

5-3/76
5-3 up to 7/15
2-
X Special Distn

BNWL-1943
UC-70

MASTER

**Grasshopper Populations Inhabiting
the B-C Cribs and Redox Pond Sites,
200 Area Plateau, United States
Energy Research and Development
Administration's Hanford Reservation**

February 1976

**This report was sponsored by
The Atlantic Richfield Hanford Company
under the U.S. Energy Research and
Development Administration
Contract E(45-1)-2130**

 Battelle
Pacific Northwest Laboratories

BNWL-1943

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

PACIFIC NORTHWEST LABORATORY
operated by
BATTELLE
for the
U.S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
Under Contract: E(45-1)-1830

Printed in the United States of America

Available from

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151

Price: Printed Copy \$5.50; Microfiche \$2.25

**Grasshopper Populations Inhabiting
the B-C Cribs and Redox Pond Sites,
200 Area Plateau, United States
Energy Research and Development
Administration's Hanford Reservation**

by
J. K. Sheldon
L. E. Rogers

February 1976

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

**Battelle
Pacific Northwest Laboratories
Richland, Washington 99352**

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

fey

EXECUTIVE SUMMARY

The purpose of this study was to determine the taxonomic composition, abundance, and food habits of grasshopper populations inhabiting the 200 Area plateau. Two sites were selected for detailed study, one near the B-C Cribs control zone and the other near the former REDOX Pond.

A total of 14 grasshopper species were collected from the B-C Cribs study area and 16 species from the REDOX Pond area. Thirteen of these species occurred at both locations. Population density was low throughout most of the spring, increased in late May, and reached a peak of about 4 grasshoppers per square meter in early July.

A dietary analysis showed that 7 of the 28 species of vascular plants recorded from the area were major components in grasshopper diets. These included needle-and-thread grass (Stipa comata), turpentine cymopterus (Cymopterus terebinthinus), Carey's balsamroot (Balsamorhiza careyana), western tansymustard (Descurainia pinnata), Jim Hill mustard (Sisymbrium altissimum), big sagebrush (Artemisia tridentata) and green rabbitbrush (Chrysothamnus viscidiflorus).

The plant most heavily utilized was big sagebrush, followed by turpentine cymopterus, green rabbitbrush, and Carey's balsamroot. Other species were less frequently eaten. Several plants were present in the diet at a much higher frequency than they occurred in the environment, indicating that they were preferred food items. These included turpentine cymopterus, Carey's balsamroot, Jim Hill mustard, and green rabbitbrush. Some plants were apparently avoided by the grasshoppers since they were encountered at a much lower diet frequency (or were not eaten at all) than one would expect based on their natural abundance. Included in this group of plants were cheatgrass (Bromus tectorum), six-week fescue (Festuca octoflora), Sandberg's bluegrass (Poa sandbergii), western tansymustard (Descurainia pinnata), matted cryptantha (Cryptantha circumscissa), winged cryptantha (Cryptantha pterocarya), and microsteris (Microsteris gracilis).

CONTENTS

EXECUTIVE SUMMARY	i
LIST OF TABLES	iv
LIST OF FIGURES	v
INTRODUCTION	1
STUDY AREA	1
B-C Cribs	1
REDOX Pond	2
Climate	3
MATERIALS AND METHODS	3
RESULTS	4
B-C Crib Area	4
REDOX Pond Area	7
DISCUSSION	8
Distribution and Abundance of Grasshopper Species	8
Diet Analysis	8
ACKNOWLEDGEMENTS	11
LITERATURE CITED	12
APPENDICES	38
DISTRIBUTION	46

LIST OF TABLES

1	Plant Taxa; Common Names, Relative Habitat, Frequency of Occurrence (% FO); Canopy Cover (% C) on 400, 20 x 50 cm Plots (Data from Cline et al. 1975 and Uresk et al. 1975); and Frequency of Diet Composition (% FC) (All Grasshopper Species Combined) in the B-C Crib Site, 200 Area Plateau, Hanford Reservation, 1974	14
2	Plant Taxa, Relative Frequency of Occurrence (% FO), (Herbaceous Species), Density per ha (Shrubs), and Canopy Cover (% C) on 400, 20 x 50 cm Plots in the REDOX Pond Area Plateau, Hanford Reservation, 1974	16
3	Grasshopper Species Collected at B-C Crib and REDOX Pond Areas	18
4	Relative Frequency of Plant Species in Grasshopper Diets	19
5	Frequency (%) of Plant Species in Diet of <u>Apote notabilis</u> by Date of Capture	20
6	Frequency (%) of Plant Species in Diet of <u>Conozoa wallula</u> by Date of Capture	21
7	Frequency (%) of Plant Species in Diets of <u>Melanoplus cinereus</u> by Date of Capture	22
8	Frequency (%) of Plant Species in Diet of <u>Melanoplus yarrowi</u> by Date of Capture	23
9	Frequency (%) of Plant Species in Diet of <u>Oedaleonotus enigma</u> by Date of Capture	24
10	Frequency (%) of Plant Species in Diets of <u>Ageneotettix deorum</u> by Date of Capture	25
11	Frequency (%) of Plant Species in Diets of <u>Hesperotettix viridis</u> by Date of Capture	26

LIST OF FIGURES

1	Location of Study Areas on 200 Area Plateau	27
2	B-C Crib Study Site	28
3	REDOX Pond Study Site. Note the lower density of Big Sagebrush at REDOX Compared to B-C Crib	28
4	Grasshopper Density per m ² Based on Ocular Estimate	29
5	Sweep Sample of Green Rabbitbrush, <u>Chrysothamnus viscidiflorus</u> , at B-C Crib Site	30
6	Sweep Sample of Big Sagebrush, <u>Artemisia tridentata</u> , at B-C Crib Site	31
7a	<u>Apote notabilis</u> , Side View	32
7b	<u>A. notabilis</u> , Front View	32
8	<u>Trimerotropis caeruleipennis</u>	33
9	<u>Conozoa wallula</u>	33
10	<u>Melanoplus cinereus</u>	34
11	<u>Melanoplus yarrowii</u> , Light Form	34
12	<u>Melanoplus yarrowii</u> , Dark Form	35
13	<u>Oedaleonotus enigma</u>	35
14	<u>Ageneotettix deorum</u>	36
15	<u>Hesperotettix viridis</u>	36
16	Sweep Sample of Big Sagebrush, <u>Artemisia tridentata</u> , at REDOX Pond Site	37

INTRODUCTION

To aid in the formulation of an ecologically sound, long-term waste management program at Hanford, a biological characterization of the 200 Area plateau was undertaken to provide information concerning species present, their relative abundance, and the position they occupy in the ecosystem. Grasshoppers are a major herbivore group of this region. Because of their high reproductive potential and use as a food resource by predators, they serve as an important link in energy and nutrient flow pathways through the ecosystem.

The objective of the present study was to evaluate the ecological role of grasshopper populations inhabiting the 200 Area plateau of the ERDA Hanford Reservation. Two representative study sites were selected, one near the B-C Cribs control zone and the other near the former REDOX Pond. Grasshopper collections and identifications were conducted; population density estimates made; and a dietary analysis of abundant species conducted.

STUDY AREA

This study was conducted in noncontaminated regions near the B-C Crib Controlled Zone (200 East Area) and REDOX Pond (200 West Area). See Figure 1.

B-C CRIBS

The B-C Cribs study site (Figure 2) is located on the 200 Area plateau approximately 400 m south of the main gate of the 200 East Area. Soils are primarily Rupert sands and Burbank loamy sands (Hajek 1966). Average elevation is approximately 223 m with surface contours seldom exceeding 15 m. A brief history of radionuclide depositions and subsequent management of the B-C Crib site is given by O'Farrell and Gilbert (1975).

The vegetation of the B-C Cribs area varies from a relatively undisturbed plant association consisting of the dominant big sagebrush/Sandberg's bluegrass to highly disturbed regions where big sagebrush has been largely replaced by two rabbitbrush species, Chrysothamnus nauseosus and C. viscidiflorus. The ground cover in such areas is dominated by cheatgrass (Bromus tectorum). Russian thistle, Salsola kali, is also present.

The grasshopper study at the B-C Crib site was conducted in a relatively undisturbed portion of the region. A vegetation analysis of this site was conducted by Cline et al. (1975). The plant taxa that were present are listed in Table 1. All plant citations follow Hitchcock and Cronquist (1973). Big sagebrush dominated the shrub stratum with a density of 3720 plants per ha, relative frequency of occurrence 8%, and cover 26%. The understory consisted of a mixture of grasses and forbs. Five species of grass were recorded. Cheatgrass, six-weeks fescue, and Sandberg's bluegrass were the most abundant. Most of the species were present at a low frequency; however, western tansymustard, matted cryptantha, winged cryptantha, and microsteris were abundant. Because of the variation in the topography, microhabitat differences were present. This resulted in a clumped distribution of some species; e.g., Carey's balsamroot and turpentine cymopterus, which were thus locally abundant, although recorded at a low environmental frequency.

REDOX POND

The REDOX Pond study site (Figure 3) lies outside and approximately 1 km south of the 200 West fenced exclusion area. It is 8.5 km west of the B-C Crib study area. The pond was created in September 1956 and utilized until June 1972 as a holding area for condensor coolant water bearing low-level radionuclides. In 1972 the water source was diverted, all major vegetation was removed, the bottom was allowed to dry and then covered with soil. Prior to deactivation, the pond occupied an area of approximately 12-1/2 ha and was about 1/2 m deep.

The work reported here was conducted approximately 100 m south of the original pond site in a relatively undisturbed area. The elevation is similar to that at the B-C Cribs; however, the topography is more uniform.

Vegetation analysis indicates a flora similar to that found at the B-C Cribs (compare Tables 1 and 2). The density of big sagebrush was lower (840/ha vs. 3720/ha at the B-C Cribs) and that of rabbitbrush

higher in the REDOX area. Two more grass species were present; however, cheatgrass and six-week fescue remained the most common species. The forb population was also similar except for an increase in the density of Jim Hill mustard and a pronounced reduction in the abundance of microsteris. Twenty-two herbaceous plant species were encountered compared to 23 species found in the B-C Cribs survey. The herbaceous plant cover was also similar, 38% for the REDOX Pond site vs. 37% for the B-C Crib site (Cline et al. 1975).

CLIMATE

Climatic conditions for the two areas are also similar. Most of the precipitation (\bar{X} annual = 17.1 cm) falls during the months of October through May, the period which also corresponds with the majority of plant growth. From June through September there is little rain and significant dehydration occurs in most plants. Temperature extremes ranging from over 100°F in the summer to below 0°F in the winter are not uncommon (Stone et al. 1972).

MATERIALS AND METHODS

Periodic general collecting was conducted in both the B-C Cribs and REDOX Pond areas from June 6 to August 13, 1974 to obtain representative specimens of all grasshopper species present. Collected specimens were pinned and sent to specialists for species confirmation.

Relative population densities were determined by sweep samples taken at approximately 2-week intervals at both sites from June 2 until October 15, 1974. Big sagebrush and green rabbitbrush were swept at the B-C Cribs site and big sagebrush alone at the former REDOX Pond site. Two replicates of 50 sweeps each were taken on each plant species.

Absolute density for ground-dwelling species was taken at the B-C Cribs area at approximately 2-week intervals from May 2 until October 8, 1974, using an ocular estimate method (Bhatnagar and Pfadt 1973). While walking through the area to be sampled, one fixes his sight on approximately a 1-ft² area of ground surface several feet in advance and records the number of grasshoppers present on the plot as it is approached. This process is repeated until 100 sample points are tallied. Density is recorded as the number of grasshoppers per ft² and then converted to grasshoppers/m².

A diet analysis was conducted only at the B-C Cribs site. Grasshoppers were collected at 2-week intervals between June 27 and August 8, 1974. Specimens were obtained by walking through the area with a standard aerial net and catching individuals as they jumped or flew. They were immediately preserved in 95% ETOH. Crops of preserved grasshoppers were

later removed in the laboratory, a microscope slide mount was prepared from the contents of each, and crop contents identified as described by Rogers and Uresk (1974). Plant tissue determinations were based on the structural characteristics of the epidermal cells. Comparison was made to a reference collection containing all plant taxa present in the study area. Twenty microscope fields were read per slide and posted to a keypunch form (Appendix A). Following keypunching the data cards were processed using a computer program designed to calculate relative frequency for each grasshopper species and food item. The computer program is documented in Appendix B.

RESULTS

B-C CRIB AREA

The grasshopper species collected at the B-C Crib site are listed in Table 3. With the exception of two species of Tettigoniidae, Apote notabilis and Steiroxys sp., all specimens collected were acridid grasshoppers. Two of the species were quite restricted in their distribution--Melanoplus cinereus was usually encountered on big sagebrush, and Hesperotettix viridis was collected almost exclusively on green rabbitbrush.

The density of the grasshopper population remained low throughout the spring and did not begin to increase significantly until the end of May at which time numerous early instar nymphs were present (Figures 4-6). Adults of many species began to appear in late June and a peak population density of 4.0 grasshoppers/m² was recorded in early July (Figure 4). Sweep samples of green rabbitbrush (Figure 5) and big sagebrush (Figure 6), both taken on June 21, indicate that the greatest population was present on the shrubs a few weeks earlier. At this time 165 grasshoppers were obtained from 100 sweeps of rabbitbrush and 59 from a sagebrush sample. Most of the grasshoppers encountered on green rabbitbrush were Hesperotettix viridis. Other less abundant species collected on this plant included Melanoplus yarrowii, Melanoplus cinereus, and Ageneotettix deorum. On July 18, for example, 17 Hesperotettix viridis were swept compared to 2 Melanoplus yarrowii and 3 Melanoplus cinereus. Grasshoppers swept from big sagebrush were almost entirely Melanoplus cinereus and Oedaleonotus enigma.

The combined results of the diet analysis of the 8 species from the B-C Cribs area are presented in Table 1. The raw data from the computer printout appears in Appendix C. A total of 576 crops were removed in the study and 15 species of plants were identified from crop contents. Eight of these were recorded at a frequency of less than 1%. Of the other seven, big sagebrush was the most abundant (41%), followed by green rabbitbrush and turpentine cymopterus (15%), Carey's balsamroot (13%), Jim Hill mustard (7%), western tansymustard (4%), and needle-and-thread grass (1%).

The relative frequency of plant specimens in grasshopper diets (all sample dates combined) is presented in Table 4. The only food item utilized by all species was cryptogams. Its relative frequency in the crop contents varied from 15% in Conozoa wallula to 81% in Ageneotettix deorum. In all cases the unknown category was encountered at a frequency of $\leq 3\%$.

Diet of *Apote notabilis* Scudder (Figures 7a,b)

Nine food plants were identified (Table 4). Shrub fragments from both big sagebrush (18%) and green rabbitbrush (15%) were present. Cryptogams were recorded at 15%, grass less than 1%, and forbs constituted the remainder. Of these, turpentine cymopterus was most abundant (34%). Other forbs present were Jim Hill mustard (13%), western tansymustard (3%), and Carey's balsamroot and matted cryptantha ($\leq 1\%$).

Specimens for diet analysis were obtained on three dates (Table 5), July 11, July 25, and August 8. Little variation was found in the diet between the three dates. Jim Hill mustard decreased in frequency from 22% to 1% and green rabbitbrush increased; other changes were less pronounced.

Diet of *Trimerotropis caeruleipennis* Bruner (Figure 8)

Six food plants were identified (Table 4). Cryptogams constituted the most frequently encountered food item (41%). The only grass utilized was needle-and-thread grass (8%). Big sagebrush was encountered in 6% of the observed fields while the annual forbs tarweed fiddleneck (6%), Carey's balsamroot (25%), and western tansymustard (12%) comprised the remainder of the identifiable diet. A sufficient number of specimens of this species was obtained for analysis only on August 8, 1974 and is shown in Table 4.

Diet of *Conozoa wallula* (Scudder) (Figure 9)

This species primarily selected annual forbs. Carey's balsamroot was present at a frequency of 73% and western tansymustard at 3% (Table 4). Shrubs were encountered at a frequency of less than 3%. The only grass species found was needle-and-thread grass (4%). Cryptogam fragments occurred at a frequency of 16%.

Samples were obtained on July 25 and August 8 (Table 6). A total of four diet items were consumed on each date. Of these, only Carey's balsamroot and cryptogams were eaten on both dates.

Diet of *Melanoplus cinereus* Scudder (Figure 10)

Ten food items were identified (Table 4). Big sagebrush was found to be most abundant (61%). Cryptogams were also present (18%), green rabbitbrush and turpentine cymopterus, both at 6%, Jim Hill mustard (5%), common yarrow (2%), and common rabbitbrush, spiny hopsage, Carey's balsamroot, and western tansymustard, all with relative frequencies $\leq 1\%$.

Samples were obtained on the dates listed in Table 7. The June 27 sample revealed that 4 plant species were consumed with green rabbitbrush and cryptogams constituting the bulk of the diet. On subsequent dates more diversity was present in the diet. Eight species were identified from the July 11 sample, six from July 26, and nine from August 8. In each case, big sagebrush was the dominant species consumed, the relative frequency ranging from 58-68%, and cryptogams next (13-34%).

Diet of *Melanoplus yarrowii* (Thomas) (Figures 11-12)

Thirteen species were identified (Table 4). Cryptogam fragments were most abundant (27%). The shrubs identified were big sagebrush (12%), green rabbitbrush (6%) and common rabbitbrush (1%). One species of grass, Sandberg's bluegrass (2%) was also encountered. The remainder of the diet consisted of herbaceous plants including Carey's balsamroot (22%), turpentine cymopterus (15%), western tansymustard (7%), Jim Hill mustard (3%), and tarweed fiddleneck, common yarrow, matted cryptantha, and Russian thistle all with frequencies of 1% or less.

Sample dates and food items consumed are presented in Table 8. The number of species consumed was quite constant between the samples, ranging from nine on August 11 to a high of twelve on July 26. On no date was the relative frequency for any food item higher than 37%.

Diet of *Oedaleonotus enigma* (Scudder) (Figure 13)

Eleven species of plants were recorded. Table 4 shows that the two most common plants consumed were big sagebrush (47%) and cryptogams (36%). The frequency of the other nine species did not exceed 4%. These included the three shrubs, green rabbitbrush, spiny hopsage, and common rabbitbrush; and the six forbs, tarweed fiddleneck, Carey's balsamroot, western tansymustard, Jim Hill mustard, turpentine cymopterus, and matted cryptantha.

Samples were obtained on four consecutive dates from June 27 to August 8 (Table 9). Diversity in consumption varied from a high of 11 species on June 27 to 5 species on both July 25 and August 8. On each date, relative frequency of big sagebrush was greatest, ranging from 43% to 54%, with cryptogams consistently comprising the second highest food item (10% to 41%).

Diet of *Ageneotettix deorum* (Scudder) (Figure 14)

Nine species of plants were found (Table 4). Of these, only cryptogams were frequently encountered. All other plants were present at a frequency of $\leq 4\%$. These include three species of shrubs, big sagebrush, green rabbitbrush, and common rabbitbrush; two species of grass, needle-and-thread grass, and cheatgrass; and three forbs, western tansymustard, turpentine cymopterus, and Russian thistle.

Specimens were obtained in sufficient number for analysis only on July 26 and August 8 (Table 10). An obvious difference in diet diversity is present for the two dates. Nine specimens were identified in the crop contents on July 26 but only three in the sample 2 weeks later. In both cases cryptogams were the only item exceeding a frequency of 6%. It was present in the July 26 sample at a frequency of 76% and in the August 8 sample at 91%.

Diet of *Hesperotettix viridis* (Thomas) (Figure 15)

Only three species of plants were recorded from this stenophagous species (Table 4). It was collected almost exclusively on green rabbitbrush and this plant was also the most abundant species in the diet (76%). Cryptogam fragments were also fairly common (21%). Russian thistle was the only other plant found (< 1%).

Sample dates for *Hesperotettix viridis* were June 27, July 11, and July 25 (Table 11). Variability in the relative frequency of green rabbitbrush ranged from 22% on June 27 to 87% on July 25. As the frequency of rabbitbrush consumption increased, the frequency of cryptogams consumed decreased, dropping from 78% on June 27 to 12% on July 25. By August 8 the population density had decreased to the point that the procurement of an adequate sample for diet analysis was not possible.

REDOX POND AREA

Grasshoppers collected at the REDOX Pond site are listed in Table 3. Species present here but not found at the B-C Crib site include Arphia pseudonietana, Paropomala pallida, and Amphitornus coloradus. Trimerotropis bilobata was collected at the B-C Cribs but not at REDOX Pond.

The population density based on sweep samples of sagebrush is shown in Figure 16. The peak juvenile population (23/100 sweeps) appeared near the middle of June and adults were present in the July 5 sample. Grasshopper abundance decreased throughout the remainder of the season with the last specimen taken in the October 15 sample. As was the case in the big sagebrush sweep samples from the B-C Cribs, most individuals belonged to two species - Melanoplus cinereus and Oedaleonotus enigma.

DISCUSSION

Distribution and Abundance of Grasshopper Species

The similarity of species composition of the grasshopper population at the B-C Crib and REDOX Pond sites is not surprising since only minor differences were encountered in the vegetation analysis and both the elevation and climatic conditions of the two areas are similar. The presence of Paropomala pallida at the REDOX Pond apparently is due to an abundance of needle-and-thread grass which is present but at a much lower density at the B-C Cribs site. Paropomala was collected almost exclusively on this grass. The reasons for the restricted distribution of the other four grasshopper species which were encountered at only one of the two sites is not clear. Perhaps they were present in low numbers and not sampled.

Two different sampling procedures, an ocular estimate and sweep sample, were necessary to adequately study grasshopper density because of microhabitat preferences. Certain grasshoppers were encountered primarily on vegetation, while others are exclusively soil surface dwellers and are rarely encountered on vegetation. Hesperotettix viridis falls into the former category, and to a lesser extent Melanoplus cinereus and Oedaleonotus enigma. The Trimerotropis spp., Xanthippus lateritus, Conozoa wallula, and Arphia pseudonietana are found predominately on exposed bare areas.

Sweep samples of green rabbitbrush and big sagebrush provided qualitative information on population densities of shrub inhabiting species. Large numbers of nymphs were collected, but as the population ecdised to the adult stage the number collected decreased rapidly. This may in part have been due to an increase in mortality. Flying adults are exposed to a new guild of aerial predators including a large robber fly population. Of the species commonly encountered on shrubs, Melanoplus cinereus is probably affected most by aerial predators since it readily takes flight. Hesperotettix viridis is reluctant to fly and Oedaleonotus enigma is brachypterus and thus incapable of flight, although it is an excellent jumper. In addition to aerial predators, parasites and parasitoids may take a high toll in the late juvenile stages. Adults may also be more evasive than nymphs, thus reducing their capture rate.

Diet Analysis

A pronounced dietary selectivity was encountered in all grasshopper species. Of the 28 vascular plants from the B-C Cribs area (Table 1), 15 were encountered in the diet analysis. The food niche breadth of individual species ranged from a maximum of 13 species of plants consumed by Melanoplus yarrowii to a minimum of three species by the stenophagous Hesperotettix viridis. Three of the 13 plant species not consumed were

major components of the flora indicating a relative avoidance by grasshoppers. These include the annual grass six-weeks fescue, microsteris, and winged cryptantha. Three other plants with high habitat frequency, cheatgrass, Sandberg's bluegrass and matted cryptantha, were eaten but only at low levels, indicating that they, too, were being avoided. Four herbaceous species had habitat frequencies of < 1% but were heavily utilized. These included needle-and-thread grass, turpentine cymopterus, Carey's balsamroot, and Jim Hill mustard. The two rabbitbrush species were also consumed at disproportionately high levels for their low environmental frequency. Russian thistle (Salsola kali) was not found in the diets of any grasshopper species. This plant species occurred infrequently in the study area (<1%). It is possible that grasshoppers may consume some Russian thistle in areas where it is more abundant.

A large amount of overlap was present in the partitioning of available food resources. Only seven of the 15 species of vascular plants were eaten at a high frequency. Grasses, with the exception of needle-and-thread grass, were not found to constitute a major portion of the diet. Needle-and-thread grass, however, was consumed by Trimerotropis caeruleipennis and Conozoa wallula at a higher level than its habitat frequency. It was also present in the diet of Apote notabilis and Ageneotettix deorum. These results are very similar to those reported by Ueckert and Hanson (1971), for a different group of grasshopper species where needle-and-thread grass was found to support a high level of herbivory while cheatgrass was virtually untouched. The small amount of grass consumed by Ageneotettix deorum indicates a somewhat atypical food base for this normally gramnivorous species (Banfill and Brusven 1973; Mulkern et al. 1969, Ueckert et al. 1972). It also contained the highest cryptogam frequency which correlates well with observations reporting a significant level of detritus feeding (Mulkern et al. 1969, Lavigne and Pfadt 1964, Banfill and Brusven 1973).

Two species of perennial forbs were widely utilized although in both cases their habitat frequency was less than 1%. Turpentine cymopterus was found in the diets of 5 of the 8 species while Carey's balsamroot was utilized by all but two species. Two annual forbs appear to be important. Western tansymustard was consumed by 6 of the 8 grasshoppers, although the diet frequency was far below its habitat frequency, and Jim Hill mustard was utilized by four grasshopper species.

Two shrubs were found to be important food sources. Both big sagebrush and green rabbitbrush were consumed by 7 of the 8 species. Both also served as a major food source for one grasshopper species. Melanoplus cinereus was frequently collected on the foliage of big sagebrush and had a diet frequency of 61% for that species. Hesperotettix viridis, on the other hand, was found almost exclusively on green rabbitbrush which had a diet frequency of 76%. Its only other major food source was lichen. Other studies have shown that Hesperotettix viridis is selective in its feeding behavior. At North Platte, Nebraska, it was reported to feed primarily on Gutierrezia sarothrae and Aster oblongifolius (Mulkern et al. 1969). Brooks (1958) reported that in the Canadian prairie province Gutierrezia sp. was the major food source, but consumption of Solidago sp.,

Helianthus sp., Grindelia sp., and Aster sp. also occurred. In a Montana study (Anderson and Wright 1952), Hesperotettix viridis was closely associated with Gutierrezia sp., but also ingested Solidago rigida, Chrysanthemus nauseousus, and Grindelia squarrosa.

Scavenging was observed for only one species, the tettigoniid Apote notabilis. This species, which is largely nocturnal in contrast to the diurnal grasshoppers, was often observed feeding on dead insects (including members of its own species) as well as on other detritus. This habit was particularly noticeable on roads where the kill rate was high.

The combined results for all grasshopper species (Table 1) shows that the diet frequency of 41% for big sagebrush is more than twice that of any other vascular plant. These results contradict a recent statement by Daubenmire (1975) that the foliage of Artemisia is not eaten by grasshoppers. He does not, however, name the grasshopper species in his study or provide information on his diet assay technique. He does state that grasshoppers congregate in big sagebrush at night, roosting in the canopy. We confirm this and also found that during the heat of the day many species of grasshoppers sit on big sagebrush thereby avoiding high temperatures associated with exposed soil surface areas.

ACKNOWLEDGEMENTS

Wayne Lord collected many of the grasshoppers for diet analysis. Mary Wise and Fern Nelson assisted in slide preparation and diet analysis. R.H. Sauer developed the computer program used in data reduction. D. Rentz, Academy of Natural Sciences, Philadelphia, PA and R. Pfadt, University of Wyoming, Laramie identified grasshopper specimens. This report is based on research sponsored by the Atlantic Richfield Hanford Company under ERDA contract E(45-1)-2130.

LITERATURE CITED

Anderson, N. L. and J. C. Wright. 1952. Grasshopper Investigations on Montana Range Lands. Montana State Col. Agr. Exp. Sta. Bull. 486, 46 pp.

Banfill, J. C. and M. A. Brusven. 1973. Food habits and ecology of grasshoppers in the Seven Devils Mountains and Salmon River breaks of Idaho. Melanderia 12:1-21.

Bhatnagar, K. H. and R. E. Pfadt. 1973. Growth, Density, and Biomass of Grasshoppers in the Shortgrass and Mixed-Grass Association. Grassland Biome Tech. Rept. 225. Colorado State University, Fort Collins.

Brooks, A. R. 1958. Aridoidea of Southern Alberta, Saskatchewan and Manitoba (Orthoptera). Can. Entomol. 90, Suppl. 9, 92 pp.

Cline, J. F., D. W. Uresk, and W. H. Rickard. 1975. Characterization of Plant Communities in the B-C Cribs and REDOX Areas on the 200 Area Plateau. BNWL-1916, Battelle Northwest, Richland, Washington, 57 pp.

Daubenmire, R. 1975. Ecology of Artemesia tridentata subsp. tridentata in the State of Washington. Northwest Sci. 49:24-35.

Fitzner, R. E. and K. R. Price. 1973. The Use of Hanford Waste Ponds by Waterfowl and Other Birds. BNWL-1738, Battelle Northwest, Richland, Washington, 25 pp.

Fitzner, R. E. and W. H. Rickard. 1975. Avifauna of Waste Ponds ERDA Hanford Reservation Benton County, Washington. BNWL-1885, UC-70. Battelle Northwest, Richland, Washington, 96 pp.

Hajek, B. F. 1966. Soil Survey Hanford Project in Benton County, Washington. BNWL-243, Battelle Northwest, Richland, Washington, 18 pp.

Hitchcock, C. L. and A. Cronquist. 1973. Flora of the Pacific Northwest. University of Washington Press, Seattle. 730 pp.

Lavigne, R. J. and R. E. Pfadt. 1964. The role of rangeland grasshoppers as scavengers. J. Can. Entomol. Soc. 37:1-4.

Mulkern, G. B., K. P. Pruess, H. Knutson, A. F. Hagen, J. B. Campbell, and J. D. Lambley. 1969. Food habits and preferences of grassland grasshoppers of the North Central Great Plains. North Dakota Agr. Exp. Sta. Bull. No. 481:1-32.

O'Farrell, T. P. and R. O. Gilbert. 1975. Transport of radioactive materials by jackrabbits on the Hanford reservation. Health Phys. 29:9-15.

Rogers, L. E. and D. W. Uresk. 1974. Food plant selection by the migratory grasshopper (Melanoplus sanguinipes) within a cheatgrass community. Northwest Sci. 48:230-234.

Stone, W. A., D. E. Jenne, and J. M. Thorp. 1972. Climatography of the Hanford Area. BNWL-1605, Battelle-Northwest, Richland, Washington, 257 pp.

Ueckert, D. N. and R. M. Hansen. 1971. Dietary overlap of grasshoppers on sandhill rangeland in northeastern Colorado. Oecologia (Berl.) 8:276-295.

Ueckert, D. N., R. M. Hansen and C. Terwilliger, Jr. 1972. Influence of plant frequency and certain morphological variations on diets of rangeland grasshoppers. J. Range Manage. 25:61-65.

Uresk, D. W., J. F. Cline and W. H. Rickard. 1975. Diets of Black-Tailed Hares on the Hanford Reservation. BNWL-1931, Battelle-Northwest, Richland, Washington.

TABLE 1. Plant Taxa; Common Names, Relative Habitat, Frequency of Occurrence (% FO); Canopy Cover (% C) on 400, 20 x 50 cm Plots (Data from Cline et al. 1975 and Uresk et al. 1975); and Frequency of Diet Composition (% FC) (All Grasshopper Species Combined) in the B-C Crib Site, 200 Area Plateau, Hanford Reservation, 1974

Taxa	Common Name	% FO	% C	% FC
Annual Grasses				
<u>Bromus tectorum</u> L.	Cheatgrass	20	15	<1
<u>Festuca octoflora</u> Walt.	Six-Weeks Fescue	16	4	--
Perennial Grasses				
<u>Poa sandbergii</u> Vasey	Sandberg's Bluegrass	5	2	<1
<u>Stipa comata</u> Trin. & Rupr.	Needle-and-Thread Grass	<1	<1	<1
<u>Agropyron spicatum</u> (Pursh) Scribn. & Smith	Bluebunch Wheatgrass	<1	<1	--
4 Perennial Forbs				
<u>Oenothera pallida</u> Lindl.	White-stemmed Evening Primrose	<1	<1	--
<u>Cymopterus terebinthinus</u> (Hook.) T&G	Turpentine cymopterus	<1	<1	15
<u>Erigeron filifolius</u> Nutt.	Thread-leaved Fleabane	<1	<1	--
<u>Calochortus macrocarpus</u> Dougl.	Green-banded Star Tulip	<1	<1	--
<u>Mentzelia albicaulis</u> Dougl.	White-stemmed Mentzelia	<1	<1	--
<u>Phlox longifolia</u> Nutt.	Long-leaved Phlox	<1	<1	--
<u>Brodiaea douglasii</u> Wats.	Brodiaea	<1	<1	--
<u>Commandra umbellata</u> (L.) Nutt. (var. pallida)	Bastard-toad-flax	<1	<1	--
<u>Balsamorhiza careyana</u> Gray	Carey's Balsamroot	<1	<1	13
** <u>Achillea millefolium</u> L.	Common yarrow	--	--	<1

TABLE 1 (Continued)

Taxa	Common Name	% FO	% C	% FC
Annual Forbs				
<u>Descurainia pinnata</u> (Walt.) Britt.	Western Tansymustard	18	8	5
<u>Cryptantha circumscissa</u> (H&A) Johnst.	Matted Cryptantha	10	2	<1
<u>Sisymbrium altissimum</u> L.	Jim Hill Mustard	<1	<1	7
<u>Salsola kali</u> L.	Russian Thistle	<1	<1	<1
<u>Cryptantha pterocarya</u> (Torr.) Greene	Winged Cryptantha	3	<1	--
<u>Microsteris gracilis</u> (Hook.) Greene	Microsteris	14	3	--
<u>Phacelia linearis</u> (Pursh) Holz.	Narrow-leaved Phacelia	<1	<1	--
<u>Amsinckia lycopsoides</u> Lehm.	Tarweed Fiddleneck	<1	<1	1
<u>Erodium circutarium</u> (L.) L'Her.	Filaree	<1	<1	--
Shrubs				
<u>Artemisia tridentata</u> Nutt.	Big Sagebrush	8	26	41
<u>Chrysothamnus viscidiflorus</u> (Hook.) Nutt	Green Rabbitbrush	<1	<1	16
<u>Chrysothamnus nauseosus</u> (Pall.) Britt.	Common Rabbitbrush	<1	<1	<1
** <u>Atriplex spinosa</u> (Hook.) Collotzi	Spiny Hopsage	--	--	<1
TOTAL TAXA		28	--	15

**Plant species identified in diet study but not found in vegetation analysis.

TABLE 2. Plant Taxa, Relative Frequency of Occurrence (% FO), (Herbaceous Species), Density per ha (Shrubs), and Canopy Cover (% C) on 400, 20 x 50 cm Plots in the REDOX Pond Area Plateau, Hanford Reservation, 1974

Taxa	Common Name	% FO	% C
Annual Grasses			
<u>Bromus tectorum</u> L.	Cheatgrass	28	22
<u>Festuca octoflora</u> Walt.	Six-Weeks Fescue	17	2
Perennial Grasses			
<u>Poa sandbergii</u> Vasey	Sandberg's Bluegrass	<1	<1
<u>Stipa comata</u> Trin & Rupr.	Needle-and-Thread Grass	3	2
<u>Sitanion hystrix</u> (Nutt.) Smith	Bottlebrush Squirreltail	<1	<1
<u>Agropyron dasystachyum</u> (Hook) Scribn.	Downy Wheatgrass	<1	<1
<u>Poa scabrella</u> (Thurb.) Benth.	Pine Bluegrass	<1	<1
Perennial Forbs			
<u>Oenothera pallida</u> Lindl.	White-stemmed Evening Primrose	<1	<1
<u>Aster</u> sp.	Aster	3	<1
<u>Cymopterus terebinthinus</u> (Hook). T&G	Turpentine Cymopterus	2	2
<u>Erigeron filifolius</u> Nutt.	Thread-leaved Fleabane	3	<1
<u>Calochortus macrocarpus</u> Dougl.	Green-banded Star-tulip	<1	<1
<u>Mentzelia albicaulis</u> Dougl.	White-stemmed Mentzelia	<1	<1
<u>Lupinus</u> sp.	Lupine	<1	<1
<u>Phlox longifolia</u> Nutt.	Long-leaved Phlox	<1	<1
<u>Astragalus</u> sp.	Locoweed	<1	<1

TABLE 2. (Continued)

Taxa	Common Name	% FO	% C
Annual Forbs			
<u>Descurainia pinnata</u> (Walt.) Britt.	Western Tansymustard	15	3
<u>Cryptantha circumscissa</u> (H&A) Johnst.	Matted cryptantha	16	3
<u>Sisymbrium altissimum</u> L.	Jim Hill Mustard	6	1
<u>Salsola kali</u> L.	Russian Thistle	2	<1
<u>Cryptantha pterocarya</u> (Torr.) Greene	Winged Cryptantha	3	<1
<u>Microsteris gracilis</u> (Hook.) Greene	Microsteris	<1	<1
Shrubs			
<u>Artemisia tridentata</u> Nutt.	Big Sagebrush	840	18
<u>Chrysothamnus</u> sp.	Rabbitbrush	260	2
TOTAL TAXA		22	

TABLE 3. Grasshopper Species Collected at B-C Crib and REDOX Pond Areas

B-C Crib	REDOX Pond
Species:	
<u>Ageneotettix deorum</u> (Scudder)	<u>Ageneotettix deorum</u> (Scudder)
-----	* <u>Amphitornus coloradus</u> (Thomas)
<u>Apote notabilis</u> Scudder	<u>Apote notabilis</u> Scudder
-----	<u>Arphia pseudonietana</u> (Thomas)
<u>Aulocara elliotti</u> Thomas	<u>Aulocara elliotti</u> (Thomas)
<u>Conozoa wallula</u> (Scudder)	<u>Conozoa wallula</u> (Scudder)
<u>Hesperotettix viridis</u> (Thomas)	<u>Hesperotettix viridis</u> (Thomas)
<u>Melanoplus cinereus</u> Scudder	<u>Melanoplus cinereus</u> Scudder
<u>Melanoplus sanguinipes</u> (F.)	<u>Melanoplus sanguinipes</u> (F.)
<u>Melanoplus yarrowii</u> (Thomas)	<u>Melanoplus yarrowii</u> (Thomas)
<u>Oedaleonotus enigma</u> (Scudder)	<u>Oedaleonotus enigma</u> (Scudder)
-----	<u>Paropomala pallida</u> Bruner
<u>Steiroxys</u> sp.	<u>Steiroxys</u> sp.
<u>Trimerotropis bilobata</u> Rehn and Bevard	-----
<u>Trimerotropis caeruleipennis</u> Brunner	<u>Trimerotropis caeruleipennis</u> Brunner
<u>Trimerotropis pallidipennis</u> (Burmeister)	<u>Trimerotropis pallidipennis</u> (Burm.)
<u>Xanthippus lateritus</u> Saussure	<u>Xanthippus lateritus</u> Saussure
TOTAL: 14	TOTAL: 16

*Collected during the summer of 1975.

TABLE 4. Relative Frequency of Plant Species in Grasshopper Diets

Plant Species	Grasshopper Species							
	APNO	TRCA	COWA	MECI	MEYA	OEEN	AGDE	HEVI
Annual Grasses								
<u>Bromus tectorum</u>							3	
Perennial Grasses								
<u>Poa sandbergii</u>						2		
<u>Stipa comata</u>	<1	8	4				3	
Perennial Forbs								
<u>Cymopterus terebinthinus</u>	34			6	15	2	<1	
<u>Balsamorhiza careyana</u>	<1	25	73	<1	22	3		
<u>Achillea millefolium</u>				2	<1			
Annual Forbs								
<u>Descurainia pinnata</u>	3	12	3	1	7	4	<1	
<u>Cryptantha circumscissa</u>	<1				<1	<1		
<u>Sisymbrium altissimum</u>	13			5	3	2		
<u>Salsola kali</u>					<1		<1	<1
<u>Amsinckia lycopersoides</u>		6			<1	<1		
Shrubs								
<u>Artemesia tridentata</u>	18	6	<1	61	12	47	4	
<u>Chrysothamnus viscidiflorus</u>	15		3	6	6	2	1	76
<u>Chrysothamnus nauseosus</u>				<1	<1	<1	3	
<u>Atriplex spinosa</u>				<1	<1			
Other								
Cryptogams	15	42	16	18	27	36	81	21
Unknown	2	<1		<1	<1	<1	3	<1
Number of crops examined	61	17	38	124	137	111	36	52
Number of food types utilized (excluding unknown category)	9	6	6	10	13	11	9	3

Orthoptera species are: APNO = Apote notabilis Scudder; TRCA = Trimerotropis caeruleipennis Brunner; COWA = Conozoa wallula (Scudder); MECI = Melanoplus cinereus Scudder; MEYA = Melanoplus yarrowii (Thomas); OEEN = Oedaleonotus enigma (Scudder); AGDE = Ageneotettix deorum (Scudder); HEVI = Hesperotettix viridis (Thomas).

TABLE 5. Frequency (%) of Plant Species in Diet of
Apote notabilis by Date of Capture

<u>Plant Species</u>	<u>Date</u>		
	<u>July 11</u>	<u>July 25</u>	<u>August 8</u>
<u>Stipa comata</u>		<1	
<u>Cymopterus terebinthinus</u>	33	38	23
<u>Balsamorhiza careyana</u>			4
<u>Descurainia pinnata</u>	4	<1	6
<u>Cryptantha circumscissa</u>		<1	
<u>Sisymbrium altissimum</u>	22	10	<1
<u>Artemisia tridentata</u>	21	10	32
<u>Chrysothamnus viscidiflorus</u>	3	25	13
Cryptogams	14	14	20
Unknown	2	2	<1
Number of slides examined:	22	28	11

TABLE 6. Frequency (%) of Plant Species in Diet of
Conozoa wallula by Date of Capture

Plant Species	Date	
	July 25	August 8
<u>Stipa comata</u>		7
<u>Balsamorhiza careyana</u>	78	70
<u>Descurainia pinnata</u>		5
<u>Artemisia tridentata</u>	1	
<u>Chrysothamnus viscidiflorus</u>	8	
Cryptogams	13	17
Number of slides examined:	17	21

TABLE 7. Frequency (%) of Plant Species in Diets of
Melanoplus cinereus by Date of Capture

Plant Species	Date			
	June 27	July 11	July 26	August 8
<u>Cymopterus terebinthinus</u>	4	1	9	5
<u>Balsamorhiza careyana</u>				2
<u>Achillea millefolium</u>		2	3	3
<u>Descurainia pinnata</u>		2		<1
<u>Sisymbrium altissimum</u>		9	2	7
<u>Artemisia tridentata</u>	11	66	58	68
<u>Chrysothamnus viscidiflorus</u>	52		7	
<u>Chrysothamnus nauseosus</u>		<1		
<u>Atriplex spinosa</u>				<1
Cryptogams	34	17	20	13
Unknown		<1		<1
Number of slides examined:	7	41	46	30

TABLE 8. Frequency (%) of Plant Species in Diet of
Melanoplus yarrowii by Date of Capture

Plant Species	Date			
	June 27	July 11	July 26	August 11
<u>Poa sandbergii</u>	2	9	2	
<u>Cymopterus terebinthinus</u>	9	5	32	7
<u>Balsamorhiza careyana</u>	18	37	12	30
<u>Achillea millefolium</u>			<1	<1
<u>Descurainia pinnata</u>	7	5	3	11
<u>Cryptantha circumscissa</u>			2	
<u>Sisymbrium altissimum</u>	9	<1	<1	2
<u>Salsola kali</u>	3	2		
<u>Amsinckia lycopsoides</u>	<1		<1	
<u>Artemisia tridentata</u>	5	6	23	9
<u>Chrysothamnus viscidiflorus</u>	12		2	7
<u>Chrysothamnus nauseosus</u>		5	2	
Cryptogams	33	29	18	32
Unknown	1	2		2
Number of slides examined:	34	20	45	38

TABLE 9. Frequency (%) of Plant Species in Diet of
Oedaleonotus enigma by Date of Capture

Plant Species	Date			
	June 27	July 11	July 25	August 8
<u>Cymopterus terebinthinus</u>	1			5
<u>Balsamorhiza careyana</u>	3	10	3	
<u>Descurainia pinnata</u>	6		3	
<u>Cryptantha circumscissa</u>	1	8		
<u>Sisymbrium altissimum</u>	4			2
<u>Amsinckia lycopoides</u>	1			
<u>Artemisia tridentata</u>	43	54	53	49
<u>Chrysothamnus viscidiflorus</u>		10	3	2
<u>Chrysothamnus nauseosus</u>	<1	10		
<u>Atriplex spinosa</u>	1			
Cryptogams	37	10	37	41
Unknown	<1			
Number of slides examined:	52	10	25	24

TABLE 10. Frequency (%) of Plant Species in Diets of Ageneotettix deorum by Date of Capture

Plant Species	Date	
	July 26	August 8
<u>Bromus tectorum</u>	2	6
<u>Stipa comata</u>	4	
<u>Cymopterus terebinthinus</u>	1	
<u>Descurainia pinnata</u>	1	
<u>Salsola kali</u>		2
<u>Artemisia tridentata</u>	6	
<u>Chrysothamnus viscidiflorus</u>	2	
<u>Chrysothamnus nauseosus</u>	4	
Cryptogams	76	91
Unknown	4	
Number of slides examined:	25	11

TABLE 11. Frequency (%) of Plant Species in Diets of Hesperotettix viridis by Date of Capture

Plant Species	Date		
	June 27	July 11	July 25
<u>Salsola kali</u>		2	
<u>Chrysothamnus viscidiflorus</u>	22	77	87
Cryptogams	78	19	12
Unknown		2	1
Number of slides examined:	5	30	17

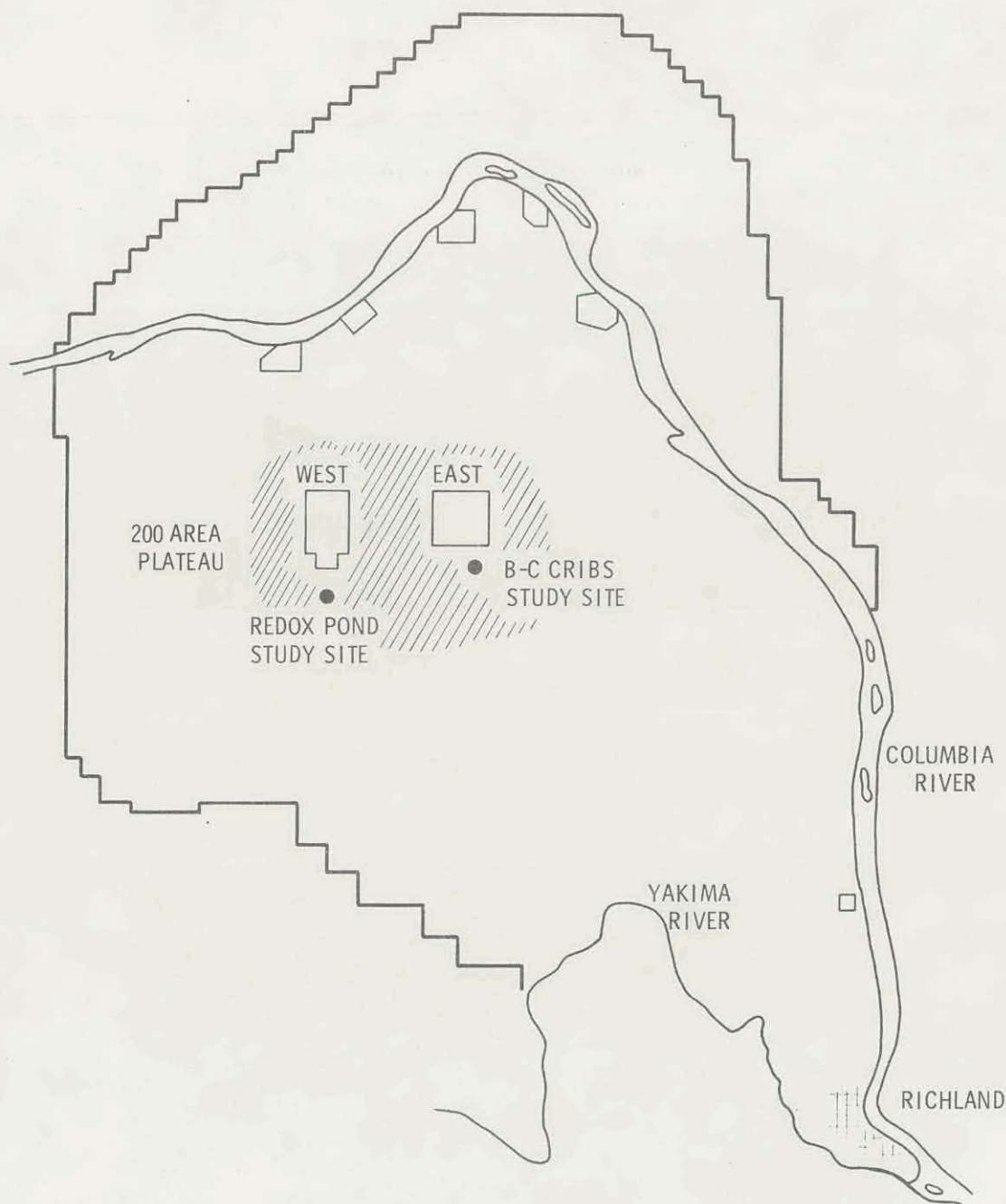


FIGURE 1. Location of Study Areas on 200 Area Plateau

FIGURE 2. B-C Crib Study Site

FIGURE 3. REDOX Pond Study Site. Note the Lower Density of Big Sagebrush at REDOX Compared to B-C Crib.

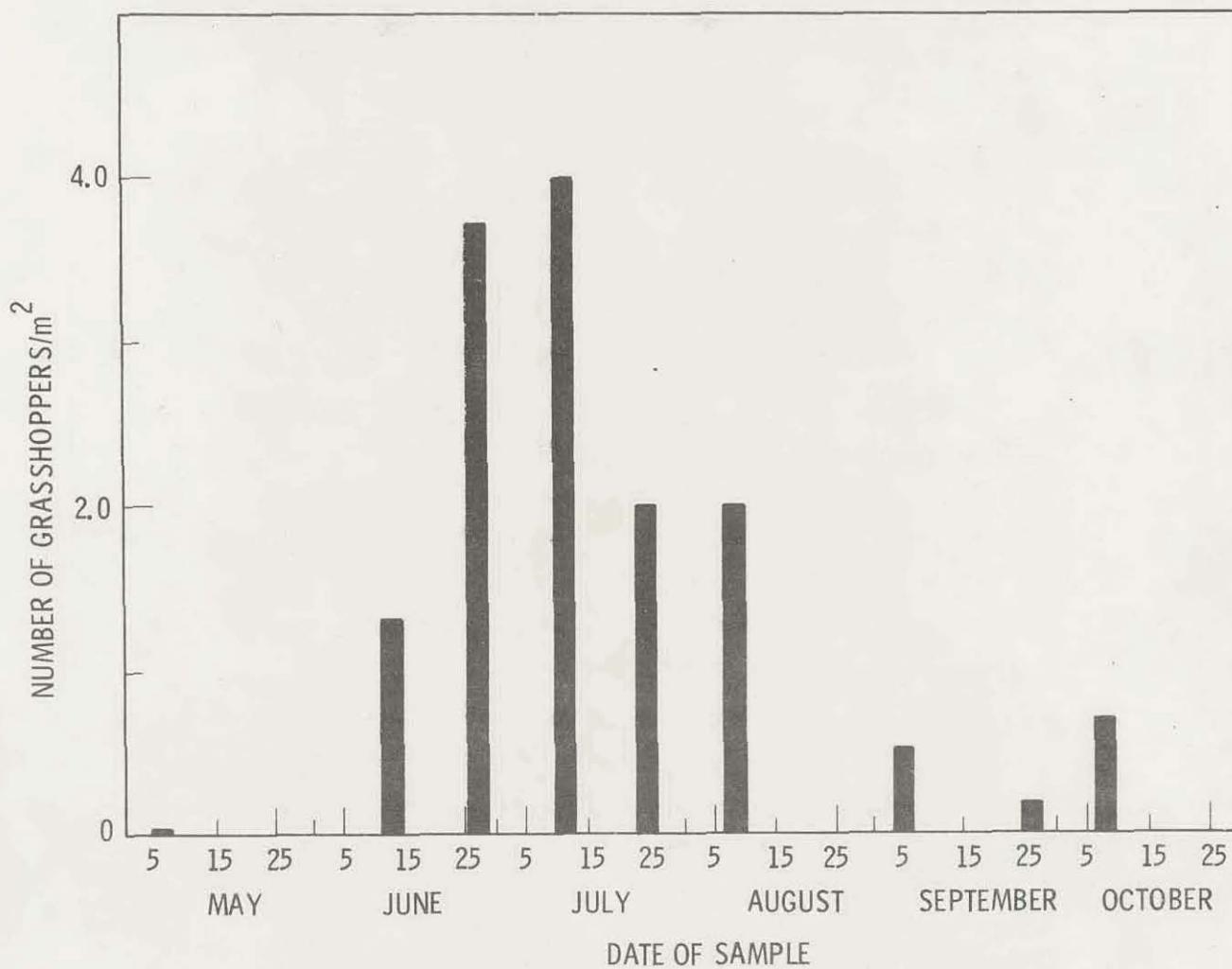


FIGURE 4. Grasshopper Density per m^2 Based on Ocular Estimate

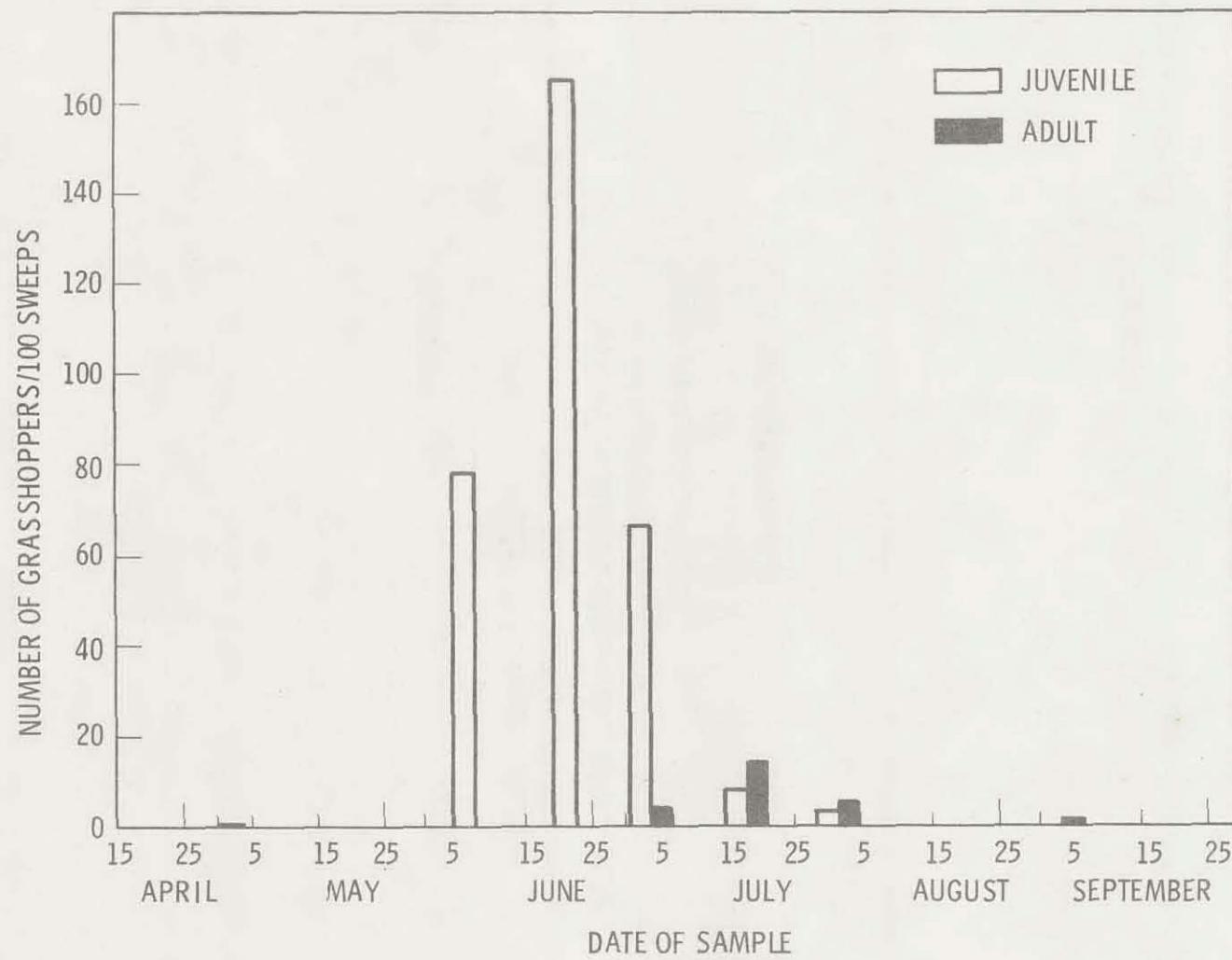


FIGURE 5. Sweep Sample of Green Rabbitbrush, Chrysothamnus viscidiflorus, at B-C Crib Site

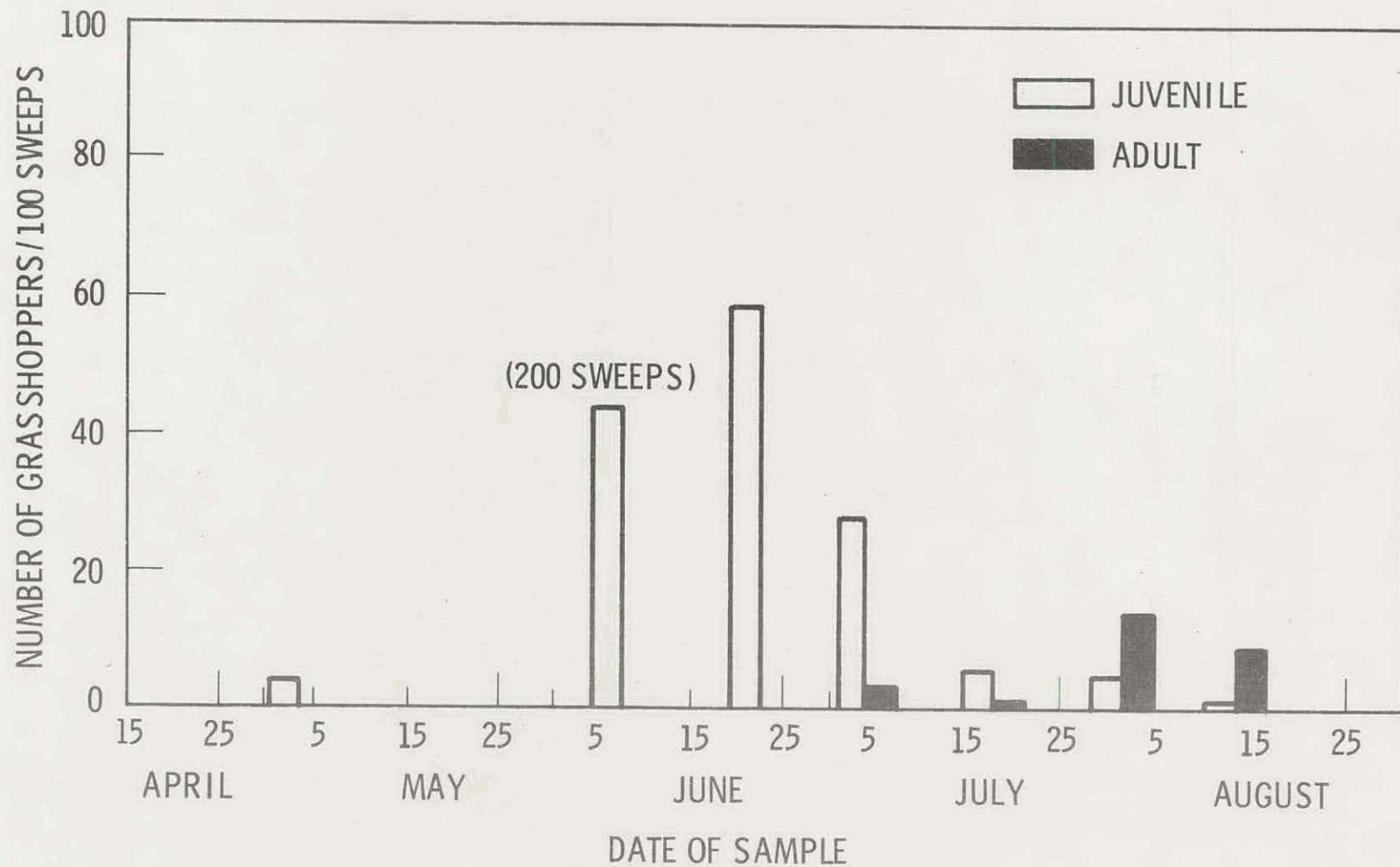


FIGURE 6. Sweep Sample of Big Sagebrush, Artemisia tridentata, at B-C Crib Site

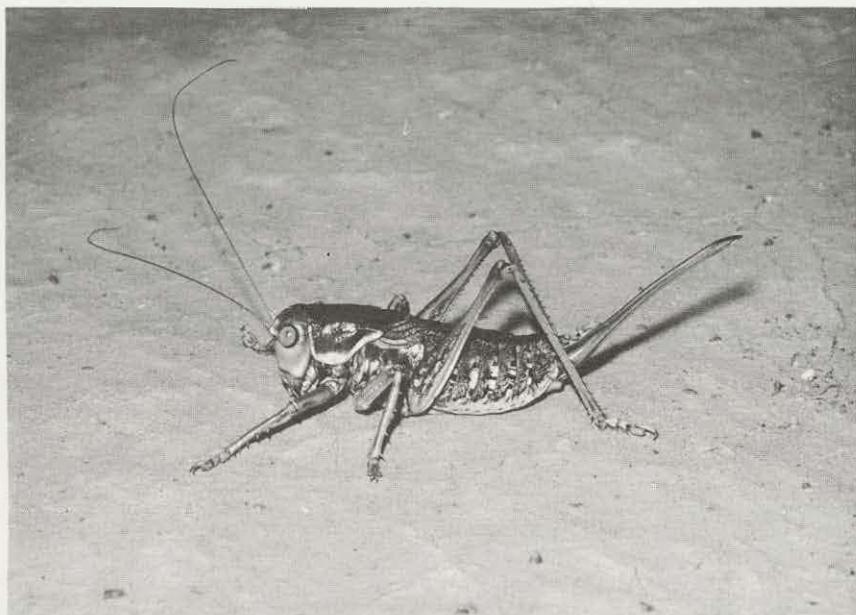


FIGURE 7a. Apote notabilis, Side View

FIGURE 7b. A. notabilis, Front View

FIGURE 8. Trimerotropis caeruleipennis

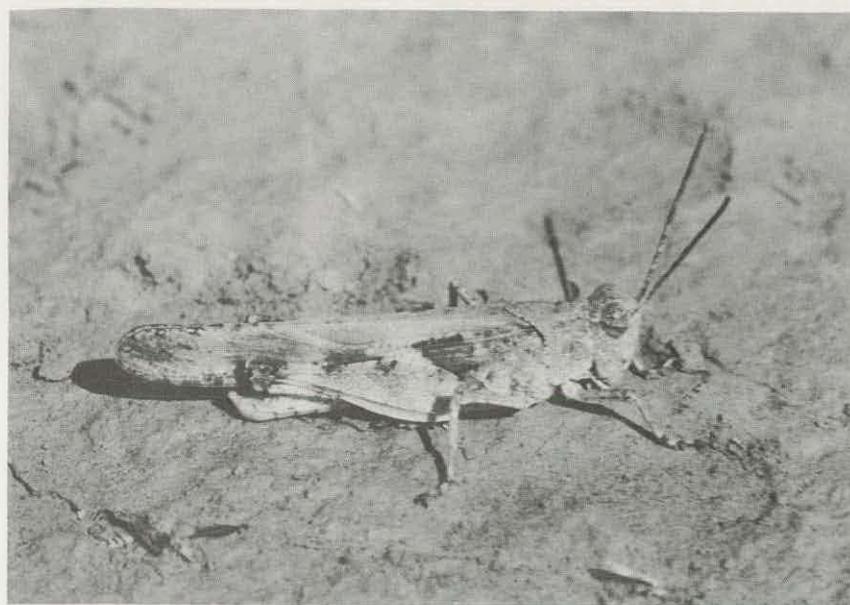


FIGURE 9. Conozoa wallula

FIGURE 10. Melanoplus cinereus

FIGURE 11. Melanoplus yarrowii, Light Form

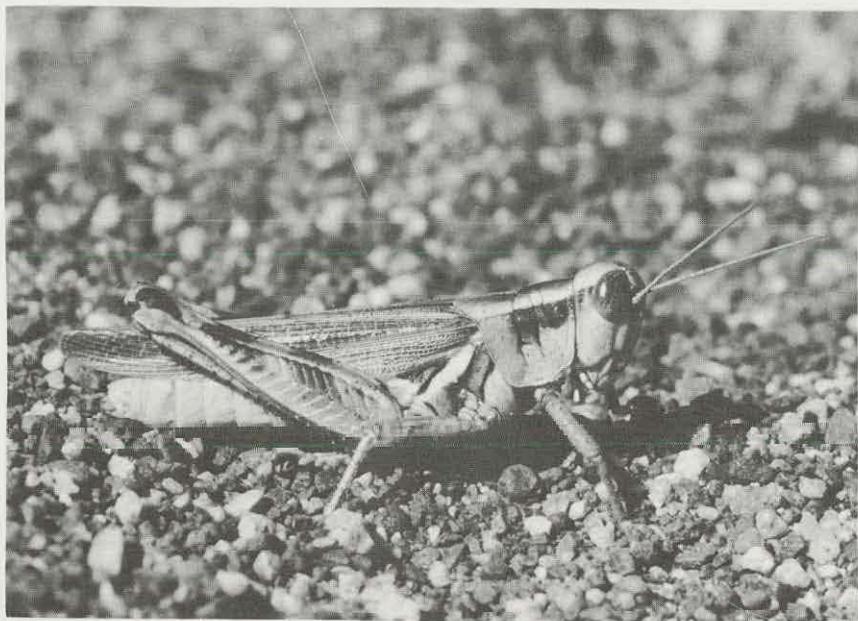


FIGURE 12. Melanoplus yarrowii, Dark Form

FIGURE 13. Oedaleonotus enigma

FIGURE 14. *Ageneotettix deorum*

FIGURE 15. *Hesperotettix viridis*

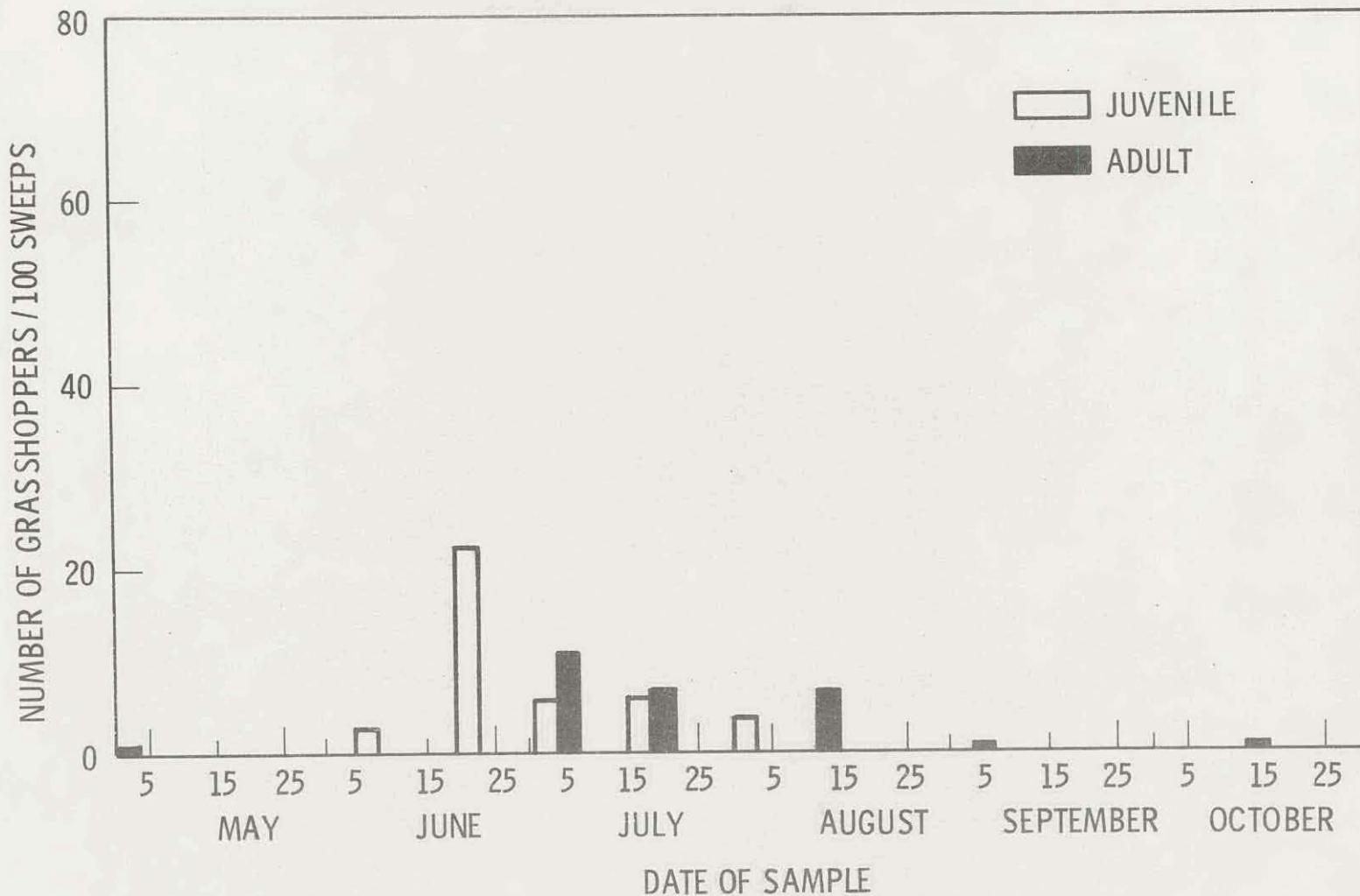


FIGURE 16. Sweep Sample of Big Sagebrush, Artemisia tridentata, at REDOX Pond Site

APPENDIX A

Key Punch Form for Data Analysis

APPENDIX A. Key Punch Form for Data Analysis

INITIALS	MO	DAY	YEAR	SITE	TREAT.	REP.	QUADRAT	CONSUMER	NO. FIELDS READ	INDIV. NO.	SLIDE NO.	1	2	3	4	5	6	7	OVERFLOW
												SP	F	SP	F	SP	F	SP	F
SITE	1																		
01	IBP	2																	
02	WINTERFAT	3																	
03	HOPSGAGE	4																	
04	GREASEWOOD	5																	
05	BITTERBRUSH	6																	
06	REDOX	7																	
07	B-C CRIB	8																	
08	LOWER Sn	9																	
09	UPPER Sn	10																	
10	MANIP. PLCT	11																	
		12																	
		13																	
		14																	
		15																	
		16																	
		17																	
		18																	
		19																	
		20																	
		21																	
		22																	
		23																	
		24																	
		25																	
		26																	
		27																	
		28																	
		29																	
TREATMENT	30																		
01	GRAZED	31																	
02	UNGRAZED	32																	
03	BURNED	33																	
OVERFLOW	34																		
LEAVE BLANK IF THIS	35																		
IS THE ONLY CARD FOR	36																		
THIS RECORD	37																		
1 = NEXT CARD PART	38																		
OF THIS RECORD	39																		
2 = THIS CARD PART	40																		
OF PREVIOUS RECORD																			

APPENDIX B

Computer Program to Calculate Frequency Percentages
for Each Grasshopper Species and Food Item

APPENDIX B. Computer Program to Calculate Frequency Percentages for Each Grasshopper Species and Food Item

```

DDIET,T10,CH50000,10100.          R SAUER 26826      331/300 AREA
ACCOUNT(UN=8CC363,FW=8CC363)
FTN(R=2,OPT=0)
MAP(OFF)
LGO.
REWIND(INPUT)
COPYSBF(INPUT,OUTPUT)
  PROGRAM DIELT(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
  DIMENSION FREC(30),DENS(30),NAME(30),ISPS(7),IDATA(7),DATA(7)
C... PLACE A BLANK CARD AT THE END OF EACH GROUP (CONSUMER SPECIES.
C... DATE OR WHATEVER) TO BE ANALYZED.
C... INITIALIZE COUNTERS AND VARIABLES
85  TOTFO=0;TOTDENS=0;
  NSLIDS=NNNAME=0
  TFLDS=0.
  DO 10 J=1,30
  FREQ(J)=0.
  DENS(J)=1000000000.
C... DENS IS INITIALIZED TO A VALUE THAT WILL BLOW THE OUTPUT FORMAT TO
C... INDICATE WHEN FREQUENCY WAS 100 PERCENT AND DENSITY WAS INDETERMINATE.
  NAME(J)=10H
10  CONTINUE
30  READ(5,100)MDATE,MCONS,IFLDS,(ISPS(J),IDATA(J),J=1,7)
100 FORMAT(3X,A6,6X,A4,13,8X,7(A4,13))
  IF.EOF(5),NE,0) GO TO 90
  IF(MCONS,EO,4H) GO TO 35
  NCONS=MCONS
  NDATE=MDATE
  DO 15 K=1,7
15  DATA(K)=IDATA(K)
  TFLDS=TFLDS+IFLDS
C... COUNT SLIDES
  NSLIDS=NSLIDS+1
C... NNAME IS THE NUMBER OF OBSERVED FOOD SPECIES, WHICH ARE STORED IN NAME
C... LOG IN THE FOOD SPECIES NAMES IF NECESSARY, AND ACCUMULATE OBSERVATIONS,
  DO 20 J=1,7
  IF(ISPS(J),EO,4H) GO TO 25
  DO 40 JK=1,NNAME
  KEEP=JK
  IF(ISPS(J),EO,NAME(JK)) GO TO 50
40  CONTINUE
  NNAME=NNAME+1
  NAME(NNAME)=ISPS(J)
  FREQ(NNAME)=DATA(J)
  GO TO 20
50  FREQ(KEEP)=FREQ(KEEP)+DATA(J)
20  CONTINUE
25  CONTINUE
  GO TO 30
C... SUMMARIZE THE DATA FOR THE CONSUMER SPECIES
35  CONTINUE
  DO 70 J=1,NNAME
  FREQ(J)=FREQ(J)/TFLDS*100.
  IF(FREQ(J),GE,100.) GO TO 70
  DENS(J)= ALOG(-1./FREQ(J)/100.,-1.)
  TOTFO=0;TOTFO=FREQ(J)
  TOTDENS=0;TOTDENS=DENS(J)
70  CONTINUE
  WRITE(6,220)NCONS,NDATE,TFLDS,NSLIDS,NNAME
220 FORMAT(1H1,0 DIET ANALYSIS FOR CONSUMER *,A4,0 ON DATE *,A6,1X,
1*WITH*,F6,0,0 OBSERVED FIELDS,*,I4,0 SLIDES AND*,I3,0 FOOD SPECIES
2*)
  WRITE(6,200)
200 FORMAT(//,0 FOOD SPECIES      FREQUENCY      DENSITY*)
  DO 80 K=1,NNAME
80  WRITE(6,210)NAME(K),FREQ(K),DENS(K)
210 FORMAT(1H ,3X,A4.9X,F10.4,2X,F7.4)
  DO 75 K=1,NNAME
  FREQ(K)=FREQ(K)/TOTFO*100.
  DENS(K)=DENS(K)/TOTDENS*100.
75  CONTINUE
  WRITE(6,230)
230 FORMAT(//,0 FOOD SPECIES      REL FREQ      REL DENS*)
  DO 76 J=1,NNAME
  WRITE(6,210) NAME(J),FREQ(J),DENS(J)
76  CONTINUE
  GO TO 65
90  CONTINUE
END

```

APPENDIX C

Computer Print-Out Listing Plant Species and Their Frequency of Encounter
in the Crop Contents for Each Grasshopper Dissected

Key To Computer Print-Out

Consumer Species are Abbreviated As Follows: AGDE = Agenestettix deorum; HEVI = Hesperotettix viridis; TRCA = Trimerotropis caeruleipennis; COWA = Conoza wallula; TETT = Apote notabilis; MECI = Melanoplus cinereus; MEPA = Melanoplus yarrowii; OEEN = Oedaleonotus enigma. Plant Species Are Abbreviated As Follows: LICH = lichen; STCO = Stipa comata; CHVI = Chrysothamnus viscidiflorus; UNKA = unknown; BRTE = Bromus tectorum; ARTR = Artemisia tridentata; DEPI = Descurainia pinnata; CYTE = Cymopterus terebinthinus; CHNA = Chrysothamnus nauseosus; SAKA = Salsola kali; BACA = Balsamorhiza careyana; AMLY = Amsinckia lycopsoides; SIAL = Sisymbrium altissimum; CRCI = Cryptantha circumscissa; POSE = Poa sandbergii; ACLA = Achillea millefolium; GRSP = Atriplex spinosa; CHUI = Chrysothamnus viscidiflorus; BACH = Balsamorhiza careyana. The last two are typed incorrectly on the cards and must be added to CHVI and BACA, respectively, where the errors were made.

APPENDIX C. Computer Print-Out Listing Plant Species and Their Frequency of Encounter in the Crop Contents for Each Grasshopper Dissected

Initials	Month	Date	Consumer	No. Fields	Read	Site No.	1			2			3			Initials	Month	Date	Consumer	No. Fields	Read	Site No.	1			2				
							S	P	F	S	P	F	S	P	F								S	P	F					
LER 7267407	AGDE	20		453LICH	20											LER 7117407	HEVI	20		554CHUI	9LICH	4								
LER 7267407	AGDE	20		454LICH	20											LER 7117407	HEVI	20		556CHUI	20UNKA	5								
LER 7267407	AGDE	20		455STCG	8LICH	10										LER 7117407	HEVI	20		557CHUI	20									
LER 7267407	AGDE	20		456LICH	20											LER 7117407	HEVI	20		558UNKA	4									
LER 7267407	AGDE	20		458LICH	20											LER 7117407	HEVI	20		559CHUI	20									
LER 7267407	AGDE	20		459CHUI	8LICH	13										LER 7117407	HEVI	20		560CHUI	20LICH	9								
LER 7267407	AGDE	20		460LICH	20											LER 7117407	HEVI	20		562LICH	8									
LER 7267407	AGDE	20		461LICH	8UNKA	10										LER 7117407	HEVI	20		563CHUI	20									
LER 7267407	AGDE	20		466LICH	18											LER 7117407	HEVI	20		565CHUE	20									
LER 7267407	AGDE	20		467UNKA	4											LER 7117407	HEVI	20		566CHUI	20									
LER 7267407	AGDE	20		469LICH	14											LER 7117407	HEVI	20		569CHUI	20									
LER 7267407	AGDE	20		471LICH	20											LER 7117407	HEVI	20		570CHUI	20									
LER 7267407	AGDE	20		472LICH	20											LER 7117407	HEVI	20		571CHUI	20									
LER 7267407	AGDE	20		474BRT	3											LER 7117407	HEVI	20		572CHUI	8									
LER 7267407	AGDE	20		475ART	20											LER 7257407	HEVI	20		573CHUI	20LICH	9								
LER 7267407	AGDE	20		476LICH	20											LER 7257407	HEVI	20		575CHUI	20									
LER 7267407	AGDE	20		477LICH	20											LER 7257407	HEVI	20		577CHUI	20									
LER 7267407	AGDE	20		478BRT	30DEPI	54RTR	4									LER 7257407	HEVI	20		578CHUI	20									
LER 7267407	AGDE	20		479LICH	20											LER 7257407	HEVI	20		579CHUI	20									
LER 7267407	AGDE	20		480LICH	20											LER 7257407	HEVI	20		582CHUI	20LICH	19								
LER 7267407	AGDE	20		481CYTE	5											LER 7257407	HEVI	20		584CHUI	20UNKA	3								
LER 7267407	AGDE	20		482LICH	12											LER 7257407	HEVI	20		586CHUI	20									
LER 7267407	AGDE	20		485CHNA	15											LER 7257407	HEVI	20		587CHUI	20LICH	17								
LER 7267407	AGDE	20		486STCG	8											LER 7257407	HEVI	20		588CHUI	20									
LER 7267407	AGDE	20		487LICH	4											LER 7257407	HEVI	20		589CHUI	20									
LER 6 87407	AGDE	20		489LICH	6											LER 7257407	HEVI	20		590CHUI	20									
LER 6 87407	AGDE	20		490LICH	4											LER 7257407	HEVI	20		591CHUI	20UNKA	1								
LER 6 87407	AGDE	20		491LICH	10											LER 7257407	HEVI	20		592CHUI	20									
LER 6 87407	AGDE	20		492SAKA	4LICH	10										LER 7257407	HEVI	20		595CHUI	20									
LER 6 87407	AGDE	20		493LICH	20											LER 7257407	HEVI	20		596CHUI	20									
LER 6 87407	AGDE	20		495LICH	20											LER 7257407	HEVI	20		598BACA	18									
LER 6 87407	AGDE	20		496LICH	20											LER 6 87407	TRCA	20		501ART	20LICH	12								
LER 6 87407	AGDE	20		497LICH	12											LER 6 87407	TRCA	20		502BACA	20LICH	20								
LER 6 87407	AGDE	20		498LICH	7											LER 6 87407	TRCA	20		503BACA	20									
LER 6 87407	AGDE	20		500LICH	20											LER 6 87407	TRCA	20		504BACA	18									
LER 6 87407	AGDE	20		501BRT	9LICH	10										LER 6 87407	TRCA	20		505BACA	8LICH	9								
LER 6277407	HEVI	20		597LICH	9											LER 6 87407	TRCA	20		506STCG	8LICH	9								
LER 6277407	HEVI	20		598CHUI	20											LER 6 87407	TRCA	20		507DEPI	20LICH	12								
LER 6277407	HEVI	20		599LICH	20											LER 6 87407	TRCA	20		508BACA	20LICH	20								
LER 6277407	HEVI	20		602LICH	20											LER 6 87407	TRCA	20		509BACA	20									
LER 6277407	HEVI	20		603LICH	20											LER 6 87407	TRCA	20		510BACA	20									
LER 7117407	HEVI	20		531LICH	16SAKA	10CHUI	14									LER 6 87407	TRCA	20		511ART	20									
LER 7117407	HEVI	20		533CHUI	14LICH	10										LER 6 87407	TRCA	20		512RACA	14									
LER 7117407	HEVI	20		534CHUI	20											LER 6 87407	TRCA	20		514LICH	20									
LER 7117407	HEVI	20		535CHUI	14LICH	3										LER 6 87407	TRCA	20		515AMLY	20LICH	18								
LER 7117407	HEVI	20		537CHUI	20											LER 6 87407	TRCA	20		517DEPI	20									
LER 7117407	HEVI	20		538CHUI	20											LER 6 87407	TRCA	20		518UNKA	3									
LER 7117407	HEVI	20		539LICH	5											LER 6 87407	TRCA	20		519STCO	6									
LER 7117407	HEVI	20		540CHUI	9											LER 6 87407	TRCA	20		520LICH	20									
LER 7117407	HEVI	20		541CHUI	10LICH	4										LER 6 87407	TRCA	20		523LICH	20									
LER 7117407	HEVI	20		542LICH	16											LER 6 87407	TRCA	20		524LICH	20									
LER 7117407	HEVI	20		545CHUI	20											LER 6 87407	TRCA	20		528BACA	12LICH	10								
LER 7117407	HEVI	20		546CHUI	16LICH	12										LER 6 87407	TRCA	20		534CHUI	18									
LER 7117407	HEVI	20		549CHUI	11UNKA	2										LER 6 87407	TRCA	20		534CHUI	18									
LER 7117407	HEVI	20		550CHUI	8LICH	3										LER 6 87407	TRCA	20		536BACA	3									
LER 7117407	HEVI	20		551CHUI	20											LER 6 87407	TRCA	20		538BACA	6									
LER 7117407	HEVI	20		552CHUI	20LICH	13										LER 6 87407	TRCA	20		539BACA	4									

APPENDIX C. (Continued 2)

LER 7257407	COWA 20	440BACA 1LICH 2ARTR 3	LER 7257407	TETT 20	640CYTE 20CHUI 20SIAL 13LICH 8
LER 7257407	COWA 20	442BACA 20	LER 7257407	TETT 20	642CYTE 14LICH 16SIAL 19ARTR 9
LER 7257407	COWA 20	443BACA 20	LER 7257407	TETT 20	644CYTE 14CHUI 18UNKA 6
LER 7257407	COWA 20	444BACA 20	LER 7257407	TETT 20	645CYTE 20CHUI 18ARTR 8
LER 7257407	COWA 20	447BACA 20	LER 7257407	TETT 20	646ARTR 20CHUI 14LICH 9UNKA 2
LER 7257407	COWA 20	450BACA 20	LER 7257407	TETT 20	647CYTE 20CHUI 20LICH 8
LER 7257407	COWA 20	451BACA 20	LER 7257407	TETT 20	648CYTE 20SIAL 20
LER 7257407	COWA 20	452LICH 20	LER 7257407	TETT 20	649CYTE 20CHUI 14
LER 8 67407	COWA 20	427BACA 5	LER 7257407	TETT 20	650ARTR 20LICH 20UNKA 5
LER 8 67407	COWA 20	677BACA 20	LER 7257407	TETT 20	651CYTE 14ARTR 18STCO 3
LER 8 67407	COWA 20	679BACA 8	LER 7257407	TETT 20	652CYTE 20ARTR 19LICH 13
LER 8 67407	COWA 20	680BACA 20	LER 7257407	TETT 20	653CYTE 20CHUI 20LICH 15SIAL 10
LER 8 67407	COWA 20	681BACA 5	LER 7257407	TETT 20	654CYTE 20CHUI 20STCO 6
LER 8 67407	COWA 20	683BACA 6	LER 7257407	TETT 20	655CYTE 20CHUI 20LICH 11
LER 8 67407	COWA 20	684LICH 20	LER 7257407	TETT 20	657CYTE 17CHUI 13ARTR 8LICH 9
LER 8 67407	COWA 20	685BACA 20	LER 7257407	TETT 20	658CYTE 20CHUI 18DEPI 10
LER 8 67407	COWA 20	686STCO 18LICH 14	LER 7257407	TETT 20	659CYTE 20CHUI 20
LER 8 67407	COWA 20	687BACA 10	LER 7257407	TETT 20	660ARTR 14CYTE 12CHUI 9
LER 8 67407	COWA 20	688BACA 20	LER 7257407	TETT 20	661ARTR 8LICH 20SIAL 13
LER 8 67407	COWA 20	691LICH 20STCO 9	LER 7257407	TETT 20	662CYTE 18LICH 10
LER 8 67407	COWA 20	693BACA 2	LER 7257407	TETT 20	634CYTE 20
LER 8 67407	COWA 20	694BACA 20	LER 7257407	TETT 20	636CYTE 20CHUI 20
LER 8 67407	COWA 20	695RACA 2ULICH 8	LER 8 67407	TETT 20	663ARTR 20LICH 20
LER 8 67407	COWA 20	696BACA 20	LER 8 67407	TETT 20	664ARTR 20CYTE 20
LER 8 67407	COWA 20	697BACA 20	LER 8 67407	TETT 20	665ARTR 12CYTE 9CHUI 11
LER 8 67407	COWA 20	698BACA 20	LER 8 67407	TETT 20	666DEPI 20LICH 20
LER 8 67407	COWA 20	699BACA 20	LER 8 67407	TETT 20	667ARTR 10CHUI 20BACA 14
LER 8 67407	COWA 20	701DEPI 20	LER 8 67407	TETT 20	668CYTE 20
LER 8 67407	COWA 20	702BACA 20	LER 8 67407	TETT 20	670CYTE 9UNKA 2
LER 8 67407	TETT 20	608LICH 20CHUI 20ARTR 13SIAL 9	LER 8 67407	TETT 20	671CYTE 8ARTR 20
LER 7117407	TETT 20	609SIAL 20LICH 10ARTR 4	LER 8 67407	TETT 20	672ARTR 16LICH 8
LER 7117407	TETT 20	610CYTE 20SIAL 16LICH 15ARTR 10	LER 8 67407	TETT 20	673CYTE 13CHUI 15ARTR 6SIAL 4
LER 7117407	TETT 20	511ARTR 10	LER 8 67407	TETT 20	675LICH 20
LER 7117407	TETT 20	612CYTE 20SIAL 13LICH 10UNKA 4	LER 6277407	MECI 20	72CHUI 20
LER 7117407	TETT 20	613CYTE 20SIAL 18ARTR 9	LER 6277407	MECI 20	73CHUI 14LICH 20CYTE 7
LER 7117407	TETT 20	614CYTE 20ARTR 20LICH 8	LER 6277407	MECI 20	74CHUI 20LICH 6
LER 7117407	TETT 20	615CYTE 20LICH 12DEPI 10ARTR 6	LER 6277407	MECI 20	75CHUI 20LICH 12
LER 7117407	TETT 20	616CYTE 20LICH 20ARTR 11SIAL 9	LER 6277407	MECI 20	76CHUI 3LICH 4
LER 7117407	TETT 20	617CYTE 20SIAL 12ARTR 14	LER 6277407	MECI 20	77CHUI 16LICH 11
LER 7117407	TETT 20	618CYTE 20SIAL 18ARTR 7LICH 13	LER 6277407	MECI 20	78ARTR 20LICH 9
LER 7117407	TETT 20	619CYTE 16SIAL 16DEPI 9ARTR 5	LER 6277407	MECI 20	
LER 7117407	TETT 20	620CYTE 18SIAL 16DEPI 12ARTR 8	LER 7117407	MECI 20	164ARTR 20LICH 14
LER 7117407	TETT 20	621CYTE 14ARTR 11LICH 10RCRI 9	LER 7117407	MECI 20	165ARTR 20LICH 10
LER 7117407	TETT 20	623CYTE 20SIAL 20ARTR 13UNKA 9	LER 7117407	MECI 20	168ARTR 20LICH 20
LER 7117407	TETT 20	624CYTE 20SIAL 19ARTR 16	LER 7117407	MECI 20	170ARTR 20
LER 7117407	TETT 20	625ARTR 20LICH 14	LER 7117407	MECI 20	172ARTR 20LICH 18
LER 7117407	TETT 20	626CYTE 20SIAL 12LICH 9ARTR 10	LER 7117407	MECI 9	173ARTR 9
LER 7117407	TETT 20	627CHUI 15ARTR 9SIAL 6CYTE 13	LER 7117407	MECI 20	175ARTR 20
LER 7117407	TETT 20	628ARTR 9CYTE 18	LER 7117407	MECI 20	176ARTR 20
LER 7117407	TETT 20	629CYTE 20DEPI 9ARTR 8SIAL 12	LER 7117407	MECI 12	177ARTR 12
LER 7117407	TETT 20	630CYTE 12SIAL 7UNKA 6	LER 7117407	MECI 20	178ARTR 20
LER 7257407	TETT 20	631LICH 4CYTE 2	LER 7117407	MECI 20	179ARTR 20
LER 7257407	TETT 20	632CYTE 20SIAL 18LICH 9	LER 7117407	MECI 20	180ARTR 20
LER 7257407	TETT 20	633CYTE 20LICH 10SIAL 20	LER 7117407	MECI 20	181ARTR 20
LER 7257407	TETT 20	635CHUI 13CYTE 17UNKA 6	LER 7117407	MECI 7	182ARTR 7
LER 7257407	TETT 20	637CYTE 20CHUI 16	LER 7117407	MECI 20	183ARTR 20
LER 7257407	TETT 20	638CYTE 20CHUI 20UNKA 4	LER 7117407	MECI 20	1CYTE 13LICH 16DEPI 19ACLA 15SIAL 7
			LER 7117407	MECI 20	2CHNA 10ARTR 9DEPI 8LICH 4SIAL 16

APPENDIX C. (Continued 3)

LER 7117407	MECI 20	3ARTR 20LICH 15ACLA 3	LER 7267407	MECI 20	86ARTR 20
LER 7117407	MECI 20	4ARTR 19SIAL 4LICH 3	LER 7267407	MECI 5	87CHUI 5
LER 7117407	MECI 20	5ARTR 19SIAL 4ACLA 4CYTE 3	LER 7267407	MECI 20	88ARTR 20LICH 7
LER 7117407	MECI 20	6ARTR 20	LER 7267407	MECI 20	90ARTR 20CYTE 9LICH 14
LER 7117407	MECI 20	7ARTR 19LICH 9SIAL 6	LER 7267407	MECI 20	91ARTR 20LICH 10CYTE 8
LER 7117407	MECI 20	8ARTR 20SIAL 6	LER 7267407	MECI 20	93ARTR 20ACLA 8LICH 15CYTE 4
LER 7117407	MECI 20	9ARTR 20LICH 11SIAL 6	LER 7267407	MECI 5	94ARTR 5
LER 7117407	MECI 20	10ARTR 20LICH 6	LER 7267407	MECI 20	95ARTR 20LICH 10CYTE 12ACLA 9
LER 7117407	MECI 20	11ARTR 20	LER 7267407	MECI 20	97ARTR 20LICH 20
LER 7117407	MECI 20	12ARTR 20LICH 12	LER 7267407	MECI 20	98ARTR 20LICH 20
LER 7117407	MECI 20	13ARTR 20LICH 8SIAL 10	LER 7267407	MECI 20	99ARTR 20
LER 7117407	MECI 8	15ARTR 8			
LER 7117407	MECI 20	27ARTR 20SIAL 14LICH 9	LER 5 67407	MECI 20	116CYTE 20
LER 7117407	MECI 4	28ARTR 4	LER 8 67407	MECI 20	184ARTR 20
LER 7117407	MECI 20	29ARTR 20	LER 8 67407	MECI 20	185ACCA 16ACLA 20
LER 7117407	MECI 20	30ARTR 20SIAL 9	LER 8 67407	MECI 20	186ARTR 20
LER 7117407	MECI 20	31ARTR 19SIAL 11LICH 8	LER 8 67407	MECI 20	187ARTR 20
LER 7117407	MECI 20	32ARTR 19SIAL 5LICH 9	LER 8 67407	MECI 20	188ARTR 20
LER 7117407	MECI 20	34ARTR 20	LER 8 67407	MECI 20	189ARTR 20DEPI 7
LER 7117407	MECI 20	35ARTR 20UNK 3	LER 8 67407	MECI 20	190ARTR 20
LER 7117407	MECI 20	39ARTR 20SIAL 4LICH 6	LER 8 67407	MECI 20	191ARTR 20
LER 7117407	MECI 20	41ARTR 20	LER 8 67407	MECI 20	192ARTR 20
LER 7117407	MECI 20	42ARTR 20LICH 12	LER 8 67407	MECI 20	193ARTR 20
LER 7117407	MECI 20	43ARTR 20	LER 8 67407	MECI 20	194CYTE 20
LER 7117407	MECI 20		LER 8 67407	MECI 20	195ARTR 20
LER 7257407	MECI 20	47ARTR 20LICH 9	LER 8 67407	MECI 20	196ARTR 20
LER 7257407	MECI 20	48ARTR 20LICH 13	LER 8 67407	MECI 20	17ARTR 20SIAL 6LICH 9
LER 7257407	MECI 20	49ARTR 20LICH 16	LER 8 67407	MECI 20	18ARTR 20
LER 7257407	MECI 20	50ARTR 20LICH 11	LER 8 67407	MECI 20	19ARTR 20LICH 7
LER 7257407	MECI 20	51ARTR 20SIAL 7LICH 4	LER 8 67407	MECI 20	20ARTR 18LICH 8SIAL 10UNK 3
LER 7257407	MECI 20	52ARTR 20	LER 8 67407	MECI 20	21ARTR 17GRSP 5SIAL 6
LER 7257407	MECI 20	53ARTR 20LICH 14	LER 8 67407	MECI 20	22ARTR 20
LER 7257407	MECI 20	54ARTR 20	LER 8 67407	MECI 20	23ARTR 20LICH 10
LER 7257407	MECI 20	55ARTR 20SIAL 9LICH 8	LER 8 67407	MECI 20	24ARTR 20LICH 6SIAL 8
LER 7257407	MECI 20	56ARTR 20SIAL 10	LER 8 67407	MECI 20	25ARTR 18LICH 9SIAL 12
LER 7257407	MECI 20	57ARTR 20CYTE 3	LER 8 67407	MECI 20	26ARTR 20
LER 7257407	MECI 20	58ARTR 20	LER 8 67407	MECI 20	35ARTR 20SIAL 8
LER 7257407	MECI 20	59ARTR 20	LER 8 67407	MECI 20	36ARTR 20SIAL 3LICH 6
LER 7257407	MECI 20	60ARTR 20SIAL 5LICH 3	LER 8 67407	MECI 20	40ARTR 20LICH 10
LER 7257407	MECI 20	61ARTR 20	LER 8 67407	MECI 20	45ARTR 20LICH 20
LER 7257407	MECI 20	62ARTR 14CHUI 20	LER 8 67407	MECI 20	46ARTR 20LICH 19
LER 7257407	MECI 20	63ACLA 6CYTE 20CHVI 5	LER 8 67407	MECI 20	44ARTR 20
LER 7257407	MECI 20	64ARTR 20CYTE 13			
LER 7257407	MECI 20	65ARTR 20LICH 20CYTE 7	LER 6277407	MEPA 20	607CHUI 20
LER 7257407	MECI 20	66ARTR 20	LER 6277407	MEPA 20	214CHUI 20
LER 7257407	MECI 20	67CHUI 20LICH 9	LER 6277407	MEPA 20	215LICH 20SAKA 20
LER 7257407	MECI 20	68ARTR 20LICH 4CYTE 6	LER 6277407	MEPA 20	216CYTE 20UNK 8
LER 7257407	MECI 20	69CHUI 20CYTE 15ACLA 10	LER 6277407	MEPA 20	218LICH 20
LER 7257407	MECI 20	70CHUI 20CYTE 14ACLA 6	LER 6277407	MEPA 20	219LICH 20
LER 7257407	MECI 20	71ARTR 19CHUI 6	LER 6277407	MEPA 10	224CHUI 10
LER 7267407	MECI 20	166ARTR 20LICH 13	LER 6277407	MEPA 20	225SIAL 13CYTE 8
LER 7267407	MECI 20	167ARTR 20	LER 6277407	MEPA 20	248ACCA 20ARTR 18
LER 7267407	MECI 20	174ARTR 20	LER 6277407	MEPA 20	274DEPI 20LICH 20
LER 7267407	MECI 20	79ARTR 20CYTE 9	LER 6277407	MEPA 8	275POSE 8CYTE 4
LER 7267407	MECI 20	80ARTR 20	LER 6277407	MEPA 20	276ACCA 20
LER 7267407	MECI 12	81ARTR 12	LER 6277407	MEPA 20	277LICH 20
LER 7267407	MECI 20	82ARTR 20LICH 20	LER 6277407	MEPA 20	278ACCA 20
LER 7267407	MECI 20	83ARTR 20LICH 13	LER 6277407	MEPA 20	280LICH 16CYTE 9SIAL 6
LER 7267407	MECI 20	84ARTR 20LICH 10	LER 6277407	MEPA 20	292CHUI 20
LER 7267407	MECI 10	85ARTR 10CYTE 5	LER 6277407	MEPA 20	293DEPI 20

APPENDIX C. (Continued 4)

LER 6277407	MEPA 20	294CYTE 13SIAL 11	LER 7257407	MEPA 20	149ARTR 20
LER 6277407	MEPA 20	296LICH 20	LER 7257407	MEPA 20	154CYTE 20
LER 6277407	MEPA 20	297RACA 20	LER 7257407	MEPA 20	240CYTE 20
LER 6277407	MEPA 20	298CYTE 12CHUI 10	LER 7257407	MEPA 20	241CYTE 20
LER 6277407	MEPA 20	300CHUI 14LICH 10	LER 7257407	MEPA 20	242CYTE 14LICH 9
LER 6277407	MEPA 20	302LICH 16	LER 7257407	MEPA 20	243CYTE 20
LER 6277407	MEPA 20	303LICH 20	LER 7257407	MEPA 10	246CHUI 10
LER 6277407	MEPA 20	304ARTR 20	LER 7257407	MEPA 20	247DEPI 20LICH 20
LER 6277407	MEPA 20	305LICH 20SIAL 15	LER 7257407	MEPA 13	249CHUI 13
LER 6277407	MEPA 20	308LICH 20	LER 7257407	MEPA 20	10NCYTE 20
LER 6277407	MEPA 20	145SIAL 20	LER 7257407	MEPA 9	101SIAL 9CYTE 4
LER 6277407	MEPA 20	155LICH 20AMLY 4	LER 7257407	MEPA 20	102CYTE 20
LER 6277407	MEPA 20	156DEPI 14URKA 15LICH 10	LER 7257407	MEPA 20	103CYTE 20AMLY 2
LER 6277407	MEPA 20	157RACA 20	LER 7257407	MEPA 20	104CYTE 20LICH 13
LER 6277407	MEPA 20	158RACA 20	LER 7257407	MEPA 20	105CYTE 19LICH 10
LER 6277407	MEPA 20	159RACA 20	LER 7257407	MEPA 20	106CYTE 20
LER 6277407	MEPA 10	160POSE 10	LER 7257407	MEPA 20	107RACA 20
LER 7117407	MEPA 14	261LICH 14	LER 7257407	MEPA 20	109CYTE 20
LER 7117407	MEPA 4	262RACA 4LICH 4	LER 7257407	MEPA 12	110CYTE 18LICH 3
LER 7117407	MEPA 20	263RACA 20LICH 14	LER 7257407	MEPA 20	111CYTE 12
LER 7117407	MEPA 20	264POSE 20	LER 7257407	MEPA 20	112ARTR 8CYTE 14BACA 3
LER 7117407	MEPA 20	266CHNA 20LICH 10	LER 7257407	MEPA 20	113CYTE 20LICH 19
LER 7117407	MEPA 20	268LICH 20URKA 9	LER 7257407	MEPA 15	114RACA 15
LER 7117407	MEPA 20	269ARTR 20LICH 20	LER 7257407	MEPA 20	115CYTE 20
LER 7117407	MEPA 20	270RACA 20	LER 6 67407	MEPA 20	250DEPI 20LICH 20
LER 7117407	MEPA 10	273LICH 10ARTR 7	LER 6 67407	MEPA 20	251LICH 20
LER 7117407	MEPA 20	332RACA 20LICH 12	LER 6 67407	MEPA 20	252RACA 20
LER 7117407	MEPA 16	333RACA 12SIAL 4	LER 6 67407	MEPA 20	253LICH 20SIAL 9
LER 7117407	MEPA 20	334RACA 20POSE 9	LER 6 67407	MEPA 15	254RACA 15
LER 7117407	MEPA 10	335SAKA 10	LER 6 67407	MEPA 20	255RACA 10LICH 14
LER 7117407	MEPA 20	336DEPI 20	LER 6 67407	MEPA 20	256LICH 14CYTE 8
LER 7117407	MEPA 20	339RACA 20	LER 6 67407	MEPA 20	257LICH 16CHUI 4
LER 7117407	MEPA 17	340RACA 17	LER 6 67407	MEPA 20	258APTR 20LICH 20
LER 7117407	MEPA 20	342RACA 20	LER 6 67407	MEPA 13	259DEPI 13
LER 7117407	MEPA 6	343RACA 6	LER 6 67407	MEPA 20	265APTR 10LICH 16
LER 7117407	MEPA 20	351CYTE 20LICH 20	LER 6 67407	MEPA 8	117LICH 8
LER 7117407	MEPA 10	353POSE 10	LER 6 67407	MEPA 20	118LICH 20SIAL 4
LER 7257407	MEPA 20	199RACA 20	LER 6 67407	MEPA 20	119CYTE 6LICH 12
LER 7257407	MEPA 20	200RCPI 20	LER 6 67407	MEPA 15	120CYTE 15
LER 7257407	MEPA 20	201BACA 20	LER 6 67407	MEPA 20	121RACA 20
LER 7257407	MEPA 20	2025ACA 20DEPI 10	LER 6 67407	MEPA 20	122RACA 20
LER 7257407	MEPA 20	203ARTR 14POSE 20	LER 6 67407	MEPA 20	123SACA 20
LER 7257407	MEPA 20	204APTR 10LICH 12	LER 6 67407	MEPA 20	124BACA 20
LER 7257407	MEPA 20	206ARTR 20	LER 6 67407	MEPA 12	125BACA 20
LER 7257407	MEPA 20	207ARTR 20	LER 6 67407	MEPA 14	126BACA 12
LER 7257407	MEPA 20	211ARTR 20ACLA 9	LER 6 67407	MEPA 16	127BACA 14
LER 7257407	MEPA 20	212BACA 20	LER 6 67407	MEPA 14	128LICH 15
LER 7257407	MEPA 20	281BACA 5	LER 6 67407	MEPA 20	129CYTE 19ACLA 4
LER 7257407	MEPA 20	282APTR 20	LER 6 67407	MEPA 20	130RACA 20
LER 7257407	MEPA 4	283DEPI 4	LER 6 67407	MEPA 20	131RACA 20DEPI 6
LER 7257407	MEPA 20	285LICH 20	LER 6 67407	MEPA 20	238CYTE 18CHUI 13
LER 7257407	MEPA 20	286ARTR 20LICH 16	LER 6 67407	MEPA 20	227DEPI 20LICH 11
LER 7257407	MEPA 20	287ARTR 20	LER 6 67407	MEPA 20	228RACA 20
LER 7257407	MEPA 20	288ARTR 20LICH 20	LER 6 67407	MEPA 20	229DEPI 20LICH 20
LER 7257407	MEPA 20	290ARTR 20LICH 18	LER 6 67407	MEPA 20	231URKA 20
LER 7257407	MEPA 20	291LICH 20	LER 6 67407	MEPA 20	232DEPI 14BACA 9
LER 7257407	MEPA 20	147CHNA 20	LER 6 67407	MEPA 20	233LICH 20URTR 10
LER 7257407	MEPA 20	148ARTR 20	LER 6 67407	MEPA 20	234LICH 20

APPENDIX C. (Continued 5)

LER 8117407	MEPA 20	236ARTR 20	LER 7117407	OEEN 20	339ARTR 12
LER 8117407	MEPA 20	237CHUI 20CYTE 4	LER 7117407	OEEN 20	341BACA 20
LER 8117407	MEPA 20	239BACA 20ARTR 14	LER 7117407	OEEN 20	342ARTR 20
LER 6277407	OEEN 20	371ARTR 20	LER 7117407	OEEN 20	343ARTR 20
LER 6277407	OEEN 20	372DEPI 20	LER 7117407	OEEN 20	344LICH 20
LER 6277407	OEEN 20	374ARTR 20	LER 7117407	OEEN 20	345ARTR 20
LER 6277407	OEEN 20	375ARTR 20LICH 20	LER 7117407	OEEN 20	346ARTR 20
LER 6277407	OEEN 20	376ARTR 20	LER 7257407	OEEN 20	647LICH 20
LER 6277407	OEEN 20	376ARTR 20	LER 7257407	OEEN 20	346ARTR 20LICH 18
LER 6277407	OEEN 20	377ARTR 20	LER 7257407	OEEN 20	348ARTR 20
LER 6277407	OEEN 20	378ARTR 20	LER 7257407	OEEN 20	349ARTR 20
LER 6277407	OEEN 20	379LICH 20	LER 7257407	OEEN 20	350DEPI 20
LER 6277407	OEEN 20	380LICH 20	LER 7257407	OEEN 20	351LICH 20
LER 6277407	OEEN 20	381LICH 20	LER 7257407	OEEN 20	352ARTR 20LICH 12
LER 6277407	OEEN 20	382BACA 20	LER 7257407	OEEN 20	353ARTR 20
LER 6277407	OEEN 20	383GRSP 20LICH 20	LER 7257407	OEEN 20	354ARTR 20LICH 16
LER 6277407	OEEN 20	384ARTR 20	LER 7257407	OEEN 20	355ARTR 20
LER 6277407	OEEN 20	385LICH 20	LER 7257407	OEEN 20	356ARTR 20
LER 6277407	OEEN 20	386ARTR 20LICH 20	LER 7257407	OEEN 20	357ARTR 20LICH 20
LER 6277407	OEEN 20	387ARTR 20	LER 7257407	OEEN 20	358CHUI 20
LER 6277407	OEEN 20	388ARTR 20	LER 7257407	OEEN 20	359ARTR 20
LER 6277407	OEEN 20	389LICH 20	LER 7257407	OEEN 20	360LICH 20
LER 6277407	OEEN 20	390CRC1 20LICH 10	LER 7257407	OEEN 20	361ARTR 20
LER 6277407	OEEN 20	391ARTR 20	LER 7257407	OEEN 20	362ARTR 20LICH 20
LER 6277407	OEEN 20	392LICH 20UNKA 10	LER 7257407	OEEN 20	363RACA 20
LER 6277407	OEEN 20	393ARTR 20	LER 7257407	OEEN 20	364LICH 20
LER 6277407	OEEN 20	394ARTR 20LICH 20	LER 7257407	OEEN 20	365ARTR 20
LER 6277407	OEEN 20	395AHYL 20SIAL 15	LER 7257407	OEEN 20	366LICH 20
LER 6277407	OEEN 20	396ARTR 20	LER 7257407	OEEN 20	367ARTR 20
LER 6277407	OEEN 20	397LICH 20	LER 7257407	OEEN 20	368APTR 20
LER 6277407	OEEN 20	398SIAL 20LICH 20	LER 7257407	OEEN 20	369LICH 20
LER 6277407	OEEN 20	400DEPI 20	LER 7257407	OEEN 20	370ARTR 20LICH 18
LER 6277407	OEEN 20	401DEPI 20			
LER 6277407	OEEN 20	402ARTR 20	LER 8 87407	OEEN 20	325LICH 20
LER 6277407	OEEN 20	404ARTR 20	LER 8 87407	OEEN 20	310SIAL 13CYTE 10
LER 6277407	OEEN 20	405DEPI 20	LER 8 87407	CEEN 20	311ARTR 20LICH 9
LER 6277407	OEEN 20	405SIAL 12LICH 19CHNA 10	LER 8 87407	OEEN 20	312ARTR 20
LER 6277407	OEEN 20	406APTR 20	LER 8 87407	OEEN 20	313ARTR 20
LER 6277407	OEEN 20	407LICH 20	LER 8 87407	OEEN 20	314ARTR 20LICH 16
LER 6277407	OEEN 20	408APTR 20	LER 8 87407	OEEN 20	315ARTR 20
LER 6277407	OEEN 20	409ARTR 20	LER 8 87407	OEEN 20	316ARTR 20LICH 12
LER 6277407	OEEN 20	410LICH 20	LER 8 87407	OEEN 20	317ARTR 20LICH 18
LER 6277407	OEEN 20	411CYTE 20LICH 13	LER 8 87407	OEEN 20	318LICH 20
LER 6277407	OEEN 20	412ARTR 20LICH 20	LER 8 87407	OEEN 20	319ARTR 20
LER 6277407	OEEN 20	413ARTR 20	LER 8 87407	OEEN 20	320LICH 20ARTR 10
LER 6277407	OEEN 20	414LICH 20	LER 8 87407	OEEN 20	321ARTR 20LICH 20
LER 6277407	OEEN 20	417ARTR 20LICH 16	LER 8 87407	OEEN 20	322CYTE 20
LER 6277407	OEEN 20	418BACH 1ELICH 19	LER 8 87407	OEEN 20	323ARTR 20
LER 6277407	OEEN 20	419ARTR 20LICH 20	LER 8 87407	OEEN 20	324ARTR 20CHUI 13
LER 6277407	OEEN 20	421APTR 20	LER 8 87407	OEEN 20	326ARTK 2
LER 6277407	OEEN 20	422LICH 20	LER 8 87407	OEEN 20	327ARTR 2LICH 17
LER 6277407	OEEN 20	423ARTR 20LICH 18	LER 8 87407	OEEN 20	328ARTR 2
LER 6277407	OEEN 20	424ARTR 20LICH 20	LER 8 87407	OEEN 20	329ARTR 2LICH 20
LER 6277407	OEEN 20	425ARTR 16LICH 20	LER 8 87407	OEEN 20	330LICH 20
LER 6277407	OEEN 20	426ARTR 20	LER 8 87407	OEEN 20	331ARTR 20LICH 19
LER 7117407	OEEN 20	334ARTR 20	LER 8 87407	OEEN 20	332LICH 20
LER 7117407	OEEN 20	335CHNA 20CRC1 16	LER 8 87407	OEEN 20	333ARTR 20
LER 7117407	OEEN 20	336CHUI 20			

DISTRIBUTION

<u>No. of Copies</u>	<u>No. of Copies</u>
1 ERDA Chicago Patent Attorney 9800 South Cass Avenue Argonne, IL 60439 A. A. Churm	1 E.I. dePont De Nemours and Co. Aiken Savannah River Laboratory Technical Information Service Room 773-A Aiken, SC 29801
5 ERDA Division of Biomedical and Environmental Research Washington, DC W. A. Osburn J. L. Liverman C. L. Osterberg J. Swinebroad R. L. Watters	1 Lawrence Radiation Laboratory Lawrence Livermore Laboratory Technical Information Dept., L-3 P.O. Box 808 Livermore, CA 94550
4 ERDA Division of Production and Materials Management Washington, DC 20545 F. P. Baranowski G. B. Pleat D. E. Saire C. W. Kunzman	2 Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, NM 87544 W. C. Hanson Tom Hakonson
27 ERDA TIC 1 Argonne National Laboratory 9700 South Carr Avenue Argonne, IL 60439 Librarian	1 ERDA Oak Ridge Operations Office P.O. Box E Oak Ridge, TN 37830 S. I. Auerbach
1 Brookhaven National Laboratory Research Library Reference Section Upton, L.I., NY 11973	1 ERDA Nevada Operations Office P.O. Box 14100 Las Vegas, NV 89114 P. Dunaway
	<u>Individuals in the United States</u> Dr. R. M. Hansen Range Science Department Colorado State University Fort Collins, CO 80521 Dr. Donald Johnson Zoology Department University of Idaho Moscow, ID

<u>No. of Copies</u>		<u>No. of Copies</u>	
1	Dr. O. Doyle Markham Environmental Sciences Branch Health Services Laboratory ERDA P.O. Box 2108 Idaho Falls, ID 83401	48	<u>Battelle-Northwest</u> T. W. Ambrose W. J. Bair J. P. Corley L. L. Eberhardt R. F. Foster J. J. Fuquay J. L. Helbling W. H. Rickard (5) J. K. Soldat W. L. Templeton (5) C. M. Unruh B. E. Vaughan (5) E. L. Klepper (5) R. E. Fitzner L. E. Rogers (5) R. G. Schreckhise D. W. Uresk Biology Library (3) Technical Information (5) Technical Publications (3)
1	Dr. Vincent B. Schultz Department of Zoology Washington State University Pullman, WA 99163		
1	Dr. J. K. Sheldon Eastern College St. Davids, PA 19087		
1	Dr. Mike Smith, Director Savannah River Ecology Laboratory Drawer E Aiken, South Carolina 29801		
1	Dr. F. Ward Whicker Radiology and Radiation Biology Department Colorado State University Fort Collins, CO 80521	53	<u>Atlantic Richfield Hanford Co.</u> M. D. Alford H. Babad G. E. Bachman D. G. Braden D. J. Brown (5) L. E. Bruns G. Burton, Jr. F. R. Dornheim R. E. Felt L. W. Finch R. D. Fox D. Grudin G. L. Hanson M. K. Harmon W. M. Harty O. F. Hill H. H. Hopkins, Jr. R. E. Isaacson M. W. Legatski (10) C. W. Malody H. L. Maxfield T. R. McKenzie B. J. McMurray
1	Dr. David Willis, Chairman Department General Sciences Oregon State University Corvallis, OR 97330		
1	Dr. Terrol Winsor Radiology and Radiation Biology Department Colorado State University Fort Collins, CO 80521		
<u>ONSITE</u>			
1	Patent Attorney		
4	<u>ERDA Richland Operations Office</u> B. J. Melton/Paul Dunigan, Jr. O. J. Elgert/R. B. Goranson J. L. Rhoades/G. J. Bracken F. R. Standerfer M. W. Tiernan		

No. of
Copies

D. C. Nelson
G. C. Oberg
K. R. Price
M. F. Rice
G. H. Sahler
C. M. Salina
H. P. Shaw
R. M. Smithers
G. T. Stocking
M. J. Szulinski
V. A. Uresk (5)
J. H. Warren
A. T. White
D. D. Wodrich

