

MASTER

INFLUENCE OF SODIUM ON THE LOW-CYCLE FATIGUE BEHAVIOR OF  
TYPES 304 AND 316 STAINLESS STEEL

By

D. L. Smith, G. J. Zeman, K. Natesan, and T. F. Kassner

Prepared for

*International Conference  
on Liquid Metal Technology in  
Energy Production  
Champion, P.A.  
May 3-6, 1976*

—NOTICE—  
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

operated under contract W-31-109-Eng-38 for the  
U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Energy Research and Development Administration, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

#### MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

|                                  |                            |                                   |
|----------------------------------|----------------------------|-----------------------------------|
| The University of Arizona        | Kansas State University    | The Ohio State University         |
| Carnegie-Mellon University       | The University of Kansas   | Ohio University                   |
| Case Western Reserve University  | Loyola University          | The Pennsylvania State University |
| The University of Chicago        | Marquette University       | Purdue University                 |
| University of Cincinnati         | Michigan State University  | Saint Louis University            |
| Illinois Institute of Technology | The University of Michigan | Southern Illinois University      |
| University of Illinois           | University of Minnesota    | The University of Texas at Austin |
| Indiana University               | University of Missouri     | Washington University             |
| Iowa State University            | Northwestern University    | Wayne State University            |
| The University of Iowa           | University of Notre Dame   | The University of Wisconsin       |

#### NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assures any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Energy Research and Development Administration.

# INTERNATIONAL CONFERENCE ON LIQUID METAL TECHNOLOGY IN ENERGY PRODUCTION

## INFLUENCE OF SODIUM ON THE LOW-CYCLE FATIGUE BEHAVIOR OF TYPES 304 AND 316 STAINLESS STEEL

by

D. L. Smith, G. J. Zeman, K. Nataasan, and T. F. Kassner

Materials Science Division  
ARGONNE NATIONAL LABORATORY  
Argonne, Illinois 60439

### ABSTRACT

Fatigue tests in sodium were conducted to investigate the influence of a high-temperature sodium environment on the low-cycle fatigue behavior of Type 304 and 316 stainless steel. The effects of testing in a sodium environment as well as long-term sodium exposure were investigated. The fatigue tests were conducted at 600 and 700°C in sodium of controlled purity, viz.,  $\sim 1$  ppm oxygen and 0.4 ppm carbon, at a strain rate of  $4 \times 10^{-3} \text{ s}^{-1}$ . The fatigue life of annealed Type 316 stainless steel is substantially greater in sodium than when tested in air; however, the fatigue life of annealed Type 304 stainless steel is altered much less when tested in sodium. A 1512-h preexposure to sodium had no significant effect on the fatigue life of Type 316 stainless steel tested in sodium. However, a similar exposure substantially increased the fatigue life of Type 304 stainless steel in sodium.

### INTRODUCTION

The austenitic stainless steels are of interest as containment and structural materials in the Liquid-Metal Fast-Breeder Reactor (LMFBR). For these applications, much of the stainless steel in contact with sodium at elevated temperatures will be subjected to a variety of stress conditions that can limit its performance. Although extensive fatigue data in support of the LMFBR program have been obtained in air at room and elevated temperatures (1-4), little data exists for the effects of the sodium environment on the fatigue behavior of austenitic stainless steels.

It has been shown that the testing environment can have a significant effect on the elevated-temperature fatigue life and fatigue-crack propagation rate of certain materials (5-10). Typically these data have been obtained from tests in air, argon, or vacuum, and the enhanced crack-growth rates of specimens tested in oxidizing environments have been attributed to "wedging" caused by oxides that formed at the crack tip. The oxygen potential in reactor sodium is much lower than the oxygen potentials of other typical test

environments and no oxides will form on stainless steel in sodium. Therefore, enhanced crack-growth rates caused by an oxide "wedging" effect are not expected for stainless steel tested in a sodium environment. However, carbon is known to migrate in stainless steel-sodium heat-transport systems as a result of chemical activity gradients produced by both temperature and compositional differences. Data in the literature indicate that the mechanical properties of austenitic stainless steels are strongly dependent on the carbon concentration (11-14). The problem is further complicated since, under most conditions, carbon concentration gradients will be established in the stainless steel during the lifetime of the components. Crack initiation and propagation in the material may be influenced by the sodium environment as well as the carburization and thermal aging that occur during long-term exposure of the steels.

The purpose of the present investigation is to determine the effects of a high-temperature sodium environment on the low-cycle fatigue behavior of AISI Types 304 and 316 stainless steel under conditions pertinent to LMFBR applications. Data obtained at one strain rate under slightly carburizing conditions are presented.

### EXPERIMENTAL PROCEDURE

The facilities for fatigue testing in sodium (FFTS), which consist of 20-kip MTS closed-loop servo-controlled hydraulically-actuated fatigue machines with associated sodium loops, have been described previously (15). The recirculating sodium loops provide a well-characterized sodium environment for fatigue testing at temperatures to 750°C. The specimens are inserted into the fatigue fixture, which is then lowered into the sodium test vessel at the selected temperature. The sodium is continuously circulated during this period to maintain the desired sodium purity.

The specimen stress is determined by a fatigue-rated load cell attached to the actuator. Since direct measurement of the specimen strain in the sodium en-

# INTERNATIONAL CONFERENCE ON LIQUID METAL TECHNOLOGY IN ENERGY PRODUCTION

## RESULTS AND DISCUSSION

vironment was not considered feasible, the tests were conducted in a stroke-control mode by means of a standard resistive-type extensometer located on the upper portion of the fixture in an ambient temperature region. The extensometer measures the sum of the elongation in the fixture, the specimen gauge section, and the transition region of the specimen. Hourglass specimens with identical geometry, except for the gauge section, were used as a reference to determine the amount of elongation in the fixture and the transition region of the specimens as a function of load at each test temperature. The measured displacement obtained with an hourglass specimen was subtracted from the measured displacement of a test specimen under identical loading conditions to determine the strain in the gauge section of the test specimens. The fatigue tests were conducted at a strain rate of  $4 \times 10^{-3} \text{ s}^{-1}$  with a fully-reversed triangular waveform and a zero mean strain.

The compositions of the Types 304 and 316 stainless steel, identified as heats 9T2796 and V87210, are given in Table I. The fatigue test specimens with a 0.508-cm-dia by 1.27-cm-gauge length were fabricated from 1.6-cm-dia rods that had been solution annealed for 30 min in argon at 1025°C and water quenched. These samples are referred to hereafter as the annealed condition. A number of these specimens have been exposed to recirculating sodium at temperatures of 600 and 700°C for periods of 1512 and 5012 h in a sodium exposure loop, which has been described previously (14). The oxygen concentration in sodium during these exposures was 1.0 ppm and the carbon concentration in sodium was maintained at 0.4 ppm. The carbon concentrations in the two steels were not altered significantly by the exposures at 700°C since the initial carbon levels were almost in equilibrium with sodium containing ~0.4 ppm carbon. After the 1512-h exposure at 600°C, the carbon profile in the Types 304 and 316 stainless steel varied from 0.3 and 0.4 wt% respectively, at the surface to the initial concentration in the steels at a depth of 0.01 cm. The 5012-h exposures at 600°C produced a profile depth of 0.02 cm.

The low-cycle fatigue data on Types 316 and 304 stainless steel in sodium are listed in Tables II and III. Values for the total strain range  $\Delta\varepsilon_t$ , plastic

Table II. Low-Cycle Fatigue Data on Type 316 Stainless Steel Obtained in a Sodium Environment.

| Specimen No. | Matl. Cond. | Temp., °C | $\Delta\varepsilon_t$ (%) | $\Delta\varepsilon_p$ (%) | $\Delta\varepsilon_{1/2N_f}$ (MPa) | $N_f$ Cycles | $t_f$ min |
|--------------|-------------|-----------|---------------------------|---------------------------|------------------------------------|--------------|-----------|
| C-67         | 1           | 600       | 1.65                      | 1.11                      | 686                                | 1,017        | 172       |
| C-74         | 1           | "         | 1.50                      | 0.91                      | 676                                | 1,874        | 248       |
| C-57         | 1           | "         | 1.10                      | 0.63                      | 599                                | 7,738        | 648       |
| C-59         | 1           | "         | 1.10                      | 0.60                      | 599                                | 6,411        | 538       |
| C-52         | 1           | "         | 1.08                      | 0.61                      | 601                                | 8,232        | 699       |
| C-54         | 1           | "         | 1.08                      | 0.59                      | 602                                | 7,826        | 665       |
| C-55         | 1           | "         | 1.06                      | 0.60                      | 605                                | 6,878        | 579       |
| C-56         | 1           | "         | 0.77                      | 0.37                      | 512                                | 26,917       | 1561      |
| C-63         | 1           | "         | 0.76                      | 0.36                      | 509                                | 27,115       | 1571      |
| C-72         | 1           | "         | 0.69                      | 0.31                      | 471                                | 57,170       | 2927      |
| C-34         | 2           | "         | 1.61                      | 1.17                      | 579                                | 1,279        | 168       |
| C-33         | 2           | "         | 1.16                      | 0.76                      | 546                                | 4,843        | 408       |
| C-35         | 2           | "         | 1.11                      | 0.69                      | 523                                | 6,087        | 510       |
| C-36         | 2           | "         | 0.88                      | 0.52                      | 464                                | 17,603       | 1021      |
| C-37         | 2           | "         | 0.81                      | 0.44                      | 436                                | 36,250       | 2102      |
| C-38         | 2           | "         | 0.75                      | 0.38                      | 422                                | 43,247       | 2212      |
| C-71         | 1           | 700       | 1.36                      | 0.94                      | 464                                | 1,835        | 237       |
| C-69         | 1           | "         | 0.94                      | 0.59                      | 437                                | 5,777        | 482       |
| C-68         | 1           | "         | 0.81                      | 0.46                      | 424                                | 13,690       | 911       |
| C-73         | 1           | "         | 0.77                      | 0.40                      | 398                                | 23,065       | 1363      |
| C-25         | 4           | "         | 1.42                      | 1.09                      | 459                                | 1,353        | 175       |
| C-27         | 4           | "         | 0.89                      | 0.62                      | 420                                | 7,122        | 556       |
| C-26         | 4           | "         | 0.72                      | 0.43                      | 398                                | 19,898       | 994       |
| C-30         | 4           | "         | 0.70                      | 0.46                      | 418                                | 12,166       | 727       |

\*Conditions: (1) Solution annealed, (2) 1512 h in 600°C sodium, and (4) 1512 h in 700°C.

strain range  $\Delta\varepsilon_p$ , cyclic stress range at half the fatigue life  $\Delta\varepsilon_{1/2N_f}$ , fatigue life  $N_f$ , and time to failure  $t_f$  are listed for the materials in the annealed and sodium exposed (~1500 and ~5000 h at 600°C and ~1500 h at 700°C) conditions. The relationship between total and plastic strain range and the fatigue life of unannealed Types 316 and 304 stainless steels in sodium at 600°C is shown in Figs. 1 and 2, respectively. The dashed curves in both figures represent comparative data obtained in air for the two steels (2,3,16). For Type 316 stainless steel at 600°C, the ratio of fatigue life in sodium to that in air increases by factors of

Table I. Compositions of Austenitic Stainless Steels

| Material | Heat   | Concentration, wt% |       |       |       |      |      |      |      |      |      |      |      |
|----------|--------|--------------------|-------|-------|-------|------|------|------|------|------|------|------|------|
|          |        | C                  | N     | P     | S     | Cr   | Ni   | Mn   | Si   | Mo   | Ti   | Cu   | Co   |
| Type 304 | 9T2796 | 0.046              | 0.038 | 0.026 | 0.012 | 17.7 | 9.3  | 1.17 | 0.47 | 0.33 | 0.03 | 0.02 | 0.10 |
| Type 316 | V87210 | 0.058              | 0.007 | 0.026 | 0.011 | 16.7 | 13.9 | 1.43 | 0.46 | 2.84 | 0.04 | 0.06 | 0.03 |

**INTERNATIONAL CONFERENCE ON LIQUID METAL TECHNOLOGY IN ENERGY PRODUCTION**

**Table III.** Low-Cycle Fatigue Data on Type 304 Stainless Steel Obtained in a Sodium Environment.

| Specimen No. | Material Condition | Temp., °C | $\Delta\epsilon_t$ (%) | $\Delta\epsilon_p$ (%) | $\Delta\sigma_{3N_f}$ (MPa) | $N_f$  | $t_f$ min | Cycles |
|--------------|--------------------|-----------|------------------------|------------------------|-----------------------------|--------|-----------|--------|
| A-61         | 1                  | 600       | 1.86                   | 1.43                   | 602                         | 418    | 71        |        |
| A-93         | 1                  | "         | 1.48                   | 1.02                   | 597                         | 524    | 85        |        |
| A-65         | 1                  | "         | 1.38                   | 0.83                   | 495                         | 1,275  | 109       |        |
| A-63         | 1                  | "         | 1.33                   | 0.82                   | 515                         | 1,152  | 98        |        |
| A-96         | 1                  | "         | 1.05                   | 0.59                   | 544                         | 1,975  | 202       |        |
| A-71         | 1                  | "         | 0.95                   | 0.56                   | 481                         | 1,950  | 123       |        |
| A-92         | 1                  | "         | 0.82                   | 0.49                   | 497                         | 4,293  | 363       |        |
| A-91         | 1                  | "         | 0.80                   | 0.43                   | 468                         | 7,066  | 605       |        |
| A-77         | 1                  | "         | 0.72                   | 0.44                   | 513                         | 2,563  | 220       |        |
| A-73         | 1                  | "         | 0.70                   | 0.38                   | 433                         | 5,856  | 349       |        |
| A-70         | 1                  | "         | 0.52                   | 0.23                   | 353                         | 30,628 | 1306      |        |
| A-104        | 1                  | "         | 0.46                   | 0.15                   | 407                         | 25,783 | 1320      |        |
| A-10         | 2                  | "         | 1.67                   | 1.19                   | 595                         | 545    | 74        |        |
| A-14         | 2                  | "         | 1.36                   | 0.93                   | 535                         | 2,402  | 246       |        |
| A-08         | 2                  | "         | 1.24                   | 0.73                   | 471                         | 3,649  | 312       |        |
| A-09         | 2                  | "         | 1.01                   | 0.55                   | 460                         | 8,015  | 678       |        |
| A-15         | 2                  | "         | 0.63                   | 0.38                   | 411                         | 31,036 | 1422      |        |
| A-80         | 3                  | "         | 1.48                   | 0.99                   | 517                         | 996    | 118       |        |
| A-79         | 3                  | "         | 1.28                   | 0.85                   | 505                         | 1,441  | 120       |        |
| A-84         | 3                  | "         | 1.02                   | 0.60                   | 477                         | 4,819  | 403       |        |
| A-81         | 3                  | "         | 0.85                   | 0.47                   | 454                         | 7,644  | 522       |        |
| A-83         | 3                  | "         | 0.55                   | 0.23                   | 392                         | 31,309 | 1555      |        |
| A-74         | 1                  | 700       | 1.72                   | 1.34                   | 463                         | 368    | 47        |        |
| A-106        | 1                  | "         | 1.02                   | 0.68                   | 430                         | 1,321  | 136       |        |
| A-105        | 1                  | "         | 0.91                   | 0.52                   | 406                         | 2,024  | 171       |        |
| A-97         | 1                  | "         | 0.52                   | 0.24                   | 377                         | 13,282 | 773       |        |
| A-68         | 4                  | "         | 1.16                   | 0.81                   | 410                         | 1,303  | 119       |        |
| A-61         | 4                  | "         | 0.99                   | 0.62                   | 379                         | 3,463  | 343       |        |
| A-85         | 4                  | "         | 0.65                   | 0.36                   | 384                         | 6,533  | 380       |        |
| A-87         | 4                  | "         | 0.53                   | 0.24                   | 355                         | 21,123 | 1054      |        |

\*Conditions: (1) Solution annealed, (2) 1512 h in 600°C sodium, (3) 5012 h in 600°C sodium, and (4) 1512 h in 700°C sodium.

2 to 6 as the total strain range decreases from 1.5 to 0.7%, which indicates the environmental effect is more pronounced at the longer lifetimes. These observations are in qualitative agreement with elevated temperature crack-growth behavior of stainless steel in sodium and air<sup>(10)</sup>. However, the fatigue life of annealed Type 304 stainless steel in sodium at 600°C is essentially the same as that in air for total strain ranges from 0.5 to 1.0% and somewhat less than that in air at higher strain ranges (Fig. 2). Although no explanation for the difference in the environmental effect on the two steels can be given at this time, the microstructure and fracture surfaces are being analyzed in an attempt to rationalize this behavior.

Figures 3 and 4 show the effect of temperature on the fatigue life of the two steels tested in sodium. The fatigue life at 600°C is ~50% greater than that at 700°C for both materials, which is similar to the temperature dependence in an air environment.

The effect of long-term sodium exposure on the

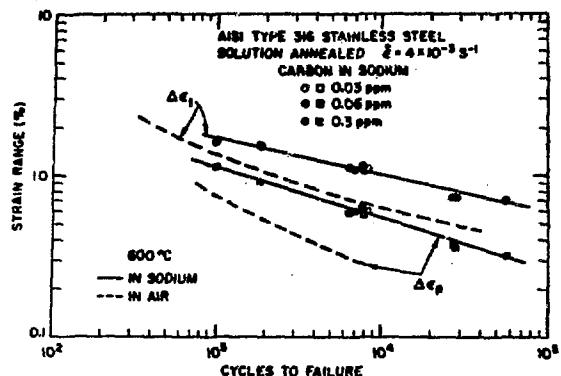



Fig. 1. Plot of Total and Plastic Strain Ranges Versus Cycles to Failure for Type 316 Stainless Steel Tested in Sodium and Air at 600°C.

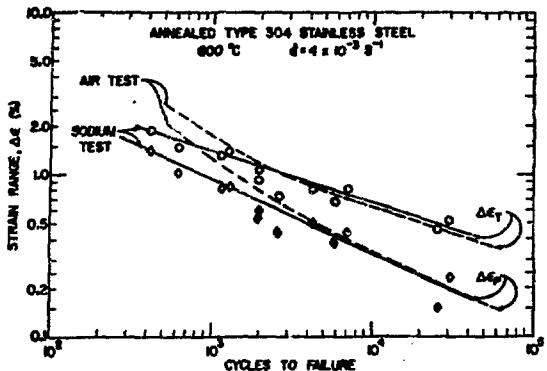



Fig. 2. Plot of Total and Plastic Strain Ranges Versus Cycles to Failure for Type 304 Stainless Steel Tested in Sodium and Air at 600°C.

fatigue life of the two steels is shown in Figs. 5 through 8. The fatigue life of Type 316 stainless steel, in Figs. 5 and 7, was not altered significantly by the 1512-h exposure at either 600 or 700°C for the strain ranges investigated. Since the 700°C exposure did not result in carburization or decarburization of the material, the specimens were essentially subjected to thermal aging. Cheng et al.<sup>(1)</sup> reported that aging of Type 316 stainless steel had little effect on fatigue life in air at 650°C, which may explain the results in Fig. 6. Carburization of the surface of the steel during the 600°C sodium exposure did not influence the life significantly; however, small increases in the plastic strain were observed for the preexposed specimens.

In contrast to the results for Type 316 stainless steel, preexposure to sodium increased the fatigue life

INTERNATIONAL CONFERENCE ON LIQUID METAL TECHNOLOGY IN ENERGY PRODUCTION

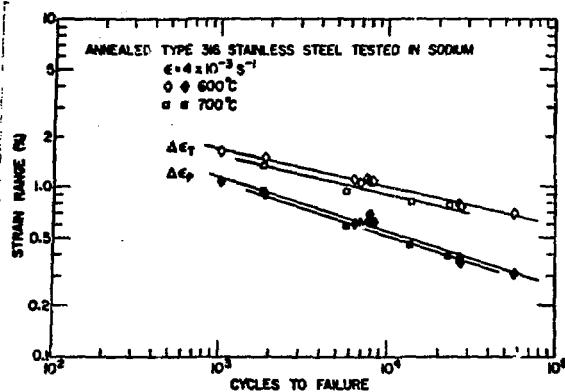



Fig. 3. Fatigue Data Obtained on Annealed Type 316 Stainless Steel Tested in Sodium at 600 and 700°C.

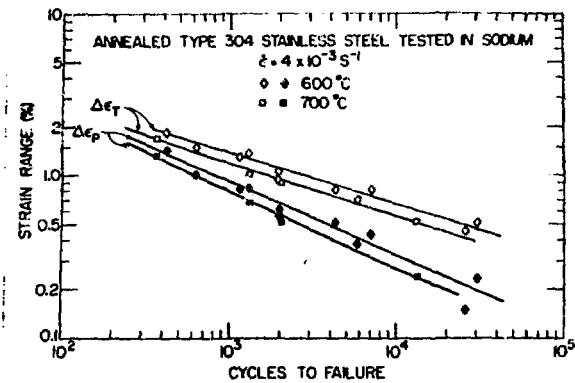



Fig. 4. Fatigue Data Obtained on Annealed Type 304 Stainless Steel Tested in Sodium at 600 and 700°C.

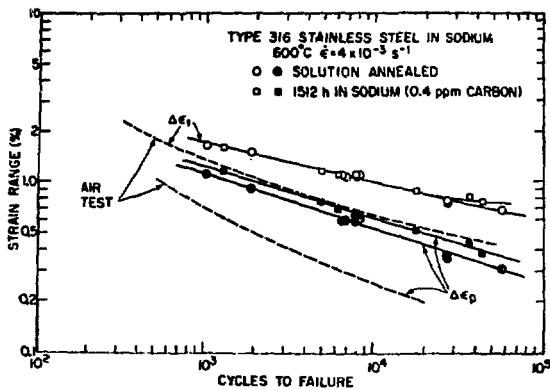



Fig. 5. Fatigue Data Obtained in Sodium at 600°C on Type 316 Stainless Steel in the Annealed and Sodium-exposed Conditions.

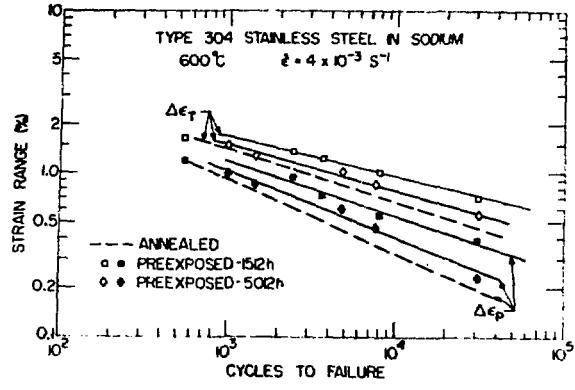



Fig. 6. Fatigue Data Obtained in Sodium at 600°C on Type 304 Stainless Steel in the Annealed and Sodium-exposed Conditions.

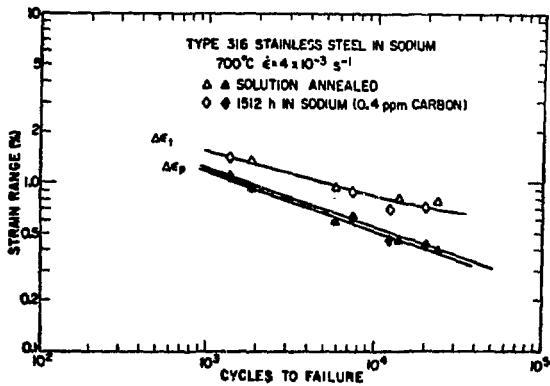



Fig. 7. Fatigue Data Obtained in Sodium at 700°C on Type 316 Stainless Steel in the Annealed and Sodium-exposed Conditions.

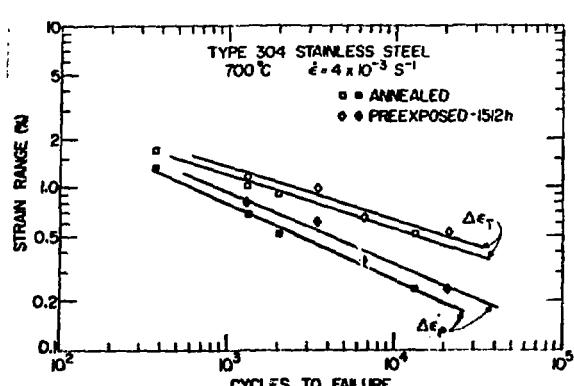



Fig. 8. Fatigue Data Obtained in Sodium at 700°C on Type 304 Stainless Steel in the Annealed and Sodium-exposed Conditions.

of Type 304 stainless steel at both 600 and 700°C (Figs. 6 and 8, respectively). As in the previous case, the 700°C exposure was primarily an aging process since the carbon concentration in the material remained constant. The modest increase in lifetime produced by exposure at 700°C, i.e., 30 to 50%, is in agreement with the effect of aging reported for Type 304 stainless steel<sup>(1,2)</sup>. The 1512-h sodium exposure at 600°C increased the fatigue life of Type 304 stainless steel by factors of 2 and 4 for total strain ranges of 1.4 and 0.7%, respectively. This increase is substantially greater than the 50% increase in fatigue lifetime for aged material tested in air<sup>(1,2)</sup>. Therefore, much of the increase can be attributed to the surface carburization of the material. The Type 304 stainless steel was also exposed to sodium for 5012 h at 600°C before testing in sodium. As indicated in Fig. 7, the fatigue lifetime decreases with an increase in the exposure time. This may be related to the greater depth of carburization that occurred during the longer exposure.

The cyclic stress-strain response of the two steels is shown in Figs. 9 and 10. The cyclic stresses for the annealed materials in sodium at 600°C are in agreement with the stresses obtained in air tests at the same temperature. In contrast to the data of Weeks et al.<sup>(2)</sup> for Type 316 stainless steel aged for 1000 h at 565°C and tested in air at this temperature, considerable softening of the Type 316 stainless steel occurred during the 1512-h exposure to sodium. At 700°C the stresses in preexposed Type 316 stainless

steel were only slightly lower than in the annealed material. Apparently substantial aging occurs at 700°C during exposure to sodium for the thermal equilibration period just before fatigue testing. This conclusion is also supported by the much lower strain-hardening exponent for the annealed material, i.e., 0.15 at 700°C in comparison with a value of 0.31 at 600°C. Sodium-exposed Type 304 stainless steel exhibited less softening than Type 316 stainless steel at 600°C, and only a slight reduction in the cyclic stress occurred in both materials after the 1512-h sodium exposure at 700°C.

#### SUMMARY

Types 304 and 316 stainless steel exhibit different low-cycle fatigue behavior in a sodium environment. At a total strain range of ~1% and a strain rate of  $4 \times 10^{-3} \text{ s}^{-1}$ , the fatigue life of annealed Type 316 stainless steel at 600°C was a factor of four greater in sodium than in air. Under similar conditions the fatigue life of annealed Type 304 stainless steel tested in sodium did not differ significantly from the reported lifetime in air. The fatigue lifetimes in sodium for both steels at 600°C were ~50% greater than their respective lifetimes at 700°C; similar to results obtained in an air environment. The fatigue lifetime of Type 316 SS tested in sodium was not influenced significantly by a 1512-h exposure to sodium at either temperature; however, a substantial increase in fatigue life of Type 304 stainless steel was produced by a 1512-h exposure to sodium at 600°C. A modest increase in fatigue life of Type 304 stainless steel resulted from

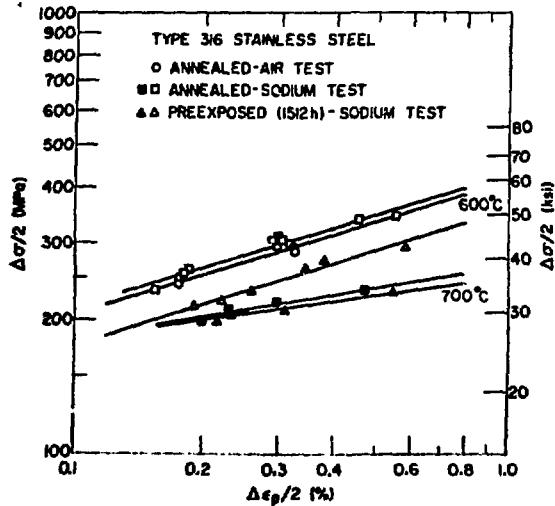



Fig. 9. Cyclic Stress-strain Response for Type 316 Stainless Steel Tested in Sodium at 600 and 700°C in the Annealed and Sodium-exposed Conditions.

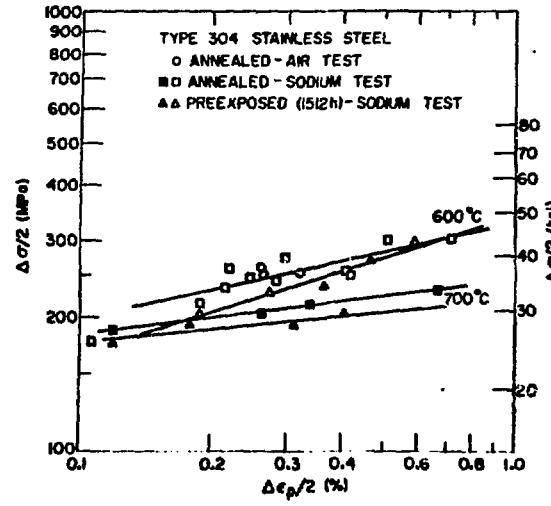



Fig. 10. Cyclic Stress-strain Response for Type 304 Stainless Steel Tested in Sodium at 600 and 700°C in the Annealed and Sodium-exposed Conditions.

# INTERNATIONAL CONFERENCE ON LIQUID METAL TECHNOLOGY IN ENERGY PRODUCTION

the 700°C exposure. Lower cyclic stresses were observed for both steels after the 600°C sodium exposure. The 700°C sodium exposure had almost no effect on the cyclic stress response. An increase in the exposure time of Type 304 stainless steel to sodium from ~1500 to 5000 h at 600°C reduced fatigue life.

## REFERENCES

1. C. F. Cheng, et al., "Low-cycle fatigue behavior of Types 304 and 316 stainless steel at LMFBR operating temperatures," Fatigue at Elevated Temperatures, ASTM-STP-520, American Society for Testing and Materials, 355 (1973).
2. R. W. Weeks, D. R. Diercks, and C. F. Cheng, "ANL low-cycle fatigue studies -- program, results, and analysis," Argonne National Laboratory, ANL-8009, (1973).
3. C. R. Brinkman, G. E. Korth, and R. R. Hobbins, "Estimates of creep-fatigue interaction in irradiated and unirradiated austenitic stainless steel," Nucl. Tech. 16, 297 (1972).
4. J. T. Berling and T. Slot, "Effect of temperature and strain rate on low-cycle fatigue resistance of AISI 304, 316, and 348 stainless steel," Fatigue at High Temperatures, ASTM-STP-459, American Society for Testing and Materials, 3 (1969).
5. M. Gall and G. R. Leverant, "Mechanisms of high-temperature fatigue," Fatigue at Elevated Temperatures, ASTM-STP-520, American Society for Testing and Materials, 37 (1973).
6. H. D. Solomon and L. F. Coffin, "Effects of frequency and environment on fatigue crack growth of A286 at 1100°F," Fatigue at Elevated Temperatures, ASTM-STP-520, American Society for Testing and Materials, 112 (1973).
7. L. F. Coffin, "Fatigue at high temperature," Fatigue at Elevated Temperatures, ASTM-STP-520, American Society for Testing and Materials, 5 (1973).
8. H. H. Smith, P. Shahinian, and M. R. Achter, "Fatigue crack growth rates in Type 316 stainless steel at elevated temperatures as a function of oxygen pressure," Trans. TMS-AIME 245, 947 (1969).
9. L. A. James and R. L. Knecht, "Fatigue-crack propagation behavior of Type 304 stainless steel in a liquid sodium environment," Met. Trans. 6, 109 (1975).
10. L. A. James, "Fatigue-crack propagation in austenitic stainless steels," to be published Atomic Energy Review 14, No. 1, (1976).
11. L. H. Kirschler, R. H. Hiltz, and S. J. Rodgers, "Effect of high temperature sodium on the mechanical properties of candidate alloys for the LMFBR program," MSA Research Corporation Report, MSAR-70-76, (1970).
12. A. Thorley, B. Longson, and J. Prescott, "Effects of exposure to sodium on the mechanical properties and structure of some ferritic, austenitic, and high nickel alloys," British TRG-Report-1909(c), Technical Research Group, (1969).
13. A. Thorley and C. Tyzack, "The carburization of stainless steels in sodium containing carbon impurities and its effect on mechanical properties," Effects of Environment on Material Properties in Nuclear Systems, Conference Proceedings, Brit. Nucl. Energy Soc., London (1971).
14. K. Natesan, et al., "Influence of sodium environment on the tensile behavior of austenitic stainless steels," ASME Symp. on Structural Materials for Service at Elevated Temperatures in Nuclear Power Generation, MPC-1, pp. 302-315 (1975).
15. D. L. Smith, et al., "Effects of sodium on the low-cycle fatigue behavior of austenitic stainless steel," ASME Symp. on Structural Materials for Service at Elevated Temperatures in Nuclear Power Generation, MPC-1, pp. 290-301 (1975).
16. C. R. Brinkman and G. E. Korth, "Heat-to-heat variations in the fatigue and creep-fatigue behavior of AISI Type 304 stainless steel at 593°C," J. Nucl. Mater. 48, 293 (1973).