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Diagnostics on the S-l Advanced Architecture Processor (AAP)

Abstract

The logical design of the AAP was extensively tested using diagnostic programs before 
construction of the wire-wrapped AAP was begun. This paper describes how the diagnostics 
were written and used, and some of the reasoning behind the more interesting diagnostics. A 
diagnostic generating program is also described.
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Each diagnostic was an AAP assembly language program which had been designed to 
exercise some feature(s) of the hardware design. The diagnostics were written in AAP assembly 
language because of the high degree of control assembly language programming gives to the 
diagnostic programmer. In many diagnostics, a hardware feature could be tested only if the 
machine executed a unique sequence of AAP instructions, or addressed specific locations in 
memory. Such control would not have been possible if a high level language were used.

Each diagnostic was initially executed on the AAP architecture simulator, or archsim. 
Archsim served as the standard of correctness for AAP programs; given a program and data, 
archsim and a debugged hardware AAP should produce identical results. Thus, the first step 
in using a diagnostic was to verify that the diagnostic itself was debugged, i.e., the diagnostic 
would find no errors in a correctly operating machine. The debugged diagnostic was then 
executed on the SCALD simulator which had been loaded with the AAP hardware design. 
A diagnostic would terminate “normally” if an error was found. Normal and abnormal ter­
minations were determined by the final value of the program counter. When a diagnostic 
terminated abnormally, the machine register contents were preserved, which allowed a pre­
liminary diagnosis of the problem to be made. The diagnostic could then be rerun with the 
SCALD simulator in single step mode, and the exact malfunction could be identified.

The diagnostics were divided into two categories: custom diagnostics and pseudo-random 
diagnostics. Each custom diagnostic was a carefully chosen instruction sequence designed 
to exercise a particular feature of the hardware design more rigorously than a typical high 
level language program would. Pseudo-random diagnostics tested the machine as a whole. 
A pseudo-ramdom diagnostic instruction sequence resembled a HLL program instruction se­
quence, but included fine granularity checking for a machine malfunction.

The STORE and GOTO diagnostics are the best examples of the custom diagnostics. 
The STORE diagnostic did basic testing of the load and store instructions. It exemplified 
the principle of testing the design with a demanding, but legal instruction stream. High level 
language programs typically perform a loawi or store instruction once every 4 instructions. 
The STORE diagnostic performed 54 consecutive load and store instructions, including a 
sequence which caused 9 consecutive data cache misses. It also performed stores to a location 
X followed by reloads from X, with varying numbers and types of intervening instructions. 
STORE verified the design of the write register, write buffer, and data cache miss logic.

The GOTO diagnostic tested instruction sequencing: HLL language programs typically 
execute a goto assembly language instruction once every 6 instructions. The GOTO diagnostic 
consisted of 24 instructions, 18 of which were gotos. Nine of the gotos were consecutive and 
caused 9 consecutive instruction cache misses. GOTO thus subjected the instruction branching 
logic to much more frequent use than HHL language program would require. GOTO tested 
the immediate and delayed forms of the goto instruction. The 6 non-goto instructions in 
GOTO were placed in the delay slots of delayed gotos, and caused side effects which verified 
that they had been executed.

Other custom diagnostics were written to test the ALU, tags, condition testing, and data 
and instruction cache flushing.

The pseudo-random diagnostics complemented the custom diagnostics by taking a Monte 
Carlo approach to testing. Rather than searching for a specific design weakness, the Monte 
Carlo approach postulates the existence of an unspecified flaw. By definition, this flaw must
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cause an incorrect result to be generated by some instruction. Hence, the flaw can be disclosed 
by executing a sufficiently long instruction sequence. The goal of the diagnostic programmer 
becomes the generation of that instruction sequence.

Long instruction sequences are better generated by computers than by humans. Conse­
quently, a Diagnostic Generating Program (DGP) was designed, and an initial prototype was 
written. The goal of the DGP was to generate diagnostics consisting of tens of thousands of 
instructions in several minutes. The instructions in each diagnostic would be pseudo-random, 
i.e., the DGP user could specify certain parameters that the instruction stream would satisfy 
overall, but the actual instruction sequence would be generated randomly by the DGP. The 
user controlled parameters would include instruction mix, instruction and data cache hit rate, 
memory reference address mix, and instruction result interlocking. DGP diagnostics would 
also be suitable for use in benchmarking and performance tuning experiments.

A DGP generated diagnostic consisted of two sections. The first section consisted of the 
pseudo-random sequence specified by the user. The second section consisted of code that ver­
ified that the first section had executed correctly. While generating the first section, the DGP 
performed the same calculations as would be performed when the first section was executed. 
Thus, the second section consisted of the results of these calculations, plus instructions to 
compare these predicted results with the actual results from the first section.

The prototype DGP allowed the user to specify cache and memory reference parameters 
such as data cache hit rate, and frequency of access to the same word, same cache line, or 
next cache line as the previous access. The prototype DGP produced diagnostics with an 
instruction of 25% loads, 35% moves, and 40% stores. One DGP generated diagnostic was 
run on the SCALD simulator. It found an error in one of the SCALD library entries.

Conclusion

The logical design of the AAP was extensively tested using assembly language diagnostic 
programs before construction of the wire-wrapped AAP was begun. Consequently, the wire- 
wrapped AAP was relatively free of design bugs, and debugging consisted primarly of locating 
defective chips and interconnections.
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