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ABSTRACT

We consider the numerical solution of Boltzmann's equation for a
gas model consisting of rigid spheres by means of Hilbert's expansion.
1f we retain only the first two terms of the expansion, Boltzmann's
equation reduces to the Boltzmann-Hilbert integral equation. Successive
terms in the Hilbert expansion are obtained by solving the same integral
vquation with a di{ferent source term. The Boltzmann-Hilbert integral
equation is solved by a new very fast numerical method. The success of
the method rests upon the simultaneous use of four judiciously chosen
expansions; Hilbert's expansion for the distribution function, another
expansion of the distribution function in terms.of Hermite polynomials,
the expansion of the kernel in terms of the eigenvalues and eigenfunctions
of the Hilbert operator, and an expansion involved in solving a system
of linear equations through a singular value decomposition.

The numerical method is applied to the study of the shock structure

in one space dimension. Numerical results are presented for Mach

numbers of 1.1 and 1.6. Y
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I. INTRODUCTION

The perfect gas is characterized by the fact that the state of
any of its molecules is independent of that of all the others except
at the instunt of collision. We can describe the gas completely by
specifying the position and the Vel«_)city of every molecule at a given
time. We shall restrict our attention to a gas model consisting of
monatomic rigid sphere molecules with diameter o.

Bolizmann's equation describes the evolution of the one particle
distribution function f = f(x,u,t), where x, with components (xl,xz,x3),
is the position vector, u, with components (ul’UZ'uS)’ is the velocity
vector, and t is time. In the case of a gas censisting of rigid spheres

it has the form

2
_of 1
De=5 qwy) £+ @)1 Ezﬂly.g (£'£)-1£,)du,dw (1.1)

where m is the mass of the particle, Zx denotes the gradient operator
with respect to the x variables, Y denotes the gradient operator with
respect to the u variables, F is the external force, e is a unit vector
pointing in the direction of the solid angle element dw, V = u' - u,

a bar under a symbol denotes a vector quantity, and

f= f({sﬂyt):
f1 = f({;}llut)u
f' = f(il!'lt)l

£] = fx,u),1),

where



u'=u+ (V-ge,
u =y - W-ee.
u', uj are the velocities before collision of those rigid spheres which
after collisjon have the velocities u and u,. For an intuitive discussicn
of the equation see [51) and [78] , for a thorough discussion see (9],
{241 , 125 , €331 , [42) , [43 , (441 , [45] , and [51) .
The average %(x,t) of any property $(x,u,t) of the flow, taken over

the entirz velocity space is
Tt = [ ol (xu, tdu.

Some quantities of interest in the solution of equation (1.19) use the fol-
lowing moments of f: the density p(x,t) =1, the mean velocity u, the pres-
sure P = %— p_vf, where v = u-u, and the temperature T = P/p.@, where &
is the universal gas constant. One other quantity that 1equires mention is

the Boltiman H - function, defined by
H = Togf = | f(x,u,t) logf(x,u,t)du.

In a rigid sphere gas in equilibrium, the rate at which in individual

molecules collides with another molecule is given by

=221 ozpC,
where C is the themmal velocity (defined in Chapter V) and the mean peculiar
velocity is

T=2c//m .

Maxwell's mean free path is then defined as
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9= T/fl= (Fnea®) L.

The purpose of this paper is to present a fast (over 200 times
faster than Chorin's method described in Chapter II) numerical algorithm
for solving equation (I.1) and to apply it to the study of the structure
of a shock wave in one dimension, Our method (described below) is similar
to Chorin's method in that the distribution function f is assumed to Le an
cxpansion around the Maxwellian distribution function fo; and f is expressed
as an expansion in Hermite polynomials. One advantage (other than speed)
of our method over Chorin's method is that it does not have the coprat-
ibility problem which arises in evaluating numerically the five-fold
collision integral in (I.1), i.e. the numerical integration over
velocity and angular variables, See Chapter III, section 1. Our method
has no integration over angular varialbes.

The method consists of replacing f by Hilbert's expansion (defined
in Chapter ITI) of f. This is the step which removes the angular
integration. As is well known, its subsequent development leads to an
ill-posed prablem. As we shall show later, this ill-posgedness is ren..lied
through sn appropriate algebraic procedure without changing the solution
of the original problem and without losing the advantages of Hilbert's
expansion. Substituting this expansion for f into equation (I.1) and re-
taining only the first two terms we obtain the Boltzmanm-Hilbert integral
equation (a Fredholm integral equation of the second kind). The unknown
function in this integral equation is ¢, where f = fo(l + ¢). The
Boltzmann-Hilbert equation is then transformed into a Fredholm integral
equation of the first kind. The kernel of the later integral equation is

represented by a bilinear expansion of eigenvalues and eigenfunctions of



the Hilbert operator (defined in Chapter ITI), where the cigenfunctions

of the Hilbert operator are represented by an expunsion in teims of the
eigenfunctions for the linearized Boltzmann collision operator for a
Maxwellian gas (see Appendix A). The step-by-step procedure for solving
the later integral equation is: divide the time into intervals of lengih
at; assume that at time t=nAt, where n is a nomnegative integer; f is
given by an expansion in Hermite polynomials. The moments of f: the density,
the mean velccity, and the temperature are then computed at t=nat. OQur
aim is to evaluate f(x,u,(n+1)at) knowing f(x,u,nat) and the moments at
time t=n t are used to compute the source term (see Chapter I11) of the
integral for ¢ at time t=(n+1)at. The integral equation is solved for
¢(x,u, (n+1)At) by expressing it as a system of algebraic cquations and
solving by using singular-value decomposition and computing the corre-
sponding pseudo-inverse. Successive terms:in the Hilbert cxpansion can

be obtained by solving the same integral equation with a different source
term (which depends only mpon the previous terms in the Hilbert expansion).
The two expansions of f are compatabie and are useful in different facets
of the computation.

It is wotth noting that our numerical procedure automatically guaran-
tees that the distribution function f will be nonnegative. This follows
from the definition of the Hilbert expansion.

Let N denote the mmber of points for each velocity component and M
denote the number of points for each of the two angular variables in Chorin's
quadrature scheme for evaluating the collision integral. Let LA denote the
mumber of points in each velocity component for fumction evaluation of f

(or fi in our method). The operation count per space point in the evaluation
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of the collision integral using Chorin's method is LAZ((GLA2+41)M+2)m3
+21A2+10) multiplications (LAZ((SLAZ+17)MEN5+1A%+2) additions). The
operation count »sing our method (given the right hand side of the Fred-
holm integral equation of the second kind) for the solution of the
Fredholm integral cquation of the first kind per space point is LA2(6LA2+7)
wiltiplications (zmz additions). From the great difference in the order
of magnitude of the operation couwit of the two methods, it can readily be
seen that round off error will greatly affect Chorin's evaluation of the
collision integral if the integrand is small (corresponding to small Mach
nubers, for example) whercas our method does not suffer from this dis-
advantage.

A major disadvantage of our method is the great amount of computing
time needed %o generate the eigenvalues and eigenfunctions for the
expansion of the kernel, See Appendix A. However, this is a one time
computation and the result can therecafter be treated as given.

A partial list of applications of Boltzmann's equation includes plane
Poisenille flow [16],{17], and[94]; cylindrical Poiseuille flow {19];
Poiscuille flow in annular tubes {4]; heat transfer between parallel plates
[5},i18], and[90]; heat transfer between concentric cylinders {3); cylind-
rical Couette flow [20}; and shock wave structure (for a detailed discus-
sion and list of references see Chap*er V). Two other major applications
are in the closure problem in turbulence, in which Boltzmann's equation
serves as a model, and in combustion theory and chemical kinetics.

What follows is: In Chapter 1I, a brief historical survey of kinetic
theory and various numerical methods; In Chapter III, a detailed discussion
of the mathematical formulation of the Boltzmzim-Hilbert equation and the

medel equation to be solved; In Chapter IV, a description of the numerical
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algorithm; and Chapter V, the numerical method is applied to the study
of the structure of a shock wave in one space dimension, for Mach

mumbers of 1.1 and 1.6.
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IT. HISTORICAL SURVEY

1. Historical Sketch of Boitzmann's Equation

There is no intention here of describing more than a small part
of the effort directed to the development of Baltzmann's equation.

The loundation of the modern theory of transport was laid by Maxwell
in his meruirs of 1866 (see [65] }; it is essentially this theory which
Boltzmunn used to make his discoveries. In 1972, Boltzmann,(see {9]),
published a paper which for the first time provided a precise mathematical
husis for a discussion of the approach te equilibrium. The paper dealt
with the approach to equilibrium of a dilute gas and was based on an
cquation - Boltzmann's equation, as it is called now - for the velocity
distribution function of such a gus. Boltzmann's equation still forms
the basis of the kinetic theory of gases and has proved fruitful not
only for classical gases Boltzmann had in mind, but also - if properly
generalized - for the electron gas ‘n a solid and the excitation gas
in a superfluid.

Much of modern research in statjstical mechanics is based on
attempts to solve either Boltzmaan's equation or similar equations for
other kinds of distribution fumctions. Two such ways of developing
transport theory are based on the solutions of Maxwell's equations or
Boltzmann's equation; and these two approaches were foliowed by
Chapman [ 21] and Enskog [ 33] respectively, the finial result being
essentially identical. Previously, Hil':ert [53) had investigated
Boltzinann's equation for the special case of rigid spheres. See

Chapter III.
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Hilbert's theory, except for an investigation by Boguslawski [ 8)
of the longitudinal oscillations of a gas, the work of Pidduck {75)
on self-diffusion, and the work of Pekeris et al. [(71] on the computa-
tion of transport coefficients, has not been taken up by subsequent
investigators. It forms the basis for this investigation.

For a more detailed historical survey of kinetic theory of gases
see [3} , (7 ,[10) , [11 , (121 , (26 , (32) , [39) , [47) ,
[55 , [56) , [S91 , (600 ,[61] ,([66] ,(69] , (79 , {82 , and
[92)
2. Survey of Numerical Methods

The most direct method of computer simulation is the molecular
dynamics technique introduced by Alder and Wainwright [1j . In this
approach the evolution of a system of molecules interacting through
some prescribed interparticle potential is followed in a deterministic
fashion by explicitly solving the equation of motion on the computer.
Reduction of computing requirements can be effected by computing the
collision in a probabilistic rather than deterministic manner, and
this is the basis for Monte-Carlo methods of direct simulation. See
Bird [6] id Haviland {50} and 517 . Other Monte-Carlo technifies were
developed hy Nordsieck and Hicks {70) . Grad attempted to derive general
macroscopic equations from Boltzmann's equation with the hope that the
results will be valid for these phenomena with which neither Maxweil's
equations of transfer nor the Chapman-Enskog theory are valid. This is
the basis of Grad's thirteen moment method proposed in [42] . Also see

{43 , [44]) , [45] , and [46] . Half-range approximation have been
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prcposed by Lees in [63] . The use of the muliti model procedure based

on more than one Maxwellian distribution was introduced by Mott-Smith

[67) . Pekeris et al (see {71] ) determine the transport coefficients

of viscosity, heat conduction, and diffusion. The method of solution
consists of reducing the Boltzmann-Hilbert integral equation to an

ordinary differential equation. Chorin's method ( [24] and [25) ) di-

rectly solves Boltzmann's equations where the distribution function is repre-
sented by a Hermite expansion and Gaussian quadrature is used to evaluate
the five-fold collision integral.

The method of Alder and Wainwright is among the earliest numerical
methods; despite its intuitive appeal, it is agonizingly slow (on the order
of days in order to reach any neaningful real time). A substantial savings in
computing time is achieved by the methods of Bird and Haviland. However,
neither of these methods can be considered acuurate. The method of
Nordsieck and Hicks splits the collision integral into the gain and loss
terms and evaluates each separately using Monte-Carls quadrature.

This use of Hermite series was suggested by Grad. However, the number of
polynomials is fixed and cannot be changed in the course of the computa-
tion as is allowed by Chorin's method [ 25] and ours. Also, since Grad's
uwethod operates in a finite dimensional polynomial space the boundary
conditions are difficult to satisfy. Grad's method does not guarantee
that f will be nonnegative, it is this fact which leads-to the break down of
the method at a Mach number of 1,65, Chorin's method has many advantages,
among them; it is quite general and 2asily used, and it guarantees that

f > 0. However, it possesses the one disadvantage common to most of the

existing methods - it is quite slow.
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I11. MATHEMATICAL FORMULATICN
1.  Introduction

There are several major difficulties in the solution of Boltzmann's
equation (1.19). The function f depends on a large number of independent
variables - six plus time in the general case - so that if (I1.19) is re-
placed by u system of algebraic equations, their mumber will be large.
The presence of a fivefold nonlinear integral insures that the algebraic
equations will not only be numerous, but also very cumbersore. One
other difficulty is due to the nature of the collision term, that is,
from the integration over the angular variables. If f is represented
by a discrete set of values assumed on a discrete set ' of points in
phase space, the integration over u,, becomes a sum over the values
assumed by f on [. The integration with respect to the 6 and x becomes
a sum over a discrete set ¢ of values 6 and x. For any reasrnable
choice of [ and ¢, the argument of £' and fi, will include points
not in T.

Elimination of the integration over the angular variables serves
two purposes; it reduces the order of the integrals to be evaluated by
two and removes the problem introduced by summing over the incommensurable
discrete sets I' and ¢, thus inducing a substantial savings in computer
time and an increase in accuracy.

2. tiilbert's Theory

In this section, a ucrivation of the Boltzmann-Hilbert integral

equation is presented along with some of its properties.

Let E,n,p be the coordinates of a point on the unit sphere
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2 an?s 2=, {111.1)
Let e = (€,n,t) and de = dédndy ; define the transformation W of six
variables u,u, by

W=V-e (111.2)

Also we define the following integral operator {collision operator)

2
QE, L) = g—mﬂlv-el(f'fi-ffl)dmdgl (1i1.3)

and the more general, bilinear quantity
o
Qf8) = g ffiv-el (F'g) + flg - oy - fig)dedu,.  (TI1.4)
Clearly if f = g then (III.4) reduces to (II1.3); in addition,

Q(£,8) = Q(g,1). (TI1.5)
Introduce a small positive parameter e (representing a scale factor) and

write

e Df = Q(f,1). (111.6)

The singular nature of the perturbation procedure in the limit as ¢
tends to zero is emphasized by the fact that e multiplies all the deri.-
atives which appear in Boltzmann's equation. Consider a series expan-

sion in powers of e (called Hilbert's expansion, see [ 53] }




=12«

f = ef .

(111.7)

This postulates the regularity of the solution in €. Upnn substituting

(I11.7) into (II1.6) we obtain

= 3f -
n n-1 1 - I
Z € T CR SR LS R IWENED By ré() > Qe

Q- PITG o) (n20).
WU
Accordingly,
Q=0
.@fn_l =q, (z21).

Equation (7I1.10) ensures that fo is Maxwellian, i.e.

62 £y = a exp {-b((n-0p) 2+ (0y-ap) P (ugmap DY

Notice that ¢ satisfies

b,y = ¢'¢i >
using the notation of equation (I.1).

Consider the case where n=1,

Q]_ = -@fo .
or using (I11.9)
Q) = 3 Do.

(111.8)

CI1.9)

(111.10)

(I11.11)

(111.12)

(111.13)

(I11.14)

(111.15)

Write £ = wfo where ¢ is a new function to be detemmined. With y
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and expression (IIT.13) equation (II1.15) assumes the form

Tj]wl 497 WA Py P)duda = 7 D (111.16)

If instead of u, u; we introduce into the new expression the respective
arguments

a+ E//_B, o+ El//"E

where o = (ul,az,uS) then the expression becomes

- %— 2/ (111.17)

where
/{lwlem(-uz-ui) (0, -0 -0 )du, dw (171.18)
when ¢ is defined by
¢(w) = Plaru/vb).

Expression (IIT.18) can be decomposed into singular and regular parts,

= k@ + [ Kwup)eduy (11.19)
and equation (III.16), which serves to determine ¢, can thus be represented
as a Fredholm integral equation of the second kind, called the Boltzmann-
Hilbert integral equation. Here k(u) is the collision frequency of a
molecule with velocity u. It is boumded away from zero, i.e. k{(u) > ko.

The following derivation is due to Hilbert f 53] . For other deriva-
tions see [33) , [75] , and {84] . In [3] Enskog's expression is a gen-
eralization of the form obtained by Hilbert for the special case of rigid

spheres.
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In order to establish equation (JI1.19), note that

Swds = 2nv,
where V =|| V|| ,|| -1l the Euclidean norm, and
2.2 -u -uf
Jf wlexp-u®-udyodu,du = g™ fflw]e™T audo
_u2 -ui
= 27 ¢e Ve dgl. (111.20)

Changing to polar coordinates in (111.20) we obtain

2w ¢e [ + (2u+—)jl ] (111.21)

k(u)¢, (111.22)

I

so that k will be a positive function which only depends on uz‘

Further, the surface integral over the unit sphere

2
* “u
/ =fflHle © ¢ldwdy (111.23)
is transfcrmed to one over the volume of the volume of the unit sphere
by setting
* L o
= f[)/rzdr
and using independent orthogonal coordinates instead of r and the direc-
tion cosines. From the relation
rzdrdm =
it follows that

_ui
e o' du,dw (111.24)

V-e

jﬂ 0<e <l,-_e:

where ¢' now must be taken to be
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= ola) = o+ e Wed).
If instead of u; we introduce new integration variables
B, = (Apoui,vs) = uy - we?
~1 171l -1 =

in the integray*, we cbtain

AL ey 1 62nPec? exp(- I ePeu 1D lagyde
2
0<e"<1

where || -|| denotes the Euclidean norm, and

¢! = ¢@1*’§_(§_12))-
Instead of e = (§,n,Z) we choose the new integration variable

B= (huv) = el o).

In view of the fact that

2
88 = (8)°8)

2 2.
B = e"B8)

and the functional determinant

263+ LORAL E:ul Evl
- .q 1372
nAI €A1+2nu1+;v1 n\v1 2(8 gl)
Ekl uy 5A1+nu1+zcv1

we obtain
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F - H L—'—gﬁ exp(- | 8,87/ (8+8, ) uP)olerp)dpds,  (111.26)

0__B <B-B
In order to carry out the integration here with respect to 81, we keep
in mind that

f(g'él)'g/zexzn(-ll B+878+8,)+ulF)dg, (111.27)
is an orthogonal invariant of the two systems of variables 8 and e and

vonsequently can only be a function of the three expressions

In order to determine this function, we take p= 0, v = 0. For % > 0

the above integral (I11.27) then becomes
ot Ap Av
-9/2 2 1 VA 1 2
o)) /exp{-(ME) S LN SR g }dxlduldvl
Lo S S 1 1
4o

= w2 g )’ [*is/zd*
L

=% m¥ep-aen)?

4

and the integral (I11.27) will therefore, become equal to
Iy enf- (8 o) /8).
3

Accordingly, in/’* we introduce, in place of @, the arguments of ¢,

namely _
W =u+g

as integration variables we obtain



-17-

£ [Kwup oy (111.28)
where
K - TE;HFH exp{- (gl-(gl-g))Z/]EI-glpz}. (111.29)

We now consider the integral

2
aas .,
A = vle ¢3du, du

* -
in the same way as we just treated the integrag . As before, we obtain

= 18l e e { - gy e Pl ofas de,

O<e®<1

where now

. 2 ..
$1=¢(Be"-e(e"B)w).
Instead of ¢ we now choose new integration variables
B = (V) = B.e’-e(e-B,)
LA Hs 2 RS P
In view of the fact that

._B_:o

e

8 = ef-gy)

and the functional determinant, disregarding sign, becomes



Ty *Zvy Eny-2uRy Ev,-2zh,
Ay ~28, EXy+Tvy nvy2zu | =2(88,) (e*8))
TA; =269 tny -2y EA) *hy

we obtain by comparison with (III.26) the result

e #t (111.30)

We considcr now the last term in (III.18),

f IWIeXP(-uZ-udeal(ul)dgldm

2 2

-u !

= 2ne ﬁ] gl-gne ¢1(gl)dgl. (I11.31)
In view of (III.22), (II1.28), (I1I.30), and (III.31) the integral

expression (II1.18) takes the forr of (III.19), where the kernel K is de-

fined by
2

7 G b '
K(gyu,) = 2ne™ {Ve Plen {»(gl-!)z/vz}} (1132

where V = u,-u. Expression (III.32) shows that the kemel K for

L=y
equations therefore becomes applicable to it.

= u, only becomes infinite from the first order and the theory of integral

Consider Qn(nzl) and observe that the first and last terms in the
sum contain fo (the Maxwell distri™ution function) and fn' which is the
n-th order coefficient in the Hilbert expression of f; the remaining terms
(1<k<n-1) contain only fk of order less than n. If the perturbation ex-
pression is applied to Boltzmenn's equation (I.19), then we solve a se-
quence of equations. If this sequence of equations is solved recursively,

it is obvious that then n-th step fk is known for k<n-1, Therefore,
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Qn splits into the sum
n-1

Q, = £y ) *ZQ(fk’fn-k) (n21) (111.33)
k=1

when the second term is known at the nth step of the approximation and
can be written as a source term Sn; as a consequence, the operator to be
considered at each step is the linear operator ZQ(fO,fn) acting on the
unknown fimction fn. Write fn = fohn and consider hn as the new inknown,
then we can write

Qn = fOL‘*n + Sn n>1) (111.34)

where, by definition, the linearized Boltzmann collision operater L is
given hy
_ o1
Lh = ZfO Q(fo,foh). (111.35)

Upon substituting (111.34) into equation (I1I.11) we obtain

,@(fohn_l) = folh + S (n21), (111.36)
or
foth, = D (£h )-S5, (rel), (111.37)
where h(] = 1.
Accordingly, we have a sequence of equationsfor the unknowns. We can
solve these cquatiors step by step by noting that they have the form
Lh=g (111.38)
where g is a given source temm. Solving this-equation amounts to in-
verting the operator L; this camnot be done in general because zerp be-
longs to the spectrum of L(A = 0 is a give fold degenerate eigenvalue

and the collision invariants wu(a =0,1,2,3,4), corresponding to the
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eigenfunctions 1 ,E,UZ) .

Introduce a Hilbert space f/?fchere the inner product is given by

{r,s) = ffo(_é;)r(;j_,_)s(g)dg. (111.39)

If g is an element uf,,f//"’}md is orthogonal to the wu , €.8.
(y,.8) =0, (111.40)

then a solution h of (111.38) does exist and belongs totg?fsee the Fredholm
altemative| 77] }. To show this consider a function g satisfying the con-
dition in (I11.40) in the suhspace¢2%2%7Brthorgonal to the subspace, of
E%, spanned hy the five collision invariants ({?is an invariant sub-
space for L). In,ﬁékﬂ L 1is a self adjoint operator (see{7:] ); and zero
is not in its spectrum, since there exists a constant § > 0 such that
-(h,Lh) > s(h,h) (111.41)
for all h which are orthogonal to the collision invariants.%,a= 0,1,2,3,4.
It follows from the definition of spectrum (see [77] ) that 1! exists in
& and a solution h e# can be found. While ¥ is wunique in 9[77 in
H we can add to h any linear combination of the five collision invariants
( the coefficients being arbitrary) and satisfy equation (III.38).

At each step, h, can be determined provided the five conditions in
(I11.4D) are satisfied by the source temm, however, the solution hn is
determined up to five parameters af‘l (which depend upon time and space
variables). Since the source term is constructed by means of the pre-
vious approximations, it can readily be seen that we can combine the
restriction on the source term and the five unspecified coefficients
cyclically in such a way that the five orthogonality conditions on the

n-th source term determine the five parameters left unspecified by the
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(n-1)th step. The start of the cycle is possible since the zeroth-order
approximation already contains the five parameters (the density,
temperature, and mass velocity) of the Maxwellian distribution function
£y
3. The Model Equation

Set a = n(Zn.@l‘J-S/Z, b= (L%l‘)'l, and a = Eo(y_o some reference
velocity), where .@ is the universal gas constant., Upon substitution

of these quantities into (II1.12) we obtain

2
£ exp |- (111.42)
0° 377
(zmrr) (
where 297
C = uyy.
With these definitions equation (III.14) becomes
2 2
22 .2 -p P, 2
Ge -- < n—-’m(p)e Py & /¢ Je MR- )d (FI1.44)
0 T @) [y ®S )y
or 2
22 o2 B
Gs, - - 2:92’;1_ ,m(p)e Pop) + e P.%I (111.447)

vhere J4is called the Hilbert operator, n denoted the mupber density, m

the molecular mass, T the temperature, and

£ = £,(1+9) (for ¢<<1), p = crzm 4 (II1.45)
n(p)= 1+(2p+—‘P(p), P(p)‘ep L *ay (I11.46)
p2
m(0)=2, n{p)>0, e m(p]-— p//T asp + e,
PPlsms
(I11.47)

Relp-py[, w= —p—,
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@' denoting the angle between p and Py ¢ ¢ (x,p,t). This equation
(I11.44) or (III.44) is called the Boltzmann-Hilbert integral equation,
which is a Fredholm integral equation of the second kind.

A finction K(p,p,) is -in Z provided

Il x 112 =f f 1 (2,p,)dp- =fAZ(E)da - f B (p,)dp, < + = (111.48)
A

where
=[ / KZ(B,Bl)dp_l] %, B(p,) =UK2(2,21)dp_1] & (111.49)
See (8].

There is a difficulty in the solution of (I1I1.44). The kernel

~—

2
K@py) =R- 2" (I11.50)
has a singularity and it has been known by Pekeris [72] that K(RsP_1) is
not in &2 (it can also be seen that K(p,p;) is in " in each variable
separately. See [72]. Thus the theory of Fredholm integral operator
of the second kind cannut be used without change. This difficulty can be

resolved as follows (see [73]}: equation (III1.44) may be rewritten as

@ BT oty 5 _-p’ 1 SN
- EZ P n@) 7t gE - ne) e P o ¢+ #(py)e lm(pl) K@ py)dp)

gp
(111.51)

where

K@.py) = K@.pp) [ m(p)m(pl;]f’f. (111.52)
Write

2
v@) = n@* e 4@
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2
&) =»2—"%— & )t Dy (111.54)
a’p

equation (III.51) may be written ir the fomm

e® = V@ * ﬁ(p_,p_l)w(p_l)dgl. (111.55)
Define the n-th iterate of the kernel ;((P—’Bl) of a Fredholm integral

operator, see [81], by

k™ @,p,) = f k™ p,p,) KO @, ,p,)ep, (111.56)
(=230 3 h=1,2..,n1; KD = 5.

It has been shown by Carleman [15] that the second i*erate
‘i(Z) of X und by Dorfman [31] that the third iterate K(z) of K are
square integrable. Hence the operator K (see equation (III.44) is of
Hilbert-Schmidt type [72]. This implies in turn that the Hilbert operator
is a completely continuous operator [72]. Such an operator has many nice
properties: it is bounded; it has a discrete spectrum, each non-zero
eigenvalue having finite multiplicity, and zero is the only limit point
of the spectrum. Along with the discrete spectrum it has a complete set of
square-integrable orthonormal eigenfimctions. Hecke {52] has also shown
that the eigenvalues of Fare negative.

Moltiply (II1.55) by K (p,p,) and integrate over p,; this yiclds
ﬁmz)fcm @2,)dp, = S o)k @pp,
* %f TCRLT I RIS RIS
= fo@k® @.pyap,

+ % fMEl)i(s) {p,p;)dp, - (111.57)
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This may be written in the form

fw(nl) [%3(3) ®py) * k@ (E,Rl)] dp, = gl (111.58)
where

io - f e ¥ P ,pdp, (111.59)

Thus we have reduced equation (III.44) tn (III.S58), a Fredholm integral
equation of the first kind. In this transformation from (11I.44) to
(I11.58) we have introduced one additional difficulty; the null space
of the operator in (III1.58) has infinite dimension, whereas the null
space of the operator in (III1.44) has dimension five. A detailed discuss-
sion of this increase in the null space dimension will be give1 in
t’hapter Iv.

Let X, and ¢ be the eigenvalues and corresponding eigenfunctions

respectively satisfying

¢, @) = %ff((g,p_l) ¢, {py)dp, - (111.60)
Then since k(z) and k(3) are square integrable they may be represented by
a bilinear expansion, e.g.
Do) = WY ____4‘,1(1’))“#?(131) (G=2,3) (111.61)
© n=0 n
which converges uniformly and absolutely in p and 2} individually;
and uniformly in P and Py together. see {29] . Upon substitution of

((:1.61) into (III.58), one obtains
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. = ¢, ()4, (py)
i® =—/4‘"E1) 3 L}?_ﬁ_}q +1|fap,. (111.62)
n=0 n

Higher order temms in the Hilbert expansion of f are treated in a completely
analogous manner.
Fquation (III.62) is the model equation that will be solved in

Chapter IV.
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IV. METHOD OF SOLUTION
Construction of Finite Linear Algebraic Equatirns
Consider the Hilbert expar- in of £

f=f0+f1+f2+"", (Iv.1)
where £, denotes the Maxwellian distribution; the solution f and

fi(i = 1,2,722) will be expressed as an expansion in Hermite polynomials
H n(x) given by
2 an 2 .
R0 = (Ot S5 e, ¢ e @y

which are orthonormal with respect to the weight

2 .
W(x) = % X, i.e.
% [ oon e X dx = 6
n m n,m’
sn n the Kronecker delta. The set i Hn(x)exp(-%xz)i is complete in
t]
FP.
We choose the Hermite polynomials expansion for f because of its

-x2 :
weight function e ™™ and it simplifies the numerical computation of the

moments of f£. - Cubic splines could also be used to approximate £ with
a reduction in the mumber of points in u-space, but would make the mo-
ment computation more difficult. *

The step-by-step procedure for solving the integral equation
(111.62) is: divide the time into intervals each of length At; and

assume that at time t = nAt £, (and analogously f) is given by a series
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M
MY
£4Gx,p,mat) = 10 %fs;‘s‘z‘s;) Z E a5 1)
i=0 j=0 h=0
n n 2 2 2
» H; GDH; (G e (-7 -2y L), av.2)

where C;‘ = (pE-C;l]/SE , fore® 1,2,3,P has components (pl,pz,ps), C;" is
the center of the expansion and S: is the scale factor of the expansion.
C: and S: will be allowed to vary with x and time. Appropriate

Ml’ MZ’ and M5 will be determined below. It will suffice to
evaluate aijk(l‘"t) at the points Xy = MoAXy for £ = 1,2,3 where mg is an
integer, A_\cl a spatial increment. Our goal is tc¢ obtain f 1(5,2, (n+1)at)
as a series of the form (IV.2). To achieve this goal we compute the values

imk(,\ ) of f;(x,p,(n*1)at) at the points P (mlel,mzAxZ,msAxS),

n+l, vl
P = T8

1i ,.n+1+sn+1

A1,
E1j2P25 = 5 Pac = O3 55 g

where £y50 EZJ Eg,  are Toots ofHN {x)=0, HN (x)=0, and HN (x)=0
respectively. The algorithm for evaluating fn Lm) will be descrlbed
below.

Given fi(__, (n+1]At). the coefficients a% k are defined by

= fs“"s““'1+1 £, (g, (v1)at); 2 o (S e hap

- 1 (Iv.3)
= 7(s“’ls'“‘s{,,‘”) f £, (x,P, (1ot (DB, () DR 3

a+12 ,n+12 +12 +1% _n+12 12
g +ey Dep(-ry -3 e, (Iv.4)

exp(g;

This can be written by a change of variables as
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2 2 2
n+l n+1 n+1 Ydp,

f £ (x,p, (n+1)At)exp(-5; = -L,

which can be evaluated by Gauss-Hermite quadration (see [80]), using

the formula
'~ ) 2 2 Z
jfi (x,p, (“*I)At)exp(-z;'l"" r21+1 ;g-r]. )ap

N,
E £ (08 0 (AW, (Iv.5)

NN

[y

Mﬁ

s
1t

(=]
A
]
o

where gijk = (Eij’EZj’El'nk) are roots of HNNI(X] =90, HNNZ(x) =
HNN (%) = 0 respectively and “i’"j'wk are appropriate weights.
3
The kernel, defincd by

Kp,p,) = ;,1-1?(3) (e.py) + k) ®.ny) (1v.6)
of (I11.62) may be evaluated by a bilinear series given by
- & (p_)¢ ) ® @e» (&)
K(@:p,) =z 1 Z 1, av.n
n=0 n=0

We approximate X by a degenerate kernel, which we alse denote by K,

(3 N®
N
® (E_)¢ (2y) ¢, (e (p;)
K@.p,) = z 1 ":‘2 n@d) v.s)
n= n=i n

where N(Z) and N(z') will be determined below. The method of computing the
eigenvalues A and eigenfunctions ¢n is described in Appendix A.

Upon substitution of (IV.8) into (111.62) we obtain
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g ©_(2;) 8% e @)
0] =/'1'(p_1] Z L xl; g Z‘; n ;2‘ 1 ‘dgl. (1Iv.9)
A=y n n= n

To scec that the null space of (IV.9) is infinite dimensional;

let p be a particular solution of the homogeneous equation

f@(gl,lﬁ(g,nl)dpl =o0. (1v.10)
There exists an infinite mmber of nontrivial functions wc,fz satisfying
(m,q:n) =0, forn=0,1,-.., max (N(Z)’N(s)); i.e. y is an clement of
the orthogonal conplement of the subspace spanned by by
i=0,1, -.- , max (N(z),N(3)). Then u=; = @* w is also a solution of

(1v.10). For

f R(p.py) (o(p)) * wp;)dp, = f K(p.p (@) (-
R @y N e
) ¢y (R, (B
- Z _“_~3_"_ + Z __n___zn w(py)dpy (1v.12)
n=y An n=0 An
. R @
EN¢) ¢
) Z ’n_“f_/;n(pl)‘“@l)dpl * Z T JCpelpy (V19
n=y n n=0 An
=0.

The transition occurs when the function R(Z) (p_,p_l)q.(p_l) (the first term
on the right-hand side) in (II1.57) is integrated.

Using any approximate formula for integration, we can approximately
replace the integral in (II1.9) by some simple form of expression not

involving the -tegral sign.
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2 2
- " p] P
ﬁ(al) K(p,py)dp, =ﬁ(21)l((2.31)e L™ dp,, (1v.14)

where n: is given by (IV.8), which can be evaluated by Gauss-lermite

quadrature (see |80] ), i.e. using the formula

2 2 Nl N2 N V)
~ P, P - - €53
o 1, 71 _ 1}
ﬁ(h)"(l’»'ﬂﬂe XD IDIDD Vg Ko 502 k“1i"2j“’3k
i=0 j=0 k=0
(Iv.15)
where éijk = (Eij’F’Zj’F'Sk) are roots of HNl(xJ =0, HNZ(x) =0,
HNS{x) = 0 respectively, wij’WZj ,113k are weights, and
2 _ .2 2z 2 . .
Eijk =60t gij * ey - Nl’NZ’N:s will be determined below.
To cvaluate.@fo, where
- 8 . 1
D=5+ @Y+ 5 EG) (1v.16)

we use a linear difference operator A such that Af‘a approximates ._@fo and
A is stable. Notice that A acts on f; at the previous time step. See
Chapter V for a particular choice.

We must exercise considerable care when imposing the boundary con-
ditions. f(x,p,t) at a boundary may be imposed only for values of p such
that the vector p points form the boundary into the gas. The distribution
of the velocities of the molecules coming from the fluid and striking
the boundary depend on the molecular flow and cannot be imposed arbitrarily.
See [24] and {44} .

To evaluate g(p) replace k) in (111.59) by
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N o e, e
v (@) . n B4, By
K pq) = ————— (v.17)
@2y Z_: A2
n=0 n
then
i@- f 2@ KD .pdp
2 2
~ P; P
=fg(2J k@ {p,p;le L1 dp, (1v.18)
which may be evaluated by Gauss-Hermite quadrature, i.e. by the formula
N, No N o o2
e = 2 ZZ 8 1) K(Z)(R,Eijk)e ik wigwhey (V.19
i=0 j=0 k=0
where 1Jk (Ell,gzj,r,sk) are roots of H'N (x) = 0, HNS(x) =0, HN(,(X)

respectively, 11’“23 ’w3k are the weights, and F’llk F’11 + €3k’ 4, 5,
and Ng will be determined below.

Combining (IV.15) and (IV.19) we obtain

2

N, 2

2
ZEMEURJ X, —131()e 1k ¥11%25%3k S(E) (1v.20)
7=0 ‘K0

1

1]
<l

1
*
r=20,1, -« , N,
where E,(p_r) is given by the right-hand side of (IV.19). This represents
a system of linear algebraic equation. We can choose N > N1 NZ N3 so that
the matrix represented on the left-hand side of (IV.20) is rectangular
*
(or square as a special case), of order N x(Nl-NZ-NS). This may be written

in matrix notation as

™l = (Iv.21)
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Clearly we seck a solution of the form
gl 1v.22)

liowever, certain practical difficulties arise. Since the null space
is infinite dimensional, the columms of (IV.20) or of Q is (IV.21) are
approximately linearly dependent. Q is very ill-conditioned (or over-
determined if N*> Nl-NZ-NS). For a detailed discussion of the Jdifficulties
involved sce Philips [74).

If N* = Nl-NZ-N3 one possible way of dealing with this difficulty
is to try to invert Q using double precision arithmetic. This method will
work provided the eigenvalues of Q are less (in absolute value) than twice
the machine precision.
2. Solution of the System of Fquations (see [37],[41j,188|, and | 89)).

1t is known (see [41} ), that :

Q=ut v (1v.23)

T T T

where u ' U=UU =W Ty =

= VvV ln and I = diag(al,az, ""an)' The matrix
U consists of the n orthonormalized eigenvectors associated with the
cigenvalues of QQT, and the matrix V consists of the n orthonormalized
cigenvectors of QTQ. The diagonal elements of T are the nennegative square
roots of the cigenvalues of QTQ; called the singular val.es of Q.

The use of the decomposition will be to compute the pseudo-inverse

QI of Q which will be represented in the form
Ql = veluT (Iv.24)

where £’ = diag(o]) and
ol - 1/0i , for o, > [+]
i 0 , for g, - 0.
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The pseudo-inverse's main value, conceptually and practically, is that
it provides a solution of the least-squares problem:

Of all vegtors ¢ which minimize the suy oj‘ ghe squares
Iz - QU|P uh-l.ch has the smallest lel® =

Let (V,<+,+>) be an inner product space. If EeV, then the orthogonal
vomplement !j‘ of E is defined by E* = {xeV|<x,y> = 0 for all yeE}.

Let ‘/('E/dcnote the integral operator in (171.58} and N(j}f) the nul)
space of .2/ .

Ir. solving cquation (IV.2]1) we want £n+1 [ N(zf)‘l. The solution
_ui"” constructed using the pseudo-inverse, in which the zero {or near
sero) singular \:aluos have been discarded, lies in a finite dimensional
subspace of N((]}")L. The singular value decomposition method applied to
the algebraic system (1v.21} yiclds an approximation to the integral
cquation (111.55). The rcason is that when Hé_ - Q&[]Z is minimized, the
camponent of the soluticn which lies in the null space is of course zero.
To see that we may write ¢ = ¥ + «, where ¥ ¢ N(F) and w ¢ N[sz,
follows from the orthogonal decomposition theorem provided N(F) is closed.
See [77]. Since l: is in _gz the operator -27 is continuous (see also
page 23) from which it follows that N(z’) is closed. The null space hes
arisen because of the multiplication of equation (I117.55) by a function
(1V.17) defined on a finite dimensional subspace.

Thus, the Hilbert cxpans;ion reduces the dimensionality of the integral,
and thus the amount of computational labor required, but lecads to an ill-
posed problem. The singular value decomposition method picks out the
appropriate solution of the ill-posed problem, and thus makes the Hilbert

expansion usecable, allowing us to keep the dowry without the bride.
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The solution is ¢ = Qlé_ . If there were only one vectar g which
minimized || é_ . Qi Z e could save mich work by using
Q' = @@ Y in place of (1v.24). But if Q'Q is (ncarly) singular
there will be infinitely many vectors y which (nearly) minimize
Hi_ - lellz and the last formula will have to be modified in a way
which takes Qs rank intc account.

It should be noted that in computing ui we actually use the

following definition (mumerically)

1 { l/ai, 0 > %

[ . S
» 05 5K

vhere ¥ is some small positive number {on the rrder of the machine pre-
cision). The use of the smallest singular values increases the oscilla-
tions in y; this increase in oscillation of g takes plice without a
meaningful decrease in||g - Quff .

The process of singular value decomposition first uses Houscholder's
transformation to reduce Q to bidiagonal form ;sind then the QR algorithm
to find the singular-values of the bidiagonal matrix. Both phases properly
combined produce the singular-value decomposition of Q see {411 nd | 88].

However, the method of computing the singular-value decomposition
of Q and then the pseudo-inverse QI is quite slow.

1f N* = N1~NZ-N3, then we can compare the inethod of singular-value
decomposition {time wise) with the standard linear system solvers. See
table I.

E is syrmetric, hence the matrix Q is symmetric; another more direct

and fastier method of computing the pseudo-inverse QI exists. First Q is
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reduced to a tridiagonal matrix using and accumulating orthogonal siilarity
transformations, called Houscholder's algorithm for the tridiagonalizition
of a real synmetric matrix. Next the eigenvalues and eigenvectors of this
symmetric tridiagonal matrix are computed using the QL method to compute
the eigenvalues and accurulating the QL transformations to compute the
cigenvectors. Sce | 87) and [39]) . The method of computing the pscudo-
inverse remains unchanged. .

This method is much faster than the singular-value decomposition
technique discussed above, fer the case in which N* = Nl-NZ-NS. Sce tabie
I wnder the heading SYMMEIRIC.

> 2), in the Hilbert expansion are ohtained

Higher order terms, fn(n
in a conplctely analogue manner, However, in higher order terms the col-
lision term in Boltzmann's equation rust be evaluated (operating on a
tnown finction) to obtain the sourze term g{p) for equation (III.5%).

In the evaluation of the collision intcgral, since fn is given in a
form analogous to (IV.2), fn is defined for all arguments p (and hence nd
further interpolation is required); heace we may proceed to use Gaussian
quadrature. See |80} . Using this representation (IV.2) and a change of

variables, the collision term can be reduced to

1 1 e
B(x,B) / a / dx/dp_l cCopxxp)e |
-1 -1

which can be approximated by

L, L L, L

™~

1 72 3 4 75
Q. f) = Bxp) ) $ (0 XyEi5%)
i=0 j=0 k=0 £=0 m=0
- wiijhwi'.wm (Iv.25)
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vhere the 4y 0%, are roots of the Legendre pblynomials PL4(x) =0,
PLS(x) = 0 respectively, gijk= '(511’525’5319’ Eli’EZj’ESk are roots of
HL]_(X) =0, HLZ(x) =0, HLS(X) = 0 respectively, and the wi,wj,wk,wz,wm
are the corresponding quadrature weights. See [ 24} .

In order to apply the algorithm just described we need an initial
function f°. (and its movements). We will also need a (-1)st function

(and its momeats) to start the calculation of Afg. The choice of these

initial functions will be discussed in Chapter V.
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Table I. Times for Computing QI (in seconds)

* £33

N SVD LS SYMMETRIC
4 0.003 0.001 0.001
5 0.005 0.002 0.001

10 0.027 0.012 0.012

15 0.083 0.028 0.033

16 0.100 0.033 0.040

20 0.184 0.058 0.069

25 0.348 0.100 0.134

30 0.587 0.160 0.225

35 0.942 0.243 0.335

36 1,052 0.258 0.352

40 1.357 0.335 0.513

45 1.960 0.460 0.668

49 2.560 0.589 0.843

50 2.757 0.618 0.886

£

Wilkinson's method, consisting of Crout's method with row equilibration,
colum pivoting, and iterative improvement. Double precision arithmatic is
used for the fundamental scalar products. The scalar product portion is

in machine code. See Algorithm 135, Comm. A.C.M.-November, 1962.
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V. APPLICATION TO THE STUDY OF SHOCK STRUCTURE

1. Flow in a Single Space Dimension

We consider the case of a flow in a sing.~ space dimension. Assume
that f depends on a single space variable x = X and that f is invariant
under rotation in the u,ug - plane (i.e. cylindrical symmetry) where
u-= (u,ur), with u = wy and u. = /ug + usz. Then we replace f in page 1
of Chapter I by

f(x,u,t) = f(x,u,ur,t).

Under the assumption of cylindrical symmetry we obtain

f(X,U,Ur,t) = f(x,u,-ur,t],

i.e. f is an even function of u. Furtherfore, we assume that there are
no external forces (F = 0). Equations (11I.54), (ITI.58), (III.59), and
(ITI.62) are unchanged except for the corresponding change to the velocity

vectors p,p;; i.e.
p= D= @),

and similarly for B3 The expansion (IV.2) now hecomes

-3/2 2 -1 T
£,00,p.p,,mat) = 0 74} S} Zzaﬁ (x, 0H; EH, &)
1=0 j=0

2 2
. exp(—c" 20 )
u-c?

where ! = 1 and c': = u/S’Z’. A reasonable choice for C'{,S'll,

(v.1)
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=9 - AP TP, v.2)
¢ ==, v.3)

i.e. expand at each time step around the mean velocity at the preceeding
time step and use a scale determined by the temperature at the preceeding
time step. This is not the only possible choice. See [25] .

Given fi (x,p,pr,nAt) we evaluate fi (x,p,pr,(n+1)At) at the points
(xk’pi’pr.) where P; = fodl) S"F;n, P, = Sné;zj, where 81i and EZj are
roots of HNI(x) =0 and HNZ (x) = 0 respectively. The coefficients

aij (x, (n+1)At) are given by

a3 6, rDse) = 335100 = w(s™ f £, (x,p,p, (#1)L1)

N A B S v.4)

Notice the aij = 0 for j odd (because fi is an even fumnction of P, and
Hj is an odd function for j vdd).
Let X = kax, k being an integer and ax a spatial increment. Our

choice of the difference operator A is given by

O g.Mlp p1
M. ijk "ijk + o ik i3k+S(p) v.5)
ijk at 4 7 ’ .
where 1, for p< 0,
S(p)=

-1, forp > 0.
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Despite A having only first order accuracy, at the boundaries _c cnsures
automztically that only relevant boundary conditions are used. For stability,
we require that

max
k

At
Pelax <1 - (v.6)

In computing the appropriate g(p) tor higher order terms of the Hilbert
expansions the evaluation of (IV.24) carries over to the one spatial dimen-
sion directly.

Ye must consider the question of numerical stability. For the sccond
term (fl) in the Hilbert expansion, stability of the scheme (1V.20) is
inplied by the stability of A. To see this it suffices to show that IIQ] Il

is uniformly bounded independent of the mesh size. We see that

pah = e < e emax p 2y
1 1

g
a; 0

We have put a bound kon how smal o can become, i.e. 0 <k < ;-

This implics that [|QYY] < o1 (uniformly). However, for the higher order

terms in the Hilbert expansion in which the collision integral appears in

the source term, stability analysis is slightly more complicated. Stability of A
would imply =tability of the entire scheme if the integral of the collision

term had compact support. This condition cannot be satisfied; however,

fj (j 21) does decay rapidly with increasing |p| and }prl and this might

be considered sufficient for stability. It has been considered by Chorin

{25] , with the conclusion that for My < 3, M, < 3 this is the case;

where as when M] or M2 is larger, the range of P and p, over which fj is
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not negligable increases, and it is necessary to truncate the support
of fJ.. One way of achieving this is to set fj = 0 whenever
Ip] 2 C‘l1 + EASn, |pr|.z £2s", where £ is the largest root of Hm(x) =0,
M = max (MI,MZ), and A 1is a constit greater than 1. See [24] .

Once the expansion (V.1) for f is known the various moments of
f can be computed using the following identities

s ’ a1 @-3)--- (122

, N even
T plexp(-p2)dp =
, n odd,

-

Zjo. P lexp(-p2)ap_ = nn-2)--- 222, n even.

Using these identities we obtain the density at time t = nAt; it is

) = Ay (), .7

the mean velocity is

) = s + 27 a0 /0", V.8

and the temperature is

™) = Mol !% o) + 270 () + 2%, (0 }/3@[}“()(), v.9)
where His the universal gas constant.
2. The Shock Problem

If toe velocity in a particular flow field exceeds that of the local
sound speed, then it is possible that a shock wave may exist in the region

in which this occurs. Macroscopically a shock wave appears as a
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discontinuity across which there occurs measurable changes in the thermal-
fluid properties. For a detailed discussion see [28]) , [42] , and [ 86] .
We assume that f is constant in the X and X3 directions; that we
have cylindrical symmetry in the u,,ug velocity plane; and there are no
extemal forces, F = 0. Also we treat the shock wave in temms of a

coordinate system attached to the shock, i.e. the frame of reference is

moving with the velocity of the shock.

Consider a gas of rigid spheres flowing in - @ £ x £« with

2,2
(u~-v, )"+
o = ~3/2+-3 N v B

A L N s £ V. 10)
2
29 - u-v,)2+

fmuugt) = 0" Y i e { ——Ezr—L} v.11)

2

where v, is the upstream mass velocity, Cl is the upstream thermal veloc-
ity, defined by

C1 =/2@Tl, v.12)
where T1 is the upstream temperature, and o is the upstream density.
Analogously, VZ’DZ’CZ' and T2 are the downstream terms.

The net flow of mass, momentum, and energy into the shock must be
equal to the net flow of these quantities out of the shock, so we can relate
the upstream and downstream values of the macroscopic variables through
the Rankine-Hugoniot equations:

p1¥y = 0¥y v.13)
0 05+ 3] = 0,07+, (v.14)
P 05D = 07,0236, v.15)
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where the ratio of specific heats is vy = 5/3.
n
If we define the sound speed, C, is the value of vy when vy =Y,

then the Mach number M, of the shock wave, is
6.
M= &vy/c, (v.16)

where we used the fact that (using (V.13), (V.14), and (V.15)

! : 2 {2
(3) -#(5) v

M= -1, (v.18)
c

and

by definition. It can be seen that the condition for the existence of a
shock wave is M >1. See [43] . Equations (V.13), (V.14), (V.15), and (V.16)

may be rearranged to yield

2
C 2 2
2 - (M*SE(SM -1) 19
(1) 1 1%

Y2 i
Vi oM

The shock thickness based on maximm variations of mean velocity is

and

defined ta be

Vv
X = _Z___l_ ) (v.21)

X

See Fig, 1,
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Fig. 1. Oefinition of shock width,
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Choose 0 = 1,vl = 1 then given M, equations (V.16), (V.19), and
(V.20) yields Cl'pZ'VZ’CZ M completely determines the structure of the
shock). Choose units so that the upstream means free path (nupcz)'l is
one, i.e. pick o = 1 7.

For practical reasons we replace the region Ri- o= < x < + = with
a compact region - a < x £ @ , where we choose o sutficiently large
that any further increase in a will have no measureable effect on the
shock wave. Under this assumption the boundary conditions (V.10) and (V.11)
become
)

C

£Cauu ) = g 033 expl ( L foru<0  (V.22)

1

and

2
- (u-vz) -uz

fla,uu,t) = pzn'yzCésexp ’ { , foru> 0. v.23)

C;

Divide l-ulu] into intervals of length A&x, where Ax = 2o/Nx
where Nx is a positive integer indicating the number of intervals in which
[- ala] is divided.

Our goal is to obtain the steady solution as a limit, for large
time, of a flow which evolves from an initial distribution fo = fo(x,u,ur,o).
This initial distribution function should be chosen so that the steady
unit is achieved as fast as possible. It is clear that the convergence
to the steady limit is inherently slow, Ifwe use N points across the shock,
and if the stability condition (V.6) is respected, it will take a minimum

of W steps for the fastest particles to cross the shock. The choice of
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the initial distribution as well as the other mmerical parameters will
be discussed in the next section of this chapter.
3. Numerical Results

There remains a greit many numerical parameters to he chosen: the
nuwmer NIERMS of terms in the Hitbert expansion of f; the nunber (M]'l) (.\lz*l}
of terms in the Hermite eapinsion of f {and fj); the size I.  of the region,
the spatial increment Ax, the time step At.

The numbher of temns in the Hilbert expansion for this study are 2
and 3 for Mach numbers 1.1 and 1.6 respectively.

The width Za of the region is chosen to he about 16 wean {ree path-.
The spatial incrvement ax is chosen small cnough so that any further de-
crease in ax will not affect the outcome of the calculation, The way in

which this is accomplished (duc to Chorin [24] ) is as follows: cvaluate

g; (which cnters the definition of the shock thickness X) using the two

formulas

g Y1 B

&= 2Ax ’ .24
amd

da g, “k+1

I x —5 - v.25)

When they are in substantial agreement Ax can be considered smail
cnough. We took Ax on the order of 1 mean free path. The stabiliay
condition (V.6) will give a pood estimite of the appropriate valuc of at.
However, we took At to be 0.8 times the maximm value allowed by {v.6),
because higher values of At could give rise to an instability due to

temperature overshoots. See [ 91] .
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ir the evaluation of the shock thickness X, using (V.21}, the use of
(V.25) will yield a more reliable estimate of the value of X, since X is
a local property of the shock center and an estimate using (V.25) uses
values of f in a smaller neighborhood.

In the matter of choosing these parameters, we took
MI=M2=M, NN1=NNZ=NN, and N1=N2=N4=NS=N. Clearly, we must have M < NN;
we generally choose NN=M+1 (choosing NN much larger than M would result
in information being generated and immediately discarded}. The choice of
N(S) and N(Z) used in the bilincar cxpansion of the various iterates of
the «ernel will be discussed in Appendix A.

As our initial distribution fumction fo, we choose
£(-=p,p,), x < 0,

€0 - £(x,p,p,0) = {
f(*=,p,p,), x > 0,

which corresponds to a shock of zero width. However, on the finite grid
that we are using, this initial distribuvion function corresponds to a shock
of width Ax. As our (-1)-st distribution function we took fo also. This
was not the only possibility.

No conservation is built into our scheme, so the use of the conserva-
tion laws (mass, momentuva, and energy} provides a check on the accuracy

of the scheme. For example, the total mass is evaluated by
Quass = & plkax)ax. (v.26)
k

Details of runs will be presented for the case where the Mach num-
ber is 1.1 and 1.6, M=5, and N=5. Other nuns were made whers M=N=3

and MsN=4; but these runs were poor because with our choice of center
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and scale given by (V.2) and (V.3) on the upstrecam side of the shovk the
ﬁ’]fo term shows no change. The reason for this is that p = (‘."l'.sni,,
where % is any root of Hs(x) =0 or Ha(x) = 0, is such that p » 0, so then
in our approximation A docs not take values across the shock.

In table IT we display the singular-values fur the cases in which
N=5. In tables M1 oand IV the relaaation from the initial data are di-played.
In table 1T1a and T1Ib the mean velocities are tabulated as a function of x
for Tow values of t/at and at Mach manhers of 1.6 amd 1.1 respectively;
this gives a qualitative picture of the behavior of our muserical scheme.
In table IV the instantancous value X ! of the reciprocal of the shock
thickness and the computed total mass Qmass in the region of the shock are
tabulated for t/At = 1, --.-, 10 and Mach number 1.6. One of the most
important chavacteristics of the relaxation to equi’ibrium is the lack of
monotonicity and extreme slowness. The reason for this (sece Chorin [ 24))
can be scen if we consider the equation of mass conservation

3
at

« 2w - 0.
Momentum must be transfered to the boundary to allow a change in ¢, and
then transporticed back to allow steady state convergence. It can also he ob-
served that Quass varies a little.

In tables V the structure of a shock is displayed. The mean velocity
u, density p, temperature T, and the Boltzmann H-function divided by ,,
are given as a function of x for M=1.6 and M=1.1, t=8.278. We observe the
monotonic variation of 0 and p, T exhibits a slight overshoot (see |91} ),
H/p (determined up to an additive constant) displays a dip. It shculd be

noted that during the first four time steps U and p did not vary
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monotonically; however, after the fourth time step monotonic variation was
vbserved. This can be explained by the fact that during the first four time
steps the wave had not reached the boundary yet. Once it reached the
boundary the retuming wave began to enter.

In table VI we ,resent the coefficients aij of the Hermite cxpansion
of f for x = - 2, M= 1.6, and t = 4.967. We sce that the coefficient a4
is not small, which contradicts Grad's assumption that all coefficients of
flermite polynomials of degree greater than 3 are zero (or negligible).

The range of oscillations of )(-1 (for 50 time steps) for a Mach number
of 1.6 is 0.226 to 0.230, compared with: 0.22 to 0.24 of Chorin [ 24];
0.184 of theMonte-Carlo determination by Bird {61 ; 0.222 of Gilbarg and
Paotucci 40) ; and 0.238 of Ziering et al. {93} .

Finally, in table VII the timing results of our program are given for
M=3,4, and 5, and compared with the time of Chorin’s program COLLIDE for
M=4, Both programs were run on a CDC 7600, using the same compiler.

4. Conclusions and Remarks

Clearly, as with Chorin's method, our procedure will break down for
a fixed mumber of terms in the Hermite and Hilbert expansions, whenever the
Mach number is sufficiently large; certainly by the time all the velocities
p= C"+Sn5i, i=o0,1,-.-, NN, Ei roots of HNN(X) = 0, are all of the same
sign, This was exhibited above for M = 3 and M = 4.

Our method has one other advantage over Chorin's and others, that is.
it can deal with weak shocks. Chorin's procedure breaks down just below a
Mach number of 1.2: This breakdown is due to the large number of operators

that required in the computation of the ccllisiom rerm. For our weak
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shocks the changes across the shock are very smll and hence is computing
{'fi-ffl in (1.19) this difference is very small; and round off crror
begins to effect this difference greatly. Thus the collision time produces
a4 great deal of noise for low Mach mmber. Jlowever, our procedure for weak
shacks need only two temms in the Hilbert expansion and then the number of
operations is quite small. llence, round off error plays a much smalier
role. Also, the Monte-Carlo techniques are not suited to iow Mach nunbers
beciuse the solution is near wyuilibrium, and the small deviations {rom
cqud ibriwn would be lost in the statistical fluctuations.

From the tures given in table VII as well as the small storage re-
quirenents (- 40 Kﬂ) it can readily be scen that this method is well suited
to the smaller computers, provided one has the required data. See Appendix
AL

One pussible modification to this method (that 1is currently being
studied) is to assume that Q(fi,fj) = 0 for terms higker than 3 (n = 2)
in Hilbert's expansion. If this is assumed, then the program is greatly
simplified as well as being tramendously speeded up. If the terms fj’fj
are sufficiently small, then it seems reasonable to take Q(fi‘fj)" How-
ever, this ramins to be proved.

A more direct approach to solve (IV.21) would be to expand the
distribution function directly in a series of the eigenfunctions
of the integral operator. This method was considered but convergence
of thit series as well as the computation of the coefficients would
be¢ cextremely slow. This expansion would have to be carried out for

each spatial point, velocity point, and time step. OCur method
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requires the summation of the bilinear expansion of the kernel for
each velocity point once and only once. This results in a great
savings of computing time.

Our method reduces Boltzmamnn's equation, which is an extremaly
complex integro-differential equation, to a Fredholm integral
cquation of the first kind. The resulting integral equation is much
less complex and requires substantially less work to solve. The
price for this savings is that the system of algebraic equations
obtained from the integral equation is ill-conditioned. This system
of equations is solved using the singular value decomposition
technique to compute the pseudo-inverse; this technique yields

the appropriate solution.
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Table II. Singular Values of Q (order 25x25).
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Table 1Ila. U as a function of x and t (4x = 2.00, 4t = 0.5518, Mach = 1.6)

X t/at=1 t/iot= t/At=6
-8 1.000 1.000 1.000
-6 1.000 1.000 1.000
-4 1.000 1.000 0.993
-2 0.986 0.958 0.931
0 0.558 0.622 0.701
2 0.542 0.543 0.552
4 0.542 0.542 0.543
6 0.542 0.542 0.542
8 0.542 0.542 0.542

S . = fommmm e s

Tm=
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Table 1IIb, U as a function of x and t (&x = 2.00, At = 0.5514, Mach=1.1)

X t/at=1 t/at=3 t/At=6
-8 1.000 1.000 1.000
-6 1.000 1.000 1.000
-4 1.000 1.000 0.998
-2 0.995 0.991 0.990
0 0.873 0.875 0.878
2 0.869 0.870 0.872
4 0.869 0.869 0.870
6 0.869 0.869 0.869
8 0.869 0.869 0.869




Table 1V. Relaxation to a Steady Shock (Ax = 2,00, At = 0.5518,Mach=1.6)
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t/At
1

W 0 N & AN

—
[~}

x-l

0.456
0.414
0.368
0.325
0.286
0.252
0.224
0.224
0.223
0.242

MASS

26,43
26.43
26.42
26.42
26.42
26.40
26.40
26,38
26.37
26.37
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Table Va. Structure of a Shock*(Mach = 1.6, t

X A o T
-8 1.00 1.00 0.47
-6 0.99 1.00 0.47
4 0.94 1.01 0.48
-2 0.82 1.12 0.51
Q 0.58 1.59 0.68
2 0.56 1.78 0.74
4 0.56 1.78 0.74
6 0.54 1.84 0.72
8 0.54 1.84 0.75
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Table Vb. Structure of a Shock (Mach = 1.1, t = 8,278)

T P T

1.00 1.00 0.99
1.00 1.00 0.99
0.99 1.00 0.99
0.97 1.04 1.00
2.89 1.12 1.06
0.88 1.14 1.08
0.87 1.14 1.08
0.87 1.15 1.09
0.87 1,15 1.09
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Table VI, Coefficients aij Mach = 1.6, Ax = - 2, t = 4,967 )

\j\ 0 1 2 3 4

0 1.06 0.20 0.09 -6.09 -0.19
1 0. 0. 0. 0. a.

2 0.08 -0.02 -0.05 0.07 0.05
3

4

-0.11 -0.12 0.03 0.03 -0.03
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Table VII. Time per Time Step(seconds)

Our Method Chorin's Method
0.28 -
0.85 ~ 240.00
3.00 -

n e ow X
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APPENDIX A

Computation of Eigenvalues and Eigenvectors

The eigenvalues and eigenfunctions of the linearized Boltzmann
collision operator for a Maxwellian gas have been extensively studied by
Burnett [ 13) and {14} , Mott-Smith [68] , and Wang-Chang and Uhlenbeck { 85].

It has been shown that the eigenfunctions are

9 24y, 2
¢, ®) =N_P(coso)p'L " (p") @.1)
where
1,
N = ri(e s k]
™| ae(eeres)

is a notmalization factor with respect to the weight e'pz, P denotes
the Legendre polynomials, and L denotes the Laguerre polynomials. See
{64) . Dependence on the azimuthal angle ¢ can be included by replacing
Pl(cosﬂ) by eWPm(cose), and the eigenvalues are independent of m.

Our goal is to obtain the eigenvalues Ai and the eigenfunction

b satisfying the integral equation
o2 A -2
¢; (e’ mp) = 5 [K(p.pyde o, (py)dp;. (A.2)
Define
2 "
v ® = ¢o;@e® ne, (*.3)

then by substitution of (A.3) into (A.2) we obtain the integral equation

As o~
o @ = 2fK@.Pv; ey a.4)
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where
-~ -1
K{p.py) = K(p»By) [m(me(le i, (A.5)
The integral equation (A.4) wiil be solved using a method intro-
duced by Wang-Chang and Uhlenbeck [ 85] also by Pekeris et al. [2];
cxpand ¢ (dropping the subscript i) in a complete set of fumcticns

thy @) , i.e.

vip) = Z azh; (p) (A.6)
i=0

following Galerkins method, in which we require that the error term
be orthogonal to these functions hi‘ See {27] . Upon substitution of

(A.6) into (A.4) we obtain

2 [% f R(p.pydh; @)dp; -hy (P-]] =0 .7
im0

The sum is (A.7) has to be orthogonal to each base fumction

h @), thus

D e [% j]-K(E,Bl)hi(Rl)hk(e)dgldE - hi(p_)hk(g)dg] = 0. (A.8)
i=0

Equation (A.8) represents a system of linear equations, the vanishing
of whuse determinant yields the eigenvalues Xrl and the eigenvectors

2. for tie expansion in (A.8).
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For this orthogenal family we choose
axp (-pE ] !
2xp(-p In{p) 0,.9_,,,(2);

ie. Pyom @ exp(-p1 ()% 10 (p) .9
where ornm is given by (A.1). Thus

4@ = expline)P(cosn)exp(-pIm@) " Y a, kel . 0
K=0 :

Upon the explicit substitution of (A.10) into {A.8) we obtain

i \ 2 P 2 2
A = 6 g€ ):xp(-p -2 b g ()4 (@)dpdp

rt,o'=0

- /exr’(dpz)m(p)‘b”. ®)% fp)dp ; = 0. (A1)

Here er denotes orl[)' for it was pointed out by Wang-Chang and
Uhlenbeck { 85 !, that when L (the lincarized Boltzmann collision operator)
is applied (und hencetz’/)toa function of the form g(1:)2)F‘;'l(cose)eimd5
the result is of the form gl(pz)l”;"(cose)ei'm, where gl(pz) does not de-
pend on m.

Write the linearized collision operator L in the form (in the nota-

tinn of Mott-Smith)
2%
Lf = OIR dc(f+f1-f' -fi) (A.12)

0
where
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-3,
0, - integral vperutor @ /2[ ¢ ldpl (A.13)
2 T
R = integral operator gd--fv $in6de (A.13)
0

(for the case of rigid sphere molecules of diameter o). Similarly, we

dufine

2
0 = integral operator “-3/2fe»p dp (A-15)

Q' = [+£,-f'-f]. (A-16)

and

We define the Chapiman brackets, denoted [ rem,r'f2'm'}, by

*
Erem,rt&tm'] = 09, L0 4oy (A.17)

As pointed out above L is independent of m. From this it follows (by
orthogonality) tbat the Chapman brackets vanish unless 2 = ¢' and
m=m'. Furthemore, the normalized matrix elements are independent of
m, i.e.

[ rem,r'8&m) /Nrim = [rﬂO,r'P.O]/Nrw. (A.18)
Therefore, we nced only calculate [ r2C,r'20] denoted by [re,r'g}.

Using Q the expression for L given in (A.12) can be rewritten as

a1
Lf = 01R Qf'de (A.19)
<0
and {A.17) becomes for m = m' = 0,
2
ive,rej= 08 OR | deQe,,, (A.20)
0

where the conjugate sign "*' is dropped since ®Tl is real for

m=m = 0, Upon substitution of the explicit form of the operators
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O and O, (A18) and (A.13) respectively, we obtain

L

2u
{re,x'e) = n"j[dnv[:!!\_lcxp(_pz.pi) R[dc@@r,l(gl))trl(p_). (A.2D)
a

However, using Hilbert's representation of (A.12), we sce
2
2f 2 2 P
LE = a" yn”ulple © f(p)+n K(E’Rl)e “El)dpl R (A.22

where we have multip »d by 2 the contents of the { - } beoause we are

/2
integrating j‘-do « R rather tha f-d in Boltzmann's cquation duc
0 0

to Hilbert. Upon substituting (A.22) into (A.21) we obtain

ire,r'er= oz{n'ﬂ'l*t'ﬁﬁ%#’.ﬂﬁp(-pz-pf)ﬁr. 2% (p)

+ u'i/:!n c:~.p(-2pz)ln(p) 0r,z(p_)¢m(p_)}. (A.23)
The Chapman brackets were cvaluated by Mott-Smith | 68) yielding
2 ’ min{r,r')
tra,re = 5, -GaG! Al (mereo2n)
’ 2 1T . LS _ m
rigr %)Zrﬂ' 3¢ 130 perid (r-n)t (r*-n) (¢-m)!
(A.24)
where
0, m=n=0
m” { (m+Znt1)! 2 L ene)y otherwise (A.25)
(Zn+1}m! n'mt ’ ’ ‘ .
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Upon substitution of (A.23) into (A.11) we obtain

Z A ,}Xg [re,r'e] - (A+1) exp(-.‘:'p?')m[p)o‘_‘k(p_)@lﬁfg)\lp { =0,
r',i'=0 (A.20)

We consider the integral

“apt -‘pz)m(p)d"r.n(11)°,.£(2Jdp_

which can be rewritten by chunging to spherical coordinates yiclding

et . . dam F 2
exp(-2p )l.n(]x)-.-r,‘(p_)‘brt.n)dn = 6“, (:}'—4_-1‘)_{]' exp(-2p7)m(p)

. pitel l,§+,’(172)L§TI’(1)2]«l]) (A.27)
.. ¢ A
= - Sy bh (A.28)

The integral on the right in (A.27) can be evaluated mumerically using
the FORTRAN subicout ine CARRE which uses cautious adaptive Romberg ex-
trapolation, Sce [ 30] . Gaussian quadrature is very poor since the inte-
grand is very oscillatory. lowever, this can become very expansive as
rand £ increase,

The integral {A.27) (or (A.28) ) can be written in a closed form
which enables cificient nunerical compuation for a large range of values
of ¢, r, and r'. The approach that will be used was suggested by K.

Frankowski (privite commmication).
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Expand Pv’iL:”i(p)L:T"(p) a series of Hermite polymomials
L4l g4 wls
P )L ) T4 0. (A.29)
Apply the Laplace transform to both sides of (A.29),
07 ) ity R4l g o %
< }P Ly @LL, (p)‘;/‘,zd)nhq(p ) E

Let (2n-1)!! = 1<3:5---+ (2n-1), where (-1)!! = 1, and
(n)m = n(n+1l)++++ (n+m-1), where (n)0 = 1. Using Bateman | 35] , page 175

formula (35) and page 172 formula (12), we obtain

r+r' -r-r"a-l

.y’;p"L“(p)L pn,.(p)f (e parertearl) (pe1)

ZFI(-r, r'|-rer -a|PJ’----) (A.30)

and

i’iﬂzj+1(p"*)‘= A @y -p)lpTd 32 (A.31)
respectively.

Using thc notation (1-p)/p = q the transformed equation (A.29)
becomes

o™ eyl I‘(r*r‘+l+%)qr+r'”‘(q_141)zzF1(-r,-r'|-r-r'-l- %|1-(q'1+1)2)

= AL dej(2j+1)!!qj. (A.32)
j

Apply formulas
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Frlabicin = HOLEad) g o pab-cix)
[(c-a)l(c-b)

-a-b I'(a+b- -
+ x¢a f:(; r(a <) 2Fl(c-a,v:-blc-a-h*-lIx) (A.34)

Ced) = /7 1" (2@, (A.35)

and

Sce {61}, Expand 2F1 in a Taylor scries expansion in (q"1+1) and then expand the
different powers of [q'1+1) in a Taylor series expansion in q'l. Comparing

coefficients of equal powers of q we obtain

. CDrErezeen e s 1y .
3 ¥
I 2T R ey ey 2 (2j+1) 11(rertee-j) )

CO CT) G220 pry s
x ’

(1+3/2),k !
k2max{0, (r+r'-j)/2}

(A.36)

R N e

Consider the Hermite function of order -1 defined by

o o2
H () z-e fexdx. (A.37)
0

This satisfies the differential equation for Hermite polynomials
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Hi(p) - 2pti () + 2nH (@) = 0. (A.38)
See{ 61} . Using (A.37) and the recurence relation
2nH ) () = H(p), (A.39)

we define other Hermite functions l-!_n(p) for n natural. Define

i 2
.2
= P
Hm,n _/e llm [p)Hn (p)dp, {A.40)
0

for mtn even and assume that at least one of m,n is non-negative. Integrite
(A.40) by parts scveral times, noting that Hn(p) is an even (odd) function

of p corresponding to n even (odd), and using the relations

H (P} + 2(a-DH _,(@)}-2pH _;(P) = 0, (A.41)
and _pz , —pz
(e Hn(p)) +e"H ,(p)=0 (A.42)
we obtain o,
2
PR | -p P
Hm,n -1 /e l'im'fn(l:’)dp -1 Hm+n,0. (A.43)
0
Using (A.41) along with setting m*n=2k we define
7 2 2 2 2 2
-2 - - - -
T, = -[e P Hyy (0)dp i[e p dé P HZk_l(p))=fe P sz'l(p)(-Zpe P)dp
4] [}

o

2
- -fe‘zP (HZk(p) . zr.zk-nHZk_z(p)) dp.
o

This yields the recurence relation Tk = (1-2k)1‘kv1 from which we obtain

-DF@EK-1) 11 Ty k20
T o= (A.44)

ekt T, keo
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where T0 = /%: . Using (A.35) we obtain

-4 3
2 -
e®h, dp =2 2eDraed (A.45)
2k 3
0
Using (A.40), (A.43), and Bateman [36] page 289 formula (10) we obtain
o

2
I ¢ P () @)dp = (-1) ™M/ L@n3)/ Zr( "‘—7—“"*1). (A.46)
0

where m+n is even and atleast one of m,n is nonnegative.

Considering the case inwhich n = ~ 3 and m = 2i + 1 we obtain
2 "% g3
-2 _ i .07 (25-DU
f e “P H_3(P) Hyjuy )P = -1)? 2 AT . (A.47)
0

It can readily be seen, using (III.46), that

pn(p) = - 4 H_5()- (A.48)

As a result

7 2
2 _ 16w -2p
Brpr - ﬂﬁ‘z :dj / e = H 3 ()5, (Idp-
j 0
Upon substitution of (A.36) for di we obtain
3

2yt 112r! 1) TR S -1
pe = 2m “(-1)*(@rr2p) i 2rsags ! 271 (43217 (perte )
T e 2T ) tir e Z W=D ertea-3)

j=r'-r

T .
Z Cr) )y 22K g g a.43)
(2+3/2), k! ' )

kemax{0, (r+r'-j)/2}




-70-

Next interchange the order of summation in (A,49) and consider the term

w -2-2K) .
e D (*.50)
21T (2541) (2301 (reree3)1

(
J
Let r+r'+l-i=a, from which (A.S50)} becomes

242k

P Z (-2-2K), A
= v 3 (A.51)
k b ST +2+1 (r+r'+0-a- %_) (r+r'+g-at %_)

tpe -1
= [z“r +* 1(r+r'+1—%—)z] ZFI(-z-zk,-r-r'»z-,} lr-rt-24312).
(A.52)

Using Bateman [ 34] page 109 formula (3) for analytic continuation of
hypergeometric functions, and explicitly writing the representation

(-)!! we obtain

g+2r-2k
b Y - (zn) /2 (%)r.+2 L (-uqr-%)k(-l)k Z (-2-2r+2k) (- 1)% (a+1)
! (22+1)2r+1-'+2+1 o KI{r-k) ' (r"-r+k)1! % (1_,_1_+.2]<__121_)(1+2

(A.53)

which can be written in a more convenient form for numerical computation

(A.54)
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where

2n VZ T (T +3)

AL (A.55)

A=
(22+1)2

_ (B-2k) (y-k B 1
Tes1 = ZEF+1%—(_]§ly+ Ty To T FTGTT (A.56)

_ 2(8-2k-a) _ 1
Ourl,k - [FysdkeZafly %ok’ %0k . A
[Zk*"Y'f) (Zk+y '7)

@™
]

2(04r) + 1, y=1'-T + 1, § = L+2r, (A.58)

for r < r', Interchange r and r' in (A.54) - (A.58) for r'< r. This
computation was originally done by Pekeris, et al. [ 72] ; however, there

are several misprints in the paper. Equation (A.26) now takes the form

R
Zar,zi;\—"z'—[rl,r‘z]+ (bl f=0 (A.59)
r'=0 g

T8 = 0,1, seeees .

For a given value of £, the vanishing of the determinant of (A.59) de-

termines the eigenvalues ’\rJL of (A.4).

Writing, for a given value of £ and r,r' = 0,1, »++ , N< + o,

A= ol (A.60)
B* - -(;%[rﬂ.,r'ﬂ.h bl‘fr,), (A.61)
a = (3prg) 5 (4.62)
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equation (A.59) becomes a generalized eigenvalue problem of order N, for

cach &,

A%* =gt (A.63)

The matrices A* and B* are negative and positive definitc respec-
tively. It is observed that the off diagonal terms of Al and B decay so
rapidly that, for the expansion (A.6), ziL should be of order 30x1. Al-
though N may be larger than 30, only the first 30 components of ecach
eigenvector 51 need be retained for the expansion.

The method used to solve (A.63) consists of four parts: (1) Perform
Cholesky decomposition of B into LI’LRT, whern Ll is lower triangular.
The composition L,L_IA,LL”-:l is performed, resulting in a symmetric matrix.
{2) Reduce the symmetric matrix obtained in (1) to a symmetric tridiagonal
matrix using accumulating orthogonal similarity transforms. (3) Compute
eigenvalues and eigenvectors of the symmetric tridiagonal matrix obtained
in (2) by the implicit QL method. (4) Form eigenvectors of (A.63) by back
transforning those obtained in (3). See [ 381.

From (A.4), (A.6), and (A,9) we see that

2 L i
oy ® = P m) P, (cose) ;arm %Y. (e

For our approximation, by the above discussion, we shall truncate the ex-

pansion at N = 29 and assume that

29
2 1,
0, ® = P n@®)% P, (cose) 3 a 10D (a65)
k=0
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In the work discussed in Chapter V, the bilinear expansion ranged
over 2= 0,¢«+ , 10 and r = 0, «+-= , 59 For this case the computation
of the eigenvalues and is very costly (about 25 minutes on CDC 7600);
also, the computation of the two bilinear expansion to compute the kernel
for each velocity point is costly (from about 10 minutes for three pcints
per velocity coordinate to 45 minutes for seven points per velocity
coordinate on CDC 7600). Hence, it is advisable to compute the bilinear
expansions of the iterates of the kernmel and store them as data to be
read in by the main program. For a sample of the eigenvalucs and co-
efficients a0k for ¢ = 0,}. r=0,1, *»++, 29, and k = 0,1,¢-- , 29
see table AI.

A disadvantage of this method of computing the 3 k's is the dif-
ficulty in ascertaining its accuracy without repeating the complete cal-
culation with a larger determinant. However, due to the structure of the
matrix obtained from (A.59) the matrix elements for a given value of
rapidly approach zero as |r-r'| becomes large, i.e. the off-diagonal
elements rapidly decay, away from the diagonal. See [68] . The matrix,
for Maxwellian molecules, corresponding to (A.59) is diagonal, with its
eigenvalues along the diagonal. Su some advantage can be taken of part
of the previois computation. Also, from this, one can see that the
Laguerre-Sonine polynomials given by (A.1) are good approximation to the
eigenfunction even for rigid-sphere molecules. For a comparison of matrix
elements for rigid sphere molecules and matrix elements for Maxwellian
mnlecules for £ = 0,1,+-+ ,11 and r = 0,1,++» , 7, see table AIl. From

chis it can be observed that for r large and % fixed the matrix element
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for the rigid sphere molecules varies like r!S (a result predicted by

Mott-Smith [68) ).
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Table A-1

Eigenvalues Ar! and coeffici~nts of the cxpzasion a in eqiation
(A.10) for the eigenfunctions of the linearized Boltzmann collision

operator for a rigid sphere gas.
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Table A-2

Matrix elements for a rigid sphere gas and a Maxwellian gas,
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MATRIX OF QUOTIENTS JRL/JO2 FOR

1.00000
~0,13363
-0.01114
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-0.00002
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RIBID SPHERES FOR L3
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-0,
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2,
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2

00171
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~0.00005
=0,00056
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MATRIX OF QUGTIENTS JRL/JO2 FOR RIGID SPHERES FOR L=

1.81746

-0,28%11

-0,02781
=0.00%5890
-0.00160
=0.000%1

-0.00018
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MATRIX OF QUOTIENTE JRL/JOZ FOR
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-0,03401
~0,00741
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MATRIX OF GUOTIENTS JRL/JO2 FOR
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MATRIX OF QUOTIENTS JMRL/JMO2 FOR MAXWELLIAN MOLECULES FOR L
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MATRIX OF GUOTIENTS JRL/JOZ FOR

2.62874
-0, 86506
' -0,08369
-0,00716
-0.,00207
-0,00070
-0,00027
-0.00011

~0,36506

2,79%574
~0,50978
-0.05473
-0,01289
«0,00402
-0,00146
-0,000%8

=-0.03369
-0.50978
2.95073

~0.61737
=-0.07312

-0.018%54
~0,00614
-0.00234

RIGID SPHERES FOR L=

-0,00716
-0,0%47%
-0.61737
3,09647
=0,70391

© =0,08964
-0,02405

«0, 00835

=0.00207
-0.D12&89
~0.07312

-0,70591
3.28494

~0.7825%
-0.10474
-0.02939

9
'-D, 00070
-0.004C2
=0,01834

=0.08964
=0,78255

3.36758
-0.85099
-0.11871

MATRIX OF GQUOTIENTS JMRL/JMD2 FOR MAXWELLIAN MOLECULES FOR L

3,12640
0.
o.
a.
0.
0.
.
0.

Q,
3.13877
0.
a,
0.
0.
o.
0.

0.
0.
3.14613
0,
o.
0.
a.
0,

o.
2.
0.
3.15772
0.
Q.
a,

o,

0.
o,
0.
0.
3,17000
0.
0.
a.

0.

a.

[

0,

o,
3.18456
a.

o. .,

-0,00027
~0.00148
-0.00614

~0.02403
=0.10474

~0.85099
3.49%537

-0.91339

9
O,
o,
a.
o.
0.
o.
39.19937
0,

-0.00011
-0.£00%8
-0.00234
-0.00835
-0,02938
-0.11871
-0.91889
3.61903

0.
o.
0.
0.
0.
0.
a.
3.21343

=901~



-107-

i9z68°€C ‘0 ‘0 A ] ] ‘o o
‘0 8008E'E B “0 ‘0 ‘0 " ‘o ‘o
‘0 ‘0 6lgsg’e ‘0 ‘0 ‘0 ‘0 ‘0
‘0 ‘0 ‘g olLse’e ‘0 - ‘o ‘0 ‘0
‘0 ) ‘0 0 seopee ‘0 ) ‘o

0 ‘0 ‘0 ‘0 ‘0 ppige'e 0 ‘0’
' ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 uigee‘e ‘0
too ‘0 ‘0 ‘o ‘0 ‘0 ‘0 €902€°¢

Gi = 7 yed S3INDITOH NVITIIMNYH U0 ZOWA/TUWL SLNIILOND 40 X1NLIVW

sieeL'e 1£428°0- Szeil’'D- S6820°'0- 1l800'0- §2200°0- S£000°0- 0L000°0-
L4L26°0- bPlLO9'E £1lp98°0~ 6aLQl 0~ 29€20 ‘D~ PESO0°0- 6€L00°0- £2000°'0-
$481L°0- ZlL98'C- 98bib'E peEPEL 'O~ 62680°0- ﬂmmmo.ol 48€00°'0- £9000°0-
96020°0- BSYOL'0- DEVEL'0- LEEPE'E 1091470~ 19240°0- bEE10°0- LEL0O'O-
L1800°0- 29620°0- B2680'0- 1091L'0- £8502°'C er€es o~ pipsS0'0- 16900°0-
€2200°0- ©8S00°0- ©L9i0'0- 19220°0- B8V$29°0- SEi190°C £9518°0- 21E€0°0-~
€000°0~ E€L00°0- ZBEOD‘O- VSZL0'0- PLPSO'0- €9S18°0- €2806°'2 Spagg 'o-
0l000'0- <2000°0- £9000'0- 4Bl00°'0- 16900°0- 2i860°0- SreSE'O- 9a9bprL e
G. =1 50 S3YIHIS AI8ld ¥E4 ZOL/ TN SINIILGND 40 XINIVH



-108-

26695 'S ‘o ‘0 ‘0 ‘0 ‘0 ‘0 ‘o

‘0 6Le89°€ ‘0 ‘0 ‘0 ‘0 ‘0 ‘0
‘0 ‘0 urbe'e ‘0 0 ‘0 ‘0 ‘0
‘0 ‘0 ‘0 eises'E 0 0 - ) *o
‘0 ) ‘0 ‘0 69928°C ‘0 ‘0 0
0 R ‘0 ‘0 ‘0 Blels'e 0, ‘a
‘0 I ‘0 ‘0 I 'n eciis'e ‘0
‘0 0 ‘0. ‘0 ‘0 ‘0 ‘0 zevos'e

bl = 7 HO4 S3N0IATQKW NV ITIIMXYW ¥Rd NUtﬂ\Jztﬂ SLINILLOND U XTYIVW

pvooZe ‘e 468C6°0- €2811°'0- ©€620°0- £8£00°'0- [:200°0- 2S000°'0- ~01000'0=
LEBE6°0- ,16869°C ' SEPLU'0- L6801°0- 90£820°'0- 0£800°0- ZEL00‘0- B2000°0-
82611°0- SEVLE'0- O0SELS°E 42708 °'0- $S860°'0- .th—o.cn 69€00'0- €£90000-
8€820°0- L6£01°0- £2E08°'0~ Slepv'e 1SE24°0- ©8L1L0°0- 2l210'0- £L8100°0-
€9£00°0~ 90€2¢'0- §$980°'0- iSC2L'0- (2¢0€°'€ 661€9°0- 1€E660'0~- P9900'0- .
PL200°0- 04800°0- 29L10°0- ©41£0°0- 6£Le9'0- 09vSL°E pe6LE 0= LP280°0-
28000°0- 2€103°0- 69L00'0- Z1Z210'O- 1€€0'0- P861R°0- 92Vi0'e 6804€°0-
01000°0- P2000°0- £9000°0- LBLO0'0- V9900°'G- LV2E0°0- BOOLE'O- CEPSE'Z

(39 =7 ¥QJ SAUIHLS Q161Y QI ZOQ/THF SINIILOND 40 X1HLVW



{1}

(21

3]

4]

is)

{6]

[71

181

[9]

[10]

(i

{121

[13]

-109-

REFERENCES

Alder, B. J., and Wainwright, T. E., '"Molecular Dynamics in
Electronic Computers,' Proceedings of the International Symposium
on Transport Processes in Statistical Mechanics, Brussels, 1956,
ed. I. Prigogine, Interscience Publishers Inc., New York, 1957.

Alterman, Z., Frankowski, K., and Pekeris, C. L., "Eigenvalues
and Figenfunctions of the Linearized Boltzmarn Collision Operator
for Maxwellian Molecules ard for Rigid Sphere Molecules,"
Astrophys. J. Suppl. Series (69} 7, 291 (1962).

Anderson, D., "On the Steady Krook Kinetic Equations-part 2",
J. Plasma Phys. 1, 255 (1968).

Bassanini, P., Cercignani, C., and Sernagiotto, F., 'Flow of
Rarefied Gas in Tube of Annular Section," Phys. Fluids 9, 1174
(1956).

Bassanini, P., Cercignani, C., and Pagani, C. D., "Comparison
of Kinetic Theory Analysis of Linear Heat Transfer between
Parallel Paltes," Int. J. Heat Mass Trams. 10, 447 (1967).

Bird, G. A., "Shock Wave Structure in a Rigid Sphere Gas,"
Rarefied Gas Dynamics Vol. I, ed. J. H. Teleeuw, Academic Press,
New York, 1965.

Bogoliubov, N. N., "'Problems of a Dynamical Theory in Statistical
Physics,' trans. E. A. Gora, Studies in Statistical Mechanics
Vol. I, ed. J. DeBoer and G. E. Uhlenbeck, North-HoIland
Tublishing Co., 1962,

Boguslawski, S. "Zum Problem der imneren Reibung in der kinetischen
Theories," Math. Amn. 76, 431 (1915).

Boltzmann, L., Lectures on Gas Theory, trams. 5. G. Brush,
University of California Press, Berkeley, 1964.

Born, M. and Green, H. S., "A General Kinetic Theory of Liquids,"
Proc. Roy. Soc. (London}, A, 188, 10 (1946},

, ""A General Kinetic Theory of Liquids,"
Proc. Roy. Soc. (London), A, 189, 103 (1947).

" A General Kinetic Theory of Liquids,"

Proc, Roy. Soc. (London), A 190, 455.(1947}.

Burnett, D., '"The Distribution of Velocities in a Slightly Non-
Uniform Gas," Proc. London Math. Soc. (2} 39, 385 (1935).



[14]

[15]

[15}

[(17]

[18]

{19]

(20

[21]

f22]

[23]

[24)

[ 25]

[ 26]

[ 27]

[ 28]

[29]

~110-

“The Distribution of Molecular Velocities and Mean
Mﬁtmn in a Non Uniform Gas,' Proc. London Math. Soc. (2)40, 382
{1936).

Carleman, T., Probl2mes Mathématique dans la Théories Cinétique
des Gaz, Almquist and Wiksells, Uppsala, 1957.

Cercignani, C., "Plane Poiseuille Flow and Knudsen Minimm Effect,"
Rarefied Gas Dynmamics, Suppl. 2, Vol. II, ed. J. A. Laurmann,
Academic Press, New York, 1963.

, and Daneri, A., "Flow of a Rarefied Gas Between
Parallel Plates," J. Appl. Phys. 34, 3509 (1963).

, and Tiromi, G., "Some Applications of a Linearized
Kinetic Model with Correct Prandtl Number," Nuovo Cimento ser.
10, 43B, 64 (1966).

, and Sernagiotto, F., ‘Cylmdrlcal Poiseuille
Flow in a Rarefied Gas," Phys, Fluids 9 9, 40 (1966).

, "Cylindrical Couette Flow
of a Rarefied Gas,™ Phys. Fluids 10, 1200 (1967).

Chapman, S., and Cowling, T. G., The Mathematical Theory of Non-
Uniform Gases, Cambridge University Press, 3rd ed.

Chorin, Alexandre Joél, "On the Convergence of Discrete Approxi-
mations to the Navier-Stokes Equations,' Math. Comp. 23, 341 (1969).

, "Hermite Expansions in Monte-Carlo Com-
putation,”™ J. Comp. Phys. 8, 472 (1971).

""Nume ~ical Solution of the Boltzmann
Equation,' AEC Report NYU 1480-:73, New York University, 1971.

, "Numerical Solution of Boltzmann's
Equation,™ Comm. Pure, Appl. Math. 25, 171 (1972).

Clausius, R., "ilber die Art der Bewegung welche wir Warme nennen,'
Ann. Phys., 100, 353 (1857).

Collatz, L. MNumerical Solution of Differential Equations,
Springer-Verlag, Berlin, 3rd edition.

Courant, R. and Friedrichs, K. O., Supersonic Flow and Shock Waves,
Interscience, New York, 1948.

Courant, R. and Hilbert, D., Methods of Mathematical Physics,
Vol. I, Interscience, New York, 1955.




[30]

[31)

[32]

(33}

{34}

135)

136]

137)

{ 28]

[ 391

{ 40}

[ 41

[42)

[43]

[44)

-111-

deBoor, C., "CADRE: An Algorithm for Numerical Quadrature,"
Mathematical Software, ed, J. R. Rice, Academic Press, New
York, 1971,

Dorfman, R., "Note on the Linearized Boltzmann Integral Equation
for Rigid Sphere Molecules,'' Proc. Natl. Acad. Sci. U.S. 50,
804 (1963).

Ehrenfest, P., The Conceptual Foundations of the Statistical Approach
mMcchamcs trans.MJ. Maravcsik, Cornell University Press, 1959,

Enskog, D., "Kinetische Theories der Vorginge in Missig Verdimnten
Gasen," (Dissertation, Uppsala, 1917).

Erdéiyi, A., Migher Transcendental Functions, Bateman Manuscript
Project, Vol. I, McGraw-Hill Book Co., Inc., New York, 1953.

Tables of Integral Transforms, Bateman Manuscript
Pro;)ect “Vol. T, McGraw-Hill Bcook Co., Inc., New York, 1954,

, Tables of Integral Transforms, Bateman Manuscript
Project, Vol IT, McGraw-Hill Book Co., Inc. New York, 1954,

Forsythe, G. E. and Moler, C. B., Computer Solution of Linear
Algebraic Systems, Prebtice Hall, New Jersey, 1967.

Garbow, B. 5. and Dongarra, J. J., Path Chart and Documentation
for the EISPACK Package of Matrix Eigensystem Routines, TM-250
(updated}, Argonne National Laboratory, Illineis, 1975.

Gibbs, J. W., Elementary Principles in Statistical Mechanics,
Dover Publications Inc., New York.

Gilbarg, D. and Paolucci, D., "The Structure of Shock Waves in the
Continuum Theory of Fluids," J. Rat, Mech. Anal. 2, 617 (1953).

Golub, G. and Kahan, W., "Calculating the Singular Values and
Pseudo-1nverse of a Matrix," J. SIAM Numer. Anal., Seer. B, 2,
205 (1965).

Grad, H., '"On the Kinetic Theory of Rarefied Gases,' Comm, Pure
Appl. Math. 2, 311 (1949).

""The Profile of a Steady Shock Wave," Comm. Pure Appl.
Math5, . 257 (1952).

> "Principles of the Kinetic Theory of Gases," Handbuch
der Phx.ﬂk ed. S. Flugge, Vol. XII, Springer-Verlag, Beriin, 1958.


http://Vol.1l

[45]

{46)

[47)

[48)

[49]

{501

[51]

[52}

(53]

[ 541
(551

i56)

[571

{ 58]

[59

[ 60}

(61

-112-~

, '"Asymptotic Theory of the B.itzmann Equation,' Phys,
Fluids 5 147 (1963).

, "Asymptotic Theory of the Boltzmann Equation II,'
Rarehea Gas Dynamics, Suppl. 2, Vol. I, ed. J. A. Laurm.mn,
Academic Press, New York, 1963.
Green, M. S., J. Chem. Phys. 25, 835 (1956).

Gross, E. P. and Jackson, E. A., "Kinetic Models and the Linecarized
Boltzmann Equation,' Phys. Fluids 2, 432 (1959).

Hastings, C., Approximations for Digital Computers, Princeton
University Press, New Jersey, 1955.

Haviland, J. K., "Determination of Shock-Wave Thickness by the
Monte-Carlo Method,' Rarefied Gas Dynamics, Suppl. 2, Vol. I, ed.
J. A. Laurmann, Academic Press, New York, 1963.

"The Solution of Two Molecular Flow Problems
by the Monte- “Carlo Method," Methods in Computational Physics,
Vol. 1V, ed. B. J. Alder et al., Academic Press, New York, 1965.

Recke, E., ber die Integralgleichung der Kinetischen Gastheorie,”
Math. Z. 12, 27, (1922).

Hilbert, D., Gnmdzuge einer allemeinen Theorie der linearen
Integralgleichungen, Chelsea Publiching Co., New York, 1953

Huang, K., Statistical Mechanics,J. Wiley and Sons, New York, 1965.

Jeans, J., The Dynamical Theory of Gases, 4th edition, Dover
Publishing Inc., New York, 1954,

Jeans, J., An Introduction of the Kinetic Theory of Gases, Cambridge
University Press, 1960.

Kennard, E. H., Kinetic Theory of Gases, McGraw-Hill Book Co.,
Inc., New York, 1938.

Khinchin, A, I., Mathematical Foundations of Statistical Mechanics,
Dover Publishing Inc., New York, 1949,

Kirkwood, J. G., "The Statistical Mechanical Theory of Transport
Processes," J. Chem. Fhys. 14, 180 (1946).

*The Statistical Mechanical Theory of Transport
Processes,™ J. Ch . Phys. 15, 72 (1947).

Kronig, A., “Gnmdzuge einer Theorie der Gase,” Ann. Phys. 99,
315 (1856).



[62]

[631

[64]

[ 65]

[ 66]

[67]

[ 68}

{ 69)

[70)

[711

[72]

[73]

[ 741

£ 75]

[ 761

-113-

Lebedev, N. N., Special Functions and Their Applications, Prentice
Hall, Inc,, New Jersey, 1965,

Lees, L., "A Kinetic Theory Description of Plane Compressible
Couette Flow," GALCIT Hypersonic Research Project, Memo. 51
(1959).

Magnus, W. and Oberhertinger, F., Formulas and Theorems for the
Functions of Mcthematical Physics, trans. J. Werner, Chelsea
Publishing Co., New York, 1949.

Maxwell, J. C., "On the Dynamical Theory of Gases,' paper 28 in
Scientific Papers of J. C. Maxwell, Dover Publishing Jnc., New York.

Maxwell, J. C., "On Stresses in Rarefied Gases Arising from In-
equalities in Temperature,' paper 93 in Scientific Papers of J. C.
Maxwell, Dover Publishing Inc., New York.

Mott-Smith, H. M., ""The Solution of the Boltzmann Equation for a
Shock Wave,' Phys. Rev. 82, 885 (1951}.

» A New Approach in the Kinetic Theory of Gases,
MIT, Lincoln Laboratory, Group Rept. V-2, 1954,

Navier, C. L. M. H., '"Mémoire sur les Lois du Mouvement des Fluides,"
Mem. Acad. Sci., (1822).

Nordsieck, A. and Hicks, B. L., '*Monte-Carlo Evaluation of the
Boltzmann Collision Integral," Rarefied Gas Dymamics, Suppl. 4,
Vol. I, ed. C. L. Brundin, Academic Press, New York, 1967.

Pekeris, C. L., "Solution of the Boltzmann-Hilbert Integral
Equation," Proc. Natl. Acad. Sci. U.S. 41, 661 (1955).

, "Note on the Square-Integrability of the Kernel
of the Linearized Boltzmamn Integral Equation for Rigid Sphere
Molecules," Proc. Natl. Acad. Sci. U.S. 49, 38 (1968).

, Alterman, 2., Firkelstein, L., and Frankowski, k.,
"Propaga-ion of Sound in a Gas of Rigid Spheres," Phys. Fluids §,
1608 (1963).

Philips, “A Technique for the Numerical Solution of Certain Inte-
gral Equations of the First Kind,” J. A. C. M. 9, 84 (1962).

Pidduck, F. B., "The Kinetic Theory of the Motion of Jons in Bases,'
Proc. London Math. Soc. 15, 89 (1916}.

Richtmyer, R. D. and Morton, K. W., Difference Methods for Initial-
Value Problems, 2nd edition, Interscience, New York, 1967.




-114-

{771  Riesz, F. and Sz-Nagy, B., Functional Analysis, Ungar Publishing
Co., New York, 1955.

[78) Sommerfeld, A., Thermodynamics and Staiistical Mechanics, Vol. V,
Academic Press, New York, 1564,

[79) Stokes, G. G., "On the Theory of the Internal Friction of Fluids
in Motion," Camb. Trans. §, 287 (1845).

{801 Stroud, A. M. and Secrest, L., Gaussian Quadrature Formulas,
Prentice-Hall, New Jersey, 1966,

[81) Tricomi, F. G., Integral Equations, Interscience, New York,
1970.

(82}  Uehling, E. A. and Uhlenbeck, G. E., Phys. Rev. 108, 1175 (1932).

[83) Uhlenbeck, G. E. and Ford, G. W., Lectures in Statistical Mechanics,
American Mathemarical Society, Rhode Island, 1963.

[84] Waldmann, L. "Transporterscheinungen in Gasen von mittlerom Druck,"
Handbuch der Physik, Vol. XII, ed. S. Fligge, Springer-Verlag,
Berlin, 1958.

{851 Wang-Chang, C. S. and Uhlenbeck, G. E., '"On the Propagation of
Sound in Monotonic Gases,' Engineering Research Institute, University
of Michigan, 1952.

[86) Whitham, G. B., Linear and Nonlinear Waves, J. Wiley and Sons,
New York, 1974.

[87] Wilkinson, J. H., The Alge"raic Eigenvalue Problem, Oxford
University Press, London, .365.

[ 88} , "Global Convergence of Tridiagonal QR Algorithm
with Origin SHhifts,” Lin. Alg. and Appl. 1, 409 (1968).
[89) and Reinsch, C., Handbook for Automatic Computa-

tion, Vol, II, "Linear Algebra," Springer-Verlag, Berlin, 1971,

[90) Willis, D. R., "Heat Transfer in a Rarefied Gas Between Parallel
Plates at Large Temperature Ratios,' Rarefied Gas Dynamics,
Suppl. 2, Vol. I, ed. J. A. Laurmann, Academic Press, New York,
1963.

{91] Yen, S. M., "Temperature Overshoots in Shock Waves," Phys. Fluids
9, 1417 (1966).

1921  Yvon, J., La Théories Statistique des Fluides et 1'fquation d'ftat,
Hermann, Paris, 1935.




~115-
[93] Ziering, S., Ek, F., and Koch, P., "Two-Fluid Model for the
Structure of Neutral Shock-Waves,' Phys. Fluids 4, 975 (1961).

[94) Ziering, S., 'Plane Poiseuille Flow,' Rarefied Gas Dynamics, ed.
L. Talbot, Academic Press, 1961.




