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ABSTRACT

We study the response of a turbulent boundary layer to an cuter—flow disturbance in
the form of a small-amplitude wave travelling along the bottom of a smooth channel. In a
previous papei{2] we proposed a model for the viscous attenuation of a wave propagating
along the inter7ace between two superposed fluids inside a laminar boundary layer
attached to the bottom wall. We obtained precise estimates on the ameunt of attenuation
suffered by the oscillatory component of the motion as a result of viscous dissipation.
This was accomplished by means of a representation of the solution as the asymptotic sum
of a Blasius boundary layer profile and a modified Stokes layer profile. The present paper
contains a similar asymptotic decomposition of the solution of the appropriate turbulent
Prandt] equations when the outer flow is a small-amplitude travelling wave, and so it may
be considered an extension of our previous work to the more realistic case of turbulent

flow.

I. REVIEW OF THE LAMINAR CASE
In this section we recall briefly our past results[2] on the interaction between a
small-amplitude travelling wave and a laminar boundary layer. The outer-flow

disturbance is of the form

Ua(x,y,t) = U + iefly)el{wi-kx), y>-h, (1.1)

where U is the constant mean flow, f(y) = k cosh [k(y+h}] with k the wavenumber and w the
frequency, and y=-h is the location of the bottom of the channel. In addition, the positive
parameter ¢ represents the ratic of the oscillatory part of the flow to the steady part.
We make the basic assumption that £ and k are small, that is, we assume the outer flow is
a uniform flow on which is superimposed a small oscillatory component in such a way that
the wavelength of the disturbance, which is proportional to k_l, is large compared to the
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boundary layer thickness.



In view of the form (1.1} of this disturbance we make the ansztz that the response of
the boundary layer is of a similar form; namely (cf.[4; Chap. 5]),

ulx,y,t) = uo(x,y) + eu](x,y)ei(mt'kx) ...

(1.2)

v{x,y,1) = v (X.y) + EVl(x,y]ei(“"“kx) .

where u and v are the tangential and normal components of the velocity in the boundary
layer, respectively. Now these components are solutions of the Prandtl boundary layer

problem

+uu_ + = +V
U . vuy Ue,t+UeUe,x u

(1.3)

u=v=0aty=—h:u+Ueasy+°=.

and so inserting (1.2) into (1.3) and rearranging in powers of £ yield the following two

problems for (uo.vo) and (u],vl):

Yoo, x * Volo,y = VVo,yy
Uox * Vo,y =0
(1.4)
u0=vo=Oaty=—h; uo-'Uasy"m.
(iw - 1ku° + uo,x) ug + uoul,x + uo,yv] +u, ,yvo = — (w-Uk)f + vul,yy
Ut Viy iku] =0
(1.5

u1=v]=0aty=—h;u]+if(y)asy-m,

Thus the zeroth-order problem (1.4) is simply the classical Blasius problem for a flat plate
(cf. [3;Chap.7]) with a known sclution (uB,vB), and so the problem (1.5) for the first-order
correction is a nonhomogeneous, linear problem with known coefficients. In order to solve
this problem we make the high-frequency assumption that w»1 in (1.5) and arrive thereby

at the simpler system



i(ew - kU)ul = - (w - kUM + vul,yy
(1.6)

ul,x + Vl.y - ilcu1 =0.

{Note also that we have replaced uy in (1.5) with its asymptotic value U at the outer edge
of the boundary layer. This permits us to find a solution of (1.6} satisfying the matching
condition u]->if(y) as y + o, as is readily apparent from (1.6) if we neglect the viscous
term vul,yy' Indeed, vul'yy-bO as y+w!) We seek z particular solution of the

nonhomogeneous equation (1.6} in the form
ul(x,y) =Ccosh(k(y+ h)],

and a short calculation reveals that
C = _lk@_"_.k_li)_z_ —~ ik as v -+ 0
{w-kU) + ivk
is the desired constznt. The corresponding homogeneous equation has the general solution
uI(x,y) = D]expll(y + h)] + Dzexp[-—l(y + h)}, for A = [i(w - kU)/v]V’, and 50 in view of the
boundary conditions on u,, we set D1 =, D2 == C and arrive at the following asymptotic

solution of (1.6):

= [——“i("’—‘kgl—] {coshik(y + h)] - exp [-A\(y + h)]}

(w-kU) + ivk

~ ik{coshlk(y + h)] - exp [[i(w — KU)/v]"(y + B)]} .

u, (x.y)
.7

To summarize, then, we have shown that the tangential component of the velocity in
a laminar boundary layer subjected to the outer disturbance (I.1) is the sum of a Blasius
boundary layer and a modified Stokes boundary layer, that is,
u(x,y,1) ~ up(x,y) + €u (xy)et kx| (1.8)
st
Using (1.8) we can proceed to calculate the attentuation suffered by the wave through the
action of viscous dissipation and other quantities of interest; cf. [2] for the details.

2. THE TURBULENT CASE
We now wish to study the response of a turbulent boundary layer to the outer-flow
disturbance (1.1) assuming, as before, that the wavelength of the disturbance is much
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larger than the boundary layer thickness. Let us proceed as in (1.2) by making the ansatz

that the response is of the form

u(x,y,t) = uo(x.y) + eu](x.y)ei(""t - kx) +. ..

v{x,y,t) = vo(x.y) + z\"](J:t,y,\ei("‘"t - kx) +. ..

where now the gquantities Uy Yo
other words, we assume that the boundary layer responds to the outer flow with a
deterministic fluctuation of the same frequency and an amplitude that contains random
turbulent fluctuations; cf. [4, Chap. 6]. We further assume that the organized
fluctuations, measured by the size of €, are small compared to the mean flow. The
difference between this analysis and the analysis in Sec. 1 consists in the fact that here
all terms contain a random part. In particular, the random fluctuations are of two types:

the fluctuations of the steady part of the flow and the fluctuations of the organized

Uy and v, are random complex-valued functions. In

motion.
Let us then decompose the velocity components into the sum of a time-average and

a random fluctuation; to wit, for j=0,1

Wj = + uj; Vj = Vj+ vj. z.n

N ' rl - a4 . T .
(By definition, the time average of a fluctuation is zero, that is, EI =vj=0) It is not
difficult to show that the mean and fluctuating components satisfy the continuity

equations
Ugx+Vo,y=0 ulo,x + vé,y =0
U, + V],y - ikup =0; uj x + V'l,y -iku] = 0;

in addition, the fluctuations uj, Vj satisfy the boundary conditions
ui:vi:Oaty:-h; ui.vi-‘ﬁasy-m.

Substituting the expressions (2.1} into the boundary layer equation (1.3} and averaging

¥ield boundary value problems for (u_j, v—j-):

UDGQ,X + ‘:’_oao,y = V\To’yy - (Uovo)y (2 2)

Ug=vg=0aty=-h;u,» Uasy-o



and
(i = ikGo + u:,'x)u—] + ITDE] x+ Q,'YC; +_1:|1,y;°

=-(w-KkU)f + \:T.\],yy - {ugv] + u]Voly — 2ikuguy
2.3)

_1;1=;]=0aty=-h;1?1->if(y)asy+m.

Problem (2.2} is the classical problem for a steady turbulent boundary layer along a
flat plate (cf.[1]) with a known solution {uT,vT) that depends on the particular closure law
chosen for the estimation of the Reynolds stress term u-g:; In order to proceed with the
solution of problem (2.3) we again make the high-frequency assumption that w»1 and so
obtain the approximate problem

i(w ~ kU =~ (@ = KUY + vuy yy - 2ikugu] 0

Gl=;] =Oaty=-h;;1+if(y)asy—ma,

in which EO has been replaced by its asymptotic value U, as in Sec. . We now assume

that an approximate particular solution of (2.4) is given by

uy = C cosh [k(y + h}l

i - .
c - —ikiw kL} ~ ik,

for 2
{w-kl + vk

as in the laminar case. Note that in deriving this result we have neglected the last term
in the righthand side of (2.4), the one due to the turbulent fluctuations u,':, and u']. The
justification for this resides in the observation that the particular solution deéscribes the
behavio;' of the solution of (2.4) at the outer edge of the turbulent boundary layer, and so
the term uguj is small there, owing to the fact that ug,u] + 0 as y +. Concerning the
corresponding homogeneous problem, we make the further assumption that the turbulent
forcing term in (2.4) is of the form

- 2ik ugu] = ikyuy y ,

where y is an adjustable phenomenological constant whose magnitude is of the order of

Uy v cf. [3; Chap. 19]. Granted the valicity of this ansatz we now look for sclutions of

the homogeneous equation



i(w - kU)i}1 = m?l wt ikyu"] v
of the form

uy = exp (Aly + h)],

where X is a root of the quadratic va¥ s ikyX - i(w - kU). A little algebra reveals that

—iky x [-k2vs div(ekl)) ”
r = 2k . 2.5)

and so depending on the size of ¥ we can write down the complete asymptotic solution of

problem {2.4).
1
First of all, if ¥ is much smalier than v/' then we may, to lowest order, neglect the

quadratic term in ¥ in the formula {2.5) and obtain the asymptotic formula
L
X, ~ #lifw - KU,

In view of the far-field matching condition that El ~ if{y) as y-*», we reject the root 1+
and {ind that {cf.(1.7))

= (—ke=KD ook ly + ) - exp (v + B}

up (%) ;
{w-kU) + vk

~ik { coshik(y + h)] - exp[-[i(w - kKU)/v] 7ty + h)]}

is the desired approximate solution of problem (2.4). It is valid in the viscous sublayer af

the turbulent boundary layer where the viscous stresses dominate the Reynolds stresses.
)

Secondly, if y is much larger than u/‘, as is the case in the remainder of the turbulent

layer outside the viscous sublayer, then formula (2.5) reduces to

y ~ ciky xJiky + 2v(w - kUY/(ky)]
2v

1
This follows from the asymptotic result that for |p]«l (1’2 + p)/' ~ T + ¥%p/T, which in
1
turn follows from the Mean Value Thecrem applied to the function (r? + p)/l. Therefore,
the two roots are approximately

1+ ~ (w ~ kUY(kY)



and

A~ - iky/v - (w - kU)/(ky).

We reject the root }.+ because cf the far-field matching condition and use A to obtain

the approximate solution

= Ke=KD g ook 4+ )] - exp v + W}

up(x.y) ;
(o - kU) + ivk

~ik {cosh{k(y + h)] - exp[-(iky/V) {y + h)] exp[~[(w - kU)/(kv)] (¥ + )]}

of the problem (2.4). Thus the tiravelling-wave disturbance induces in the tangential
i(we-kx) of the first—order correction to the mean turbulent flow a

component e-Il](x.y)e :
% described by the

rapidly oscillatory motion with amplitude ¢ and frequency ky/v»1/v
term exp[-(ik y/v)(y+h)l.
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