolationship under D3h(H) between the free
internal rotor limit and the semi-rigid limit can be generalized from
its analogue under c3v(H)‘ (However, care nust be taken because it is
not a straightforward matter of duplicating the c3v<H) correlation
table (Table 3.7.4-4) for even and odd Vi respectively, and replacing
all symmetry species by thoss of DSh(H)‘) First of all, it is noted
that the NH3 inversional motion, that sxtends the molecular symmetry
group to D3h(H), is not allowed in the semi-rigid limit. Therefore,
it is again the inversion-free semi-rigid bending vibrational states,
as used in Table 3.7.4-4 under C3V(H). that are to be correlated to
the free internal rotor states, which are now the NH3
rotation-inversion states. In other words, the number of the bending
states in the semi-rigid limit remains the same, while the number of
the intermolecular vibrational states in the free internal rotor limit
is doubled. Since this correlation should be duplicable for any pair
of vi-2n and 2n+l (n: nonnegative integer) and any stretching quantum
number Ve the following discussion will be made only for vi-O. 1 and
vs-O.

The natural schematic CSV(H)'to'D3h(H) ro- 'rational correlations
for the lowest three free internal rotation states, shown in Table

3.7.4.4, are depicted in Figures 3.7.5 (a)-(c), respectively. That
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they are "natural® is based on the following operational phenomenon.
Assume that in the beginning such correlations are made arbitrarily,
and the only rule followed iIs that levels of the same symmetry and
same J on both sides are connected (with straight lines). However,
Figures 3.7.5 (a)-{c) will always be the final schematic correlations,
if the following two steps are performed: (1) according to the
same-symuetry-same-J interaction selection rule, create a "noncrossing
intersection" (similar to those in Figure 3.7.2-1) for each pair of
mutually lnteracting correlation lines that intercross each other, and
(2) straighten all such resultant noncrossing correlation curves. (Of
course, such straightening is unnecessary only for the rovibrational
correlation purpose. Howsver, it helps us to visualize the resultant
K‘ manifolds under D3h(H)' which are to be defined.)

Because K‘ is a quantum number purely of rotational motion, not
of the inversional motion that extends the molecular symmetry group to
D3h(H), the definition of the K; manifolds under D3h(H) needs to be
clarified. (Since more rovibrational levels are generated under
D3h(H). usually there are more than one way to conceptually group them
into manifolds. For example, two well separated manifolds might be
considered as a superposition of two internally split manifolds.) By
looking at Figures 3.7.5 (a)-(c), one may naturally choose each
rotational manifold that apparently evolves as a whole to be one K‘
manifold under D3h(H). no matte: how many superimposed rotational
J-stacks are included in such a K‘ manifold. The x‘ value is chosen
to be the same as its correlated value under C3V(H) because, in

principal, the inversional motion should not change the value of any



rotational quantum number. For example, in Figure 3.7.5 (e¢), there
are two Ka-O and two K‘-l manifolds under D3h(H)' as opposed to the
correlated one X _=0 and two K =1 manifolds under C, (M). (Although
this is purely for convenience for the moment, this definition for L
can actually be physically justified, as will be shown later.)

It is noted in Figures 3.7.5 (a)-(c) that each rovibrational
state in either limit, except the l=0 states in the free internal
rotor limit, is degenerate: in the free internal rotor limit, ic is
the accidental J-degeneracy due to the j-1 vectorial addition; in the
semi-rigid limit, it is the degeneracy caused by the inversional
motion. (However, the latter does not necessarily correspond to the
inversional degeneracy of vi-o and 1, respectively, as will be
explained in the following.) Therefore, both limits of this
correlation consist of many divergent sources of the rovibrational
levels and thus the K‘ manifolds under Dsh(n). as opposed to the
corresponding correlation under c3v<u) (Table 3.7.4-4) in which only
the free internal rotor limit contains the divergent sources.

As can be imagined according to Figures 3.7.5 (a)-(c), it is the
inversional splitting in the free internal rotor limit that
"dissociates" each CSV(H) rovibrational level into two Dshﬁn) levels.
However, the inversional motion does not always split each C3V(H) K‘
manifold into two Dsh(!) K‘ manifolds thus defined; as exemplified by
Figure 3.7.5 (c), the inversional motion "turns on" only the e-o-e
rctational splitting in each of the two K‘-l manifolds. Such
phenomena for the lowest six (j.kc)'s are summarized in the schematic

rvepresentation shown in Table 3.7.5, in which the D3h(H) Ka
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Table 3.7.5

Schematic representation of the DJh(“) correlation building

blocks, associated with the lovest six (J,kc)'s in Table

3.7.4-4. (The notation formats: So(v’;vi;_].kc) for the free

internal rotor states; {S](v, .Ib) for the semi-rigid bending

states; K‘ and K.(:ign for Ib) for the K. manifolds.)
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correlations are represented by different segments. According to the
actual energy scales for the inversional motion and the e-o-e
rotation, this table shows the following important facts: (1) each
cav(u) K‘-O manifold of the (J.kc>0) states and all cav(u) K‘
manifclds of the (j.kc-O) states will inversionally split into two
D3h(H) K. manifolds belonging to vi-O and 1, respsctively, and (2)
each CSv<H) K‘>0 manifold of the (J.kc>0) states only shifts as a
whole into one D3h(H) K‘ manifold, but associated with small e-o-e
rotational splittings, as reminded by the doubla-segments in Table
3.7.5.

The use of segments in Table 3.7.5 also indicates how the (2j+1)2
degeneracy of each internal (j.kc) state is removed in the perturbed
cases under Dah(H); 2j+1 is due to the internal rotation, 2 to the
internal inversion. Importantly, this result under D3h<H) is
consistent with the physical picture of a "miniature Stark effect",
previously applied under C3V(H) (see Section 3.7.3.). Since each free
internal rotation-inversion state under Dah(ﬂ) has defined-parity,
each of them should split into j+l "Stark" component states. Our
choice for one K‘ manifold under D3h<H) is thus physically justified.

Like Table 3.7.4-4, Table 3.7.5 is also applicable to the cases
in which the semi-rigid configuration does not have C3v point group
symmetry if only the bending quantum numbers vy and Ib are ignored.

(See the last paragraph of Section 3.7.4.)

3.7.6 Intermolecular Vibrational Transitions

As indicated by the (j.kc)-(vb.lb) quantum number correlation
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tables (Tables 3.7.4-4 and 3.7.5), the X; manifolds originating from
the same intermolecular vibratiomal state actually belong to different
semi-rigid bending vibrational states, respectively. Therefore, each
single zero-order intermolecular vibrational level will eventually be
*delocalized" by the limiting anisotropic potential into an energy
scale that covers several semi-rigid bending states, which is
typically few hundred to several thousand cl-l. For similar reasons,
the spacings among the intermolecular vibrational states (i1f always
artificially defined by their singly correlated K.-O manifolds) will
also follow the same trend. This is consistent with the Inter-state
"repulsions® required by the same-symmetry-same-J interaction
selection rules when further anisotropic potential is introduced. As
a result, the actual inter-x. transitions should have higher
frequencies than predicted by the zero-order picture. In other words,
in Figure 3.6.1, the internal NH3 inversion-rotation energy scales
serve as the lower bounds for the corresponding transitions; however,
this is not true for the stretching scale, which has not been
determined by experiment conclusively,

Given in Section 3.6.3.1 were the most unrestrictive
rovibrational optical selection rules, which allow many transitions
forbidden by some approximate selection rules for the semi-rigid
limit. Among these approximate rules, we are concerned particularly
with AK‘. The AK‘-O pure rotational selection rule and AK‘-O. 1
rovibrational selection rule [39) for the semi-rigid (exact or highly
near) prolate top should be relaxed for this highly near prolate but

floppy complex. This is because these classical AKa rules are based



on the restrictive assumption that the molecular dipole, or its
averaged effective vector, is collinear with the top axis. However,
this is unnecessarily true for the current case, in which the NH3
dipole moment is allowed to move away from the complex a axis to a
large degree. Therefore, we expect this near prolate top complex to
follow the rules followed by tho semi-rigid asymmetric top [39],
although it is not semi-rigid at all; in other words, AK‘ should be
even for the a type transitions, and odd for the b or ¢ type
transitions. The “a, b and c type" refer sither to the averaged
dipole direction of a given intermolecular vibrational state or to the
direction of an intermolecular vibrational transition moment, or
generally to a mixture of both. As a result, the associated
intensities are highly dependent on the internal dynamics of the
complex. If it is close to the fres internal rotor limit, the NH3

inversion-rotation selection rulas

Akc-O and

Av.:odd
p

might still play a dominant role in determining the stronger
intermolecular vibrational transitions. (This implies that bands with
a q branch should be stronger when near this limit.)

Since the K‘ manifolds are the evolving units between the two
limits under either c3v(u) or D3h(H). the discussion will be focused
on the qualitative aspects of the transitions between different K‘
manifolds originating from either the same or different intermolecular

vibrational states. (It could be misleading to call the transitions
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between the Ka manifolds related to the same intermolecular
vibrational state "overall rotational" transitions because of the
state mixing and the actual energy scale involved.) Without
introducing any conceptual bias, these transitions will generally be
called "inter-K‘ transitions”.

In order to facilitate the application of the AJ selection rule,
we define "J-stack(s)" to exist within a D3h(H) K‘ manifold as follows
(see Figures 3.7.5 (a)-(c)): Each X‘-O manifold consists of a single
J-stack:; however, sach x;>o manifold consists of two J-stacks, i.e. a
lower one (Jl-ltack) and an upper one (Ju-stack) basically
superimposing on each other, both starting from J-K‘. (0f course,
"upper"” or "lower" is determined by the relative positions of their J
level origins in the free internal rotor limit, because their relative
positions could be switched during the evolution between the two
limits.) This might not seem to be a necessary definition before
examining the (j.kc-3n) states (n:positive integer). This is because,
for such states, each J in a K‘-O manifold corresponds to two, instead
of one, irreducible symmetry species, and each J in a K‘>0 manifold to
four, instead of two; each J in these J-stacks thus defined therefore
corresponds to two independent symnetry species (Al'ohz' or A1'0A2").
instead of one. Such a same-J-doublet of a J-stack defined for the
(j.kc-3n) states evolves basically as a small unit; as can be
indicated by a correlation, similar to Figure 3.7.5, such a
same-J-doublet must correlate to a single level in both limits; its
splitting induced by the same-symmetry-same-J interactions with other

states should generally be small.



Importantly, within each J-stack thus defined, there is a parity
alternation associated with each increment of J by one; for the
(J,kc-3n) states, the two irreducible symmetry species of a
same-J-doublet must have the same parity. The symmetry species of
such a J-stack will be defined to be that (¢ those) associated with
the lowest J in the stack. This is similar to the symmetry definition
for the K‘ manifolds, which is the total symmetry corresponding to the
lowest J(-K.). This makes the symmetry of a K.>0 manifold under
DBh(M) be the direct sum of the symmetry of Ju-stack and that of the
Jl-stnck.

Once we know the symbol So(v‘;vl;j.kc) of the zero-order
intermolecular vibrational state, as those shown in Figure 3.6.1, the
D3h(H) synmetry of any rovibrational level originating from it can
then be quickly deduced as follows: The so(vs'O;vl;j'kc) state can
split into j+l K‘ manifolds under D3h(H) with X.-j. J=1, j=2, ..., 2,
1, 0. The symmetry species of the nonzero X; manifolds with even j-R;
are all lSo)ol(So)'l; those of the rest with odd j-x; are all
l(So)')QlSOI. Here, the symbol ()" denotes a parity switching

operation. The symmetry notation is in the format of
{Jl-s:ack synnecry)OlJu-scack symaetry);

otherwise, a single J-stack is implisd. (For example, the differences
in the number of stack(s) implied should be made among lAI”lo(Al'),
A1'0A2“. and (AI'OAZ').) The symmetry of K‘-O manifold (J-stack) is
affected also only by the evenness or oddness of j: S° for even j,

(5,)" for odd j. Because of the parity alternation feature of the
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J-stacks, the symmetry of any rotational level can then be readily
determined by the symmetry of the stack thus derived. For example,
the symmetry of the K;-3 manifold originating from the

A "OAZ'(O;O;j-3,3) zaro-order intermolecular vibrational state should

1
be (Al'oaz"}ol(AI"OAz")") because j-K‘ is even; the symmetry of the
Ju-stack is thus the second term (AI'CAZ')'-AI'OAZ', which is the
symmetry of its lowast J (-K‘-3) and all other odd J's in the
Ju-scack; all even J's can only be A1'0A2'.

The above scheme provides an sfficlient and systematic method to
figure out the symmetry of each rovibrational state without referring
to any correlation diagram like Figures 3.7.5 (a)-{c). The D3h(H)
symmetry species of the J-stacks, thus derived, for the lowest seven
(J,kc)'s are shown in Figure 3.7.6. Since the transitions between two
different K; manifolds can generally be “"decomposed" into few
inter-J-stack transitions, the J-stack symmetry species, shown in
Figure 3.7.6, are thus useful in determining the existence of P, Q, R
branches involved in an inter-K‘ transition.

Because a K‘ manifold can consist of a Jl-stack and & Ju-stack,
we have to specify which J-stack of the K‘ manifold is involved in the
P, Q, R branches. To do this, symbol like Pul will be employed; the
subscript and superscript position are used for the lower and upper Ka
manifold, respectively; t'« ,ubscript and superscript themselves (l or
u) dencte which J-stack of the K‘ uanifold is involved. Therefore,
Pu1 represent a AJ=—l branch connecting the Ju-stack of the lower Ka

manifold to the J,-stack of the upper K‘ manifold. Other symbols like

1
Ql' Ru. etc. can be understood similarly.
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Since only the parity selection rule and AJ rule are required t
deternine the rotational fine structure for an allowed 1nter-Ka
transition, in deducing the general rule for the existence of certain
P, Q, R branches we can ignore the parity independent part of the
synmstry symbol, wkich is predetermined by the 1n:ot-K‘ transition
considered. The existence of the P, Q, R branches as a function of
the J-stack parities and AK; involved in an 1n:ot-x; transition is
given in Table 3.7 6-1, it is noted that when this table is applied
to an 1n:er-K‘ transition with the two K‘ manifolds wach originating
from a So(vs;vi;J,kc-3n) state {n:positive integer), we should double
the number of each type of branch shown on the tabla if all the
same-J-doublets split.

A special feature indicated by Table 3.7.6-1 is that a unique Q
branch is allowed without being "accompanied” by a P and R branch, as
opposed to the familiar semi-rigid polyatomic vibrational bands, in
which only the Q branch has ever been found to be missing. This is
because the AJ=tl selection rules are overridden by the parity
requirement under Dah(H). Such anomalous unique Q branch transitions
connect only the xa-o manifolds either between or within the (j.kc>0)
states, but not the (j.kc-O) states (see Figure 3.7.6). It should be
noted that for the (j.kc-3n>0) states such a Q branch band is likely
to slightly split into two if the same-J-doublets in the J-stacks are
slightly split. (These unique Q branches are surprisingly entire
vibrational bands.) It is noted that if these unique Q branch bands
occur in the case of Akc-O and Avizodd, they are not only

rovibronically but also vibronically allowed. Of course,



Table 3.7.6-1
The existence of the P, Q, R branches as a function of the

J-stack parities and AKa involved in an inter-Ka transition.

(Z: an arbitray J-stack symmetry)

upper
J-stack 2' 2"
lower
J-stack 2’ 2’
AK. even / odd even / odd
P,Q,R PR /Q Q / PR
type
upper
J-stack 2Z2'ezZ" z'
(Z"82°) ")
lower
J-stack Z' Z'g2"
AK‘ even / odd even / odd
- 1 u.l u .l _u
P,Q,R PP,Q,R /P ,Q,R Pl’Qu'Rl / Pu’Ql'Ru
u_,.l _u 1 u.l
tyPe (P vQ IR / P IQ tR) (PU'QI'RU. / Pl'Qu'Rl)
upper
J-stack 2'@2" AoV
lower
J-stack 2'02" z'a2"
AKa even / odd even / odd
u,.l_u 1 . u_1 1, u_ 1l u l1_u
P.Q.R Pu 'Qu 'Ru / Pu 'Qu ’Ru Pu 'Qu ’Ru / Pu 'Qu 'Ru
l.u u,.1l_ u u,.l_u 1 u_1
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“vibronically allowed® implies the intensities of these bands must be

strong.

If such a unique Q branch band occurs within one (J,kc>0) state,
or, equivalently, betwesn the associated vi-o and 1 zero-order state,
it can be assigned to a first approximation as a pure inversional

transition (see Figure 3.7.6). Howevar, such pure internal

inversional transitions, with K‘-O « 0, within the (J.kc-O) states are

forbidden by symmetry, even if the A’ and Al' sysmetry are also
allowed. This suggests that classically the NH3 inversion must be
*triggered” by an internal rotation about the c3 axis of the subunic,
This is reasonable because such an internal rotation tends to increase
the H-N-H bond angle by the associated centrifugal distortion force,
which makes the N“3 more planar and thus closer to the other inverted
configuration; however, if the internal rotation is about an axis
perpendicular to the 03 axis, then the H-N-H will be decreased. (As
an aaide, it is reminded that not all the free internal rotor limit q
branches correlate to such unique Q branch vibrational bands.)

To estimate the complexity of some low lying intermolecular
vibrational transitions, we first take the perturbed E’(0;1;1,1) «
E"(0;0;1,1) transition as an example, which was observed in microwave
but hardly rotationally assigned [14,15). According to Table 3.7.6-1,
the four K‘ manifolds (Figure 3.7.6, Table 3.7.5) and thus six
1ntor-K‘ transitions involved in this case should result in totally
nineteen branches, including six P, six R and seven Q branches. (The
extra Q is due to the previously explained inversional transition.)

In other words, the Q branch like cluster observed at about 20 GHz
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could be either of the seven branches. (Of course, which one is a big
question.) It is also remembered that, as can be generalized from the
discussion in Section 3.6.4, the zero frequency should serve as a
branch reflection point and thus a necessary pseudo-bandhead for the
extremely low lying vibrational bands. (It is "pseudo™ because the
vibrational band still can have its real bandhead, which is caused by
the noninertial forces.) Although this is not a general complication
for the intsrmolecular vibrational transitions, the reflected spectral
distribution definitely further complicates the current band patterns,
according to the sampie temperature.

We now examine, as another example, the FIR Az'(O;O;I,O) -
Az'(O;l;0.0) transition in the perturbed cases. (The microwave
transicion between the K‘-O and 1 manifolds originating from the
Az'(O;O:l.O) state will not be considered.) Based on Figure 2.7.6 and
Table 3.7.6-1, the K‘-O +« 0 transition will have P and R branch; the
K‘-l « O transition will have all Pl, Qu and Rl branch. (If Al' and
Al“ symnetry species are also allowed, such as in the case of Ar-NDa.
then the P, Q, R branch for this intermolecular vibrational transition
will be doubled.)

0f course, these examples represent the lowest and thus the
simplest cases for the microwave and FIR transitions, respectively;
according to Figure 3.7.6, the distribution density of the P, Q, R
branches (themselves) will increase "exponentially® for higher FIR
transitions.

Since AX_ can be any feasible signed integer, the minimum lower J

(J"min) of the P, Q, R branch and the P-R branch gap should be
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affected by the lower X (X") and &K, value., These relations are
given in Tables 3.7.6-2(a) and (b), respectively, as a reference.

{The P-R branch gap given is for the cases where the rotatiocnal
structureis characterized dominantly by the rotational constant 2 and
the lower and upper B are close in value.) However, we should not
take the regularity of the spectroscopic rotational structure for
granted; Lif the complex is close to the free internal rotor limit,
each P, Q, R branch should be distorted into the regular "framework"
of the 41 (o, q, 8, ..., 0rn, p, ¥, t, ...) branches, This can be
manifested, as an example, by the o0-q-s to P-Q-R branch evolution
relationship (Table 3,7.6-3) for the Az'(O:O;I.O) - Az“(O;I;0.0)
intermolecular vibrational transition. In this case, the 0 and s
branch evolve into a P1 and R branch, respectively, with the
rotational line spacings shrinking from 43 (-ZBIAI|) to 2B; more
dramatically, a single q branch diverges into thres distinct branches,
interestingly, belonging to two intor-x; transitions in the semi-rigid
limit. Since the q branch divergence cannot be achieved all at once,
in most of the perturbed situations both the K- le0and 0«0
transition bands must be asymmetrically distributed about its own band
center. In other words, the regularities, in the equal spectral line
spacing, of both Al and AJ branch patterns can never be available
simultaneously, even when no interactions among different k, manifolds

are seriously involved.

3.8 Intermolecular-Vibrational Assignment of Observed Spectrum

It will be shown that the observed band centered at 26.470633(17)



Table 3.7.6-2(a)
The minimum lower J (J”min) of the P, Q, R branch as a

function of the AK‘ value and lower K; (K;').

J" of
min
P branch Q branch R branch
AX‘>0 x‘"+4x‘+1 x;-+ax; K.'
AX‘-O x‘*+1 K;' X.'
Ax‘<0 x." X." K."

Table 3.7.6-2(b)
The P-R branch gap as a function of the AK; value and lower

K. (K;“) when (1) the rotational structure is characterized

dominantly by the rotational constant 3 and {2) the lower
and upper B are close in value.

P-R branch gap

AX‘>0 28(2K"+AK‘+2)
AX‘-O 28(2K.'+2)
AK‘<O 28(2K"+1)
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Table 3.7.6-3
The o-q-s to P-Q-R branch svolution for the _
A2'(0:0:1.0) - 52"(0;1;0,0) intermolecular vibrational

transition.

free internal rotor limit == gemi-rigid limit

o branch — Pl branch
Q" branch K=l+0
q branch (one psak) == R1 branch

P branch
X ‘-0 «0
s branch s=> R branch




cm 1. reported in this work, can correlate only to one of the
following two zero-order transitions: (1) Az'(vs-l;vi-l;0,0) -
Az“(O;vi-l;0,0), the fundamental dimeric stretching band for the A2
states with vi-l, (2) the K‘-O « 0 subband of Az'(O;O;J-l,O) -
Az“(O:vi-l;0.0). the lowest internal-rotation-inversion difference
band (see Figure 3.6.1). It is noted in Table 3.7.5 that the second
transition does not correlate to the fundamental bending transition
but to its second harmonic in the semi-rigid limit. Since this
measured X subband is the first FIR data on Ar-NH3 and therefore no
reliable semienmpirical potential showing principal global features for
the complex can have been synthesized to test the assignment, further
deternination between the two possibilities will be made only
tentatively at the end of the section.

Similar to the ortho and para H2 molecule [36], it is expected
that the A2 and E states, with different nuclear spin statistical
weights (see Section 3.6.3.1), transform into each other extremely
slowly in collisional process, such as in the free jet expansion.
(The symmetry species used in the following are those of D3h(H). They
might look like those of C3V(H) vhen ths superscripts, denoting
different parities, are removed for abbreviation.) Therefore, it is
meaningful to consider the overall energy level distribution as a
superposition of two independent distributions, viz., one for the A2
states and the other for the E states. Each of the two distributions
has its own "pseudo-ground" state. They are pseudo because none of
the two ground states, viz., the Az”(O;l;0.0) and E*(0;0;1,1) state,

has all intermolecular vibrational quantum numbers zero.
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According to the 35 ci-l fundanmental stretching frequency
estimated roughly from the ground state centrifugal distortion
constant [13], we can reasonably assume for the zero-order picture
that the states with the stretching quantum number v’-l are at least
10 cn-l higher than their counterpart states with v’-o; column two and
four (v’-l) in Figure 3.6.1 should be shifted upward by at least 10

P

with respect to column one and three (v'-O). In other words, the
first intermolecular-vibrationally excited atate in the zero-order A,
state distribution and the second excitad state in the zero-order E

1 higher than their individual

state distribution are at least 10 cm
pseudo-ground state. Since the typical effective rotational
temperature of the free jet is about 5 K (kT«100 GHz=3 CI-I). only
three intermolecular vibrational states should be significantly
populated: viz., the two pseudo-ground states and the E‘(0;1;1,1)
state, which is only about 20 GHz (~0.2 kT) above and thus should be
approximately equally populated as the E pseudo-ground state. In the
zero-order picture, the population of any other higher intermclecular
vibrational state should thus be less than few percent of those of the
three states.

The population among the intermoiecular vibrational K; component
states in the perturbed cases will be examined as follows: According
to the (j.kc)-(v .Ib) quantum number correlation under D3h(H) (Table
3.7.5), the more the intermolecular anisotropy is introduced, the more
the energy level splitting features are dominated by the semi-rigid
limit high frequency bending vibrations, as indicated by the

correlated vy, quantum numbers. Importantly, it is noted that the
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accompanied quenching of the inversional splittings (only 24 GHz [35])
is on a much smaller energy scale and should be "swamped" easily by
the above principal splitting features. As a result, to a first
approximation, the K‘ manifolds basically tend to evolve upward with
respect to the ground intermolecular vibrational state. This is
apparent for :ﬁ; K‘ manifolds correlating to a nonzero vy because of
the necessity of approaching the corresponding high frequency
vibrational states of the semi.rigid limit. On the other hand, same
trend for the K‘ manifolds correlating to vb-O can be found readily if
the semi-rigid limit K‘ manifolds distribution, specified by Equation
3.7.¢, is considered; it is noted that the large rotational constant A
(~6.3-9.9 cm-l. ses Section 3.7.1) of the complex will dominantly
characterize the relative distribution among the K‘ manifolds in this
limit. Therefore, if only states of the same stretching quantum
number v, are considered and no perturbation due to states of other Ve
is involved, all the excited intermolecular vibrational K‘ component
states, possibly except the four correlatiiig to the E"(0;0;1,1) and
E*'(0;1;1,1) state, should have less population than in the zero-order
limice.

However, the barely rotationally assigned and vibrationally
unassigned irregular Q branch observed at ~19-20 GHz and other
microwave transitions scattered between 13-21 GHz [14,15] should
belong to the six possible intor-K‘ transitions among the four Xa
component states originating from the E"(0;0;1,1) and E’{0;1;1,1)
state. This "finalist” assignment is based on (1) the quantum number

correlation (Table 3.7.5), (2) the predicted distribution complexity
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among these E states (Section 3.7.6), (3) the electric dipole
selection rules (Section 3.6.3.1), and (4) the typical beam
temperature. This spectroscopic evidence confirms that at least the
lower three of the four K; componsnt states should be close together
within few tens GHz and thus significantly populated in the actual
perturbed system. This should not be considered as a trivial
assignrent because these four K‘ component states do correlate to
three different semi-rigid bending quantum numbers, vb-o. 1, and 2,

When perturbations between states of different v"s {0 and 1 for
the current case) are considered, certain states might “accidentally®
have a higher population than in the zero-order state. However, that
is not a general trend for most 'of the K; component states.
Cons;quontly. the most possible lower intermolecular vibrational
component state of the observed band should still be those that
correlate to the lowest three zero-order intermolecular vibrational
states.

Since the 26.470633(17) cm !

band is composed of very regular P
and R branch transitions, as indicated by the small number of
rotational constants required to obtain a 1 MHz standard deviation in
the fit, it is impossible that this band could have one of the four
irregular K‘ manifolds, belonging to the two E states, as its lower
state. Furthermore, the rotational constants of the lower state of
this band match fairly well with those of a regular ground state
observed in microwave [13]. In other words, the lower state of this

band can be conclusively assigned to be the lowest K‘-O component

state, the only X, manifold originating from the zero-order
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Az"(O;l;0,0) state.

According to the optical selection rules A, 4, and A, wx= E
(see Section 3.6.3.1), we can then focus the discussion only on the A,
state, The next higher Az state in the actual perturbed system can
correlate only either to A2'(0;0;j-1.0) or to Az'(v’-l;vi-l;0.0) in
the zero-order limit, depending on the fundamental stretching
frequency. The upper state of the observed band is thus most likely
to correlats to one of these two zero-order states., This is because
(1) as previously explained, the K‘-O and 1 manifold of the
Az'(o;o;1.0) state should basically svolve upward (>19 cn_l) {unless
there is "accidental® perturbation due to other states, for example,
of the same A, syoaetry but witt different v’), and (2) the energy of
the Az'(l:l;0.0) state is  sentiall  contributed by the dimeric
stretching motion, whose frequency is estimated to be higher than 10
cm—l. For similar reasons, all other excited Az intermolecular
vibrational states in perturbed cases seem to be too high for the
observed 26.5 cn-l band center. In other words, the observed band

could be correlated to either of the following three transitions:

for Az'(O;O;I.O) - Az“(O;I;0.0):
X =0 « 0,
a
1« 0;
for az"(l;l;0.0) «’&2'(0;1;0.0):
K =0+«0,
a

All these transitions have P and R branches; in addition, the K‘-l -0

transition also exhibits a Q branch (see Tables 3.7.5, 3.7.6-1 and



Figure 3.7.6). Although both the x;-o +« 0 and 1 « 0 transitions have
R branches starting with R(0), there is a difference between their P
branches; for K;-O + 0, it begins with P(l), whereas for K‘-l « 0, it
starts with P(2). Because of the confiraed existence of P(1l) in the
26.470633(17) cn-l band (Figure 3.3), we can eliminate the possibility
of the K‘-l « 0 transition, Thus we are left two possible assignments
which are both K‘-O « 0 and different only in the upper K‘ component
state,

As previously explained, the upper state assignment will be made
only tentatively between the two possibilities. Three apparently
supportive svidences for the Az'(l;l;0.0) state as the upper state
will be presented below.

For this tentative assignment Az'(l;l;j-0.0) - Az'(G;l;j-0,0).
neither of the two intermolecular vibrational states involved should
have complication due to the rotational coupling with j; each
rotational state is nondegenerats with J=l, In terms of the spectral
line spacings, even the corresponding p and r branch structure in the
free internal rotor limit would be similar to the correlated P and R
branch structure in the semi-rigid limit. This band structure should
also exhibit distortion relatively insensitive to the potential
variation because there ars no accidentally degenerate zero-order
rovibrational states as in the Az'(o;o;j-l.OJ state (see Section
3.6.2). This is consistent with the high degree of regularity in the
observed band pattern.

Another supporting evidence for the tentative intermolecular

vibrational assignment is obtained from the calculated change in the
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effective distance between Ar and NH3 in the lower and upper state.
If a pseudo-diatomic model is assumed, the effective distance can be
calculated directly from the (B+C)/2 rotational constant for each

state. [13] The results are:

3.8358A fo: lower state (A,(0;1;0,0)),

3.87234 for upper state.

As indicated, there is about a one percent increase in distance for
the observed band. Of course, such an increase is only a necessary
condition for the fundamental stretching transition. However, we do
not rule out the possibility that in other nonstretching transitions
the upper state could also exhibit a longer effective distance than
the lower state, especially when an accurate potential surface is not
available for the system. 1In other words, this is relatively weak
evidence for the tentative assignment.

However, it is noted that these two effective distances are
essentially consistent with the free internal rotor model; both values
are longer than any combination of the atomic vdW radii taken from
standard inorganic textbooks [2] if the only structural requirement is
that twe H's of NH3 are at equal distance and closer than the third H
with respect to Ar.

Additiovnal supporting evidence for this assignment is provided by
the estimated polar angle index, derived from the measured oqQ‘8 of
the upper state. If the perturbation of the electronic environment of
the N atom due to the Ar atom is small and can be neglected, quaa can

be expressed in the usual way [13]
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qu‘a- quNH3<P2(cosa)>
- (=4.09 Hﬂz)<(3coszl—1)/2>.

The polar angle index can then be defined as

172,

02- cos-1[<c0120>

where the subscript 2 i{s a reminder that it is related to <P2(coll)>.
For reasonably small bending amplitude, 02 approximates <#>. However,
for large amplitude motion, 02 will lose this physical meaning as <#>
and become a characteristic index for different internal rotational
states in the free internal rotor limit. Since the Ar-NH3 systenm is
close to this liiit. the internal rotational wave function can be
approximated by the standard symmetric top rotational function
IJ.m.k>, with J=j, m=tA, and k-tkc, vhere the nonnegative quantum
number A represents K‘ of the complex. Simply speaking, the
rotational wave function of the NH3 symmetric top is described in a
coordinate system fixed with ths complex pseudo-diatomic frame. With
this wave function, the 02 index can then be calculated. The
calculated results for some low lying internal rotational states is
given in Table 3.8-1,

As expected, 02 is deperndent only on j and A, but not on kc.
Consequently, the same results can be applied to the free internal
rotor limit atom-diatom systems, which have zero equivalent kc. It is
noted that these calculated 02 indices are well separated and thus
could be used for internal rotational state identification to some

extent. The 02 indices of the ground states, low lying bending (or
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Table 3.8-1
Theoretical free rotor limit of the 92 indices for

low lying internal rotational states of an
atom-symmetric-top system.

[ internal rotational state IJ.tA.tkc>

o M M -
54.7 §,(v,iv,i0,0), a X =0 state |o,0,0>

° . 13
39,2 X, =0 component of § (v ;v ;1,0) |1,0,0>

39,2 K =0 component of S (v ;v ,;1,1) [1,0,21>

° ey -
63.4 K =1 component of S _(v ;v,;;1,0) |1,£1,0>

63.4° k=1 component of § (v’;vl;l.l) |1,+1,21>

]
[1,£1.%1>
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internal rotational) states of some binary vdW complexes, and the
upper state of the intermolecular stretching band of this work are
listed in Table 3.8-2. We find that even the relatively more hindered
Ar-RCl, the vorst example in the table, stili exhibits values of !2
that are quite different for the lowsst xa-o and 1 bending states;
importantly, these values are not too different from the their
theoretical values. The deviation of the 02 for Ne-HCl, a nearly free
internal rotor system, is within 3.5°. Therefore, the 02 values,
$8.3° and 52°, obtained for the two atates involved iun the At-NH3
stretching band support the S(v';vl;0,0) - S(v';vi;0,0) assignment,
which is in agreement with the tentative assignment.

Since this is the first time that the 02 index is used to
identify the R; value for a highly near prolate complex in the nearly
free internal rotor limit, the generality of this method still needs
to be further examined. Hopafully, the answer can be improved by one
more step when a reliable potential surface for Ar-NH, is available.

Although the above svidences might seem more supportive to the
K‘-O manifold of the Az'(l;l;0.0) state than >f the Az‘(O;O;I.O) state
as the uppe.’ state, we cannot rule out the possibility that these
evidences ari: just accidentally more in favor of this tentative
assignment. It should be emphasized again that we need to measure
wmore FIR intermolecular vibrational bands to i{nitiate the iteration
between the spectroscopic investigation and the semiempirical
synthesis of the putential, and such an iteration is the only way to
rigorously test the intermolecular vibrational assignments of the

observed bands.



Table 3.8-2
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The measured 02 indices of the ground states and low

lying bending (or internal rotational) states of some
dimers. The values in parentheses are the free rotor
limits of 02 indices taken from Table 3.8-1.

Ar-HCl Ne-HCl Ar-NH3

ground [42] ground [42) ground (13}
42°% (54.7°%) 52° (54.7%) 58° (54.7°)
lovest & (K‘-O) bend upper state of
[40] this work b

41° (39.2%

lowest Il (K‘-l) bend
[41]

58° (63.4%)

(ground stats)

52° (54.7%)

*The discrepancy is not surprising, because the ground state

is deep in the potential well.
b

internal rotor limit.

It is in the ground internal rotational state, if in the free
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Chapter 4

Concluding Remarks

The first high ressolution vibration-rotation-tunneling
transitions of Ar-NH3 and (NH3)2 vwere identified in the dense spectra
of a NHs-in-Ar mix in a continuous plancr supsrsonic jet measured by
the Berkeley tunable far infrared (FIR) laser spectrometer. Among the
seven rotationally assigned bands, the one centered at 26,.470633(17)
cn-l was identified in this work to be of Ar-NHa. [1] (The other six
bands belong to (NH3)2' Their analyses and study will be presented in
M. Havenith's Ph.D. dissertation [2] and Reference 3.) However,

approximately 250 spectral lines over the ~7 CI—I

wide spectrum still
remain rotationally unassigned; they could belong either to these two
or to other higher complexes. The promising probing capability of
this state-of-the-art technigue for small van der Waals complexes was
once again confirmed.

Since so far no semiempirical synthesis of the potential surface
for At-NH3 has ever been proposed, it is natural to start with a group
theoretical study. In order to facilitate the intermolecular
vibrational assignment, a basic dynamics study aided by a rigorous
permutation-inversion group theorstical treatment was made on the
rovibrational levels. According to this study, the zero-order
picture, viz., the free internal inverting rotor limit, of the complex

was carefully defined. The rovibrational quantum number correlation

(see Section 3.7.5) between this and the classical semi-rigid limit
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was then established for this highly near prolate binary complex.
This correlation not only provides a basic (nonnumerical) physical
picture of the evolution of its intermolecular vibrational component
states (K‘ manifolds) between the two limits, but also predicts
qualitatively the high complexity in its spectrum.

According to the spectral range probed so far and the results of
the group-theory-aided dynamics study, an intermolecular vibrational
assignment was made; the observed band centered at 26.470633(17) t':m-1
can correlate only to one of the following two zero-order transitions
(see Figure 3,6.1): (1) the fundamental dimeric stretching band for
thin A2 states with the NH3 inversional quantum number vl-l. viz.,

A" (v =1;v,=1;0,0) « A,"(0;v,=1;0,0), (2) the X =0 « O subband of the
lowest internal-rotation-inversion difference band, Az'(o;o:j-l,O) -
A2~(o;v1-1;o.0). Although based on several factors, particularly the
measured nuclear quadrupole coupling constant, a tentative assignment
was made in favor of the first possibility, a definitive determination
is currently impossible for the following reasons.

Because the complex is closer to the nearly free internal rotor
limit, the group-theory-aided hi: barrier limit treatment, introduced
in Hougen's classic work on (H20)2 i), is definitely inappropriate.
Therefore, to initiate the iteration vetween the spectroscopic
investigation and the semiempirical synthesis of the potential is the
only resort. Since this intermolecular vibrational band is the only
assigned FIR data on Ar-NHs, no reliable semiempirical potential for
the complex has been synthesized. It is essential to obtain a minimum

amount of spectroscopic data on the potential along each of the four
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intermolecular rovibrational coordinates, viz., one for the dimeric
stretch, one for the NH3 inversion, and two for the internal NH3
rotation. In other words, more FIR spectroscopic study will be
required before a trial potential showing principal global features
can be proposed and tested against further FIR spectroscopic data;
only further verificativn of the spectroscopic predictions from such a
potential model can determine whether the tentative assignment can be
Justified,

Currently the most interssting and most badly needed transitions
are the following three FIR X‘ subbands (ses Figure 3.6.1): X‘-O « 0,
X‘-l « 0 of Az'(v'-O;VI-O;J-l.kc-O) - Az'(0;1;0.0>, and X‘-O « 0 of
Az"(l;l;0,0) - Az'(O:l;0.0). The former two subbands reflect the
potential basically along the internal rotation coordinates, whereas
the last reflects that along the dimeric stretching coordinate. 1In
terms of state population in a ~5 K jet expansion, these transitions
are the most accessible ones; in terms of the intermolecular
vibrational assignment, they are also the simplest because of the
small numbers of K. subbands originating from their zero-order
intermolecular vibrational states. It is expected for Ar-NH3 that an
internal rotation transition-moment should be larger than a stretching
transition-moment if both motions are not strongly mixed; the relative
intensities betwean the two K.-O + 0 subbands might constitute a
spectroscopic evidence for their intermolecular vibrational
assignments and thus provide a clue for the first potential synthesis.

On tha other hand, further investigation of the six K. subbands

of the E'(O;vi-l;l.l) - E"(O;v1-0;1.1> transition in the few tenths
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cm—1 to few cm--1 region should in principle be crucial to the
understanding of the potential along the NH3 inversional coordinate.
However, conventional microwave spectroscopy, probing approximately 1
cm-l and below, can hardly cover the whole structure of an
intermolecular vibrational band, which is typically a few cm-l wide at
the low jet temperatures. This is true even when the bend center is
located below 1 e-ul and the pssudo-bandhead at zero fraquency is
"forced” to occur. In addition, according to the derived quantum
number correlation, we do expect at least some of these K. subbands to

have a band center a little higher than 1 eu-l.

However, the
spectroscopic techrique in the 1-10 Cl-l region is still immature and
under development. As a result, the tunable FIR spectroscopy is still
indispensable to investigate these two E states, which have to be
involved as the lower states of the FIR transitions. However, the
complexity in their rotational level distributions, as has been
theoretically predicted and partially revealed in the microwave study,
could pose a problem for the spesctroscopic rotational J assignment,
The Stark tuning at low field and microwave-FIR double resonance are
suggested to diagnose the J values.

In the future FIR investigation of Ar-NH3. the definition of the
intermolecular vibrational band pattern needs to be broadened.
Interestingly, by using the quantum number correlation derived in this
work and the optical selection rules under the molecular symmetry
group and the three dimensional pure rotational group, the first
vibronically (not rovibronically) allowed unique @ branch vibrational

band [5] was theoretically predicted to exist for such a binary



complex with an inverting subunit. This anomalous spectroscoplc
phenomenon, hopefully experimentdlly confirmed, should revise the more
than half-century old conventional concept about the vibronically
allowed band pattern. There could have been spectroscoplc evidences
from our lab for such a special phenomenon. The rotational J
assignnents for these "candidates" are still in progress.

In view of the fact that a symmetric top can be correlated to
eicther an asymmetric top (distorted symmetric top) or a linear system
(with symmetric top K quantum number equal to zero), Ar-NHa. an
atom-symmetric-top complex, should be considered as the next
prototypical van der Waals complex after Ar-HCl. In addition, since
structurally Ar-NH3 behaves like half of a (NH3)2 complex, which has
recently been a controversial topic, the study of Ar-NH3 will
definitely teach us certain aspects of the (NH3)2 dynamics.
Therefore, further study of the tremendously interesting Ar-NH3

complax 1s highly encouraged.
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Appendix Table 1
Character table of the D h(M) molecular symmetry group

261

D3h(n) E (123) (23) E* (123)* (23)*
number 1 2 3 1 2 3

of class

element(s)

Al': 1 1 1 1 1 1
AZ': 1 1 -1 1 1 -1
E': 2 -1 0 2 =1 0
Al": 1 1 1 ~1 -1 -1
Az": 1 1 -1 -1 -1 1
E": 2 -1 0 -2 1 0

aAdapted from P.R. Bunker, ’'Moleculur Symmetry and Spectroscopy’
{(Academic Press, New York, San Francisco, London, 1979).

Appendix Table 2
Multiplication table between the symmetry spocics of D3h(H) group.

Al' A2' E’ Al' A2' E"
Al' Al' A2' E’ Al' Az" E"
A2' A2’ Al' E* Az” Al" E"
E’ E' E* Al'GAZ'UE' E" E" A "GAz"QE"
Al" Al" Az“ E" Al' Az' E’
A2“ A2" Al" E" A2' Al' E’
E" E" E" Al'QAz'GE" E’ E' Al'QAz'QE'
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Appendix Table 3 a
Character table of the C3V(M) molecular symmetry group.

C3V(M) E (123) (23)*
number of 1 2 3
element(s)

in the class

Alz 1 1 1
A2: 1 1 -1
E: 2 -1 0

aAdapted from P.R. Bunker, ’‘Molecular Symmetry and Spectroscopy'’
(Academic Press, New York, San Francisco, London, 1979).

Appendix Table 4
The C3V(H)-D3h(H) symmetry correlation table.?

C4, () Dy}, (M)

b ’ L]
A,(12) A;*(0) @ A,"(12)
A,(12) Ay (12) © A,"(0)
E(12) E’'(6) ® E"(6)

%From P.R. Bunker, 'Molecular Symmetry and Spectroscopy’
(Academic Press, New York, San Francisco, London, 1979).

bThe number in parentheses is the nuclear spin
statistics for Ar-NH3.
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Appendix Table 5
Observed spectral lines which have not rotationally

assigned. :
Frequencya (GHz) Relative FIR c
Tntensity Laser #

520.488 15 4
531.462 500 4
531.666 as 4
562.418 26 4
$§73.070 26 4
573.163 70 4
573.281 10 4
$73.287 10 4
$93.546 160 4
595,952 17 4
605,765 20 4
616.996 55 4
626.0793 19 1
626.1885 7 1
626.1913 4 1
626.4381 44 1
626.6093 17 1
627.1473 190 1
627.4393 22 1
627.9589 15 1
628.5501 16 1
628.8633 36 1
629.0737 10 1
629.0765 156 1
629.3393 20 1
629.5781 290 1
629.6561 63 1
629.7993 47 1
630.3269 52 1
630.8049 10 1
630.8065 290 1
631.5293 144 1
631.5425 61 1
631.6277 33 1
631.726S 64 1
632.0133 33 1
632.3265 15 1
632.7253 295 1
633.8457 19 1
634 ,798S 19 1
635.4661 210 1
635.6993 10 1
635.7421 12 1
636,0553 18 1




Appendix Table 5 (continued)
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Frequency (GHz) Relative © FIR
Intensity Laser #
636.3021 15 1
636.8277 25 1
636.8313 7 1
637.0713 45 1
637.1221 10 b
637.2725 53 1
637.2761 28 1
637.4621 140 1
637.5573 43 1
637.6321 90 1
6§37.7773 28 1
637.9053 50 1
637.9953 8 1
638.0673 84 1
638.3413 60 1
638.4513 26 1
638.5753 78 1
638.6425 41 1
638.7033 335 1
638.9145 40 1
641.4093 16 1
642.5205 13 1
643.1369 24 1
643,2493 13 1
643.4761 23 1
643.85125 17 1
644.599 210 4
644,651 30 4
652.0717 60 1
653.2469 156 1
€53.4632 370 1
654.7707 21 1
654.8253 16 1
655.5969 24 1
655.644 20 1
656.0979 375 1
656.3439 S70 1
656.3751 24 1
656.9277 20 1
657.2393 19 1
657.6353 a8 1
658.3173 29 1
658.6399 390 1
658.6463 36 1
658.6887 38 1
659.1113 18 1
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Appendix Table 5 (continued)

Frequency (GHz) Relative FIR
Intensity Laser #
659.3637 96 1
659.5461 45 1
659.6633 71 1
660.0993 84 1l
660.6253 104 1l
660.6539 53 1
660.7023 138 1
661.2793 70 1
661,3117 76 1
661.5799 26 1
661,8883 36 1
661.9661 40 1l
662.1023 295 1
662,7037 70 1
663.6177 3 1
663.1233 48 1
664.2093 19 1
664.2513 25 1l
664.3003 21 1l
664.9023 425 1
665.8333 9% 1
667.1913 39 1
667.8943 40 1l
668.1913 36 1
668.7758 50 1
669.3213 47 1
670.5823 464 1
672.5513 61 1
672.7923 153 1
673.3053 100 1l
673.3078 564 1l
773.5073 28 1l
674,8453 93 1l
677.5263 60 1
678.0088 220 1
678.9157 250 1
678.9266 114 1
680.2733 24 1
680.8640 17 1
681.5693 50 1
681.5733 285 1
681.7573 53 1
683.7043 36 1l
684.1283 70 1
686.1348 34 1
687.1158 120 1
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Appendix Table 5 (continued)

Frequency (GHz) Relative - FIR
Intensity Laser #
687.1233 24 1
687.7344 93 1
689.3083 16 1
689.7113 kI 1
690.0343 41 1
690.1053 133 1
694,023 70 2
695.1907 70 2
695.8543 20 2
697.2167 36 2
697.3703 74 1
697.7307 116 2
697.9467 16 2
698.,2767 16 2
698.5719 60 2
699.8195 33 2
702.0443 40 1
702.1327 17 2
702.1727 9 2
702.2379 38 2
702.3567 14 2
703.0167 10 2
703.1047 13 2
703.1307 18 2
703.1533 154 1
703.4047 15 2
704.1939 26 2
704.3075 9 2
704.7773 24 1
705.102 20 2
705.3688 66 1
705.3903 134 1
705.6443 166 1
706.5287 14 2
706.5293 100 1
706.9163 68 1
707.4636 105 1
709.0207 54 1
710.1567 16 2
710.6513 50 1
711.0123 126 1
713.4583 96 1
715.9513 120 1
716.3793 61 1
716.9843 40 1
717.6163 26 1
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Appendix Table 5 (continued)

Frequency (GHz) Relative ~ FIR
Intensity Laser #
718.7773 116 1l
719.3371 20 2
720.7847 18 2
721.1826 17 2
725.4953 95 1
726.482 30 3
727.4487 13 2
728.3559 22 1
728.8333 50 1
730,092 40 1
730.9193 12 1
731.4393 14 1
735.1747 37 2
736.414 30 2
737.9697 22 2
738.8187 18 2
738.8207 15 2
739.1607 54 2
739.5567 13 2
739.6687 33 2
743,1157 16 2
743.5637 13 2
744 ,9997 32 2
746.7677 32 2
747.0197 33 2
747.1337 26 2
748.0913 7 1
749.2229 20 1
749.228% 15 1
749.8447 19 2
750.4433 9 b
755.9567 15 2
764.,3817 46 2
765.2587 36 2
766.6687 100 2
768.8017 36 2
769.7097 15 2
774,669 50 3
774.8261 9 2
774.8279 16 2
776.8806 35 2
776.9967 420 2
778.4607 88 2
779.3507 68 2
779.5647 16 2
779.6587 8 2




268

Appendix Table 5 (continued)

Frequency (GHz) Relative - FIk
Intensity Laser ¢
779.7827 10 2
779.8567 9 2
780.4117 16 2
787.4307 210 2
788.1447 46 2
788.7527 30 2
793.7407 14 2
796.3867 30 2
797.9567 112 2
803.1847 12 2
809,204 20 2
809,227 20 2
810.177 4% 3
816.3667 17 2
816.5607 15 2
817.8807 10 «
819.0207 9 2
819.2087 20 2
820.7447 19 2
823.8031 15 2
825.4075 13 2
825.5567 48 2
827.0767 14 2
827.3567 10 2
828.7747 20 2
829,8895 32 2
B44 . 608 30 3

2The frequencies shown were obtained in the search mode
of the experiment, and have not been measured to their
best accuracy (<1 MHz) available. Although most
frequencies listed have four digits after the decimal
point, their typical accuracy is estimated to be *1
MHz

bThe reference for the relative intensity is
arbitrarily chosen. It iz remembered that the
uncertainty ir the intensity is considerably large.

®The laser numbers, 1-4, represent the following FIR
laser lines:
1: 692.9514 GHz, HCOOH
2: 761.6083 GHz, HCOOH
3: 787.7555 GHz, DCOOD
4: 5B84.3882 GHz, HCOOH



