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PREFACE 

The work reported herein was.performed.as part of the base technology 

activity under the Flow Induced Vibration Program (189a No. cA054-A and 

CA070-A) sponsored by ERDA/RDD. The overall objective of the activity is to . 

develop new and/or improved analytical methods and guidelines for designing ·· 

LMFBR components to avoid detrimental flow induced vibration. 

Heat exchanger ·tubes and reactor fuel pins are long, slender, beam-like 

components typically arranged in bundles and immersed in a flowing fluid. As 

such, they are susceptible to flow-induced vibration. The excitation mechan­

ism may be associated with vortex-shedding, fluidelastic interaction, or random 

pressure fluctuations in the turbulent flow. Designing to avoid large ampli­

tude motion, that is, to avoid a resonance condition or instability condition, 

and the prediction of component response, :equire knowledge of the dynamic 

behavior of the components. However, cylinders in a closely spaced bundle do 

not respond as single cylinders immersed in a fluid, rather, interaction with 

the fluid causes coupled motion of groups of cylinders. The fundamental 

natural frequency of the coupled system will be lower than that of a single 

cylinder immersed in A fluid. 

Understanding and modeiing fluid/structure interaction in cylinder bundles 

is a basic requirement in the deveiopment of analytical methods and guidelines 

for designing heat exchanger and reactor ftiel assemblies that are .free from 

component vibration problems. As a step toward satisfying this requirement, in 

this report a method of analysis based on the potential flow theory is developed 

for analyzing free vibration of a group of cylinde.rs immersed in a fluid con­

tained in a cylinder. The method of analysis presented can determine the added 

i 



mass coefficients and natural frequencies of coupled cylinder-fluid.systems. 

To demonstrate the method the coupled natural frequencies fo~ two eccentri­

cally located cylinders with a fluid-filled gap ~re calc:ulated and discussed. 

A few other examples ~re also given to show the added ma,ss coefficients. 
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VIBRATION OF A GROUP OF CIRCULAR 

CYLINDERS IN A CONFINED FLUID 

by 

. Ho Chung and Shoei-sheng Chen 

ABSTRACT 

This report pre·sents an analytical method for evaluating. the hydrodynamic 

masses of a group of circular cylinders immersed in a fluid contained in a 

cylinder. The analysis is based on the.two dimensional potential flow theory. 

The fluid coupling effect among cylinders is taken into account; self-added 

.masses and mutual-added masses for both inner arid outer cylinders are evaluated. 

Based on the proposed method, the free vibration of two eccentric cylinders 

with a fluid-filled gap is analyzed as anexample. 
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I. INTRODUCTION . 

The dynamic behavior of a group of cylinders submerged in a ·fluid has. 

been of great interest to many engineers in recent yea.rs. In a group of 

cylinders, because of fluid coupling effects, the motion of any cylind.er 

will excite the othe.rs and all cylinders will respond as· a group rather 

than as an individual one. Therefore, a group of cylinders wili have coupled 

natural modes in which all cylinders vibrate at the same frequency with 

definite phase relations among them. Coupled motions of multiple cylinders 

in infinite fluid are studied by several authors [1-12].* Studies of two 

cylinders located concentrically with a fluid-filled gap have also been 

made [13-14]. However, to the best of the authors' knowledge, coupled 

vibrations of eccentric cylinders and a group of cylinders in a confined 

fluid have not been reported. The objective of this report is to present 

a general method of analysis for coupled vibrations of multiple cylinders in 

a confined fluid. The .results of this study have important application in 

the design evaluation of nuclear reactor internals and heat exchangers. 

The fluid is assumed to be incompressible, inviscid and irrotational; 

thus, the potential flow theory is applied. The cylinders are· assumed to 

be infinitely long and their axes are parallel to one another; i.e., the two 

dimensionAl probl9111 io solved. Tlu: mathematical technique employed in this 

report is the method of coordinate transformations [11, 12]. The fluid 

velocity potentiai ·is expressed in terms of a series with unknown coefficients. 

The velocity potential of one coordinate system is then expressed in terms . 

of the similar potential ·function of a second coordinate system using coordinate 

transformations. Unknown expansion coefficients of the ser~es formulation 

are determined by matrix inversion of a truncated set of ·infinite equations 

obtained by imposing.the prescribed boundary conditions. These coefficients 

are then used to calculate fluid pressure and hydrodynamic forces acting on 

*Numbers in brackets designate References at end of report. 
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_each cylinder. Once the hydrodynamic forces associated with the motions 

of each cylinder are determine4, coupled vibrations of the cylinders can 

be studied in a straight .forward manner. 

After a general method of solution is presented, a few numerical 

examples are given and discussed in order to demonstrate the method. 

Numerical results for the added mass coefficients are given for three 

cases: (1) two eccentric cylinders with a fluid-filled gap, (2) two 

cylinders in a fluid contained in an outer cylinder, and (3) seven 

cylinders in a fluid-containing cylinder. The rate of convergence for 

the added mass coefficients is studied with respect to the number of terms 

used.in calculations and compared for .two typical cases with small:and 

large gap sizes between inner cylinders. The effects on the added mass 

coefficients due to the variation of eccentricity for case (1), and due 

to the variation of radius of the containing cylinder for case (3) are 

studied. Natural frequencies and mode shapes for coupled vibrations of two 

eccentric cylinders with a fluid-filled gap are calculated an4 discussed. 
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II. ADDED MASS MATRIX 

A. Formulation and Solution 

Consider the motion of a group of k circular cylinders in a cylindrical 

container (Fig. 1). The container is filled with incompressible, inviscid 

and irrotational fluid. The axes of the cylinders are assumed to be 

perpendicular to the x-y plane. Let R0 be the radius of the container and 

(X, Y) be global coordinates with the origin at the center of the container. 

Let R. be the radius of cylinder j and (x.,y.) be the local coordinates 
J . . J J . . . 

associated with irtner cylinder j ·. 

The velocity potential associated with the motions of these cylinders 

can be written in terms of their own local coordinates. Assuming all inner 

cylinders are stationary, the velocity potential associated with the motion 

of the outer cylinder 0 is 

41 = . I 
0 n=l 

0 

(a On cos na O + bOn sin na 0) (1) 

The velocity potential for inner cylinder j ·assuming all other cylinders 

are stationary is 

4>. = 
J 

.., Rn+l. 
\' ~ L (a. cos na. n · Jn J n=l r. · · 

J 

+ b. sin ne ·.) ' (j = 
Jn J 

1, 2, 3, .•. k) (2) 

In equations (1) and (2) (r a ) and (r a ) are c .. Ylindrical coordinates ·. , 0' 0 - J' j 

referred to the outer ·cylinder 0 and inner cylinder j. respectively, 

and aon' b
0 

, a. and. b. are arbitrary constants to be determined. 
n . J~ Jn ... 

The total velocity potential .is the sum of all the partial potentials . 

. generated by every cylinder, i.e., 

k 
~ = 41 0 + I ·41. <3> 

j=l J 

In order to impose the boundary conditions at a particular cylinder, the 

total velocity potential associatedwith all cylinders must be expressed 
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FIGURE 1. Schematic and Coordin~te System for a Group of Circular 

Cylinders in a Fluid-Containing Cylinder · 
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in terms of the coordinates of that cylinder. Therefore, it isnecessary 

to acquire three transformation relationships for coordinates of the outer 

and inner cylinders; these tra~sformations are accompli$hed by using Taylor 

series expansion." 

Expansion of the furicti<:m [r 0exp(i90 ) - R0jexp(ilj!Oj) ]-n in terms of 

· Taylor series leads to the expressions of the coordinates of inner cylinder 

j written in terms of (r0 ,e0) associated with the outer cylinder 0. The 

above function can be eXpanded in powers of either r 0exp(i90) or 

or 

cos ne. 

n. r. 
J 

sin ne. 

n 
r. 

J 

J 

00. 

- I 
m=n 

m 
Ro· 

c ~ cos[mljl0 . - (m+n)e0 ] 
mn r J . . 0 . . . 

oo Rm .. 

= - L · C m% sin[mlj!Oj 
m=O mn rO 

(for n = 1, 2, 3, •··~~) 

cos ne. . 00. 

=·(-l)n L 
n r. 
J 

sin ne. 

·m=O 
(m+n)lj!OJ] 

00 

__ ____.].._ = (-l)n+l I 

where 

n r. 

c mn 

J 

= (m+n-1)! 
m! (n-1)! 

m=O 

(for n = 1 , 2 , 3 , ••• , oo) · 

(4) 

(5) 

and R0 . is the distance between the centers of the outer cylinder 0 and 
J. 

inner cylinder], and lj!Oj is the angle between the x-axis and the vector 

from the center of the outer cylinder 0 to that of inner cylinder j. Any 

.veloc-.ity potential fll. in Eq. (2) can be written in terms of the coordinates 
J 

( r 
0

, e 0) associated with the outer cylinder 0 using the above relationships; i.e. , 



or 

~0 = 
j 

00 00 

I r 
n=l m=O 

00 00 

- .6 -

R
n+l m 
. ro J . 
m+n {ajncos[ma0 - (m+n)w0j] 

ROj 

-b. sin[me
0

- (m+n)w
0
.]}, (j = 1; 2, ••• , k) (7) 

Jn J . . 

where the superscript 0 denotes a variable written in terms of the 

coordinates associated with the outer cylinder 0. · If the origin of an 

inner cylinder j coincides .with that of the outer cylinder, then, it becoines 

0 . 
~. = 

J 

00 R~+l 
I _J__ <a. ·cos ne 0 + b. sin ne0 > 

n=l. r~ Jn Jn 
(8) 

. n . 
Expansion of the function [ri~p(iei) + R

0
iexp(iljJOi)]' in terms of 

Taylor series leads to the following relationships of the coordinates 

(r
0 

,e
0

) of the outer. cylinder written in terms of (ri,ei) associated with 

inner cylinder i, i..e., 

and 

where 

n n . 
r 0 cos ne 0 I 

m=O· 

n 

I 
m=O 

n! 
D mn m! (n-m)! 

D mn 

D mn 

.n m 
R0 .r. 

1 1 

m . 
ROi· 

n m 
ROiri 

m 
R(ii 

cos[(n~m)w 0 . +me.] 
1 1 

(for n = 0, 1, 2, ••• ,co)· 

The velocity potential ~O in Eq. (1) writtenin terms of the local 

coordinates associat.ed with inner cylinder i can be now written 

(9) .. 



~i = 
0 

oo. n 

L L Dmn 
n=l m=O. 

; (i = 1, 2, ... , k). (10) 

If the origin of the outer cylinder is the same as that of. inner cylinder 

i, it becomes 

n 
oo r. 

~i = 
0 I n~l 

n=l R
0 

. (11) 

Finally the velocity -potential ~. in Eq. (2) can be expressed in 
J . . . . . 

terms of the local coordinates of cylinder i using the following relation-

ships . [12]. 

and. 

ccis ne ·. 
__ __.._J = 

n 
r. 

J 

sin na. 
___ J.._ = 

n 
r. 

J 

00 
m r. 
l. c -+n cos [me . 

mn R~. l. 
(m+n)IIJij] 

00 

(-l)n+l L 
m=O 

l.J 

m· 
r. 

l. c m+n sin[me. 
mn R.. . l. 

l.J 

~ (m+n)IIJi.] 
. J 

(for n = ·1, 2, 3, .•• ,"") 

(12) 

where C is defines previously, and R •. and IIi •• are defined in F. ig. 1. 
~ ~ ~ 

Thus, using Eqs. (2) and (12) gives 

~~ = 
. J 

Rn+l·m 
. r. 
J l. 

Rm+n 
ij 

{a. cos {me. - (m+n) IIJiJ.l 
Jn l. 

-b. sin(me. -(ni+n)IIJ .. ]} , (i,j = 1;2, ... ,k)•(l3) 
Jn . l. l..J 

It is necessary to consider two cases: (1) one of the inner 

cylinders'isc-oncentric wi'th t'ile' outer cylinder; and -(2f-none of the' 

inner cylinders are concentric with the outer cylinder. The former is 

the general case and .. treated in this-rej>o'r·t: Thus, the. syst·em·co-n_sists of k+l 

cylinders: cylinder 0 is the outer cylinder, cylinder! is the inner 

rylinder which ic concentric with the outer cylin~er, and the cylinders 

J 
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2 ~ k are other inner cylinders. Note that case 2 may be treated as a 

special case of case 1. The total velocity potential (3) can b.e written as 

~i = ~. + 
l. j 

* 

k* . 
E. ~l. 
= 0 j 

(i = 0,1,2, .... ,k) 

where E denotes the summation for j from 0 to k except j = i. 

The displacement components of cylinder i in the x.and y directions 

(14) 

are ui and vi, respectively. The fluid velocity component in radial direction 

is V and can be written in terms of the coordinates of cylinder i ; 

i a<Pi v = -.. -.- , (i = 0,1,2, .• ~ ,k). (15) 
or. 

l. 

At the interface of the cylinders and fluid, thefollowing conditions must be 

satisfied; 

(i = 0,1,2, ..•. ,k) . (16) 

Let the coeffi.cients 9-iri and bin be defined as follows:·. 

. (17) 

b. 
l.n 

k (· auR. + avR.) 
I int. at 8int at .t=O 

. (i = 0, ,1, 2, ... ,k) 

Where, a in~, 8 int, a in£ an.d T in.PJ are solutions of the following $Y~tem of 

algebraic equations. For i = 0, substHuting equations (1), (2) and (6) 

into (14~16) yields 

n (R1)n+l 
. Ro 

a . -
lnR. 

k. n-1 

I I 
j=2 m=O 

n! 
m! (n-m-1)! (18) 

·' 



- 9 -

R1 )n+l k n-1 

no0n2 - n.(RO. · .. · olnQ. - L L 
j=2 m=O 

R~-m+lRm. 
J . OJ --:-~n.:...!~-:-:-
Rn+l m! (n-m-1)! 

0 

{o. ( . ) n cos mljio· . - a. ( . ). n ·sin mlji .l = 0 J n-m ·:.. · . J J n-m "' OJ · ·. 
(18}. 

n (
RRlo. )n+ 1 

nTOnR. - Tln2 -

k n-1 R~-m+lRm. 
I I J o] n! 

. ·
2 0 

Rn+l m! (n-m"-1) !. 
J= m= . 0 

.(Contd.) 

{a.( )"sinm1ji
0

. +T.( )~cosmlji .} =.0 
J n-m "' J J n-m "' . 0 J 

R n+l k n-1 R~-m+lRm. 
na . - n (~) .. · a - I I ] o] _,__n_!___,._ 

On.R. . R0 .· lnR. j=2 m=O R~+l m! (n-m-1)! 

{o.(. )" sin·m~ji·. +a.(.·. )" cosmlji .} = .on·loo.n. 
J n-m "' 0 J J n-m "' o J "' 

where 

Q. o,. 1, 2, ·~ •· • .1 k 

n = 1, 2, 3, •.•• , 00 

m = 0, 1, 2, ••• , (n-1) . 

For i = 1, substituting equations (.1), (2) and (7) into (14Y..;.(l6) yields 

n-1 

n (:~) 
. . k co Rn-lRm+l . * 1 . 

'bnz -:- nalnR. + ) . L ~ 
· J-2 m=l R • 

(-l)m(m+n-1)! 
(m-1)! (n-1)! 

OJ 

{a.. Q. COS {m+n)lji . + T. R. sin (m+n)lji . } = 0 l OlR. 
Jm . . OJ . Jm OJ n . 

Rn-lRm+l 
1 j (-l)m(m+n-1)! 

Rm+n . (m-l)!(n-1)! 
oj 

{o. n cos (m+n)ljio. +a. n sin (m+n)lji . } = 0 
Jm:.. · J Jm:.. · . OJ 

n-1 

n (:~) 
m. . 

( .;..1) (m+n-1)! . 
(m-1)! (n-1)! 

{a. n sin (m.f.n)lji . - T. n COS (m+n)lji . } = Q 1 · 
Jm:.. . . OJ Jm.... OJ 

(19) 
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k 00 

* 8ont - nBlnt + .I I 
. .. . J=2 m=l 

Rn-lRm+l 
1 j 

R
m+n 
Oj 

m 
(-1) (m+n-1)! 
(m-1) Un~l)! 

{a. n sin (m+n)ljJ
0

. - 8. n cos (m+n)ljJ . } = o 
1
o

1
n ·, 

J m... J J m... OJ n "' 

where 

Jl. = 0' 1' 2' .... 'k 

m,n = 1, 2, 3, ... ,"". 

(19) 
(Contd,) · 

For i ..:_ 2, substituting equations (2), (10) and (13) into (14)-(16) yields 

. m-n_n-1 
"". ROi .t<"i 

-net. n + I . 1 1n"' . m-
m=l R 

m! 
(n-:-1)! (m-n)! {ctOmt cos (m-n)ljJ Oi 

. 0 

. k* co R~-lR~+l m ·. ' 
+ T OnJI. sin (m-n)ljJOi.} + :I I . 1 m~ (-1) (m+n-1) I 

j=1 m=1 Rij (m~l)!(n-1)! 

{CL. n COS (m+n)ljJ. ·, + T. n sin (m+n)ljJi.} 
]ID"' ... · 1] ]ID"' J 

m-n n-1 
"" If) i Ri · m! 

-ncr. t + I · m-1 (n-1)! (m-n)! {crOmtcos (m-n)ljJOi · 
. 1n ni= 1 .lb . 

Rn-1 m+1 
+ t3 •. ( ),;, } + ~* ~- -=i'-. _R...,.j_ (-l)m(m+ri_;1)! 

0 Jl. s1n m-n '1'.0 i l. l. ......._. (m·-1) '· (n-_1.) I 
m · j=1 m=l R~j" 

{cr. Jl.. cos (m+n)l/J .. + B. n sin (m+n)l/J.j} = 0 
Jm 1] Jm.... 1 

. m-n_n-1 
00 RO· K •. . + ~ 1 1 

-nTinJI. ~ m-1 
· m=l RQ 

m! 
(n-1)! (m-n) t { -CLOmJI. s;in (m-n) ljJOi 

· k co R~- 1R~l 
. + TOmt cos (m-n)ijJOi} + )* I . 1 mod 

]=1 m=1 R.ij 

m . 
(-1) (m+n-1)! 
(m-l)!(n-1)! 

{ct. n Sin ·(m+n)ljJ .. - T. n COS (m+n)ljJi,} 
JID"' . 1J Jm.., · J 

= 0 

(20) 



co 

-nl3 · n + I 
1nx. m=l. 

where 

i = 2, 3, 4, .;.,k 

fl.. = 0, 1, 2, ... ,k 

m, n = 1, 2, 3', ... ? co_ • 
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m! 
(n-1)! (m-n)! { -crOm.!l. sin (m-n)l/IOi. 

m 
(-1) (m+n.,-1)! 
(m-l)!(n-1)! 

(20) 
(Contd.) 

For the special. case iri which there is no concentric inner cylinder with 

the outer cylinder, equation (19) is not needed. Equations (18)-(20) form 

the systems of infinite equations for infinite numbers of theundetermined 

coefficients: a. n'' 13. n' 6. n' ~nd ~in' 1nx. 1nx. 1nx. nx. Taking a finite number of terms 

in the expressions of velocity potentials. and coordinate transformations 

leads to the systems· of finite equations. It will be show that fast 

convergence is achieved and accurate solutions can be obtained with a few 

terms. 

The fluid forces acting on.the cylinders can be calculated from flu~d 

pressure p; 

a~P 
P = -p at 

where p is mass denisty of fluid. ·The two components in the x and Y 

directions of fluid force acting on cylinder i are iji and Gi 

Hi= -r1T pi I. - . Ri cos 6i46i 
0 r 1-Ri 

·and 

r.. = -J2

0
'1T pij · • R. sin0.dO. 

1 r.=R. 1 1 1 
1 1 

. ( 1 = 0, 1, :l, ..• 'k). 

(21) 

(22) 
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Using equations (14), and (17)-(22) yields 

k 
. . 2 . .2 2 

(Ri ; Rt) . ( a ut a v t) 
H. = -p7T X a.. t -2-. + C1 u .. -2-

1 
t=O 

1 
at at. 

and 
2 2 

a2 ) k 
(Ri+Rt) (•. a·ut+ VR, 

G. = -p7T I B.R. -2-. 
1 

t=O 2 1t at2 1 
at 

( i = 0' 1' 2' ... 'k) 

(23) 

Here the so;..called added mass coefiicients a..il' Bil' cr i£. and Til are obtained 

as follows: 

(1) For the outer cylinder (i = 0)' 

4R
2 

I fi) 
2 

a.Ot = 0 
a.iH 

. (Ro+Rt) 2 i=O RO 

4~ 
·. 2 . 

k ·R. l 
Bot I ( 1 = - B. 

(RO +Rt) 2 i=O ~} 1H 

(24) 

k R 2 

I (_i) 
i=o Ro 

(R. = o, 1, 2, ... ,k) 
. ---- ·.:- ··-·-·-:-·--·--·-. -------· 

(2) For the inner cylinder (i = ·1) concentric· with. the outer cylinder, 

a.li ~ ~ 4Ri 2 r.Ol.R. + a.lli + r .r hl)nn (:j.)n+l. 
(R

1
+RR,) . L . · n=l J=2 OJ . · 

{a., n COS (n+l)lji . + T. n sin (n+l)l/J .· ;l 
. Jn.... OJ Jnx. OJ rj 

e = -u 

(25) . 
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4R
2 l- oo k · n+1 

= - ----=-1 - a + a + L L (-1)_nn (~)-
(R1+R2)2 012 11t n=1 j=2 ROj 

{a. n cos (n+1)1/l . + 8 .. n sin (n+1)1/l .. }] , 
Jnx. OJ Jnx. OJ 

{a j nt sin (n+l).P Oj - T j nt cos (n+ l).P Oj )] 

( !/, = 0' 1' 2' ... 'k) . 

(3) For inner cyli.nders, i = 2, 3, 4, •.. ,k, 

oo k * . n . ( R. )n+ 1 
+ 'ont sin (n-1)1/JOi} -.. I L (-1) n ___.l,_ 

n=1 j=1 · Rij 

{ajnt cos (n+l).pij + T jnt sin (n+l) .pij) J , . 
4R~ [ 00 (R )n-1 

(R +R ) 2 -ail!/, - I1 n ~i . 
i. !/, . n 

oo k R n+1 

+ 80n!/,cos (n-1)1/JOi} - L . r*. (-1)nn (·~) 
n=1 j=1 ij 

(25) 
(Contd.) 

{o j nt sin (n+l).P ij - .a j nt cos (n+l).P ij )] (26) 

4R~ 2 [-a - n--~1 n (~RQoi )n-1 {donn_co~ (n-_1_)1/IOi. 
(Ri+Rt) . iH - x. 

{ -a.On n sin (n-1)1/1 . 
. X, . . 01. 
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·- ---·····--·---·---------- -- --. 

co k R n+l 

. + TOnR, cos (n:-1)1/!0 i} - L )* (.:_l)nn (R?.) · 
n=l J=l 1J 

{ajni sin (n+l)~ij - 'jni cos (n+l)~ij )] 

(R. = 0, 1, 2, 3, ... ,k) 

(26) 

(Contd.) 

a1.1., ·81. 1. ,. a. i and T •• are self-added mass coefficients, which are pro-1 .. 11 

portional to the hydrodynamic force acting on cylinder i due to its own 

acceleration, while the others are mutual-added mass coefficients, which 

are proportional to the hydrodynamic force acting on a cylinder due to 

the acceleration of another cylinder. 

B. Reciprocal .Relations 

Useful general reciprocal relationships regarding the hydrodynamic 

forces due to the movement of cylinders can be developed based on the 

theory of potential [15]. 

Let us consider the hydrodynamic force acting on cylinder Jl. in the 
. . 

direction of ~R, due to the movement of cylinder i in thedirection of ei. 

Assuming all other ,cylin4ers are stationary except cylinder i, the hydro:-

dynamic force can be written as follows, 

(27) 

where 

. (28) 

' 
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Here, cj>i and cj>t are normalized velocity potentials associated with 

cylinder i and t; (cj>. is the velocity potential for cylinder i having 
l. 

a unit acceleration) and U. is the displacement of cylinder i in the 
l. 

-+ 
direction of the vector ei. v is a unit vector normal to the cylinder 

surface toward the fluid and St .is the surface of cylinder L 

Similarly, consider the case that all cylinders are· stationary 

->-
except cylinder t moving in the direction of et. The hydrodynamic force 

-+ 
exerting on cylinder i in the direction of ei is· 

where 

a2u 
t -yH7 (29) 

(30) 

As the velocity potentials cj>i and cj>t are harmonic functions, Green's 

theorem prevails [ 15] , i.e. , 

.(31) 

This equation holds for any closed surface S within a region in which 

cj>i and cj>t are harmonic functiom:;, We may choose S == s0 which .is the inner 

surface of the outer cylinder, then it follows that 

If cj>t is associated with the outer cylinder, letting S = s0 in equation 

(30) yields 
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If% 
acP. 

- I J s. ~0 
a~i . 

~i _Q_d~ -a-dS. 0 
av v 1 

1 

(33) 

Therefore from equations (28), (30)' (32) and (33) 

y H = y R.i (i,R. = 0, 1, 2, ... k) (34) 

This relationship delivers a physical meaning that the hydrodynamic force 

. -+ 
acting on cylinder R. in the e

2 
direction due to a unit acceleration of 

-+ 
cylinder i in the e. direction is equal to the hydrodynamic force acting. 

1 

-+ 
on cylinder i in the e. direction due to a unit acceleration of cylinder 

1 

-+ 
2 in the e

2 
direction. This general reciprocal relationship is valid 

between any pair of cylinders including inner and outer cylinders. 

The reciprocal reiations of the added mass coefficients defined in 

section II-A are generated from equation (34) as special cases. When 

-+ -+ 
ei and e

2 
are equal, and if they are in x-direction 

if they are in y-direction 

-+ -+ When ei is in x-direction and e
2 

is in y-direction, or vice versa 

UU ""' T R,i 

The added mass coefficients aiR.' Bit' aiR. and Tit can be combined to 

form an added mass matrix y , i.e., 
. pq 

[P• (Ri;Rt(•u i P•ri:Rtf aH 

[ y pq J = I - - - - - - - ~ - -2- - - - -, - - - - - - - - - -2- - - -

LP7T (Ri I Rt) TH P7T ( Ri : Rt) Bu 

( p 'q = 0' 1' 2' ... '2k + 1) • 

(35) 

(36) 

(37) 

(38) 

Since y is symmetric, for a group of k cylinders contained in an outer pq 

cylinder, there are(k + 1) (2k + 3) independent added mass components. We 
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can also find a group of 2(k+l) axes as the principai axes of added mass 

coefficient such that 

· y = 0 for p # q 
pq (39) 

The principal values of added mass matrix may be called effective added 

masses for the system [12] •. 

C. Numerical Results 

The preceding analytical method to evaluate the added mass matrix was pro­

grammed (AMASS) on a digital computer and listed in the Appendix of this report. 

This program can be used to calculate all elements of the added mass matrix for 

a g.roup of cylinders submerged in a fluid-containing cylinder. The cylinders 

may have different radii and may be arranged in arbitrary pattern; however, all 

cylinders must be parallel .to one another. 

Added mass coefficients are written in terms of infinite series; 

only a limited number. of terms is needed to give results with sufficient 

accuracy. In order to check the rate of convergence of the solution, 

the added mass coefficients for two cylinders submerged in a fluid-containing 

cylinder are shown in Fig. 2 as functions of the number of terms n taken 

in calculations. The rate of convergence is much faster in the case of 

widely-spaced inner cylinders than in the closely-spaced case. In general, 

n = 10 will give sufficiently accurate solutions in practical situations. 

In the following calculations, the number of terms are taken to be 10. 

Table 1 and l''ig. 3 show the added mass coefficients as functions of 

the eccentricity of two eccentric cylinders with a fluld-fll~~d gap. A~ 

the eccentricity increases the magnitude of all added mass .coefficients 

increase. It is interesting to note that the self-added mass coefficien~ 

of .the inner cylinder .are strongly influenced by eccentricity and the 

mutual-added mass coefficients have also considerable dependence on 

eccentricity •. However, the variation of the self-added mass coefficients 
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Table 1. Added Mass Coefficients for Two 
Eccentric Cylinders with a Fluid­
Filled Gap 

Eccentricity (E) a.oo a.ll a.l2 

0 1. 667 1. 667 -1.185 

0.2 1.672 1.686 -1.194 

0.4 1.688 1. 751 -1.223 

0.6 1. 722 1.889 -1.284 

0.8 1. 799 2.196 -1.420 

0.9 1.884 2.537 -1.572 

0.95 1. 966 2.865 -1.718 

0.97 2.020 3.080 -1.813 

0.99 2.104 3.414 -1.962 

0.999 2.170 3.681 -2.081 

CJ .. = T •• = 0, (i,j = 0,1) 
lJ ~J 
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of outer cylinder with the eccentricity is relatively small, and 

is negligible in the. case of lb /R1 = 4. 

The added mass coefficients for a seven-cylinder bundle in a fluid-

containing cylinder are shown in Table 2 and Fig. 4. . The arrangement· of the 

inner seven cylinders is fixed, while the radius of the outer cylinder is 

varied in order t·o investigate· the influence of the gap size on the added 

mass coefficients. The self-added mass coefficients associated with the 

innermost cylinder 1, the inner cylinder 4 and the outer cylinder 0 are. 

presented. . As the gap size increases all of them decrease; specifically 

a approaches 1 whereas a and ct approach the asympotic values for the 
oo , . 11 44 

case of seven cylinders in an infinite fluid medium. It is interesting 

to note that the sensitivities of a
11 

and a
44 

to variations of the gap 

size are very similar to each other even though the cylinder 1 is surrounded 

by more fixed cylinders. Among the. self-added mass coefficients considered, 

9Do is most sensitive to gap size. The mutual added mass coefficients, 

a
0 1

, a
0

.
4 

and a
14 

are also presented. As the gap size increases the magnitudes 

of a0 1 and a0 4 decrease and finally approach zero, yet the magnitude of 

a14 increases and approaches the asymptote for the case of infinite fluid. 

These results reveal that as the gap size increases the coupling between the 

inner cylinders and the outer cylinder becomes smaller, and the coupling 

between inner cylinders 1 and 4 becomes larger. This study also shows that 

the solutions based on the assumption of infinite fluid medium are not 

sufficiently accurate for the case of G/R, say less than 5. 
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Table 2. Variation of Added Mass Coefficients for a Seven Cylinder 
Bundle in a Fluid-Containing Cylinder 

G/R aoo all a44 aOl '• a04 al4 

0.1 7.084 5.129 4.070 -2.211 -1.545 -0.944 

0.2 5. 571 4.826 3. 712 -1.699 -1.200 -1.114 

0.3 4.708 4.653 3.510 -1.402 -0.997 -1.214 

0.4 4.127 4.538 3.378 -1.200 -0.857 -1.284 

0.5 3.702 4.454 3.284 -1.051 -0.753 -1.335 

0.6 3.375 4.389 3.214 -0.935 ·-0.672 -1.375 

0.7 3.115 4.339 3.159 -0.843 -0.607 -1.408 

0.8 2.902 4.297 3.116 -0.766 -0.553 -1.435 

0.9 2. 725 4.263 3.081 -0.702 -0.507 -1.458 

1.0 2.575 4.234 3.052 -0.647 -0.46~ -1.477 

1.5 2.075 4.139 2.962 -0.461 -0.334 -1.542 

2.0 1. 795 4.086 2.916 -0.353 -0.256 -1.580 

3.0 1. 496 4.030 2. 871 -0.233 -0.169 -1.620 

4.0 1. 344 4.002 2.851 -0.168 -0.122 -1.641 

5.0 1. 254 3.985. 2.8~9 -0.128 -0.093 -i. 653 

10.0 1.090 3.954 2.820 -0.049 -0.036 -1.675 

20.0 1.028 3.943 2.814 -0.016 -0.012 -1.683 

30.0 1. 014 3.940 2.812 -0.008 -0.006 -1.605 

50.0 1.002 3.938 2. 811 -0.001 -o.ooi ···1. 686 

100.0 1.001 3.937 2.811 -0.0007 -0.0009 -1.687 

co 1.000 3.936 2.810 0 0 -1.687 
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III. VIBRATION OF A GROUP OF CYLINDERS 

As discussed in earlier chapters, added mass matrix can accurately. 

be obtained for a group of circular cylinders submerged in a confined 
. . 

liquid; the cylinders. may have different radii and can be. arranged in an 

arbitrary manner as long as they are parallel to one another. The added 

mass matrix can be used to study the free and forced vibration of cylinders. 

In this section, a frequency equation is derived for a group of cylinders 

with the same boundary conditions and the same length, and numerical 

results are presented for free vibration of two eccentric cylinders with 

a fluid-filled gap. 

A. Frequency Equation 

Motions of cylinders consist of displacements along the x-axis and 

y-axis. Assuming the fluid is stationary and neglecting the effects of 

fluid static pressure, damping, drag force and gravity effect the equa-

tions of motions for a group of k cylinders in a fluid-containing. cylinder 

are as follows: 

E I 
p p 

2k+l a2u 
\ y __q_f 
l.. pq 2 - p 

q=O at 
(40) 

(p,q = o, 1, 2, •.• ~2k+ 1) 

where the subscripts p and q denote variables associated with cylinders 

p and q in the x-z plane, while p+k+l and q+k+l in the y-z plane. E I is 
p p 

flexural rigidity, m is mass per unit length, f is external excitation 
. p p 

force, and y is the element of added mass matrix defined in equation pq 

(38). 

When all cylinders are of the same length and have the same type of 

boundary conditions, the displacement of any cylinder can be written as 

u (z,t) = 
p I 

n=l 
h (t)ljJ (z) pn · n .. 

(41) 
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where ~ {z) is the nth orthonormal function of the cylinders in vacuo. n . 

where 

Using equations (40) and (41) yields 

2k 
m h + I ypq h p pn q=O qn 

( p,q 

f = l It f ~ dz 
pn t . p n 

0 

-2 +mw h 

-

.P pn pn 

0, 1, 2, 

-2 
w pn 

= f 
pn 

.. _,21<:+1), 

(42) 

( n = 1 ' 2 ' 3 ' ..• ' co) 

Here w is the nth natural frequency of the ·cylinder p in va,cuo and f is the pn · pn 

generalized external force. Note that equations (42) can be applied to 

all values of n. For each n, there are coupled equations the number of 

which is twice the number of cylinders. However, there is no coupling 

among the equations for different n. This is true for a group of cylinders 

with the same type of boundary conditions and of the same length. For a 

given n, equations (42) may be written in matrix form~ 

[M] {h} + r- K .J {h} = {F} (43) 

where M is symmetric square matrix and K is diagonal matrix. The elements 

of these matrices are as follows: 

m =me +y pq p pq pq (44) 

k m w2 0 
pq P pn pq 

( p ' q = 0 ' 1 ' 2 ' • • • .,"2k + 1 ) 

IFor free vibration, negle_ct external forcing· terms, and let 

{h} = {h}exp(is&t) (45) 

The coupled natural frequency n and the coupled normal modes {h} of the 

system are c.omputed·from the homogeneous equations 

[[K}- n2[M]]{h} = 0 (46) 
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B. Sample Problem: Free Vibration of Two.Eccentric Cylinders with a Fluid-· 

Filled Gap 

As an example, consider the motion of two eccentric cylinders with a fluid-

filled gap as illus·trated in Fig. 5. The axes of; the cylinders are located · 

on the x-z plane and parallel to the z-axis. In this case, It is found that 

a 
. 00 

= 8
oo ' 

all = 811. 
(47) 

aOl alO 8ol = 810 

ajt = Tjt = 0 . ' (j 'R, = 0, 1) 

Hence, the added matrix can be written 

2 
2 (RO + Rl) 

Roaoo 2 aOl 
. 0 . 0. 

2 (o + R1) 2 
2 · aOl Rlall 0 0 

[ypq] P7T 

0 0 

. 2 (48) 
2 (RO + Rl) 

Roaoo . 2 aOl 

0 0 (RO + Rlf 2 
2 aOl Rlall 

Examining this added mass matrix we may conclude that the x-z plane 

arid the y-z plane motions can be considered separately. For the x-z plane 

motion equation (46) becomes 

l
! -2 2 . 

n w - r2 (m +y ) o on o oo 
? . . 

-rl ... yOl 
(49) 

The frequency equation for the coupled modes yields 

(50) 
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FIGURE .5. Two Eccentric Cylinders with a Flui~-Filled Gap · 
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·' 

{p = d, 1) 

Here wOn and w
1

n are the uncoup~ed natural frequencies for each cylinder. 

The coupled natural frequencies Ql and n· 

and (51) 

For each n there are two coupled normal modes. The amplitude ratio h1n/h0n 

is given by 

hln w2 - Q2 Cmo + Yoo) = On 
h rf . On Yo1 

(52) 

Natural frequEmcies for the· y-z· plane motion can be found in an· analogous 

manner; the results are exa·ctly the same as the x-z plane motion. 

Numerical results presented here are based on two eccentric stainless steel 

tubes with a water-filled gap. Both tubes have the same length of i..27.m· (50 in.) 

and wall thickness of 0.15875 em (0~0625 in.). The radii of outer and inner 

·tube are 5.08 em (2 in.) and 2.54 em (1 in.) respectively. The distance between 

the centers of two cylinders is allowed to vary in order to investigate the 

effects of eccentricity on natural frequencies. 

Table 3 and Fig. 6 summarize the results. For both cases of x-z plane 

and y-z plane vibrations, the lower frequency is associated with the mode in 

which two cylinders move out-of-phase, while the higher frequency is associated 

with in-phase mode. Fig. 6 shows the lowest two natural frequencies (n=l) f9r 

uncoupled as well as coupled modes. It can be also seen from Figure 6 and 

Table 3 that for each n the frequencies for the first coupled modes 

\ 
\ 
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Table 3. Natural Frequencies (Hz) for Two Eccentric Cylinders 
with a Fluid-Filled Gap 

Uncoupled Vibration Coupled Vibration 
n e: Cylinder 0 Cylinder 1 First Mode Second Mode 

0 83.660 52.279 48.571 108.54 

0.1 83.637 52.232 48.529 108.54 

0.2· 83.566 52.087 48.400 108.53 

0.3 83.442 51.836 48.177 108.51 

0.4 . 83.254 51.461 47.843 108 .. 47 

0.5 82.985 50~934 47.372 108.43 

1 0.6 82.604 50.205 46.719 108.37 

o. 7. 82.053 49.188 45.808 108.29 

0.8 81~2li 47.714 44.481 108.17 

0.9 79.747 45.344 . 42.338 108.00 

0.95 78.428 43.392 40.564 107.88 

0.975 77.394 41.967 39.263 107.79 

0.995 76.169 40.384 37.815 107.69 

0 334.64. 209.12 194.28. 434.18 

0.1 334.55 208.93 194.12 434.16 

0.2 334.27 208.35 193.60 434.11 

0.3 333.77 207.35 192.71 434 .• 02 

0.4 333.02 205.85· 191.37 433.89 

0.5 331.94 203.74 189.49 433.71 

2 0.6 330.41 200.82 186.88 433.47 

0.7 328.21 196.75 183 .• 23 433.14 

0.8 324.85 190.86 177.93 432.69 

0.9 . 318.99 181.37 169.35 . 432.02 

. 0.95 .113. 71. 173.57 162.25 . 431.50 

0.975 . 309.57 167.87 157.05 431.15 

0.995 304.68 161.53 151.26 430.78" 

0 752.94 470.51 437.14 976.89 

0.1 752.74 470.09 436.76 976.86 . 

3 0.2 "752.10 468.79 435.60 976.74 

0.3 . 750.98 466.53 433.59 976.55 

0.4 749.29 463.15 430.58 976.25 
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Table 3. Natural Frequencies (Hz) for Two EccentricCylinders 
with a Fluid-Filled Gap (Contd.) · 

Uncoupled Vibration 
n e: Cylinder 0 Cylinder 1 

0.5 746.87 458.40 

0.6 743.43 . '451. 84 

0.7 738.47 442.70 

3 0.8 730.90 429.4.3 

0.9 717.73 408.09 

o·. 95 705.85 390.53 

0.975 696.54 377.70 

0.995 685.52 .363.45 

R
0 

~ 5.08 em (2 in.) 

R1 = 2.54 em (1 in.) 

h0 = h1 = 0.15875 em (0. 0625 in.) 

l 0 = l 1 = 127 em (50 in.). 

Coupled Vibration 

First Mode Second Mode .. 

426.34 975.85 

420.47 975.31 

412.27 974.58 

400.33 973.56 

381.04 972.04 

365.07 970.88 

353.37 . 970.08 

340.33 
.• 

969.25 

3 3 -4 2 4 P = .a. 015 x 10 Kg/m (7. 5 x 10 1b-sec /in ) 
11 . . . 

E = 2.017 x 10 Pa (3.0 x 107 psi) 

Pf = 9.982 x 102 Kg/m3 . (9.34 x 10-5 1b-sec2/in 4) 
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(out-of-phase modes) are lower than either of ·the uncoupled natural. 

frequencies, while the frequencies for the ·second coupled modes (in-phase 

modes) are higher than either of the uncoupled natural frequencies. 

It is also interesting to note the effects of eccentricity on coupled 

and uncoupled modes. For coupled frequencies the effects are pronounced 

for the out-of-phase modes, but these effects are much ~aller and considered 

to be negligible for the in-phase modes. However, for uncoupled vibrations 

the effects of eccentricity remaincomparable for both cylinders. Fig. 6 

also reveals that as eccentricity becomes larger, its influence on 

frequencies becomes larger~ 
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IV. CONCLUSIONS 

In this report, a general method of analysis· is presented for coupled 

motions of a group of cylinders in a fluid-containing cylinder; the coupling 

effectsare accounted for using self- and mutual-added mass coefficients of 

·cylinders. The method c.:m be applied to a group of cy1in~ers with different 

radii. These cylinders may be arranged arbitrarily as long as they are 

parallel to one another. With this method of analysis, free and forced 

vibrations of a group of cylinders in a fluid-containing cylinder can readily 

be anRlyzed. 

The analysis is based on the two dimensional flow theory. In many 

practical situations, the displacement of the cylinders are much smaller 

than the radius. Therefore, the potential flow theory is applicable. 

Furthermore, many system components, such as nuclear fuel bundies and 

heat ex~hanger tubes are long enough such that the hydrodynamic forces 

based on the two dimensional theory are sufficiently accurate. 

Numerical results are.given for a few selected problems~ From the 

study of seven cylinders in a.fluid-containing cylinder, it is seen that 

the influence of the outer cylinder on the motions of a group of inner . 

cylinders is similar to that of two concentric cylinders. When the outer 

cylinder is relatively close to the inner cylinders, the coupling effects 

become pronounced and have to be considered. For the problem of two 

eccentric cylinders with a fluid-filled gap, the self-added mass coefficient 

of the inner cylinder is sensitive to the eccentricity of cylinders. The 

effects of eccentricity are also founc to be distinct for the out-.of-phase 

modes of coupled vihrAtions while they are almost.negligiblc for the in-phase 

modes. 
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APPENDIX; Computer Program (AMA,SS} 

This appendix gives a list of the computer program~ AMASS~ which was 

used to calculate the added mass coefficients for this report. This· program 

can be used for a group of cylinders immersed either in a fluid-containing 
. . 

cylinder or in an infinite fluid medium. The computer program ·iswritten in 

Fortran IV for IBM/370 computer system. The program is not necessarily written 

in an optimal manner in terms of computing time. 

. ' 

· ... 
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•••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
• •• • ~: 1 I f::;• [Ji_IT F~ ~ A t·1~ ~- ~: ++ • + 
• .. .. 
• 

~ DDED ~ A SS ~J=~~ICTE~T S o= A GROUP 0~ CIRCULAR 
: Y L I~ D~~ S IN A CJN=INED ~LUID 

• 
• 
• 
• 

····················································~· 
T~ I S D~OGRAM C ALC UL~TES ADDED MASS COE~FICI~NTS . OF A GROUP OF CIRCUL~~ 
Ct~ I ND~~S IMM~~SED I~ A FLUID CONTAINED IN~ CYLINDER 0~ IN AN I N~INITE 

c:_ :J r D r·1ED I u r·i 

I r·eUT '·/AR I~ E:LE S: 
••••••••••••••• 

NNN: NUMBER OF TERMS USED (NNN=10 ~IILL GIVE RESULTS WITH SU~FICIENT 
ACCU~ACY IN GENERAL) 

~V I: TOTAL ~UMBER 0~ CYLINDERS INCLUDING THE OUTER CYLINDER 
ICHK: IF ICHK=1~ GENERAL CASE WITH OUTER~ CONCENTRIC & NON-CONCENfRI 

INNER CYLINDERS, IK=D 
IF ICHK=2, OUTER & NON-CONCENTRIC INNER CYLINDERS, IK=1 
I~ ICH~=3~ NO OUTER & CONCENTRIC INNER CYLINDERS; INFINITE 

rLIJI D ~ I f<=2 
. R~(I): RADIUS o~ CYLINDER I 
~A(I)~ Y A ( Il: COORDINATES D~ CYLINDER I 

•• INPUT S~0UENCE OF CYLI ~ DER GEOMETRIES •• 
OUTEP CYLINDER, CQNC~NTRIC INNER CYLIND€R & OTHER CYLINDERS 

:] ·_! TP•JT '·.·'F!P I ABLES: 
• ••••••••••••••• 

~L0 (I~Jl•BETrr,J ) ,SIG ~ I,J),T~0(!,J): gDDED MASS COEFFICI~NTS 

D I M~NSIDN SPE C I=ICATIO~S •• 

o::~,..~::· I~ l<f< I :o 
0:: V ~::: K , I<" V I< ":! 
o:y y · I , nnr·1· ~::y· I ·, 
( v k:Y ~ r·H·H·~ ~ ~.:: 1(>::· • .·i~·~r ·f.o 

o: k:· n • 2 • r.:: r-~ • 2-:. 
( !<: r-i + 2 , I<" I< !<: .:0 

r.:: I( 1<:. = ~-:. 1< I + I ~:.: 

K ~~=·.{ ~::I< • nn r·~ 

.-, • .. • · .. • 
f"": 1f ••• ... ' 

RAIJ,PHY8,~LP,BET,SIG~TAU 

PI _1, F'Y\' 
~ L • E: E , -~· I , T ~ , H 
HH, f:F:, cc, DD 
E 
F 

S:!_if:f;:IJI_IT H~E ~F·FE ~: o:J·Jnr·h I<Y I~ I c~o-w: ~ RA, ::<A~ 'lA ~ ALF', t:ET ~ :S: I G ~ I AU) 
ft T r·1 E r-~ -~ I 0 ~~ f.:' :=t < ·:;: .:o , ::-:;A o: ·=: :o , 'l !=t 0:: ::;: -:. , q 0:: ::;: ) ~ ::·:: ( ~::: ':o ~ \' .:- ::;: > 
DI MENSION RAJJ(S,g:o,PHYA(8,3l•RIJ(8,8>,pHY(S•8":1 
D I r·1 ~ r·E I 0 r-i A Fl o: ·: : • 1 0 • ::: , 1 0 .:0 ~ B B ( ::;: , 1 0 ~ ::;: ~ 1 0 ":t 
f· !'·1C:t·E I or·1 CC ( ::_:: , 1 Ci, :: • 1 O> , DD ,. ::;: , 1 0, ::;: , 1 O> 
D I r.E i-1 ~: I or·~ Y 0:: :: : , 1 0 • ::;: > • E o:" 1 ,::. 0 , 1 .::. 0 :o , r= (1 f. 0 , ::=: :o 

[' P.1 E ;·E I iJ r·~ A!_ o:::: ~ 1 0 , ::: :o , E: E .:" ·:: , 1 0 , .:: ·:o , 8 I .:. ::: ~ 1 (I , ·:: -:. • T A 0:: ::: ~ 1 0 ~ .:;: _:. 
DI ~~~S ION ALP ~ .s:o.BET(8,8l,SIG<8•8>,TAU0::8~8' 

4 o (1 1 r k: = n 



GG to 4004 
4 (I Ct .:: I K = 1 

I '=:·K= 1 
'.3CI T.O 4 0 04 

.:+ 0 u:;: I~<=:=: 

I r=:·l< = (y/ 

4004 ~KK=(KI~I( 
C •• CLEAR WORK SPACES •• 

DO 4 0 05 I= 1 , ~::'t·n::: 
i:;::(I) =0.0 
>=:O::I) =0.0 
'l 0:: I ':1 = 0 • 0 . 
Do 4 o o s ·-' = 1 , ~=:· fn=:: 
F.: I .. J 0:: I , ._1 ':1 = 0 • 0 
F'HY o:' I, ._I)= 0. 0 
D !J 4 0 0 5 r·j = 1 , lH·H·l 
DO 4 0 05 t·1= 1, t-it·m 
A A 0:: I , t·l , ._I , r·D = 0 ·• 0 
B f: o:: I , n , ·-' , r·l ,:. ::::: o . o 
c c o:: I , t·l , ._1 , ;·n = o • o 

4 0 0 5 D D 0:: I , t·J , ._1 , r·1 :• = 0 • I) 
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C •• GO TO I~DEX KKK ~ROM KKI •• 
Go to (4Q31,403i1,4033) ,IcH~ 

4 0 ;: 1 DO 4 o-;:.=: I= 1, k::~::~:: 
::< 0::!::0 =:=<A o:'I':o_· 
/(I,:.='/Ao:'I':o 
q ( I ::0 = F: A o:' i ·:o 

D 0 4 0 ;: 2 ._! = i , k V K 
;: I _I 0:: I , ._I :o = ~·.; I'J 0:: I , ._1 :• 

403:: PHYO::I,J)=0HYRo:I~J) 
;:;o TO 4 i:t4 0 

4 o:::::;: 1 :=< (1 :o =:=<A ( 1 :o 

·/ o:' 1 ) = 'l A 1 ) 
::;::o::1:o=F:A 1.:0 
~: I ._1 0:: 1 , 1 ) = ::;:·A I _I ( 1 , 1 .:0 

PH\' 0::1, 1 ':o =f'H'r'.A 0::1, 1) 
4033 Dd 4036 I=3~~kK 

I' If.:'• I ·'·I~< 
':-:; o:. I ·:o = :=< 8 0:: I I ~=:· ':o · 

\'.:'I :o ='/A 0:: I I K) 
c::: 0:: I :o = ~: A o:' I rv :o · 

GO TO (4034,40js::o,IK · 
4 1)';: 4 P11 = I - 1 

c::· I ._1 (I , 1) =~:A I ._1 (I t•ll , 1) 
'd J o·, I> "'-'F.' ALl i:'1 , It'll) 
F· L1 . .,.. 0:: I ·, 1 ·:. = P H . .,.. A o:' I !•11 , 1 ':o 

,::. !-/ '{ 0:: 1 , I :o = :=· i-l·r'/1 o: l · I ~·11 :• 
.4035' DO 4036 J=3,KKK 

._I_IL:::=._I- I~:: 

~I_Io:'I,J)::RRI_IO::IIK,JJK.:o 

4036 F'HYo:'I,J:o=PYYAO::IJK,JJK) 
4 04 0 cor·J T I t·JUE 
C •• FORM AA, BB, cc·~ DD MATRICES ++ 

GO TO 0::4050,4050,5010),ICHK 
4050 DO SOOD I~l,IKK 



:::.;:::: 1 

4051 

D 0 · 5 o o f' rJ = 1 ~. rH·i ri 
1::;0 TO o::::::::::: 1 ~ ·::::;::::::::> ~ I . 
r·ll'lr·l=N 

' ,::;o TO ;?-8:::3 
t·lt·lt>l=NNt"~ 

CONTI r·~UE 
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DO 50 0 0 ._I= 1 , KKI< 
IF<ICHkoEOoi> GO TO 4051 
IF<J.E0.2> GO TO 5000 
CDr·HINUE · 
DO 50 0 0 t·l= 1 ~ t·1,..11'1 
GO TO (4052,7770>,I 

40 52 C 0 NT Ir1U E 
IF (J-2> 4053,·4053,4100 

4053 IF <N-M> 4061,4054,4061. 
4054 IF <I-J> 4058,4055,4058 
·4055 AA(I,N,_I,M)=N 

f: B < I , r·~ , ._1 , r·t > ~ t·~ 
c C ( I , r~ , J , r·n = o 0 cr 
rr rr o:: I , n • -' ~ r-to = r:1 0 o 
GO T05000 

405S 8A(I,N,J,M>=-N+(P0::2)~R(1))++(N+1) 

BBO::I,N,J,M)=-N~CP0::2l/R(l))++(N+1) 

C C ( I , r·h ._I , r·i ~· = 0 , 0 
D D ( I , n , J , r·t :o = 0 • 0 
GO TO 5000 

BE: < I , r·h J, r·n = o . o 
cc <I, r·~, J. r-1::0 = o. o 
rr n o:: I , r1 , . J , r·n = o . o 
(30 TO 5000 

41 o o r·1r·11 =r·1-1 
Nt·l r·1 = n-r·l 
APG11=(M-1)+PHY t,J) ; 
AGGl=R(_I)+~(J)/ R(I)+RIJ(l,J)) 
D 0 4 1 0 1 PlC :;;; 1 , r·1 

Cr-JA1=1.0 
DO 41 02 r·tC= 1 ~ rl · · 
CNA 1 =CNA 1+t•1C 

4102. AGG1=AGG1+R<J}'R0::I/ 
Cf'lA 1 = 1. 0 

41Ci3 
4104. 
4105 

4106 
4107 
41 o::: 

IF (M-1::04103,4105,4103 
no 41 o4 r·11::= 1, r·1t·11 
(:i'ih 1 :(:t•lFI H•r•1•:: 
cnr·lrlA= 1 • o · 
I F •:'t-1 r·1t·D 4 1 0 6 , 4 1 0::: ' 4 1 0 E. 
DO 4107 MC=t,NMM 

·•::r-1r·1t'1A= cr·Jt·11'1A+r·1C 
AA(I,n,J,NMM+1)=-AGG1+CN~1+COSO::APG11)~~CMA1+CNMMA) 
BB n • t"h .. h W·H-1+ D '=AA <I, t·J, J, t·H·m+ D 
CC(J,N,J,NMM+i>=A~Gl+CNA1~SIN(ARG11)/(CMA1+CNMMA) 

.r;;o T'J 5ooo 
7 ?7 o co~n nw~ 



IF(J.GT.2) GO TO 7774 
IF u·~. n:=:. r·n ·GO T'J 7772 
IF(I.EQ.J) GO TQ 7771 
I ~ ..-r-1 ..-.(, 1 ·, ,-o TO 777 :· 

- 41 -

• •, 1 • ~.:·1 
• • : :" . ' I I I ·-1 

AA .:"I ~"n, ._!:, r·r:o =~~· O::t":. 0::2.::0 .. ···F.: d) ::0 •• O::N-1) 
BBO::I,N,J,M>=~•0::~0::2)/R0::1>j••<t-i-1) 
c c 0 ' t·h ._1 ' f'1 :0 ~ 0 • 0 
D D ( I , n , ._1 , r·U = 0 • 0 
130 TO 5000 

7771 · AA(I,N~J,M)=-N 
B B I , r·i ~ ·-' , r·n =- r·~ · 
CC I , t:h ._1, t·Lo ·= 0 ." 0 
D D I , n !i ._I , t·1 > = 0 • 0 
60 TO 5000 

7772 AAo::r,N,.J,M)=O.O 
B B i , N , ._1 , t·D ::::: 0 • Ci 
C C I , N , ._I , i·1':o = 0 . 0 
D D I , r~ , ._1 , t·D = 0 • 0 
60 TO 5.00(1 

7 7 7:;: A A <I , t·~ , ._i , r{:o = 1 • 0 
f: B r:: 1 , n , ._1 ~ r·n = 1 • o 
C: •:: ·( I , r·i , ._I • ~·1 ':1 = 0 ~ !} 

D D 0:: I , r-i , ._1 , r·1 ,:o = 0 • 0 
(30 To soon 

7 7 7 4 I N 1 = r·~- 1 
I r·11 =r·1-l 
I t'H·11 = t·i H1- 1 
~RG1=(N+M)+P~Y(I,J) 

AGG=R~I)/~IJ(J,J>•RO::J)/R(I) 

bo 15051 MC:=1·~ 
15051 ~GG=AGG+(-i.>+R(._I)/R(I) 

i::r·~A= 1 • o 
IF <In1.:o 15052, 15054• 15052 

15052 DO 15053 MC=i,IN1 
15053 CNA=CN8+MC 
15054 0·1A=1. 0 

I F ( Jroil ':o 1 5 (i 5 '5 , 1- 5 (I':· 7 , i 5 0 '55 
15055 DO 15056. MC=1;LM1 
1505~ C:MA=CMA+MC 
15 057 cnr·1A= 1 • o 

DO 15058 MC=1,INM1 
1505::: CNMA=CNMA.MC;(RIJ.:"I~J)/R(I)) 

AA 0:: f, ~i ,' ~~, r·n :.:p;;,;;•cnr'IA .. ··t:r·iA.····C1'1A+t::D:S: O::t=IRGD 
BB<I,N,J,M)=-AAO::I,N,J,M) 
CC(I,N,_I,M:o=AGG•CNMA/C~A/CMA+SIN<RRGl) . . 
DD(I,N•J•M)~CC(I,N•J,M.:O 

5ooo ·contiNUE 
IF <KKK-2> 206,206,5010 

5o 1 o car·~T I r·iUE 
DO 2 05 I=·:::, KhY . 

. rio ·2 os f'i= 1 , r·mr·-1 
DO ;:;:· 05 ._1= 1, ~O::I<t< 
GO TO (5011,5012,5013),ICHK 

SOle.' IF o:'_l-2) 5011,21~15,501 
5 01 :;:: I F 0::.:.1- 2 :0 2 05 • 2 05 , 5 0 1 1 

.·.· 



I 

:. 01 1 C 0 r·i T I r·J U E 
[I 0 2 0 5 r·1 = 1 ~ ,.; ri r·~ 
I c n - ._r > 5 o 1 ? ~ c:, 1 4 ~ s 01 ? 

5 0 1 4 I F (}·i- t-1:• ':• t) 1 -;. ~ 5 1 5 ~ 5 0 1 f.. 
5015 AACI~N~J~~:r~-N 

B E: c I , ri , ·-' , r·1 > = _:. r·1 
r:: c I ~ n , ·-' , ~·l> = o . o 
D D I ~ t·h J ~ r·n = o • o 
GO TO 205 

SOlS AACI~N,J,M)=O.O 

BE: CI ~ N, ._1~ r·1:r =0. 0 
c c r::r , n , ·-' , t·D = o • o 
D D ( I , r·j , ._1 , t·1 :. = 0 • 0 
GO TO 2 0':• 

5017 INl=r-i-1 
u-11 =r·l-1 
rt·ir·tl =r·i+f'l-1 
r·Jr·1N=t·1-N 
I F (._I- 1 > 5 0 5 0 ~ 5 0 1 ::: , 5 0 5 0 

50 1·::: IF (t·J-r·L• S 0 1 '?, 5 02 0, 5O;=: 0 
5019 AACI~N,J·M>=O.O. 

E: P ( I , n , J , r·1·:. = .o • o 
•:: C ( I , N ~ J • r·1 ·, ::::: 0 ~ 0 
It D r:: I ~ r·i , -' , r·; :r = o • {! 
(j0 T0.20':r 

5020 A~G12=CM-N~+FHY(1~I> 
ci::;G2=F.: ( 1:. ...-~;:·I ._1 r: 1 ~ I>. 
C!'iA:::= 1 • 0 
DIJ :. 021 r·1•::= 1 , r·i 
,:j 1:; ::; 2 = 8 c; (;2 + ~: I ._1 r: 1 ~ I > ...- !;· ( 1 :r 

5021 CMA2=CM8~+MC .• 
CNR2=1.0 
IF (N-1:. 5022•5024,5022 

5022 DO 5023 MC=!,IN1 
AGG2=AGG2+P(I)/RIJC1,I> 

5023 CNA2=CNA2+MC 
5024 CMMNA=l.O 

!~ fM~N) 502~,502?,5025 
5025 DO 5026 MC=.l,MMN 

42 

5026 CMMNA=C~M~~+MC· . 
5027 AA(J,N,J,M>=RGG2+CMA2+CDS<ARG12>/CCNA2+CMMNA> 

BBCI,N,J,M>=8A(I,N,J,M) 
CCCI,N,J,M)=AGG2+CMA2+SINCARG12)/CCNA2+CMMH8) 
DDC!,N~J,M)=-CCCI,N~J,M) 

GO TO c'05 
5 (151) Fi,:;:•(:; 1 = rJj+r•1) 1>-~~ / (I .• _i") 

AGG=P.CIJ/RIJ I,JJ+Rr'J)/R(!) 
DO 5 051 r·l•::= 1 r·l 

5051 AGG=8GG+C-1.).+R(J:r/~(I) 

cr·iA= 1 • o · 
IF CIN1) 505~,5054,5052 

5052 DO 5053 MC=l,tNl 
:.o:.:;: •::NA=Cr-JA•r·1C 
5 054 Ct·1A= 1 . 0 

IF OrH :r 5055~ 505?, 5055 



5055 DO 5056 MC=1~IM1 
5056 CMA=CMA•MC 
5057 C~lr-1A=1. 0 

DO 5058 MC~1~INM1 

... 43 -

5058 CNMA=CNMA•MC/(RIJ<I~J)/p([)) 
AACI~N~J~M:o=ASG•CNMA/CNA/CMA•COS<AR61) 
BB<I~N,J,M)=-AA<I~N,J,MJ 

CC<I,N,J,MJ=AGG•CNMA/CNA/CMA•SINCAR61) 
DD<I~N,J,M)=CC(I;N,J~M) 

205 CDr~T I NUE 
20E. CDrHINUE 

GO TO <520Q,Si00,5100J,ICHK 
5100 DO 50 N=1~NNN 

DO 5o r·l= 1 , t·mr·J · 
DO 50 1=3, Kt=:·r.:: 
IIl=I-1 
IIK=I-IK 
GO TO (11, L::)., IV 

1 1 A A (! I 1 , t·h 1 , t·1 ) =A A d ~ ~l , 1 ~ t·D 
B B o::I I 1 , t·b 1 , t·l :o = B B < I , r·b 1 , I'D 
CC <I I 1 , t·l, l , r~n = C C < I , t"l , 1 , t·1 J 
Ir D d I 1 , N , 1 , r·n = fi D c I , r·~ , 1 , t·1) / 

12 DO 50 J=3,kKK 
(; 0 T 0 ( 2 1 , 2 ::: J , I ~=: 

21 IF <I-4> 22~23~23 
22 ._1._1 1 =._1-1 

A A c 1 , t·l , ._!._i 1 • ;.i :o = R A ( 1 ; ~-1 , ..1 , t·D 
BB<1•N,JJt .• ~)=BB(1•N,J,M) 
c c < 1 ~ n , ._U1 , ;·1 ) = c c < 1 , r·~ ~ J , t·U · 
D D ( 1 ~ r-1 , .J _: ! , f'U = D D t: l ~ t·l , ._1 , t·D 

2·::: JJK=.J- I~< 
.::..::. ... I I L··· 'r.J I '···· . r,< ., -.:.H- ,.. I r·' I t·1·., : 1 ~ 1 .. r· .. !I • 1 ~ ._. ·-• · .. ~ ~ ; : -. . .. ~ . 1 !I ._ ~ .· 

BB<IIK~N~.JJ~,M)=BBCI,N,J~M) 

CC<IIK~~,JJ(,M)=CC(I,N,J,M) 

DDCIIK,~,.JJ~,M)=DD<I,N,J,M) 

50 COt-fTir'IUE 
5200 KN=kKI•NN~ 
C •• PREPARE TO SOLV~ SYSTEM OF EQUATIONS FbR X-AXIS •• 

DO 2:::: 0 . I= 1 , rn<I 
DO 2:~:0 r·l'==1, r·Jr·ir-J 
In= cr -1 > •r·J~·;n+t-1 
I I= Hi+P.:Jl 
flO 2::::0 _I= 1, ~<;-:·:I 
D 0 ;:: :;: 0 t·1 = 1 , r·H·1 r·i 

.Jr·i""( J-1 > ·~·H·J~·j+f'l 
JJ=._If'l+KN 
E C I t·.l, Jt·V =AA .::I ~ r-1. _I, t·D 
E ( I I , ._I _I J = t: E: ( I ~ t'l ~ ._1 , t·D 
E (I r·l ~._I _I) =CC: (I, r-l ~ ._1, r·D 
E(II~JM)=DDCI,N,_!,M) 

:·:::: 0 cor·~T I r'~UE 
DO 220 I=l~K~=:·r 

DO 22 0 r-i= 1 ~ r·H-ir·l 
n fl ;:: .:=: o ·-= 1 , r=:: k:: I . 
I F '•Ji - 1 .) 6 ·:: ' ~. 0 ~ 6 .=: 



'•;\ I 

.:. 0 I F r::I - L :o . ::. C: ~ 6 1 , 6 2 
::. 1 Y ( I ~ n , !_ > ·-= 1 . o 

130 TO 22 0. 
6~ H(I,N,L)-=O.D 
220 conTn~uE 

DO 24 0 I-= 1 ~<~:::I 
DO 24 0 t-l= 1, r-H·iN 
It-t= 0:: I -1 > +r1Nr·i+t·i 
I I=HHK~~. 
DO 240 !_=1 ~ K~::.I 
F(IN,L>=H(I,N,L) 

240 F<II,L)-=0.0 
KNKI'i=2+1<t"i 
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C •• jQLVE SYSTEM OF EQUATIONS ++ 
CALL CROUT<E,KNKN,F,KKI,DETERM,160) 
DO 25 0 I= 1 , k:):::I 

DO 250 N=l,r-Jr-Jn 
I N = ( I - 1 ,:. + ;-H·1 N + r-1 
I I=IN+~:n 
DO 25(• L=l,~::VI 
AL(I,N,L>-=~<IN,~) 

TA(I,N,L)=F(II,L) 
250 CONTH~UE 
C ++ >=·t;::EPARE TO. S:OL'·/E S'r':~:TEt'1 OF EOUAT IONS: FOR Y-AXI S ++ 

DO 27(t I=l~~,:~:::r 

D 0 2 ? o r·~ = 1 , '·1 rH·~ 
I t·i= <I -1) •r·Jr·ir·i+r·~ 
I I= I N+!<r·~ 
DO 270 L=l~f:::~:::I 
~ .:- I r·~ ·, L > = (1 ; 0 . 

270 ~<II,L>=H(J,M,L) 

DO 2:31 I= 1 , f:~::· I. 
It 0 2 ·;: 1 r·~ = 1 • '·if·H·~ 
I ~·l= (I -1) +t-~r·~r·i+t-4 
I I= ItHKt·i 
DO 231 ._1;, 1 • ~::y· I 
DO 2:31 r·1= 1 , r·HiN 
._1"•1- •:: J-1) • r·!r•!r·~+F·1 

EfiN,JM)=~A(I,N,J,M) 

E<II,JJ)=BB(!,N,J,M> 
E<IN,JJ)=CC(I,N,J,M) 

231 E<II,JM)=nncr,M,J,M) 
C •• SOLVE SYSTEM OF EQUATIONS ++ 

CA~L CPOUT(~,KNKN,F,KKI,DETERM,160) 
DJ 2:::o I=l,~::.vr 

D J 2 :3 0 f·i = 1 , rJ r·~ r·j 
I r·~ = .-: I - 1 .:. + r-i t·H·i +!'i 
I I= HHI<ri 
IiO 2:::0 L=l, VI< I. 
·s: I 0:: I , N , L) = F .:: I N , L ) 
BE(I,N,Ll=F<II,L) 

:::::n COrHHW~ 
++ CALCULATE ADDED MASS COEFFICIENlS ++ 

::;Q TO <E.OOl, 601)2, 600:3), ICHt< 



., . 
- 45 -

t:.CII:tl I = 1 
~21=RA(2)+RA(2)/CRA(l)+RAC1)) 

DO t:.OO L=t~~on<I 
8LPC1,L>=AL(1,1,L)+AL(2~1,l)+R21 
·s:IG(l,L:O=:S:I (1, l,L)+:S:I <2, 1,L)+~~21 
TAU(l,L)=TA(l,l,L)+TA(2,1,l)+R21 
BET(l,L)=BE(1,t,L)+BE(2,1,L)+R21 
IF <KKI.LE.2> GO TO 600 
DO 6000 ._1=::::, K~::I 
9JI2=RA(J)+RA(J)/(RA<I>+RA(I)) 
ALPCl,l)=AL~(l,Lj+AL(J,l,L)+RJI2 
SIG<l,L>=SIG<l,L)~SI(J,l,L)+RJI2 
TAU(1,L)=TAU(l,L)+TA(J,1,L)+RJI2 

6000 BET(1,L)=BET(1,L)+BE(J,1,L)+RJI2 
6 0 0 1::ot·~T I NUE 

I=:=· 
DO 7004 L=l, n::I 
ALP(2,L)=Al<l,l,L)~Al(2,1,l) 
·~: I G ( 2 , L) = :S: I <1 , 1 , L ) + S I ( 2 , 1 ' L) 
T8U(2,L>=TA(1~1,L>+TA(2,1,L) 

B~T(2,L>=BE(1,1,L)+BE(2,1,L) 

IF <KKI.LE.2) GO TO 7004 
DJ 7oo:::: J='::::~ ~:::r:::r 
A':;':;= n. o 
B ,:; t:; = I}. 0 
CSt;=o. 0 
DG 1:3= 0. 0 
RJIJ=RACJ)/RAIJ(2,J) 
DO 7002 N=t,nnn 
ARG=(N+l)+PHYA(2,J) 
A51=N+RJIJ+(COS<APG)+AL(J,N,L>+TA<J,N~L)+SI~(AR6)) 
BG1=N+RJIJ+(C0S(ARG)+SI(J,N,L>+BE<J,N,L)+SIN(ARG)) 
CG1=N+RJIJ+(SIN<ARG)+RL(J,N,L)~TACJ,N,L)+COS(AR6)) 
[1::; 1 =t-i+RJ Ll+ 0:::~: IN (A¢.~1:3) +S I (J • t·h L)-E:E (._I, t·h l) +C.OS <ARG:> :> 

DO 7001 1'1C=1,r·i 
L:tG1 =-AGl+R.JLI 
f:G 1 =- C:G l+R.J IJ 
::::1::; 1 =-C.G 1+RJ I J 

7001 DG1~-DG1+RJIJ 
Fii:3G=AG6+At:5 1 
Bi::;':;=.BGG+BG 1 
CSt:3=CGG+C61 

7002 DGG=DG6+DG1. 
ALP(2,l)=ALP(2,L)+AGG 
SIG(2,L)=SIG(2,L)+BGG 
T:=:!_i c=: ~ L.i = TAU\2, L::O +CGI:5 

7003 BET<2,L)=BET(2,L)+D6G 
7004 t::orHINUE 

DO 605 L=1,Kk:I 
ALP(2,L>=-ALP(2,L) 
SIGC2,L)=-SIGi2,L) 
TAU<2-L)=-TAU(2,L:o 

605 BET<2,~~=-BET.C2,L) 
1:;iQ TO 6 0 0:3 

6002 DO 700 l=l,KKI 



I i I ;. 
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.;1_p 0::1 ~ L.:o =AL (1 ~ 1 ~I_) 
:::IG<1~L":I=SI .:"1·1 ~L) 
T8U 0::1 ~ L.:o =TA .:" 1 ~ 1 ~ L> 
BET 0::1 ~ L) =E:E < 1 ~ 1 ~ L::O 
DO 700 ._1=2~ ~<<I 
RJ12=RAO::J::O+RA0::._1)/(RA0::1>+PA.:"1)) 
ALP(1~L>=ALPO::l,L)+ALO::J,1~L)+RJ12 
·s:IG <1, L.:o =:S:IG o::1, L) +SI .:._t, 1 ~ L"+RJ12 
TAU<1~L>=TAU(l,L)+TA(J,1,L)+RJl2 

700 BETC1,L)=BET<1~L)+BEO::J,1,L)+RJ12 
6 0 0::.: I :S: S = I I< K + 1 

IF<KKI-I:S:S>899,6004,6004 
6004 CONTINUE 

DO 800 I=ISS,KKI 
DO :::oo L=1, K~<I 
ALP(I,L::O=AL<I~1,L) 

SIGO::I,L>=SI O::I, 1,L) 
TAU<I~L)=TA<I~1,L) 

BET <I ~.L> =BE O::I ~ 1, L> 
DO 79 0 .J= 1 ~ f<~=:· I 
AGG=O.O 
BGG=O.O 
C:GG=O.O 
IP:.;G= I). 0 
I F o::I -._I :o ::: 0 1 , 7 7 0 ~ ::: 0 1 

:::o1 c:;o ·To <:::o2~:::o2, :::05) ~ ICI-fK 
802 IF (J-1) 805~803,805 

803 DO 750 N=l,NNN 
ARGl=.:"N~1>+PHYA0::1~!) 
R 1 I ._1 = R A 0::1 > .··'~·A I ._I ( 1 ~ I > 
RIJ1=RAIJ<1~l)/RA(1) . . . . 
8(:; 11=N+R 1 I ._1+ <CDS <A~:G D +AL 0::1, t·1, L> + TA.: 1 ~ t·h L> +S HfO::A!;!:,:.; 1) :• 
f;t; 11 =N+P 1 I ._I+ .::co::: (AJ;;'G 1) +S I ( 1 ~ t·1, l) +BE ( 1, N, U +:s:I t·~ (f!F:;:G 1·:o) 
CG11=N+P1IJ+<-SIN<ARG1)+AL 1,N~L)+TA0::1,N~L>+COSCARG1)) 
DGli=N+R1IJ+(~iiN<ARG1::0+SI 1~N,L)+BE<1,N,L>+COS<ARG1>> 
DO :::04 t·1C-= 1 ~ ri 
A'; 11 =AG 11+R I._! 1 
B•:;11='BG11+~:I.Jl 
CG 11 =I.::G 11+F.: I ._11 

804 DG11=D611+RIJ1 
AGG=Fit3G+AG 11 
BGG=BGG+BI31l. 
CGG=CGG+CG11· 

?50 DGG=DGG+DG11 
(:iO TO 77 0 

805 RJIJ=RA(J)/RAIJ(J,J) 
DO 760 n= 1 ~ t·H'1N 
ARG~(N+l)+~HYA(I,J.:o 
AG 1 =r·1+RJ I ._I+ O::CO:S: (Aj:;::G::O +AL O::J, t·1, U + TA (._t ~ N ~ L) +SIN (ARG)) 
BG1=N+PJIJ+O::COSO::ARG>+SI<J~N,L>+BE<J~N~L)+SIN<APG)) 
CG1=N~RJIJ+(~Irf(APG)•8L J,N~L>-TA(J,N,L)+COSO::APG)) 
DG1=N+PJIJ+<SINO::ARG>+SI J~N,L>-BE(J,N,L)+COS(ARG)) 

D o ::: o 6 1'1 c = 1 • r·1 . 
AG 1 :;:-AG l+P._I Ll 
BG1=-f:G1+P.JIJ 



d '. ' 

CG1=-CG1+~JIJ 
806 DG1=-DG1+RJIJ 

AGG=AGG+AG1 
BGG=BGG+BG1 
CGG=CGG+CG1 

760 DGG=DGG+DG1 
770 CONTINUE 

ALP<I~L>=ALP<IJL)+AGG 
SIG(I~L)=SIG(!,L)+BGG 
TAU(!,L)=TAU(I,L>+CGG 

790 BETCI,L>=BET<J,L)+DGG 
800 CONTINUE 

DO 299 I=Ist~KKI 
DO 299 L=1,KKI 
ALP(I,L>=-A~P<I,L) 
SIG(!,L)=-SIG<I,L) 
TAU<I,L>=-TAU<I~L) 

299 BET(J,L)=-BET<I~L) 

899 CONTINUE 
DO 8800 .I=1,KKI 
DO 8800 L=l,YKI 
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ALP(J,L)=ALP(I,L)+PA(!)+RA(!) 
S!G(J,L)=SIG(!,L)+RA<I)+RACI) 
TAU<I~L)=TAUC!,L)+RA(I)+RA(!) 

8800 B~TCI,LJ=BET(J,L)+RA<I)+RA(I) 

DO 910 I=l,KKI 
DO 910 L=l,KKI 
RIL=4./llPA<I)+RA<L))++2) 
ALP(J,L)=ALP(J,L)+RIL 
SIG(J,L)=SIS(!,L)+RIL 
rg0(J,L)=TAUC!,L)+RIL 

810 BET<J,L)=BET(!,L)+RIL 
RETUPN 
END 



~ ' ' I 
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c •••••••••••••••••••••••••••••••••••••• 
c • • 
c • +++ SUBROUTINE CROUT +++ • 
c • i 
c •••••••••••••••••••••••••••••••••••••• 

C THIS PROGRAM SOLVES MATRIX EQUATION AX=B BY THE CROUT METHOD 
c 
C INPUT VARIABLES 
c ••••••••••••••• 
C A: MATRIX 
C N: ORDER OF A 
C B: COLUMN MATRIX 
C M: NUMBER OF COLUMN VECTOR B 
C DETEPM: RETURN CODE~ IF ZERO A IS SINGULAR 
C · NMAX: ROW DIMENSION FOR A & B 
c 
C OUTPUT 
c •••••• 
C B: SOLUTION ~ STORED 

SUBROUTINE CROUTCA~N~B~M~DETERM~NMAX) 
DIMENSION ACNMAX,N),B(NMAX,M) 
DIMENSid~ VC160) 
DE TE~:r.·1= 1 • U · 
ItO 1000 V=1,r-1 
~<1='1=K+1 

~::: r·11 =r:: -1 
fEt·1F'= 1}. 0 
D:J 20 I =f< ~ r-i 
DO 2 L= 1 ~ ~::: 

A<I,K>=ACI~K)-DOTP<V~Ac1~K),KM1) 
IF<ABS(A.CI~K>>.LT.TEMP> GO TO 20 

3 TEMP=ABSCA(J,K~) 

I r·1A:=<= I 

--=t~·1~·:.:: =A 0:: I riA:=< dC:o 
IF <DETERM.E0.0.0) RETURN 
I~ <IM~X.EQ.K:o GO TO 600 
DETERr>1=-DETER1'1. 
DO 50 _I= 1 , r·~. 
TEt·1P=A (I<, ._1) 

A (K, ._I) =A (I t·1A:>=: ~ ._1) 

A 0: INA><~ _l:o =TE~1P 

5 (1 C CJiH I!"J 1_1 E 
IF<M.LE.O":o GO TO 600 
DO .400 _1=1, t·1 
TEt·1P= E: Cl<, ._1) 

B CK ~ ._1) =E: (I r·1A>=: ~ ._l;r 
B c I t·1A>:: ~ ._1_:. = TEr·1P 

0 COr·n INUE 
6oo no 666 L=t,K 

JFCK.EO.N) GO TO 850 



~ j ... , 
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DO 7 0 0 I =I<:P 1 ~ t-l . 

700 A(I~K)=A<I~K)/AMAX 
D!J :::0 0 J=KP 1 ~I'~ 

800 A<~:::~ ._1) =A,;:·..::, J.:o -DOTP ('.,.•, A r::i, .J) 'Kt·11) 
~50 I~(M.LE.U) GO TO 1000 

DG '3 0 0 .J= 1 , N 
9 0 0 E: n:::, ._1-;. =E: (~::, ._1)-ItOTP (V, E: (1 '.J) , Kt·1D 
1 0 0 0 (:O!'H It~UE 

IFCM.LE.O) RETURN 
DO ::: 0 0 0 I= 1 , N 
~<=l'i+ 1- I 
DO 6E.E.6 L=l<' N 

~666 V(L)=A(K,L) 
DO 7000 .J=l,t-1 

7000 8(k,._I)=(B(K,.J)-It0TP(V(K+1),f:(K+1,.J),I-1))/H(K,K) 
:::000 COt-iTit·WE 

f;.:ETURN 

c •••••••••••••••••••••••••••••••••••••• 
c 
c 
c 

• 
• 
• 

+++ FUNCTION DOTP ••• 
• 
• 
• c •••••••••••••••••••••••••••••••••••••• 

c 
C MATRIX MULTIPLICATION SUBPROGRAM 
c 

FUNCTION DOTP(A,B,N) 
PEAL +4 t=h E:, DOTP 
DIMENSION A(l)~B<l) 
DOTP=O.O 
I~ (N.EQ.O) RETURN 
DO 100 I=J,r·~ 

100 DOTP=DOTP+A(I)+B(I) 
~:E ru;:;::~~ 

E~m 




