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Abstract

We formulate a parameterized family of linear quadratic two-person nonzero-sum stochastic
differential games where the players are weakly coupled through the state equation and strongly
coupled through the measurements. A positive parameter e characterizes this family, in terms
of which the subsystems are coupled (weakly). With € = 0 the problem admits a unique Nash
equilibrium solution, while for e > 0, no matter how small, no general method is available to obtain
the Nash equilibrium solution and even to prove existence and uniqueness. In this paper, we develop
an iterative technique whereby Nash solutions of all orders (in terms of ¢) are obtained by starting
the iteration with the unique (strong team) solution determined for ¢ = 0. The Nash solutions turn
out to be linear, requiring only finite-dimensional controllers, in spite of the fact that a separation

(of estimation and control) result does not hold.
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1 Introduction

We formulate a class of stochastic nonzero-sum differential games where the players are weakly
coupled through the state equation while sharing the same source of informational (measurement).
This latter feature brings in a strong “information coupling” the presence of which makes the
derivation of Nash equilibria quite a challenging task unless the weak coupling parameter (e) is
set equal to zero. The approach developed in the paper involves an iterative scheme which starts
with the solution of the zero’th order stochastic game (obtained by setting ¢ = 0), and requires at
each step the solution of individual stochastic control problems each one of which is of the linear-
quadratic type. We study the structural properties of these noncertainty-equivalence controllers,
as well as the convergence of the proposed iterative scheme.

A precise formulation of the problem is given in the next section, followed (in Section 3) by a

summary of the main results to be presented at the Conference.

2 Problem Statement

The linear-quadratic, nonzero-sum, stochastic differential game under consideration, with weak
spatial and strong informational coupling between the players, can be defined in precise mathemat-
ical terms as follows: The evolution of the composite state (i := (x1,,12,),) of the game is described

by the linear 1td stochastic differential equation:

dxt = A{t\e)xtdt - Bl(H)u\dt + B NY)u]dt + F(t)dwt
to <t ™tfi — Xo

)
where the initial state X0 is taken to be a Gaussian distributed random vector with mean zero and
covariance Eo > 0, dim(x') = m, dim(ux) = r;, i = 1,2,

Bx{t) 0

ir (i fw= , =~

S2(D
F{t)= block diag (N(0,~2W); FxF/ >0, F2F'>0,

e > 0 is a small (coupling) parameter, and the partitions of A, B/, B2 and F' are compatible with
the subsystem structure, so that with e = 0 the system decomposes into two completely decoupled
and stochastically independent subsystems, each one controlled by a different player. The functions

u! and u2, t > to, represent the controls of Players | and 2, respectively, and are vector stochastic



processes with continuous sample paths, as to be further explained in the sequel. The driving term
wt = t > <o is a standard vector Wiener process, that is independent of the initial state
X0-

The common observation y of the players is described by

dyt = C)xtdt + G(t)dvt,

C = (CiyC?) \%
where dim(y) = m, Ci is mx1,, i — 1,2, GG' > 0, and v* t > to is another standard vector
Wiener process, independent of {u;t} and X0. This common observation constitutes the only strong
coupling between the players.

All matrices in the above formulation are taken to be continuous on the time interval [to,t/]-
Let Cm = Cm|[to,*/] denote the space of the continuous functions on [to>*/]5 with values in IRm.
Further let 3t be the sigma-field in Cm generated by the cylinder sets {y € Cm,y3 G B} where B is
a Borel set in /Rm, and to < s <t. Then, the information gained by each player during the course
of the game is completely determined by the information field y¢, ¢ > fo- A permissible strategy

for Player i is a mapping 7i(-, *) of [to,*/] X Cm into IRri with the following properties:
(i) mit,7)) is continuous in ¢ for each 7 E Cm;

(i) 7i(t,7) is uniformly Lipschitz in 7 i.e., |7,(tr?) - 7,(*,01 < AlI?2- £lI> * £ [to,*/], ], £ e Cm,

where || * || is the sup norm on Cm.
(i) ul = 7,(t, 7) is adapted to the information field Yz

Let us denote the collection of all strategies described above, for Player i, by P,-. It is known that,
corresponding to any pair of strategies {71 G Pi,72 G P2}, the stochastic differential equation (1)
admits a unique solution that is a sample-path-continuous second-order process. As a result, the
observation process yt, t > to will also have continuous sample paths.

For any pair of strategies {71 E Pi,72 £ P2}, we introduce the cost function for Playeri, i = 1,2,
as

N(11,72) = E ~xtfOifte)xif - ~ f'tQict:€)xt + u|VHIZ ]

where all the matrices are nonnegative definite and

Oif{e) = block diag (Qi/,e<3i2/)



<22/(e) := block diag (eQ2if, 02f)
Qi(t;e) = block diag (Qi(t),eQ12(1))
Q2(t;e) := block diag (eQ2\(r),02(1)).

Furthermore, ul = 7i(t,2/0)> with Up denoting the stochastic process restricted to the time interval
[to,*]- Note that the players’ costs are also coupled weakly, so that if ¢ = 0 each cost function
involves only that player’s state vector and control function. Of course, even with ¢ = 0 there is
still an “informational coupling” through the common observation, which implicitly couples the
cost functions under any equilibrium solution concept.

Adopting the Nash equilibrium solution concept, we seek a pair of strategies (7" G F1,72 £ "2)

satisfying the pair of inequalities
A(7:,72) < M(T1,72);  A2T1%,72%) < ALil, 12) @)

for all 71 G Fi, 72 G F2. To show the explicit dependence of the Nash policies on the available
information and the coupling parameter e, we will sometimes use the notation 7*(*,2/0;e)-
Let us first list a few known facts on the Nash solution of this stochastic differential game, when

¢ is not necessarily a small parameter.

L Conditions under which a Nash equilibrium exists are not known. What is known, however,
is that the solution (whenever it exists) will not satisfy any separation principle (between
estimation and control), which is in some sense true even for the zero-sum version of the

problem [1].

2. The discrete-time version of the problem, but with private measurements for the players that
are shared with a delay of one time unit, has been considered before in [2] where it has been
shown that the Nash equilibrium solution is unique and linear in the available information for
each player. The procedure developed there can readily be used to derive a similar result for
the common information case (in discrete-time), when even though a separation result does
not apply, the Nash controllers for the players have finite dimensional representations (i.e.,

the controller dimension does not grow with the number of stages in the problem) [3].



3. For the continuous-time problem, however, the procedure of [2] does not apply, and consequently
a proof of existence and uniqueness of linear Nash equilibria has been quite elusive for the
past decade. For the zero-sum version (of the continuous-time problem), it is possible to prove
existence of a unique linear saddle-point equilibrium, though using an indirect approach that

employs explicitly the interchangeability property saddle-points [1].

In view of this past experience, we adopt in this paper a different approach for the nonzero-sum
stochastic differential game, that exploits the weakness of the coupling between the two subsystems:
Suppose that there exists a pair of Nash equilibrium policies that are analytic in e, that is, for every

n> 1,
= 7i0)(*> Ko) + =+ 0(€). ©6)
i=1
Then the question we raise is whether it is possible to obtain the different terms in this expansion
by solving simpler game or stochastic control problems, and whether it is possible to prove unicity

of equilibrium in this class (of analytic-in-e policies). Our findings are summarized in the next

section.

3 Summary of Main Results

Our first result is that the zero’'th order term in the expansion (6) can be obtained by solving the
original stochastic differential game after setting ¢ = 0. Note that with 6=0 the game dynamics
are completely decoupled, but the players’ policy choices axe still coupled through the common

measurement.

To obtain the Nash equilibrium of the “zero’th order game™, we first fix = 17°(1,V0) and

minimize J\ over 71 6 Fi subject to (1) with ¢ = 0. This is a standard stochastic control problem,

admitting the unique solution
710)(*>J/o) = (7

where Si > 0 satisfies the Riccati equation
Si + AjSi + Si-Ai — S\B\B/S\| + Qi =0; S\{zf) = 6))

and

dx) = (Ai = B\B/Si)x\dt + K\(dyt — (C\i) + C2i?)dt); =0 (9a)



dx* = Aitfdt + B-iT it dt + K dyt — (C\x\ + C2X¥)dp x0 = 0 (96)
K:= = EC'iGGTi (9¢)
E - AOE - EAQ - FF'+ KGG'K = 0; E(t0) = E0 (9

Ao m= block diag (AT1,A2).

Note that 72°* enters the solution only through the estimator of the second block component of x.

Now we reverse the roles of the players, fix 71°* arbitrarily and minimize J? over F2, with ¢ = 0

to arrive again at a unique solution:
720)(* o) = -B-S-X* (10)
where S2 > 0 satisfies
S2 + A'252 + 52A2 — S2B2B"282 + Q2 =0; S2(tf) = Qif (n)

and x* is given by (9b) with 72" replaced by the expression in (10). Since (9b) depends on x/ also,
we will need here (9a) with the term —BiB/Six} replaced by Bi-y/°\t,yQ). Since (9) and (10) are

unique responses, it readily follows that the Nash equilibrium policies are unique, and given by (9)
and (10) with x\ and x* given by (9a)-(9b), with 72" in (9b) replaced by the expression in (10).

This completes the derivation of the zero'th order solution. It is useful to note that this zero’th

order solution is also the unique solution to a team problem with objective function any convex
combination of j|°* and J"°\ where j7(' is Ji with ¢ = 0.

To obtain the first order terms, 7 and 7, we perform the following minimizations, which

turn out to be the first step in a policy-space iteration algorithm:

min J1(71,770)); min N(TN, 72)

where ¢ is not set equal to zero. The solutions to these individual stochastic control problems are

unique and analytic in ¢ > 0 — let us denote them by 71 and 72, respectively. Then we can show
that
7i(*,yo;e) = 710)(*, 2/0) + e711)(<, 2/0) +0(e) (12a)
N, yo, e) = 720)(*, 2/0) + £72X)(P 2/0) + 0(e) (126)



where the zero’th order terms are precisely the ones given by (7) and (10), and the first-order terms
are the ones in the expansion (6). The controllers turn out to be of the same dimension as in the

zeroth order case, but this time the control gain matrices depend on the Kalman gain K

For the next step we substitute the expression for 71 = 7(0" + t7|1" into J2, and that for

72 = + €72” into Ji, and minimize them with respect to 72 and 71, respectively. The result is

the unique solution (as the counterpart of (12)):

Ti(* Yo;<0 = Ti0)(~J/o) + 1 c7i,)(<.y0) + 0(c2)
=1

72(+,3/03«) = 720)(*J/0) + + °(e2)
1=1

where all the terms (zero’th, first and second-order) yield exactly the corresponding terms in (6)
(details of verification of this result will be provided in the final version of the paper at the Con-
ference). Hence, following this procedure iteratively, we arrive at policies of all orders, to yield
approximations to the Nash policies, to any degree of accuracy. In all cases the controllers are
linear and of the same order as the zero’'th order Nash controllers.

In addition to providing the precise expressions for these linear controllers, the final version of
the paper to be presented at the Conference will also include a study of the convergence of the

generated sequence of controllers, and a characterization of the limiting Nash policies.
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