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PREFACE

The work reported herein was'performed'as part of ;he base'technology
activity under thelFlow Induced Vibration Program (189a Né; CA054-A and
CAQ70-A) sponsored'by ERDA/ﬁbD.. The overall oﬁjeétive'of‘the-acti?ity is'to'
develop new and/or improved analyfical methods aﬁd guidelines fotr designing
LMFBR compbnentsAfo avéid detrimental flow induced vibration. |

Heat exchaﬁger:tubes ana reactor fuel pins are long, slender, beam-like
components typically arranged in bundles and immersed in a flowing fluid. As
such, they are sgséeptible to flow~induced vibratioﬁ. The excitation ﬁeéhah-
ism may.be associated with vortex-shedding, fluidelastic interaétion, or fandqm
pressure fluctﬁations in the turbulent flow. Designing té avoid large'ampli-
tude.motion; that ié,‘tolavoid a‘resonance'qondition'of'iﬁsfébility conditién,
and ﬁhe prédictidq:of componeﬁt response, ;équire knowledge of the dynamic
behavior of‘the components. However, cylindefs in é closely spacedAbundle do
not ;espond as single cylinders immersed in a fluid, rather, infe;aétion with
the fluid causes cbﬁpled motion of groups qf cylinders. Tﬁe fundameqtal
natural frequenc& of the coupled system will be lower than that of a single
cylinder immersediin-a‘f1uid.

Understanding and modeling fluid/stchture‘ipﬁeraction in cylinder bundles
is a basic requifémeﬂt in ;he‘devéiopment of analyticalimetﬁods éndAéuidelines
for designinglheat éxchanger and reactor fuel assemblies that are,frée from
component vibration probiémé; 'As‘a step toward sagisfying‘this requirement, in
this report a method of.analysis based on thé.potential flow tﬁepry is deveiopé&
for analyzing free yibration of a group of cylinders immersed in a fluid con-

tained in a cylinder. The method of analysis presented can determine the 'added



mass coefficients and natural frequehcies of coupled cylinder-fiuidlsyétems.'”
To demonstrate the method the ‘coupled natural frequencies for two eccentri-
- cally iocated cylinders with a fluid-filled gap are .calculated and discussed.

A few other examples are also given to show the édded mass coefficients.

Cii
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'VIBRATION OF A GROUP OF CIRCULAR
CYLINDERS IN A CONFINED FLUID

by

- Ho Chung and Shoei-sheng Chen

ABSTRACT

This report préSentsAén analytical method for evalﬁating‘the ﬂydrodynamic
masses of a group of circular cylinAers immérsed in a fluid congaihed in a.
cylinder. The analysis is based on'the'two dimensional pqténtial flow theory."
The fluid coupling effect among cylinders is taken intd'gccount;'self—added
:masses and mutpéi—addéd masses for both inner aﬁd'éufér cylindérs are evaluatéd;

Based on the proposed method, the free vibration of two eccentric cylinders

with a fluid-filled gép is analyzed as an- example.

.
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I. INTRODUCTION

The dynamic béhavior of a group of‘cyiiﬁderS‘submerged in a fluid has,
been of éreat intergét to many quineets in recent &éars,' In a gfoup of
cylinders, because of fluid coupling effects,'thé motioniof‘any‘cylindér
will excite the 6thérs and all.cylindérs will resﬁoﬁd as a group rather
than as an individuallone.' Therefore, a group of éylinders will have coupled
natural modes in which all cylihders vibrate at the same frequehcy‘with
definite phase relatiéns among'them. Coupled motions of multiple éylinders
in infinite fluid éré studied by several authofs [1-12].#‘ Studies of two
cylinders located'concentrically'withAa fluid—filled.gap havé alsb been
méde [13—14]. Howévér, to tﬁe best of the authors' knowledgg, coupled
vibrations of eccentric cyiindefs and a grqup-of.cylinders in a.confined
fluid have not béen<reported.‘ The objec;ivé of this'repor; is to presént
a general method of apalysis for coupled-viﬁrations of multiple cylinders.in
ajconfined fluid, The results of this study have important‘appliéétion in :
ﬁhe design evaluaﬁioﬁ of nuclearlreactor intérnals ;nd‘héét exchahée;s.

The fluid is és#umed to be incomprgSsible; inviscid aﬁd irrotatiénal;
thus, the potential flow theory is applied. The cylinders are assumed to
bé infinitely long apé their gxés ére pérallel}to'one another; i.e., the two
dimensionaI problem io-aolved. .The mafhematical technique gmployed in‘this
répor; is the method of coordinate transformations [11, 12].-.The fluid
velocity potential is expfessed in terms of’a'sefies Qi;h unknowh coefficients.
The velocity poténtial 6f one coordinate systeﬁ is thenvexpresged in terms .
of tﬁe similar ﬁoteﬁtial-fqnctioﬁ of a‘second coordinate.system using coordinate
transformations. Unknown expansion coéfficients.of the setiés formﬁlation
are determined.by matrix inversion of a truncated set of infinite equations
obtained by impdsing:the préscfibed boundary conditions. Thése,coefficients

are then used to calculate fluid pressure and hydrodyﬂamic'forces_acting on

*Numbers in brackets designate References at end of report.



"each cylinder. ang the hydrod&namic forces assbciated Qith the motions.
of each cylinder are determined, coﬁﬁled vibrations 6f ;he'cylinders can
be stﬁdied in a'straiéh£<forward manner.

After a gene;al method of solution is'presented, a-few numerical
examples are given and discussed in order to demonstrate the method.
Numefiéél féSults fér ﬁhe.added mass coefficients are given for ﬁhree
" cases: (1) two_ecéentric cylinders with a fluidffilled gap,A(Z) two
cylinders in a fluid contained in an outer cylindér, and‘(é) seven
cylinders in a fluid—éontaining cyliﬁder.' The rate of'¢onvérgénceifor
the added mass coefficients_is studied with respect to ?hé nunber of fétms
used<in caic#latioﬁs and cquared.for,twé typicél caseslwith smail:an& '
large gap sizes bet&eén inner'cylindéfs. Ihe effects on thé added mass
coefficients due‘to the vériation of ecceﬁtricity for cgée (i), aﬁd due
" to the variation of-Fadius'of the containing cylinder for éase (3) are
studie&. Natural.ftequencies aﬁd-mode shapes for coupled iibfat;oﬁs of two

eccentric cylinders'with a fluid-filled gap are calculaped and diScuésed.
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- II. ADDED MASS MATRIX

A. Formulation and‘Solution-

Consider the motion of a group of 'k circular cylinders in a cylindrical .

container (Fig 1). The container is filled with incompressible,‘invisc1d'
and irrotational‘fluid. Theiaxes of the cylinders are assumed to be
perpendicular to the x-y plane. Let R0 be the radius of,the container and
'(X,Y) be'global cOOrdinateswiththe origin at the center of the cOntainer.
Let Rj be the radius.of cylinder j and (xj;yj) be the'local‘coordinates
associated with'inner cylinder j.

The veloc1ty potential assoc1ated w1th the motions of’ these cylinders
can be written in terms of their own local coordlnates Assuming all inner -

cylinders are statlonary, the velocity potential assoc1ated with the motion

of the outer cylinder 0 is
n . ’ L4}

(a:o'ncosn60+b0ns1nn60) . IR (1)

E r
¢ = -
0 n=1 R

0
n-1
0
The velocity potential for~innerycylinder j assuming all other cylinders

are stationary is
o, = J —J—n—-:(ajncosnej'-ll-bjnsinnej) , G o= 1",2-’ .3,....4k__) )

In'equations (1) and (2), (rO'eo) and (rj,ej) are cylindrical coordihatéS‘
referred to the outer”cylinder 0 and inner cylinderAj*respectively,
and a_ , b ; a, and b are arbltrary constants to be determined
On On” . jn
The total veloc1ty potentlal is the sum of all the partlal potentials

-generated by every cyllnder, i.e.,
<1>=<1>0+.Z'<1>j . , , o (3
. i=1 .

In order to impose the boundary conditions at a particular cylinder, the

total velocity potential associated with all-cylinders must-be expressed
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FIGURE 1. Schematic and Coordinate System for a Group of Circular

Cylinders in a Fluid-Containing Cylinder
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in terms of the coordinates of that cylinder. Thereforé, it iS'necessafy

to aéquire'threé'fransformatioh reiationships for coordinates of the ;uter
and inner cylindersgntheée transformations are-acéomplished by usiﬂé Taylor
series expansion. | .

Expaﬁsion of ﬁhe fuﬁctibﬁ [roe#p(ieo)-;Rojexp(?woj)]_n in terms of

'Taylpf series leads to the eﬁpressions of the coordinates of innér cylinderv
j written in térms of (ro,eo) éssociated with the 6uter‘cylinder 0; The
above functioh can be expanded iﬁ powers of either roexp(ieo) or |

Ry exp(i¥g,), d.e.,

J
cosnb, o . R ’ : :
- = Eo Cmn ;Ei% cos[mwoj_- (m+§)601 R
. (4)
sinn®,  w - Rg. . o ‘ '
o A=-;§O:Cmn,;aih-s1n[mwoj - (m+n)60] ,
j 4 0 . . o
. I . (forn =1, 2, 3, «..,%)
or
cosnb, . . 2 rg. - : ' L
= = (—l)A 2 Cmn v cos[meok— (m+n)woj] s o
r. .. . .'m—o Ro. . ’ . . . ' .
J ‘J _ . (5)
sin nd, :ﬁ+i I rg . ' o
— . (-1) Z C o “mm sin[mé - (m+n)w0j],,AA
r, , m=0 RO‘ :
‘ ' (forn=1, 2, 3, .};,w)f
where
-1) !
C = M

min m! (n-1)!
and ROj is the distaﬁce between the-cénfers of the outer Cylinder 0 and
inner cylinder j; and wOj is the angle between the x-axis and the vector
from the center of the outer cjlinder 0 to that of inner cylinder j. Any

.velocity'potential-¢j in Eq. (2) can be written in terms of the coordinates

(ro,eo) associated with the outer cylinder O using the above relationships, i.e.,



O R . .‘ - 0.' . " .

¢, = J J ¢ —L—1{a cos[my_, - (wt)e ]

h| n=1 m=0 mn rton-+~n jno 0j 0

- bjnsin(mwoj - (m+n)90]’}.,~ G =1, _2,’- vess k) | (6)
or
n+l m' : .
0 oo co. " . R_ rO‘ . . .
<I>j = Z g ‘_(_—l) Cn'm -J——-m_'_n {ajncos.[me_0 - (m)woj]
n=1 m=0"" - ROj

- bjnsin'[me0 - (@m)y 1, G =15 2, k) (D
where the superscript 0 denotes a variable w‘ritteﬁ in terms of the

coordinates assqciafed with the outer cylinder 0.  If the origin of an

inner cylinderA j_coincidesw}ith that of the outer cylinder, then, it becomes

o R’n’+1 ’
0 - s _ oo N . :
<I>J. = Z —-‘L—n (a_jncos ne-o + bjnsin neo) . . ' (8).
n=1 L S

Expahsion of’ the function [rigxp(iei) + ROiexp(iwoi)]r,lf in terms of
Taylor series leads to the following relationships' of the *coordinates'
(ro,eo) of the outér, cylinder written in terms of (ri,ei_) asSéciated with

inner cylinder i, i.e.,

n : t Rglri ' '
r,cos neo = Z Dmn pa— cos[(n-m)lpoi + mei] L
- m=0-. Ro )
and S | . EEENCON
n n Rgirt; |
Ty 51nn60 = Z: 'Dmn - sin[(n—A-‘xn)lpoi +. rpei] .
m=0 - RO : : .
o i
(for n = 0, 1, 2, ...,®)"
where

- __n!
Dmn " m!(n-m)! " °

The velocity potential d.>0 in Eq; (1) written in terms of the local

coordinates associated with inner cylinder i can be now written



.

i_ i 0i ‘ _ . ‘
% = ) §~ Pon o1 {aoncosg(n Yoy + Wyl
n=1 m=0. , RO

-+ by sin[(n-m)yg; “?‘91” ; (4= 1', 2, voey K- 10
If the origin of theTOuter chinder is the same ds that of inner cylinder -

i, it becomes

n
. e r, ’
i i , , . :
(DO = z o1 (aOn cos n6i + bOn sin nei) . s : (11)
n=1 RO : . ) o :

Finally -the velocity"poténtial@j in Eq. (2) can be expressed in
terms of the local coordinates of cylinder 1 using the following relation-.

ships .[12].

cos n: ' e o : '
i - ¢<p? 1 - -
= -n- 7 - C0 o cos[mei A(m+n)wij] R
rj m=0 Rij : .
and . ' . _ , I L . - (12)
sin nb n+l o ri . - .
—= = (-D) Z ' Con Tmpn Sinmo; - (wm)y,.1-
r m=0 R..

3 . 13 ‘
(forn =1, 2, 3,4...,w)
where C__ is defines'previously, and R,, and ¥,. are defined in Fig. 1.
mn _ ij ij SR
Thus, using Eqs. (2) and (12) gives
. ‘ , n+l m _
Lo T D% A d (e cosims, - (wady,,]
o, = S (=1)'¢c_ a, cos[mg, - (an)y,.
3 pmrweg - PR ogMR R ' 1
: 4 _ ,
-'bjns_in[mei - (m+n)1pij]} , (4,5 =1,2, ..., ®-(13)
It is necessary to consider two cases: (1) one of the inner
cylinders is concentric with the outer cylinder;,and.22fﬂhoné_b%mthe
inner cylinders are concentric with the outer cyiinder. The former is
the general case and; _treated in tﬁi—.—s“t_'e—port. Thl.iS, the. Syst"_el'Il’(fO'-IA).'SiStS of k+1

cylinders: cylinder O is the outer cylinder, cylinder.1l is the inner

cylinder which is'cthentric with the outer cylinder; and}the~cyiihdérs



2 v k are other inner cylinders.. Note that case 2 may'be treated as a
. special case qf case 1. "The total velocity potential (3)‘can'be Qritten as
%

4q>§ . (1=0,1,2,...,k) . .Y
N A

I~ %

* . ) . . ' : .
where I - denotes the summation for j from 0 to k except j = i.
The displacement components of cylinder i in thé x and y difections-
are u, and Vis respectively. The fluid‘velocity component'in radial directien

is V and can be wrltten in terms of the coordinates of cylinder iy

vt = g% , (i=0,1,2,...,k). oas)
i .

At theAinterface of the cylindere and fluid,'the‘fqllowihg conditions must be

satisfied; ’
ou, v

= gpcos 0+t sin 0 (T 0,1L,2,0,0 L (16)

r. = R,
i i

Let the coefficientsAain ‘and}bin be defined‘as_followsfl

. k _ Buz , BVZ,
%in ~ Zo (“m-- 5t | Cink ot ) ’ .
R -an

k Buz sz
Pin T Eo (Ting 3t Ping at) ’

"(i =0, 1, 2, ...,k) ,
. g system of

where, a nt’ Blnl’ oinl anq Tlnl are solutions of the following SY¢

algebralc eouarlons ‘For'i =0, subst1tuting equations (1), (2) and (6)

into (14- 16) y1e1ds

‘R n+1 n-m+1_m

' ( 1) Z nil Ry Ri n!l - o L
no . -nt—]- o.- - . .
~onk | . R0 | 1ng i= 2 mg Ro m!(nem_l); o | t (18)
{ i(n )zcosuwo - Tj(n_m)lsinmwoj} ='6n1602 G



R, (O] k n-1 R“ mrlgm
no, , - n —l) o, .= 1 2 “o4 n!
1 (nem—1) !
On2 Ry : 1ng& =2 =0 Rgﬂ. m! (n-m-1)
_ {oj (n-m) g S8 mwoj 5 (n-m) 2 sinmy j}f =0 ,
' . . (18)' .
m+1 m
R 0L K no1 AR .
nt - n (—1) T -7 nZ 0], ' n! — ~.(Contd.)
Ont RO | 1ng 322 m=0 Rn+1 m! (n-m=-1) 5
{aJ (n-m) 2 Sinmy J (n- )2 cos mxp J} =0 ,
R \0+1 k n-1 ROHRE :
nBong ~ @ (R—l) Bing ~ L1 n+l = m'(nt-lm-l)'
n 0 j=2 m=0 R,
{OJ (n-m) 2 sin'mlpd:i (n-m) 2 cos mtpo } 6n1602 R
where

m=0,1, 2, ...,(n-1) -

For i = 1, subétitu‘ting equations (_1),. (2) and (7) into (14)-(16) yields -

n-1 ' n-1_m+1 '
o e 21T
Rq mE j=2 mer R (@D I-D!
03 .
{ajml colsf(m-.i-r'm)lpoj _+ Tj'm sin (m+'n)lb } = 6n1612, .
n-1 | n-1_m+l ,
‘n (ﬁ) Oy, — DO + lz(* ¥ ! 8 (-1 (mn-1) !
. - No, : i (-1
RO ‘ ng 1ng j=2 m=1 Rm-f'n (m-1) ' (n-1)! |
. oj - .
{c ng €08 (1;1+n)t110j + BjmJL sin (mh?wOj.} = o , :
L ' (19
n-1 , n-1_mtl o
f (2] om0 1 i CNEm)
R_0 Ong 1ng j=2 m=1 Rm-!-n (mn-1)! (n-1)!
0] :

{ajm si'n‘(n.r‘!'n)‘woj_‘ = Timg €08 (m-m)lpoj} =0



- 10 -

e e T S e i

.n--]'_ .' ' ' n-1_m+l .
B o L ey 0
o ot T L L TER T EDIEDT (onan
{cjml sin (m+n)woj - Bjmﬂ, cos (m-*-n)w } = 6n1612 "

For i > 2, substltuting equatlons 2, (10) and (13) into (14) (16) yields

: °Z° R an— !
-na. .+ {a, ,cos (m-n)lb
inf ‘me1 | R‘11(;—1 (n-1)! (m-n)! Omg
‘j ( n= (m-l-n-l!
+T0n sin (m-n)lllol} + . Z -X_ m+n oD =D !
, J =1 m=1 RiJ
{a ne C(,)s_(u_l'h)wij ,+'ijl'sin’(m*l-n)wij} = §n1612 o
 menn-l
' R0 i Ri o m! - ' ‘_
Minp F mzl~ '%n-l oD ! - omg S8 (m-M)ig
A n~1_m+l
k © R R, . .
* i -1 m+n-1 . :
+ B0 L sin (m nN’Oi} + Z z ,-m-i-x.1L Em—g.)'((nnl))! (20) -
‘ - J=1l =1 Rij T
{ijz cos(m-i-n)tpij + 'Bjm&sin (m-i-n)wij} =0 ,
, Jm-n_n-1 ,
-nT + ; RoinRi . m! ' {-a" sin (m;n)w
g T L Rn01—1 (a=1) T (m-n)T “"Omg 0i
~ 'k w RV lRm+l
i -1 +n-1) !
¥ Tomg €08 (m—n) d’O } + Z Z - m"“:’L %E—Z)l) '(n(ln-,l))'

_ i=l m=1 Rij
{ajml_sin '(m-!n),xpij - ijz cos-(m-l-n)lpij} = O' s
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- m—an— . o
(20)

-nB, . + Z {-0, , sin (m-n)dl
- EEEY]
ing Rr(l; 1 (n-1)!(m-n)! Omg (Contd.)
. -1 _m+l
. k [ Rn R, m
* ' (-1) (m+n-1)!
+ -
: BOm cos (m n)lpO } o+ Z g min  (m-1)!(n-1)!
j=1 m=1 RV,
| 1j o
{ojml S]‘.n (m-f-'n)wij - Bjm!& cos (m'*"n)wij} = Gnlaiﬂ,‘ >
where

i=2, 3, 4, ;k
L=0,1, 2, sk
m,n = 1, 2, 3, P

For the spéciai Cése'in which there is no concentric inner cylinder with.
the outer cylindér, equation (19) is not neede&.' Equations (18)4(20) form
the systems of 1nf1nite equatlons for infinite numbers of the. undetermlned
I 6 nt’ and T » Taklng a finite numbef of terms

coeff1c1ents:va-

1n2’181n ing’

in the expressions of-velocity pqtentials.and coordinate transformations
leads to the systémé'of finite equations. It will be shown that fast
convergence is achieved and accurate solutions can be oﬁtaiﬁed with.a'few
terms.

The fluid forcés:acting on .the cylinderé can be‘calculafed from fluid

pressure p;

. 39 o . - | L
p = -P 3t > o . . » (21)

where p is mass denisty of fluid. -The two components in the x and y

directibns of fluid'fOrqe acting on cylinder i are Hi‘énd Gf

v 2w i . :
Hi =,-J P -Ricoseidei {
0 r.=R » _ . -
. i 1 .
‘and ST L L (22
2m i . , :
G, = —J ) "« R, 8in0,d0,
1 0 r.=R 1 1
i
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Using equations (14), and (17)-(22) yields '

k (R, + R,\> 3%u a2y
H, = -o7 Z'(iz 2) (.O‘z 22"'012"‘ 22) ’
! 2=0 A 1 at’ .
and - 3 : ' ST (23)
, IZS Rl + RZ 2 Bz'uz azvz T :
G, = -pm ( ) T + B )
i 0=0 2 ig 8t2 ig 3t2

Here the so-called added mass coefficients a_iﬂ’ Biﬂ’ 011_ and Ti£ are obtained
as follows:

‘(1) For the outer cylinder (i = 0), .
-2 2 ) ,. : ' . N

4R k
o =——;Q—— ) ——i) o ’
0% 2 L R ilg
.(Ro+32) '?‘0 \'0
Ww lz< 'Ri\z
B., = — (—f- B. ,
O (g +r )2 i=0 \Ry/ 112 | S
Yo R 2 i . o (24)
2 2 L : 4
2 E (3
(s]2 (R0+R )2 120 .Ro S 5 )
(X A
2 2
LRk (R
L AR ) Tilg ?

; =—20
0% R )2 4
(Ro..z) i=0 Lo

(=0, 1, 2, ...,k

(2) For the inner cylindef (1 =1) concentric with the outer cylinder,

2 : n+l
o 4RE ® k R, -
T T [%012 LT N ol (R )'7
1 (R.+R ) : : n=1 j=2 0J
O SO ~ - )
e : ' in (n+1)y .} ,
{,ajnl cos (n+1)1p0j + TjnJL sin (n )lPOJ}]
2 : : ‘ n+l .
. 4RT . © k R,
ST ;—_—l;‘i'[?012 +op,t L2 (D (EEL)
(R,+R,) n=1l j=2 03
187 . _
Ter. - g - B ' + . ’
{_ojnz sin (n+1)lpoj- Bjnz cos (n' 1)11)03 }]

(25)
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2 : - - n+l

| BT cf lf 0 [
g, = =-—=—1g¢0 +0 + (-<1) ' n ( )
177 () L o1 T T Ly gz, TR Ry
{o, , cos (ntl)y . + B, . sin (atl)y .}|, (25)
o jnt cos (n )wOJ BJH’L sin (n )IPOJ ] ' (Contd.)
4Ri . ‘: : , E : lf , . _R_L n+l
TS (-1)n( ) ;
12 (R1+Ri).2 {fore ™ Fare T 2 L) Rys/
{ajnz.Sin (nf;)woj ~ Tyng €8 (n+l)¢oj }] ,
(¢ =0, 1, 2, ...,k .
3) Fbr inner c'ylAJ":.'nd‘ers, i=2, 3, 4, sk,
. RS e R AP |
0, = —3x |4 - 7 iy {a_ cos (n-1)y_.
ig (R.+R )2 i1g n=1 % ong : oi
i) -
. - K R n+l
: . x i
* Tong S10 "Dy = 1 ] D% (EL)
n=1 j=1 g
{ajnf, cos (n+1.)wij + Ting sin (n+1)’¢ij }] >
4Ri ' © .R 1 ~n-l » .
e Lo (R ot e,
' g ‘ 4 I
_ n+l.
. ‘ © k* n _Rj_
t Bope €08 (=), } - } L (¢-D'n R
o n=1 j=1 ij
{_cjnl siq (n'if_l)lbij - Bjnl cos (n+1)¢ij}:l s , (26)

z,Ri [ cf R n-1 T
g,, = ——— | -0 - ) n |/ {0, _, cos (n-1)y
il 27112 ( ) Ong . 7701
) (Ri+R2.) : . n=1 0 E o
| o k* . R, - n+l
+ Bop, Sin (0-1y,} - ] I (-D'n (?L)
- n=1 j=1 i_J
{ojnl cos (n-&-l)q)ij + Bjn£ sin (n+l)tpij }] s -

2

- 4RS o Ry, n-1
Tie T —_1"2'[4112 -1 n-(Tl_) (=g, 810 (n=1)Y,,
O RRY L mel  ATOL o
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n+i
, . ozo lf* ('1)n (R. ) .
S+ T cos (n-1)y..} - - [
: Ong ™ 01" 21 421 Ri3 - (26)
o 4 - (Contd.)
{éjnlsin(n+l)wij - Tjnzcos(n+l)wij} . :

(2=0,1, 2, 3, ...,k)
a,., B,., 0,, and T;. are self-added mass coefficients, which are pro-
ii ii ii ii
portional to thevhydrodynamic‘force acting on cylinder i due to its own
acceleration, while the others are mutual-added mass coefficients, which

are proportional to.the hydrodynamic force acting on a cylinder due to

the acceleration of another cylinder.

B. Reciprocal Relations

Useful general reciprocal relationships regardiné the hydrodynamic
forces due to the movement of cylinders can be devéloped bnsed on thé
theory of.potential [15]. |

Let us consider the hydrodynamic force acting on cylinder 2 in the

direction of @ due to the movement of cylinder iin the direction of Ei.

L

Assuming all other cylinders are stationary except cylinder i, the hydro-

dynamic force can be written as follows,

2

, R S N : '
F,. ==-Y,, — . (27)
R TRd atz . .
where

L
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Here, ¢i and ¢2 are normalized ;eiécity potentiais associated with
cylinder i and £, (¢i is the velocity potential for cylinder ilhaving
a-unit acceleration) and Ui is the displacement of cylinder 1 in the
direction of the vector gi' v is a unit vector normai to the cylinder
surfacé toward the fluid and SR_is the'surface of cylinder 2.
Similarly, consider the casé that ali cylinders are:staﬁionary

. N .
except cylinder £ moving in the direction of e The hydrodynamic force

X
. > .
exerting on cylinder i in the direction of e, is-
aZUQ
F..o= =Y., —5 , ’ (29)
ig ig at2 . .
where
3¢i ' ,

As the velocity potentials ¢i and ¢Z are harmonic functions, Green's’

theorem prevails [15], i.e.,

”s (q’i v - Y% zw)ds:o : | | | (31)

This equation holds for any closed surface S within a region in which

¢i and ¢2 are hatmonic functions. We may choosec 8§ = ﬁ) which is the inner

surface of the outer cylinder, then it follows that
3. 5,
-2 - 1
jjs ¢’i v dsl JJS ¢2 v dsi
B . i

I T L | .
i lw e w)mie e

e,

If»¢2 is associated with the outer cylinder, letting S = %O in equation

(30) yields
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3%) 3¢i . - '
‘ j[ ¢i v d§y - JJ ¢O Y dSi = o . : (33)
%) S

i
Therefore from equations (28), (30), (32) and (33)

Y (i,£ =0, 1, 2, ... k) . ' (34)

12~ Yot
This relationship delivers é physical meaning that the h&drodynamic force
acting on cylindér'glin the‘éz direction due to a unit agceleration of
cylinder i in the g; direction is equal to the hydrodynamic force acting .
on cylinder i in the g; direction dug to a unit accelerationAof cylinder
2 in the g; direction. This general reciprocal relgtionship is valid
between any pair of cylinders including inner and outer cylinders.

The reciprocal reiétions of the added mass coefficients defined in

section II-A are generated from equation (34) as special cases. When

> ->
e; and e, are equal, and if they are in x-direction

= 35

aiz G o | 4 | | (35)

if they are in y-direction

= . ' : , ' 3
Biz BZi » ’ : (36)
When é; is in‘x—direction and-zz is in y-direction, or vice versa
u‘i2 = Tzi . : (37)

’ Bil’ o and T can be combined to

The added mass coefficients a. \
) : ig ig

ig

form an added mass matrix qu, i.e.,

2 o 2
on Ri + Rl " . : on Ri + RZ . .
3 e 7 ig

O B e D )" (38)

-(p,q =0, 1, 2, ...,2k+ 1).
Since qu is symmetric, for a grodp of k cylinders contained in an outer

cylinder, there are(k + 1) (2k + 3) independent added mass components. We
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can also find a group of 2(k+1l) axes as the principal axes of added mass
coefficient such that
'qu = 0 for P $#q . | . (39)

The'principal values of added mass matrix ﬁay_be called éffeétive added

masses for the system [12].

C. Numerical Results

The preceding analytical method to evaluate the added mass matrix was pro-

grammed (AMASS) on a digitallcomputer and listed in the Appendix of this report.
This program can be used to calculéte all elements of the added mass matrix for
a group of cylinders submerged in a fluid-containing cylinder. The cylinders

may.have.different'radii and may be arranged in arbitrary pattern; however,Aall

cylindefs must be parallel.to one another.

Added mass'coefficients areiwritten in terms of infinite series;
only a limited‘number,of terms is needed to give results with sufficient
accuracy. In order to check the rate of convergence of the so;ution,
the added mass coefficients for two cylinders submerged in a fluid-containing
cylinder are shown in Fig. 2 as functions of the numﬁér of terms n taken
in calculations. The rate of convergence is much faster in the case of
widely-spaced inner g&linders than in the closely-spaced case. Inlgeqeral,
n = 10 will give sufficiently accurate solutions in practical situations.
In the following calculations, the number of terms are taken to be.10.

Table l,gnd Fig. 3 show the added mass coéfficients‘as functions of
thé eccentricity of two eccentric cylinders with a flu;d—filled gap. As
the gccentricity increases the magnitu&e of éll added ﬁass4éoefficients
iﬁcrease. It is interesting to note tﬁat the self-added mass coefficients
of the inner cylinder.arestrongly influenced by egcenﬁricity and the
mutual-added mass coeffiéients have‘alsq considerable dependence on

eccentricity. ,Howevér, the variation of the self-added mass coefficients
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Table 1. Added Mass Coefficients for Two
| Eccentric Cylinders with a Fluid-

Filled Gap :
Eccentricity (é). %0 %1 @,
0 ' 1.667 | 1.667 | -1.185
0.2 1.672 | 1.686 | -1.194
0.4 1.688 | 1.751 | -1.223
- 0.6 1.722 | 1.889 | -1.284
0.8 1.799 | 2.196 | -1.420
0.9 - 1.884 | 2.537 | -1.572
0.95 - 1.966 | 2.865 | -1.718
0.97 2.020 | 3.080 | -1.813
0.99 2.104 | 3.414 | -1.962
0.999 2.170 | 3.681 | -2.081
where R /R = 2, . €=el(R - R))
6, =B, o =t =0, (i,j=0,1)

ij ij ij ij
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' of outer cylinder'with the eccentricity is relatively small, and
is negligible in the case of I%)/Rl = 4,

The added mass coefficients for a seven-cylinder bundle in a fluid-
containing cylinder are shewn in Table 2 and Fig. 4. -The arrangement'éf the
inner seven cylinders is fixed, while the radius of the outer cylinder is
varied in order to investigate the influence of the gan size on the added
mass coefficients.. The self-added mass coefficients associated with the
innermost cylinder 1, the inner cylinder 4 and the outer cylinder 0 are.
presented. _As the gap size increases all of them decreaee; specifically
LI approaches 1, Vhereas % anq a44 aéproéch the asympotic values for the
case of seven cylinders in an infinite fluid medium. It is interesting
to note that the sensitivities of all and a44 to veriations of the gap
size are very similar to each other even though the cylinder 1 is surrounded
by more fixed cylinders. Among the_self-added mase cqefficients considered,
%k) is most sensitiye to gap size. The mutual.added nass coefficients?
qOI, %4 and al4 are alsc presented. As the gap size increases the magnitudes

of %1 and % 4 decrease and finally approach zero, yet the magnitude of

o increases and approaches the asymptote for the case of infinite fluid.

14
These results reveal that as the gap size increases the coupling between the
inner cylinders and the outer cylinder'becomes smaller, and the coupling
between inner cylinders 1 and 4 becomes larger. This study also shows that

the solutions based on the assumption of infinite fluid medium are not

sufficiently accurate for the case of G/R, say less than 5.
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Table 2. Variation of Added Mass Coefficients for a Seven Cylinder

Bundle in a Fluid-Containing Cylinder

G/R %00 %11 %4 01 04 14
0.1 7.084 5.129 4.070 ~2.211 | - -1.545 -0.944
0.2 5.571 4.826 3.712 ~1.699 ~1.200 ~1.114
0.3 4.708 4.653 3.510 -1.402 | -0.997 ~1.214
0.4 | 4.127 | 4.538 | 3.378 4-1;200' -0.857 | -1.284
0.5 3.702 4.454 3.284 -1.051 ~0.753 ~1.335
0.6 3.375 4.389 3.214 0.935 | -0.672 | -1.375
0.7 | 3.115 | 4.339 | 3.150 | -0.843 | -0.607 | -1.408
0.8 2.902 |  4.297 3.116 | -0.766 ~0.553 ~1.435
0.9 2.725 4.263 3.081 ~0.702 | -0.507 -1.458
1o | 2.575 | 423 | s.052 | -0.647 | -0.468 | -1.477
1.5 2.075 4.139 2.962 ~0.461 ~0.334 ~1.542
2.0 1.795 4. 086 2.916 ~0.353 —o.zsé ~1.580
3.0 1.496 4.030 2.871 -0.233 -0.169 ~1.620
4.0 1. 344 4.002 2.851 ~0.168 -0.122 ~1.641
5.0 1.254 3.985. 2.839 -0.128 -0.093 -1.653
10.0 1.090 3,954 2.820 -0.049 -0.036 -1.675
20.0 1.028 | 3.943 2.814 ~0.016 -0.012 -1.683
30,0 1.014 3,940 2,812 ~0.008 | -0.006 | -1.685
©50.0 1.002 | 3.938 [ 2.811 ~0.001 ~0.001 ~1.686
100.0 1.001 3.937 2.811 -0.0007| -0.0009 | -1.687
w 1.000 3.936 2.810 0 0 -1.687
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III. VIBRATION OF A GROUP OF CYLINDERS

As discussed in earliér chapters, added mass matrix can accurately
be obtaiﬁed for a érbup of circulér cylinders submerged in a chfined
liquid; the cylindefs,may have differen;radii and can be,afranged in an
arbitrary manner as long as they are parallel to one another. The added
mass matrix can be used to study the free and forced vibrétion of cylinders.
In this section, a ffequenéy equation is derived for a group of cylinders
with the same boundary conditions'and the same 1enéth, andbnumerical
results are presented for free vibration of two eccentric cylinders with |
a fluid;filled gap.

A, Frequency Equation

Motions of cylinders consist of displacements along the x-axis and
y-axis. Assuming the fluid is étationary'and negleéting the éffecté of
fluid static preséure, damping, drag‘force and.gravity effect ‘the equa-
tions of motions for a group of k cylindgrs,in a flqid—contéining4cylingr

are as follows:

9 u 3 u 2k+1 3°u
EPI —F2 4 +mp -—22 + ) Yoq ;‘-2 = fp . : | (40)
9z ot q=0 3t '

(p,§ =0, 1, 2, ... .21<+ D
wﬁere the subscripts p and q denote vériables associdted with cylinders
p'and q in Fhe'x-z plane, while p+k+l and qfk+} in the y-zlplane; EpIp is
flexgral rigidity, mp is‘mass.perlgnit length,'fp.is external excitation
force, and qu is the element of added mass matrix defiped in equation
(38). |
| When all cylinders are of the same length and have the same type of

boundary conditions, the displacement of any cylinder can be written as’

o«

I oh ()Y (2) | (41)

z,t) =
up( »t) L Pon
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where wn(z) is the nth orthonormal function of the cylinders in vacuo.

 Using equations (40) and (41) yields

Z Y +maih =f ' o (42)
P. q=0 Pq qn P pn pn pn , .
(p¢1= 0, 1, 2, ..,2k+1), (n=1, 2, 3, ...4®
where
[} ’ A ' _ 1 wnn
f n = T]Q,: J f .\pndz s wzn —LB I .
P Jo P P m, V¥

Here apn is the nth natural frequency of the‘cylinder p in Vacuo and fpn is the
generalized external force. Note that equations (42) can be applied to

all values of n. Fér eaéh n, there are coupled equations the number of

which ié twice.the number of cylinders; However, there is no coupling

among tﬁe equations for different n. This is true for a group of cylinders
with the same type of boundafy conditions and of_the same length. For a

given n, equations (42) ﬁay be ﬁritteﬁ in matrix form,

[M]{h} + t‘K'J{h} - {F} , . . (43)
where M is symmetric square matrix and K is diagonal métrik. fhe elements
of these matrices are. as folloﬁs:

"pq ~ "p’pa FVpq S S (4-4)’

k m 2% 8
- Pq P pPn pq

(P> =0, 1, 2, ...,2% + 1)
ﬁFor freevvibration,'ﬁeglect external forcing terms, and let
{h} = {hlexp(ift) . ' (45)
The coupled natural frequency Q and the coupled normal modes {ﬁ}vbf the

system are computed. from the homogeneous equations

[x} - MRy =0 . - | %6)
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B. Sample Problem: Free Vibration of Two.Eccehtric Cylihdexs with a Fluid- "

Filled Ga

As an example, consider the motion of two eccentric cylinders with a fluid-
filled gap as illustrated in Fig. 5. The axes of the cylinders are located -
on the x-z plane and paréllel tb the z-axis. In this case, iﬁ is found that

%00 = Poo *

o, = : , ' A , :

A 11 Bll’ i . : | | : 47)

%01 = %10 = Bo1 = B

32T Ty T 0 0D
Hence, the added_matrix7éan be written
| . -
r . 2 . o
R. + R .
2 0 A o .
Ro°‘oo-"( 2 )“01 o0 0
R. + R A |
0" ™ 2 | ‘
( 2 ) %1 R1%11 o 0 |
[y 1=pm{ - o
Pq , | R+ R \2 (48)
0 0 : Rza 0 1) a :
~0%00 2 01
: - R+ R\2
: 0" ™ 2
o 0 | ( 2 ) %1 - K%n
. : B

=
'Examining this added mass matrix we may conclude that the x-z plane
and thg y-2 plane‘mqtions can be considered séparately. For -the x~z plane

motion equétion (46) becomes

{2 2 : 2 ( ' ‘ |
mw - (mo+Yoo) : —Q‘Yol‘ | j hon {6 ‘
P, Y )
I . T M Ty o
The frequency equationlfor the coupled modes yields
4 2 2.2, 2 2 ' - .
1 - Aol)Q - (wo + mln)Q + ©on®1n = o , . ‘ (50)
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FIGURE 5. Two Eccentric Cylinders with a Fluid-Filled Gap |
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where ,
, - __ Yoi'i0
01 (mg+vy) (my +vyy)
wpn = mpn ;;:f%f—— s (p‘= 07 1)

PP

Here Won and-mln are the uncoupled natural frequencies for each cylinder.
The coupled natural frequencies Qi 'and_ﬂzn are found from equation (50),

n o
' | 172 1/2
= (0l +42 2 _ 2,2 2 2 // 1/2
R N R N A TR rON ) A ST
and (51
DE I B I AN g 2 17212 172
“on <(“1n'*“zn) + Ly ey + ey e 17 S 12@=2g)]

For each n there are two coupled normal ques. The amplitudé ratio Eln/EOh

is given by

» 2 L o2
n_ w f (mO + YOO)

— = _0On
<h0n : P

- (52)
YOl'

Natural frequencies for the y-z plane motion can be found in an analogous
manner; the results ére exactly the same as the x-z plane motion.

Numerical results presented here are based on two eccentric stainless steel

“tubes with a water-filled gap. Both tubes have the same length of 1.27.m (50 in.)

and wall thickﬁess of 0.15875 cm (0.0625 in.). The radii of outer and innér
tube are 5.08 cm (2 in.) ahd 2.54 cm (1 in.) respectively; The distance between
the ceﬁtefs of two cylinderé is allowed to vafy in order to iﬁvestigate the
effects of eccentricity on natu:él frequencies.

Table 3 and Fig. 6 sﬁmmarize the results. For both cases of x~z plane
and y-z pléne vibyations, the iower f;équeqcy is associated ﬁigh';hé mode in

which two cylinders move out-of-phase, while the higher frequency is associated

‘with in-phase mode. Fig. 6 shows the loweét two natural'frequgncies (n=1) for

uncoupled as well as coupled modes. It can be also seen from Figure 6 and

Table 3 that for each n the frequencies for the first coupled modes
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Table 3. Natural Frequencies (Hz) for Two Eccentric Cylinders
with a Fluid-Filled Gap

| Uncoupled Vibration Coupled:Vibration

n € :Cylinder 0 |[Cylinder 1 First Mode|Second Mode
0 . | 83.660 52.279 48.571 108. 54
0.1 | 83.637 | 52.232 | 48.529 | 108.54
0.2 - 83.566 .52.087 48.400 108.53
0.3 | 83.442 51.836 48.177 108.51
0.4 | 83.254 51.461 | . 47.843 108.47
0.5 |- 82.985 | 50.934 | 47.372 | 108.43
1] 0.6 82.604 50.205 46.719 108.37
0.7. | 82.053 | 49.188 | 45.808 | .108.29
0.8 81.211 | 47.714 44.481 | 108.17
0.9 79.747 45.344 42.338 | 108.00
- 0.95 78.428 43.392 40.564 | '107.88
0.975 | 77.394 | 41.967 | 39.263 | 107.79
0.995 | 76.169 | 40.384 37.815 107.69.
0. 334.64. | 209.12 .| 194.28 | 434.18
0.1 | 334.55 208.93 194.12 | 434.16
0.2 | 334.27 208.35 | 193.60 434.11
0.3 333.77 207.35 192.71 | 434.02
0.4 | 333.02 205.85 | 191.37 433.89
0.5 | 331.94 | 203.74 | 189.49 | 433.71
2| 0.6 | 330.41 200.82 186.88 | 433.47
0.7 328.21 | 196.75 183.23 | 433.14
0.8 | 324.85 | 190.86 177.93 432.69
0.9 | 318.99 | 181.37 | 169.35. 432.02
0.95 | a13.71. | 173.57 162.25 | . 431.50
1 0.975 | 309.57  |.167.87 157.05 | 431.15
© 0.995 | 304.68 161.53 | 151.26 430.78
0 | 752.94 470.51 | 437.14 | 976.89
0.1 | 752.74 | 470.09 436.76 976.86
31 0.2 |'752.10 | 468.79 | 435.60 976.74
0.3 [ 750.98 466.53 | 433.59 976.55
0.4 749.29 463.15 430.58 976.25
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Table 3. Natural Frequencies (Hz) for Two Eccentric: Cylinders
with a Fluid-Filled Gap (Contd.) -

Uncoupled Vibration. Coupled Vibration
n € _ CYlinder 0|Cylinder 1|First Mode|Second Mode{
0.5 746.87 458.40 | 426.34 975.85
0.6 743.43 | 451.84 | 420.47 975.31
0.7 738.47 442.70 - | 412.27 © 974.58
5| 0.8 730.90 429.43 -400.33 . 973.56
0.9 717.73 408.09 381.04 ©972.04
0.95 705.85 390.53 365.07 | 970.88
0.975| 696.54 377.70 353.37 1 970.08
0.995 | 685.52 363.45 340.33 | 969.25
RO = 5.08.cm‘ (2 in.)
R, = 2.54 cm (@ in.)
hy = h; = 0.15875 cm  (0.0625 in.)
£y =4, = 127 ecm (50 in.)
- 13 3 -4 |
p = 8.015 x 10 Kg/m (7 5x 10 lb-sec /in )"

E= 2.017 x 101 Pa (3 0 x 107 p51)

= ‘ 2 - .
Pe "‘9}982~X'10< Kg/m 0 (9.34 x 107 1b—sec2/in§).
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(out—of—pﬁase modesi are lower than either Qf -thé uﬁééupléd natural'.

frequéncies, whiie_the frequenciés for the second coupled modes_(iﬁ-phasg

modes) are Higher thaﬂ eichef of'the uncoupled natural fréquencies.

| It.is also~iﬁtérest1nglto note the effects of ecéentficity on coupled

and uncoupled modes. _fér éoupled frequencies‘the effects are pronéunced

for the ou;-of—phaéétmodes, but these effegts areAmuch smalier and considered
to ﬁé negligible for the in-phase modes. However, for uﬁcoUpléd vibrations
the effects of eccentricity remain comparable for both-cylihders. 'Fig; 6

also reveals that as eccentricity becomes larger, its influence on’

frequencies becomes larger.:
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IV. CONCLUSIONS

In tHis report, a generel method of analysis is preeented'for coupled
motions of a group of cyliﬁders in a fluid—centaining cylinder; the coupling
effects are accounted for using self- and muthal—edded‘mass'eoefficients of
cylinders. The me;hod can be applied to a group of cylindefs with different
radii. These cylinders may be arranged érbitrarily as iong as thef are
parallel to one another. With this method of analysis,‘free and fofced
vibrations of a group of cylindefs in a fluid-containing cylinder can readily
be analyzed. | : | |

The analysis is based on the two dimensiqnal flow theory; ~In many
practical situations, the displacement of the cyiinders ere‘much smalle:
than the radius. Therefore, the potential flow eheory is:applicable; |
Furthermore, many system components, such as quclea? fuel bundles;end.
heat exchanger tubes are long enough such Ehat the hydredynamic forces
based en.the two diﬁensional eheory are eufficiently accurete.

Numerieal results are given fer a few seiected'problems; From the
study of seven cylinders in a fluid-containing cylinder, it is seen that
the influence of the euter cylindef on the motiens of a group of inner .
cylinders is similar to that of two concentric‘cyliﬁders.‘ When the outer
. cylinder is relatively close to the inner eylinders; the coupiing effects
become pronounced dnd.have to be eonside:ed. For the problem of ewo
‘eccentric cylindersAwieh a fluid-filled gap, the self-added maes coefficient
'of the inner c&liﬁdefAie seneifive to the eccentricity of cyiindere.l The
effects of ecceéntricity are_also founé‘to be distiqct for ehe out-of-phase -
modes of coupled vibrations while they are aimOSt.negligiblc for the in-phase

modes.
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. APPENDIX:; Computer Program (AMASS)

This appéndix‘gives a listAof the coﬁputer P:ég#am, AMASS,'WhicH was
uéed to calcﬁlaté the ;ddéd mass cbefficients for Ehié répoft, This'prégram:v
can be ﬁséd for a group of'cylinders iﬁmersed either in é fluid—cont#iniﬁgv
cylinder or in an infinite fluid medium, The computer frogfam~iszwritten'in
Fortran IV for IBM/3?0 computer system. The prograﬁ is not ﬁECeSSarily written

in an optimal'manner‘in~terms of‘gomputing.time.-_
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ErItds My =S CTa M da 1D

ECITs S =EBECIaMsdy D

EvItde JAe=sCT 0T e Mo da M2
EvITsdMr=N0clatiy Jefa

IOLVE SYSTEM OF EGUATIONS ee
THLL CROUT EE»kHEMN, Fe KK I« UETERM, 120D

4 -

03 220 [=1s8RT
03 230 M=1 .
Irf=vI—-11 eHMrH+N
II=TH+kMN s
00 220 L=1+EK] .
TI T aMebLa=F0Iriab
BE¢lsMaly=Fuollaln
COMTIMNUE

2 ee CRALCULATE ADDED MASS COEFFICIENTS ee

33 TO ‘00l 2002y 20030 s JCHE

FOR Y-



~ad

=i
S0

il

Tons

TE
g

-"l'Inr:_'ll,",»mI:HL,x"ﬂ_[lr_-_1r'i|lmil

[

'.T

TRUCLs L2 = ]
EET 1 L*-EEils1:L)+BE(E:1;L?¢EE
IF CkKI.LE. 50 7O =00

0o saon J—?,HHI
CAIZ=RACIyeRAC D < iRACIY SRACID D
SLPCLsL2=ALP (sl +ALCIy 1 LD oRJIE
SIGEls L) =SIGa s L2 +SI sl R IIE
TRUCLsLY=TRAU L LO+TATIs 1ol eR .2
EET O 1+L)=EETCl+L2+EBEC Iy 1w 2R Il
COMTINUE :

o Trn4 L=1+KEI :

SLP e La=HL D1y 1oL +AL ISy 1o L2

EIb'E~LJ“LI=1.1.LJ+ngE!11L3

TALCZa Ly =THIs 1aLa+THIZs 1oL

ESTizsLy=EEC 1 1ALy +EBECTa 1L
4

IF JERT, LE. » B0 TO “ﬂH

0D3J Foons ’-}rI

HisiR=0. 10
Eaxs=0, 10
Conn=0,. 0
iaa=0, 0
i1 =RHfJ)fPHIJ{Est

B02 M=1s MMM
M+l eFPHYR T
MefR.dl le (o0
rHer Il . de Gn.jj
rer. II Je %
r

AR R
:l

0 G D 300 D0 T DO

OHL' datde L'+TH' "N‘-"_Ifh‘iﬂp!;"')
IR SRR .I+EE1' JeMs Ly eSIN ARG

N N o

'J Il Il II lI II .

“ I ﬂF ,¢HL'I~H La=THRJds He LJOFDTVHPF'J

{eR I 1o S IM ARG &2 I-l-H-g'—EE-I-H3L30PU>fHPr>)
SO0l MO=1sH4
=—HileF. II !
=—Eh1oplll

_—EG1¢PIIJ
~Lislerm I1 ]
G+Hb1

(TRY) '.TI

JI'JI'J'I"‘""""'—‘

[ LRy Ry

131 31

+lb14
I1I1+Il|~|
(2al)=HLP Y
ULy =ZIG42s L1 +EBiE5
T‘H'rvL}-TH”' R eI
EET Y 2sLo=RBET (Zs L} +0i3E
COMTINUE :
00 205 L=1sKKI]

ALP C2sbLy==RALFP S L0
ZIGESaLy==ZI5 ZaL
TAUC2s Ly ==TAU (S Lo

EET @+ Lo ==BET (3aLd
s3 TO =003

DO 7o L=1sKKI

o H |_| [a o 0 o]

Ze L) +AGE

r
l‘ll rl'l
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QLP Ly La=HL01a st
ZIGLts L= Cla sl
TRUCLsLA=TH s 1sL2
EET lsL2=E=lslaslD2
DO P00 Jd=2.kx] : .
EHEZ=RAC I SRAC I ~IRACLY SRR
ALRPCls L) =RLP Ol +RL C e IsLs#RILIE
RELERS BT IS SRS PRI I8 SAu IS IR ERGR 2 S0 b B
TR «LISTARUCL LI +TRHC I 1L oRILE
van EET¢1sL)=EET1 LI+EECIr1sLooRJ12
=00z IZ3=1kKkE+1 -
IFKEI-TIZZn 232 20045004
€004 CONTINUE '
oo =00 I= I__arrI
DD_EUU L=1sEKT
ALFITaLa=RL CI+1sL2
I Ld=ZI 0l 1sll
TR« y=TH < Is1sbL2
EET IsL*=EE¢ls1sLD
Do vsn Jd=1y&k1 - 0
Hiia=0, 0 :
Enxi=0,1
CEE=0,0
DEE=0.0 S
IF ¢I-dy S01sT77F0eSi1
50 TO (2022032305 o [OHE
IF C.—=173 S0S,S02.305
DO 7PS0 M=1sMHHM
ARG1I=H=13eFHYHE L I
FITJ=RACI» ~RAT V112
RIAI=RHIJCLs 0 RRCLD
Anli=HeR1I Je iCOZARGI ®R/L C1aMsLa+THY L s My L-o IMTREE1I
BGI1=H¢RIIJ¢ECDuuHFblﬁ¢uIHIsH.L)+EEal.H.L;OuIHLHEbIJ'
Thll=tHeR1I le -3
D51i=MeR1IT I =SIM ARSI ST (1ML +EE (Lo My L) oCOSCARGLY D
IO 204 MZ=1s0 ' '
A511=RR11eRT. ]
ES11=E511eRI 1
CiE11=Cih11eRI ]
Zad Deli=nirtierI NN
' AGG=RE5+RG11
ESG=RB55+ES11
CIRE=CnG6+CE1 1
TS0 TixEF=DiRE+De11
50 TO FFO
205 FAId=RH 1 ~FRT 10T+ ds
DO va0 MH=1sMHAHM
ARG=iMN+12eFHYH T o 3 : .
Asl=MeR Il le (COZ ARG ®RL S s MHa L3 +TARC s MHa LY I INCARG) 2
Esl=MeR Il e iCOZ ARGy 3T < dsMHa LI +EEC e Mo L2 ¢ IMCRARGY Y
oal= HOF‘ JT Je cZTMARARGY sRL C s My La =TRC e My LY «C05 (ARG D
ODzl=MeR Il je JIMIRRG &% I-I-H~L1-EE-IsHsL-¢|U «HPH*'
ng 208 MC=104
Hbl:—HﬁloplIL
Bal=-E51er T J

TIM ARG eAL C1aMa L) +TACL s Mo Ly «CO3 ARSI



SE

=J T

-4 =

Lo )

DR |
PRS0}

(X aX]
i
1

ol
10

SEnn

ol

CRl==Cn1eR AT
DEl=-Isier IT I
HEG=AGR+AHG]
BESS=FRRia+ES1
IMETEEUMEIEE SINEY |
[URIEES GEIEE SUES

COMTINUE
ALFCIsLy=ALF I +HEG
ZIGCIsLa=2IG I« Ly+EGS
TARUCI»La=THRIICIy Ly +120505
EETCIL2=EETCIsLy+Di355
COMTIMUE -

g 9% 1

nn i o

! L :
EIGCT L ==21G0T L0
TAUCIsL2=-THULIL2
EETiIsL3=—EETiIsL}

TTOMT IMUE

DO =500 I=s1sKKI
00 2200 L=1.kKEI

RLRCIsLy=ALPCIsL) oRF I eRACID
TIGCIs L =SIG ClsLo eRACI SRR
TRQCTsLa=TAU I Ly oRR I BRI
BET Il 2=EETCIsLroRRIIDSRACIY

00 S10 I=1sKEI
00 210 L=1sKETD
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FIL=g, 7 00rRACIT+REA LD 2 ¢ 420

SLF sty =RLR (I Ly eRIL
TIGEIaL =TS0l oRIL
T ilsalLo=TRUIs L »RIL
EET v IsL3=EETiIsLyeRIL
RETURN .

EMD
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P00 PEPLELLLLEPLP2 0092000000005 00400
+ } . ’ *
. eee THERDOUTIME CEOUT eee *
. L , 3
I I T I Y XY Y YR R S TR XY Y 2

THIT PROGRAM SOLYES MATRIX EQUATION Fx=F BY THE CROUT METHOD

IMFUT VWHRISELEX
2202050000590
A MRTRIX :
H: ORDER OF H
B:  COLUMH MRTRI=
M: MUMEER OF IDLHMH YECTOR E I
DETERM: RETURN CODE., IF ZERO AR IE EZIMGULAR .
“HMAH: ROW DIMEMEZIOM FOR R & B L

OQuUTFUT
EXZT XY LS
E:  ZOLLTION ¥ ZTORED

ZUBRSOUT IME “CPHT’H-H-E~W DETERM MHMAM
DIMEMZION A CHMAS -fi-~Elr H e M0 ’
DIMEMZION Wileny

DETERM=1.,10"

T3 1000 k=16

KR1=k+1

Etri=k-—-1

TEME=. 0

03 20 I=kar

iy L=1+¥

W Helabh
HQIan=HfIsﬁﬁ-DDTP(wsHi1,HbsKM1?-
IFRBZ AT« LT.TEMPY 30 TO 20
TEMP=RBZ (AT kDD ' o
IMAx==1 -

COMNTIMUE

SGriEe =R INH .} k]

IF CDETEREM.EQ. 0.0 FPETUREN

1= kI”H“.EU.T? bD TO =00
LETERM==DETERM

Dg sa Jd=i.04

TEMP=R K I -

Ak 2 =ACIMAR 0

HeIMAE s 1 =TEMP

COHTINUE

IF¢M,LE. 0y 30 TO s00

0 900 Jd=1aH

TEMFR=E ik« . 12

B-‘.Iu:f CIMASE. 1

ECImMA=e 0 =TEMF

l_.DHTIHUE

00 &85 L=1sK

WL r=H O L) :

IFdE . ER.HY 30 TO 250
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© DO Fau IsKPlsN
FRLEY Folabkdy=RoIls Ky ~AMAR
. DO =00 JdsERL«MN
s00 Aoy =Ry L =DOTP s AL 0 s KMLD
S50 IFIMULE. LY 30 TO 1000
0o w00 J=1sM . _
SO0 Evke Jo=RBik e 1 -DOTP Ve EBCLe J2 2 KLY
1000 COMTINUE -
IFM.LE. O RETLEHN
DO =o00 I=1sH
E=M+1-1 .
g eces L= P,N
BEEHR  WILI=RIKs L)
_ no 700 J=1+M ‘
FOOO B Ky Jo=CB Ky d3 =DOTP (4 CK+ 13 s BOK#1e 003 T=10D 7R 0K k‘
S000 COMTIMUE

RETURM
EHD .
- 00000000000000000000000000000000000000
N +* 2
N * Coeee FUMCTION IIDTF' o A d
» . . o o ‘ .
" 0*00000000000066000‘000*0000060000¢0000
[ :
I MATRIA HHLTIFLIFHTIDH ZUEFROGRAM
LI ‘

FHHJTIDH DDTF-H-E M
REAL+4 AL E.0OTF
DIMEMZION RO s BEO1D
pare=n,
IS M. ER. 03 RETURH
OO 100 I=1sm

iy DOTE=00TP+ACIY ¢E (I
RETIIRM
EMD





