UCRL—102872
DE90 007651

Coping with Nonunifonn Unix Interfaces
in Designing a Portable Network Driver

Rich Wolski

This Paper Was Prepared For Submittal To
Usenix Conference Proceedings
Usenix, Anaheim CA

June 11-18, 1990

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

MASTER 7590

N3
OiSTRIBUTIQH OF THIS DOCUMENT IS UNLIMiTED

JXr"'-CVWV--'-

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Coping with Nonuniform Unix Interfaces in
Designing a Portable Network Driver

by

Rich Wolski
Computation Department
Lawrence Livermore National Laboratory
Livermore, CA.

This paper represents a draft of a proposed submittal for the 1990 Summer
USENIX conference.

This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

rev. 9

Abstract

The need for portable software continues to increase, especially within
the Unix community, where a uniform interface is assumed to exist.
Unfortunately, system software (particularly that which executes as part of the
kernel) often has not been written to take full advantage of the homogeneity
offered by Unix. Further, there is a need even within the kernel for greater
uniformity of interfaces.

This paper describes some of the issues associated with the design and
implementation of a kernel-level protocol driver which is portable among
various Unix implementations. It also recommends areas where interfaces
could be more uniform across implementations.

rev. 9

Introduction and Summary

The need for portable system software is most apparent given the nature
of heterogeneous distributed computing. At the Lawrence Livermore National
Laboratory (LLNL), we have designed and implemented a layered proprietary
interprocess-communication (IRC) environment that is portable across multiple
hardware and software platforms. Lightweight tasking is used to support
multiple streams of execution within the IRC system, as well as to manage
protocol state.

During the design phase of the project, we assumed that the Unix*
device driver interface had been standardized across various vendor
implementations to allow us to write a portable kernel-level driver for our
proprietary transport through link-layer protocols. However, while much work
has been done to standardize the system-call interface to Unix, we found that
the interfaces to various kernel services (memory management, process
scheduling, etc.) were widely different from vendor to vendor, and even from
release to release of the same vendor's operating system.

This paper discusses the design and implementation issues associated
with portable Unix drivers and some of the problems stemming from a lack of
standard internal kernel interfaces. On the basis of this experience, we
recommend that the following improvements be made within Unix to facilitate
portable system software:

« Provide a uniform buffer-management interface across vendor
implementations of Unix.

+ Add a standard lightweight tasking facility to the Unix kernel.

+ Devote a portion of the proc and user structures to maintaining state
information on a driver-by-driver basis.

+ At some level in the Unix kernel, provide a uniform device-access
interface that is independent of any higher-level protocol.

+ Provide a uniform set of signal semantics and an accompanying kernel-
level interface.

+ Standardize the interface of the timeout/untimeout facility across Unix
systems, and provide an efficient mechanism to both set and cancel
timers.

+ Standardize the method of parameter passing between user space and
system space.

* Include preprocessor functionality as part of the ANSI standard for the
C language.

+ Make a uniform clock interface with a standard resolution available
from all kernels.

rev. 9

Background

To support distributed resource sharing in a heterogeneous environment
consisting of computers ranging from PCs to supercomputers, LLNL's
Livermore Computer Center decided to implement a distributed operating
system to facilitate integrating these diverse systems [1], [2]. The LINGS
(Livermore Integrated Network Computing System) software architecture
defines a set of standard abstraction at the operating-system level (e.g., file,
process, directory, clock, account, etc.), each managed by its own service.
Servers manipulate the various implementations of these abstractions on behalf
of clients who communicate their requests via a locally developed IRC model
and set of communication protocols (application layer through link layer) [3], [4],

[5].

For efficiency, LINGS has been implemented as the native operating
system for the Cray X-MP and Y-MP hardware platforms under the name
NLTSS (Network Livermore Timesharing System). It was clear that we did not
have the manpower to support locally developed operating systems for every
piece of hardware that anyone might wish to integrate into the system.
Therefore, the architecture was implemented as a guest layer on other platforms
and operating systems. Because LINGS requires only a uniform IPC interface,
it did not make economic sense to reimplement the majority of the other
operating system components (device drivers, trap and fault control, bootstrap
programs, etc.) for each new piece of hardware to be added to the system.

Fortunately, the Unix operating system emerged as a growing standard
in the scientific computing community and was available for most of the support
machines that we planned to integrate as servers into the system and that users
would use as workstations. Since the Unix system-call interface is mostly
consistent across vendor implementations, application codes written in C
should be portable, without much difficulty, between arbitrary network nodes.
Furthermore, the Unix device-driver interface (which was also becoming
standardized) provided a convenient way for the LINGS IPC facility to be made
portable as well. However, we found that a lack of standard interfaces to
internal kernel subsystems made producing such a driver more difficult than we
had originally expected.

General Requirements

The primary requirement for our driver was portability. Not only did it
have to run as a standard driver in a variety of Unix “flavors”, such as 4.X BSD,
DEC Ultrix, SunOS 3.X and 4.X, and Amdahl UTS, but it also had to be easily
convertible to run under other operating system configurations. For example,
the design was not to preclude a version for VMS or MS-DOS and therefore
should modularize those sections of code needed to support operating system
dependencies. Our driver was initially targeted for implementation under the
four architectures listed above, each of which had different performance
requirements and memory space limitations. Further, we knew we would have
to port the system across many upgrades of a given vendor’s hardware and

4
rev. 9

operating systems. This set of requirements contains conflict. One example is
the classic trade-off between execution speed and memory usage. In cases
where time efficiency strongly conflicted with space efficiency, we usually
compromised in favor of the former. Another, often less well recognized, conflict
is that which may exist between efficiency and portability. To get the driver
running without Unix source code changes in so many environments required
that we use a minimum set of universal system functions. If we were to make
greater use of individual architectural features, we could improve overall
performance at the expense of source code portability.

Use of Lightweight Tasking

We felt that it was important to structure our network driver around a
tasking paradigm (as opposed to using the traditional Unix interrupt service
mechanisms) to improve the extensibility of our implementation. Experience
with research systems like Thoth, [6], Tunis [7], and V [8] has shown that
lightweight tasking greatly improves modularity, since computations can be
encapsulated with their stack state [9], Thus, it is not necessary to maintain a
series of state records which must be parsed each time an event occurs, as long
as the correct task for that event can be scheduled—any needed state is simply
embedded in the task’s stack.

In addition, since tasks constitute logically parallel, independent threads
of execution, their use seems to naturally fit the similar nature of protocol
processing (i.e., activity on one protocol stream is logically independent of that
on another, unless the protocol explicitly says otherwise).

Tasks retain state over periods of both execution and dormancy; this can
be used to store communication state. The task scheduler must be able to find
the appropriate task state based on the incoming information, but no explicit
search is required for a communication state variable of any kind. Protocol
modules are more easily programmed as tasks, since they can be written to
naturally use their inherent memory to store communication state with no extra
search cost. Tasking also extends to handle the requirements for parallelism
which accompany multiprocessing. Since streams within a given machine are
independent, tasks handling those streams can run in parallel if the hardware
supports concurrency. While it is true that task scheduling adds some overhead
to the uniprocessor implementation of our driver, we believe that the ease of
extensibility offsets the processing cost.

Unfortunately, Unix does not typically provide a lightweight tasking facility
within the kernel or an interface which allows driver codes to manipulate
execution stacks in order to implement their own tasking. The C-library
functions setjmp and longimp provide a way to switch from one stack context to
another, but their semantics seem to be somewhat ill defined. Under various
implementations of Unix, the user of these functions is assumed to be “rolling
back” to a previous stack context, specifically, to recover from an error condition
[10]. To implement lightweight tasking, however, the task scheduler must be
able to switch between noncontiguous stacks arbitrarily, which violates the
simpler error-recovery model. While we eventually did have some success
using setjmp and longjmp (in some cases by simply rewriting them to do full
stack-frame reads and writes), the lack of consistency in their implementation

rev. 9

across different brands of Unix caused us to use the kernel timeout mechanism
to trigger our task scheduler. This gives us a uniform IPL (interrupt priority
level) on systems with interruptible kernels so that we do not have to worry
about tasks interrupting other tasks. We have also taken the liberty of
organizing our task scheduler as a large monitor to manage the critical regions
that exist where communication state memory is accessed. Combining the task
implementation with critical region management simplified the protection of
critical regions without significantly constraining the tasking model. Although
mixing the concepts of synchronization and scheduling in the same
implementation is not as general as possible, time constraints forced some
compromises in our implementation.

Facilities We Could Not Use

There were several features of various Unix implementations that we
wished to take advantage of, but could not because these features were not
universally available, at the time, in the brands of Unix we were targeting. We
therefore took steps, quite often at the expense of efficiency, to avoid these
features in favor of portability.

Buffering. We had hoped to use the native buffer management
routines for each system, which typically are implemented around a data
structure called an mbi/f[11]. Unfortunately, not all systems support mbufs for
internal network buffer management. Among the ones that do, the mbuf
routines and macros do not present a uniform interface to the driver code.
Consequently, we decided to implement our own packet management routines,
based on wired-down kernel memory which we manage with our own
allocation/deallocation scheme. On systems which do support mbufs as the
interface to a particular hardware driver, we were forced to convert between our
own packet format and mbufs (and vice versa), which entails copying the data
from one structure to another.

A uniform buffer management interface across vendor implementations
of Unix would allow us to avoid the inefficiency of an extra data copy.

Tasking. Since the tasking model of concurrency fit our driver design
well, we hoped to use some Unix facility (like setjmp and longjmp) to implement
lightweight tasking within our driver. Unfortunately, the behavior of setjmp and
longjmp is very much implementation specific, and not always suitable for task
stack manipulation. We therefore decided to use the Unix timeout mechanism,
which seemed to be available in most Unix kernels, to simulate tasking where
ever possible. Systems with interruptible kernels usually offer some kind of
efficient software-interrupt facility which can be used to trigger network drivers,
but the interface to this facility, if it is offered at all, is not standardized.

Since tasking seems to be a useful facility for implementing protocol
drivers, we recommend that a standard lightweight tasking facility be added to
the Unix kernel. Barring that, a uniform method of stack manipulation should be
provided to allow drivers to implement their own versions of lightweight tasking.

rev. 9

Process state. There are several instances where our protocol
implementation must keep state on a per-process basis. The most natural
method for managing this state would be to add it to the Unix proc and user
structures (depending on whether it needs to be accessed context
independently or not), but these structures do not typically provide the
necessary “hooks” to add driver-related state. Therefore, we, added our own
per process data structures which include pointers to the Unix versions. When
such state is needed, the driver code will search its per-process records and
compare or dereference these Unix data structure pointers.

It would be useful if some portion of the procan user structures could be
devoted to maintaining some information on a driver by driver basis.

Existing driver interfaces. On systems where an existing Ethernet
driver was available, we hoped to use this software as the interface to the
physical layer without modification. Fortunately, we thought, the “if" interface
(which at least BSD-derived versions of Unix support [12]) would provide us
with portable network access to the physical communication medium. In fact,
not only does the “if” interface vary from vendor to vendor, but also from release
to release from the same vendor in some cases. Further, it was important for
our link-layer software to be passed a copy of the device-specific link-level
header (e.g., the Ethernet version of our link-layer needed the Ethernet header
to determine which logical link a packet was coming from), but most Ethernet
drivers did not provide a way to pass such information through the “if’ interface.
To solve this problem, we were forced to modify some of the vendor-supplied
physical layer drivers to bypass the “if’ interface and communicate directly with
our link layer software.

If at some level the Unix kernel could provide a uniform device-access
interface that is independent of any higher level protocol, such a bypass would
not be necessary.

Asynchronous Event Signalling. There must be a way to
deschedule and reschedule a process from within the driver. We explored using
the Unix signal mechanism to manipulate process context, but the behavior of
signals varied from implementation to implementation so widely that we
believed that they could not be used portably. Consequently, we were forced to
translate essentially asynchronous events into synchronous context switches
using sleep and wakeup. In other words, the driver must queue information for
a process and then either wake it up (if it is asleep) or wait for it to try to go to
sleep (when it could then be immediately reawakened). In either case, the
asynchronous event must wait for the process to use a synchronous mechanism
to schedule the correct context.

A uniform set of signal semantics and an accompanying kernel-level
interface, would allow our protocol driver to naturally post asynchronous events
to user-space processes.

Kernel Facilities That We Used

In building the LINCS-Unix driver, we had to make decisions about what
services would be universally available both across Unix implementations and,

rev. 9

to a lesser extent, across various operating systems. The following is a list of
some of the services that our driver requires of its host operating system and a
brief rationale for each.

timeout/untimeout. In order to handle protocol timeouts for retries,
give-ups, and the like, there must be a way to do timer-driven asynchronous
function calls [12]. Also, efficiency is improved if a mechanism exists to cancel a
previously scheduled function call.

Although the timeout/untimeout facility seemed to be universally
available across Unix systems, we found that its interfaces were not entirely
and that the untimeout facility in particular was typically somewhat inefficient.
Since this facility is available in most Unix kernels, it should have a standard
interface. Further, the need for an efficient mechanism to both set and cancel
timers is important for efficient protocol implementation as pointed out by David
Clark [13].

Driver interface. To pass information across the user-to-kernel
boundary, the user-space half of the IPC system makes an joctlca\l on a
pseudodevice which we have defined as part of the driver. The ioctl
mechanism was chosen because it allows an arbitrary data structure (or pointer
to a data structure, depending on the implementation) to be easily passed into
the kernel. We assumed that all systems built around the user-space/system-
space paradigm would include such a facility, and that it would be uniform
enough for us to mask the differences using the C preprocessor.

Some effort should be made to standardize the method of parameter
passing between user space and system space to make the parameter parsing
section of the driver more portable.

C language preprocessor functionality. Our source codes
depend on certain C preprocessor features which we hope are available in
most environments. Specifically, the portable LINCS-Unix driver depends on
the conditional macro-expansion capability of the preprocessor, which is likely
to be part of any Unix implementation, but which may not be found as part of
other operating systems. There are indications, however, that this functionality
will be included as part of the ANSI standard for the C language, so we feel
justified in using it as part of a portable code [14],

System clock. Most reliable communication protocols require access
to some kind of clock with varying resolution requirements. The Delta-t and
Deltagram protocols used by LINCS, for example, require millisecond
resolution for packet aging purposes [15].

The clock resolution was not standard across implementations, however,
so we had to put some effort into converting the units of the local clock into a
canonical unit. While it is necessary for systems to have a variety of internal
clocks, a uniform clock interface with a standard resolution should be available
from all kernels.

rev. 9

Conclusion

We identified the need for a portable communication system that we hoped
to implement initially as a kernel driver for reasons of efficiency. We did not
want, however, to preclude systems where kernel-level device drivers were not
the norm or were extremely difficult to implement. Unfortunately, we found that
while a great deal of work had been done to standardize the user interface to
UNIX, interfaces to common kernel-level services remain woefully nonstandard,
making true portability difficult to achieve. Further, efforts to enhance portability
carried substantial performance costs. Therefore, we have since decided to
switch to a set of standard protocols and interfaces (TCP/IP and sockets) for the
transport through link layers because each vendor can afford to port, maintain,
and optimize its own implementation.

It is not clear to us that the existing standard protocol implementations are
well suited to the support of supercomputing; hence our desire to write our own
protocol drivers. In the face of such a variety of kernel implementations,
however, it does not seem possible to obtain both portability and the level of
performance necessary to justify the effort. Since driver-level protocol
implementations seem to be important for performance, it seems imperative that
the interfaces to kernel subsystems be made as standard as possible.

We further recommend that a lightweight tasking facility be added to the
standard UNIX kernel to support a more modular and extensible programming
model for driver implementation.

Acknowledgements

The network driver was a product of equal effort by the author and Jed
Kaplan (now working for IBM Watson Research). Dr. John Fletcher helped in
the design and implementation of the portable network driver. In particular, he
designed and implemented the part of the network driver which runs as a user-
level library. Joe Requa first designed and implemented the version of the
kernel tasking on which we based our system and which we have since
modified. The Link layer codes for the different systems (currently somewhat
less than completely portable) were written by Jim Holeman, Mark Gary, and
Richard Ruef.

| would further like to thank Dr. Richard Watson for his insightful
suggestions and liberal editing of this paper.

rev. 9

References

[1]

[2]
[3]

[4]

[]

[6]
[7]
[8]

[9]

[10]
[11]
[12]

[13]

[14]
[15]

R. H. Watson and J. G. Fletcher, “An Architecture for Support of Network
Operating System Services,” Computer Networks , vol. 4, pp. 33-49,
1980.

J. E. Donnelley, “Components of a Network Operating System,” Computer

Networks , vol. 3, pp. 389-399, 1979.

R. W. Watson, “Delta-t Transport Protocol: Features and Experience
Useful for High Performance Networks,” IFIP Workshop on Protocols for
High-Speed Networks, Zurich, Switzerland, May 9-11, 1989.

J. G. Fletcher, “Introduction to LINCS,” Tentacle, April 1982-March 1983,

Lawrence Livermore National Laboratory, Livermore Computer Center,
Livermore, CA.

R. H. Watson and S. A. Mamrak, “Gaining Efficiency in Transport Services

by Appropriate Design and Implementation Choices,” ACM Transactions
on Computer Systems , vol. 5 No. 2, pp. 97-120, May 1987.

D.R. Cheriton, et al., “Thoth, a Portable Real Time Operating System,”
Communications of the ACM, February 1979, pp. 105-115.

R. C. Holt, Concurrent Euclid, The Unix System, and Tunis. Addison
Wesley, 1986.

D.R. Cheriton, and W. Zwaenepoel, “The Distributed V Kernel and its
Performance for Diskless Workstations,” in Proc. 9th Symposium on
Operating System Principles, October 1983, pp. 128-1309.

A. Tevanian et al., “Mach Threads and the Unix Kernel: The Battle for
Control,”, Carnegie-Mellon University, Department of Computer Science,
Technical Report CMU-CS-87-149, August 1987.

J. M. Bach, The Design ofthe Unix Operating System. Prentice Hall,

1986.

Unix System Managers Manual, 4.3 Berkeley Software Distribution,

Virtual Vax-11 Version (1986), p. SMM:15-4.

S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The

Design and Implementation ofthe 4.3BSD UNIX Operating System.

Addison Wesley, 1989.

D. D. Clark, “Protocol Performance—Why Networks Don't Go Fast,” a

tutorial on Internetworking presented at Interop, San Jose, Ca., October

1989.

American National Standard for Information Systems (ANSI), Draft

Proposed, Programming Language C, 1987.

J. G. Fletcher and R. W. Watson, “Mechanisms for a Reliable Timer-Based

Protocol,” Computer Networks , vol. 2, pp. 271-290, 1978.

rev. 9

Richard Wolski

P.O. Box 808, L-60
Livermore, CA 94550
(415)423-8594

rwolski@lll-Icc.linl.gov

