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ABSTRACT 

We study the response of a turbulent boundary layer to an outer-flow disturbance in 
the form of a small-amplitude wave travelling along the bottom of a smooth channel. In a 
previous paper[2] we proposed a model for the viscous attenuation of a wave propagating 
along the interface between two superposed fluids inside a laminar boundary layer 
attached to the bottom wall. We obtained precise estimates on the amount of attenuation 
suffered by the oscillatory component of the motion as a result of viscous dissipation. 
This was accomplished by means of a representation of the solution as the asymptotic sum 
of a Blasius boundary layer profile and a modified Stokes layer profile. The present paper 
contains a similar asymptotic decomposition of the solution of the appropriate turbulent 
Prandtl equations when the outer flow is a small-amplitude travelling wave, and so it may 
be considered an extension of our previous work to the more realistic case of turbulent 
flow. 

1. REVIEW OF THE LAMINAR CASE 
In this section we recall briefly our past results[2] on the interaction between a 

small-amplitude travelling wave and a laminar boundary layer. The outer-flow 
disturbance is of the form 

U e(x,y,t)=U + ief(y)ei(wt-kx)5 y > - h , O D 

where U is the constant mean flow, f(y) = k cosh Ik(y+h)] with k the wavenumber and w the 
frequency, and y=-h is the location of the bottom of the channel. In addition, the positive 
parameter e represents the ratio of the oscillatory part of the flow to the steady part. 
We make the basic assumption that s and k are small, that is, we assume the outer flow is 
a uniform flow on which is superimposed a small oscillatory component in such a way that 
the wavelength of the disturbance, which is proportional to k x , is large compared to the 
boundary layer thickness. 
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In view of the form (1.1) of this disturbance we make the ansatz that the response of 
the boundary layer is of a similar form; namely (cf.[4; Chap. 5]), 

u(x,y,t) = uo(x,y) + E U j ( x , y ) e l C u t - k x ) + . . . 
(1.2) 

v(x,y,t) = v (x,y) + ev.(x,y)e ^ ~ + . . . , 

where u and v are the tangential and normal components of the velocity in the boundary 
layer, respectively. Now these components are solutions of the Prandtl boundary layer 
problem 

u. + uu + vu = U . + U U + vu t x y e,t e e,x yy 

u + v = 0 x y 
(1.3) 

u = v = O a t y = - h ; u + U a s y * 8 , 

and so inserting (1,2) into (1.3) and rearranging in powers of e yield the following two 
problems for (u ,v ) and (u,,v,): 

u u + v u = vu o o,x o o,y o,yy 

u„ + v = 0 o,x o,y 

u = v = 0 at y = - h; u -• U as y-*» , 
(1-4) 

(iu> - iku o + u o x ) U ] + u o U l > x + u 0 y v j + U ] y v 0 = - (to-Uk)f + vuT_ 
yy 

u i , x + v i , y - i k L , i = 0 

Uj = Vj = 0 at y = - h; Uj -»• if(y) as y -"*>, 
(1.5J 

Thus the zeroth-order problem (1.4) is simply the classical Blasius problem for a flat plate 
(cf. [3;Chap.7]) with a known solution (Ug.Vg), and so the problem (1.5) for the first-order 
correction is a nonhomogeneous, linear problem with known coefficients. In order to solve 
this problem we make the high-frequency assumption that w»l in (1.5) and arrive thereby 
at the simpler system 
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i(w - kU)u, - - (u - kU)f + vu, w 

(1.6) 
L l ,x + v l . y - i k u l = ° -

{Note also that we have replaced u in (1.5) with its asymptotic value U at the outer edge 
of the boundary layer, This permits us to find a solution of (1.6) satisfying the matching 
condition u,-*if(y) as y •* », as is readily apparent from (1.6) if we neglect the viscous 
term vu. . Indeed, vu, +0 as y-*»!) We seek a particular solution of the 
nonhomogeneous equation (1.6) in the form 

u,(x,y) = C cosh [k(y + h)], 

and a short calculation reveals that 

C = i k f M - k V ) ik as v + 0 
(co-kU) + ivk z 

is the desired constant. The corresponding homogeneous equation has the general solution 
Ut(x.y) = D.expp.(y •>• h)] + D2exp[-'X(y + h)], for X = Ji(to - kU)/v] , and so in view of the 
boundary conditions on u,, we set D, = 0, D, = - C and arrive at the following asymptotic 
solution of (1.6): 

u (x,y) = [ i k ( w ^ \ ] {cosh[k(y + h)] - exp \-\iy + h)]} 
M (a>-kU) + ivk 2 

- ik{cosh[k(y + h)] - exp [-[>(» - kU)/v]%(y + h)]} . %, - { L 7 ) 

To summarize, then, we have shown that the tangential component of the velocity in 
a laminar boundary layer subjected to the outer disturbance (1.1) is the sum of a Blasius 
boundary layer and a modified Stokes boundary layer, that is, 

ufx.y.t) - uB(x,y) + eu s t (x ,y )e i { u t " k x ) . ( 1 8 ) 

Using (1.8) we can proceed to calculate the attentuation suffered by the wave through the 
action of viscous dissipation and other quantities of interest; cf. [2] for the details. 

2. THE TURBULENT CASE 
We now wish to study the response of a turbulent boundary layer to the outer-flow 

disturbance (l.l) assuming, as before, that the wavelength of the disturbance is much 
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larger than the boundary layer thickness. Let us proceed as in (1.2) by making the ansatz 
that the response is of the form 

u(x,y,t) = u o ( x . y ) + e : u ] ( x , y ) e l ( u t " k x ) + . . . 

v(x,y,t) = vo(x,y) + E v ] ( x , y ) e l ( " J t ~ k x ) + . . . , 

where now the quantities u , v u, and v, are random complex-valued functions. In 
other words, we assume that the boundary layer responds to the outer flow with a 
deterministic fluctuation of the same frequency and an amplitude that contains random 
turbulent fluctuations; cf. [4; Chap. 6]. We further assume that the organized 
fluctuations, measured by the size of e, are small compared to the mean flow. The 
difference between this analysis and the analysis in Sec. 1 consists in the fact that here 
all terms contain a random part. In particular, the random fluctuations are of two types: 
the fluctuations of the steady part of the flow and the fluctuations of the organized 
motion. 

Let us then decompose the velocity components into the sum of a time-average and 
a random fluctuation; to wit, for j = 0,1 

Uj = u~j + uj; VJ = VJ + vj . t 2 - ' ) 

(By definition, the time average of a fluctuation is zero, that is, Uj = VJ = 0.) It is not 
difficult to show that the mean and fluctuating components satisfy the continuity 
equations 

"o.x + ^o.y = °; "o.x + v o,y = ° 

u"] x + v"i y - iku] = 0; u\x + vj y -ikuj = 0; 

in addition, the fluctuations uj, VJ satisfy the boundary conditions 

uj = v] = 0 at y = - h; uj, vj -* 0 as y -*» . 

Substituting the expressions (2.1) into the boundary layer equation (1.3) and averaging 
yield boundary value problems for (u., v.): 

u o u o , x + v o u o , y = v u o , y y - ( u 0 v 0 ) v 

(2.2) 

u 0 = v 0 = 0 at y = - h; \iQ •* U as y •*«> 
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and 

(iu - iku 0 + U^XHM + u 0 u ] x + u 0 ( y v j + U ] ? y v 0 

= - (u - kU)f + vuj yy - (UQVI + u i v 0 ) y - 2ikuou'i 
(2.3) 

u\ = vj = 0 at y = - h; u\ •+ if(y) as y -*». 

Problem (2.2) is the classical problem for a steady turbulent boundary layer along a 
flat plate (cf,[l]) with a known solution (UJ .VJ) that depends on the particular closure law 
chosen for the estimation of the Reynolds stress term u 0 v 0 . In order to proceed with the 
solution of problem (2.3) we again make the high-frequency assumption that u»l and so 
obtain the approximate problem 

i(u - kU)ui = - ( w - kll)f + vui w - 2iku0U] 
(2.4) 

ui = v] = 0 at y = - h; uj -• iffy) as y -+» , 

in which u has been replaced by its asymptotic value U, as in Sec. 1. We now assume 
that an approximate particular solution of (2.4) is given by 

u, = C cosh [k(y + h)] 

for C = i k f M ~ k U > ik , 
(tu-kU) + ivk* 

as in the laminar case. Note that in deriving this result we have neglected the last term 
in the righthand side of (2.4), the one due to the turbulent fluctuations u 0 and a\. The 
justification for this resides in the observation that the particular solution describes the 
behavior of the solution of (2.4) at the outer edge of the turbulent boundary layer, and so 
the term u 0 u] is small there, owing to the fact that u 0 ,u] •+- 0 as y -*». Concerning the 
corresponding homogeneous problem, we make the further assumption that the turbulent 
forcing term in (2.4) is of the form 

- 2ik u 0 uj = ikyu iy , 

where v is an adjustable phenomenological constant whose magnitude is of the order of 
u Q ; cf. [3; Chap. 19]. Cr 
the homogeneous equation 
u ; cf. [3; Chap. 19]. Granted the validity of this ansatz we now look for solutions of 
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i{a)-kU)u t = v u l , y y + i k ^ u l , y 

of the form 

Uj = exp i'X(y + h) ] , 

where X is a root of the quadratic vX z + ikyX - i(co - kU). A little algebra reveals that 

T. _ - iky ± I - k V + 4iv(ta-kVUV> 

A " 2v • ^-b) 

and so depending on the size of y we can write down the complete asymptotic solution of 
problem (2.4). 

First of all, if y is much smaller than v J then we may, to lowest order, neglect the 
quadratic term in y in the formula (2.5) and obtain the asymptotic formula 

\ ± ~ ±[J(u> - kU)/v] l /\ 

In view of the far-field matching condition that u, ~ iffy) as y-*», we reject the root X 
and find that [cf.(1.7)] 

u,(x,y) = [ frfa - kU) , { c o s h [ l c { y + h ) ] _ e x p [x (y + h)]} 
(w-kU) + ivk a 

~ik{cosh[k(y + h)] - exp[-[i{o) - kU)/v] l / l(y + h)]} 

is the desired approximate solution of problem (2.4). It is valid in the viscous sublayer of 
the turbulent boundary layer where the viscous stresses dominate the Reynolds stresses. 
Secondly, if y is much larger than v ', as is the case in the remainder of the turbulent 
layer outside the viscous sublayer, then formula (2.5) reduces to 

A 2v 

V This follows from the asymptotic result that for ] u | « l (T + p) * ~ T + '/iu/r, which in 
turn follows from the Mean Value Theorem applied to the function <I" + u) \ Therefore, 
the two roots are approximately 

X + ~ (u - kU)/(kY) 

- 6 -



and 

X_ ~ - iky/v - (w - kU)/(ky). 

We reject the root X + because of the far-field matching condition and use X to obtain 
the approximate solution 

u,(x,y) = [ l k ( c u - k U > - ] {cosh[k(y + h)] - exp [X (y + h)j} 
1 (w-kU) + ivk 2 

~ik{cosh[k(y + h)] - exp[-(iky/v) (y + h)] exp[-[(u> - kU)/(kv)l (y + h)]} 

of the problem (2.4). Thus the travelling-wave disturbance induces in the tangential 
component eu-^x.yje of the first-order correction to the mean turbulent flow a 
rapidly oscillatory motion with amplitude e and frequency ky/\>»]/v described by the 
term exp[-(iky/v)(y+h)]. 
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