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Henry P. Stapp
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0. INTRODUCTION
The aim of these lectures is to show how discontinuity formulas for multiparticie
scattering amplitudes are derived Erom unitarity and analyticity. The assumed
an lyticity property is the normal analytic structure, which was shown in the
previous lecture serles to be equivalent to the space-time macrocausality condi-
tion. The discontinuicty formulas to be derived are the basis of the multi-
particle fixed-t dispersion relations, upon which the subsequent lecture series on
Regge theory is based.
I. PROPERTIES OF LANDAU SURFACES
This section contains a brief review of the properties of Landau surfaces tiav
are needed in the work that follows.
1. Landau Diagrams D
Example

A Landau diagram is a diagram formed from lines L1 and vertices Vr. Each line
1s directed from left to right. The topological structure of D i1s defined by

the incidence matrix €4t

€ 7 -1 if L1 originates on Vr

g, = H if L, termimates on V_ (1.1

€ = 0 otherwise .

ir .
Each line L1 1s assoclated with a momentum-energy vector By with a parcicle~
cype label €y and with a mass my characteristic of particles of type ty.
These masses mi are assumed to be positfve: m1 > 0. Each internal line L1

of D either carries a sign o plus or minus, or carries no sign.

2. Landau Equstions Associated with D

For each Landau diagram D there is an assoclated set of Landau equations. These
are

(1) The mass-shell constraints: for each line L1 of D

|
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plz = ml2 . pl0 >0 . (2.1.1)
{2) The momentum-energy conservation-law constraints: for rach vertex
Vr of D
Z““ -0 . (2.1.2)
i

{3) The Landau loop equations: for each directed closed loop £ rthat
can be drawn on the internal limes of D
A
2, %P e 2 0 @.1.3
1

Each o, 13 a scalar, and n is the number of times loop 1 passes along

i ie
line l.1 moving in the direction of I‘i minus the number of tiwes 1t passes
along L1 moving against the direction of Li'
Example
! 4
Ny = 1
7 s ng, = 1
n - ~1
2 s 91
other n,, = o .
9
3 6
(4) The nontriviality condition: Ffor some internal line L1
ay 0 . (2.1.5)
(5) The sign conditions: for every signed line L1
ga > 0 . (2.1.5)

A1l variables are real unless otherwise stated.
3. Space-time Represemtatjons of D

For each solutionm {pl’ai) of the Landau equations assaciated with D
there is a space-time representation vf D. This representation is a space~time
diagram that has th. »opolog..zl structure of D. The vertex Vr af the repre-
sentation lies at the space-time position Vs and the vector from the origin of

line L1 to its terminus, namely

BT Y e a.1
[3
satisfles
At ) PR {3.2)

The Landau loop ecquations entail the existence of a set of space-tlme vectors vy

such that (3.1) and (3.2) hold. Conversely, these two equatfoas eatail the
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Landau loop equatijons.

The space-time vepresentatlon can be interpreted as a claseical multiple-scatter-
ing diagram for point particles. The conditions (3.1) and (3.2) are the classical
condition Py =MV, where vy is the four-vector velocity of particle 1:
v, - dxildi. The sign condition 640y > 0 specifies that particle 1 move

forward or backward in time according ta whether o, 1is plus or mirus.

i
4. Intarnal and External Varlables

ED = {i: Li 19 an external line of D]
I, = {1: L1 is an internal line of D}
p = {p;: 1 Ep)

p = {7 1l

a 5 dayr L 1} .

5. Landau Surfaces L(D)

£L(D) 1s the set of points (p,p,a) such that the Landau equations associated
with D are satisfied. The Landau surface L(D) is the Irojection of L(D) onto p
space:

L(D) = {p: (p,P,c) satisfies the Landau equaiions associated with

D for some (p,a)}. . (5.1)

6. Representations D(p)
A representation of D whose external lines are assoclated with the sek

(pl,---.p“j 2 p of momentum-<nergy vectors is denoted hy D(p). Each D{(p)
generates the point p on L{D), in the sense that represents a solution
(p,ﬁ,u) of the Landau equations asgociated with the Larndau diagram D. The
Landau surface L(D) 1is the set of p such that some D(p) exists:

L(D) = {p: some D{(p) exists}. . (6.1)
Given any D(p) there is a five-fold continuum of others obtained from it by
dilations (positive scale changes &; = 1ﬂi.l > 0) and overall space-time
translacions, Tl :se transformations are called the trivial transformations.
7. Cimple points of L(D)
‘A simple point p of L(D) 1is a point p such that D(p} 1is unique, module
the trivial transformations: only one represeatation of D, modulo these trivial

transformations, generates the point p.

8. Basic Surfaces LO(D)

Ly(®) {p: p 1is simple point of L(D)}
¢ {p: p 1s generated by only one representation of D, modulo the

trivial transformations}.

9. Posltive-a Di: mil_Surfaces

A Laadau dlagram D is called a positive-a dlagram (€ and ¢ ily £f coch Inteornal
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+

line of D carrirs a positive sign 01 = 4+, A suvperscript plus on D indi-
+

cates that this diagram Is a positive-a diagram. Landau surfaces L{D ) corres-

ponding to positive-n diagrams are called positive-u Landau surfaces.

10. The Restricted Mass Shell bl

let p = (pl,-“,pn) be the set of momentum-enerpgy vectors assoclaoted with the
Eull set of initial and final particles of some scat:tering process. The corres-

ponding restricied mass shell Is

n
'yr(: z {p: pi2 = mlz’ pio >0, chpi = 0, and at least one pair of
i=]
py are nonparallel} . {10.1)

rne sign €y is plus for final L1 and minus for initial L;'

x
The complex restricted mass shell ?Y(C is degined in the same way except that
p 1s complex and the positivity condition Py > 0 1is dropped.

11. The Space ’h""(E)

The set of vectors normal to the mass shell ‘rr._r at point p 1s called 'rq+(p);

L
v (p) = {u: u-(ep) = 0 for all &(ep) 4in the tangent space to
,m" at  p} . (11.1)
= {us= (ul,-u,un): u, = Aipi +d, d is any four-vector,
L Ai is any scalar} (11.2)
For any u 1in 7N (p) one has
n
e-&(ep) = Z u, -&(e,p.)
£y MR
n
= §, (p +dee S =0, aL.3
i=1

aince the 6p1 are subject to the constraints 5(p12 - miz) = 0, and
&(Ze,p,) = 0. For any two four-vectors a and b

1Py
ab = %0 -3.% . (11.4)

12. The Sets ‘mo and M '
77{0 1s the subset of ?‘nr such that two or more initial p; ave parallel or
two or more final P, are parallel. The set 9' is ‘Tbl' minus "J’Vlo:

m - . (12.1)

13. Theorem 1  Each noacmpty set LO(D+)/) 9n' 1s a codimension-one analytic
submanifold of 97'.

Meaning: For any p In LO(D+) /1 9M' rthere s real function ¢(p)
suel. that (L) 4(p) Is analytic at p, (4i) the gradlent 9¢{p) at p lies
outside ME), and  (111) Lg®) /1 MM’ rolncides with {s(p) = 02 DY’ in
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some sufficiently small neighborhood of l-’

14. Theorem 2

Il U oty = U L, .
o ot

15. Theorem 3

Only a finite number of ot give surfaces LD(D+) that intersect any bounded
portion cf mr.

These three theorems, taken together, say that L+n ' consists of a locally
finite union of codimension-one analytic submanifolds. Thus L+n M’ is the
unfon of a set of smooth surfaces: it has no cusps, acnodes or other irregu-

laricies.

References for the proofs of chese and other theorems are given in a section at
the end of the lectures.
16. The 4n-Veczor u(D(p))

Let D(p} be a space-time represecctacion wich N external lines. Then
u(D(p)) =y = (ul,n-,u“) is aget of n faur-vectors uy such thatc u, is the
vectar from some arbitrary origin O to some avbitrary point on the space-time

line that contains the trajectory of external particle 1.

Example
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Given any D{p) there are others obtalned from ft by the trivial transformations
Also, the lodation of the end polat of uoon the line containing Ll can be

changed. These changes alter the scale of u and add iacrementa of the form
uo(P) a (Alpl + a,-..,x“p“ +d)y , (15.1.0)

where tie Pl are the momentum-energy vectors of the external lines of D(p)-

The oec of vectors uo(p) is just the set of vectors

u(®d e . (15.1.2

17. The Functions ¢{p; D(p

For any space-time representation D{p) define

o(ps DY) = (ep - ) -w(B(F)

D IR TR AN A N T ary
ie E

where vr(i) is the vertex of D connected to excernal line i, and w @(P))
is the location of Vz_ in the representation D(p)., The function ¢(p, D(p)) is

a linear function of p that vanishes at p = p and has ar p the gradient
G D) = w®GB) + uyB) (17.2)
s
vhere uo(p) lles in 7%7(p).
18. The Physical Reglon (P(D)
[P(D) is the set of polnte p such that for some (p,p) the mass-shell and
conservation-law conditions (2.1.1) and (2.1.2) in the Landau equations assocl-

ated with D can be satlsfled. The surface L{(D) <clearly lies in & (D):
L C Fo . (18.1)

19. Pham’s Theorem .
For any representation D+(|‘)) of D"

Foh < e S50 (p)) 2 0} (19.1)
Broof For brevity write w (D (p)) Hr' and 1dentify alse any other quantities

pertaining to the representation D (p) by a bar. Then for any p in & (D )

oo YY) = Z oy - By) € T4y

1cED
- Z 2'("1"’1) 1 Ve
icED r

Z Z Py By By W

tedy (Equation continued next page)
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(Equation continued)

«— - -
LI S TR Y
iel
= Y e -Epas 20 . 9.2
i,

Th+ final s-zp in (19.2) follows from the fact ttat for any two p~sitive-energy
s is-chell vectors p, and Bl.

- - = 2

PPy 2 PyPy = omT o (19.3)
Repark 1 The last line of (19.2) expresses @(p; D+(E)) in termd of the
intewnal variables associated with the solution of th2 Landau equation at .
The pi in this expression can be any set of internal pi that satisfy the

maps-shell and conservation law constraints. The fact that OG. 'y (p)) does

not depend cn the particular choice of these i 1 Py is a of

the Landau loop equavi:z..c.

20. Theorem & Consider any point p on LO(D+)/7 M'- Let #(p) be as in
Theorem 1. Then the sign of ¢(p) can be chosen so that

ey z u@ G) (2.1
where = means equil modulo positive 3cale changes and additicns of vecters
1B © M(E).
Proof The set Lo (03 /) M ties tn PN M. Thus lop) = 01T R
lies in {9(1:; D+(|-:)) 2 0}/) M’. The gradtent V¢(p) lles ourside 'WI_J'(E).
by virtue of Theorem 1, and the gradient 7¢<'; D+({-7)) Jies omside ‘7711'(;_:)
by virtue of the positive-a conditions, the stability conditions, and the condi-
tion that ;.: 1lie outside ?‘rz o For these conditions entail that the (approp-
riately extended) external trajectories cannot pass through a common point, which
they would if V@(p, D (p)), and hence ué) (p),, lay in ‘))71'(5). But 1f both
these gradients lie outside "7'1"(;:) then they must be the same, modulo scale
.changes, sign changes, and vectors of ‘7'["‘(;), in order to accomodate the inclu-
sion of {o(p) = 0} 9" in (o(p. ) (p)) 2 0}/7 M. This result entails
{20.1).
Remark Two funcrions ¢(p) that are analytiec at P. that have gradients lying
outside 97["‘(5), and that glve the same regions ($(p} = "I () M’ neat P are
equivalent insafar as the defining properties of ¢(p) are concerned. Thus if
#(p) 1s acceptable, and ¢{p) 1is analytic at p and vanishes on ‘T?zr then
3$(p) + ¢(p) 1is also acceptable, provided A 1is positive. The gradient
v4(p) lies in ‘)7(4(5). hence Vo(p) - V(AMB) + w(l_:). Thus the significant part
of V$(p) 1s defined only modulo positive scale changes a~d additions of vectors
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upP) & M@,

The result YA(p) = u(D+(;)) is the origin of much of the imporzance of the
space-time diagrams. It says that the normal to the Landau surface LO(Q+)/3 m'
at P 1is essentially determined by the locatfons of the exteraal space-time
trajectories of any space-time representation U (p) of D' that generates p.
This fact eliminates, in many situations, the need to actually calculate the
Landau surface: the essential information can be extracted aireccly from the

s ace~time representation.
2.. Theorem 5 1f tuo basic surfaces LD(DI) and LO(D;) coincide near
B em', then

+ - + -
MO 0) BEERT G 3) BN (21.1)
(The equality of signs entailed by (21.1) rules out a clash of ic rules for
coincident surfaces LU(D-;) and LO(D;).)

22, Analytic Submanifolds and Local Coordinates

The restricted complex mass-shell ‘V)?Cr is a 3n-4 dimeunsional analytic sub=
manifold of the space 34" of the n complex four-vectors Py Thig means
that for each point B of ‘mcr one can introduce a set of 4n functions
11“')""”41:(?) that are analytic and functioually independenc at p (l.e.y
the 4n gradient vectors exist and are linearly independent at p) such that the
image under the mapping z(p) of any sufficiently smail complex mass-shell
neighborhood of ':3 18 an open set in the space CJn_l‘ defined by z._!“_w_1 =9
for 4 = 1,--.,n+4. The analyticity and functional independence of the zitp)
at p entails that the inverse mapping p(z) 1s uniquely defined and anralytic
near the image z of p. Thus sufficiently small nelghborhoods of p and 2
are one-to-one analytic images of each other, with mass-shell neighborhoods

In-4
mapping onto neighborhoods in € .

The functions 230 ﬂ(p) for 1 = 1,++,n+4 can be Laken to be the n

. functions Py Wy and the four functions £ sipiu =0, u=20,--,3, The
gradients of these n + 4 functions can easily be shown to be linearly indepen-~
dent for all points p in Wcr
3n - 4 functions zi(p) can be found. These latter coordinates ‘zl""’ZBn—lo)

. This fact ensures that the remaining set of

are called local coordlnates cof the mass shell at E

The surface LO(D+) /] 9M' 1s a codiwension-one analytic submanifold of %7°.
It coincides locally with the set (¢{p) = 0} /1 9", where V4(p) 1lies outside
9M*(p). This last condition ensures that the funcricn z,{p) <can be taken to
be ¢{p), since its gradfent at p 1is linearly 1ndnpenden; of the n+ 6

fL2i v 08 \723“_,‘“(5). In this local coordirate system the singularity surface
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LO(D) /197" is just the surface 2 - 0, restricted to the space EIN~4 of
local coordinates. The physical region 67(D+) near E is mapped into the

intersection of t]"'A with the ray

Rezy 2 0 . Io z = 2 . (22.1)

IX. BUBBLE DIAGRAM FUNCTIONS
Topolagical considerations arising from the cluster decomposition of the §-
w~trix play a central role in the derivation of discontinuity formulas., Conse-
q..ently it is helpful to represent certain important functions by diagrams,

rather than by letters.

L. Box Diaprams The S-matrix is represented by a plus box, and its hermitian

eonjugate is represented by 2 minus box:

S(PysPyi Poyy»'tPy) = (1.1.1)
s i p ceepy) = (1.1.2)
1’ w' Fmhl? n’ T b
The unit operator is represented by an I-box:
(1.1.3)

TPyt Py Ppyqs Py} ¢

The unitarity equation
ceap 3 pleseph) Sf( Y uents
S(Pys e Ppi Pyt By Py Pyb PoypeceePp)

= TPy tPpi PrygoceoPy)

1s written
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(1.1.4)

The shaded strip between the plus and minus boxes stands for a sum consisting of
all possible numbers N of intermediate lines, and there is an implied summa-

tion over all distinct sets of varlables associated with these lines:

N N d‘p'
ia Z }— ‘/' I i 10 st -0 ® . 1.1.5)
=g -1 G2M

Here @ 1s a normal-ordering theta function that excludes from the region of
integration all points p' = (pi,---p;‘) thac differ only by the ordering of the
variabies pi from points already included in the region of integration.

Alternatively, @& can be taken to be the Inverse of the symmetry number of the
diagram. This number is the number of symmetry operations chat tak= the diagram
into itself. In particular, for the term on the left-hand side of (1.1.4) having
N intermediate lines the symmetry number is NY, provided the particle types |:1
associated with the larermediate lines are nat predetermined, and hence the sum
inrludes for each internal line 1 a sum over all particle types :1. The

external lines of a diagram are considered to be distinguishable.

2. The Cluster Decompositiocn

Each box is written as a sum over all topelogically differeat ways of connecting

the fixed external lines to a set of bubbles. For example

@~oa
run—

+ X

ﬁ + Z:-@:

(72) e =
——
+ )y -0~
——O—

4/} —0

(2.1)
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This fs the clustuer decomposition of S. The order (from top to bottom) in

which the llnes are counected to a bubble is not a topulogical distinction, nor
1s the (vertical) order in which the bubbles are placed on the paper. The
uumbar of diagrams in each partial sum in (2.1) is given below the summation sign

Within the bubbles occurring in the cluster decomposition of the plus (resp.
minus) box is placed a plus (reap. minus) sign, except that no sign is placed
inside the trivial hubbles, which are those with exactly ore inceming line and
e :actly one outgoing line. The nontrivial bubbles with one or zero incoming
1.nes or with one or zero outgoing lines are omitted, because of stability

requirements.

The cluster decomposition of the I-box is similar, except that only trivial
bubbles are allowed. Thus if the box on the left-hand side of (2.1) were an
I-box then the right-hand side would be reduced to the final sum of 4! terms.

The plus and minus bubbles represent the connected parts of S and Sf,

respectively:
| — met +
wiltii s = F(p)
= 5Pyt aPys Pryyet b)) €2.2)
and
= F(p)
+
= S (pyececalyi Prygececap)) - 2.3)

Sumetfmes (see below) the minus bubble 1is defined to be minus the funetion
defined above. Then in each term of the cluster decomposition of the minus box
there is an extra factor (-1)N-, where N 1s the number of minus bubbles in
that term, and (2.3) 1s replaced by

= F (p)

+
= =S (BpstenaPyd BrygetesR,) - (2.3")

The trivial bubble represents the same function in the decompositen of the plus,

minus, and 1 boxes:

1 —o— 3 = @’ s%B, -5 (2.4)

1 i 3 titj
Each term in the cluster decomposition represents the product of the functions
represented by the indfvidual bubbles in that term. Thus a2ach of the 4! terms
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in the final sum in (2.1) Is a product of four fuctors of the type (2.4).
Particles with spin can be included by regarding particles with different =2
components of spim as dlfferent types of particles. Ferwfons can be included by
introducing a minus sign for each crossing of fermion linel in a diagram.
The connected parts ¥ and F  each contain a conservation-law delta function.
The functions €' and € are defined by

+

e = ant daopifte @9
These functions f+(p) and f-(p) are called the scattecing function and the

hermitian conjugate scattering function, respectively.

3. Bubble Diagrams B
Example

Generally a bubbla diagram B is a diagram consisting of signed bubbles connected
by directed lines. Each bubble has two or more lines entering on 1ts left side
and two or more lines leavirg from its right side. Each line runs always from

left to vight. This last condition excludes, for example,

- Eram the class of bubble diagrams.

4. Bubble Diagram Functions ® and fa

Each bubble diagram B represents a function FB. which is the product of the
fun~rions F+ or T corresponding to the bubbles of B, Integrated over all
distinct values of the variables corresponding to the internal lines of B.
This integration has the same form and normalization as (1.1.5}, where @ can
now be *aken to be the inverse of the symmetry number NB' This number NB is

the number of symmcrrv operations that rake B {nto itself.
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Example 1f B is

Bt —

then NB 1s 3!3141412!, The 2! comes from the symmetry under interchange of
the two minus bubbles. The other four factors come from the syametries under
interchanges of the internal lines within each of the four sets of intermal
lines. 1In calculating the symmetry number of a diagram the external lines are
considered distinguishable.

With this normalization the bubble diagram functions occurring in the equations

we consider will always occur with coefficients plus or minus one.

FB conrains an averall conservation-law delta function, and fB is defived by
e . an® sfaeppt® . (4.1)

5. Products of §~Functions
A bubble diagram function FB will generally contain 2 product f of scattering
functions f+ and £ times a product of mass-shell and conservativn-law
delta functions. A product of delta functions ls generally defined by transform-
ing to a set of integration variables that includes che argumenta of the delta
functions:

L]

f'l (g, (x)) dxpyeeedn

i=1

m
- ff’l 8g, (1) dg,--dg, 37

i=]

- ff dgg, cerdg I, (5.1)

where J = |dg/d%! 1s the Jacobian of the transformatfon. This procedure is
legieimate provided J 1is nonzero throughout the domain of intepration.

6. Condition for J ¥ 0

Near any polnt x in the domain of integration one can find a set of functions
gm+1(x),---,g“(x) such that J # 0 unless the m gradient vectors
Vgl.--~.ng are linearly depundent at x. To find the J ¥ 0 conditions for
a bubble diagram function FB first elimiaste the conservation-law delta
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funccions by expressing the Py in cerms of cthe loop womenta kl’
ex
Py = E: “11k1 +py » (6.1}
where piex is a funccion of the external momenta. Then the arguments of the

remaining delta functions are the functions

2,. ex 2
gi(k.p‘“) = pyliepg ) mmt (6.2}
The gradients ngi of these functions are linearly dependent if and only 1f
for some set of 9, mot all zero,
Z“x gy v 0 - (6.3
1

The insercion of (6.2) and (6.1) in (6.3) gives for each loop £ the equation

Zai Py Ny ™ a . (6.4)

These equations (6.4) are just the Landau loop equations for the Landau diagram
D(B) constructed by shrinking each bubble of B to a point. Thus the product
of the mass-ghell and conservation-law delta functions occuzring in l-'B is
weli defined away from the Landau surface L{D(B)). The function P o1s
expected to be singular at L(P(B)). It will also have other singularities
arising from the singularities of the functions f+ and £ themselves. The
structure theorem to be descrihed in Section IIT specifies the possible locations

of singularities o. bubble diagram functions.

7. Singularities Required by Unitaricy
Consider 2 -+ 3 unitarity:

+ 3 S
+;'%
f

if | (2.1

{convention (2.3') is used here.)
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Can we assume that all scattering functions £* and £~ are everywhere analytic?
No, this is not compatible with unitarity. For the bubble diagram functions on
the right-hand side of (7.1) would then contain singularities that could not
cancel among themselves (provided the relevant ft’s are not identically zero,

in which case other unitary equations could be considered). Thus unitarity
requires some of the functions ft to have singularities (since we know Lhey are

not all identically zero).

The normal analytic structures (NAS) described in Professor lagolniczer's
lectures does not require scattering functions to have any singularities: it
says only that the allowed singularities lie on L+. Thus we have

{1) Unicarity requires some singularities;

(11) NAS allows only certain singularities.

Questions

(1) 1s NAS consistent with unitarity?

{2) 1f so, which of the singularities allowed by NAS are forced to be
present by unitarity?

{3) Can one derive the discontinuity formulas just from unitarity and
NAS?

{4) TIf so, what are these formulas?
The preseat work is addressed to these questions.

III. THE STRUCTURE THEOREM
The structure ' «orem describes certain amalyticity properties of bubble diagram
functions that follow from the normal u:alytic structure of scattering funccions.

This plays a f 1 role in the derivarion of discontinuity

formulas.

1. The Normal Analytic Structure
(a) f+(p) is analytic in T 1t
(b) f+(p) at p :wrﬂ L+ 1s the boundary value of an analytic function
from any direction in the tangent space to 97ct at E cthat lies in the cone

+ - - -
e o= n B+ ia: Imofp + ig; D' GY > 0} . (1.1)
4 -
7 (p)
The cone C+(E) is the intersection of the "upper-half planes” associated with
all the positive-a diagrams D+(E) thac generate E. Properties (a) and (b)
also hold 1if £+ is replaced by £, provided the sign of ¢ in {1.1) is
reversed.
The precise meaning of propertles (a) and (b) is defined by introducing a set

z = (zl""‘an-b) of local coordinates of 9ncr at p. Proverty (a) Bays
that if the mapping z(p) is rvustricted to some sufficiently mmall neighborhood
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of ; then E"(p(z)) is analytic in the z-space image zémr -Lh of ot - Lt
This property is iudependent of the particular cholce of local coordinates
2 (P)yerazg (P

Property (b) is expressed in terms of the vectors

NCONTH B ETCHEL ) ]
b

{1.2)
+ -
z vefp D ()
or more precisely, thelr z-space images
+ - -
w@E) = v G otE) | |
z=z(p)=z
(1.3)
: v s(p@; DTG
The cbmpunents of u' are related to those of x by
. (1.4)

ap.
’ - -l
Y Z Y 3z,
J
The cone of vectois u'<D+(|-:)) has in y = Im z space a dual cone

cte = ﬂ fy: yu'@* ) > 0 . (1.5)

PO

!z-z(;)-;

Let C be any nonempty open cone (with apex at y = 0) chat 1is conrained
with its boundary in C+(;) {J {y = 0}, Then property (b) asserts that there
is a complex neighborhood % of Zz and a Eunction E+(:) that (1) ie apalytic
in % ] {Imn z € C}, and (2) coincides In the limit Im z » 0 with the distri-
bution f+(p(x)) in 9 N {In z = D}, in the sense that for any test functiom
x(x) with support in ﬂ /1 (lm z = D}

]f+(P(x)) x(0) dx = lm jf+(' +1y) g0 dx . (1.6)
y+0

Moreover, any decompositon of the set of vectors u'(D+(l-J)) into closed convex
cones Z‘_ (with apex at the or!.gi‘n) induces a corresponding decomposition of
f near E into discribucions E1 such chat each fi(P(x)) near x = % la

cthe boundary value of a function Ei(:) from almost all directions in the dual

e = n {y: yu' @' @) » 03,

D+<5):E‘

cone

in the manner anologous to that described above.
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Claim (b) depends oa the funccion 0(_p; D"’(p)) only via the direccion of the
z=-space image u'(n"'(i)) of u(D+(1-))). Any uE 7’(‘(5) has an fmage u' = 0,
since the vectors aplbz1 occurting in (L.4) lie in the Langent space to mr
ac p.

The expression (1.1) for C+(B) can be simplified by using the following

theoren:

Th orem 6 For any representation D+(1-)) the vector u@+([-:)) can be expressed

as the finite sum

ey - Z SARTCOIC) I w.mn
1

where the X" are :nnnega:lve scalfrs and :he DI are ::e Alagrams that
are contained in D and satisfy p £ LO(Di)' A diagram D]. is contained in
D; 1f and only if D; contracts to DI.
This resuit 1s closely connected to Theorem 2. To prove it one may first use
the argumentation in Pham's theorem to conclude that all representations D+(B)
of D+ that generate p must have the same set of internal momenta p, and
then, by considering the range of the a's, identify the diagrams D: as the

various contractions of D+ at ; that cannot be further contracted.

This result allows, in Eq. (1.1), the sum over all D+(;) to be reduced to a
sum over all D'(p) such that P ¢ LD(D+).
2. Landau Diagrams That Fit into Bubble Diagrams

Example
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D fits into B.

Generally a fandau dlagram D is said to fit into bubble diagram B 1f and only
if D can be constructed by inserting into each bubble b of B elther a connected
Landau diagram D, or a polnt vertex Dh' The fnicial and final lines of D,
wust coincide with the incoming and outgoing lines of b, in the natural one-to-
one fashion indicated in the example, and each internal lLine I.1 of Db must

carry a sign o, that coincldes with the sign of b, The external lines of tie

i
va-ious Dh' which are all explicit lines of B, are left unsigned.

A .uperscript B on DIl meaans that this Landou diagram D fits into B,

3. The Structure Theorem
Theorem If the NAS holds then
{3) EB(p) is analytic in 77 c. LB. where

8o U Lod @1
2

and
{b) fB(p) at ; :ﬂ*lrfT LB is the boundary value of an analytlc function
from any direction Ln the tangent space to 7ncr at B that iies in the cone

Ay = ﬂ {5+ 1q: In 0§ + 1q; D°(®)) > O} . (1.2)
B3
This resule for the bubble diagram function fB is completely analogous tothe

NAS: the superscript + 1s merely replaced throughout by the superscripc B

Clafim (b) is vold if CB(p) 13 empty or faills to intersect the tangent space to
T

7ﬂ?: ac p.

4. The Physical Region of B

The physical region of B, called 63(3), is the reglon outsid.. <h Fa = 0 due
to the mass-shell and conservation-law constraints occurring in ics definition.
These constralits are the same as those associated with the bubble diagram D(B)
obtained by shrinking the bubbles of B to points. Hence

PE = Cee) (%.1)
and
) = 0 for p outside P(B) . (4.2)

The function FB(p) Is generally nonzero irside (P(B). Thus it camnnot generally
be the limit of a single analytic function in any real neighborhood of a point
P L(b(Bl). Hence clalm (b) of the structure theorem must be void for

p e L{(B)).

This is indeed the case. Since cvery bubble of DB

= D{B) 1s contracted
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to a point, no Jire of pB carries a slga. Thus for any representation DB(F)
another can he corstructed by reverasing the signs of all ai. The signe of the
vectors u(ﬁ) and u(i) are also reversed, hence so i the sign of 0(?? DB(E)).
Thus 1f p lies on L@(B)) the cone CB(E) is empty, and claim (b) is void.
5. w=0 pcints
Suppose there ts a DB(;) such that
B,~
W) = o
o1 equivalently such thot
o @G = o. (5.1)
Then CB(B) does not intersect the tangent space to 7)7: at p, and claim (b)
is void.
A point p such chat (5.1) holds is called a u = 0 point. Such points some-
times cover open gets. However, in the many cases studied so far the function
B
f

its present form 15 {nadequate at u = 0 points: it perwits singularities chat

1s not actually singular an these open sets. Thus the structure theorem, in

are not actunlly present.
This inadequacy of the present version of the structure theorem is circ:  vented
in the present work by introducing a perhaps needless assumption, as w11 be

discussed later.
IV. THE DISCONTINUITY OF £ AROUND )

Let p* be a positive-a diagram, and let p e o' be a point that lies on

L (D:). if and only if DI s o', To define the discontinuity cf

£ around LO(D+) near p it 1s convenient to introduce the lecal coordinates
described at the end of Section 11. The Landau surface LO(D") near p 1s then
mapped into (z1 w 0}, and the physical region d:(D+) near ; is mapped into
the positive real axis in z1 space.

The domain of analyticity of E+<}(z)) near z = z(F) -z=0 18, according to
the NAS, controlled by the vectors u'(D;(B)). In our case there is, modulo

dilations, just one such vector,
- + -
RO TR M)

- 9z,

= (1,0,--+,0) .

Thus E+<}(x)) at any real point sufficlently near z * 0 4s the limit of the
analytie function E+(z) K f+@(z)) from any direction in y = Im z space that
satisfies y-u' > 05 l.e., l'"(p(x)) near x = 0 is essentlally the limit of
CPez)) from the wpper-tall 7 plane.
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The discontinulty of [+ around LO(D+) is de{ined to be f+ mlnus the function
f' obtained by analytically continuing it from the region * < 0 into the
reglon x, > 0 by a path that passes around z) - 0 via s detour Into the lower

half z) plan#, as indicated in the figure Lelow:

1|

This discontinulty Is evidently zero at points X <0,

The general formula for this discontinuity is illustraced by the following

example: if
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The letters a, 8, and y label certain specified sets of particles, and the
corresponding dotted lines cut sets of internal lines that correspond to these
sets of particles. The =-a box represents the function Sﬂ-l defined by

-1
Sn Su = Iu .

where Sﬂ and f are the restrictions of S and 1 to the space corresponding

to the set af particles a.

The formula in any other case is constructed analogously: each vertex of D"’
is replaced by a plus bubble, and on each set of lines & connecting a pair
of vertices of o* there 1s inserted a -a box.
This formula holds in some small neighborhood of the specified point p. Later
we shall obtain some discontinuities formulan that hold globally (i.e., at all
real points p e 7)[_'). These global formulas are the ones that contral the
principal contributions to the disperaion relations, but the local ones des-
cribed above are also important. For example, they are needed in the derivation
of the Reggeon discontinuity foramulas.

V. DERIVATION OF THE FORMULA FOR THE DISCONTINUETY

oF £ aromp 1,0

In this section it is shown how the formula for the discontinuity of E+ around
LO(D+) is derived. First the general method is outlined, and then some examgles

are glven.
1. Generail Mechod

Consider a diagram ot cada polnt p € 9" that lies on LO(D+) if and only if
by ts o .
Step 1 Use unitarity and the cluster decompasition properties of 5 and sf to

effect a decomposition

o 10D +r0Y a.1)
such that

" = Ber,ohH .2)
and

rROYH = 8RN . .n

The B(T,D+) and B(R,D+) are sums of bubble diagrams, each multipled by a
nonzero scalar coefficient. These coefficients are generally plus or minus one,
and the sums represent che sums of the corresponding bubble diagram functions,
each multiplied by the corresponding scalar coefficient. The following two
demands are made:
(a) For each B in B(T.D‘). D(B) <contains '!+. {1.4)
(b} Mo B in B(R.D*) suppores o*. 1.5
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B supports C if and only if some D' thac fits into B contains D. A
disgram D' contains a diagram D if and only if the lines of D can be placed
ir one-to-one correspondence with a subset of the lines of D', and the contrac~
tion to points of che remaining limes of D', all of which must be iaterasl,
reduces D' to D. A signed line of D can be placed in correspondence with

a line of D' having either the same sign, or having no sign, but not with any
iine of . D' having the opposite sign. The main problem in calculating the
discontiauity formula is to find a decowposition zatisfyiug (1.1)-(1.5).

Step 2 Conaider first only those singularities that correspond to solutions of
the Landau equations in which all a's are positive or zero, or all a's are
negative or zero; i.e., temporarily ignore all mixed-a singularities, which are
gingularities corresponding to solutions of the Landau equations in which some

a's are positive and others are negative,

Because E lies on LO(D+), but on no other basic pesitive-a surface, all
vectors u(D'(E)_) corresponding to positive-a solutions are positive multiples
of u(D+(E)). by virtue of Theorem A, and all vectors u(D' (E)) correaponding
to negative-a solutions are negative multiples of u(D+(|-))).

The functions f+, t(D+), and r(D+) represent the functions 1-'+, T(D+), and
RO, wich the factor (2m° 8(Ze,p,) removed. The NAS says that @),
near E, 1s the boundary value of f G’(z)) from within the cone dual to
u'(D"'(fz)). i.e., essentially from the upper-half 2, plane.

The analytic structure of r(D+) is given by the structure theorem. The
requirement (b) on B(R,D+) ensures that none of the singularities of r(D+)
correspond to diagrams that centain D+. If mixed-a singularities ave igncred
this leaves only the singularities corresponding to the negative-o solutions.
All the vectors u'(D(E)) corresponding to these negative-o solutions are
negative multiples of u'@"(;‘:)). Conseguently, r(D+) 1s the limit frem the

lower~half =z, plane.

1
Properry (a) of B(T,D+) ensures that T(D+) vanishes outside f(D"‘), i.e.,
in xl < 8. T:\-us in this vegion the function f+ coi:cides with r(D+).
Therefore (D) 1s a function that coincides with £ in the region

x <0 (i.e., below the threshold x = 0} and that iontinues around xl =0
by a detour into the lower-half 2 plane. Thus r(D') is the function f¢°'
of the preceeding section, and the difference f+ - t(D+) - I:(D+) is the
discontinuity.

Step 3 Use the discontinuity formulas obtained, neglecting mixed-u« singulari-
ties, in steps L.and 2 to show thac all mixed-a singularities in t(D+) cancel

among themselves.
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This procedure leads (at lcast in the formal framework described below) to the
unique discontinuity Yormulas described at the end of the preceding section.
However, it 13 based on the ansatz that the mixed-n singularities cancel among
themselves, Hence the possibility of some other solution, in which the mixed-a

stogularities do not cancel among themselves, 1s not ruled out.

Derivations not based on the mixed-a cancellation ansatz are blocked, at the
present time, by the inadequacy of the structure theorem at u = 0 points. If
onc uses a recently proposed, but srill unproved, new version of the scructure
cheorem that does adequately cover u = 0 points then it is possible to derive
without using the mlxed-a cancellation ansatz, and also to prove unique, the
discontinuity formula described abowe at least in the simplest of all cases,
which ig the pole-factorization thearem below the foucr-particle threshold in
the equal-mass case. However, thls new theorem is atill unproved and has not
been applied to any other cases. Thus we shall use, in the present work, the
wmixed-u cancellation smeatz, and leave aside the question of uniqueness, except
to express the opinion that a consistent solution of the unitarity and analyci-
eity conditions in which the mixed-a do not cancel among themselves is surely
impossible.

The third step listed above, namely the verification that all mixed-a singulari-
ties do indeed cancel cut among themselves in R(D+) has been carried out in

many speclal cases, but has not been proved in general.
2, Pole-Factorization Theorem Below 4-Particle Threshold

In this special case the diagram p* in question is the pole diagram

D= 5 (2.1)

3 6

Ualtarity and clestar decompositian give
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- R T
+$ E+ 5 B
(2.2)

where, merely to shorten the formulas, the t"--particle intermediate states have
been omitted, Postmultiplying (2.2) by

LE-CE-3 3%

(9}

(2.3)

rearranging terms, and using two-particle unitarity,

@ -Cr - @CE
- oG -

one abtains
ft= 1(oh -R(DH (2.5)

where

o
*

- @ (2.6)
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L

{2.7)
and
L :@£®: .
+ (EE}++(§) )%
((§!) % +(§)_.:®:_ )
(2.8)

Properties {a) and (b) are easily checked:

(a) B(T,D+) is the ripht-hand side of (2.7). It consists of a single
diagram B, and D(B) clearly contains n+. .

() B(R,N*) 1s the right-hand side of (2.8). Tc is easy to see that
no B in B(R.D+) supports D+.

The following two observations suffice:
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(1) sStabillty conditjons entail that each vertex of a Landau diagram
have at least two fnicial lines and atr least two Final lines. (The others
correspond to empry sets L{D), and are to be ami::ed.] Thus the two lines
coming into a two-to-two bubble must meet at a vertex. This fact, -~ogether with
the fact that the diagram Db inserted into each bubble b must be a connected
diagram, p{ecludes the possibjlity of fitting D+ into any bubble diagram in
the First three sums in R(D*).

(i1} In consldering whether a D+ fits into a 1 one may consider
@a h minus bubble of B to be a point vertex, since all lines coming from
inside such a bubble carry minus signs, and hence must be contracted to peints
1in the contraction that ylelds D+. But the contraction of the big winug
bubbles in the remaining term in R(D+) renders it unable to support D+.

Decouposition of Singularities This formula for the discontinuity near P

F*-R(DY =

engether with the NAS, jmplies that near p

and

R(DY) = -

Here = wmeans equal in the sense of microfunction ( and locally uwodula
analytic functions), and a plus (or minus) siga on a line Li of a bubble
diagram B means that only those parts of the singulacicies of FB that
correspond to vectors “"P'(B)) associated with solutions of the Landau
equations with 3y >0 (or ay < 0) are accepted. Similarly a zero on a
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line ll :f a bubble diagram B means that only those parts of the singuleri-
ties af F  that correspond to solutions of Landau equations with a, = 0 are
accepted. The notian of a decomposition of singularities into parcs associuled
with differenc directions u(@(ﬁ!} i3 cthe heart of the theory of essential
support, and of the theory of microfunctfons. It is closely connected with the
local decompasition of 2n B(plz - mlz) into lzlpiz - ntz 4+ ic and

-lc/piz - mlz - 1,

Concellation of Mixed-a Singularities Consider the Landau diagram

where a zero on a line Ll of a Landesu diagram indicates that the corresponding
%4

and may coincide with L(D;ole) in some neighborhood of ;. If such a wmixed-g
singularity were present in R(D:ola) it would disrupt the Anrivation of the
+
).

formula for the discontinuity around LO(Dpole

1s zero. The associated Landau surface L(D') ia confined to L(D;nle)'

However, the various contributions to R )} associated with this diagram

+

D
pole
D' exactly cancel:

0=

The three bubble diagrans on the lefcare the only ones in B("B:ole, that
support D', Their contributions to the singularity corresponding to D°' are
indicated on the right. Thesr. contributions svm to zero, by virtue of two-
pavticle unitarity,

3. Triangic Diagram Singularfty

(Below the 4-partlicle threshold). Define
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' a
oy = z>ﬁ<5
4 3 6

Co* sider the expansion . T+(D+ le) + R(D+°12) used in the preceding sub-
section. The only B's in B(T,D ) + B(R,D' ) that support D: are

L% * e
OIS O
e - i
(LE PP B

* e

BEOE Q0T O:

i + 3 ) ()

" e
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Only the last term supports DZ. And the D(B) correspcnding to this last term
contains DZ. Thus if this last term is identified as T(D:) then the required

conditions (a) and {b) on T(DZ) and R(B:) ate satisfied.

4. The Indented Hox

Theorem 7 Unitarity and cluster decomposition entail that
a7 e a I
=H by = =.,.. @ y
£ T l? riin B

where the indented box represents the sum

(4.1)

(4.2)

Only a Einite number of tarms contribute to this sum at any (finite) point »p.
There is a sum over all ways of decomposing the set a into parts Gyttt
a sum over all ways of decomposing y Into partws vy and Yar and

The sus of all terms in the cluster

a y decomposition of the box in which each
- _—
line of a is connected by a bubble to

B

some line of 8.
(4.3)

Examination of (%4.2) shows that the indented box is a sum cf bubble diagrams

B wicth the following property: no B in this sum supports any D having a
set a' fn of positively signed lines which {f cur se;irate the diagram into
two parts A and 8 such that A has incoming lines a and outgoing lines

ot

and B has incoming lines a«' and B and outgoing lines y. That is, no
D chac fits f{nto any A in the indunted box can be decom, »sed into a structure

of the form
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(4.4)
unless &' Z a (l.e., urless A contains only trivial bubbles). The A and

B are allowed to be either ed or not ed.

Theorem 7 combined with unitaricy gives

Fcun fejuu .

(4.5)

These results play a central role in the derivation of general discontipuity
formulas, and they will be used in the following subsection.

5. Leading Normal-Threshold Formula

Thearem 8

(5.1}

where the arrow box represents
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o Bizrd
B2=B-B,

{5.2)

The artow box 1s a sum of bubble diagrams B with the following property:
every D" that fice into any B in this sum has a path that begins in 8 and
vads in a' and consiats of segments "1 all of which are directed along the
pach, Thus ne B in this sum supporta any dlagram D of the form

{5.3)

where the A and B are allowed to be either d or di .

Defining

Eﬁ:'@m (5-4)

ane can write
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(5.5)

The second and third terms in the last line of this equation support no normal
threshold diagram D:, which 1s a diagram D+ of the form (5.3) with point
vercices A and B. The last term does support D: in general, but not at
polats |-> that lie on no basic surface except LD(D:). Ffor the disconnected
nature of the boxes on the ends of this termentails that the corresponding

function vanish unless the conservarion-laws corr ing to the di ed

parts are satisfie?, and this entails that B lie on LD(D‘+) for ~ corres-
ponding diapram D * # D+. Thus at points B that lie on no basic surface
except LO(D:) we can identify the first r.em+1n {5.5) as T(D:): then
c:nditinns (a) and (b) are satisfled, and T(D:’ is the disconciauicy around
Dt'
VI. FORMAL METHOD

The procedures used in the preceding section allow the discontinuity
formula stated at the end of Section 1V to he derived in many cases. However,
the question arises whether fumctions T(D+) aad R(u+) satisfying the required
properties exist for all D+ with nonempty lu(n+). whethe: these functions are
unique (within the framework based on the mixed-a cancellatison ansatz), and
whether the stated formula holds in all cases. The aim <f the present section
is to explote these .questions, and in particular to:

(a) Trove the existence of T(D+) and R(D*)
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{(b) Prove the uniquencss of T(D*) ang I(D*)
(c)--Dexlve the gencral formula far T(b’).

The work in this section is based on in[inite series expansions for the quanti~
ties of interust., The method is formal in the sense that che quest.on of the
convergence of theseseries 1s not considered: two functions having the same
expansion arc called equivalent, and are considered to be equal, and analytic
properties that hold for every term of an expansion are assuwed to hold also
fo- the sum. Also, the mixed-a cancellation ansatz is accepted. Within these

11 dcacions the formal method used in this section is neat and powerful,

1. 3he Minug-Bubble Expansion of §

Write
s = st - a+rh (.1
sad
s e s . g-r). (1.2)
Then uaitarity,
sst -1, .3
can be written
Yo Ra+rh 1.4
Iteration gives, formaily,
-
R - z T R (.5
a=l
Theorem 9
s = Zs; . (1.6)
1

The sum runs over uvery bubble diagram B; each bubble of which is a minus
bubble, and the convention in which the minus bubble representa -Sc 18 used.

Theorem 9 follows from (1.5) after some cancellations. For example, the bubbie

diagram

occurs in three terms of (1.5):
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BB -

Tl a first two terms come from (R-)z. wheregs che last copes from R . The
wminus sign in the last term comes from the one minus sign in (1.2) and two

minus $igns from che minus bupble convention.

Corollary
5, = S— By 1.7

where SC 1s the connected part of S, and the sum runs over the connected B;.

2. Formal Framework

Any B can be expressed in a unique way as a linear combination of the various
minus bubble diagrams B;: one simply replaces each plus bubble b" of B by
its expansion (1.7) and collects ter-*. This gives

8 - 0 (8) B, . 2.1
i
where the sum runs over the set of all bubble diayrams B; having only minus
bubbles. The Lnflnite set of numbers nx(B) is regarded as an infinite dimen~
sfonal vector u{B), and all B bhaving the same n(B} are said ta be equiva-
lent. Sums B v Ec’.bx of bubble diagrams 81 with scalar coefficients €y
can also be considered, and the corresponding vector n(B) 1is defined to be
!c‘n(Bl). By tnis procedure the B; become the basis vectors of a linear space
of {generalized) bubble diagrams B.
Theorem 10 Xf 31 can be transformed into B, by an applicacion of

unitarity and cluster decomposition then B]. is equivalent to Bz.

Outline of Proof The unitarity equations,

ss"-1 = 0, (2.2)

are equivalent to zero:

[T ] o
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For example, in the two-to-two case

- o

(2.5)

Hultiplyseg (2.4) by (2.5) wad collecting terms one £inds that every term but
1 drops out. Thus (2.3) holds in this case. 1in Fact, it holds in general:
l.e., in the expansion of (2.2) in terms of minus bubble diagrans n;, each

n: occurs with net coefficlent zero.

In any application of unitarity and cluster decomposition one replaces some 8,
by nz where Bl. and !lz differ by parts b; and B; that are equal by
virtue of unitarity and cluster decompoaition. These two pares are therefore
equivalent, by virtue of (2.3): the expansion of Bi in terms of minus bubbles
is {dentical to the expansion of Bé. Buz then the repiacement of Bi by

%

Bl wlll be equivalent to Bz.

in B will not alter the minus bubble expansion of the larger diagram:

Theorem 10 15 the basis of the usefulness of che represersation n{8) of B:
this representation is tnvariant ..der the operations of applying unitarity
and cluster decomposition. Any two 3 <that are equal by virtue of unitarity
and cluster decomvogitfon, are represcnted by the same vector n(B,, and
conversely, any two B's that are equivalent can bte formally converted to the
same infinite series by using unitarity and cluster decoapesiticn, and thls
infinite series, which is syecified by n(B), is soreover unique.

3. Exiatence of T(D+) and R§D+]

- + - -
Let B {T,D ) be the sum of all connected B1 that support n". Let B (R.D")
be the aum of all connected BI that do not supporc D+. Let D‘(F“) be the

sum of all connected B;. Then

e - ) + 5w . TR

The corollary of Theorem 9 says that B-(F+) is equlvalent to e

D - P G.2
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The sum B'(R,D+) satisfies the defining property of B(R.D+). Moreover, the
sum B~(T.B+] satisfies the deflning property of B(T,D"'). by virtue of the
following equlvalence: for any bubble diagram B~ each bubble of which is a
minus bubble

B" supports " i and only 1f D(B™) contains D+ . (3.3)
This is true because every positively signed line in any D that firs into B
is a lfne of D(B"), and conversely D(B") Fits into B .

Since the requirements on the various terms are all satisfied (3.1) is a formal
solution of the equation

o 1ty + ROY . (3.4)

The general fnrmula for T(D+) gilven in Section IV ig the result of reassemh-
ling the infinite set of terms in B-(T,D+) into an equivalent finite expression
B(1,5"), as will be showm later.

4. Uniqueness of the TgD+! and R$D+)
Theorem 11 Let

F o= Bro,oh + 3r,0Y (4.1)

be any decomposition of F+ that is derived soley from unitarity and cluster
decomposition and that satisfies the defining conditions for B(T,D"') and
B(R,D+). Than the following equivalences hold:

srph = 87@ph (4.2)
and
BR,D) = B®RDD (4.3)

Proof Suppose B is in B(T,D+). Then D(B) must contain D+. But the
procedure that converts B into its image B' in the space of B; leaves
unchanged every line of D(B): i.e., ‘8') contains BD(B), and hence ot.

Thus every B; in B'(r,b%) contains B', and hence belongs to B (T,D):
{0, BT.0N) # 0} => (a, @ (1.0%) = 13 (4.4)

Suppose B 1is in B(R,D+). Then, by definicivn, no D that fits into B

contains D+. But the pracedure that-converts B to its image E' in the

space of F.; introduces no plus lines that are not present in some D that

fits into B. Thus no B; in B'(R.D+) can support D+:
(n, B(R, DY # 0}=3 (n G (],0") = 1} . .5

On the other hand, Eq. (4.1) is derived soley Erom unitarity and cluster decom-
position. Thus the two sides are equivalent, and hence for every £
+ +
0, G0N + 0 GROD) = 1 . 4.6

Since the sets
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- +.
(1 n @T(T0T) = 3}
and
0 RO - 1)
are disjoint, by constructfon, the conditions (4.4), (4.5), and (4.6) imply that
for all i
o o - - +
n, (B,07)) n, & o) 4.7
and
+ - +.
0, @R = o, E0Y) . (4.8)
These are the desired conditions (4.2) and (4.3).

The decomposjtion (4.1) therefore exists and 13 unique, within the formal frame-
work. The remaining problem 15 to show that the discontinuicy formula given at
the end of Section IV is equivalent ro B'(T,D"'). near points p lying on

+ + +
Lo(nl) 1f and only if D1 is D .

5. The Indented Box Revisited
To introduce some ideas needed for the derivation of the general discontinuiry

formula we consider again the formula

a,e +7=E%7

Defirition A bubble whose initial lines consist exclusively of lines from the

(5.1)

set @ is called an @ bubble,

Definition

/
a
( ,ﬁ’r ﬁ {5.2)

is the sum of all B, that have incoming lines « and B, outgoing lines Y,

i
but have no o bubble. It 1g called S{a«,8; Y} truncated on a.

Remark Each term of S'{a,B8; y) satisfies the characteristic property of the

indented box, which is that no a' # o effects a separation of the form of
{4.4) of Section V. And every B; not in S'(a,B; y) tfails zo satisfy this

characteristic property.
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Theorem 12

—_
8 s (5.3)

Proof Map the lefr-hand side into Bi space by inserring the expansion S' of

S given in (1.6):

a of =} a{-H /

a’ = # ’ (5.48)
=9 ’ [ 4
= +R o+
ﬁﬁjﬂ pud T (5.4b)

:’43““’8” - o 1w (5.5)

Consider a B, with exactly one o bubble. It occurs exactly once in the first

where

term of (5.4b) (i.e., in S'}, and with a plus sign. It also occurs exactly once
in the second term, in the diagram obtained by shifting this one « bubble into
the slashed minus box. 1In this term it occurs with a minus gign (we are using
the convention where the minus bubble represents -Sc). Thus the two terms can-—
cel. [f B, has n o bubbles then there are, in an exactly similar way, 2"

i
terms in (5.4b) that exactly cancel out. But if B; has no o bubble then B

occurs in 5' but not in the second term, and there i3 no cancellation. This t
gives (5,3).

6. Flowlines and Schnitts

To prove general discontinuity formulas the concepts of flow lines and schnitts
are useful. A flouwline is a path in a Landau diagram D that runs from the ex-
treme left of the diagram to the extreme right. It consists of an ordered se-
quence of line segments L1 of D all of which point in the direction of the
path. A schnitt o 1s a cutting of a set of lines Li of a diagram. It is
allowed to cut no flow line more than once. The set fu is the set of flow lines
cut by a. Equivolent schnitts a are schnftrs that cut the same get of Flow
lines. A line L1 lies vight (resp. left) of line L, if and only if Ll ldes
right (resp. left) of L2 on some fleow line. A schaitt oy lies right (resp.

left) of a schnitt ny if and only if &, 1s equivalent to a, and some line

1
l.1 cut by LR 1tes right (resp. left) of some line LJ cut by a
L; cut by a lles lefc (resp. righe) of any line Lj cut by a,

90 and no line

2e A rightmost
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(resp. leftmost) schnitt & is a schnitt such that no schnitt o' lies right
(resp. lefr) of it. The rightmost (resp. leftmost) schnitt equivalent co any
given schnict is well defined.

A schnitt in a bubble diagram B is a achnitt in D(B).

Consider now the set of B; that have initial lines a and B8 and final lines
Y. The sets a and B define leftmost sehnitrs, and y defines a rightmast
schnitt. Let a' be the rightmost schnitt equivalent to a. The sum of all

these diagrams is represented by

(6.1)

where the primed boxes represent the expansions of the unprimed boxes in terms cf
the B;' The identity (6.1) follows from the fact that the schnitt a® has a
well-defined locacion in each Hi' and hence one gets each tero on the left~hand
side once and only once by combinlng independently the sum of all B1 that can
ncecur on the right of a', which 1s the sum that represents 5(%,8 ¥) truncated

on @, with the sum of all poasible B, that can occur on the left of a', which

is the sum of all B; that represent 1S(ﬂ; a'), This argument Wwill be used
several times In what follous.

Applicacton of unitaricy to (6.1) givea (5.1).

Consider next the set of all B; that have incoming sets o and B and outgoing
sets a' and B, Separate these B, into tyo sets. The first set consists of
those that have a schnitt ¥ such that (1) all flow lines in EY start in a

and end in B', and (2) the schnitt y cuts B1 into two disjoint parts one
containing ¥y and Y' the other containing B and B'. The second set is the
remainder R.

Let y' be the rightmost schnitt equivalent to y. Then the sum of these dia-

gram B; can be collected inco the expression

{6.3)
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This result combined with (5.3) gives,

a cz/'~' + — a/
i tmp™ ] ¢ mal e,

from which the normal-threshold discentinuity formula can be derived as before.

(6.4)

7. Strongly Equivaleut Schnitts

The mass of a schnitt is the sum of the masses of the lines cut by the schaitt.
Two schnitts are strongly eguivalent if and only if they are equivalent and

have the same mass.

The cancept of the rightmost (or leftmost) schnitt strongly equivalent to given
schnitt 1s not always well defined. For exasple, if the masses L and L

satisfy oy > chen fn

the tyo schnitts a' and a" are both strongly equivalent to a, but there
is no ynique leftmost schnitt strongly equivalent to a. However, a simple
argument shows that there will always be a unique lefrmost (and rightmost)
gchnitt o° strongly equivalent ro any given schnitt a if chere 1ls no
schnitt "' equisalent to o« but with larger mass.

Zongider ‘the sec or «l1 B; with incoming lines a and B8, and outgoing lines

v. Let pe%" be a polnt such that all of the p, in a are parallel. Let

X(E) be the subsrs.c generated by the set of all B1 such that ; lles out~
side (8. Then
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(7.1}

The condition mod X(P} means madulo contribucions corresponding to B; in
X(p). All contributions B; in which there is schnitt a"' that 1is equivalent
to a but with lacger wass fall into this class. When these Bi are excluded
the rightmost schnitt a' strongly equivalent o is well defined. Every

ters of the remaining sum of B; appears exactly once in the box expression

on the right-hand side of (7.1)

8. HNonleading Noramal Threshold

A slight modification of the argument leading to (6.3) gives this same formula
with y' now the rightzost schnitt strongly equivalent to a schnitt Y of

i
schnitts equivalent to Y but with larger mass, Then from (7.1) one obtains

some definite mass Hy, and R expanded to include terms B, that have

(8.1)

vhere the -y box represents the inverse S\"l of che resrriction s‘ of
S ¢o Y space, which is the sum of the spaces corresponding to all gets of
particles the sum of whose masses is the same as that of the set y. From
this formula (8.1) one derives the discontinuity around & nonleading normal
threshold by the procedure of Section V.6.

9. Truncated Svactering Functions
Let a and 8 represent the initial and final varlablea of a scattering

function:

G T By tany)

.19
B (b, emRy) -
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Let some subsec of the ser a be separated into a ser of disjoint sets
ul.-'-.us. Recall that Su(a; B) = F+(a;B) i equivalent to the gum of all
connected B;. The Functior F+ truncated on a, is defined to be the sum of
all connected B1 that have no u1 bubble, i.e., that have no bubble each

initial line of which corresponds to a variable in o Similarly, the function

1°
+
F truncated on several seta a, is the sum of all cnnnected B havirg no
o bubble far any ay in this set. The function r t:uncn:ed on the set
apscie,ag of sets oy 15 represented by

5
Hra oL
1

1=1

107 0% be a decomposition of a subset of the set of variables
a. Let E be a point such that for each i = 1,'++,s all the ;3 in oy

Leoms 1 Let a

are parallel. Then P will lie on various Landau surfaces corresponging to
diagrams in which chere is for each ag. considered as a schnirt, a rightmost
schnitt ul strongly equivalent to it, and all of the lines cut hy all of
chese schnitis ni terminate on one single vertex. Suppose 5 lies on no
positive-a Landau surface corresponding to a disgram in which these lines

terminate on more than one vertex. Than

o 8) j' ' [S(nl, a}) dajT ] Frlof,eeohal,m i 8) od X(B) . (9.2)

where the integral over n' is over all sets of vuriables the sum of whose

masses is the same as that of a,, and X(p) 1is the Linear space generated by

those B thot satisfy Std’(q}-

Proof The left-hand side of (9.2) is equivalent to the sum over all connected
BI. The mod X(E) condition allows us to ignore, as above, all contributions
By
greater mass. Then for any one of the remaining B; one can consider, for

in which any ﬂi {considered as a schnitt) is equivalent to a schaitt of

each ul' the rightmose achnitt Gi strongly equivalent to 01. Consider next
the part P' of this B, that lies to the right of all of the rightmost

This part P' 4w either connected or is not connected. If it
1is not connected then B; lies in x(B). For if p 1ldles in d’(B:) then

the conservation-law constraints corresponding to the various disconnected

achnites ni.

parts of P' must b. satisfied, and P must consequently lie on one of the

Landau surfaces excluded by the hypothesis of the lemma, namely the one in which
'

i
vertex, but rather on the several vurtices correspoading to th2 several dis-

the lines cut by the rightmost schpitts a terminate, not on one single
cannected parts of P', These B; with disconnected P’ may, thercfore, also
be ignored, dut to the mod X(p) conditfon, and onc is left wlth the BI

such that P' is connected.
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The rcmaining set of B; is generated by summing independently over ali possible
parts lyinz on the various sides of the rightmost schalces ui. The part P’
lying to the right of all these schnitts u; will b2 just the truncated function
occurring in {9.2): i.e., it is the sum of all connected E; that have no

a, bubble for any o And the part Lying to the left of the rightmosc

s:hnu: ui is Just :he expansion of S(n‘.ui). Any BI constructed in this
way is one of the remaining B; deflned above, and each much 3; is different
because the location of each schnitt ai is uniquely defined in each of these
remaining B;. Finally, every one of the remaining B; 1s obrained ar least
once because every possible combination of parets on the various sides of the var-

lous schnitts ui is included. Thus the lemma is proved.

The BI that were ignored during proof because they belong to X(p) satisfy
a certain finite set of mass-shell or conservation-law conditions that force

P to lie cutside a’(a;). Thus Eq. (9.2) holds wod X(p) for all p in some
finite neighborhood of E

From (9.2) oue obtains by inversion, near p,

/1—1/ ,T—-F (9.3)

i=1
where S -1 is the inverse of the restriction S of S to the space a5, which
is the -un of the spaces associated with the sets’ of variables °1 having
sums of rest masscs equal to that of ag.

The function s;‘ is defined formally by
i

-a )" 9.4)
1 1 1
where I:‘x is the restriction of unity to the spsce a, and

i

9.5)

o
[t
n
[
-

10. Ihe General Formula

Theorem 13 For any bt lec A(D )} be the discontinuicy fnmula defined
at the end of Section [V. Lec pe 977' be & point that lies an l. (n ) if
and only 1if D'+ ia D+. Then

'Y = B(T,DY) mod X(P) (10.1)

where B'(T.D+) is the sum of all B; that support D+, and X(p) 1is the
subspace generated -y the set of Bl such that B lies outside 6’(8;). 1f
for some of the sets of lines of D that run between pairs of vertices of

D+ there are other sets with the same sum of rest masses, so that the theorem

as stated above ts empty, then D+ can be interpreted in an expanded sense, in
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which each of these sets of intermedlate lines is interpreted as a sum over all
+ -

gets having the same sum of rest masses. The formulas for A(D' ) and B (T.D+)

should then also be interpreted in this extended sense: Che intermediate sets

ui should be allowed to run over the other sets with the same sum of rest

maases.
Proof Let B; be any diagram ln B‘(T‘D"'). This diagram supports D+. That
means thac therc fs a set J of schnitts uj of BI whose elements are in

one~to-one currespondence with the sets of tntermediate lines of D+‘ If for
any one of these schnitts there is an equivalent schnitt of greater mass, then
p lies outside W(B;) and this BI iies in X(p), and Yence does not con-
tribute to (10.1). For each remaining B: there is for any schnitt in ,J a

unique rightmost schnitt strongly equivalent to it.

Consider any one of the remaining B;. Let each schnite ul in 4’ be shifted
to its rightmost strongly equivalent position ai. Let P be the part of B1
corresponding to some vertex of D+; it lies to the right of certain schnicts and
to the left of others. Consider what happens to P, and to its boundary
schnitts, when each oy 1s shifted to its rightmost strongly equivalent position
ui.

One of several things can happen. The first possibility 1s that the topelogy

is unaffected: 1.e., that the pew schnites a; lie in the same positions
relative ro each other as the original schnitts @ and that the new part P'
1s connected. The second possibility s that the new schnirts o' lie in che
same positions relative to each ocher as the original schnitts, but thac P'

18 disconnected. In this se.cond case B; belongs to x(p; Fbr if P les

in o’(B;) then it Lust also lie on LD(D ) for some % D ; contrary to
hypothesis. In particular, it lies on the Landau surface L(D ), where D:

is the dlagram constructed from D+ by replacing the schnitts bounding P by
the schnitts bounding P', and then joining the lines cut by these new schnitts
tn vertices corresponding to the various disconnected parts of P' to which
they are attached. This surface L(D"+) 18 defined by essentlally the same
conditions chat define L(D"’J, plus the extra conservation-law conditicas
entailed by the break-up of the connected part P into the discoanected part
P'. But if p lies in QD(BI) then these extra conservation~lau candttians
nust be sa:LsEied.“and hence p must lia in L(D ). Huuever, L(D ) is

i

the union of LO(D +) with the various surfaces L (D ), uhere the D "+ are
", _
certaln contra:tiors of D * Hence p must lie onm L (D ) for snme D

different Erom D s contrary to the hypothesis of the I:heorcm. Thls is not
alloved. Thus we canclude that p does not lie in d’(Bl;; i.e., that B

_ i
lies in  X{p}, and hencc does not contribute to ¢10.1)
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The third and final possibility is chat the rightmost schnitts ai do not lie
in the same posltion relative to ecach other as the original schnjccs ay- +Then
for some schnlict ay standing to the left of fsome a in the origimal D cthe
rightmost “1.. strongly equivalent to oy lies parrly on the right of u]‘..
Then some set of flow 1lnes € has a part Q that starts on a subset Q_1 of
a! and ends on a subset Qi of “;.' The sum of the masses of Q1 cannot be
equal to the sum of the masses of Q., for if these sums were equal then a
could be moved further right. On the other hand, if the first sum were zreater
than the second sum then there would be a schnitt a3‘ equivalent to ays but
having greater mass. [Lf the first sum were less than the second sum then the
analogous result is true with ay replacing uJ. In either case B; lies in
X(p), and does nor contribute to (10.1). Thus we are left with the first case;
i.2., with the sum of all B; having the following properties: (1) there is &
set j of schnices ay that separate B; in the manner described by D+,

(2) for each ay in Bf there {s no u". equivalens to o and having greater
mass, and (3) when the o, are pushed co their rightmost strongly equivalent

positions ai the new parts P' are well defined and comnected.

Since the locations of the righemost schnitts ai in each of the remaining
Bi are well defined the full sum can be constructed by adding independently
all possible contributions corresponding to each of the connected parts P'.
The sum of all possible contributions correspondlng to any P' is precisely
the corresponding function F+ truncated on those sets of initial variables

that belong to é . Use of (9.3) converts this form to A(D+).

The formula (10.1) converts the expression B-(T.D+) for the discontinuity
T(D+) obtained in subsectlans 3 and 4 te the formula quoted at the end of
Section IV. The contributions B; € X(p) that were ignored in the course of
thr proof all vanish in some finite neighborhoad of p.

V1I. BASIC DISCONTINUITIES FOR 6-PARTICLE PROCESSES
The discontinuity formulas derived above are lacal formulaa; they give the
difference £¥ - £' in some small neighborhoad of the point P on l.o(D+).

Moreover, this point p must lde in %' = 97 - 970.

For dispersion relations one needs global formulas; i.e., formulas chat hold
at all real points p. And the nceded discontinuities are around the leading
normal threshold cuts, which always extend to points p lying in ‘7’(0-
Furthermore, one needs not only single discontinuities, but also multiple
discontinuities.

Multiple discontinulties across sets of leading normal threshold cuts play a

basle role in S-matrix theory and are called basic discontinuities.

GClohal formulas for all basiv discontinulties of slx-particle processes have
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been derived, and will now be discussed. The derivation has three pacts. The
first part, which is described in this section, specifies the relevant functrions
and describes the discontinuities and oultiple discontiuuities Eormed from them.
The second part, which is described in the next section, proves the analytic
atructure of these functions at real points p e¥y'. The third, which is
described in Section IX, shows that these functions are the appropriate boundary
values of a single analytic function; i.e., that there are paths of continuatlon
in the complex mass shell that connect these Functions to each other, and that

these functions are the boundary values needed for dispersion relations.

Anticipating the later results we shall already in this section refer to certain
functions as boundary values from specified sides of variocus normal threshold
cuts. The discontinuities in the three-to-three physical region are discussed
first; those in the two-to-four and four-to~two physical regions will be

discussed later.

3. Ihe Sixteen Channels g
A channel is defined by a separation of the initial and final lines of a bubble

diagrem into two disjoint parts, eacvh containing at least two initial lines or
at least two final lines. For a three-to-three process the sixteen channals

are indicated below

=t J: = {46,5,6]

ﬁE B 1=1,2, 003 J = (4,56,
)

f
i% g - 1f) Joapy = WaSi6,ti - 18]

Wiy
[218 2
"

2. The Sixteen Basic Cuts Cg

Define the invartante

. 2
s £ 8(1) z Z P > {(z.1)
8 g <jc-l f]

B
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and the cuts

€ = (p+igilus =0, Res 2 A (2.2
where s ° = 0 is the leading normal threshold singularity in channel g;
f.e., 8° is the square of the smallest sum of rest masses of sets of particles

that comnunicate with particles of channel g.

3. The 2" Funccions W°

Let G be any subset of the complete set E of sixteen channel labels g.
There are Zle different G's. For each one we define a function M® which
will be called the boundary value from beneath evexry cut (:B with g e G

and from above each of the remaluing cuts.

The sixteen variable ss are not all depend . G ly there are sets
G such chat there is no mass shell point (p + iq) rthat lies simultancously
in the lower-half plane Ia ’8 <Q for all g € G and in thc »dper-half plane
lma >0 for all ge €=€=-G. For example, if 8y + 'b - ac + real const.
then it is not possible te have Im zu >0, Im ’b >0 and. lm Ec < 0,

Im=;%0
Im 8,20

Imsy=0 Im 5,=0

~
Ims0 Ims.ee

However, the cut Im 8, = 0 can in general be push:d back to expose a region
of analyticity that lies on top of the cuts im 5, " 0 and im 8 = 0 but
lies below the displaced cut Im a, =< Boundaries.that c¢sn be reached only
by pushingback some cut in this way are called inaccessible boundaries. The

boundary walues at both accessible and inaccessible boundaries will be used in

the dispersion relationa.

4 e 2'7 Functions T° and T,

The Ffuncticns u® are defined iIn terms of some closely related functions 1'G
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and  Tg. These later functiuvns, and alsa the Hc's.
to the infinite series exacnsion used in the formal
the analyticlity propertics of these functions can be
However, it is useful to present first the infianice

the functions T, and TG.

are defined without reference
method. And the proofs of
carvied out by {w:ire _cthods.

series representations of

+
Let D be the connected positive-a diagram that has precisely two vertices, each

connected to one of the two sers of lines that define channel g. Then

+
and D,

T, n T = F - DI
Bt conitected
T = "
L B; cennéc:ed and supports D;
Ten ~ L o5 +
Bt connected and Supports Ds

T, -Z B

© -
% -« 7-7
TE

LR A
T ToT, - T+ T,

Bi conn%cted and aupports D:

h

for all g in G. (4.1)

. Y ™ 1, (6.2)
Red .
where n(H} 1is the number of elewents of H.
These definitions entall also
w.r .
Bt conniected and does not suppoic DB
I A + +
Bi connécted and supports nelther l)g nor Dh
® - L By .
Bt connected and mpports no D;. KeG €4.3)

These properties (4.3) and the structure theorem entail that TG has no
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singularity associated with any diagram that contains D: for any g in G.
Thus it should continue underneath the normal threshold singularicties in each
channel g c¢ G, @On the other hand, (4.2) can be inverted to give

D JRILICE L (4.6)
G K

vhizh i3 the formula for the multiple dimcontinuity across the se¢t of cuts H.

Fc - example,

e« T-1"_ 84 80
Thg T-T -T°+7T

N L
etc.
Properties (4.1) ensure that the multiple discontinuity 1‘" vanishes, as it
should, at any real p such that -h(p) < .hu for some hcH.

The general defining properties of the Tc and TG are:
Eropercy 1
tach TG can be wricten as
© - ¥ or® g (4.5)
with
T * Z 8. (4.6)
B 19“

where for each Bt ﬂH' and each hsH, D(B) contains D:.

Property 2

Each Tc can be converted soley by neans of unitarity and cluster decomposition
properties to a form
€ . B (4.7)
Be@C

vhere no B in &G supports D: for any B:G.

Property 3
T - T LI S

Property 1 ensures that the mulctiple discontinuities

s have the corvect
support property: they vanish at real p in 'h < shn. firH. Property 2
ensures that Tc continues underneath ali sormal threshold singularities in
channels geC.  Property 3 easurcs chat T 15 the physical scactering functlon

.
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A set of functions satisfying these properties 1, 2, und 3 has been construcced
by finite methods. The infinite series representations defined in (4.1)-(4.4)
formally satiafy rhese properties, and this™¥olution can be shown to be unique,

in the formal Eramework.

5. The 27 Funccions T° ang Te

Property 2 makes . TG continue m.ldernea:h the normal-threshold singularities
in channels geG. However, We also want TG to continue above the normal-
th eshold singularities in channels geG = E - G, Consider, therefore, the
funetions ‘T'G and i‘H defined by the same properties 1, 2, and 3 except that
the plus nigns in D; and l-‘+ are replaced by minus signs. A solution is

given by
iG - -(TG)'P
= t
T, = -('I‘H) . (5.1)

and this solution is used.

6. The Good and Bad M 's -
For certain G's, called good G's, the relacion TG = 'fu holds. In this case
#® is defined by _

AP N ®.1

Thie function continues underneath the normal threshold singularities for
geG and continues above the normal threshold singularities for geG.

1o general, the relation 7° - b° = 70 - B° holds, and M° 1s defined by

€ s -8 - -5 (6.2)
where

o = 0 1f el , 6.3)
and

o = T B 1f ces 5.4)

it * N
(lf)cxc

and B-G' -(ET)?. Here

X. = {(1f); 1feG, ieG, £cG} (6.5)

and

(6.6)
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Among the 216 = 65,536 G's there are VZG.DIB good G's, These are thase
such that there is no -(if) ‘such ‘that either ((LE)eG, teG, 1sG, e} or
'lfif).gc-:, se6, 166, £561 . For good G's p% =~ ¢ = 0, and hence (6.2) reduces to
(6.1

The good HG‘s are those with good G's. The bad Hc‘s are the rest. The
goad Hc's have nice analyticity properties, the bad Hc's do not. However,
the bad M°'s will be useful neverthelesa,

7. Formula for Multiple Discontinuities
Th. multiple disctontinulty across the set of cuts H evaluated underneath the
set of cuts G (satlefying GAH = P) is,by definitinn,

' '
HHG - z RTLICR I . a.n
H' H
This set of formulas is equivalent to the set of formulas (for GM1H = §)

R T = L a.n
G' ¢

This second form is convenient because most of the MH are zero. Indeed all
H“ with n(B) > 3 vanish, and many of the rest do also. The nonzerc HH
are now listed.

The function Hg z = M 1is the connected part of the physical scattering

amplitude:

x
.

"
-
|
aus

(7.3)

The sixteen single discontinuities Hg are

E=0=c" (7.4)



HERRY P. STAPP

Mz ‘%' (7.5¢)

“ = SO=CFCE. )

1r is convenient ro introduce special symbols to represent the sum of terms of
8 (or of S+) that have special connectedness properties. The aymbol defined

by

Bk = Hip - E=TF (1-5)

can be shown to represent the sum of the terns of S (ov S+) in which the
ioitfal line 1 1s connected to gome nontrivial bubble; i.e., it represents
che sum of terms in which the line 1 does not go straight through. Simflarly,
the symhol

9= = ofF - {TRGF (7.6)

represents the sum of terms of S (or S*) in which the final lime £ does
not go straight through. Finally, the symbol

i%' = ;@’
- e
== - i%' -1
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repregents the sum of terms of S (or s') in which neither i nor € 80
straight through. .Two Erequently used identities, which follow from (7.8), (7.9),
and upicaticy, arz

HEdE - ‘:@'.
and

(7.8)

(7.9
In teymss of these symbols the nonvanishing Hah are given by

* i%:‘

(7.208)

(7.100)
My =

(7.20c)

(7.200)
Yine ¥ %—&

(7.20e)
The nonvanishing {inctions thk are
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- SR
- (rm)

and

Mty
. e
: (7.111)

The first form given for each of these funccions H“. although longer than the
succeeding ones, exhibits a systematic rule: Theve is a minus box for each

h in H, and these minus boxes occur between the parts of plus boxes that
contaln nontrivial bubbles on which the appropriate external lines terminate.
8. The Inclusive Optical Theorem

To show how these formulas work we calculate H:tf)' vhich is che discontinuity
across the cut (i{f) evaluated below the cut £, but above all the other cuts.
Using in order equations (7.2), (7.6), (7.8), (7.18), and (7.8), one obtains

M un = Mag = Mane
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. :@ {8.1a}

In a similar way one obtains

- ]
Mg ‘:% . (8.1v)

These formulas (8.1) yield the inclusive optical theorem for the three-to-three
cege.

9. Results for Two-cg-Four and Four-to-Two Processes

The results for two-to-four and foyr-to-two processes are very similar to those
for three-to-three processes. Only the definitions of the chammels and the
formulas for the H” differ. The nonzero HH are as follows:

M = @ﬂ@::@m@ (9-28)
Moty = @’m@:‘i—l‘ :Gf)ﬂ’ (9.2b)
M, = :@'3@3 (9.2¢)
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— by ?
Mgty = Qunmm B O =}
. :@m@g’

My¢ = XDt ﬁ""ﬂc

’Il
Mygrr = o.....:..ﬂ"ﬂ'ﬁ v
H
"
CRHEEY
- ¢

N ¥
@
M= = B 1

=%:'

v,

i,

1
MU= °- b (PP
e M(= e

f
1 Gy mnit 43
= ] 1

(9.30)

(9.3b)

(9.3e)

(9.3d)

(9.3e)
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e e ) 2o
Mt g9 = "0"“=‘m-=-ﬁ :
(o ',',
O i s b (5.4)

The goed G's for the two-to-four case are those such that there 1s no pair
(££') such that eitier {(ff')eG, teG, £"cG, £"'eG} or ((f£')cG, teG, £eG,
£"'eG} . For the good G

G G =G

M = T° = T . (9.5)
For all G

M o« %% . (9.6)
where

o = 0 if e

(9.7)
p° = Z Begs 1f teG . :
(££')ex,

Rere

%o = {(££')z (££')eG, £"¢C, £"'e} (9.8)
and

Boor = (9.9}

The results for the four~to-two case are mirror ilmages of the two-to-four

results with i's (n place of f’'s.

10. Gemeraiized Steinmann Relations

A palr of channels g and h [Is said ro be overlapping 1f each of the sets
that ‘eflne g intersect both of the sets that define h. Note that

My = 0 (10.1)
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1f H contains any pair af overlapping channels. Then {7.2) implies that the
game is true for MHG. These results are a gencralization of the Steinmann
velations found in field theory: these latter relations give analogous resulcs

for the discontinuities formed from 2282 of our 65,536 functians Hc.

VIII. ANALYTIC PROPERTIES OF THE GOOD HG'S
The good HG‘B defined in the preceding section have nice physical-region
analyticity properties. In particular, they continue into themselves around
every singularicy surface except for certain exceptional omes. This property
15 the result of systematic cancellations. For each Hc is constructed,
according to properties 1 and 2, as a sum of terms only one of which, namely
M itself, enjoys this property. All of the remaining terms are represented
by bubble diagrams with sever=2l bubbles, summed over all possible intermediate
lives conanecting these bubbles. Each ¢f these remaining terms changes its
analytic form at each threshold where a new term, formerly zero, starcs tc
contribute. However, in the sum there is a cancellation of either the plus
i€ or minug ie part of every threshold singularity, and the function HG in
some neighberhood of the singularity is a limit of an analycic function from
some cone of directions in g = Im{p + 1q) space. This result holds, in
fact, near all singularity surfaces except the exceptional omes.

Coutinuation through the physical region is blocked by the exceptional surfaces.
However, the functions on the two sides of these exceptional surfaces should be
regarded as parts of a single analytic function, in the context of dispersion
relations. This will be discussed in the next section. In the present section
the continuation of the good HG around the nonexceptional surfaces is
discussed.

1. Schnites o

A schnitt ©_ is a schoitt that separates a diagram D into two parts each
of which is connected and contains one of the two sets of externzl lines that
define channel g. All lines cut by a schnitt ug are required to cross the
cut in the direction of the positive energy flow in channel g. A schnitt

ot 1s schnitt o each line of which is either a plus line of D or a line
of D with no sign. A schnitt u; is defined analogously, with either minua
lines or unsigned lines of D, A diagram D contains a schnitt a+ (resp.
u;) if and only {f i contains a normal threshold diagram D; (Tesp, D;).

2. Signs of Lines V_ -~V
—_— 8

A line Vr - Vs in D 1is a portion of aflow line in D that runs fram Vr
to Va. A sign n 1s ascribed to Vl_ - V9 if and only if no schnite ng_“

in D cuts V_=V_.
r s
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3. Theorem 14
Consider any B, any D that fits into B, and any line Vr - Vs in D thac
has sign n. In any representation of D
n
vt v € v o, i1.1)
wvhere vt and VY~ are the open forward and backward light-cones, and v

and w, are vectors to the space-time location of ‘.Vr and Vs’ respectively.

Proof Suppose n is plus. If ‘.Vr and Vs both lie inside a plus bubbie
then each segment on the path between them has a plus sign, hence points into
the forward light-cone, and (3.1) follows, If Vr and Vs do not lie inside
the same plus bubble then shrink all plus bubble to points. Then almost any
vertical line that passes between Vt and Va defines a schnitt a; chac
cuts Vr - Vs, contrary to hypothesis. An analogous argument holds if n

is minus.

4. Skeleron Diagrams
Each Landau diagram D contains a set G(D) of schnitcs a . A skeleton

diagram D, of D 4is a minimal subset of the flow lines of D such that
G(D) = G(DS). For three-to-three diagrams there are 76 types of skeleton

diagrams:

@ 1) o (3]

. ¢
¥_< * FIG. The

‘ 76 skeleton din-

{s) grems for 3—13

processes. The

¥ P indices §apd f
%_& run over
> e { | 8,23, 4t
5,8, re-
ot {3] ) spectively, The
1 number In
square brackets
‘}"'4'( >—§< below each (ig-
i ure {2 the aum-
w (3 wr 19) ber of skeleton
diagrama repre-
' ' sented by that

S dpde
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5. Theorem L5
Let ‘Jr - V5 be a line of a skeleton dlagram Ds' Let G(vr 4 Vs) be the set
of g such that some schnitt o cuts Vr -+ Vs. Then for every G that
contailns G(Vr - Vs). for every D with skeleton Ds that Eits into a B
in (ﬂc, and for every repregentation of sucha D

LA v 5.1)

Proof Consider any D with skeleton Ds that fits 1nc: a B im 4?6;
wh re G contains G(V_ ~+ Vs). This D contains no Dg with g in G,
sn¢ hence no schnitz a vith g in G(Vr - Vs). Thus V‘_ - Vs has a minus
sign n, and (5.1) follows Erom (3.1).

Thevrem 15' Theorem 15 holds if 86 is replaced by ﬂc and V© is
replaced by V+, where &G is the get of B = -B+ for B in 6(}.

6. Continuation of Good ¥°'s Around N icnal L(D}

Consider any good G. Then

W = € - Z B (6.1)
M@G

and

W - Z B . (6.2)
B:@G
In considering the singularities of HG all Landau surfaces L(D) corresponding

to diagrams D, having the same type of skeleton Ds will be treated together.

Suppose Ds is a tree diagram. Let Vr - Va be any minimal line of Ds.
Then G(Vr - Vs) will consist of a single element g, which will belong either
to G or to G.

Suppose G(vr + vs) € G. In this case consider the e:pression (6.1) for HG.
The structure theorem says that this expression for M  is singular only on
those L(D) corresponding to D that fir into a B in @G. If |-> lies
only on a subset of these L(D) cthat all correspond to D's having skeleton

Ds. then Theorem 15 says that for all representatlions of these D (5.1) holds.

Equation (5.1) precludms the possibility that two D(p)'s related to each aother
by a negative scale change both contribute at p = )-) i %5 the clash of che

ie prescriptions cor ding to two rep ations ed by a negative
scale change that signals the presence of a threshold, and that is the normal

cause for the structure theorem to yield no cone of analyticity near ;.

The other cases are similar. If Ds iy a tree graph and G(Vr - VB)<= G
then use of (6.2) and Thenvrem 15' leads to cssentially the same result as
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above, with V+ replacing vi,oaE lls is & bux diagrac then for any good ©
at least two of che four minimal lines vr - Vs satisfy either G(Vr - Vs) &6
ar .';(1!r - Vs) < &, and (3.1) holds for thea. Thu iegative scale changes are

again ruled out.

The above argument rules out, for good Hc. threshold-type singularicies
generated by a pair of D(B) related by a negative scale change. However,

the continuation might be blocked by some other conspiracy of singularities.
Or2 can show, howcver, by dimenslonal considerations, that the only conspiracies
that can block the continuation near B are those involving two diagrams DI(P)
and Dz(p) whose external trajectories are tranaformed inte each other by &

negacive scale change far each p in some on-one neighb d of p.

On the other hard, the Dl and IJ2 must canfors to the sign conditions (3.1)
derived above. Surfaces genersted Dl(p) and Dz(p) satisfying these conditions
are called 2xceptional, The occurrence of such exceptional surfaces appears

co be essentially accidental and of no grest vignificance for dispersion

relations. This will he discussed in the next secvZia.

IX. ANALYTICITY IN THE COMPLEX MASS SHELL

The pbysical-region analycicity properties discussed above flow from unitarity
“‘and macrocausality. To obtain analyticity properties ac 'n"on'rnl poi. % an
addicional assumpticn is needed. In S-matrix theory chis extra aasumption is
maximzl analyticity, which says that tke only singularities of the scattering
amplitude are those required for consistency with the other S-matrix principles
of unitarity, macrocausality, and lorent: invariaace. This assuuption, and
several of its » are di d in this section,

1. Maximal Analvticity

Unitarity and macrocausality yield the phys. cal-region analyticity piropercies
described in the precedinpg swctions. Maximal analyticity says that there are
no singularities in the complex mass mhell not required for ‘:onsistency with
these physical-region analyticity propercties and Lorentz fm riance. This
sesurption has two levels. On the deeper "bootstrap™ level ii Tefars to a
complete soluction to the unitarity, analycicity, aad Lorencz f{nvariant require-
ments that way in principle determine all the parameters of the S-matrix, f.a.,
the masses, and coupling constante etc. But on the iame’iate practical level

it refers to the analyticity properties associsted wita given values uf the
mssses. On this latter level it means, in practice, an iterative procedure
vhereby the singularicty structure in the cowplex mass shell is built up atarting
from the basic normaf threshold cuta. In this procedur: one first neglecis

all cucs but tiie ncrmal threshold cuts, and then derives further cuts and
singuloriries by introducing these normal threshold cuts into the unitarity
equaticns. These nev stogularitiess are the- themselves introduced into unitarity
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and further singularities are derived, etc. At each stage one considacs oniy
those singularities thar have arisen ia the previous stages, and expects to

generate in the end the complete analytic structure.

This iterative procedure has twn parts. In the first part one considers only
stable particles (in an approximation where massless particles, and hence
electromagnetic, weak, and gravitational interactions are ignored) and seeks to
generate only the physical~sheet analytlc structure. This iIs the sheer in
which dispersion relations operate, and hence the gheat of principal interest
he. e. In the second part one allows unstable particle poles, snd seeks to

generate the analyric structure on all sheets.

The initial stages of this iterative procedure are described in the following
subsections, and are used to obtain hermitian analyticity, crossing, and certain
other properties vieeded for dispersion relations.

At the first stage of the iterative procedure one considers only the normal
threshold singularities and cuts, which include the pole singularicies associated
with one-particle exchange diagrams. The pole-factorization theorem 1s used
extensively, and it is assumed that no singularitles associated with other

types of diagrams mask or simulate these one-particle exchange pole singulari-
ties. That is, it is assumed that the only singularities of bubble diagram 2

2
functions that contribute to residues of poles at the particle masses pu' =T,

are singularities associated with the corr ding particle h. dia-
grams. 1f at come stage of the construction of the singularity structure a
singularity 1s found thst disrupts this property then it should be taken into

ac the sub stages, but uot before. Howevever, no such gingularity

has ever been found.

2. Hermitlan Amalyticity
This property says that the functions represented by the plus and minus bubbles

are analytic continuations of each other. To show this for a two-to-two
process consider a larger process whose amplitude contains the two-to-two
amplitude as a factor of a four-fold multiple-pole residue. The scattering
amplitude for the larger process is represented by the bubble on the left~hand
gide of

2.1
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The origiral tuwo-to-two processes ls represented by the central bubble on the
right~hand side.

Consider now the unicarity equatlon

i

+| Tl IIQ-‘
altina

7|7]IIII|_~{-‘

P nf

[
n

(2.2)

where the subscript ¢ denotes connected part. It can be scparated .o four

terns

Wt lllzll
ol

]
+

Ao

where R 1is the sum of contributions to (2.2) not appearing in any of the
first three terms. For brevity this equation is written
= A~ Ay tR = 0 . (2.3)

The term R givea no contribucion to the four-frld multiple-pole at puz ~m 2.

1
The conrributions of the first three terms are displayed in the equations

Equation (2.4) continued acxt page
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Equacton {2.4) continued

(2.4)

A plus or minus sign o, ona line l’.i of a bubble disgras signifies
the restriction of esmential support of the displayed function to the part

generated by the indau equations with the testriction ago, 2 0. This aeans

that the mass-c: .’ delta function associated with this line s replaced by 2
pole, according tha rules
2 2
+ - -
= dilp -a +ie
2.9
- - 2 2
= -1/pu -m -,

in the sense that the displayed function in & aeighborhood of one of these
singularitiea is represented by a function having a pole factor of the indicated
type (2.5) and having the indicated residue. This residue 1s the product of

the displayed bubble functions, times a factor of plus 1 for each plus line
and a factor of minus 1 for each minugs line. These factors of i come from
the residues of the pole factors {2.5).

The remaining terms Rys R, and Ro in (2.4) have no four-fold multiple-pole
contribution at Pe = G ™ 1y-ee,b.

The momentun-energy varizble v, 18 the momentum~energy variable associated
with internal line a:

P, Z €4Py (2.6)
L:Eu
where E  is the set of labela 1 of the external lines of the outer bubble
connected ta line a,

HMultiplication of (2.3) by the factor

4

TT - TTw2-nn @.n
a=l

gives
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AL-Al-a R =0 (2.8)

where A;_ =

Each of the three central functions in (2.4) has certain singulacities in the

etc.

complex mass-shell of che Four particles a = 1,+--,6. When varilable

P (Pl""'plb) goes to the pule poaition Pnz - m‘;z. a =1,2,3,4, the
singularities of these central functions in (2.6) will produce singularities

In the cortesponding primed Eunctions in (2.8). These latter singularities
cannot be present at p‘,2 - mﬂ2 but absent at nearby points pu2 ¢ maz: there
18 a general theorem of functions of several complex variables (Bremermann's
special continuity theorem) chat rules this out.

These neighbaring singularities of the primed functions are associated with the
landau diagrams of the larger process in which the four internmediate pole lines
in (2.4} are contracted to points. These contributions to the singularities of
the prized functions are represented by the firsr terms in the equations

ORS @.9
al . + R,
060
Al . gg: + R, (2.10)
() 9.
g+ ZRom(CE 4R 2an

Each first term represents a funccion that becomes equal to the displayed
product of bubble functions at the mass-shell points Pa2 - naz am=L, "4,
and thac outside these mass-shell polnts has only singularities corresponding to
the Landav dinurams that £ik into these bubble diagrams. The remaining terms
RJ. R!, and R6 have no singularitles corresponding to diagroms that fit into

2

:&.Ie bubble diagrams, and they vanish at the mass shell points pﬁ'2 ..
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a = 1,...,4, along with their discontinulties. The equations (2.9), (2.10),
and (2.11) represent essentially decompositions of the singularicies of A;_. Al
and A' into those that have discontinuities having nonzero multiple-residue

9

ac p ° - muz =0, a=1,-+,%, are thowe chat do not.

Consider now a pach in the variables of the larger process

p2
1

me

L

4,,1.2 am?

The variable s is the square of the center-of-mass energy of the ceatral
process. The variable pz is the coomon value of the variables Py » and mz
is the (assumed common) value of the -uz. The t variable of the central
process can de fixed at zexo, and the other variables of the larger process
changed in some minimal way that keeps all mosentum-energy vectors Py real,

except near infinitestmal 1t digtortions around singularity surfaces.

Let P, be a mass-shell (pnz - uuz. @ = 1,..+,4) poine lying above the
physical threshold at a = dmz. Let A". be continued first at conszant s
from pz - nz to PZ = 0, and then at constant pz =0 to pz =g = 0. This
path  will follov a plus ic (physical) continuation around the singularitfes
associated with the plus bubbles of (2.9) and a winus te¢ (antiphysical)

coutfauvacion around the singularicies associated with the ainus bubbles of

{2.9). The pach Is allowed, however, to pass cuts cor to
singularitics of the function R;_ of (2.9). In crossing such a cut the
function A;_ changes by just the discontinuicty of R". across thnis cut. 1n
thia way the function on the path remains always the function A;_ defined gbave,

At the point p2 =5 =0 the term At" vanishes, because this point lies below
the lowest threshold s = Iauz in the s channcel. Thus by adding R', which
can be considered to be the discontinuity across a cut, one obtains the
function A, which isthen continucd at pz =0 back to 8§ > lmz. and then at
conscant 3 to the muss shell pnint P_. Thus one has a path that follows
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well-defined ir rules for singularities corresponding to diagrams having the
four vertices a, but that jumps acrase cuts assoclated with the functions

R;_. R*, and R.

Let this pach of coentlnuation now be shifted into the mass shell pz - lz.

In this shift of the path of continuation one keeps track of the vatious cuts
of the functions R;, R', and R!, that the path jumps across, but does not
seek to avoid them: instead one adds the discontinuities across these cuts.
However, one does try to distort the path away from singularities corresponding

cto dlagrams that have the four verticea a.

In tracing out the distortion of the path one may consider the five partms
separately; ane traces out the motion of tha singularlty surfaces of the
individual bubbles of (2.9), (2.10), and (2.11) as the “mass variable” L

corresponding to the vertices o increase from zero to L

2

Consider firsc the path in the varisbles of che central bubble. For pz =0

chis path starts at a point s = 4-2 + ¢ above threshold,continues down to
s = 0, crosses the iine Im s = 0, and continues back. As one shifta pz
from zero to uz certain singularities may cut across chis original path in
the s plane and force a distortion. However, in the firsc stage of the
icerative procedure one considers only normal threshold singularitles. These
scay fixed in the 8 plane and hence cause no distortion of the path. Normal
thresholds in pz must llc at p2 > nz, and hence are not encounteved in the
continuation.

Consider next the paths in the varisbles of the auter bubbles. These can be

made to trace exactly the same paths along the original and return portions of
the part between p2 = -2 and PZ =0 at Fixed s > blz. Horeover, since the
invariant variables of the outer parts are indepeadent of 8 one can keep the

same path ia the space of invariants for all s.

After the path is shifted into che mass shell, which is certainly possible at
the first stage of the iceration procedure, one has a mass-shell path of
continuation that conneccs the residue at P, to the residue at P_. This
path jumps across varisus cuts of the functions R;_, R', and R:. but the
discontinuities acroes these cuts vanish oo the mass shell P, = 'u

a = l,++-,4. Thus the analytic continuation of the residue at P+ along the

wass~shell path to the polnt P_ yields the residue at P_.
The residue at P, 1is, by virtue of the pole-factorization theorem, the product
of the five functions represented by the first term of (2.9). Similarly the

residue at P_  is the product of the five functions represented by the firat

term of (2.10},
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The five functions in the reslduc &t P+ continue independentfy. The variables
of the outer processcs remaln always at the same point In the space of the
invariants, and trace out only a trivial path ln p space. Thus fn the continua-
tion from P+ to P_ the outer functiong continue inco ckemselves, and hence
into che outer functions occurring in the rasidue at P_. Therefore the inner
function must concinue from its value in the residue at P_ to its value In the
residue at P_. That is, the function represented by the plus bubble must con-
tinue into the Eunction represented by the minus bubbie., The path of continuation
in the variables of the cencral process, is, at tie first stage of the construc-
ction of the singularity structure in the cuiplex mass shell, a path chat staces
at a physical point above the physical threshold s = 4-2, moves in the upper

half plane (i.e. via the plus {ie rule) to & = @, where it mov:s inco the

lower half plane and returns via the minus 1ic rule to the region s > 4m2.

This relacfon between the plus and minus bubbles is called hermitian amalyticity.

At & larer stage of the construction of the singularity structure some singularity
may move across the original s-plane path of continuation during the shift from
pz =0 to p2 - mz. and cause & disrortion of the path avay Erom its original
position. An example will be given later. But at the inirial stage, where only
acrmal threshold cuts arve considered, the plus and minus bubbles represent two
differenc boundary values of the same analytic Eunction.

The same argument works for multiparticle amplirudes, and shows that our good
functions HG are the boundary values indicated by G of a single analycic
function, at least at the first stage of the construction of the complex singu-
larity structure. To obtain this result the larger space is constructed by
replacing each line of the 6-particle procesa by four linea, as in (2.1). The
needed equation in this larger sﬁace can be constructed, in the formal framework,
by defining the functlons TH by the same equations in terms of BI as before,
but with the T's now functions in thls larger space, and the D;'s now the
natural images of the original D;'s in this larger space. The argument then
proceeds as Just before.

As an example consider the case where g§ = i - « designates an initial subenergy
channel. It is sufficient to enlarge the process only with respect to the two
initial lines 2 and 3. As before, the T of the enlarged process 1s continued
first Er;m F+2 to yzz - paz = 0, at fixed 8,3 = (p2 + pJ)z and then to

By3 * Py ~ Py = 0. Ac this point the discontinulty Function T8 - T1
vanishes, and T can be replaced by T = Tg - Ts, modulo R-type functions,
which are functlons that lack the double pole at pzz = nzz, y32 =my, Then
Bt~ 'L‘g is continued back to P_, following the {ie prescription approp-
riate to it, and jumpiop across R cuts, and alse across the cuts attached to

exceprional surfaces, by adding the appropriante discontinuities. Flmally the
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path is distorted into the mass shell pz2 = mzz, pJ2 = mjz. and the resldues
the double pole in T and T - Tg considered, These two functious are
analyrically connected by the mass-shell path obtained by distorting into the
wass shell the original pl2 - ;22 = 0 path in the g3 plane. That original
path starts in 523 > (lu2 + m3) » thea ruas down to 513 ™ 0 follewtng the
plus iec rule for singularicies not of R type, and thnen runs back to

553 (ml + m3)2 following the ie rtules appropraite to ™ = B, Again the
two uter factors can be factored out, leaving the analytic connection between
Tand T - Ts in the space of the six original particles. This path jumps
across cuts attached to exceptional surfaces. The placement of such cuts will

be discussed later.

By similar argumentd ome can derive

(2.12)

vhere the left-hand side represents the continuation of Sc(a,B; Y} to below thbe

complete set of cuts that start at the threshold point

suo = ( Z mx)z . (2.13)
iex

The -a box 15, as before, an operator in o space, which is the space of
sets of particles the sum of whose masses is suD, and is the inverse of the
restriction of the S-matrix to this space. In deriving (2.12) the originmal
path in the variables of the larger process can be taken to lie at pu2 - muz -
with ¢ arbitrarily small, instead of ac pu2 = 0, and to describe an infinicesi-
mal contour in the space of variables of the central process, since this small
contour is enough to take it into the region L < suo, where the threshold
rerm vanishes. Thus the ccntinuation that connects Sc(u.B; ¥} to the function
represented on the left-hand side of (2,12) 1s nondisturted; ic is gn infinitesi-
mal eirele arocund the t!reshold paint that is the contlnuation inte the mass~
shell of a infinitesimal circle originally defined for paz = mn2 - g, far
€ > 0.

3. Crosslng

Crossing 1s the property whereby the analytic continuatfon of the scartering
Eunction for any given process describes also the various p-ocesses related to
it by changlng varlous sets initial particles inte final antiparticles, and

vice versa, It is derived by methuds very simllar to those Just described, so a
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very brief description will suffice.

Consider, for example, a pole in a four-to-four amplitude

This pole lies at pu2 = mﬂz. where

(3.1

1€E
a

18 the exchanged momentum~energy. If the exchanged particle has an antiparticle
then this same four-co-four amplitude will have. in another portion of its

physical region, another pole at Pg =Bt

The first pole lies in the region paa > LS whereas the second lies inm

{3.2)

puo < m- The intervening regilon along puz L lies outside the physical
region.

Let £+ be the four-to-four scattering amplitude, and consider the continuation

of the tesidue function (puz - mmz)f+ along the path indicated below:

2
p? ]
+*
Py / m2
]
pﬂ

(3.3)



DISCONTINUITY FORMULA Sec. IX

Thie continuatfon starts a mass-shell point P, at which the residue function

is 1 times

(3.4)

and moves, staying always in the physical region of f+. to a mass-shell point
P_, at which the resldue function is 1 times

(3.5)

Let this path now be shifred into the mass shell puz = nuz, jumping across all
cuts of the R-rype, which are cuts corresponding to diagrams that are not
separated into parts in the manner indicaced in (3.4) and (3.5). As before,

the discontinuities of the residue function across these R-type cuts will
vanish at puz = muz. because they do not correspond to one-particle exchange
diagrams, and hence lack the pole singularity. However, the discontinuity acrass
the singularities corresponding to diagrams chat fit iato the bubbles (3.4) and
(3.5) vill be nonzero, in general, and should be avoided, if possible.

At the first stage of the procedure for building vp the singularity structure
the path of continuation can certainly be shifted into the mass shell, for the
only normal threshold singularici that could block the shift would be one in
the variable Py
cating normal threshold in this channel, by virtue of the stability of particle

» whereas the point p " = o lies below the lowest communi-

a.
1f the path can be shifted into the mass shell then the product represented by
(3.4) contfnues into the product represented by (3.5). The individval factors
are functiens of different variables and hence they also continue into each
other, modulo constant factors ¢ and c_l‘

These factors ¢ and c—l can be taken to be unity. To see this let ¢ = LA
be defined by
(3.6)

and

£(p, @

where cthe functions on the left-hand sides represent the continutions of
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f*(-~-; ---p‘) and E+(p1~--: ++«), respectively, from their origilnal physical
reglons along an on-mass-shell crossing path to the real point p‘c. which has
negative 2nurgy component, and the bar aver _;1c indicates that the assoclated
suppressed type-variable is tl = -tl‘ which designates the anclparticle «f the

particle of type t Continuation of (3.6) along the path of hermirian

g
conjugation of the function on the right gives

Foovy ooon®™) o cf(oepPy )

SR 2 GRS
DTS TP S SV (3.8)

On the other hand, the continuation of f+(-~~; "'pi) along its path of
hermitian conjugation gives

h

£(e0s ctmy ) = E(een3 -'.Pih)

- _(f+(-..P1h; eyt (3.9)

Continuation of (3.9) along the path of crossing of the function on the righe~
hand side gives, by virtue of (3.7) (and bose statistics)},

£Coaey ...pihc) N A ...-‘1h°))' . (3.10)

The paths ch and he are homotopically equivalent, at least at the first
stage of the iterative procedure. Hence the points pch and phc represent
the same points aon the Riemann surface. Thus comparison of (3.8) and (3.10)
yields

which says that ¢ = ¢ is a phase factor: c1 = exp 1@1.

1
Because of the factorized form of (3.4) and (3.5) this phase factar

n depends only on the type £y of the particle exchanged. This factor may

be removed completely by redefining the phase of the S-matrix:

¢

S0Py PoyprtteRy) S'(pl,..‘pm; pnﬂ_l,--.p")

= S{pyatrpps Pyt tsP)C

. .
¢ = ﬂ*’“’ ("' % T, ‘1"1)
i

1=1

where

and

€, -1 for L= l,eve.m
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:1 - 4} for 1 = mtl,-+-4n .

The phases will always be chosen so that the ¢y are unity.

The above arguments yield hermitiar analyticicy and crossing only at the first
stage of the iteratlive procedure for building up the singularity stcucture in the
comples mass shell, but cthis is all chat is needed to start the procedure going.
At later stages certain cuts generated by the iterative procedure may block the
concinuitions, but these cuts, since they are generated by unitarlty should,

in principle, have their discontinuities determined by unitarity. [f they do
then it is not important whether they block or do not block the paths of

crossing and hermitian analyticicy.

4, Triangle Diagram Cuts
The second stage of the jterative procedure generates cuts associated with

triangle diagram singularities

Consider, for example, the six-particle functifon §f as a function of one initial
subenergy o, withseven other variables s_  held fixed and monreal. At the first
stage of the iterative procedure the function £ near the ¢ normal chreshold
can be represented by the Cauchy formula with a principal centribution

@

4o Disc, [ICAD]

2L (o -~ o) (4.1)
4m2

The discontinuity 1s given by

Disc, £(a') = % “%.2)

Let 4 represent some triangle diagram

s = (4.3)

and consider the discontinuity of (4.2) around L(3). The discontinuity of a
bubble diagram funcriom FH around a singularity surface L(D) is obtained by

summing, over all ways that D fits into B, the discontinuity assoclated with
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This latter disconzinuiry is obialned by replacing each

Dy, of

this particular way.
bubble b of B by the discontinruity fenction assoclated with the part
D that firs into b,

In nur case the diagram 4 fies iato (4.2) in two ways. In the first way the
initial vertex Eits into the minus bubble and the other two vertices fit into

the plus bubble. In the second way the leadiag vertex i5 considered to be a
contraciion of several vertices, one of which fits in the minus bubble, and the
rest of which fit into the plus bubble. (Only uasigned lines can be contracied.)
Actually these latter diagrams D are different from & but, hocause of rhe
contraction of vertices, the surfaces colncide, and they should be conmsidered
togetier.

The sum of contributlons corresponding to these various ways of fitting A intoe

4.2) is

(4.4)

= pisc, Disc F .
4 u
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Note that
Disc, Disc f = Dige, f {4.5)

This relation (4.5) means thar the surface L(4) need not be singylar on all
sheets af the v cut: che 4 singularity can be “shielded” by the a cut,

and not appear on all sheets.

Consider, for simplicity, a theory with all wasses equal. Then the physical

region in the real 0 - s plane consists of the two shaded regions in

s A

[3

{4.6)

The little oval in the 4-by-4 box represents the locacion of the triangle
diagram singularity fozr the case in which each set of lines e, B, and ¥

of A consists of one line. A condition on the singularity structure entailed
by the arpuments of the preceding subs:cticas is that if the aingularicy
structure is formallv continued off-mass-shell to a nelghlsthood of the origin
p = 0, then that nelghborhood should be free of singularities. This condition
entails that the dotted portion of the triarjle singularity not be present on

the physical sheer: 1t must lie on an unphysical sheet of the o cut.

Tracing the motion of the A& singularities in cthe o plane as s increases
from a value slightly less than three, and moves on a path infinitesimally

above the real axis, one finds
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.7

where the solid line represents the physical-sheet part of the trajectory.
This pach is also traced out in (4.6). The two singularities of the discon~
tinuley function (4.4) at each value of o are connected by a cut, which is
here pictured for s = 10:

3—3 24

s

(4.8)

This cut separates the real o axils into two parts, in which lie the 3 -+ 3
and 2 ~ 4 physical regions. The discontinuity fermula in the 3 -+ 3 physical

reglon is represent«d by

=C.2 0=

(4.9)
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whereas that in the 2 = 4 physival region is represented by

Om(-E

{4.10)

This cut that separates the two physical regions of the discontinuity function
does not separate the two physical regions of the acattering function ftself:
they are connected by a direce path that Temains alvays near the real o axis.
This 1p because the part of the cut in the discontinuity that lies in the
upper-half v plane tieg on che unphysical sheet of the scattering function.
On the other hand, the part of chis cut thet lies in the lower-half o plane
extendﬁ into the physical sheet of the scattering functions, and hence gives an

extra contribution to the dispersion (i.e., Cauchy) formula.
As one formally increases the mass mY of line y 1in A che tip of cthe cut
curls around and at a, = 2 it touches the underside of the 3 + 3 physical

reglon:

s
o m, =2
) 3 —3" ~\: 24

6.11)

This singularity sics inche region associated with the function Mg, where g
ideatifies the o cut that we have been discussing. The continuation of M
is blecked by this singularity surface, which 1s one of the exceptional surfaces

mentioned in earlier secrions.

This surface does no. cause any serious difficulty for dispersion relations.

In the principal contributicn to the Cauchy formula, i.e., in the contribution
from the normal threshold cut, ore uses the normal threshold discontinuity
formula (4.8) or (4.10) at all peints along the cur. However, there is also

the contribution vorresponding to the Lovp tn the lower-haif plane vf (4.11).
The discontfnuity acre.s this lattuer cut {s givea hy (4.5).


http://C4.ll

HFNRY £, STAPP

This relatively simple situaclon can be contrasted to conceivable ones in which
the sipgulariry lies at the end of a cut that bounds the phyeical sheet and

extends to infinity, and for which no discontinuity formula is known,

cut would sdd an uncentrolled concribution to the dispersion relation.

As the muss m

A

That 1is, it rapidly retreats from the physical shkzet, snd then moves, ian the

diagram cut passes thrcugh the sequence of positions shown below

i 7 i § I
———
I"
/
| e 2
\\
-

unphysical sheec, away from the real axis.

Such a

increpses above 2, with a amall negative imaginary parc, the

(a = 10)

The situvacion Sindicated in (4.11) occurs when my =m, 4+ 1, and ¢ and s are

Large enough sc that the jrocess represented by the triangle diagram (4.3) is
physical. Thus as the misses m_, m,, 3nd mY increase these singularities

move to larger valucs of s and o.

a

are confined to a neighborhood of the gap between the two physical regions

that grovs only as

localized on cays that cun almes: parallel to the line ¢ = s: th

do not

The physlcal-sheet parts of tge A cuts

1['5 tor \/3). Hence these singularities becor {ncreasingly

go into the regicn Jhere o0 >> 3 or s »> ¢. This s true both for the case

above, where LY . and the cut curls into the 3 + 3 regioa, and also
I

for the case m, > LY vhere the cut curls into the 2 ~ &4 regilon,

This

locallz2tion of these complex cuts will be used in the discusslon of the

generalized fixed~y !tspersion relations.

S.

Higher Cuts

Be . diagram cuts and F'pher-order curs are geacrated by the same procedure.

Box
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diagram cuts sometimes protrude from triangle diagram cuts, etc. Ia the
examples studied so far nothing happens that is significantly different from
what happened in the A case, and all the new physical-region cuts appear to
be localized in the neighborhood of the gap,

REFFRENCES TO PROOFS OF THEOREMS

Theorem 1 is Theorem $ of Chandler (1) Theorem 2 is trivial. Theorem 3 is
proved in Stapp (10}, Pham's Theorem is proved in Pham (9). Theorem & is

part of Theorem 6 of Chandler [1) A similar result &% aonpositive-2¢ pointw

is proved in Section 3 of Coster (2) (see (3.10) of that reference} . A still
mora general version is lemma A9 of Appendix A of Coster [5] Theoren 5 13
Theorem 7 of Chandler ﬁ) Thaorem é& is contaiced in Theorea & of Chandler (1)
The connection between Landaw surfaces and space-time disgrams is discussed in
detail in Chandler [1), in Coster [2?, and in Iagolnitzer (8)

The formal method is developed in Coster [4) sod in Coster (5). vhere the
uniqueness of the ‘l‘c and 'Ic is shown. The general formula for the discon-
cinuiey of €7 arousd Lo(D+) is derived by [inite methods in Coscer (2)

for all points lying below the lowest &4-particle threshold. The results (4.1)
and {5.1) of Section V are Eq3. (B3) and (5.7) of Coster (3). The properties
of the -o box are described in detail in Coster (R), where a 1a replaced
by 1.

The discussion given here is more general than that of the eariier works in
that it uses the newer stronger version of the structure theorem recemtly
proved by Iagoluniczer, and discussed in the preceding series of lectures.

This allows soxe unnecessary assumptions to be eliminated.

The proof of hermitian analyticity and crossing is c¢isentially the argument
of Olive, which 18 described in Eden (A), and developed in Stapp {11). The
discussion of the criangle diagram cuts is based on the work of Hwa [7].
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