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ABSTRACT 

We consider the numerical solution of Boltzmann's equation for a 
gas model consisting of rigid spheres by moans of Hubert's expansion. 
If we retain onjy the first two terms of the expansion, BoltEmann's 
equation reduces to the Boltzmann-Hilbert integral equation. Successive 
terms in the Hilbert expansion are obtained by solving the same integral 
equation with a different source term. The Boltzmann-Hilbert integral 
equation is solved by a new very fast numerical method. The success of 
the method rests upon the simultaneous use of four judiciously chosen 
expansions; Hilbert's expansion for the distribution function, another 
expansion of the distribution function ill terms .of Hermite polynomials, 
the expansion of the kernel in terms of the eigenvalues and eigenfunctions 
of the Hilbert operator, and an expansion involved in solving a system 
of linear equations through a singular value decomposition. 

The numerical method is applied to the study of the shock structure 
in one space dimension. Numerical results are presented for Mach 
numbers of 1.1 and 1.6. 
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I. INTRODUCTION 
The perfect gas is characterized by the fact that the state of 

any of its molecules is independent of that of all the others except 
at the instant of collision. We can describe the gas completely by 
specifying the position and the velocity of every molecule at a given 
time. We shall restrict our attention to a gas model consisting of 
monatomic rigid sphere molecules with diameter o. 

Boltzmann's equation describes the evolution of the one particle 
distribution function f = f(x,u,t), where x, with components (x,,x,,x,), 
is the position vector, u, with components CUj,u2,u,), is the velocity 
vector, and t is time. In the case of a gas consisting of rigid spheres 
it has the form 

3 i = || +(u-Vx) f + i (F-y f = H_ \[|y.e| (f'f|-ffpdu,dui (1.1) 

where m is the mass of the particle, y denotes the gradient operator 
with respect to the x variables, V • denotes the gradient operator with 
respect to the u variables, F_ is the external force, e_ is a unit vector 
pointing in the direction of the solid angle element dw, V = u' - u, 
a bar under a symbol denotes a vector quantity, and 

f = f(x,u,t), 

f = fCx,u'.t), 
f{ = fCx,u{,t), 

where 
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u' = u + (V-cOe_, 
5li " «! " CV-e)e. 

u', u\ are the velocities before collision of those rigid spheres which 
after collision have the velocities u and u,. For an intuitive discussion 
of the equation see [ 51) and [ 78] , for a thorough discussion see [ 9] , 
(24) , l?-5] , 133] , [42] , [43] , [ 44] , [45] , and [51] . 

The average $(x,t) of any property i$>(x,u_,t) of the flow, taken over 
the entire velocity space is 

*(x,t) = I ij>(x,u,t)f (x,u,t)du. 

Some quant i t ies of i n t e re s t in the solution of equation (1.19) use the fol ­

lowing moments of f: the density p (x , t ) = 1 , the mean veloci ty u, the pres­

sure P = y pv , where v = u-u, and the temperature T = V/pSl, where J3? 

i s the universal gas constant. One other quantity that lequires mention is 

the Bolt;man II - function, defined by •fa ri = TogT = I f ( x , u , t ) logf (x ,u , t )du . 

In a rigid sphere gas ix) equilibrium, the rate at which in individual 
molecules collides with another molecule is given by 

fi = 2 JES o 2pC, 
where C is the thermal velocity (defined in Chapter V) and the mean peculiar 
velocity is 

C = 2c//if . 
Maxwell's mean free path is then defined as 
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S. = C/fl = (.'JnpoV1 . 
The purpose of this paper is to present a fast (over 200 times 

faster than Chorin's method described in Chapter II) numerical algorithm 
for solving equation (1.1) and to apply it to the study of the structure 
of a shock wave in one dimension. Our method (described below) is similar 
to Chorin's method in that the distribution function f is assumed to ::e an 
expansion around the Maxwellian distribution function f„; and f is expressed 
as an expansion in Hermite polynomials. One advantage (other than speed) 
of our method over Chorin's method is that it does not have the corcrct-
ibility problem which arises in evaluating numerically the five-fold 
collision integral in (1.1), i.e. the numerical integration over 
velocity and angular variables. See Chapter III, section 1. Our method 
has no integration over angular varialbes. 

The method consists of replacing f by Hilbert's expansion (defined 
in Chapter III) of f. This is the step which removes the angular 
integration. As is well known, its subsequent development leads to an 
ill-posed problem. As we shall show later, this ill-posedness is reE._.!ied 
through en appropriate algebraic procedure without changing the solution 
of the original problem and without losing the advantages of Hilbert's 
expansion. Substituting this expansion for f into equation (1.1) and re­
taining only the first two terms we obtain the Boltzmann-Hilbert integral 
equation (a Fredholm integral equation of the second kind). The unknown 
function in this integral equation is $, where f = f n(l + $). The 
Boltzmann-Hilbert equation is then transformed into a Fredholm integral 
equation of the first kind. The kernel of the later integral equation is 
represented by a bilinear expansion of eigenvalues and eigenfunctions of 
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the Hilbert operator (defined in Chapter III), where the eigcnfunctions 

of the Hilbert operator are represented by an expansion in temis of the 

eigenfunctions for the linearized Boltzmann collision operator for a 

Maxwellian gas (see Appendix A). The step-by-step procedure for solving 

the later integral equation is: divide the time into intervals of length 

At; assmne that at time t=nAt, where n is a nonnegatjve integer; f is 

given by an expansion in Hermite polynomials. The moments of f: the density, 

the mean velocity, and the temperature are then computed at t=nAt. Our 

aim is to evaluate f (x,u_,(n+l)At) blowing f(x̂ ii,nfit) and the moments at 

time t=n t are used to compute the source term (see Chapter III) of the 

integral for <f at time t=(n+l)At. The integral equation is solved for 

4>(2c,u, (n+l)At) by expressing it as a system of algebraic equations and 

solving by using singular-value decomposition and computing the corre­

sponding pseudo-inverse. Successive terms«in the Hilbert expansion can 

be obtained by solving the same integral equation with a different source 

term (which depends only upon the previous terms in the Hilbert expansion). 

The two expansions of f are compatable and are useful in different facets 

of the computation. 

It is worth noting that our numerical procedure automatically guaran­

tees that the distribution function f will be nonnegative. This follows 

from the definition of the Hilbert expansion. 

Let N denote the number of points for each velocity component and M 

denote the number of points for each of the two angular variables in Chorin's 

quadrature scheme for evaluating the collision integral. Let LA denote the 

number of points in each velocity component for function evaluation of f 

(or f^ in our method). The operation count per space point in the evaluation 
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2 2 ^ of the collision integral using Chorin's method is LA ((6LA +41)M+2)MN 

+21A2+10) multiplications (LA2((3LA2+17)M2N3+LA2+2) additions). The 

operation count "sing our method (given the right hand side of the Fred-

holm integral equation of the second kind) for the solution of the 
2 2 Fredholm integral equation of the first kind per space point is LA (6LA +7) 

2 
multiplications (2LA additions). From the great difference in the order 

of magnitude of the operation count of the two methods, it can readily be 

seen that round off error will greatly affect Chorin's evaluation of the 

collision integral if the integrand is small [corresponding to small Mach 

numbers, for example) whereas our method does not suffer from this dis­

advantage. 

A major disadvantage of our method is the great amount of computing 

time needed to generate the eigenvalues and eigenfunctions for the 

expansion of the kernel. See Appendix A. However, this is a one time 

computation and the result can thereafter be treated as given. 

A partial list of applications of Boltzmann's equation includes plafle 

Poiseuille flow [16],[17], and[94]; cylindrical Poiseuille flow [19]; 

Poiseuille flow in annular tubes [4]; heat transfer between parallel plates 

[5], [18], and[90]; heat transfer between concentric cylinders [3]; cylind­

rical Couette flow [20]; and shock wave structure (for a detailed discus­

sion and list of references see Chapter V). Two other major applications 

are in the closure problem in turbulence, in which Boltzmann's equation 

serves as a model, and in combustion theory and chemical kinetics. 

What follows is: In Chapter II, a brief historical survey of kinetic 

theory and various numerical methods; In Chapter III, a detailed discussion 

of the mathematical formulation of the Boltzmoiin-Hilbert equation and the 

model equation to be solved; In Chapter IV, a description of the numerical 
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algorithm; and Chapter V, the numerical method is applied to the study 
of the structure of a shock wave in one space dimension, for Mach 
numbers of 1.1 and 1.6. 
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II. HISTORICAL SURVEY 
1. Historical Sketch of Boltzmann's Equation 

There is no intention here of describing more than a small part 
of the effort directed to the development of Baltzmann's equation. 

The foundation of the modern theory of transport was laid by Maxwell 
in his meruirs of 1866 (see [65] ) ; it is essentially this theory which 
Boltzmrjin used to make his discoveries. In 1972, Boltztrann,(see |9j), 
published a paper which for the first time provided a precise mathematical 
basis for a discussion of the approach to equilibrium. Die paper dealt 
with the approach to equilibrium of a dilute gas and was based on an 
equation - Boltzmann's equation, as it is called now - for the velocity 
distribution function of such a gus. Boltzmann's equation still forms 
the basis of the kinetic theory of gases and has proved fruitful not 
only for classical gases Boltzmann had in mind, but also - if properly 
generalized - for the electron gas -\n a solid and the excitation gas 
in a superfluid. 

Much of modern research in statistical mechanics is based on 
attempts to solve either Boltzmann's equation or similar equations for 
other kinds of distribution functions. Two such ways of developing 
transport theory are based on the solutions of Maxwell's equations or 
Boltzmann's equation; and these two approaches were followed by 
Chapman I 21] and Enskog I 33] respectively, the final result being 
essentially identical. Previously, Hil'.ert [53] had investigated 
Boltzmann's equation for the special case of rigid spheres. See 
Chapter III. 
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Hilbert's theory, except for an investigation by Boguslawski [8] 
of the longitudinal oscillations of a gas, the work of Pidduck I 75] 
on self-diffusion, and the work of Pekeris et al. ( 71] on the confuta­
tion of transport coefficients, has not been taken up by subsequent 
investigators. It forms the basis for this investigation. 

For a more detailed historical survey of kinetic theory of gases 
see [3) , [ 7] , [ 10] , [111 , [ 12] , [ 26] , [ 321 , [ 39] ,147] , 
[55J , [561 , [59] , [60] , [61] , [ 66] , [69] , [ 79] , [82] , and 
[92] . 
2. Survey of Numerical Methods 

The most direct method of computer simulation is the molecular 
dynamics technique introduced by Alder and Wainwright [1] .In this 
approach the evolution of a system of molecules interacting through 
some prescribed inteqiarticle potential is followed in a deterministic 
fashion by explicitly solving the equation of motion on the computer. 
Reduction of computing requirements can be effected by computing the 
collision in a probabilistic rather than deterministic manner, and 
this is the basis for Mttite-Carlo methods of direct simulation. See 
Bird (6] «u-d Haviland [ 50] and [ 51] . Other Monte-Carlo techniques were 
developed by Nordsieck and Hicks [ 70] . Grad attempted to derive general 
macroscopic equations from Boltzmann's equation with the hope that the 
results will be valid for these phenomena with which neither Maxwell's 
equations of transfer nor the Chapman-Enskog theory are valid. This is 
the basis of Grad's thirteen moment method proposed in [ 42] . Also see 
[43] , [ 44] , [ 45] , and [ 46] . Half-range approximation have been 
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prcposed by Lees in [ 63] . The use of the raulti model procedure based 

on more than one Maxwellian distribution was introduced by Mott-Smith 

167] . Pekeris et al (see 171] ) determine the transport coefficients 

of viscosity, heat conduction, and diffusion. The method of solution 

consists of reducing the Boltzmann-Hilbert integral equation to an 

ordinary differential equation. Chorin's method ( [24] and [25] ) di­

rectly solves Boltzmann's equations where the distribution function is repre­

sented by a Hermite expansion and Gaussian quadrature is used to evaluate 

the five-fold collision integral. 

The method of Alder and Wainwright is among the earliest numerical 

methods; despite its intuitive appeal, it is agonizingly slow (on the order 

of days in order to reach any meaningful real time). A substantial savings in 

computing time is achieved by the methods of Bird and Haviland. However, 

neither of these methods can be considered accurate. The method of 

Nordsieck and Hicks splits the collision integral into the gain and loss 

terms arid evaluates each separately using Monte-Carlo quadrature. 

This use of Hermite series was suggested by Grad. However, the number of 

polynomials is fixed and cannot be changed in the course of the computa­

tion as is allowed by Chorin's method [25] and ours. Also, since Grad's 

method operates in a finite dimensional polynomial space the boundary 

conditions are difficult to satisfy. Grad's method does not guarantee 

that f will be nonnegative; it is this fact which leads to the break down of 

the method at a Mach number of 1.65. Chorin's method has many advantages, 

among them; it is quite general and easily used, and it guarantees that 

f >. 0. However, it possesses the one disadvantage common to most of the 

existing methods - it is quite slow. 
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III. MATHEMATICAL FORMULATION 
1. Introduction 

There are several major difficulties in the solution of Boltzmann's 
equation (I.IS). The function f depends on a large number of independent 
variables - six plus tine in the general case - so that if (1.19) is re­
placed by a system of algebraic equations, their number will be large. 
The presence of a fivefold nonlinear integral insures that the algebraic 
equations will not only be numerous, but also very cumbersome. One 
other difficulty is due to the nature of the collision term, that is, 
from the integration over the angular variables. If f is represented 
by a discrete set of values assumed on a discrete set T of points in 
phase space, the integration over u,, becomes a sum over the values 
assumed by f on T. T^e integration with respect to the e and x becomes 
a sum over a discrete set * of values 6 and x- For any reasonable 
choice of r and *, the argument of f and f' will include points 
not in 1. 

Elimination of the integration over the angular variables serves 
two purposes; it reduces the order of the integrals to be evaluated by 
two and removes the problem introduced by summing over the incommensurable 
discrete sets T and $, thus inducing a substantial savings in computer 
time and an increase in accuracy. 
2. Hilbert's Theory 

In this section, a derivation of the Boltzmann-Hilbert integral 
equation is presented along with some of its properties. 

Let E,n,P be the coordinates of a point on the unit sphere 
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£ 2 + n 2 + c 2 = 1. CI1I.1) 

Let e_ = (?,n,C) and de_ = dEdndC ; define the transformation W of s ix 

variables u,u-. by 

IV = V • e ( I I I .2 ) 

Also we define the following integral operator (collision operator) 

and the more general, bilinear quantity 

Q ( f ' g ) = hlfe'Zl Cf'gl + f l g ' " f g l " f l g 3 d ^ u r (III.4) 

Clearly if f •= g then (III.4) reduces to (III.3); in addition, 

Q(f,g) =Q(g,f). (III.S) 

Introduce a small positive parameter e (representing a scale factor) and 
write 

e J ? f = Q(f,f). (III.6} 

The singular nature of the perturbation procedure in the limit as e 
tends to zero is emphasized by the fact that E multiplies all the deriv­
atives which appear in Boltzmann's equation. Consider a series expan­
sion in powers of E (called Hilbert's expansion, see [53] ) 
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i o E n f -
This postulates the regularity of the solution in e. upon substituting 
(III.7) into (III.6) we obtain 

£j En 3 % 1 + (u.Vx)fn.1+ I (F-V^-P " J «*V CIII.8) 
where 

Accordingly, 

Q n

= Z) w f k - W C n - o : ) - ( n i - 9 ) 

Q 0 = 0, (III.10) 

^ £ n - l ' % ^ n i l ) - (III.11) 

Equation (III.10) ensures that f„ is Maxwellian, i.e. 

$ ; f 0 = a exp {-b((n1-a1)2+(u2-ct2)2-'-(u3-c<3)2)} • (III.12) 
Notice that $ satisfies 

•^ = cj>'̂  . (III.13) 

using the notation of equation (1.1). 
Consider the case where n = 1 , 

Qx = 3ia , (III. 14) 
or using (III.9) 

QC+,%) = \ &<*• ( I I I .15) 

Write f. = tjjf_ where I(J i s a new function to be determined. With ip 
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and expression (III .13) equation ( I I I . IS) assumes the form 

r / / l " l •• 1 ( iC{+* , -* 1 -*)du 1 d u =\ §)$ ( I I I .16) T l 
If instead of u,u- we introduce into the new expression the respective 
arguments 

ot + u//T>, a + H i / * ^ 

where a_ ~ (a-pO^a.} then the expression becomes 

where 
i ij*> ""-"J 

c ^ ° / / |W|exp(-u 2 -u^ W+^-V -*')du 1 du ( I I I .18) 

when 4> i s defined by 

$(u) = iKd+u/i'B). 
Expression (III. 18) can be decomposed into singular and regular parts, 

^ = k(u)$ +/K(u,u1)<)>1du1 (III.19) 
and equation (III.16), which serves to determine fli, can thus be represented 
as a Fredholjn integral equation of the second kind, called the Boltzmann-
Hilbert integral equation. Here k(u) is the collision frequency of a 
molecule with velocity u. It is bounded away from zero, i.e. k(u) >_ k n. 

The following derivation is due to Hilbert [ 53] . For other deriva­
tions see [33] , [75] , and [84] . In [ 3] Enskog's expression is a gen­
eralization of the form obtained by Hilbert for the special case of rigid 
spheres. 
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In order to es tabl ish equation ( I I I . 1 9 ) , note that 

J"|W|du> = 2irV, 

where V =|| V|| , || - || the Euclidean norm, and 

J / | W | e x p ( - u 2 - u ^ d u , d u ) = <t>e~u]J|W|e"ul d^doi 
If -u2 

= 2ir<t>e~uyVe ^dUy ( III .20) 

Changing to polar coordinates in (111.20) we obtain 

= 2n2$e~u e " u + (2u*i) f e~C dc (III .21) 

= k(u)t)>, ( I I I .22) 
2 so that k will be a positive function which only depends on u . 

Further, the surface integral over the unit sphere 

^ * = / / l W l e 1 *'dH1<J«> (III. 23) 
is transformed to one over the volume of the volume of the unit sphere 
by setting 

<S = 3 X ^ r d r 

and using independent orthogonal coordinates instead of r and the direc­
tion cosines. From the relation 

2 r drdoj = de 

i t follows that 

ff |Ve | -u2 

( I I I .24) 
. ff |v-e I -u 2 

*r~*r.JhA—V •'duid» 
where if' now must be taken to be 
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*' = *(u") = *(u + e w / e 2 ) . 

If instead of u. we introduce new integrat ion variables 

in the i n t e g r a l ^ * , we obtain 

J*%° 3 ff 'fil '5. I C « 2 j n 2 + C 2 ) 7 / 2 expt-IISje^HH 2 ) ^ d e 

Q<e2<.l 

where || -1 | denotes the Euclidean norm, and 

Instead of e_ = C£,n,C) we choose the new integration variable 

6 = (A.u.v) = efgj-e). 
In view of the fact that 

0Z . J, fT = e'S-B. 
:uid the functional determinant 

2CX.+ rti + r\> 

nA, 

Su, ^ 
5X1*2nM1+?v1 nva 

we obtain 

= 2CB-6j) 3/2 
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2 7/2 
c^* = 3 / / I 6 I g / 2 expC-ll BjPVCB-e^+ulft^Ce+^dBdBj (MI.26) 

0<B2<B-8 ^ l 3 

In order to carry out the integrat ion here with respect to 6 . , we keep 

in mind that 

/ ( B - e p ^ ^ e x p C - l l l - B ^ B ^ + u l f t d ^ (III .27) 

is an orthogonal invariant of the two systems of variables 3 and e_ and 
consequently can only be a function of the three expressions 

2 2 

In order to determine th i s function, we take \i= 0, v = 0. For >. > 0 

the above integral ( I I I .27) then, becomes 

dA.du.dVj 

T 
= i r t " 1 3 / 2 exp(- (X+O 2 /AJ 5 / ' 2 dA ] l 

= | TtX"8 e x p t - O H ) 2 ) 

and the integral (III .IT) wi l l therefore, become equal to 

^ e x p { - C B - ( B + e ) Z / B 2 } . 

Accordingly, in^^"" we introduce, in place of J}, the arguments of $, 
namely 

u, = u + B_ 

as integration variables we obtain 
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where 

' = /K CU.UJ) 't'jduj J? = /K Cu.up •jduj (II1.28) 

K* = -[Tj-2^| exp{- ( H l • (Uj -u))2/ Huj-u | 2 }. (111.29) 

We now consider the integral 
.2 

in tlie same way as we just treated the i n t e g r a l ? . As before, we obtain 

J^** = 3 / / 14-ell e|7exp { - l l B ^ u / j ^ d ^ d e , 

where now 

• l^+CB^-ete-BO+u). 

Instead of e_ we now choose new integration variables 

6 = (A,u,\i) = S^-eCe-j^) . 

In view of the fact that 

S 2 = e 2 ^ - ^ ) 
and the functional determinant, disregarding sign, becomes 



n M l + s v l £u 1-2p)i 1 cv 1-2a 1 

nXj-ZCvij eXj+cvj nv^cuj -ZCI'tj)(e-Bj) 

?A1-2SV1 cnj-̂ swj C^J+WJ 

we obtain by comparison with (III.26) the result 

We consider now the last term in (III.18), 

(III.30) 

/ (W( exp (-u 2-^)^ (updUjdu 

2ne "J 11 "!"« I (III.31) i||e * ^(u^dUj. 

In view of (III.22), (111.28), (III.30), and (III.31) the integral 
expression (III.18) takes the for' of (III.19), where the kernel K is de­
fined by 

2 
"(«!",) = 2*e"u jVe " : - | exp { - ( u ^ / V 2 } j (III.32) 

where V = LL-U. Expression (III.32) shows that the kernel K for 

u = u. only becomes infinite from the first order and the theory of integral 

equations therefore becomes applicable to it. 
Consider Ofn^l) and observe that the first and last terms in the 

sum contain f„ (the Maxwell distribution function) and f , which is the 
n-th order coefficient in the Ittlbert expression of f; the remaining terms 
(lik<n-l) contain only f, of order less than n. If the perturbation ex­
pression is applied to Boltzmann's equation (1.19), then we solve a se­
quence of equations. If this sequence of equations is solved recursively, 
it is obvious that then n-th step f. is known for kln-1. Therefore, 
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Q splits into the sum 
n n-1 

<*, " ̂ O ' V *E«fk'fn-k> b*» "»•») 
k=l 

when the second term is known at the nth step of the approximation and 
can be written as a source term S ; as a consequence, the operator to be 
considered at each step is the linear operator 2Q(f„,f_) acting on the 
unknown function f . Write f = fJ} and consider h as the new unknown, n n 0 n n 
then we can write 

Qn = ftrn + S n 0*1) (HI .34) 

where, by def in i t ion , the l inearized Boltzraann co l l i s ion operator L i s 

g i veil by 

Lh = 2fQ 1 Q(f 0 , f 0 h) . (111.35) 

Upon substituting (III.34) into equation (111.11) we obtain 

^ ( f O h n - P = f 0 L h n + Sn ( n i l J' ( I I I- 3 6 ) 

or 
f f lLh n= S f ( f 0 h n . 1 ) - S n (n>l), (III.37) 
1. 

Accordingly, we have a sequence of equationsfor the unknowns. We can 
solve these equations step by step by noting that they have the form 

Lh = g (III.38) 
where g is a given source term. Solving this equation amounts to in­
verting the operator Lj this cannot be done in general because icro be­
longs to the spectrum of L(A = 0 is a give fold degenerate eigenvalue 
and the collision invariarits 1/1 (a = 0,1,2,3,4), corresponding to the 
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2 eigenfunctions 1 ,u,u ). 

Introduce a Hilbert space .y^where the inner product is given b/ 

(r,s) * fro(£r(0s(gdz. (MI.39) 
If g i s an clement of c/^'nn<} is orthogonal to the jb , e .g . 

a 
C*ft»g) ̂  0 , (111.40) 

then a solution h of (JJI.38) does exist and belongs to$?\$Qe the Fredholm 
alternative! 77J ). To show this consider a function g satisfying the con­
dition in (IM.40) in the suhspace^^^^'orthorgonal to the subspace, of 

spanned by the five collision invariants {^^is an invariant sub-
space for L), In . ^ L is a self adjoint operator (see(7'/| ); and zero 

is not in its spectrum, since there exists a constant 8 > 0 such that 
-(h,Lh) > 6(h,h) (III.41) 

for all h which are orthogonal to the collision invariants \h ,or 0,1,2,3,4. 
It follows from the definition of spectrum (see [77 J ) that L exists in 
$ and a solution h eJrcan be found. While "K is unique in 
sir we can add to h any linear combination of the five collision invariants 
( the coefficients being arbitrary) and satisfy equation (III.38). 

At each stop, h can be determined provided the five conditions in 
(III.40) are satisfied by the source term, however, the solution h is 
determined up to five parameters a? (which depend upon time and space 
variables). Since the source term is constructed by means of the pre­
vious approximations, it can readily be seen that we can combine the 
restriction on the source term and the five unspecified coefficients 
cyclically in such a way that the five orthogonality conditions on the 
n-th source t-̂ rm determine the five parameters left unspecified by the 
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(n-l)th step. The start of the cycle is possible since the zeroth-order 
approximation already contains the five parameters (the density, 
temperature, and mass velocity) of the Maxwellian distribution function 

3. The Model Equation 
Set a = n ( 2 - n & I ) ~ Z / 2 , b = ( l ^ T ) " 1 , and a = u^Ug some reference 

velocity), where the universal gas constant. Upon substitution 
of these quantities into (III.12) we obtain 

\ 2 ^ 7 / 
f0 = 2-372- exp (- -*— I (III.42) 

where 

With these definitions equation (III.14) becomes 

V;t° * ' l S : r l m C P ) e " 2 P * k ) + VJ*fei 5 e" 1(*TL* )d^i i au'i4) 

or 
^ f n ^•j"'(P)e" 2 p 2*(£) + e - p ^ J j (111.44') 

where ̂  is called the Hilbert operator, n denoted the number density, m 
the molecular mass, T the temperature, and 

f = f0(l+40 (for ,(i«l), £ = C(2RT)"!5 (II1.45) 
m(p)=l+(2p4)P(p), P(p)=ep fe" x 2dx (III.46) 

. P - D2 * m(0>2, iii(p)>. 0, e p m(p)-> p/^F as p ->• ~, 
pp,sin6' 

•HP-Ell' "' —R > (111.47) 
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6' denoting the angle between p_ and j>,, <|> = i(i(x,E>t). This equation 
(III.44) or (III.44) is called the Boltzmann-Hilbert integral equation, 
which is a Fredholm integral equation of the second kind. 

A function !((£,£,) is in provided 

II K ||2 ̂ //^(E.E^dp,^, 4A2(E)d£ = J B 2 ^ ) ^ < * - (111.48) 
where 

A<£) =1 / K 2 ( £ , E l ) d £ l j %, B ^ ) =r/K 2CE.£ 13dH ll * . (111.49) 

See (8J . 

There is a difficulty in the solution of (III.44). The kernel 
2 

KQj, E l) = R - | e u (III. 50) 

has a singularity and it has been known by Pekeris [72] that K( E, E ]) is 
not in _§^ (it can also be seen that K(j>,p_,) is in & in each variable 
separately. See [72]. Thus the theory of Fredholm integral operator 
of the second kind cannot be used without change. This difficulty can be 
resolved as follows (see [73]): equation (III.44) may be rewritten as 

- Q^JeP m(p)-H &£0 = m(p)k e'P *(p_) + i ^ f e ^ e 'Xife^ K(E E l)d E l 

o p 
(III.51) 

where 

Write 

K(£,El) = K&fc^mGOmCp^J^. (III.52) 

, 2 
*(g) = n(pV e"P *(£) 
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8<E> - > 2 5 f 5 - ^ »(P)"^ &i0i (III.S4) 
o p 

equation (III.51) may be written in the form 

| /K(£.E 1]*(E 1)dE 1 . g(£) = <ME) + f |K(£,E 1 )*(t 1 )d E l . (III.55) 

Define the n-th iterate of the kernel K(]>,p.) of a Fredholm integral 

operator, see [81] , by 

K ( n ) <E,Ej) = j K°° (E,E2) K ( n"h> (Eg.E^dgj, (III.56) 

(n = 2,3 ; h = 1,2,.... , n-1; K ( 1 ) E K). 

It has been shown by Carleman [15] that the second iterate 
~K^2^ of K jnd by Dorfman 131] that the third iterate K ® of K are 
square integrable. Hence the operator K (see equation (III.44) is of 
Hilbert-Schmidt type [72]. This implies in turn that the Hilbert operator 
is a completely continuous operator [ 72]. Such an operator has many nice 
properties: it is bounded; it has a discrete spectrum, each non-zero 
eigenvalue having finite multiplicity, and zero is the only limit point 
of the spectrum. Along with the discrete spectrum it has a complete set of 
square-integrable orthonormal eigenfunctions. Hecke {52] has also shown 
that the eigenvalues ofj^are negative. 

Wjltiply (III.55) by K*- ̂ (£,E2) and integrate over p_,; this yields 

|g<E2)KC2) (E.E2)d£2 = J* «(E 2)K C 2 ) (E,E2)d£2 

+ £/*(El)KCE2'Ei)KC Z )tel&2 ) dE.ldE2 

= JV<P2)K(2Vp2)dP2 
+ £ /*fe. i)K ( 3 ) rp,E 1 )dE r (111.57) 
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This may be written in the form 

/ * (£p [ ? R ( 3 ] te'H-P * K ( 2 ] feE,)] dEi = 1(E) (III.SB) 
where 

ice) = /gfe^'Jcp.p^dpj. (in.59) • A ( P 2 ) ^ ( 2 ) ( P , P 
Thus we have reduced equation ( I I I .44) to ( I I I . 5 8 ) , a Fredholm integral 

equation of the f i r s t kind. In t h i s transformation from (III .44) to 

(II I. 58) we have introduced one addi t ional d i f f i cu l ty ; the null space 

of the operator in ( I I I .58) has in f in i t e dimension, whereas the nul l 

space of the operator in ( I I I .44) has dimension f ive. A detai led d i s c i s ­

sion of t h i s increase in the nu l l space dimension wi l l be givei in 

Chapter IV. 

Let x and * be the eigenvalues and corresponding e.lgenfunctions 

respectively satisfying 

4>nCE) = T / ^ ' £ I } *h<£pdEr t I H - 6 0 ; i 

Then since K̂  ' and K̂  ' are square integrable they may be represented by 

a b i l inear expansion, e .g . 

K O V P I ) = i d j ^ y 3 0=2,3) CIII.61) 
• n=0 n 

which converges uniformly and absolutely in p and Pj individually; 
and uniformly in p and p. together, see [29] . Upon substitution of 
(.11.61) into (III.58), one obtains 
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+ 1 dE r 
(III.62} 

n=0 n 

Higher order terms in the Hllbert expansion of f are treated in a completely 
analogous manner. 

Equation (III.62) is the model equation that will be solved in 
Chapter IV. 
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IV. METHOD OF SOUJTION 
1. Construction of Finite Linear Algebraic Equations 

Consider the Hilbeit expan' jn of f 

f = f 0 + f 1 + f 2 + •••-, (IV.l) 
where f~ denotes the Maxwellian distribution; the solution f and 
f.(i = 1,2,">) will be expressed as an expansion in Hermite polynomials 
H niX) given by 

t W = (-«"Cne ~ 

which are orthonormal with respect to the weight 

W(x) = ir~h e'x ' i-e-

v~H I H (x)H(x)e _ x dx = 4 : f •nv y m n,m 'A 
& the Kronecker delta. The set ] H (x)exp(-ix )V is complete in 

We choose the Hermite polynomials expansion for f because of its 
weight function e" x and it simplifies the numerical computation of the 
moments of f; Cubic splines could also be used to approximate f with 
a reduction in the number of points in u-space, but uould make the mo­
ment computation more difficult. • 

The Step-by-step procedure for solving the integral equation 
(III.62) is: divide the time into intervals each of length At; and 
assume that at time t = nAt f, (and analogously f) is given by a series 
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M i Mj M 3 

i=o j=o n=o 
2 2 2 

• H itt n)H j(^)H f c(? n)e Xp(-^ 1-c n
2-C n

3), (IV.2) 

where c£ = Cp̂ -Ĉ /SJjJ , fort* 1,2,3,P has components (Pj.p^.Pj). C? is 
the center of the expansion and s" is the scale factor of the expansion. 
Cjr and Sy will be allowed to vary with x and time. Appropriate 
C"* S?, M . M,, and M, will be determined below. It will suffice to 
evaluate a. .^(x,t) at the points x„ - m.Ax., for 8, - 1,2,3 where m £ is an 
integer, Ax^ a spatial increment. CXir goal is tc obtain f Qc,p_,(n+l)At) 
as a series of the form (IV. 2). To achieve this goaJ. we compute the values 
*i!k^jr* o f fite'E>C n +l)^ a* the points x^ = (n^iXj . I T ^ ^ .mjAXj), 

pu - q^?\yr2j - c fV%, p3k - d?1**?1**. 

where 5 2 i , t2j' 53k a r e r o o t s o f "N W = 0 , "N C X^ 0' a n d 1̂ W = 0 

respectively. The algorithm for evaluating f?ii(iL) will be described 
below. 

Given f Qc,p,(n+l)4t), the coefficients a?., are defined by 

a $ ( x ) = . ^ 
3 - V 

7 { s f ^ s f 1 ) y f 1(x 1p,(n +l)At)H i( ?!; + 1)H iC^ + 1)H kC^ 1)dE 
. 3 1 -. f jy j) 

- , ^ C f 1 ^ * 1 ) 7f 1 Cx,P > (n + l ) A t) i l i Ccf 1 )H i (cf 1 )H k C E

n + 1 D 

«o.(^ , 2**T l 2*«^ l 2)«pc-c5* l 2-«5* l 2-^ l 2jdb. civ..,) 
This can be written by a change of variables as 
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/
2 2 2 

^(x.fc.Cn^AtDexpC-c"*1 -cf * - ? 3
n + 1 )dp_, 

uhich can be evaluated by Gauss-Hermite quadration (see (80]), using 
the formula 

/ 
n+1 2 „n+l2

 rn+l 2 

f1(x,E.(n+l)At)exp(-?5 J -?5 + I <f ^ 

NNj NN 2 NN3 

° E E E f 1(x»i ijk , ( i i* i ) a t i wiwj\' ( i v - s ) 

i=0 j=0 k=0 

where £ i j k = K y ,5 2 j ,? J k) are roots of I ^ M = 0, ̂ ( x ) = 0, 
H ™ (x) = 0 respectively and w.,w.,w. are appropriate weights. 

The kernel, definud by 

of (HI.62) may be evaluated by a bilinear series given by 

K ( E . E 1 ) = I ; ^ ^ * I : ^ ^ . civ.* 
n=0 Xn n=0 \ 

We approximate K by a degenerate kernel, which we also denote by K, 

n=0 Xn i&f \ 

where W- ' and l>P ' will be determined below. The method of computing the 
eigenvalues X and eigenfunctions 4 is described in Appendix A. 

Upon substitution of (IV.8) into (III.62) we obtain 
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«l<» . . . . » « ) , , , , , 
_CP)*_(PJ 1 

(IV.9) 

To see that the null space of (IV.9) is infinite dimensional; 
let I|I be a particular solution of the homogeneous equation 

U(])1)K(E,r,1)dp1 = 0 . (IV.10) 

There exists an infinite number of nontrivial functions wc^f satisfying 
(u><tn) = 0, for n = 0,1, •• •, max ( N * 2 ' " N ^ ) ; i.e. u is an element of 
the orthogonal complement of the subspace spanned by cj>., 
i = 0,1, ••• , max ( N ' " , N ' ' ) . Then J « J • u is also a solution of 
(IV. 10). Por 

JK(P..Ei) ( M E P + "(Ei^Hj = / K(p_,E1)o.(E1)d£1 (IV.ll) 

/T N(3) N(2) I 

n=d xn n=0 \i 
(IV. 12) 

= 2 j " S ~ /•n(Pi)ui(Pi)4p1 * / , -V-|«t.n(P1)^(P1)dp1 (IV. 13) 
n=0 n J n=0 *n •> 

The transition occurs when the function io (E,p,)i|;(p_]) (the first term 
on the right-hand side) in (III.57) is integrated. 

Using any approximate formula for integration, we can approximately 
replace the integral in (III.9) by some simple form of expression not 
involving the - tegral sign. 
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2 „2 r f p i _ p i 
h(Z{l KC^.E.jJdEj = y * ( E l ) K ( E > E l ) e *e dp^, (IV. 14) 

where K is given by (IV.8), which can be evaluated by Gauss-llennite 

quadrature (see 180] ) , i . e . using the formula 

/ , 
P 2 - p 2 \ " 2 N ' 3 £ 2 

*(P.1)K(E.P.1)e h 1 d E l - £ Z ) Z *«£ijk> « E ' i i j P e i 3 Si W 2j W 3k 
i=0 j=0 k=0 

(IV.15) 

w h e r e kjk " ^ij'hj'F-S^ a r e r o o t s o f " N W = ° ' M N ( X ) = ° ' 

II. (x) = 0 I'espectivoly, w i « w 2 i > w - ; k a r e w e ' £ n t s > a n t ' 

^ijk " «li + «IJ + 4 • "Wj 

To evaluate j§?f n , where 

B*\t •(£%) +H(E-Sp) (iv. 16) 

we use a linear difference operator A such that Af!| approximatesSri- and 
A is stable. Notice that A acts on f„ at the previous time step. See 
Chapter V for a particular choice. 

We must exercise considerable care when imposing the boundary con­
ditions. f(x>p_,t) at a boundary may be imposed only for values of p_ such 
that the vector £ points form the boundary into the gas. The distribution 
of the velocities of the molecules coming from the fluid and striking 
the boundary depend on the molecular flow and cannot be imposed arbitrarily. 
See [ 24) and ( 441 . 

To evaluate g(p) replace K C 2 ) in (III.59) by 
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n=0 
then 

C ) (E .Ei ) = 22 J L — r - C I V - 1 7 ) 

„ 2 „ 2 

JC2J r„„ Pi 'Pi 
g(£) K ^ t E . E j J e "e dp^ (IV. 18) 

which may be evaluated by Gauss-Hermite quadrature, i . e . by the formula 

N

4

 N 5 N 6 %2 

i(E> -121112 8<£5jk> ^ 2 ) ( E ' C i j k ) e l j k »H"2JwSk < I V " 1 9 ) 

i=0 j=0 k=0 

where £ J j k = (.VIVK'2A , 5 ^ ) are roots of r^, (x) = 0, H N 5 (x) = 0, H^ (x) = 0 

respectively, " j i ^ i ' w 3 k a r e t h e w e i S h t s > a n d CJ-JJ. = S j i + ?3k> N4 Nj, 

and N, will be determined below, o 
Combining (IV. 15) and (IV. 19) we obtain 

N N N 2 

E E E ^ i j k 5 ^ W ^ " wliw2jw3k " i<ErJ <IV"2t» 
i=0 j ^ O K=0 

r = 0 , 1 , • • • , N*. 

where g(p_) is given by the right-hand side of (IV.19). This represents 
a system of linear algebraic equation. We can choose N >. Nj-N^-N,. so that 
the matrix represented on the left-hand side of (IV. 20) is rectangular 
(or square as a special case), of order N x(N--N ?*N,). This may be written 
in matrix notation as 

Qij/1*1 = g". (TV. 21) 
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Clearly we seek a solut ion of the form 

^n+1 a Q - l | n . : i V 2 2 ) 

However, cer ta in p rac t i ca l d i f f i cu l t i e s a r i s e . Since the null space 

is in f in i t e dimensional, the columns of (IV.20) or of Q is (IV.21) are 

approximately l inear ly dependent. Q is very i l l -condit ioned (or over-
* 

determined i f N > N.•N.-N,). For a detai led discussion of the d i f f i cu l t i e s 

involved see Phil ips [ 74J . 

If N = N,-N 7 'N^ one possible way of dealing with th i s d i f f icu l ty 

is to t ry to invert Q using double precision arithmetic* TJiis method wil l 

work provided the eigenvalues of Q are l e s s (in absolute value) than twice 

the machine precision. 

2. Solution of the System of Equations (see [ 37], [ 41j, I 8S| , and | 8 9 | ) . 

I t is known (see (411 ) , that 

Q = ui:V T CV.23) 

where u T u = u u T = W = V V = I and Z = d i a g ( o . p a 2 , • • - ,o ) . The matrix 

u consists of the n orthonormalized eigenvectors associated with the 
T eigenvalues of QQ , and the matrix V consists of the n orthonormalized 
T eigenvectors of Q Q. The diagonal elements of Z are the nonnegative square 

T roots of the eigenvalues of Q Q; cal led the singular values of Q. 

The use of the decomposition wi l l be to compute the pseudo-inverse 

Q of Q which will be represented in the form 

Q1 = VS.V (IV.24) 

where Z = diag(o.) and 

°i[ 0 
for o. > 0 
for a, =• 0. 
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The pscudo-inverse's main value, conceptually and practically, is that 

it provides a solution of the least-squares problem: 

Of all vectors ty_ which minimize the sum of the squares 
II 3. - Qt\\» uhick ^8 the smallest \tyy - £ £ ? 

Let (V,<•,->) be an inner product space. If EeV, then the orthogonal 

complement E"4" of E is defined by E* = {xcV|<x,y> ~ 0 for all yeE). 

Let J f denote the integral operator in (1M.S8) and N(J^/") the null 

space of ^n . 

In. solving equation (IV.21) we want £ c N ^ ^ ) * 1 . The solution 

^ constructed using the pseudo-inverse, in which the zero (or near 

.:ero) singular values have been discarded, lies in a finite dimensional 

subspace of N(>^0 . The singular value decomposition method applied to 

the algebraic system (IV.21) yields an approximation to the integral 

equation (Ml.55). The reason is that when |{g_ - Q̂ jJ is minimized, the 

component of the soluticn which lies in the null space is of course zero. 

To see that we may write ty = v + m, where y e NC^^) and u c N(>?0, 

follows from the orthogonal decomposition theorem, provided NC^~) is closed. 

Sec [77], Since K is in the operator is continuous (see also 

page 23) from which it follows that Nfjffi is closed. The null space has 

arisen because of the multiplication of equation (III.5S) by a function 

(IV.17) defined on a finite dimensional subspace. 

Thus, the Hilbert expansion reduces the dimensionality of the integral, 

and thus the amount of computational labor required, but leads to an ill-

posed problem. The singular value decomposition method picks out the 

appropriate solution of the ill-posed problem, and thus makes the Hilbert 

expansion useable, allowing us to keep the dowry without the bride. 
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The solution is * = Q £ . If there were only one vector •£ which 
minimized ]j £ - Q$|j we could save much work by using 
Q1 ' (Q TQ)"V i" Place of (IV.24). But if Q TQ is (nearly) singular 
there will be infinitely many vectors £ which (nearly) minimize 
I! £ " Qtll and the last formula w 
which takes Q's rank intc account 

It should be noted that in o 
following definition (numerically) 

£ - Qt|| and the last formula will have to be modified in a way 

It should be noted that in computing o- we actually use the 

ol = ( ̂ i ' "i > * 
1 ( 0 , 0. S K 

where K is some small positive number (on the •• rder of the .uachine pre­
cision). The use of the smallest singular values increases the oscilla­
tions in î ; this increase in oscillation of ty takes place without a 
meaningful decrease in \\g^ - 0^|| . 

The process of singular value decomposition first uses Householder's 
transformation to reduce Q to bidiagonal form ;vnd then the QR algorithm 
to find the singular-values of the bidiagonal matrix. Both phases properly 
combined produce the singular-value decomposition of Q see f 41] î nd (88\. 

However, the method of computing the singular-value decomposition 
of Q and then the pseudo-inverse Q is quite slow. 

If N = Ni'N2*^3> then we can compare the method of singular-value 
decomposition (time wise) with the standard linear system solvers. See 
table I. 

K is symmetric, hence the matrix Q is symmetric; another more direct 
and faster method of computing the pseudo-inverse Q exists. First Q is 
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reduced to a tr idiagonal matrix using and accumulating orthogonal s imi la r i ty 

transformations, cal led Householder's algorithm for the t r id iagonal iz rtion 

of a real symmetric matrix. Next the eigenvalues and eigenvectors of l!iis 

symmetric t r idiagonal matrix are computed using the QL method to compute 

the eigenvalues and accumulating the QL transformations to compute the 

eigenvectors. See | 87] and [39] . The method of computing the psoudo-

inverse remains unchanged. 

"Phis method i s much f a s t e r than the singular-value decomposition 
* 

technique discussed above, for the case in which N =• N.-N.-N,. See tabic 

r under the heading SYMvffiTRIC. 

Higbi-r order terms, f (r» :•. 2 ) , in the Hilbert expansion are obtained 

in a coutpletely analogue maimer. However, in higher order terms the co l ­

l i s ion term in Bollzmann's equation must be evaluated (operating on a 

Known function) to obtain the source term g(p_) for equation ( I I I . 5 5 ) . 

In the evaluation of the co l l i s ion in t eg ra l , since f i s given in a 

form analogous to (IV.2), f i s defined for a l l arguments j> (and hence ns 

further interpolat ion i s requi red) ; hence we may proceed to use Gaussian 

quadrature. See 180] . Using t h i s representat ion (IV.2) and a change of 

var iables , the co l l i s ion term can be reduced t o 
_2 

B(x,P_) / d + / d x / d E 1

 K(*iX,x 1P_ 1)e l 

which can he approximated by 
Lj L 2 L 3 L 4 L 5 

Q(fn,fn). B(X,E) Y: E E E E K(** xu>kjj 
i=0 j=0 k=0 S.=0 ra=0 

w.w.K.w.w (IV. 25) 
l l n 2. m 
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where the ̂ ..v are roots of the Legendre polynomials P. (x) = 0, X. m J ^ 

P^Cx) = 0 respectively, L^yC ^ii^2yhk>' 5li>V ?3k a r e r ° ° t S ° f 

H. (x) = 0, H, (x) = 0, H, (x) = 0 respectively, and the w.,w.,w, ,w„,w_ 
h-t hy Li- 1 J K X. Ill 

are the corresponding quadrature weights. See [ 24], 
Tn order to apply the algorithm just described we need an initial 

function f^ (and its movements). We will also need a (-l)st function 
(and its moments) to start the calculation of AfJ[. The choice of these 
initial functions will be discussed in Chapter V. 
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Table I. Times for Computing Q (in seconds) 

t/ SVD L S ^ SYMMETRIC 
4 0.003 0.001 0.001 

5 0.005 0.002 0.001 

10 0.027 0.012 0.012 

15 0.083 0.028 0.033 

16 0.100 0.033 0.040 

20 0.184 0.058 0.069 

25 0.348 0.100 0.134 

30 0.587 0.160 0.225 

35 0.942 0.243 0.335 

36 1.052 0.258 0.352 

40 1.357 0.335 0.513 

45 1.960 0.460 0.668 

49 2.560 0.589 0.843 

50 2.757 0.61S 0.886 

Wilkinson's method, consisting of Grout's method with row equilibration, 
column pivoting, and iterative improvement. Double precision arithmatic is 
used for the fundamental scalar products. The scalar product portion is 
in machine code. See Algorithm 135, Comra. A.C.M.-November, 1962. 
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V. .APPLICATION TO THE STUOT OF SHOCK STRUCTURE 
1. Flow in a Single Space Dimension 

We consider the case of a flow in a sing^ space dimension. Assume 
that f depends on a single space variable x = x. and that f is invariant 
under rotation in the u-,u_ - plane (i.e. cylindrical symmetry) where 

/ 2 2 _ . .. u, + u,. Then we replace f in page 1 
of Chapter I by 

fQc.u.t) = f(x,u,ur,t). 

Under the assumption of cylindrical synmetry we obtain 

f(x,u,u r , t ) = f (x ,u , -u r , t ) , 

i.e. f is an even function of u . Furtherfore, we assume that there are 
no external forces (F = 0). Equations (III.54), (III.58), (III.59), and 
(III.62) are unchanged except for the corresponding change to the velocity 
vectors p_,p_p i.e. 

p_= (261)'^= (p,p r), 

and similarly for p.. The expansion (IV.2) now becomes 

/ 4 \», «, 
fJCx,P,Pr,nAt) =,T 3 / 2lsJ £?" 1Jy]Va i j(x,t)H i( ?

n)H ift n) 

• expp-C? 2) 
and ?" = u/S?. A reasonable choice for C",S,, •e 5 n = 

q are 

** •e 5 n = 

q are 
«? 
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^ = ^ = AJP-F1 = S". CV.2) 

Cj = u 1 1 " 1 = C™, CV.3J 

i.e. expand at each time step around the mean velocity at the preceeding 
time step and use a scale determined by the temperature at the preceeding 
time step. This is not the only possible choice. See [ 25] . 

Given f (x,p,p ,nAt) we evaluate f (x,p,p,(n+l)At) at the points 
(x k,p i (p r ) where p ± = c" + s " ^ , p p = s"^., where %n and S 2- are 
roots of H, (x) = o and H. (x) = 0 respectively. The coefficients 
3jJ Cx. [n+l)At) are given by 

ay(x,(n+l)At) = a^^CxJ = tffS^V V^fjCx.p.p^Cn+l^t) 

• H i fe n + 1 3H j fef 1 )dpdp r . ' (V.4) 

Notice the a.. = 0 for j odd (because f is an even function of p and 

H. is an odd function for j odd). 

Let x. = kix, k being an integer and ax a spatial increment. Our 

choice of the difference operator A is given by 

P n p n-1 p n-1 p n-1 
A F n = ijfc" ijfc + p n ijk ' ijfc+Sfo) „ 5 ) 

ljk At v AX v J 

, * e r e ( 1, for p < 0, 
S(p)=l 

1-1, for p > 0. 
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Despite A having only first order accuracy, at the boundaries .c ensures 
automatically that only relevant boundary conditions are used. For stability, 
we require that 

max 
k Pk A t < 1 . (V.6) : Ax 

In computing the appropriate g(p_) tor higher order terms of the Milbert 
expansions the evaluation of (IV.24) carries over to the one spatial dimen­
sion directly. 

We must consider the question of numerical stability. For the second 
term (f.) in the Hilbert expansion, stability of the scheme (IV.20) is 
implied by the stability of A. To see this it suffices to show that ||Q || 
is unifomly bounded independent of the mesh size. We see that 

HQ 1!! = IIVEVH < Hz11| m a x l -J- I . 
i i 

o.>0 

We !iave put a bound K on how smal o. can become, i.e. 0 < K £. a.. 

This implies that ||Q |j < K (uniformly). However, for the higher order 
terms in the llilbert expansion in which the collision integral appears in 
the source tenn, stability analysis is slightly more complicated. Stability of A 
would imply stability of the entire scheme if the integral of the collision 
term had compact support. This condition cannot be satisfied; however, 
f-,-(J2l) does decay rapidly with increasing ]p| and |p | and this might 
be considered sufficient for stability. It has been considered by Chorin 
| 25] , with the conclusion that for M. <_ 3, M- <̂  3 this is the case; 
where as when M.. or M- is larger, the range of P and p over which f • is 
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not negligable increases, and it is necessary to truncate the support 
of f.. One way of achieving this is to set f. = 0 whenever 
|p| >. c" + £AS", |pr|i SAS", where i is the largest root of H^x) = 0, 
M = max (M-.M,), and A is a constant greater than 1. See [24) . 

Once the expansion (V. 1) for f is known the various moments of 
f can be computed using the following identities 

'exp(-p2)dp 
(n-l)(n-3)---(l)2"n/2, n even 

n odd, 

and 
2 J P" + 1exp(-p^d P T. = n(n-2)---(2)2"n/2, n even. 

0 

Using these identities we obtain the density at time t = nAt; it is 

pntx) = a^Cx), (V.7) 

the mean velocity is 

u " M = S n(x) + 2-V(x)a^ nCx)/p nW, CV.8) 

and the temperature is 

A x ) = c"(x) 2 || a^Q(x) + 2 _ ! sa5 0(x) + iK^x.) \ /3^p n(x) , (V.9) 

where»5ris the universal gas constant. 
2. The Shock Problem 

If tiie velocity in a particular flow field exceeds that of the local 
sound speed, then it is possible that a shock wave may exist in the region 
in which this occurs. Macroscopically a shock wave appears as a 



-42-

discontinuity across which there occurs measurable changes in the thermal-
fluid properties. For a detailed discussion sec [28) , [421 , and [861 . 

We assume that f is constant in the x, and x, directions; that we 
have cylindrical symmetry in the u 2,u, velocity plane; and there are no 
external forces, £ = 0. Also we treat the shock wave in terms of a 
coordinate system attached to the shock, i.e. the frame of reference is 
moving with the velocity of the shock. 

Consider a gas of rigid spheres flowing in - « i x i » with 

-3/2 -3 ( Cu-v,)2^ ) 
f(-»,u,u r t) = pjii^C^exp j \ r—\, (V.10) 

n-3/2 -3 i ( u - v , ) 2 ^ ) 

where v. is the upstream mass velocity, C, is the upstream thermal veloc­
ity, defined by 

Ca */WV CV.12) 
where T, is the upstream temperature, and p. is the upstream density. 
Analogously, V ? , P 7 , C ? , and T 2 are the downstream terms. 

The net flow of mass, momentum, and energy into the shock must be 
equal to the net flow of these quantities out of the shock, so we can relate 
the upstream and downstream values of the macroscopic variables through 
the Rankine-Hugoniot equations: 

PJVJ = P 2
V2 * f V - 1 3 ) 

e i C v 2 * ^ 2 ) - p 2 ( v 2 ^ C 2 ) , CV.14) 
P ^ C v ^ 2 ) = p 2v 2(v 2+|c 2), CV.15) 
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where the ratio of specific heats is y - 5/3. 
If we define the sound speed, C, is the value of v, when Vj = v, 

then the Mach number M, of the shock wave, is 

M - (%>\/Cv (V.16) 

where we used the fact that (using (V.13), (V.14), and (V.15) 

2 

and 
v, M = -~ , (V. 18] 
c 

by definition. It can be seen that the condition for the existence of a 

Shockwave i sM>l . See [ 4 3 ] . Equations (V.13), (V.14), (V.15), and (V.16) 

may be rearranged to yield 

( c Q ' - ^ f f i 2 ' 1 ' CV.19) 

and 

2̂ V * 3 
v l 41?" 

The shock thickness based on maximum variations of mean velocity is 
defined to be 

V v l X = • • , _ , - . (V.21) 
maxjdul 

See Fig. 1. 
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Fig. 1. Definition of shock width. 
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Choose p » l,Vj = 1 then given M, equations (V.16), (V.19), and 
(V.20) yields Cpp^.v^C, (M completely determines the structure of the 
shock). Choose units so that the upstream means free path (/Tupo ) is 
one, i.e. pick a = l/vTir. 

For practical reasons we replace the region R:- «= S. x <. + ™ with 
a compact region - a <. x <_ a , where we choose a sufficiently large 
that any further increase in a will have no measureable effect on the 
shock wave. Under this assumption the boundary conditions (V.10) and (V.ll) 
become 

f (-a,u,ur,t) = p 1u" 3'' 2CJ 3CJ 3 exp 
(u-Vj)Z-uJ 

for u < 0 (V.22) 

and 

f(a,u,ur,t) « p ^ ' ^ C ^ e x p 
•fu-v^-u 2. 

, for u > 0. (V.23) 

Divide I -otjdl into intervals of length Ax, where Ax = 2a/Nx 
where Nx is a positive integer indicating the number of intervals in which 
[ - OjO)is divided. 

Our goal is to obtain the steady solution as a limit, for large 
time, oi a flow which evolves from an initial distribution f« • fpCx.u.u,o). 
This irsitial distribution function should be chosen so that the steady 
unit is achieved as fast as possible. It is clear that the convergence 
to the steady limit is inherently slow, ifwe use ST points across the shock, 
and if the stability condition (V.6) is respected, it will take a minimum 
of V steps for the fastest particles to cross the shock. The choice of 
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the initial distribution as well as the other numerical parameters will 

he discussed in the next section of this chapter. 

3. Numerical Results 

There remains a great many numerical parameters to he chosen: the 

number Ni'iiKMS of terms in the llilbert expansion of f; the number (M, M ) ̂ U*'} 

of terms in the Hennite expansion of f (and f.); the size 2. of the region, 

the spatial increment Ax, the time step At. 

The number of terms in the Hi Inert expansion for this study are 2 

and 3 for Mach numbers 1.1 and 1.6 respectively. 

The width 2a of the region is chosen to be about 16 mean free path". 

The spatial increment AX is chosen small enough so that any further de­

crease in AX will not affect the outcome of tiie calculation. The way in 

which this is accomplished (due to Chorin ( 24 ] ) is as follows: evaluate 

-ji (which enters the definition of the shock thickness X) using the two 

formulas 

(V.24) 

(V.2S) 

When they arc in substantial agreement Ax can be considered siwU 

enough. Kc took Ax on the order of 1 moan free path. The stabjluv 

condition (V.6) will give a good estimate of the appropriate value of At. 

However, we took At to be 0.8 times the maximum value allowed by VV-6), 

because higher values of At could give rise to an instability due to 

temperature overshoots. See [91] . 

? • V r V i 
ST 2Ax 

du -_ 
ax 

v r s k 
Ax 
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Ir. the evaluation of the shock thickness X, using (V.21), the use of 
(V.2'6) will yield a more reliable estimate of the value of X, since X is 
a local property of the shock center and an estimate using CV.25) uses 
values of f in a smaller neighborhood. 

In the matter of choosing these parameters, we took 
Mj=M2=M, NNj-NN^NN, and N ^ N ^ N ^ N ^ N . Clearly, we must have M < NN; 
we generally choose NN=M+1 (choosing NN much larger than M would result 
in information being generated and immediately discarded). T^o choice of 
N^ ^ and N^ ' used in the bilinear expansion of the various iterates of 
t'le kernel will be discussed in Appendix A. 

As our initial distribution function f , we choose 

= f(x,p,p_,0) = { T 

(fC-^.P.Pjl. x > 0, 

which corresponds to a shock of zero width. However, on the finite grid 
that we are using, this initial distribution function correspond? to a shock 
of width ax. As our (-l)-st distribution function we took f also. This 
W3S not the only possibility. 

No conservation is built into our scheme, so the use of the conserva­
tion laws (mass, momentum, and energy) provides a check on the accuracy 
of the scheme. For example, the total mass is evaluated by 

C^jj = Z p(kAx)iX. (V.26) 

Details of runs will be presented for the case where the Mach num­
ber is 1.1 and 1.6, M=5, and N"=S. Other runs were made where M=N=3 
and M=N=4; but these runs were poor because with our choice of center 
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and scale given by (V.2) aiid (V.3) on the upstream side of the shock the 

jy^fg term shows no change. The reason for this î  that p = C •.snf,I 

where £ is any root of H, (x) = 0 or H.(x) = 0, is such that p >. 0, so then 

in our approximation A does not take values across the shock. 

In table II we display the singular-values for the cases in which 

N=5. hi tables III and IV the relaxation from the initial data arc displayed. 

In table II la and 11 lb the mean velocities are tabulated as a function of x 

for low values of t/At and at Mach menbers of 1.6 and 1.1 respectively; 

this gives a qualitative picture of the behavior of our numerical scheme. 

In table IV the instantaneous value X" of the reciprocal of the shock 

thickness and the computed total mass 0 in the region of the shock are 

tabulated for t/At - 1, •••-, 10 and Mach number 1.6. One of the most 

ijiiportant characteristics of the relaxation to equilibrium is the lack of 

monotonicity and extreme slowness. The reason for this (see Chorin I 24)) 

can he seen if we consider the equation of mass conservation 

Momentum must be transfered to the boundary to allow a change in p, and 

then transported back to allow steady state convergence. It can also be ob­

served that 0 varies a little. 

In tables V the structure of a shock is displayed. The mean velocity 

u, density p, temperature T, and the Boltzmann H-function divided by i u 

are given as a function of x for M=1.6 and M=l.l, t=8.278. We observe the 

monotonic \ariation of u and p, T exhibits a slight overshoot (see J 91J ) t 

H/p (determined up to m additive constant) displays a dip. It should be 

noted tha-c during the first four time steps il and p did not vary 

file:///ariation
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monotonically; however, after the fourth time step monotonic variation was 
observed. This can be explained by the fact that during the first four tirae 
steps the wave had not reached the boundary yet. Once it reached the 
boundary the returning wave began to enter. 

In table VI we > resent the coefficients a.. of the Hermite expansion 
of f for x = - 2, M = 1.6, and t = 4.967. We see that the coefficient a.Q 

is not small, which contradicts Grad's assumption that all coefficients of 
rlcnnite polynomials of degree greater than 3 are zero (or negligible). 
The range of oscillations of X" (for SO time steps) for a Mach number 
of 5.6 is 0.226 to 0.230, compared viith: 0.22 to 0.24 of Chorin (24); 
0.164 of the Monte-Carlo determination by Bird 16] ; 0.222 of Gilbarg and 
Paolucci I 40) ; and 0.238 of Ziering et al. I 95] . 

Finally, in table VII the timing results of our program are given for 
M=3,4, and 5, and compared with the tL-ne of Chorir.'s program COLLIDE for 
M=4. Both programs were run on a CDC 7600, using the same compiler. 
4. Conclusions and Remarks 

Clearly, as with Chorin's method, our procedure will break down for 
a fixed number of terms in the Hermits and Hilbert expansions, whenever the 
Mach number is sufficiently large; certainly by the time all the velocities 
p = cf+s"?., i = 0,1,---, NN, £,. roots of H^fx) = 0, are all of the same 
sign. This was exhibited above for M •• 3 and M = 4. 

Our method has one other advantage over Chorin's and others, that is. 
it can deal with weak shocks. Chorin's procedure breaks down just below a 
Mach number of 1.2: This breakdown is due to the large number of operators 
that required in the computation of the collision term. For our weak 
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shocks the i.h;inges across the shock are very small and hence is computing 
f'f'-ff. in U-I9) this difference is very small; and round oil" error 
begias to effect this difference greatly. Thus the collision time produces 
a great deal of noise for low Mach number. However, our procedure for weaX 
shocks need only two terms in the Hilbert expansion and then the number of 
operations is quite small. Hence, round off error plays a much snuller 
role. Also, the Monte-Carlo techniques are not suited to low Midi numbers 
hec:mse the solui ion is near equilibrium, and the small deviations from 
cqmt ibrium wnuld be lost in the statistical fluctuations. 

From tlie times given in table VII as well as the small storage re­
quirements ( • LiO K„) it can readily be seen that this method is well suited 
to the smaller computers, provided one has the required data. See Appendix 
A. 

One possible modification to this method (that is currently being 
studied) is to assume that Q(fj,f•) = 0 for terms higher than 3 (n = Z) 

in Hilbert's expansion. If this is assumed, then the program is grefttly 
simplified as well as being tremendously speeded up. If the terms fj,f; 
are sufficiently small, then it seems reasonable to take Q(f.,f.).. Flow-
ever, this remains to be proved. 

A more direct approach to solve (IV.21) would be to expand the 
distribution function directly in a series of the eigenfunctions 
of the integral operator. This method was considered but convergence 
of this series as well as the computation of the coefficients would 
bo extremely slow. This expansion would have to be carried out for 
each spatial point, velocity point, and time step. Our method 
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requires the simulation of the bilinear expansion of the kernel for 
each velocity point once and only once. This results in a great 
savings of computing time. 

Our method reduces Boltzmann's equation, which is an extremely 
complex integro-differential equation, to a Fredholm integral 
equation of the first kind. The resulting integral equation is much 
less complex and requires substantially less work to solve. The 
price for this savings is that the system of algebraic equations 
obtained from the integral equation is ill-conditioned. This system 
of equations is solved using the singular value decomposition 
technique to compute the pseudo-inverse; this technique yields 
the appropriate solution. 
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Table II. Singular Values of Q (order 2Sx25). 

1.87745x10° 
7.9914JX10"1 

8.31776xl0'2 

5.96706xl0-2 

5.67885xl0"2 

2.50292xl0"3 

1.87648xl0-3 

9.01666xl0"5 

1.80434xl0" 6 

3.15672xl0" 7 

6.92570xl0" 9 

1.96833x10" 1 0 

4.24124X10" 1 1 

3.74937X10" 1 1 

9.07109xl0" 1 2 
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Table Ilia, u as a function of x anC t (Ax = 2.00, At = 0.5518, Mach = 1.6) 

jc_ t/At=l t/At»3 t/At'6 
-8 1.000 1.000 1.000 
-6 1.000 1.000 1.000 
-4 1.000 1.000 0.993 
-2 0.986 0.958 0.931 

0 0.568 0.622 0.701 
2 0.542 0.543 0.552 
4 0.542 0.542 0.543 
6 0.542 0.542 0.542 
8 0.542 0.542 0.542 
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Table IV. Relaxation to a Steady Shock (Ax = 2,00, At = 0.5518,Mach= 1.6) 

t /At X" 1 MASS 
1 0.456 26.43 
2 0.414 26.43 
3 0.368 26.42 
4 0.325 26.42 
5 0.286 26.42 
6 0.252 26.40 
7 0.224 26.40 
8 0.224 26.38 
9 0.223 26.37 

10 0.242 26.37 
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Table Va. Structure of a Shock• (Macli = 1.6, t = S.27S) 
• ' - - • > - - • - • - • • -- J - - - - - - - - - - - ™ ^ - - — * > < - - - - - - * • • = - - ~ -

ir _P T 

1.00 1.00 0.47 
0.99 1.00 0.47 
0.94 1.01 0.48 
0.82 1.12 0.51 
0.58 1.59 0.68 
0.56 1.78 0.74 
0.56 1.78 0.74 
0.54 1.84 0.72 
0.54 1.84 0.75 
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Table Vb. Structure of a Shock (Mach = 1-1-, t = 8.278) 

u P T 

1.00 1.00 0.99 
1.00 1.00 0.99 
0.99 1.00 0.99 
0.97 1.04 1.00 
0.89 1.12 1.06 
0.88 1.14 1.08 
0.87 1.14 1.08 
0.87 1.15 1.09 
0.87 1.15 1.09 
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Table VI. Coefficients a^. (Mach = 1.6, Ax = - 2, t = .967) 

1.06 0.20 0.09 -0.09 -0.19 
0. 0. 0. 0. 0. 
0.08 -0.02 -0.05 0.07 0.05 
0. 0. 0. 0. 0. 
0.11 -0.12 0.03 0.03 -0.03 
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Table VII. Time per Time Step(seconds) 

M Our Method ChorLn's Method 
3 

Our Method 
0. .28 
0. .85 
3. ,00 

4 0.85 - 240.00 
5 
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APPENDIX A 

Computation of Eigenvalues and Eigenvectors 

The eigenvalues and eigenfunctions of the l inearized Roltzmann 

co l l i s ion operator for a Maxwellian gas have been extensively studied by 

Burnett [13) and 114) , Mott-Smith[68] , andWang-Chang andUhlenbeckl 85). 

I t has been shown tha t the eigenfunctions are 

* r t ^ " " r j P t C c o s e j p ^ C p 2 ) (A.l) 

where 

N r Ji^L> 
2 

is a nomialization factor with respect to the weight e p , P denotes 
the Legendre polynomials, and L denotes the Laguerre polynomials. See 
[ 64 ] . Dependence on the azimuthal angle 4> can be included by replacing 
P.(cosB) by e™*Plcos8), and the eigenvalues are independent of m. 

Our goal is to obtain the eigenvalues X. and the eigenfunction 
<t> - satisfying the integral equation 

*i(E?e" pn(p) =-jp/K(2,£1)e ^ fe^dEj. (A.2) 

Define 

•JCE) = + i(£)e" P m ( p ) \ (A. 3) 

then by substitution of (A. 3) into (A.2) we obtain the integral equation 

*i(E> = -^/"K<fe.Pi)*i<Ei)dE1 CA.4) 
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where 

Kfe.Ej) = KCE.PprmCpJmCPj)1 ' h . (A. 5) 

The integral equation (A.4) will t»> solved using a method intro­

duced by Wang-Chang and Uhlenbeck [851 also by Pekeris et a l . [ 2 1 ; 

expand ty (dropping the subscript i) in a complete set. of functions 

( h ^ ) ) , i .e. 

i=0 

following Galerkins method, in which we require that the error term 

be orthogonal to these functions h,. See [27] . Upon substitution of 

(A.6) into (A.4) we obtain 

2^a i r^p(P. .Ei)h i (E)<i E l -h i (p . ) l = 0. CA.75 

The sum is (A. 7) has to be orthogonal to each base function 
hk(p_), thus 

£ ^Jfr^h^h®^ -/hi©hk(E)dE"l = 0. (A.8) 
i=0 L J 

Equation (A,8) represents a system of linear equations, the vanishing 
of whose determinant yields the e 
—rfi ^ o r t i ) e expansion in (A.8). 
of whose determinant yields the eigenvalues A , and the eigenvectors 
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For this orthogonal family we choose 

|«p(-p2)m(p)!s *Tlm(E)\ 

hrta (£ ) = cxPl-pZMp)h*rtm(pJ (A.9) 

« r t a (P_) = e x p ( i m $ ) l ^ ( c o s 8 ) e x p ( - p 2 ) m ( p ) V ^ a ^ l ^ V ) . (A.!0) 

Upon the exp l i c i t subs t i tu t ion of (A.10) into (A.8) we obtain 

- leXp(-2p2)m(p)iT,v (£)«l^pjd£ > » 0. (A.li) 

Here * . denotes *rtn> for it was pointed out by Wang-Chang and 
Uhlcnbeck t 85 \ , that when L (the linearized Boltzrnann collision operator) 
is applied (and hencej?^)toa function of the form g(p JPrCcoseje1"1* 
the result is of the form g.(p )P?(cos6)e11*'', where g„(p ) does not de­
pend on nu 

Write the linearized collision operator L in the form (in the nota­
tion of Mott-Smith) 

Lf OjR f dctf+fj-f -f j) (A.12) 
JO 

where 
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- 3 / 2 / " P l 
0 - integral opeiator " K JPj 

JO 

{A.13) 
2 

R = integral operator -j- I V sinBde (A. 14) 
'o 

(for the L-;ISL' of rigid sphere molecules of diameter o). Similarly, we 
(it fine 

0 - integral operator n ' I e " " I- • J 
and J 

Qf = f+fj-f-q. (A. 16) 

IVc define the Chapman brackets, denoted [ r£m,r'£'m') , by 

l r t m , r ' t ' » ' l - W ^ W , ^ , . (A. 17) 

As pointed out above L i s independent of m. From t h i s i t follows (by 

orthogonality) that the Chapman brackets vanish unless 5, = V and 

in = m'. Furthermore, the normalized matrix elements are independent of 

m, i . e . 

[ r£m,r'Jlm] /NrJLm = [r£0,r'AOJ/N £ Q . (A.18) 

Therefore, we need only calcula te | r £ 0 , r ' £ 0 ] denoted by [ r£ , r ' £ J . 

Using Q the expression for L given in (A.12) can be rewrit ten as 

°iR f ' 
- 0 

or m = m' 
2, 

i r t , r ' ! l ) = O^OjR I ( 
JO 

Lf = 0,R Qf'de (A. 19) 
-0 

and (A. 17) becomes for m = m' = 0 , 

deQ*. , . , (A. 20) 

where the conjugate sign "*" is dropped since » is real for 
ir. = m' = 0. Upon substitution of the explicit form of the operators 
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O and 0., (A. 15) and (A. IS) respectively, wc obtain 

|r«,r'tj = „ J a E/d P jcxp(-p'-pp R fdc(Q* r, £( E j)U r t(p_). [A.21) "3/aE/dj.JcxP(-p2-p^) R fac^» r, £( E j)V 

However, nsiiu; H u b e r t ' s representation of (A,17), we see 

. 2 

(A. 22) l.f - o 2 K-\,U>)c"p *"(£)•"/K(P.,p.,)e ^(K^dPjV, 

where we h.ive inulti? 1 ' .'d by 2 the contents of the { - } because v;c are 
w/2 2 

integrating f -dn . R rather tha. f -d in Boltzmann's equation due 
'o JO 

to Hi lber t . Ujxm subs t i tu t ing (A.22) into (A.21) we obtain 

[ r t . r ' e i - o 2 | . i " 2 / / < l r d I > 1 K ( E , P 1 ) e x p C - p 2 - p j ) » r , | l { e 1 ) » r S , [ E ) 

• n' 1/dp_ e:-.p(-2p2)ra(p) * r , 4 ( p > r | l ( p j | . 
(A.23) 

The Chapman brackets were evaluated by Mott-Sinith | 68 | yielding 
, . min(r,r') ; 

Ir* r'H'l = 6 oJMLfZ.'QL- V V 1 AnXaimlr.^^2a-iJ. B" 
"' P(£+ f)2 r + r' + 3* U *-0C-n)!(r'-n).U-»)! " 

(A. 24) 
where 

/ 0, ra=n=0 
m = ) (m+2n+l)! 2 m " 1 ( n w l ) ! 

1 'CZn+TJTm!" n!m! 
0, ra=n=0 

otherwise. (A.25) 
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Upon substitution of (A.23) into (A.11) we obtain 

y a r, £,< X , l I i-e.r'e) - (\*\) lexpC-Zp^nitpJ^dj)*^)^! = (I 

r',e'=0 J CA.20) 

We consider Ihe integral 

/ -
i.Apl -p" )n(p)* r , £ ( i i )* r . £ (p jd£ 

which can ho i rwr incn liy changing to spherical coordinates yielding 

/ L-xp C - 2]>->I:I (I' 1 •.- r, t (]>) * r £ i"l>) Jj> = S i t , -(2&T)f «p(-2p 2 )m(p) 

• P"' ' 1-; V)LJ?'(P-)<IP (A.J7) 

' • V brr. • *•-*> 

The integral nn iho right in (A.27) can be evaluated numerically using 

the FORTRAN •.iilu\nit iiw <"AL'RI- which uses cautious adaptive Romberg ex­

trapolation. Sec | SO | . Caussian quadrature is very poor since the inte­

grand is very oscillatory. However, this can become very expansive as 

r and £ itu icase. 

The integral (A.27) (or (A.28) ) can be written in a closed form 

which enables efficient numerical coiiipuation for a large range of values 

of f, r, and r'. The approach that will be used was suggested by K. 

Frnnkowski (private communication). 
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Expand P \~: (p)ii, (p) a se r ies of llcrmite polynomials 

P ^ V ^ M L ^ C p ) - T. d.H,, + . ( p « . IA.29) 
} J J 

Apply the Laplace transform to both sides of (A.29), 

Let (2n-l)H = 1-3-5 (2n - l ) , where (-l)M = 1, iind 

(n) = n(n+l) - - - - (n*m-l), where (n ) Q = 1. Using Riiteman I 351 , page 175 

funnula (35) and page 172 formula (12), we obtain 

. y jp a L°(p )L? , (p )L , , (p ) j = ( r l r ' ! ) " 1 I ' ( r T ' + a + l ) ( p - l ) r * r V " " 1 " ' ' a ~ 1 

F - f - r . - r - l - r - r ' - a l R t e - ^ (A.30) 
1 1 V ( p - i ) " / 

• ^ i v i ^ h ^ 2 Jf 2J +i)" u-p)V j" V 2 (A-31) 

respectively. 
Using the notation (l-p)/p = q the transformed equation (A.29) 

becomes 

( - l ^ V r ' - r 1 r(r+r'+t*|jqr+r'+t(q"1*l)4
2F1C-r,-r'|-r-r,-t- \\ l-(q_1i-l)2) 

= /i I d.2:i(2j + l)MqJ. (A.32) 
j 

Apply formulas 

and 
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, F , ( a , b | c | l - x ) = - r i £ i I i £ ^ M F,(a,b |a+b-c+l |x) 
1 L r (c -a ) r (c -b) i 1 

and 

+ x c - a - b r ^ T f a ^ c l 2 p i ( c . a i C . b | c . a . M | x ) [ A . 3 4 ) 

r (n±|) = /H ( + l ) n [ 2 ' n { 2 n - l ) U r i l . (A.35) 

See 161). Fjcpand -,F, in a Taylor scr ies expansion in (q +1) and then expand the 

different powers of (q +1) in a Taylor se r ies expansion in q . Comparing 

coefficients of equal powers of q we obtain 

d = (-l)*(2r+2fc«l)i;(2r '*Zt*l)ll ( -1 ) J 

J 2 r + r * i C 2 £ + l ) ! ! r ! r , i 2 J (2j+l) i t C r + r ' n - j ) ] 

V ^Th ( " r ' ) k ( "'" 2 k W **-j 
kimax{0, ( r4T ' - j ) /2} 

(A. 36) 

j = | r - r ' | , | r - r ' | + 1 , — , r + r ' + i . 

Consider the Hermite function of order -1 defined by 

p 
2 C 2 

H x (p ) = - e P I e " x dx . CA.37) r-
This satisfies the differential equation for Hermite polynomials 
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H^Cp) - 2p(£(p) + 2nHn(p) = 0. (A. 38) 
Sce[61J . Using (A.37) and the recurence relation 

211^. x(p) = H^(p), (A. 39) 

we define other Mermite functions H (p) for n natural. Define 

H,„,n J"e" 2 p 2'l mQ')H n( P)d P, (A.40) 
for m+n even and assume that at least one of m,n is non-negative. Integrate 
(A.40) by parts several times, noting that H ( p ) is an even (odd) function 
of p corresponding to n even (odd), and using the relations 

m d 2 x, 2 

H n(p) + 2(n-l)Hn.2(p)-2pHn.1(p) = 0, (A.41) 

(e" P H n(p)V + e"P H p + 1(p) = 0 (A.42) 
we obtain w 

Hm,n = (•»" / e ' p Z l U C P ) * " (-"\+n,0. (A.43) 
JO 

Using (A.41) along with setting m+n=2k we define 

T k = /"e- ZP 2H 2 k(p)dp = fe-P d(e" p 2H 2 k. aCp)) = | e" p H - ^ C p ^ p e - P ^ d p 

'(H 2 k(p) + 2(2k-l)H2k.2(p)^ dp. 
• ; • 

. - *Y 
Jo 

This yields the recurence relation T. = (l-2k)T. . from which we obtain 

Tk 
((-l)K(2k-l)!! T n, k>0 { , ° (A.44) 
(|(2k-lJ!J 1 T-, kiO 
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where TV, = J\ . Using (A. 35) we obtain 

I e"2P H2k(p)dp = 2 7C-2) kr(k4) . (A.45) e - r 2 

Using (A.40), (A.43), and Bateman [36] page 289 formula (10) we obtain 

f e-2P2Hm(p)Hn(p)dp= ( - l ) t m + n ^ 2 2 ( m + n - 3 ^ 2 r ( ! ! i § i l ) . (A.46) 

where m +n is even and atleast one of m,n is nonnegative. 
Considering the case inwhich n. = - 3 and m = 2i + 1 we obtain 

I e _ 2P H.3CP) H y + 1(p)dp = (-l)J 2 2 ( | f f i " /if . (A.47) 

It can readily be seen, using (III.46), that 

pm(p) = - 4 H_ 3(p). (A. 48) 
As a result 

H ^ D j /e-*H.3(p)H2.+l(p)dP. 
j •'0 

Upon substitution of (A. 36) for d. we obtain 

" (2S.+l)2r r *• 1(2x+l)!!r!r'! j 4 ^ r 

T ' t-r) k(-r') k(-E-2k) r + r, + ] H (A.49) 
(i+3/2)k k! 

kanax{0,(r+r'-j)/2} 
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Next interciumgo the order of simulation in (A.49) and consider the term 

^ . .^^SlSJ^sl 

) 
Let r+r'+l-i=a, from which (A.50) becomes 

l+2k 

^c-L, ^T^TT^ ^ — T-. (A. 51) 
s=0 2 " ' "^(r+r'+i-a- |) (r+r'+Jl-a+ |) 

= [V + r' + < i + 1(r +r'*St-!) 2l 2FjC-)l-2k,-r-r'-l4 |-r-r« -H*|| 2J . 
(A. 52) 

Using Bateman [34] page 109 formula (3) for analytic continuation of 
hypergeometric functions, and explicitly writing the representation 
(-)!! we obtain 

rr' 
(2") V 2 (|)r,^ ,A <j-S.-T-^k(.-l)* ^"(^Hr^ljV] 
l«+l)2 k = n a = n ir r+2K 2 - ) a + 2 

(A. 53) 

which can be written in a more convenient form for numerical computation 

r £+2r-2k 
brr' = A Z ) T k £ ( a + 1Kk' <A-54> 

k=0 a=0 
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where 

2it /I r(fl+r'+f) 

(2Jl+l)2T r * x 

V l " JtkSjtflff V T0 " rTTr^FfT ' <A- 5« 

_ 2(6-2k-a) 1 , . ..,, 
a a U , k " (V4k+2c«-'l)' °ak> °0k ~ T ' ( A - 5 7 J 

(2t*Y-f)(2kn-y) 

6 = 2(£+r) + 1, Y = r ' - r + 1, 6 = £+2r, (A.S8) 

for r < r ' , Interchange r and r 1 in (A. 54) - (A-58) for r 1 <. r . This 

computation was or ig ina l ly done by Pekeris , e t a l . [ 72 ] ; however, there 

are several misprints in the paper. Equation (A. 26) now takes the form 

T,£ = 0 ,1 , . 

For a given value of £, the vanishing of the determinant of [A.59) de­
termines the eigenvalues A , of (A.4). 

Writing, for a given value of I and r,r' = 0,1, ••• , N < + <°, 

A* = Cb/ r,), CA.60) 

B* = -(-^[rJt,r'M+b£,V (A. 61) 

i = (ar,p , CA.62) 
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oquation (A.59J becomes a generalized eigenvalue problem of order N, for 
each £, 

A*a* = A B V . (A. 63) 
& a 

The matrices A and B are negative and positive definite respec-
o o 

tively. It is ohsen'ed that the off diagonal terms of A and B decay so 
o 

rapidly that, for the expansion (A.6), §_ should be of order 30x1. Al­
though N may be larger than 30, only the first 30 components of each 
eigenvector a need be retained for the expansion. 

The method used to solve (A.63) consists of four parts: (1) Perform 
£ SL S.T 9. 

Cholesky decomposition of B into L L , where L is lower triangular. 
£-1 £ jrr-1 The composition L A L is performed, resulting in a symmetric matrix. 

(2) Reduce the symmetric matrix obtained in (1) to a symmetric tridiagonal 
matrix using accumulating orthogonal similarity transforms. (3) Compute 
eigenvalues and eigenvectors of the symmetric tridiagonal matrix obtained 
in (2) by the implicit QL method. (4) Form eigenvectors of (A. 63) by back 
transforming those obtained in (3). See [ 38 ]. 

From (A.4), (A.6), and (A,9) we see that 

* r J l(E) = e"P m ^ V p ^ c o s e ) ^ a r j £ k L J f V ) - CA-64) 
k=0 

For our approximation, by the above discussion, we shall truncate the ex­
pansion at N = 29 and assume that 

29 

£ 
k=0 
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In the work discussed in Chapter V, the bilinear expansion ranged 
over£= 0,'-- , 1G and r = 0, •••• , 59. For this case the computation 
of the eigenvalues and is very costly (about 25 minutes on CDC 7600); 
also, the computation of the two bilinear expansion to compute the kernel 
for each velocity point is costly (from about 10 minutes for three points 
per velocity coordinate to 45 minutes for seven points per velocity 
coordinate on CDC 7600). Hence, it is advisable to compute the bilinear 
expansions of the iterates of the kernel and store them as data to be 
read in by the main program. For a sample of the eigenvalues and co­
efficients a £ k for £ = 0,!. r = 0,1, ••••, 29, and k = 0,1,••• , 29 
see table AI. 

A disadvantage of this method of computing the a , , is the dif­
ficulty in ascertaining its accuracy without repeating the complete cal­
culation with a larger determinant. However, due to the structure of the 
matrix obtained from (A. 59) the matrix elements for a given value of 
rapidly approach zero as |r-r'| becomes large, i.e. the off-diagonal 
elements rapidly decay, away from the diagonal. See [68 J . The matrix, 
for Maxwellian molecules, corresponding to (A.59) is diagonal, with its 
eigenvalues along the diagonal. So some advantage can be taken of part 
of the previous computation. Also, from this, one can see that the 
Laguerre-Sonine polynomials given by (A.l) are good approximation to the 
eigenfunction even for rigid-sphere molecules. For a comparison of matrix 
elements for rigid sphere molecules and matrix elements for Maxwellian 
molecules for I = 0,1,--" ,11 and r = 0,!.,••• , 7, see table All. From 
:his it can be observed that for r large and I fixed the matrix element 
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for the rigid sphere molecules varies like r (a result predicted by 
Mott-Smith [ 68) ). 
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Table A-l 

Eigenvalues X „ and coeffici-j i ts of the rxpsnsion a , r in eqiiation 

(A.10) for the eigenfunctions o i the l inearized Boltzmann co l l i s ion 

operator for a r ig id sphere gas. 



EI8ENVALUE 
'COEFFICIENT K 0 : 1 2 . 3 ; 4 ' 5 

• 1 . OO0OO00OE*OO 

-1.23105631 E-Ol -1.746337S7E-01 0. 0. 0. 

0. 0. 0. 0. 0, 0, 0, 0. 0, 0. 0. ' 0. 0. 0.. 

-1.00000000E»00 -1.57971633E*00 

2.24622114E-01 1.95469941E-02 
•5.80200252E-0Z 5.16782156E-02 

1,95265673E-01 0. 
5.16782156E-02 
1,95265673E-01 

0 . •1.9006617SE-02 0. -4.36154072E-03 0. -1 .3O34B774E-03 0. -7.77615594E-04 
0 . -3.6S746476E-04 
0. •1.8Z671270E-04 0. -9,55486179E-05 0, -5.19195077E-05 0. -2.91547182E-05 0, -1.68549791E-05 0 , -1.0O026427E-O5 0. -6 . 07856424E-0t» 0. -3.7744I030E-0C. 0. -2.39006582E-CJ 0. -1 .54072249E-06 
0. -1 .00944V5E-06 0 . -6.71195,31S-07 0. -4.523345a<;e-07-0. -3.08604K>3E-07 
0. -2,.12923^21E-07 0, -1,48431065E-07 0. -1.044S0592E-07 0. -7.41642427E-08 0. -5.33854374E-08 0. -3.82869470E-08 0. -1.78101567E-08 0. -2.03347905E-08 



L 0 
R 3 
EIGENVALUE -2 ,13148483E+00 

-1 .05190921 E-02 
- 2 . 7 8 9 9 1 3 3 9 E - 0 2 
- 7 . 4 2 2 7 4 4 3 4 E - 0 2 
- 1 . 79391206E-01 

3 .60149896E-02 
8 .86770647E-03 
3 .31439714E-03 
1 .44412287E-03 
6 .83833948E-04 
3 .42037854E-04 
1 .78209107E-04 
9 .59937056E-05 
5 .32239471E-05 
3 .02923560E-05 
1.76E46364E-05 
1.0508721 4E-05 
6 .42424599E-06 
3 .996341S3E-06 
2 .53370287E-06 
1,63506431 E-06 
1 .07257776E-06 
7 .14289559E-07 
4 .82313624E-07 
3 .29826023E-07 
2 .28176310E-07 
1 .59536423E-07 
1 ,12634197E-07 
8 .02345572E-08 
5 .76278465E-08 
4 .17078078E-06 

•2,67331135E«00 -3.2O941971E->00 

6 .78790049E-03 
1 . 74903065E-02 
4 .37056257E-02 
B. 74393391 E-02 
1 .70058071E-01. 

- 5 . 1 7 3 5 7 1 9 8 E - 0 2 
- 1 . 2 1 0 4 0 6 0 5 E - 0 2 
- 4 . 5 1 7 7 0 4 9 3 E - 0 3 
- 1 . 9 7 5 8 1 5 6 8 E - 0 3 
- 9 , J 7 2 1 5 0 0 2 E - 0 4 
- 4 . 6 7 5 3 4 0 6 8 E - 0 4 
- 2 . 4 1 6 6 8 0 1 9 E - 0 4 
- 1 . 2 8 4 2 6 9 0 6 E - 0 4 
- 6 , 9 8 6 7 3 3 9 7 E - 0 5 
- 3 . 8 8 2 2 8 4 8 2 E - 0 5 
- 2 . 2 0 0 9 4 5 8 6 E - 0 5 
- 1 . 2 7 2 4 4 1 5 6 E - 0 5 
- 7 . 5 0 0 8 7 6 2 5 E - 0 6 
- 4 . 5 0 8 2 9 3 4 2 E - 0 8 
-2 .7624176SE-06 
- 1 , 7 2 3 1 2 0 9 8 E - 0 6 
- 1 , 0 9 7 4 4 1 0 Z E - 0 6 
- 7 . 10644598E-07 
- 4 . 6 7 9 7 7 2 4 0 E - 0 7 
- 3 . 1 3 0 5 8 8 4 1 E - 0 7 
- 2 . 1 2 4 9 4 7 7 9 E - 0 7 
- 1 . 4 6 1 7 5 4 1 8 E - 0 7 
- 1 . 0 1 7 8 8 7 3 7 E - 0 7 
- 7 , 1 6 7 1 8 7 9 0 E - 0 8 
-5 .09782312E-0B 

4 .66301004E-03 
1 .19775929E-02 
2 .009813S4E-02 
5 .56071136E-02 
6 . 5249531 6E-02 
1 .56842507E-01 

-8 .S2608714E-02 
- 1 . 4 5 8 5 7 0 1 1 E - 0 2 
- V 4 0 4 3 5 9 3 9 E - 0 3 
- 2 . 3 6 0 2 0 5 8 6 E - 0 3 
-1 .11624523E- i ;3 
-5 .52B02991E-04 
- 2 . 8 1 9 7 4 6 3 7 E - 0 4 
- 1 . 1 6 8 0 1 0 9 6 E - 0 4 
- 7 . 7 5 9 1 3 4 9 9 E - 0 5 
- 4 . 1 5 0 2 4 4 1 0 E - 0 5 
- 2 . 2 4 2 3 1 3 2 1 E - 0 5 
"1 .22251224E-05 
- 6 . 7 2 3 5 1 5 0 3 E - 0 6 
- 3 . 7 3 0 7 4 1 7 6 E - 0 6 
- 2 . 0 8 9 7 6 5 3 2 E - 0 6 
- 1 . 1 8 2 7 7 3 8 4 E - 0 6 
- 6 . 7 7 2 2 2 2 4 2 E - 0 7 
- 3 . 9 2 8 3 0 7 0 0 E - 0 7 
- 2 . 0 1 2 0 7 5 6 4 E - 0 7 
-1 .3B295696E-07 
- 8 . 4 1 9 0 8 1 0 0 E - 0 8 
- 5 . 2 2 2 7 4 7 1 3 E - 0 8 
- 3 . 3 0 4 2 4 8 5 6 E - 0 8 
- 2 . 1 3 2 7 4 0 0 1 E - 0 8 
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L 0 R 15 
EIGENVALUE -8.4521B239E»00 
COEFFICIENT K 0 
COEFFICIENT K 0 4.S2910741E-04 
1 1.'.4929651E-03 
2 2.678B1026E-03 
3 4.96894539E-03 
4 8. 19063465E-03 5 1.250206S9E-02 
6 1.80275750E-02 
7 2.4829S6SSE-02 
8 3.287055S0E-02 
9 4.19591350E-02 

10 5.16665895E-02 11 6.11844597E-02 
12 6.90491886E-02 
13 7.25171293E-02 14 6.57711206E-02 
15 -3.21855473E-02 
16 -1,55297475E-01 17 -6.5531 1108E-03 ta -1.27050870E-03 
19 -7.71744332E-06 
20 3.48605907E-04 
21 4.17022024E-04 22 3.86092441E-04 23 3,24768581E-0* 
24 2.59978562E-04 25 2.O1884513E-04 
26 1.53543338E-04 27 I.14995474E-04 
28 8.50983168E-0S 29 ' 6.23642935E-05 

-8.97077082E*00 

0 
17 

-9.40877I09E*00 

-3.atS5S:(UE-04 -9.68861985E-04 -2.25625862E-03 -4.10555179E-03 -S.90551271E-03. •1.05583135E-02 -1. 52634263E-02 -2.10963095E-02 -2.80602995E-02 -3.6O4B6164E-02 -4.47899486E-02 -5. 37642211E-02 -6.20588239E-02 -6.80920173E-02 -6.89902021E-02 -5.88223550E-02 -2.11482503E-02 1 .593S1433E-01 3.31364824E-03 5.33765280E-05 -5.89910020E-04 -0.81629523E-04 -6.17255191E-04 -5.12793454E-04 -4.07890307E-04 -3.15943735E-04 -2.40266805E-04 -1.80202412E-04 -1.33663061E-04 -9.82292056E-0S 

-3.23956541E-04 -8.2ie58059E-04 -1.91244559E-03 -3.54808085E-O3 -S.S5850202E-C3 -8.97102686E-03 -1.2998215SE-02 -1.SO214800E-02 -2.40697643E-02 -3.10916266E-0Z -3.89174036E-02 -4.7204907SE-02 -5.53552692E-02 -6.236963e8E-02 -6.65749626E-02 -6.50116334E-02 -5.17166742E-02 -1.06246359E-02 . 
1.62748680E-01 -2.32322720E-04 -1.23035375E-03 -1.21143758E-03 -1.0250S278E-03 -B.22344589E-04 -6.41796454E-04 -4.92053253E-04 -3.72314066E-04 -2.78736960E-04 -2.06798574E-04 -1.522039802-04 
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E1GENVALJE -1,15558433E+01 
COEFFICIENT 
K 
0 1 , 76673974E-04 
1 4.48047914E-04 
2 1.04018654E-03 
3 • 1.93043847E-03 
4 3.19542311E-03 
5 4.91579689E-C3 
6 7.171B7352E-03 
7 1.00375396E-02 
B 1. 35722453E-02 
9 1.78108245E-02 
10 2,27508010E-02 
11 2.83366156E-02 
12 3.44397S49E-02 
13 4.08332285E-02 Id 4.71565852E-02 
15 S.23666148E-02 
16 5.71610928E-02 
17 S.88S14S82E-02 
IB 5.61249019E-02 
19 4.60289703E-02 
20 2.30859458E-02 
21 -2.6043384CE-02 
22 -1.69463235E-01 
23 1.69044090E-02 
24 6.71538742E-03 25 3.77651941E-03 
26 2.41323623E-03 
27 1.63832675E-03 26 1,14784392E-03 
29 ,8,17808922E-04 

22 
-1 , 1*0715650E*01 

23 
-1,2586927CE»01 

1.53472822E-04 3.89182157E-04 
9.03125533E-04 
1,67618707E-03. 
2.77569836E-03 
4.27418669E-03 
6.24397860E-03 
8.75441111E-03 1,18644650E-02 
1,561483Z6E-02 
2.00177944E-02 ' 2.50447671E-02 3.06109661E-02 
•3.65562087E-02 4.26201590E-02 4.84089810E-02 5.33478244E-02 5, 66062510E-02 5,69874714E-02 5.26841900E-02 4,0ai66277E-02 1.61392289E-02 
-3.38217657E-02 -1.69626075E-01 2.156O4755E-02 8.10344340E-03 4.40278063E-03 2.74488887E-C3 1 ,82997!;^9E"03 1.26480' 1E-03 

1.33808517E-04 3.39295022E-04 7.87043222E-04 1.46083354E-03 2.42031617E-03 3.72967483E-03 5.45499059E-03 7.66046535E-03 1,04033449E-02 1 .37273891E-02 1 .76547256E-02 2.21758770E-02 2.72376340E-02 3.27262296E-02 3.64588782E-02 4.41400587E-02 4.93496898E-02 5.34879828E-02 5.57086493E-02 5.48064476E-02 4.90059958E-02 3.55173477E-02 9.35760267E-03 -4.10443922E-02 -1.69241 602E-01 2.63620626E-02 9.47303575E-03 5.01111364E-03 3.06396391E-03 2.01294605E-03 
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L 0 
R 27 
EIGENVALUE -1 .464S2176E*01 
COEFFICIENT 

0 
COEFFICIENT 

0 -7 .9B283943E-05 
1 . - 2 . 0237765CE-04 
2 - 4 . 6 6 a 3 6 8 6 2 E - 0 4 
3 - 8 . 7 0 4 0 1 4 3 6 E - 0 4 
4 • - 1 . 4 4 4 1 4 . 2 2 E - 0 3 
5 - 2 . 2 3 1 1 6 1 3 3 E - 0 3 
6 - 3 . 2 7 5 6 5 2 4 4 E - 0 3 
7 - 4 . 6 2 3 4 1 5 0 0 E - 0 3 
a - 6 . 3 1 9 7 6 5 7 1 E - 0 3 
9 ^8 .40673838E-03 

10 - 1 . 0 9 1 9 4 9 6 9 E - 0 2 
11 -1 .36B19022E-02 
12 ' - 1 . 7 3 0 1 1 2 3 2 E - 0 2 
13 - 2 . 1 1 6 1 2 8 6 9 E - 0 2 
14 - 2 . 5 4 1 5 9 9 6 8 E - 0 2 
15 - 2 . 9 9 7 9 6 0 5 9 E - 0 2 
16 -3 .4716975CE-02 
17 - 3 . 9 4 3 1 2 9 9 3 E - 0 2 
ia - 4 . 3 8 4 9 3 0 9 0 E - 0 2 
19 - 4 . 7 6 0 2 6 9 2 3 E - 0 2 
20 - 5 . 0 2 0 3 7 7 0 4 E - 0 2 
21 -5 .101190S6E-02 
22 - 4 . 9 1 8 3 9 2 6 3 E - 0 2 
23 - 4 . 3 5 9 4 5 8 1 3 E - 0 2 
24 - 3 . 2 6 9 4 3 4 4 5 E - 0 2 
25 -1 .42156281E-02 
26 1.S5732539E-02 
27 6 .44999130E-02 
26 1.62847752E-01 
29 - 4 . 6 5 7 9 3 7 9 6 E - 0 2 

2a 
-1.51S90920E*01 

29 
-1.B6727178E»01 

-7.06508196E-05 -1.79103067E-04 
•A.14B08723E-04 -7.70134216E-04. -1.27815434E-03 -1.97575109E-03 -2.90288342E-03 -4.10142078E-03 -5.61346091E-03 -7.47905437E-03 -9.73326432E-03 -1.24024979E-02 •1. 55000533E-02 •1.S0206291E-02 -2.29351324E-02 -2.71815003E-02 -3.16583920E-02 -3.62145252E-02 •4.06374795E-02 -4.46399510E-02 -4.78426440E-02 -4.97520711E-02 -4.97301952E-02 -4.69500B19E-02 -4.03254584E-02 •2.83860290E-02 -9. 02230966E-03 2. 1 1558315E-02 6. 90515194E-02 1 . 6O178160E-:.; 

-6.2683O2a3£-05 -1.56898145E-04 -3.67923537E-04 -6,83ll7961E-04 -1,134045B4E-03 -1.75384252E-03 -2.5786565SE-03 -3.646729276-03 -4.99704251 E-03 -6.66746725E-03 -a.69234606E-03 -1.10994671E-02 -1 .39063382E-02 -1.71157898E-02 -2.07107933E-02 -2.4S484867E-02 -2.88533308E-02 -3.32092344E-02 -3.75505183E-02 -4.16513182E-02 -4.52129355E-02 -4.764B2448E-02 -4.90616620E-02 -4.82221960E-02 -4,45242113E-02 -3.69263669E-02 -2.40443175E-02 -3.93371102E-03 Z.64495032E-02 7.31016840E-02 
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L 
R 

1 
3 

EISENVALUE -2.716920S1E*00 
COEFFICIENT 
I K 
, 0 

COEFFICIENT 
I K 
, 0 2.4182S476E-02 

1 5.53755023E-02 
2 9.27265299E-02 
3 1,44984584E-01 
4 -4.83243446E-02 -B.61713895E-03 I e -2.70715533E-03 I 7 -1.02520366E-03 
s -4.27200654E-04 9 -1,66620156E-04 10 -8.69251791E-03 11 -4,126580436-03 12 -2.00864770E-05 13 -9.99269312E-0S 14 -3.07295269E-06 

! 5 ' -2.626S2383E-06 *6 -1 .38746416E-0S 17 1 -7.48296715E-07 18 -4,12491527E-07 19 -2.02661407E-07 20 -1.34400124E-07 21 -7,95556799E-0B 22 -4.82548647E-08 23 -2.99750S98E-0B 24 -1,90478644E-08 25 -1.23631942E-08 2S -6.16141629E-09 27 -5.50942322E-09 26 -3,76826194E-09 29 -2.61313965E-09 

-3.25046821E*00 -3,78035403E*00 

1.63427850E-02 
3.63403B74E-02 
5.91794742E-02 
8.65326466E-02 
1,19026395E-01 

-5.44400246E-02 -9.27462361E-03 -2.94039463E-03 
-1.12344561E-03 -4.68803526E-04 -2.05273667E-04 -9.23263391E-05 -4.20647728E-05 -1.91960041E-OS--6.67252422E-06 
-3.81976519E-06 -1.59646774E-06 '6,01337834t-07 -1,70627694E-07 1, 949241 73E-09 6.03282789E-08 
7.09142536E-08 6.36361004E-08 5.14230557E-08 3.94279944E-08 2.93627159E-0B 2.15051830E-08 1.26045566E-08 1.12707787E-08 6.12824062E-09 

1 .16230867E-02 ?.54514815E-02 4.109I3595E-02 5.93293526E-02 7.96256792E-02 9.86706485E-02 -5.B9699337E-02 -9.4Z707912E-03 -2.36640002E-03 -1.14110045E-03 -4.72r77818E-04 -2.02712304E-04 -S.75464375E-05 -3.70830659E-05 -1 ,48491440E-05 -5.19646123E-06 -1.17879836E-06 3.43224918E-07 7.95100974E-07 6.1865011HE-07 6.95650664E-07 5.43522948E-07 4.06138554E-07 2.95763658E-07 2.12126339E-07 1.5O810674E-07 1.06734316E-07 7.54190875E-08 5.33167853E-08 3.77659349E-06 



'EIGENVALUE -4 ,30767341E+00 
'COEFFICIENT K 
0 -8.57301211E-03 ; 1 -1 .85930564E-02 

1 2 -2.99437514E-02 
: 3 -4.31701833E-02 
, 4 -5.79066671E-02 
1 5 -7.27312966E-02 
i 8 -8.20477441E-02 1 7 S.2373S468E-02 
i 8 9.2022264QE-03 
I 9 2.88928926E-03 
10 1.09468511E-03 
1 1 4.43144266E-04 12 1, 83996213E-04 13 7.39413766E-05 14 2.70294820E-05 15 7.44871543E-06 
16 -1, 92746502E-07 
17 - -2.69928427E-06 
IB -3,10333913E-06 19 -2,74183764E-06 
20 -2,1815434BE-06 
21 -1.64450528E-06 
22 -t,2015269lE-06 23 -8.61318825E-07 
24 -6.10269776E-07 25 -4.29428953E-07 
26 -3.01100843E-07 27 -2,10872595E-07 28 -1 .47768945E-07 
29 -1.03747814E-07 

-4.83305031 E*00 -5, 3566818SE*00 

6.49393726E-03 1 .40003880E-02 2.25422168E-02 3.25593957E-02 
4. 384891S2E-02 5.56716881E-02 6.60693414E-02 6.80966113E-02 

-6.49234744E-02 
-6.68636633E-03 
-2.S8221223E-03 -9.97915093E-04 -3.92336167E-04 -1.51981106E-04 -5.29622565E-05 
-1.26999576E-05 2.53815461E-0S 
7.20675019E-06 7,63032168E-06 
6.563O2229E-06 5. 16048518E-06 3.8663S910E-O6 2.81426114E-06 2.01150213E-06 1,42108941E-06 9.966B9510E-07 6.96095521E-07 4.8S209974E-07 3.38134458E-07 2.35900658E-07 

-5.02851036E-03 -1.07893608E-02 -1.73829460E-02 -2.51787737E-C2 -3.40788380E-02 -4.36647322E-02 -5.29776123E-02 -5.97108911E-02 -5.61699876E-02 6.67969143E-02 7.94I38156E-03 2.39074207E-03 6. 62112687E-04. 3.2O147199E-04 1.09332612E-04 2.60268128E-05 -5.10238380E-06 -1 .46297020E-OS -1.5543069SE-05 -1.34188602E-05 -'.05919459E-05 -7.9642S496E-06 -5.81458686E-06 -4.1S525824E-06 -2.94641461E-06 -2.06689298E-06 -1.4421S919E-0S -1.00312458E-06 -6.967S4433E-07 -4.83931296E-07 
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EIGENVALUE 
COEFFICIENT 

ir 
22 
23 
24 
25 

-8.99645955E*00 

-1 ,20680880E-03 -2.5538381 1E-03 -4.13746513E-03 -6.08908814E-03 -8.45503824E-03--1.11469823E-02 -1 .44417487E-02 -1,79725391E-02 -2,17151684E-02 -2.54676155E-02 -2.B9175524E-02 -3.13857365E-02 -3.27155266E-02 -3,10226864E-02 -2."9890861 E-02 -4.-4432982E-03 6.83265696E-02 -7.80281254E-04 -7.15724445E-04 -5.63646530E-04 -4.27448832E-04 -3,18272560E-04 -2.34108750E-04 -1,70565673E-04 -1.23263S78E-04 -8.84362957E-05 -6.30297331E-05 -4.46460574E-05 -3.14417068E-05 -2.20215701E-05 

16 
-9.51374505E+00 -1,003C3S02£»01 

-1.0I849305E-03 -2.15323352E-03 -3.49024581E-03 -5.14355273E-03 -7.15745463E-03 • -9.54941012E-03 -1.23104944E-02 -1.539897S2E-02 •1.87305617E-02 -2.21648576E-02 -2.34856197E-02 -2.83695895E-02 -3, 033246 /8E-02 -3.06242252E-02 -2.79940424E-02 -2.00341014E-02 -5.18950399E-C4 6.7.i--;''226E-02 -2.2740-349E-03 -1.19572420E-03 -7.76097227E-04 -5.38308983E-04 -3.8n796965E-04 -2.71534S14E-04 -1.93957951E-04 -1.38357755E-04 -9.84033052E-05 -6.97176553E-05 -4.91793484E-03 -3.45307308E-05 

-8.64685252E-04 •1.S2649693E-03 -2.96199222E-03 -4.370323C-:E-03 -6.09302541E-03 -8.15069931E-03 -1.05438327E-02 -1.32479711E-02 -1 .62064852E-02 -1.93210169E-02 -2.24385064E-02 -2.53323679E-02 -2.7672B677E-02 -2.89760473E-02 -2.85054150E-02 -2.50529966E-02 -1.63345507E-02 3.41907014E-03 6.6461O139E-02 -3.78879836E-03 -1.6S618785E-03 -2.86119070E-04 -6.45249850E-04 -4.40845785E-04 -3.0732S601E-04 -2.16229388E-04 -1.S2663579E-04 -1.07806919E-04 -7,59979836E-05 -5.34158762E-05 



EIGENVALUE -1,05469139E*01 
COEFFICIENT 
0 

COEFFICIENT 
0 -7,38080S83E-04 
1 -1,S5787969E-03 

< 2 -2.52742669E-03 
3 -3.73313554E-03 
4 -S.21344868E-03 

: 5 -6.99036841E-03 
6 -9.07049167E-03 

-1.14413115E-02 8 -1,40656770E-02 
1 9 ' -1.68747202E-02 
10 -1.97S87723E-02 
11 -2.25550853E-02 
12 -2.50300396E-02 13 -2.68512359E-02 
14 -2.75396257E-02 
15 -2.63779795E-02 
16 -2.22086122E-02 
17 -1.26803108E-02 
18 6.91720717E-03 
19 6.52882962E-G2 
20 -5.31508485E-03 
21 -2.12313320E-03 
22 -1.18683281E-03 23 -7.47259751 E-04 24 -4.97833112E-04 
£S -3.41124629E-04 
26 -2.37155585E-04 27 -1.66035305E-04 
28 -1.16549052E-04 29 -8.18039120E-05 

-1.10628698E*01 
20 

-1.15784477E*01 

6.33130531E-04 1 ,33544966E-03 2.16737652E-03 3.20439924E-03 4.48176674E-03 6.0218167BE-03' 7.834B2427E-03 9.916B3661E-03 1.22442445E-02 1.47693553E-02 1.74132216E-02 2.00571932E-02 2.25313879E-02 2.45980054E-02 2.59252519E-02 2.60428532E-02 2.42575428E-02 1 .94677080E-02 9.66152857E-03 -1.00164352E-02 -6.39310B77E-02 6.8447953SE-G3 2.56316984E-03 1.37557993E-03 8.43509292E-04 . 5.51279303E-04 3.72640823E-04 2.56553069E-04 1.76353661E-04 1.24550165E-04 

-5.45570866E-04 -1.15005665E-03 -1.867I2416E-03 -2.76287352E-03 -3.86946983E-03 -5.208751 49E-03 -6.79342851E-03 -8.62485355E-03 -1.06895725E-02 -1.29550526E-02 -1.53645602E-02 -1.78309038E-02 -2.02284672E-02 -2.23824535E-02 -2.40533572E-02 -2.49128000E-02 -2.45025385E-02 -2.21570931E-02 -1.68353094E-02 -6.66861393E-03 1 .275251 61 E-02 6.25559507E-02 -8.37073298E-03 -2.9S341720E-03 -1.55437948E-03 -9.33323006E-04 -6.00798544E-04 -4.01640645E-04 -2.74274971 E-04 -1. 89523317E-04 
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L 
R 

1 
24 

EIGENVALUE -1.06374566E»01 
COEFFICIENT K 

0 
COEFFICIENT K 

0 -3,12724122E-04 
1 -6.57941501E-04 
2 -1.06933735E-03 
3 -1. 58666979E-03 
4 -2.23162279E-03 5 -3.02141627E-03 
6 -3.97009774E-03 7 -5.08761636E-03 
6 -6.37636339E-03 
9 -7.83930436E-03 

10 -9.45779774E-03 
11 -1.12091141E-02 12 -1.30636337E-02 
13 -1 .49336533E-02 
11 -1,67696652E-02 
18 -1,845567C2E-02 
16 -'•.98545128E-02 
17 -2,076e3350E-02 
13 -2.10298857E-02 
19 -2.02852732E-02 20 -1.81673146E-02 
21 -1.J1462436E-0Z 
22 -7.44555094E-G3 
22 3.22737430E-03 
24 2.06466246E-02 25 5. 59538145E-32 
26 -1 . 43199755E-02 27 -4.42327699E-03 
26 -2.13991390E-03 

- 1 2192P209E-C3 

-1 .11514830E+01 
28 

-1.4E632339E+01 

2.74403991E-04 5.77096007E-04 9.38148765E-04 1 . 3927941 9E-03 1.96055883E-03 2.65743098E-03 3.49689276E-03 4.48927S37E-03 5.64057150E-C3 6.95085256E-03 6.41249867E-03 1.00081245E-02 1.17082794E-02 1.34686720E-02 1,52262506E-02 1 , 69036201 E-02 1.83679801E-02 1.95430266E-02 2.01944049E-02 2.01212237E-02 1,904 19549E-02 1 .65939953E-02 1.22759604E-02 5.38831433E-03 -5.22610013E-03 -2.19777444E-02 -5.41366033E-02 1.57450025E-02 4.71507588E-03 2.25112099E-03 

2.41487109E-04 5.07687353E-04 8.2548S116E-04 1.22615159E-03 1 .72731760E-03 2.34372103E-03 3.08817565E-03 3.97107670E-03 4.99941346E-03 
6. 17549106E-03 7. 49542162E-03 3.94740604E-03 1 .05098281E-02. 1.21491122E-02 1 .38173670E-02 1.54496239E-02 1.69615837E-02 1.8Z441736E-02 1.91609063E-02 1.95409400E-02 1.91709802E-02 1.77828847E-02 1.50335402E-02 
1.04685429E-C2 3.44673329E-03 -7.05136314E-03 -2.30922290E-02 -5.22727189E-02 1.71374855E-02 4.97741594E-03 



EIGENVALUE -1.31787790E«01 
COEFFICIENT K 0 -2.13105666E-04 1 -4.47B71764E-04 2 -7.26365967E-04 , 3 -1 .08240059E-03 
4 -1 .52589778E-03 
5 -2.07240606E-03 , 6 -2.73400495E-03 

, 7 -3.52092612E-03 
8' . -4.44074479E-03 
9 -5.49731Q26E-03 10 -6.68952359E-03 11 -8.00981613E-03 
12 -9.44262048E-03 -1 .09625570E-O2 
14 -1.25324973E-02 
15 -1.41014222E-02 
1l3 •1.36020300E-02 
17 -1.6948001 SE-02 
•8 -1.60307656E-02 
19 -1.87155046E-02 
20 -1.88359705E-02 
21 -1.81873452E-02 
22 -1.65157005E-02 23 -1.35010788E-02 
24 -8.7272724aE-a3 25 -1.61964923E-03 
26 8.71109102E-03 27 2.40072125E-02 28 5.03707133E-02 
29 -1.84943758E-02 

28 
-1.36920730E+01 

29 
•1.6Z051473E+01 

-I.88548B33E-04 -3.96140400E-04 -S.44351117E-04 -9.579656S7E-04 -1.35136882E-03. -1.63699173E-03 -2.42615296E-03 -3.128770S9E-03 -3.95270128E-03 -4.90285306E-03 -5.98013045E-03 -7.18021700E-03 -8.49221332E-03 -9,B97^5012E-03 -1 .13G53372E-02 -1.26396122E-02 -1 . 43233970E-02 -1.56B65399E-02 -1.6S679920E-02 -1.77537713E-02 •1.82137049E-02 -1 .80859002E-02 -1.71777536E-02 -1.52472074E-02 -1.19989061E-02 -7.05479557E-03 9.450093B1E-05 1 .02129909E-02 2.47384460E-02 4.64364433E-02 

•1.67231140E-04 -3.51231569E-04 -S.7143i507E-04 -8.49899430E-04 •1.1996S848E-03 -1.63209917E-03 -2.15777905E-03 -2.78620716E-03 -3.52530011E-03 -4.3&0S4592E-03 -5.33461395E-03 -6.44532698E-03 -7.64550606E-03 -8.94119749E-03 -1.03103892E-02 -1.1721S201E-02 -1.31318774E-02 -1.44858652E-02 -1.57131085E-02 -1.67263326E-02 -'.74169154E-02 -1.76619514E-02 -1.73005583E-02 •1.61489584E-02 -1,39834635E-02 •1.05315776E-02 •5.45311500E-03 1.69761994E-03 1.15645519E-02 2.53004581E-02 
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Table A-2 

Matrix elements for a rigid sphere gas and a Maxwellian gas. 
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MATRIX OF OUOTIENTS JRL/J02 FOR RIQIO SPHERES FOR L= 
1.OOOOO 
-0.13363 
-0.01114 
-0.00206 
-0,00050 
-0.00014 
-0,00005 
-0.00002 

-0.13363 
1.22020 
-0.20256 
-0.02629 
-0.00593 
-0.00171 
-0.00056 
-0.00020 

-0.01114 
-0.24256 
1.47433 

-0.34443 
-0.04269 
-0.01092 
-0.00351 
-0.00127 

-0.00206 
-0.02629 
-0.34443 
1.71982 
-0,43666 
-0.05914 
-0.01626 
-0.00562 

-0.00050 
-0.00593 
-0.04289 
-0.43686 
1,94952 
-0.52098 
-0.07460 
-0.02169 

-0.00014 
-0.00171 
-0.01092 
-0.05914 
-0.52098 
2.16361 
-0 59818 
-0.08920 

-0.00005 
-0.00056 
-0.00351 
-0.01628 
-0.C7460 
-0.59818 
2.36377 
-0.66967 

-0.00002 
-0.00020 
-0.00127 
-0.00562 
-0.02169 
-0.08920 
-0.66967 
2.55181 

MATRIX OF OUOTIENTS JMRL/JM02 FOR MAXWELLIAN MOLECULES FOR L • 
1.00000 0 . 0 . 0. 0 . 0 . 0 . 0 . 
0 . 1 . 16667 0 . 0 . 0 . 0 . 0 . 0 . 
0 , 0 . 1. 34222 0. 0 . 0 . 0 . 0 . 
0 . 0 . 0 . i . 49147 0. 0 . 0 . 0 . 
0 . 0 . 0.' 0. 1 . 61932 0 . 0 . 0 . 
0 , 0 . 0 . 0. 0 . 1 . 73098 0 . 0 . 

0 , 0 . 0 , 0 . 0 . 0 . 1 . 83018 0 . 

0 . 0 . 0 . 0. 0, 0 . 0 . 1.91986 
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MATRIX OF QUOTIENTS JRL/J02 FOR RIOID SPHERES FOR L* 4 
1, ,81746 -0. ,26511 -0, ,02751 -0. .00580 -0, 00160 -0, 00051 -0, .00018 -0 ,00007 

-0, ,28911 1, , 95626 -0, ,39733 -0, ,04519 -0. 01082 -0. 00333 -0, ,00116 -0, ,00044 
-0, ,02781 -0 ,09733 2, ,11310 -0, ,48704 -0, ,06137 -0, ,01603 -0 ,00533 -0 .00200 
-0, ,00580 -0, .01519 -0, ,48704 2. .27649 -0, 56603 -0, ,076S0 -0 .OKI 28 -0 .00750 
-0, ,00160 -0, ,01082 -0, ,06137 -0, ,56600 2. 44032 -0, ,63809 -0. .09073 -0 ,02546 
-0, ,00051 -0, ,00333 -0, 01603 -0, ,07650 -0. 63809 2, ,60160 -0, ,70499 -0 ,10418 
-0. ,00018 -0, ,00116 -0. 00533 -0, ,02128 -0. 09073 -0, ,70499 2, ,75895 -0 .76775 
-0, ,00007 -0. , 00044 -0, 00200. -0. ,00750 -0. 02648 -0. 10418 ' -0, ,76775 2 ,91182 

MATRIX OF QUOTIENTS JMRL/JM02 FOR MAXWELL1AN MOLECULES FOR L • 4 
1.87313 0. 0. 
0. 1. 91CS2 0„ 
0. 0. 1.86334 
0. 0. , 0, 
0. 0. 0. 
0. 0. 0. 
0. 0. 0. 
0. 0. 0, 

0. 0. 0. 0. 
0. 0. 0, 0. 
0, 0. 0. 0. 
0. 0. 0. 0. 
2.09168 0. 0. 0. 
0. 2. 15324 0, 0. 
0. 0. 2. 21268 0. 
0. 0. 0. 2.26972 
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MATRIX OF QUOTIENTS JRL/J02 FOR RIGID SPHERES FOR L=" 
2 . 3 7 1 4 9 

- 0 . 3 5 2 4 4 
- 0 . 0 3 4 0 1 
- 0 . 0 0 7 4 1 
- 0 . 0 0 2 1 S 
- 0 . 0 0 0 7 3 
- 0 . 0 0 0 2 7 
- 0 . 0 0 0 1 1 

-0 .3S2 . I4 
2 . 3 3 0 9 3 

- 0 . 4 9 9 6 3 
•0 .0S4S9 
- 0 . 0 1 3 1 7 
- 0 . 0 0 4 1 5 
- 0 . 0 0 1 5 1 
- 0 . 0 0 0 6 0 

-0 .03401 
- 0 . 4 9 6 9 3 

2 .69343 
- 0 . 5 9 9 7 5 
- 0 . 0 7 2 3 5 
- 0 . 0 1 8 7 6 
- 0 . 0 0 6 3 0 
- 0 . 0 0 2 4 2 

- 0 . 0 0 7 4 1 
- 0 . 0 5 4 5 9 
- 0 . 5 9 9 7 5 

2 . 9 3 9 6 9 
- 0 . 6 7 3 1 9 
- 0 , 0 9 9 2 7 
- 0 . 0 2 4 2 3 
- 0 . 0 0 8 5 3 

- 0 . 0 0 2 1 6 
- 0 . 0 1 3 1 7 
- 0 . 0 7 2 3 5 
- 0 . 6 7 3 1 9 

2 . 9 8 0 1 6 
- 0 . 7 4 6 0 5 
- 0 . 1 0 2 8 5 
- 0 . 0 2 9 5 0 

- 0 . 0 0 0 7 3 
- 0 . 0 0 4 1 5 
- 0 . 0 1 8 7 8 
- 0 . 0 8 8 2 7 
- 0 . 7 4 6 0 5 

3 ,11610 
- 0 . 8 1 1 7 6 
- 0 . 1 1 6 3 8 

- 0 . 0 0 0 2 7 - 0 . 0 0 0 1 1 
- 0 . 0 0 1 5 1 - 0 . 0 0 0 6 0 
- 0 . 0 0 6 3 0 
- 0 . 0 2 4 2 3 
- 0 . 1 0 2 6 5 
- 0 . 8 1 1 7 6 

3 .24820 
- 0 . 8 7 2 2 6 

- 0 . 0 0 2 4 2 
- 0 . 0 0 8 5 3 
- 0 . 0 2 9 5 0 
- 0 . 1 1 6 3 8 
- 0 , 8 7 2 2 6 
3 . 3 7 6 8 7 

MATRIX OF QUOTIENTS JMRL/JM02 FOR MAXWELLIAN MOLECULES FOR L • 
2.69640 0 . 0 . 0 , 0 . 0 , 0 . 0 . 

0 . 2 . 70979 0 . 0 . 0 . 0 . 0 . 0 . 

0 . 0 . 2 . 72655 0 . 0 , 0 , 0 . 0 . 

0 , 0 . 0 . 2 . 7 4 342 0 , 0 , 0 . 0 . 

0 . 0 . 0 . 0 . 2 . 76876 0 . 0 . 0 . 

0 . 0 . 0 . ' 0. 0 , 2 , 79291 0 . 0 . 

0 , 0 . 0 . 0 . 0 . 0 , 2 . 81833 0 . 

0 . 0 . 0 . 0 . 0 . 0 , 0 . 2.84459 



MATRIX OF OUOTIENTS JRL/J02 FOR RIGID SPHERES FOR L= 
2.30540 
-0.36009 
-0.03404 
-0.00734 
-0.00214 
-0. 00073 
-0.000Z7 
-0.00011 

-0.36009 
2.67412 
-0.50135 
-0.05499 
-0.01313 
-0.00413 
-0.00150 
-0.00060 

-0.03404 
-0.50135 
2.62965 
-0.60599 
-0.073(2 
-0,01879 
-0.00627 
-0.00240 

-0,00734 
-0.05499 
-0.60599 
2.97505 
-0.6321a' 
-0.08939 
-0.02428 

-0.00214 
-0.01313 
-0.07312 
-0.69213 
3.11514 
-0.76688 
-0.10424 

-0.00850 -0.02960 

-0.00073 
-0.00413 
-0,01679 
-0,08939 
-0,76688 
3,24902 
-0,63388 
-0.11799 

-0.00027 -O.OCO'I 
-0.00150 -0.00060 
-0.00627 
-0.32428 
-0.10424 
-0.83388 
3.37845 
-0.89520 

-0.00240 
-0.00850 
-0.02960 
-0.11799 
-0.89520 
3.50406 

MATRIX OF QUOTIENTS JMRL/JM02 FOR MAXWELLIAN MOLECULES FOR L - 8 
2.91932 0. 0. 0. 0, 0, 0_. 0. 
0. 2, 9303S 0. 0. 0. 0. 0. 0. 
0. 0. 2. 94320 0. 0. 0. 0. 0. 
0. 0. 0, 2. 95803 0. 0. 0. 0. 
0. 0. 0. 0. 2. 97468 0. 0. 0. 
0. 0. 0. 0. 0. 2, 992S4 0. 0. 
0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

3. 
0. 

01222 0. 
3.03252 



MATRIX OF QUOTIENTS JRL/J02 FOR R IS ID SPHERES FOR L-

2.62874 
-0 .36506 
-0 .03369 
-0 .00716 
-0.00207 
-0 .00070 
-0 .00027 
-0.00011 

-0.36606 
2.79574 

-0.50978 
-0.05475 
-0.01289 
-0.00402 
-0.00146 
-0.00058 

-0.03369 
-0.50978 
2.95073 

-0.61737 
-0.07312 
-0.01854 
-0.00614 
-0.00234 

-0.00716 
-0.05475 
-0.61737 

3.09647 
-0.70591 
-0 .08964 
-0.02405 
-0 .00835 

-0.00207 
-0.01269 
-0 .07312 
-0,70591 
3.23494 

-0.78255 
-0 .10474 
-0 .02939 

-0.00070 
-0.004C2 
-0.01854 
-0.08964 
-0.78255 
3.36758 

-0.85099 
-0.11871 

-0.00027 
-0.00146 
-0.00614 
-0.02405 
-0.10474 
-0.65099 

3.49537 
-0.91339 

-0.00011 
-o.coose 
-0 .00234 
-0 .00835 
-0 .02939 
-0.11871 
-0 .91339 
3.61905 

MATRIX OF QUOTIENTS JMRL/JM02 FOR MAXkfELLIAN MOLECULES FOR L » 

3.12640 
0. 
0. 
0. 

0. 
3.13577 
0. 
0. 
0. 
0. 
0. 
0. 

0. 
0. 

0. 
0. 
0, 
0, 

o. 
o. 
o. 
0. 
0. 
0. 

0. 
0. 
0. 
0. 
0. 
3.21545 
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