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0. INTRODUCTION 
The aim of these lectures is to show how discontinuity formulas for multiparticle 
scattering amplitudes are derived from unitarity and analytiuity. The assumed 
an lyticity property is the normal analytic structure, which was shown in the 
previous lecture series to be equivalent to the space-time macrocausality condi­
tion. The discontinuity formulas to be derived are the basis of ths multi-
particle flxed-t dispersion relations, upon which the subsequent lecture series on 
Regge theory is based. 

I. PROPERTIES OF LANDAU SURFACES 
This section contains a brief review of the properties of Landau surfaces tiai 
are needed in the work that follows. 
1. Landau Diagrams D 

Example 

lr - -1 if L, originates on 

ir - +1 if L terminates on 

- 0 otherwise . 

A Landau diagram is a diagram formed from lines L. and vertices V . Each line 
ie directed from left to right. The topological structure of D is defined by 
the incidence matrix e l r

: 

(1.1) 

Each line L. is associated with a momentum-energy vector r , with a particle-
type label t , and with a mass m characteristic of p.irticles of type t,. 
These masses m are assumed to be positive: m. > 0. Each internal line L. 
of D either carries a sign p., plus or minus, or carr5.es no sign. 
2. Landau Equations Associated with D 
For each Landau diagram D there is an associated ;;et of Landau equations. These 
are 

http://carr5.es


HENR* P. STAPP 

Bj , P t > 0 • (2.1.1) 

(2) The momentum-energy conservation-law constraints: for nach vertex 
of D 

^ P ) c ( r - o . a.i.z> r i -it 

(3) The Landau loop equations: for each directed closed loop £ that 
can be drawn on the internal lines of D 

~ 0 . (2.1.3) L Vi \l * 
Each a, is a scalar, and n,, is the number of tiroes loop i. passes along 
line L moving in the direction of I., minus the number of times it passes 
along L, moving against the direction of L.. 

Example 

(A) The nontriviality condition: for some internal line L 

(5) The sign conditions: for every signed line L. 

(2.1.4) 

(2.1.5) 

All variables are real unless otherwise stated. 
3. Space-time Representations oE P 

For each solution (p.»a.} of the Landau equations associated with D 
there is a space-time representation uf D. This representation is a space-time 
diagram chat has CJK p̂oloĝ .̂'.l structure of D. The vertex V of the repre­
sentation lies at the space-time position w , and the vector from the origin of 
line L to its terminus, namely 

41 '= I cir ur ' «•» 

The Landau loop equations entaU the existence of a set oE space-tLme vectors w 
such th.it (3.1) and (3.2) hold. Cnnvursely, these two equations entail the 

http://th.it
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Landau loop equations. 

The space-time representation can be interpreted as a classical multiple-scatter­
ing diagram for point particles. The conditions (3.1) and (3.2) are the classical 
condition p • m v , where v la the four-vector velocity of particle i: 
v - djt /dT. The sign condition o.a > 0 specifies that particle 1 move 
forward or backward in time according to whether o. is plus or minus. 
4. Internal and External Variables 

{1: 
{i: 
< P i : 

is an external line of D] 
Is an internal line of D) 

* V 
£ I, > 1' 

5. Landau Surfaces L(D^ 
C(D) is the set of points (p,p,a) such that the Landau equations associated 
with D are satisfied. The Landau surface L(D) is the projection, of L(D) onto p 
space: 

L(D) = tp: (p.p.a) satisfies the Landau equations associated with 
D for some (p,a)h (5.1) 

6. Representations D(p) 
A representation of D whose external lines are associated with the set 
(Pi.'-'iP ' = P of momentum-energy vectors is denoted by D(p). Each D(p) 
generates the point p on L(D), in the sense that represents a solution 
{p»P»°} of the Landau equations associated with the Landau diagram D. The 
Landau surface L(D) Is the set of p such that some D(p) exists: 

L(D) - {p: some D(p) exists}. . (6.1) 

Given any D(p) there is a five-fold continuum of others) obtained from it by 
dilations (positive scale changes «, "* *a.,^ > 0) and overall space-time 
translations. Tf ise transformations are called the trivial transformations. 
7. Simple points of L(D) 
A. simple point p of L(D) is a point p such that D(p) is unique, modulo 
the trivial transformations: only one representation of D t modulo these trivial 
transformations, generates the point p. 

8. Basic Surfaces L_(D) 

LQ(D) = {p: p i s simple point of L(D)] 
= {p: p i s generated by only one representation of D, modulo the 

t r i v i a l transformations}. 

9. Poslttvc-iDt.iEr.ims ;in<l Surf.iccs 
A Landau dL.i|;r.-im I) is called a posUtvc-ti diagram If and * lly if Ciith Lntern; 
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line of D carries a positive sign a, - +. A superscript plus on D indi-
i +. 

cates that this diagram is a positive-ot diagram. Landau surfaces L(D ) corres­
ponding to positive-a diagrams are called positive-u Landau surfaces. 
10. The Restricted Mass Shell -Wv 

Let p = (p , — , p ) be the set of momentum-energy vectors associated with the 
full set of initial and final particles of some scattering process. The corres­
ponding restricted mass shell is 

-yri r = (p: P± • m » p, > 0, \ r p = 0, and at least one pair of 
i«l 

p. are nonparallel} . (10.1) 

ine sign e is plus for final L, and minus for initial L . 

The complex restricted mass shell 7$ is defined in the same way except that 
p is complex and the positivity condition p, > 0 is dropped. 

11- The Space TH^M 
The set of vectors normal to the mass shell TT\_ at point p is called ^ (p): 

7T7 (p) = {u: u*5(cp> * 0 for all fi(ep) in thr. tangent space to 
TTq r at p} (11.1) 

• {u = (u ,***,u ): u = X p + d, d is any four-vector, 
\ . is any scalar) . (11.2) 

J_ 1 

For any u in "¥¥{ (p) one has 

u.5(eP) = £ V^Vi* i=l 

- j (A p +d).e «p = 0 
i-1 1 *• 1 t 

i subji 
fi(Ze.p.) - 0. For any two four-vectors a and b 

a-b = a ub - a-b . (11.4) 

12. The Sees ^ Q and ^ ' 

7^7 n is the subset of fY) such that two or more initial p. are parallel or 
two or more final p, are parallel. The set fr\ ' is *Y*f minus 9^?^: 

0 ^ ' = -»i r " *>% • U2.1) 

13. Theorem 1 Each nonempty set L_(D )/) ^0\y is a codimenslon-one analytic 
submanlfold of tyV\'. 

Meaning: For any p in L_(D ) /") 9^Z' there is real function $(p) 

«suc'.. that (t) '(i(p) is analytic at p, (ii) the gradient V$f.a) at p lies 
outside ^ ( p ) , and (ill) L 0(D +) H <^V rolncldus with U(p) =» 0J/? "**' in 
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some sufficiently small neighborhood of p. 

14. Theorem 2 

L + -. (J L<D+, . (J L 0« +, . 
D + D + 

15. Theorem 3 
Only a finite number of D give surfaces L_(D ) that intersect any bounded 
portion cf ??? . 
These three theortns, taken together, say that L f) 7*t' consists of a locally 
finite union of codlmension-one analytic submanifolds. Thus L /? "»l' Is the 
union of a set of smooth s-rfacer: it has no cusps, acnodes or other irregu­
larities. 

References for the proofs of these and other theorems are given in a section at 
the end of the lectures. 

16. The 4n-Vector ufl)(pfl 
Let D(p) be a space-time representation with N external lines. Then 

u(b(p>) " u = (u.,'--,u ) is a set of n four-vectors u, such that u is the 
vector from some arbitrary origin 0 to son.e arbitrary point on the space-time 
line that contains the trajectory of external particle 1. 

Example 
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Given any D^p) there are others obtained from it by the trivial transformations 
Also, the location of the end point of u, on the line containing L can be 
changed. These changes alter the scale of u and add increments of the form 

V p ) * ( V i + d ,"''\i pn + d ) » (15.1.1) 
w!tcre tre p, ere the momentum-energy vectors of the external lines of D(p)-
The ace of vectors " n(p) is just the set of vectors 

U 0(P) G ^ C P ) • (15.1.3 

17. The Functions 4>(p; D(pV) 
For any space-time representation D(p) define 

*<p; D(p)) = U p - cp>-w(p(5J) 

~= Z u i p i " V i ) , w r a ) ( D ( ? ) ) < 1 7 a ) 

i E E D 
where V -., is the vertex of D connected to external line i» and v (Dtp)) 
is the location of V in the representation D(p), The function $(p; D(py is 
a linear function of p that vanishes at p * p and has at p the gradient 

M P ; Dtp)) - U < D ( P ) ) + U 0 ( P > , Ci7.a> 

where u Q(p) lies in V^l (p). 

18. The Physical Region tf^D) 
ff (D) is the set of points p such that for some (p,p) the mass-shell and 
conservation-law conditions (2.1.1) and (2.1.2J in the Landau equations associ­
ated with D can be satisfied. The surface L(D) clearly lies in <P (D): 

L(D) C (P(D) . (18.1) 

19. Pham's Theorem 
+ - + For any representation D (p) of D 

<?Q>+) d <P= *CPI D+(P)) * °> • (i9.1) 
Proof For brevity write w (J) (p)) = w , and identify also any other quantities 
pertaining to the representation D (p) by a bar. Then for any p in {P (D ) 

i<:E D 

l c E D r 
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(Equation continued) 

- > <P, - P ^ V i i 0 • <l9-'-> 

TI. s final s-.ip in (19.2) follows from the fact ttat for any two p~siiive-energy 
m£ js-ehell vectors p. and p 

pi'Pi - ?!'Pi " m i 2 ' ( 1 9 , 3 ) 

Remark 1 The last line of (19.2) expresses ijtfp; D (p)} in ternd of the 
internal variables associated with the solution of the Landau equation at p. 
The p in this expression can be any set of internal p that satisfy the 
mass-shell and conservation law constraints. The fact that *(p; D (p)) does 
not depend on the particular choice of these internal p. is a consequence cf 
the Landau loop equaii:. L. 

20. Theorem A Consider any point p on L Q(D )/) y\\*. Let «(p) be as in 
Theorem 1. Then the sign of <Hp) can be chosen so that 

W p > Z u(D+(p)) , (2C.1) 
where z means equjl modulo positive 3cale changes and additions of vectors 
u 0(p) c h ^ t f ) . 
Proof The set L f l(D +) /? 7? • lies in (P(D+)/} 7%*. Thus ($(p) - 0}/7 Y*l' 

lies in {$(p; D +(p}) > 0) f} )Tf •, The gradient v>(p) lies outside *Vn X(p), 
by virtue of Theorem 1, and the gradient v>/p; D (p)) Jies outside *??I (p) 
by virtue of the positive-a conditions, the stability conditions, and the condi­
tion that p lie outside fty -, For these conditions entail that the (approp­
riately extended) external trajectories cannot pass through a common point, which 
they would if V$(j>; D (p)), and hence u(D (p)}, lay in ^W^Cp) • But if both 
these gradients lie outside "T^Cp) then they must be the same, modulo scale 
changes, sign changes, and vector? of 6^>l (p), in order to accomodate the inclu­
sion of U(p) - 0}/7 Ifri' in U(p; D+(p)) > 0> /? <fy'. This result entails 
(20.1). 
Remark Two functions *(p) that are analytic at p, that have gradients .\ying 
outside 9^ (p), and that give the same regions (<|>(p) i **' (\ *¥*]* near p are 
equivalent insofar as the defining properties of $(p) are concerned. Thus if 
<)>(p) is acceptable, and M p ) is analytic at p and vanishes on c977 then 
Xi{i(p) +• ̂ (p) is also acceptable, provided X is positive. The gradient 
Viji(p) lies in «^"l(p)» hence ?$([>) - V(X*(p) + tli(p). Thus the significant part 
of V$(p) is defined only modulo positive scale changes a-*d additions of vectors 
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u 0(p) c " ^ C p ) . 

The result Vrt(p) - u(b (p)^ is the origin of much of the importance of the 
space-time diagrams It says that the normal to the Landau surface L-(D )/J 9^' 
at p is essentially determined by the locations of the external space-time 
trajectories of any space-time representation D (p) of D that generates p. 
This fact eliminates, in many situations, the need to actually calculate the 
Landau surface: the essential information can be extracted directly from the 
s ace-time representation. 

2_. Theorem 5 If ti/o basic surfaces L0(D.) and L Q(D 2) coincide near 
p e^', then 

uC Dt<P>) - U<?2<P>) ' «1.1) 
(The equality of signs entailed by (21.1) rules out a clash of ie rules for 
coincident surfaces L Q(D ) and L_(D2).) 

22. Analytic Submanlfolds and Local Coordinates 
The restricted complex mass-shell *)0\ r is a 3n-4 dimensional analytic sub-
manifold of the space <E n of the n complex four-vectors p.. This means 
that for each point p of *YY{ one can introduce a set of 4n functions 
Zi (l')»* • • »2/, (p) -hat are analytic and functionally independent at p (i.e.i 
the 4n gradient vect ors exist and ore linearly Independent at p) such that the 
image under the mapping z(p) of any sufficiently small complex mass-shell 

3n-4 neighborhood of p is an open set in the space C defined by z, . = 0 
for i - l,--',n+4. The analyticity and functional independence of the z.(p) 
at p entails that the inverse mapping p(z) is uniquely defined and analytic 
near the image z of p. Thus sufficiently small neighborhoods of p and z 
are one-to-one analytic images of each other t with mass-shell neighborhoods 
mapping onto neighborhoods in C 

The functions z, ...(p) for i =• l,-.-,n+4 can be taken to be the n 
functions p - m , and the four functions Z E 4 ° J * Op u " 0»"""»3« The 
gradients of these n + 4 functions can easily be shown, to be linearly indepen­
dent for all points p in f^ . This fact ensures that the remaining set of 
3n - 4 functions z.{p) can be found. These latter coordinates (z.,,«'",z_ ,) 
are called local coordinates of the mass shell at ;. 

The surface L_(D ) /) 4jftj' is a codimension-one analytic submanifold of ^/'» 
It coincides locally with the set {*(p> * 0} (\ 9^', where ?$(p) lies outside 
"fVl (p)- This last condition ensures that the function z,(p) can be taken to 
be -S(p)* since its gradient at p is linearly Independent" of the n + 4 
gre.'i-v'.ts 7 zi n_i +<^P)* In this local coordinate system the singularity surface 
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L-(O) ft *fy ' Is just the surface z, * 0, restricted to the space t,^'1* of 
local coordinates. The physical region <r(D ) near p Is mapped into the 
intersection of C with the ray 

Re z. > 0 , It (22.1) 

II. BUBBLE DIAGRAM FUNCTIONS 
Topological considerations arising from the cluster decomposition of the S-
m-trix play a central role in the derivation of discontinuity formulas. Conse­
quently it is helpful to represent certain important functions by diagrams, 
rather than by letters. 

L. Box Diagrams The S-matrlx is represented by a plus box, and its hermitian 
conjugate is represented by a minus box: 

s<p. . . p ) 

S <»1-—V >mH---*n> (1-1.2) 

The unit operator i s represented by an I-box: 

The imitar i ty equation 

£ s ( P l , . . . p m ! pj.-.p') s + ( P ; . . .p ; 8 P n f l . . . . p n > 

" U'v—'ni Vi-•••'«> 
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m-
i MB -

The shaded strip between the plus and minus boxes stands for a sum consisting of 
all possible numbers N of Intermediate lines, and there is an implied summa­
tion over all distinct sets of variables associated with these lines: 

P£$ J $%"•'«•* 
Here © Is a normal-ordering theta function that excludes from the region of 
integration all points p' - (pi»'""P]s|) t n a £ differ only by the ordering of the 
variables p' from points already included in the region of integration. 
Alternatively, <Q) can be taken to be the inverse of the symmetry number of the 
diagram. This number is the number of symmetry operations that tak=? the diagram 
into itself. In particular, for the terra on the left-hand side of (1.1.4) having 
N intermediate lines the symmetry number is NI, provided the particle types t. 
associated with the intermediate lines are not predetermined, and hence the sum 
includes for each internal line i a sum aver all particle types t.. The 
external lines of a diagram are considered to be distinguishable. 

2. The Cluster Decomposition 
Each box is written as a sum over all topologically different ways of connecting 
the fixed external lines to a set of bubbles. For example 

=!«&^§5 +Z ^ 4«~X^_-*-8 

+ s ;©: 
(16) 

(36) ZQZ 
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This is the clustur decomposition of S. The order (from top to bottoa) in 
which the lines are connected to a bubble is not a topological distinction, nor 
is the (vertical) order in which the bubbles are placed on the paper. The 
number of diagrams in each partial sum in (2.1) is given below the summation sign. 
Within the bubbles occurring in the cluster decomposition of the plus (tesp. 
minus) box is placed a plus (reap, minus) sign, except that no sign is placed 
inside the trivial hubbies, which are those with exactly one incoming line and 
e :actly one outgoing line. The nontrivial bubbles with one or zero incoming 
1 .nes or with one or zero outgoing lines are omitted, because of stability 
requirements. 
The cluster decomposition of the I-box is similar, except that only trivial 
bubbles are allowed. Thus if the box on the left-hand side of (2.1) were an 
1-bcx then the right-hand side would be reduced to the final sum of 41 terms. 
The plus and minus bubbles represent the connected parts of S and 5 , 
respectively: 

i(p> 

• .p „> '2.2) 

- P (P) 
- sW, • W - ' V (2.3) 

Sometimes (see below) the minus bubble is defined to be minus the function 
defined above. Then in each term of the cluster decomposition of the minus box 
there is an extra factor (-1) , where N is the number of minus bubbles in 
that term, and (2.3) is replaced by 

- F <p) 

••Pj (2.3') 

The trivial bubble represents the same function in the decoupositcn of the plus, 
minus, and I boxes: 

\ n n > — 
(2.4) 

Each term in the cluster decomposition represents the product of the functions 
represented by the individual bubbles In that term. Thus each of the U\ terms 
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In the final sum in (2.1) is a produce of four factors of the type (2.4). 

Particles with spin can be included by regarding particles with different z 
components of spin as different types of particles. Fe:<ulons can be included by 
introducing a minus sign for each crossing of fermion llne-i in a diagram. 

The connected parts F and F each contain a conservation-law delta function. 
The functions f and f are defined by 

F ±( P) = <2ir)* fi*(E c t P i ) r ( P ) (2.5) 

These functions f (p) and f (pj are called the scattering function and the 
hermitian conjugate scattering function, respectively. 

3. Bubble Diagrams B 
Example 

Generally a bubble diagram B is a diagram consisting of signed bubbles connected 
by directed lines. Each bubble has two or more lines entering on its left side 
and two or more lines leaving from its right side. Each line runs always from 
left to right. This last condition excludes, for example, 

from the class of bubble diagrams. 

it. Bubble Diagram Functions F and f 

Each bubble diagram B represents a function F , which is the produce of the 
fun-'Pions F or 7 corresponding to the bubbles of B, integrated over all 
distinct values cf the variables corresponding to the internal lines of 8. 
This integration has the same form and normalization as (1.1.5), where (gi can 
now be •aken to be the inverse of the symmetry number Ng. This number N is 
the number of symmorrv operations that take B into itself. 
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Example If B is 

then N is 3!3!4!4!2t. The 21 comes from the symmetry under interchange of 
the two minus bubbles. The other four factors come from the symmetries under 
interchanges of the internal lines within each of Che four sets of internal 
lines. In calculating the symmetry number of a diagram the external lines are 
considered distinguishable. 

With this normalization the bubble diagram functions occurring in the equations 
we consider will always occur with coefficients plus or minus one. 

F contains an overall conservation-law delta function, and f is defined by 

-i'l' (4.1) 

5. Products of <5-Functions 
A bubble diagram function F will generally contain a product f of scattering 
functions f and f times a produce (if mass-shell and conservation-law 
delta functions. A product of delta functions is generally defined by transform­
ing to a set of integration variables that includes the arguments of the delta 
functions: 

[f'n«<ki(«))<ix1,--.dxn 

j 1-1 

" / f d V i - d « B

J " 1 • <*•» 
where J - |dg/d^j is the Jacobian of the transformation. This procedure is 
legitimate provided J is nonzero throughout the domain of integration. 

6. Condition for J i* 0 
Near any point x in the domain of integration one can find a set of functions 
g^_,(x), ••• ,g (x) tiû h iV-it J f 0 unless the m gradient vectors 
'8ii'"i'B are linearly di>p«ndent at x. To find the J j< 0 conditions for 
a bubble diagram function F first eliminate the conservation-law delta 
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functions by expressing the p in cerms of the loop momenta k , 

where p , e x is a function of the external momenta. Then the arguments of Che 
remaining delta functions are the functions 

B^k.p! 6*) • P 1
2(«.P 1

e X) " " t
2 • (6.2) 

The gradients 7
v S t of these functions are linearly dependent if and only if 

for some set of a,, not all zero, 

I "i Vi • ° • ' < 6 - 3 > 
i 

The Insertion of (6.2) and (6.1) in (6.3) gives for each loop £ the equation 

E a i p i "u • ° • ( 6 - 4 ' 

These equations {6.4} are just the Landau loop equations for the Landau diagram 
D(B) constructed by shrinking each bubble of B to a point. Thus the product 
of the mass-shell and conservation-law delta functions occurring in F is 
well defined away from the Landau surface L(b(B)). The function F is 
expected to be singular at Llj)(B)). It will also have other singularities 
arising from the singularities of the functions f and f themselves. The 
structure theorem to be descrihed in Section III specifies the possible locations 
of singularities o: bubble diagram functions. 

7. Singularities Required by Unitarity 
Consider ? -* 3 unitarity; 

+ Z H+ff?; 
f f 

+ I 
i.f 

(Convention (2.3') Is used here.) 



DISCONTINUITY FORMULAS Sec. Ill 

Can we assume that all scattering functions £ and t" are everywhere analytic? 
No, this is not compatible with unitarity. For the bubble diagram functions on 
the right-hand side of (7.L) would then contain singularities that could not 
cancel among themselves (provided the relevant f~'s are not identically zero, 
in which case other unitary equations could be considered). Thus unitarity 
requires some of the functions f~ to have singularities (since we know tney are 
not all identically zero). 

The normal analytic structures (NAS) described in Professor Iagolnitzer's 
lectures does not require scattering functions to have any singularities: it 
says only that the allowed singularities lie on L . Thus we have 

(i) Unitarity requires some singularities; 
(ii) NAS allows only certain singularities. 
Questions 
(1) ts NAS consistent with unitarity? 
(2) If so, which of the singularities allowed by NAS are forced to be 

present by anitarity? 
(3) Can one derive the discontinuity formulas just from unitarity and 

NAS? 
(4) If so, what are these formulas? 

The present work is addressed to these questions. 

III. THE STRUCTURE THEOREM 
The structure - .*?orem describes certain analyticity properties of bubble diagram 
functions that follow from the normal analytic structure of scattering functions. 
This theorem plays a fundamental role in the derivation of discontinuity 
formulas. 

1. The Normal Analytic Structure 

(a) f +(p) is analytic i n ^ r - L +. 
(b) f (p) at p £9i| /I L is the boundary value of an analytic function 

from any direction in the tangent space to "P} r at p that lies in the cone 

C +(p) = ( J {p + iq: Im *(p + iq; D+(pJ) > 0} . (1.1) 
D +(p) 

The cone C (p) is the intersection of the "upper-half planes" associated with 
all the positive-a diagrams D (p) that generate p. Properties (a) and (b) 
also hold if f is replaced by f~, provided the sign of $ in (1.1) is 
reversed. 

The precise meaning of properties (a) and (b) is defined by introducing a set 
z - (z.,- -•» Z3__A) °f local coordinates of <fi\ at p. Property (a) says 
that If the mapping z(p) is restricted to some sufficiently small neighborhood 



HENRY P. STAPP 

of p Chen f*(j>(z)) Is analytic in the z-space image zfe>>] - L +) of qi\} - L . 
This property is independent of the particular choice of local coordinates 

Property (b) is expressed in terms of the vectors 

U(D +<P>) 2 ' »(p; D+(5))l 
p-p 

a 7 »(5; D (p)) 

or more precisely, their z-space images 

U'(D +(P>) 5 v s «(p<2); D+(p)) | 
z"z(p)-z 

I 7 6(p(5)j D+<pj) . 

The components of u 1 are related to those of •.: by 

(1.2) 

"i L "l 3zx 
(1.4) 

z"z(p)-z 

The cone of veccots u' (D (p)) has in y - In z space a dual cone 

C +(z) i j ] fy: y-u'^Cp)) > 0> . (1.5) 

0 +(p) 
Let C be any nonempty open cone (with apex at y • 0) chat is contained 
with its boundary in C (z) (J {y - 0}. Then property (b) asserts that there 
is a complex neighborhood *ty of z and a funcCion f (z) that (1) is analytic 
in ^ (\ tin z e Cl, and (2) coincides in the limit Im z -* 0 with Che distri­
bution f (p(x)) in *fy (\ {la z • 0}, in the sense chat for any CesC function 
X(x) with support in W fl [itn z • 0} 

f f+(p(x)) x(x) dx - lim jf +(x + iy) x(x) dx . (1.6) 

Moreover, any decompositon of the sec of vectors u'n) (p)) into closed, convex 
cones J\ (with apex at the origin) induces a corresponding decomposition of 
f near p into distributions f such chac each f (p{x)) near x • x is 
the boundary value of a funcCion f.(z) from almost all directions in the dual 
cone 

C*G) = f j (y: y*u'(D+(p)) > 0} > 

D +<i) eE( 
in the manner anologous to that described above. 
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Claim (b) depends on Che function <>(p; 0+(pj) only via Che direction of the 
z-space image u'(b <p)") of u(b (p)). Any u E *%*{$) has an image u' - 0, 

The expression (1.1) for C (p) can I 
theorem: 

simplified by using the fallowing 

Th orem 6 For any representation 0 (p) the vector uQ) (p)) can be expressed 
as the finite sum 

u(D+(p)) - £ \ U(D*<P)> 

where the A. are nonnegative scalars and the 0, are the diagrams that 
+ + + 

are contained in D and satisfy p r. L-(D.). A diagram D, is contained in 
+ + + 
D if and only if D_ contracts Co D-. 

This res^it is closely connected to Theorem 2. To prove ic one may first use 
the argumentation in Pham*s theorem to conclude that all representations D (p) 
of D that generate p must have the same set of internal momenta p, and 
then, by considering the range of the a's, identify the diagrams D. as the 

+ — various contractions of D at p that cannot be further contracted. 

This result allows, in Eq. (1.1), the sum over all D (p) to be reduced to a 
sum over all D (p) such chat P e L.(D ). 

2. Landau Diagrams That Fit into Bubble Diagrams 
Example 
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D fits into B. 

Generally a Landau diagram D is said to fit into bubble diagram B if and only 
if D can be constructed by inserting into each bubble b of B either a connected 
Landau diagram D. or a point verLex D . The initial and final lines of D. 
must coincide with the incoming and outgoing Lines of b, in the natural one-to-
one fashion indicated in the example, and each internal line L, of D. must 
carry a sign o. that coincides with the sign of b. The external lines of die 
va-ious D.f which are all explicit lines of B, are left unsigned. 

A .uperscript B on D means that this Landou diagram D fits Into B. 

3. The Structure Theorem 
Theorem If the NAS holds then 
fa) f B(p) Is analytic in ?»? r - L , where 

L B = \j L(D B) , {3.1) 

D B 

and 
<b) f (p) at p e ^ ' H L is the boundary value of an analytic function 

from any direction in the tangent space to 7*1 r at p that lies in the cone 

CB<p) = / 1 fp + iq: Im * $ + iq; DB(p)) > 0} . (3.2) 
D B(p) 

This result far the bubble diagram function f is completely analogous to the 
NAS: the superscript + is merely replaced throughout by the superscript B. 
Claim <b) is void if C (p) is empty or tails to intersect the tangent space to 

4. The Physical Region of B 
The physical region of B, called (^(B), is the region outsid.. ^h F • 0 due 
to the mass-shell and conservation-law constraints occurring in its definition. 
These constraints are the same as those associated with the bubble diagram D(B) 
obtained by shrinking the bubbles of B to points. Hence 

(?<B) - <P(D(B)) (4.1) 
and 

F B(p) - 0 for p outside <P(B) . (4.2) 

The function F (p) is generally nonzero ir*side (p(B). Thus it cannot generally 
be the limit of a single analytic function in any real neighborhood of a point 
p e L^D(B)). Hence claim (b) of the structure theorem must be void for 
p t L(U(B)). 

This is indeed the case. Since every bubble of D ° D(B) Is contracted 
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to a point, no lire of D" carries a sign. Thus for any representation D B(p) 
another can be coratructed by reversing the signs of all a . The signs of the 
vectors u(p) and w(p) are also reversed, hence so is the sign of $Cp; D (p)J. 

Thus If p lies on L(D(B/) thi cone C (p) is empty, and claim (b) is void. 

5. u <* 0 prints 
Suppose there is a D (p) such that 

u(DB(p>) i 0 

oi equivalent!y such th^t 

u*(uB(p)) • 0. (5.1) 

Then C (p) does not intersect the tangent space to ?>p r at p, and claim (b) 
is void. 

A point p such that (5.1) holds Is called a u • 0 point. Such points some­
times cover open sets. However, in the many cases studied so far the function 
f is not actually singular on these open sets. Thus the structure theorem, in 
its present font is inadequate at u - 0 points; it permits singularities that 
are not actually present. 

This inadequacy of the present version of the structure theorem is ciro .vented 
in the present work by introducing a perhaps needless assumption, as w',11 be 
discussed later. 

IV. THE DISCONTINUITY OF f + AROUND L_(D+) 

Let D be a positlve-a diagram, and let p e 9>j' be a point that lies on 
L„(D 1), if and only if D- is D . To define the discontinuity cf 
f around L Q(D } near p it is convenient to introduce the local coordinates 
described at the end of Section II. The Landau surface L.(D ) near p is then 
mapped into [z. « 0}, and the physical region /P (D ) near p is mapped into 
the positive real axis in z. space. 

The domain of analyticity of f u>(z)) near z • z(p) • z • 0 is, according to 
the HAS, controlled by the vectors u*a),(p)V In our case there is, modulo 
dilations, just one such vector, 

u' - n$(hl D+(p>) 

- (1.0.---.0) . 

Thus f (p(x>) at any real point sufficiently near z • 0 is the limit of the 
analytic function f (z) i f (p(z)) fron ;iny direction in y • Ira z space that 
satisfies y-u' > 0; i.e., f (p(,x)) near x • 0 is essentially the limit of 
f <[p(z)) fr,,n> th<* upper-1i.il f ?.. pl.ine. 

http://upper-1i.il
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The discontinuity of f aro-jnd - n(D ) Is defined to be f minus the function 
f obtained by analytically continuing f from the region x < 0 into the 
region x. * 0 by a path that passes around z. • 0 via & detour into the lower 
half z plane, as indicated in the figure below: 

!il 
f * 

This discontinuity is evidently zero at points x, < 0. 

Tha general formula for this discontinuity is illustrated by the following 
example: if 

then the discontinuity of f around L_(D ) is the function represented by 

BID*) 
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The letters a, 8, and y label certain specified sets of particles, a.id the 
corresponding dotted lines cut sets of internal lines that correspond to these 
sets of particles. The -a box represents the function S defined by 

S S " l - I , a a a 

where S and I are the restrictions of S and I to the space corresponding 
to the set of particles a. 

The formula in any other case is constructed analogously: each vertex of D 
is replaced by a plus bubble, and on each set of lines a connecting a pair 
of vertices of D there is inserted a -a box. 

This formula holds in some snail neighborhood of the specified point p. Later 
we shall obtain some discontinuities ft/nmilan that hold globally (i.e., at all 
real points p c -y*\_ ). These global formulas are the ones that control the 
principal contributions to the dispersion relations, but the local ones des­
cribed above are also important. For example, they are needed in the derivation 
of the Reggeon discontinuity formulas. 

V. DERIVATION OF THE FORMULA FOR THE DISCONTINUITY 
OF f + AROUND L 0(D +) 

In this section it is shown how the formula for the discontinuity of f around 
L n(D ) is derived. First the general method is outlined, and then some examples 
are given. 

1. General Method 

Consider a diagram D i..id a point p e *ftf that lies on L n(D } if and only if 
Dĵ  Is D . 
Step 1 Use unitarity and the cluster dcconposition properties of S and S to 
effect a decomposition 

F + « T(D +) + R(D +) , (1.1) 
such that 

T(D +) - B(T,D*) (1.2) 

R(D T) - B(R.D ) . (1.3) 

The B(T,D ) and B(R,D ) are sums of bubble diagrams, each nulttpled by a 
nonzero scalar coefficient. These coefficients are generally plus or minus one, 
and the sums represent the sums of the corresponding bubble diagram functions, 
each multiplied by the corresponding scalar coefficient. The following two 
demands are madt-: 

(a) For each B In B(T,D +), D(B) contains ? +. (1.4) 
{b) No B in B(R,D+) supports D +. (1.5) 
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B supports D if and only if some D' that fits Into B contains D. A 
diagram D' contains a diagram D if and only if the lines of D can be placed 
ir< one-to-one correspondence with a subset of the lines of D', and the contrac­
tion to points of the remaining lines of D*, all of which roust be internal, 
reduces D' to D. A signed line of D can be placed In correspondence with 
a line of D' having either the same sign, or having no sign, but not with any 
line of D' having the opposite sign. The main problem in calculating the 
discontinuity formula is to find a decomposition satisfying (1.1)-(1.5). 

Step 2 Consider first only those singularities that correspond to solutions of 
the Landau equations in which all a's are positive or zero, or all a'a are 
negative or zero; i.e., temporarily ignore all mixed-a singularities, which are 
singularities corresponding to solutions o£ the Landau equations in which some 
a's are positive and others are negative. 

Because p lies on L Q(D ), but on no other basic positive-a surface, all 
vectors u(D'(p)) corresponding to positive-a solutions are positive multiplei 
of u(p (p)), by virtue of Theorem 6, and all vectors u(j>'(p>) corresponding 
to negative-Q solutions are negative multiples of u(p (p)). 

The functions f , t(D ), and r(D ) represent the functions F , T(D ), and 
R(D +), with the factor (2TT) 6(Ze p ) removed. The NAS says that f+<j>(xjl), 
near p, is the boundary value of f G>(z)^ from within the cone dual to 
«' (p (p))» i.e., essentially from the upper-half z, plane. 

The analytic structure of r(D ) is given by the structure theorem. The 
requirement (b) on B(R,D ) ensures that none of the singularities of r(D ) 
correspond to diagrams that contain Q . If mixed-o singularities ave ignored 
this leaves only the singularities corresponding to Che negative-or solutions. 
All the vectors u' U)(p)} corresponding to these negative-a solutions are 
negative multiples of u'y> (pi). Consequently, r(D } Is '.he limit from the 
lower-half z, plane. 

Property (a) of B(T,D ) ensures that T(D ) vanishes outside (P(D ) , i.e., 
in x < 0. Thus in this region the function f coincides with r(D >. 

+ + 
Therefore r(D ) is a function that coincides with f in the region 
x- < 0 (i.e., below the threshold x. " 0) and that continues around x, <• 0 
by a detour into the lower-half z. plane. Thus r(D ) is the function f + + + of the preceeding section, and the difference f - r(D ) K t(D ) is the 
discontinuity. 

Step 3 Use the discontinuity formulas obtained, neglecting mixed-u singulari­
ties, in steps Land 2 to show that all mixed-a, singularities in r(D ) cancel 
among themselves. 
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This procedure leads (at loose in the formal framework described below) to the 
unique discontinuity formulas described at the end of the preceding section. 
However, it is based on Che ansatz chat Che mixed-n singularities cancel among 
themselves. Hence the possibility of some other solution, in which the mixed-a 
singularities do not cancel among themselves, is not ruled out. 

Derivations not based on the mixed-a cancellation ansatz are blocked, at the 
present time, by the inadequacy of the structure theorem at u • 0 points. If 
one uses a recently proposed, but still unproved, new version of the structure 
theorem that does adequately cover u - 0 points then it is possible to derive 
without using the mixed-a cancellation ansatz, and also to prove unique, the 
discontinuity formula described above at least in the simplest of all cases, 
which is the pole-factorization theorem below the four-particle threshold In 
the equal-mass case. However, this new theorem is still unproved and has not 
been applied co any other cases. Thus we shall use, in the present work, the 
mixed-a cancellation ansatz, and leave aside the question of uniqueness, except 
to express the opinion that a consistent solution of the unitarity and analyti-
city conditions in which the mixed-a do not cancel among, themselves is surely 
impossible. 

The third step listed above, namely the verification that all mixed-a singulari­
ties do indeed cancel out among themselves in R(D ) has been carried out in 
many special cases, but has not been proved in general. 

2. Pole-Factorization Theorem Below 4-Particle Threshold 

In this special case the diagram D in question is the pole diagram 

(2.1) 

\ _^* . 4 
D £ole=D + = > 

*T 

< 

m
 

to 

Unitarity and clrjt-sr decompo sition give 
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+ 
(3) 

(2.2) 

where, merely to shorten the formulas, the f-particle intermediate states have 
been omitted. Postmultiplying (2.2) by 

(3/) """- (9) 

rearranging terms, and using two-particle unitarity, 

=©=-=©= = =&& 
(2.4) 

one obtains 
F + = T (D +) -RID"*") < 2- 5> 

F +^ =(+£ (2.6) 
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T(0 T) = ( ' - ^ > ^ & & 

• = % = 

(J.,^*£2:> ' (3.0 " |9) ' 

(2.7) 

(2.8) 

Properties (a) and (b) are easily checked; 
(a) B(T,D ) is the right-hand side of (2.7). It consists of a single + diagram B, and D(B) clearly contains D . 
(b) B(R,n ) is the right-hand side of (2.fl). Ic is easy to see that 

no B In BfR.D ) supports 0 . 
The following two observations suffice: 
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(i) Stability conditions entail that each vertex of a Landau diagram 
have at least two initial lines and at least two final lines. (The others 
correspond to empty sets L(D), and are to be omitted.) Thus the two lines 
comlnR Into a tuo-to-two bubble must meet at a vertex. This fact, together with 
Che fact chat che diagram D, inserted into each bubble b must be a connected 

b + 
diagram, precludes the possibility of fitting D into any bubble diagram in 
Che first three sums in R<0 ). 

(ii)- In considering whether a D fits into a Q one may consider 
ea h minus bubble of B to be a point vertex, since all lines coming from 
inside such a bubble carry minus signs, and hence must be concracced to points 
in the contraction that yields 0 . But the contraction of the big minus 
bubbles in the remaining term in R(D ) renders it unable to support D . 
Decomposition of Singularities This formula for the discontinuity near p, 

F + -R(D + ) = 

together with the NAS, implies that near p 

F + , 

R ( D+) t -

Here - means equal in the sense of microfunction ( and locally modulo 
analytic functions), and a plus (or minus) sign on -a line L, of a bubble 
diagram B means that only those parts of the singularities of F that 
correspond to vectors u' u>'(pV) associated with solutions of the Landau 
equaclons with 3 > 0 (or a < 0) are accepted. Similarly a zero on a 
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itnf i of a bubble diagram B means that only those parts of the singulari­
ties of F that correspond to solutions of Landau equations with a • 0 «xe 
accepted. The notion of a decomposition of singularities into parts a*socl*tl:ed 
with different directions u(b(p)) is the heart of the theory of essential 
support, and of the theory of alcrofunctions. It is closely connected with the 

2 2 2 2 
local decomposition of 2it 6(p. - m ) into 1E/P, - m. + it and 

J 9 
-ic/pj - n>j - it. 
Cancellation of Mixed-tt Singularities Consider the Landau diagram 

where a zero on a line I. of a Landau diagram indicates that the corresponding 
a, is zero. The associated Landau surface L(D') la confined to L(D , }, i + _ pole 
and may coincide with L( D

0 0l»^ i n s o m e neighborhood of p. If such a nixed-a 
singularity were present in R(D . ) it would diarupt the Privation of the 

poie + 

fomula for the discontinuity around Ln^Doole^" 
However, the various contributions Co K(D . ) associated with this diagram 
0* exactly cancel: 

5 0 ^ = ^ ^ 

The three bubble diagrans on the left arc the only once In B£r,D } that 
support D'. Their contributions to the singularity corresponding to D' are 
indicated on the right. Thest; contributions si'* to zero, by virtue of two-
particle unitarity. 
3. Triangle IH.iRram Singularity 
(Below the 6-pnrticlc threshold). Dofine 
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Consider the expansion F « T (D . ) + R(D , ) used in the preceding sub-
po-le Dole + 

section. The only B*s in B(T,D ) + B(B,D > that support D. are 

+ =€J-i+t 
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Only the last term supports D.. And the D(B) corresponding to this last term 
contains D,. Thus i£ this last term is identified as T(D ) then the required 
conditions (a) and (b) on T(D.) and R(D.) are satisfied. 

a A 
4. The Indented Box 

Theoreti 7 Unitarity and cluster decomposition entail that 

^ 3 miTTTIITTITl I O 

Q nuiiiiiw]I 

where the indented box represents the sum 

(4.1) 

Only a finite nuaber of t^rms contribute to this sum at any (finite) point p. 
There Is a sum over all :vays of decomposing the set a into parts ai*"*' a

n+< 
a sum over all ways of decomposing > into parts y. and Y,, and 

± — y 

The sum of all terms in the cluster 
decomposition of the box in which each 
line of a is connected by a bubble to 
some line of fl. 

(4.3) 

Examination of (4.2) shows that the indented box is a sum of bubble diagrams 
B with the following property: no B in this sum supports any D having a 
set a' / n of positively signed lines which if cut sp-ji-ate the diagram into 
two parts A and B such that A has incoming lines a and outgoing lines 
a* and B has Incoming lines a' and 6 and outgoing lines y. Thnt is, no 
D that fits into any B in the indented box can be decom,->sod into a structure 
of the form 
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(4.1) 
unless a* = a (i.e., unless A contains only trivial bubbles). The A and 
B are allowed to be either connected or not connected. 
Theorem 7 combined with unitarity gives 

(4.5) 

These results play a central role in the derivation of general discontinuity 
formulas, and they will be used in the following subsection. 

5. Leading Normal-Threshold Formula 
Theorem 8 

aim] bra' 
ft ma br, 73' 

eH + 

where the arrow box represents 
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2 2>" *„_n 
02=0-/3, a J I + mP' 

(5.2) 

The arrow box is a sum of bubble diagrams B with the following property: 
*«try 0 that fits into any B in this sum has a path that begins in S am 
vnds in a* and consists of segments L. all of which are directed along the 
path. Thus no B in this sum supports any diagran D of the form 

(5.3) 

where the A and B are allowed to be either connected or disconnected. 

Defining 

j[+]p=i[+^-ii(+yi[ 
C5.4) 

one can write 
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^ B 3 

rhe second and third terns In the last line of this equation support no normal 
threshold diagram D , which Is a diagram D of the form (5.3) with point 
vertices A and B. The last term does support D in general, but not at 
points p that lie on no basic surface except L_(D ). Far the disconnected 
nature of the boxes on the ends of this term entails that the corresponding 
function vanish unless the conservation-laws correBponding to the disconnected 
parts are satisfied, and this entails that p lie on L n(D ) for n corres­
ponding diagram D ^ D . Thus at points p that lie on no basic surface 
except L_{D ) we can identify the first term in (5.5) as T(D ) : then 
conditions (a) and (b) are satisfied, and T(D ) is the discontinuity around 

»:• 
VI. FORMAL METHOD 

The procedures used In the preceding section allow the discontinuity 
formula stated at the end of Section IV to be derived in nany cases. However, 

+ + 
the question arises whether functions T(D ) and K(D ) satisfying the required 

+ + 
properties exist for all D with nonempty L n(D ), whether these functions are 
unique (within the framework based on the mixed-a cancellation ansatz), and 
whether the stated formula holds In ail cases. The aim of the present section 
is to explore t.hese .questions, and in particular Co: 

(a) Trove the existence of T(D > and R(D > 
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(b) Prove che uniqueness of T(D ) and, R(D ) 
(c)--Derive the «t-ncraj formula far T0> )» 

The work in this section Is based on infinite series expansions for the quanti­
ties of interest. The method Is formal in the sense that che question of the 
convergence of these series Is not considered: two functions having the same 
expansion arc called equivalent, and are considered to be equal, and analytic 
properties that hold for every term of an expansion are assuued to hold also 
fo - the sum. Also, the mixed-a cancellation ansatz is accepted. Within these 
li litations the formal method used in this section is neat and powerful, 

1. The Minus-Bubble Expansion of S 

Write 
s - s* - a + R+) a.i> 

•ad 
S f • S" • {1 - R*) . (1.2) 

- 1 , (2-3) 
Then unitarlty, 

can be written 
R T - R (1 + R ) . (1.4) 

Iteration gives, formally, 

R+ " £ (R)" " U-5) 

Theorem 9 

• 5>i <1.6) 
i 

The sun runs over avery bubble diagram B, each bubble of vhlch Is a minus 
bubble, and the convention in which the minus bubble represents -S Is used. 

Theorem 9 follows from (1.5) after some cancellations. For example, the bubble 
diagram 

>T • 

occurs in three terms of (X.5)-' 
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Tl £ firsc two terms cone from (R -) , where** che last cooes froa R~. The 
minus sign in che last tera coses froo the one minus sign in (1.2) and two 
minus signs from che minus bubble convention. 

Corollary 

•Y »; (1.7) 

where S is che connected part of S, and Che sun runs over the connected B . 

2. formal Framework 
Any B can be expressed In a unique way as a linear combination of the various 
minus bubble diagrams B.: one simply replaces each plus bubble b of B by 
its expansion (1.7) and collects ter-r- This gives 

• I Ma) c. (2.1) 

where the sum runs over the set of all bubble diagram* B. having only sinus 
bubbles. The Infinite set of numbers n.(fi) is regarded as an Infinite dimen­
sional vector n(B), and all B having the >aae n(B) are said co be equiva­
lent. Sums B " E c b of bubble diagrams S with scalar coefficients c, 
can also be considered, and che corresponding vector r.(B) is defined to be 
£c,n(B t). By this procedure che B7 become the basis vectors of a linear space 
of (generalized) bubble diagrams B. 

Theorem 10 If B can be transformed into B. by an application of 
unitartty and cluster decomposition then B. is equivalent to B-. 
Outline of Proof The unitarity equations, 

S +S" - I - 0 , (2.2) 

are equivalent to zero; 

' [^MJ- ' ]-o 
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For example. In the two-to-two case 

= & • ' • £ « = © = > ' (i.ft) 

(2.5) 

Multiplying (2.6) by (2.5) had collecting terms one finda that every term but 
I drops out. Thus (2.3) holds In this case. In fact, it holds In general! 
i.e., in th<! expansion of (2.2) In terms of minus bubble diagrams B., each 
B, occurs with net coefficient zero. 

In any application of unltarity and cluster decomposition one replaces some * l 

by B 2 where B, and B_ differ by parts B* and B* that are equal by 
virtue of unitarlty and cluster decomposition, these two parts are therefore 
equivalent, by virtue of (2.3): the expansion of B' In terms of minus bubbles 
Is identical to the expansion of Bi. But Chen the rep2aceaent of B' by 
B' in B will not alter the minus bubble expansion of the larger diagram: 
B, will be equivalent to B_. 

Theorem 10 is the basis of the usefulness of the representation n{B) of B: 
this representation is invariant ~i<dtT the operations of applying unitarity 
and cluster decomposition. Any two 3 -hat are equal by virtue of unitarity 
and cluster decomposition, are represented by tim same vector n(S>, and 
conversely, any two B's that are equivalent can be formally converted to tbe 
same infinite series by using unitarity and cluster decomposition, and this 
infinite series, which is specified by n(B), is moreover unique. 

+ +• 3- Existence of T(D ) and R(D ) 

Let B~<T,D ) be the sum of all connected B~ that support D . Let B~(R,P**) 
be the sum of all connected B, that do not support D . Let B (F ) he the 
sum of all connected B~. Then 

B"(F+) - B"(T,D+) + B"(R.D+) . <3.1) 

The corollary of Theorem 9 says that B~(F ) is equivalent to F : 

B"(F+) - F* . (3.2) 
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The sum B (R,D } satisfies the defining property of B(R,D ). Moreover, the 
sum B~(T,D ) satisfies the defining property of B(T,D )» by virtue of the 
following equivalence: for any bubble diagram p. each bubble of which is a 
minus bubble 

B~ supports D if and only If D(B~) contains D . (3.3) 
This is true because every positively signed line in any D that fits into B 
is a line of D(B~), and conversely D(B~) fits into B~. 

Since the requirements on the various terms are all satisfied (3.1) is a formal 
solution of the equation 

F + - T(D +) + R(D +) . (3.4) 

The general formula for T(D ) given In Section IV is the result of reassemb­
ling Che Infinite set of terms in B~(T,D ) into an equivalent finite expression 
B(T,D ), as will be shown, later. 

4. Uniqueness of tha T(D ) and R(D ) 
Theorem 11 Let 

F + - Bf-,D+) 4- B(R,D+) (4.1) 
be any decomposition of P that is derived soley from unitarity and cluster 
decomposition and that satisfies the defining conditions for B(T,D ) and 
B(R,D ). Then the following equivalences hold: 

B(T,D+) = B"(T,D+) (4.2) 
and 

B(R,D+) =• B~(R,D+) . (4.3) 

Proof Suppose B is in B(T,D ). Then D(B) must contain D . But the 
procedure that converts B Into its image B* in the space of B. leaves 
unchanged every line of D(B): i.e., '£') contains 0(B), and hence D . 
Thus every B~ in B'(T,D ) contains D , and hence belongs to B~(T,D ): 

{n1(B(r,D+)) i* 0 } = ^ (n^'(T tD +>) » 1}. (4.4) 

Suppose B is in B(R,D ). Then, by definition, no D that fits into B 
contains D . But the procedure that-converts B to its image Z' in the 
space of P. introduces no plus lines that are not present in some D that 
fits into B. Thus no B~ in B*(R.D ) can support D : 

(n1<B(R,D'5) r 0 ) ' — ^ {n1(B"(R,D+>) - 1} . (4.5) 

On the other hand, Erj. (4.1) is derived soley from unitarity and cluster decom­
position. Thus the two sides are equivalent, and hence for every i 

n£(jl(T,D+)) + n1(B(R.D+)) - 1 . (4.6) 
Since the sots 
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(i: ni(B"(T»D',">) - I) 
and 

U : n1(e"(R.D+)) - 1} 
are disjoint, by construction, the conditions (4.6), (4.5), and (4.6) imply that 
for all i 

^(BCr.D*)) - n i(B"a,n +)) (4.7) 
and 

ni(B(P.,D+)) - a i<B"{T,D +)) . (4.8) 

These are the desired conditions (4.2) and (4.3). 

The decomposition (4.1) therefore exists and is unique, within the formal frane-
uork. The remaining pxoblem Is to show that the discontinuity foraula given at 
the end of Section IV is equivalent to B~(T,D ) , near points p lying on 
L0(D*) if and only if D* is D +. 

5, The Indented Box Revisited 
To introduce some ideas needed for the derivation of the general discontinuity 
formula we consider again the formula 

O irnmrri + tar = a 

/3i 
(5.1) 

Definition A bubble whose initial lines consist exclusively of lines from the 
set <* is called an a bubble. 
Definition 

8'(*,iB;rl. J 2 S n m y 

(5.2) 

is the sum of all B that have incoming lines a and B, outgoing lines Y, 
but have no a bubble. It is called S{o:,8; Y> truncated on a. 
Remark Each term of S'(a,0; Y ) satisfies the characteristic property of the 
indented box, which is that no a' i* a effects a separation of the form of 
(4.4) of Section V. And every BT not in S'(a»0; y) tails to satisfy this 
characteristic property. 
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*m>~;& (5.3) 

Proof Map the left-hand side into B~ space by inserting the expansion S* of 
S given in U . 6 ) : 

J 8 = ( _ | flimin(_J^ (5.4b) 

— nnj i pm (5.5) 

term of (5.4b) (i.e., in S'}, and with a plus sign. It also occurs exactly once 
in the second terra, in the diagram obtained by shifting this one a bubble into 
the slashed minus box. In this term it occurs with a minus sign (we are using 
the convention where the minus bubble represents -S ). Thus the t-„'o terms can­
cel. If B, has n a bubbles then there are, in an exactly similar way, 2 
terms in (5.4b) that exactly cancel out. But if B. has no a bubble then B 
occurs in 5' but not in the second term, and there is no cancellation. This 
gives (5.3). 
6. Flowlines and Schnitts 
To prove general discontinuity formulas the concepts of flow lines and schnitts 
are useful. A flowline is a path in a Landau diagram D that runs from the ex­
treme left of the diagram to the extreme right. It consists of an ordered se­
quence of line segments L. of D all of which point in the direction of the 
path. A schnitt a is a cutting of a set of lines L. of a diagram. It is 
allowed to cut no flow line more than once. The set f is the set of flow lines 

a 
cut by a. Equivalent schnitts a are schnitts that cut the sane set of flow 
lines. A line L, lies right (resp. left) of line L- if and only if L, lies 
right (resp. left) of L_ on some flow line. A schnitt a. lies right (resp. 
left) of a schnitt n if and only if a. is equivalent to a_ and some line 
L cut by a, lies right (reap, left) of some line L. cut by a , and no line 
L. cut by a, lies U'ft (resp. right) of nny line L. cut by a.. A rightmost 
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(resp. leftmost) 3chnitt a is a schnitt such that no schnitt a* lies right 
(resp. left) o£ It. The rightmost (resp. leftmost) schnitt equivalent to any 
given schnitt is well defined. 
A schnitt In a bubble diagram 6 is a schnitt in D(B). 
Consider now the set of B. that have Initial lines a and S and final lines 
y. The sets a and 6 define leftmost schnltts, and y defines a rightmost: 
schnttt. Let a* be the rightmost sctmltt equivalent to a. The sum of all 
these diagrams is represented by 

/3mn 

tuod + linn mnj 
amy = ~ — r Z - l f mr 

0 TTTTIIIlj 

(6.1) 

where the primed boxes represent the expansions of the unpriced boxes in terms of 
the B~. The identity (6.1) follows from the fact that the schnitt a* has a 
well-defined location in each B., and hence one gets each term on the left-hand 
side once and only once by combining independently the sun of all B. that can 
occur on the right of a', which is the sum that represents S(a,£; y) truncated 
an a, with the sum of all possible 6. that can occur on the left of a', which 
is the sum of all B. that represent S(o; a'). This argument will be used 
several times in what follows. 
Application of unitarity to (6.1) gives (5.1). 
Consider next the set of all B, that have Incoming sets a and 8 and outgoing 
sets a 1 and B'. Separate these B, Into two sets. The first set consists of 
those that have a schnitt Y such that (1) all flow lines In f start In o 

, and (2) the schnitt Y cuts B 
and Y" the other containing B 

and end in 
containing 
remainder R. 
Let Y' be the rightmost schnitt equivalent to 
gram B. can be collected into the expression 

into two disjoint parts one 
and B'. The second set is the 

Then the sum of these dia-

_ J — L i «nnf + 

QVE\ \m 0' g 0'+R 

(6.3) 
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This result combined with (5.1) gives. 

/3 ™ ump' 
a nmj .Toma' ctsa + —?—i 

(6.4> 

from uhich the normal-threshold discontinuity formula can be derived as before. 

7. Strongly Equivalent Schnitts 
The mass of a schnitt is the sun of the masses of the lines cut by the achnitt. 
Two schnitts are strongly equivalent if and only if rhey are equivalent and 
have the same mass. 

The concept of the rightmost (or leftmost) schnitt strongly equivalent to given 
schnitt is not always wall defined. For example, if the masses • and m. 
satisfy m. > m- then in 

a" a'" a"" 

the two schnitts a' and a" are both strongly equivalent to a, but there 
is no unique leftmost schnict strongly equivalent to a. However, a simple 
argument shows that there will always be a unique leftmost {and rightnost) 
schnltt a' strongly equivalent to any given schnict a i£ there is no 
schnitt a'" er,tU;alent to a but with larger mass. 

Consider the set 01 «11 B with incoming lines a and 8, and outgoing lines 

X(p) be the subspz^c generated by the set of all B, such that p lies out­
side ^ ( B " ) . Then 
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O TTTTT 
I a 

+ my = £TE^ 
= y mod Xtf). 

(7.1) 

The condition mod X(p) means modulo contributions corresponding to B. in 
X(p). All contributions B~ in which there is ichnitt a"' that la equivalent 
to a but with larger mass fall into this class. When these ft. are excluded 
the rightmost schnitt a* strongly equivalent a is well defined. Every 
tent of the remaining sun of B~ appears exactly once in the box expression 
on the right-hand side of (7.1) 

8. Nonleading Kormal Threahold 
A slight modification of Che argument leading to (6.3) gives this sac* formula 
with y' now the rlghtnost schnitt strongly equivalent to a schnitt Y of 
some definite nass M y, and R expanded to include terns B~ that have 
•chnltts equivalent to Y but with larger <W8B, Then from (7.1} one obtains 

qgmTrP1*1' SUM /+ *> 

where the -Y box represents the Inverse S " of the restriction S of 
S to Y space, which is the sum of the spaces corresponding to all sets of 
particles the sum of whose masses is the same aa that of the set y. From 
this formula (8.1) one derives the discontinuity around a nonleading normal 
threshold by the procedure of Section V.6. 

9. Truncated Scattering Functions 
Let a and & represent the initial and final variables of a scattering 
function: 

(p 

(9.1) 
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Lee some subset of the set a be separated Into a set of disjoint sets 
a, t"-,a . Recall that S,(a; 6) ; F (a;B) Is equivalent to the sum of all 

is defined to be the sua of 
chat have no bubble each 

Initial line of which corresponds to a variable in a... Similarly, the function 
+ -
F truncated on several seta a is the sum of all connected B, having no 
"1 bubble for any a in this set. The function F truncated on the set 

° i * * " , a s °^ s e t s a i i s r e P r e s e n t e d °y 

fr 
l-i 

r F T 

i 

Lemma 1 Let a ,-.-,a be a decomposition of a subset of the set of variables 
a. Let p be a point such that for each 1 • l,'",s all the ;.>. in a, 
are parallel. Then p will lie on various Landau surfaces corresponding to 
diagrams in which there is for each a,, considered as a schnitt, a rightmost 
schnltt a' strongly equivalent to it, and all of the lines cut by all of 
these schnitts a' terminate on one single vertex. Suppose p lies on no 
positive-a Landau surface corresponding to a diagram in which these lines 
terminate on more than one vertex. Then 

F+(a; S> - I T | [ S < V *J) *»J r
0 ] F*<°J. *' * ' ^ ' V B ) " ° d X < P ) 

J 1-1 L 

(9.2) 

where the integral over a' is over all sets of variables the sum of whose 
masses is the same as that of a , and X{p) Is the linear space generated by 
those B~ that satisfy ptf<P( R ) . 

Proof The left-hand side of (9.2) is equivalent to the sum over all connected 
B". The mod X(p) condition allows us to ignore, as above, all contributions 
BT in which any o (considered as a schnitt) is equivalent to a schnitt of 
greater mass. Then for any one of the remaining BT one can consider, for 
each a,, the rightmost schnitt <*! strongly equivalent to a . Consider next 
the part P* of this B~ that lies to the right of all of the rightmost 
schnitts a* This part P* in either connected or is not connected. If it 
is not connected then B~ lies in X(p). For if p lies in (? (B~) then 
the conservation-law constraints corresponding to the various disconnected 
parts of P' must b'. satisfied, and p must consequently lie on one of the 
Landau surfaces excluded by the hypothesis of the lemma* namely the one in which 
the lines cut by the rightmost schnltts a! terminate, not on one single 
vertex, but rather on thi; several vurclces corresponding to the several dis­
connected parts of ?'. These B, with disconnected ?' may, therefore, also 
be ignored, duf to the mod X(p> condition, and one is left with the B. 
such that P 1 Is connected. 
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The remaining set of B. is generated by sunning independently over ali possible 
parts lying an the various sides of the rightmost schnltts a!. The part P' 
lying to the riyht of all these schnitts a' will ba just the truncated function 
occurring in (9.2): i.e., it is the sum of all connected B, that have no 

way is one of the remaining B, defined above, and each such B. is different 
because the location of each schnitt a* is uniquely defined in each of these 
remaining B~. Finally, every one of the remaining 8. Is obtained az least 
once because every possible combination of parts on the various sides of the var­
ious schnitcs a! is included. Thus the lemna is proved. 
The B. that were Ignored during proof because they belong to X(p) satisfy 
a certain finite set of mass-shell or conservation-law conditions chat force 
p to lie outside <P(SJ, Thus E<j. (9.2) holds nod 3C(p) for all p in some 
finite neighborhood of p. 
Front (9.2) one obtains by inversion, near p, 

t-i l i«i l 

where S n is the Inverse of the restriction Sft of S to the space af, whlcl 
of the spaces associated w 

sums of rest masses equal to that of a.. 
The function S is defined formally by 

i 
(9.4) •»*£'V n-1 

where I Is the restriction of unity to the space a and 
R Q = S o - I . (9.5) 

i i i 
10. The General Formula 

Theorem 13 For any D let i(D ) be the discontinuity formula defined 
at the end of Section IV. Let ^z9rjx be a point that lies on Lrt(D ) if 

*+ + and only if D ia D . Then 
o(D") - B*(T,D+) mod X(p) (10.1) 

where B~(T,D ) is the sun of all B~ that support D , and X(p) is the 
subspace generated by the set of B, such that p lies outside fp(B,). If 
for some of the sets of lines of D that run between pairs of vertices of 
0 there are other sets with the same sum of rest masses, so that the theorem 
as stated .ihuve Ls empty, then D can be interpreted in .in expanded sense, in 



HENRY P. STAPP 

which each of these sets of intermediate lines is interpreted as a sum over all 
sets having the '..ame sum of rest masses. The formulas for i(D ) and B~(T,D ) 
should then also be interpreted in this extended sense: the intermediate sets 
a' should be allowed to run over the other sets with the same sum of rest 
masses. 

Proof Let B~ be any diagram in B~(T,D ). This diagram supports D . That 
means that there is a set ^/ of schnitts a. of B whose elements are in 

J + 
one-to-one correspondence with the sets of intermediate lines of D , If for 
any one of these schnitts there is an equivalent schnitt of greater mass, then 
p lies outside (PiB.) and this B" lies in X(p), and hence does not con­
tribute to (10.1). For each remaining B there is for any schnitt in jo a 
unique rightmost schnitt strongly equivalent to it. 
Consider any one of the remaining B . Let each sc 
to its rightmost strongly equivalent position a]. Let P be the part of B, 

+ corresponding to some vertex of D ; it lies to the right of certain schnitts and 
to the left of others. Consider what happens to P, and to its boundary 
schnitts, when each 
a i -
One of several things can happen. The first possibility is that the topology 
is unaffected: i.e., that the new schnitts •*! lie in the sane positions 
relative to each other as the original schnitts a , and that the new part P' 
is connected. The second possibility is that the new schnitts a' lie in the 
same positions relative to each other as the original schnitts, but that P' 
is disconnected. In this second case B. belongs to X(p). for if p lies 
in (P(B~) then it wist also lie on L_(D ) for some D 4 D ; contrary to 
hypothesis. In particular, it lies on the Landau surface L(D ), where D" 
is the diagram constructed from D by replacing the schnitts bounding P by 
the schnitts bounding P', and then joining the lines cut by these new schnitts 
to vertices corresponding to Che various disconnected parts of P' to which 
they are attached. This surface L(D ) Is defined by essentially the same 
conditions that define h(D ) , plus the extra conservation-law conditions 
entailed by the break-up of the connected part P into the disconnected part 
P'. But if p lies in Jp(B.) then these extra conservation-law conditions 
must be satisfied, and hence p must lie in L(D ). However, L(D ) is 
the union oE L_(D ) with the various surfaces L n(D. ), where the D are 

"+ - *+ *• '4. 
certain contractior-s of D . Hence p must lie on L.(D ) for Some D 
different from D , contrary to the hypothesis of the theorem. This is not 
allowed. Thus we ccinrlutk* that p does not lie in (P(B~); i.e., that B~ 
llos in X(p), and henrv does not contribute to (10.L) 
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The third and final possibility is that the rightmost schnitts a' do not lie 
in the same position relative to each other as the original sennitus a . Then 
for some schnitt a standing to the left of some a in the original D the 
rightmost al strongly equivalent to a, lies partly on the right of a',. 
Then some set of flou lines ? has a part Q that starts on a subset Q of 
a' and ends on a subset Q, of a'. The sura of the masses of Q cannot be 
equal to the sum of the masses of Q., for if these sums were equal then a' 
could be moved further right. On the other hand, if Che first sum were greater 
than the second sum then there would be a schnitt a? equivalent to a,, but 
having greater mass. If the first sum were less than the second sum then the 
analogous result is true with a, replacing a,. In either case B, lies in 
X(p), and does not contribute co (10.11. Thus we are left with the first case; 
i.e., with the sum of all B~ having the following properties: (1) there is a 
set 

J of schnitcs a that separate B, in the manner described by D , 
(2) for each a in $f there is no a' equivalent to a and having greater 
mass, and (3) when the a, are pushed ^o their rightmost strongly equivalent 
positions a* the new parts P' are well defined and connected. 
Since the locations of the rightmost schnitts a' in each of the remaining 
B, are well defined the full sum can be constructed by adding Independently 
all possible contributions corresponding co each of the connected parts P', 
The sum of all possible contributions corresponding to any P' is precisely 
the corresponding function F truncated on those sets of initial variables 
a. that belong to & - Use of (9.3) converts this form Co o(D ). 
The formula (10.1) converts the expression B (T,D ) for the discontinuity 
T(D ) obtained in subsections 3 and 6 to the formula quoted at the end of 
Section IV. The contributions B~ e X(p) that were ignored in the course of 
thft proof all vanish in some finite neighborhood of p. 

VII. BASIC DISCONTINUITIES FOR 6-PARTTCLE PROCESSES 
The discontinuity formulas derived above are local formulas; they give the 
difference f - f in some small neighborhood of the point p on L.(D ). 
Moreover, this point p must lie in *yr\* • fif - 9?-. 

For dispersion relations one needs global formulas; i.e., formulas chat hold 
at all real points p. And the needed discontinuities are around the leading 
normal threshold cuts, which always extend to points p lying In ^ l c\' 

Furthermore, one needs not only single discontinuities, but also multiple 
discontinuities. 

Multiple discontinuities across sets of lending normal threshold cuts play a 
basic role in S-matrlx thi-ory and are called basic discontinuities. 
Global formulas fur all basic discontinuities of six-particle processes have 
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been derived, and will now be discussed. The derivation has three parts. The 
first part, which is described in this section, specifies the relevant functions 
and describes the discontinuities and multiple discontinuities Formed from them. 
The second part, which is described in the next section, proves the analytic 
structure of these functions at real points p e^', The third, which is 
described in Section IX, shows that these functions arc the appropriate boundary 
values of a single analytic function; i.e., that there are paths of continuation 
in the complex mass shell that connect these functions to each other, and that 
these functions are the boundary values needed for dispersion relations. 

Anticipating the later results we shall already in this section refer to certain 
functions as boundary values from specified sides of various normal threshold 
cuts. The discontinuities in the three-to-three physical region art; discussed 
first; those in the two-to-four and four-to-two physical regions will be 
discussed later. 
i. The Sixteen Channels R 
A channel is defined by a separation of the initial and final lines of a bubble 
diagram into two disjoint parts, each containing at least two initial lines or 
at least two final lines. For a three-to-three process the sixteen channels 
are indicated below 

: 5 
J. = {4,5,6) 

g - i - 1,2, or 3 J^ - (4,5,6,h) 

f g - f - 4,5, or 6 j - {4,5,6) - vf} 

f 
8 - <if) J { 1 £ ) - {4,5,6,ii - [£} 

Define the invarlnnc* 

s : s(.I ) 6 8 
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and the cuts 

{p + tq: la s U.2) 

where s - 0 is the leading normal threshold singularity in channel g; 
i.e.. s Is the square of the smallest sum of rest masses of sets of particles 
that communicate with particles of channel g. 

3. The 2 Functions M 
Let G be any subset of the complete set E of sixteen channel labels g. 
There are 2 different G's. For each one we define a function K which 
will be called the boundary value from beneath eves? cut C with g E G 
and from above each of the remaining cuts. 

G such that there Is no mass shell point (p + iq) that lies simultaneously 
In the lower-half plane In s < 0 for all g e G and in thr iper-half plane 
In a > 0 for all g e C • E - G. For example, if s = + s. • a + real const. 

g " a o c 
then it is not possible to have Im £i > 0, Im s. > 0 and Itn a < 0. 

Im « 0 »o 

Iros b «o Im S K » 0 

Im s c* 0 

However, the cut I D B • 0 can In general be push-id back to expose a region 
of analyticity that lies on top of the cuts Im s * 0 and In a. • 0 but 
lies below the displaced cut Im a • c. Boundaries-that ein be reached only 
by pus'tingback some cut In this way are called inaccessible boundaries. The 
boundary values at both accessible and inaccessible boundaries will be used in 
the dispersion relations. 

The 2 17 Functions T and T_ 

The functions M are defined in terms of some closely related functions T 
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and T_. These later functions, and also the M 's, are defined without reference 
to the infinite series extension used In.the formal method. And the proofs of 
the analytictty properties of these functions CJR be carried out by h,:!'e „^thods. 
However, it is useful to present first the infinite series representations of 
the functions T„ and T . 

Let D be the connected positlve-a diagram that has precisely tvo vertices, each 
connected to one of the two sets of Ifnes thee define channel g. Then 

T- • T - F + - I. 
B. connected 

g • I 
V 

T - L BJ 
8 B~ connected and supporcs D and D. 

Tc • B. connected and supports D for all g in G. (4.1) 

T v « T 
•jS — f — f 

8 
T6h 

> . Y. ( -D n C H ) 
T" - A (-1)"*"' T H (A.2) 

where n(H) is the number of elements of H. 

These definitions entail also 

* - £ h 
B, connected and does not suppotC D 

B. connected and supports neither D nor D. 

> - £ B-
B, connected and mpports no D̂  * SeG k (A.3) 
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Thus It should continue underneath the normal threshold singularities in each 
channel g c G , On the other hand. (4.2) can be inverted to give 

TH " Z<-»1 n(G) _C TH " L . <-» T . (4.A) 
G n 

uhlch is the formula Eor the aultiple discontinuity across the set of cuts H. 
FL ' example. 

etc. 
Properties (4.1) ensure that the multiple discontinuity T H vanishes, as It 
should, at any real p such that s.(p) < s. for sou hcH. 

Property I 
Each T can be written as 

T C - £ < - » " < H ) T H (4.J) 

uith 

T H - J B , <4.6) 
"'„ 

where for each Be 0 t and each fo^H, D(B) contains D. . 

Property 2 
Each T can be converted soley by neans of unitarley and cluster decomposition 
properties to a form 

T G - Y B (4.7) 
Be<gG 

where no B In d ? G supports II for any g*C. 

Property 3 
T- • T* • T - F + . 

Property 1 ensures that the multiple discontinuities *., have the correct 
support property: they vanish at real p in s. < s. , V H . Property 2 
ensures that T continues undernu.itli .ill normal threshold singularities in 
chan 
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A aet of functions satisfying these properties 1, 2, and 3 has been constructed 
by finite methods. The infinite scries representations defined in (4.1)-(4.4) 
formally satisfy these properties, and thls~5olution can be shown to be unique, 
in the formal framework. 

f G and T„ 
Property 2 makes • T continue underneath the normal-threshold singularities 
in channels geC. However* we also want 1 to continue above the norraal-
tfc eshold singularities in channels gtG - E - G. Consider, therefore, the 
functions T and T.. defined by the sane properties 1, 2, and 3 except that 
the plus cigns in D and F are replaced by minus signs. A solution Is 
given by 

H **H' 
and this volution is used* 

<5.1> 

6. The Good and Bad M 's 
For certain G's, called good G's, the relation T • f holds. In this case 

(6.1) M G s T G - f G 

This function continues underneath the normal threshold singularities for 
gcG and continues above the normal threshold singularities for geG. 
I D general, Che relation T - D • T - 5 holds, and H* is defined by 

M
G = T

G - D G - f 5 - D 5 (6.2) 
where 

D G = 0 if teG , (6.3) 

I <«.«> 

-CD ) . Here 
H r 2 {(i(); ifcG, IcO, ftS) 

(6.6) 
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Among the 2l<> - 65,536 G's there are 26,018 good G's. These are those 
such that there is no (if) such that either {(if)eG, teG, isG, feG> or 
KifVcG, teG^leG, feGJ . For goad C's D - D - 0, and hence (6.2) reduces to 
.'(6.1) 

the bad M 's will be useful nevertheless. 

7. Formula for Multiple Discontinuities 
Th. multiple discontinuity across Che set of cuts H evaluated underneath the 
set of cuts G (satisfying G/7 H - 0) is,by definition. 

«/ , Y.«-«" (H'> „GH' M"" . <7.1) 
H' H 

This set of formulas is equivalent to the set of formulas (for GflH • 0) 

tf * I <-» n ( G , > "HG. • "•« 
G' G 

This second form is convenient because most of the tt, are zero. Indeed all 
M„ with n(B) > 3 vanish! and many of the rest do also. The nonzero R, 
are now listed. 
The function M- = M = M is the connected part of the physical scattering 
amplitude: 

l=GfcJ- ("J 
itinuities M arc 
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(7.M 

and 

It is convenient to introduce special syabols to represent the sua of teres of 
S (or of S ) that have special connectedness properties. The synbol defined 
by 

can be shown to represent the sun of the tenu of S (or S T) in which the 
initial line i is connected to some nontrivial bubble; i.e., tt represents 
the sua of terms in which the line i does not go straight through. Similarly, 
the symbol 

4*^' = sj^g - =d^S' (7.6) 

represents the sum of terms of S (or S ) In which the final line f does 
not go straight through. Finally, the symbol 

" ' • " ' , < ^ & ^ = 
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represents the sum of terms of S (or S T) in which neither i nor £ go 
straight through. -Two frequently used identities, which follow fron <7.8), (7.9)t 

and upitarity, ar? 

' - - = 0 ^ ' . (7.6) 

'.•• rg£<^gE&?£ 

(7.9) 

(7.101) 

- - ;=®Q^g (T-10b) 

--3trf3gfr' (7-10=) 

'-.^^KSr^ (7.10a) 
« *7&=Zt$$tt&: 

*-&%3r&'. (7.10.) 
The nonvanishing f metions H .. are 
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(T.Us) 

(7.11b) r 

The first Cora given for each of these funccions M„, although longer than the 
succeeding ones, exhibits a systematic rule: There is a minus box for each 
h In H, and these minus boxes occur between the parts of plus boxes that 
contain nontrivial bubbles on which the appropriate external lines terminate. 

8. The Inclusive Optical Theorem 
To show how these formulas work ue calculate M.,,., which is the discontinuity 
across the cut (if) evaluated below the cut f, but above all the other cuts. 
Using in order equations (7.2), (7.6), (7.8), (7.18), and (7.8), one obtains 

Jf„,, = .u,„,-.",„,, 
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^Eg>. (8.m) 

In a similar way one obtains 

(8.1b) 

These formulas (S.l) yield the inclusive optical theorem for the three-to-three 
cese. 

9. Results for Two-to-Four and Four-to-Two Processes 
The results for two-to-four and four-to-two processes are very similar to those 
for three-to-three processes. Only the definitions of the channels and the 
formulas for the M-, differ. The nonzero VL, are as follows: 

(9-D 

(9.2a) 

(9.2b) 

(9.20) 
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M,(„,, • 

(9.5a) 

(9-31=) 

(9.3=) 

M((fV'<'"f 

(9.3d) 

mn'iuV"\: 

(9.3e) 
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«.IHV| = 

{.$•'*) 

For all G 

The good G's for Che cwo-to-four case are those such that there Is no pair 
(ff) such that either (Cff'HG, teG, £"tG, f'"eG) or ((ff')eG, teG, £"eG, 
£ , MeG} . For the good G 

(9-5) 

(9-6) 

(9-7) 

X- s ((££'): C££')EG, f"£G, £"'eG} (9.8) 

M u • r - 5 

H G - G C T - D - i G 

D° - 0 i£ teG 

D G • 
( f f ' )eX r 

B f f 

(9.9) 

The results for the four-to-two case are mirror images of the two-to-four 
results with i's in place of f's. 

10. Genera 1.1 red SteLnmann Relations 
A pair of channels g and h is said co be overlapping if each of the sets 
that ,'efine g intersect both of the sets that define h. Note that 

"ty - 0 (10.1) 
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If H contains any fair of overlapping channels. Then (7.2) implies that the 
same is true for K, . These results are a generalization of the Steinmann 
relations found in field theory: these latter relations give analogous results 
for the discontinuities formed from 22S2 of our 65,536 functions H . 

VIII. ANALYTIC PROPERTIES OF THE GOOD M G's 
The good H 'a defined in the preceding section have nice physical-region 
analyticity properties. In particular, they continue into themselves around 
every singularity surface except for certain exceptional ones. This property 
is the result of systematic cancellations. For each M is constructed, 
according to properties 1 and 2, as a sum of terms only one of which, namely 
M itself, enjoys this property. All of the remaining terms are represented 
by bubble diagrams with several bubbles, summed over all possible intermediate 
lines connnecting these bubbles. Each of these remaining terms changes its 
analytic form at each threshold where a new term, formerly zero, starts tc 
contribute. However, in the sum there is a cancellation of either the plus 
ie or minus ie part of every threshold singularity, and the function M in 
some neighborhood of the singularity is a limit of an analytic function from 
some cone of directions in q » Io(p + iq) space. This result holds, in 
fact, near all singularity surfaces except the exceptional ones. 

Continuation through the physical region is blocked by the exceptional surfaces. 
However, the functions on the two sides of these exceptional surfaces should he 
regarded as parts of a single analytic function, in the context of dispersion 
relations. This will be discussed in the next section. In the present section 
the contin i 
discussed. 
1. Schnitts a 
A schnitt <* is a schnitt that separates a diagram D into two parts each 
of which is connected and contains one of the two sets of exterai^. lines that 
define channel g. All lines cut by a schnitt a are required to cross the 
cut in the direction of the positive energy flow in channel g. A schnitt 
a is schnitt a each line of which is either a plus line of D or a line 
8 S _ 
of 0 with no sign. A schnitt o is defined analogously, with either minus 
lines or unsigned lines of D. A diagram D contains a schnitt a (resp. 
a ) if and only if it contains a normal threshold diagram D (resp. D~). 
2. Signs of Lines " r ^ V g 

A line V -<• V in D is a portion of a flow line in D that runs from V 
to V„. A sign n is ascribed to V" -* V if and only if no schnitt a ' n 

B re B 
in D cuts V •+ V . 
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3. Theorem 14 
Consider any B, any D that fits into B, and any line V •* V In 0 that 
has sign n- In any representation oE D 

u g - w r e V n , <3.1) 

where V and V are the open forward and backward light-cones, and w 
and w are vectors to the space-time location of V and V , respectively. 

Proof Suppose n is plus. If V and V both lie inside a plus bubble 
then each segment on ehe path between them has a plus sign, hence points into 
the forward light-cone, and (3.1) follows. If V and V do not lie inside 
the same plus bubble then shrink all plus bubble to points. Then alnosc any 
vertical line that passes between V and V defines a schnitt a that r s g 
cuts V -+ V , contrary to hypothesis. An analogous argument holds if n 
is minus. 

4. Skeleton Diagrams 
Each Landau diagram 0 contains a set G(D) of schnitcs a . A skeleton 
diagram D of D is a minimal subset of the flow lines of D such that 
G(D) - G(D ). For three-to-three diagrams there are 76 types of skeleton 
diagrams: 

*>-< >—A 
^ < >rk FIG. The 

76 skeleton dl i -
(cl U\ t i l [ • ] grams for 3 - 3 

1 1 l ' proeeMta. The 

> y •* jf* j indices itndf 

• '/ ' \ / ^ , V * * X ti,2.3),r«nd 
t i ..* f - i « . 5 , f i ) , rt-

*•» * 3 1 , n . f * ' speedwly. The 
number In 
square brackets 
below each (lg-

,_i r . i ' •"*" KM (a (ha num-
8 l 3 i <M ( 9 ] ber or skeleton 

diagrams repre­
sented by that 
figun. 

... r.i • 

Ml [>] 111 |»J 

>ir< ><5< 
iki r.i i - * ^ (» [>1 

<1\ [J) 
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5. Theorem IS 
Let V •* V be a line of a skeleton diagram D . Let G(V •* V ) be the set r s S T B 
of g such that some schnitt a cuts V •* V . Then for every G that g r s 
contains G{V * V >, for every D with skeleton D that Fits into a B 

c r a'* ' s 
in S i and for every representation uf such a 0 

w - w e V" . (5.1) 
Proof Consider any D with skeleton D t'.iat fits into a B in $ ; 

s + wh re G contains G(V -* V ). This D contains no D with g in C, 
\ s B anc hence no schnitt a with g in G(V •*• V ). Thus V -+ V has a minus 
g ° r s r s 

sign n, and (5.1) follows from (3.1). 
Theorem 15' Theorem 15 holds if S is replaced by $ and V is 

replaced by V , where $ is the set of B - -B for B in $ . 
6. Continuation of Good M s Around Nonexceptienal L(P) 
Consider any good G. Then 

M G - T G - V B (6.1) 
BZ0G 

to diagrams 0, having the same type of skeleton D will he treated together. 
Suppose D is a tree diagram. Let V -*• V be any minimal line of D . 
Then G(V •* V ) will consist of a single element g, which will belong either 
to G or to G. 
Suppose G(V •* V ) C. G. In this case consider the expression (6.1) for M . 
The structure theorem says that this expression for H is singular only on 
those L(D) corresponding to D that fit into a B in (S . If p lies 
only on a subset of these L(D) that all correspond to D's having skeleton 
D , then Theorem 15 says that for all representations of these D (5.1) holds. 
Equation (5.1) precludes the possibility that two D([>)* 3 related to each other 
by a negative scale change both contribute at p • p. It it the clash of the 
ie prescriptions corresponding to two representations connected by a negative 
scale change that signals the presence of a threshold, and that is the nornal 
cause for the structure theorem to yield no cone of analyticity near p. 
The other cases arc similar. If D is a tree graph and G(V •+ V ) C G 
then use of (6.2) and Thenrum 15' loads to essentially the &ame result as 
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above, with V replacing V~. If D is a box diagram chen for any good G 
at least two of che four rainin.il lines V •* V satisfy either G(V * V ) C C 

r s r a 
or C,(V •* V ) c Si and (3.1) holds for then. Thu jegative scale changes are 
again ruled out. 

The above argument rules out, for good M • threshold-type singularities 
generated by a pair of D(p) related by a negative scale change. However, 
the continuation might be blocked by sone other conspiracy of singularities. 
Or: can show, however, by dimensional considerations, that the only conspiracies 
tint can block the continuation near p are those involving two diagrams D.(p) 
and CMf) whose external trajectories are transformed into each other by a 
negative scale change for each p in some codinension-one neighborhood of p. 
On the other hand, the D. ani D. muse conform to che sign conditions (3.1} 
derived above. Surfaces generated D.(p) and D_(p) satisfying these conditions 
are called exceptional. The occurrence of such exceptional surfaces appears 
to be essentially accidental and of no great significance for dispersion 
relations. This will be discussed in the next section. 

DC. ANALYTICXTY IN THE COMPLEX MASS SHELL 
The physical-region analycicity properties discussed above flow from unitarity 

"and siacrocauaality. To obtain analyticity properties at nonreal poi. -% an 
additional assunption is needed. In S-aatrix theory this extra assumption is 
maximal analytlcity, which says that the only singularities of the scattering 
aaplitude are those required for consistency with the other S-natrlx principles 
of unitaritjr, macrocausality, and Lorentz invar is.ice. This assunption, and 
several of its consequences, are discussed in this section. 

1. Maximal Analyticity 
Unitarity and macrocausality yield the phya. cal-reglon analyticity properties 
described in the preceding sections. Maximal analytlclty says that there are 
no singularities in the complex mass shell not required for :onsistency with 
these physical-region analyticity properties and Lorentz Im riance. This 
assumption has two levels. On the deeper "bootstrap" level iw refers to a 
complete solution to the unitarity, analyticity, and Lorentz invariant require­
ments that ma> in principle determine all the parameters of the S-natrix, i.e., 
the masses* and coupling constants etc. But on the immediate practical level 
it refers to the analycicity properties associated wit.i given values of the 
masses. On this latter level it means, in practice, an iterative procedure 
whereby the singularity structure in the complex mass shell is built up starting 
from the basic normal threshold cuts. In this procedure one first neglects 
all cues but riic normal threshold cuts, and then derives further cuts and 
singularities by introducing these normal threshold cuts into the unitarity 
equations. These nee singularities are the' themselves introduced into unitarity 

http://rainin.il
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and further singularities are derived, etc. At each stage one consist* ottiy 

those singularities that have arisen in thd previous stages, and expects to 
generate in the end the complete analytic structure. 

This iterative procedure has two parts. In the first part one considers only 
stable particles (in an approximation where massless particles, and hence 
electromagnetic, weak, and gtavitational interactions are ignored} and seeks to 
generate only the physical-sheet analytic structure. This is the sheet in 
wtv'ch dispersion relations operate, and hence the sheet of principal interest 
he. e. In the second part one allows unstable particle poles, and seeks to 
generate- the analytic structure on all sheets. 

The initial stages of this iterative procedure are described in the following 
subsections* and are used to obtain hermitian analyticity. crossing* and certain 
other properties needed for dispersion relations. 

At the first stage of the iterative procedure one considers only the normal 
threshold singularities and cuts, which include the pole singularities associated 
with one-particle exchange diagrams. The pole-factorization theorem is used 
extensively, and it is assumed that no singularities associated with other 
types of diagrams mask ox simulate these one-particle exchange pole singulari­
ties. That is, it is assumed that the only singularities of bubble diagram 
functions that contribute to residues of poles at the particle masses p " - a 

are singularities associated with the corresponding one-particle exchange dia­
grams, if at some stage of the construction of the singularity structure a 
singularity is found thet disrupts this property then it should be tbiten into 
account ac the subsequent stages, but uot before. Howevever, no such singularity 
has ever been found. 

2. Hermitian Analyticlty 
This property says that the functions represented by the plus and minus bubbles 
are analytic continuations of each other. To show this for a two-to-two 
process consider a larger process whose amplitude contains the two-to-two 
amplitude as a factor of a four-fold multiple-pole residue. The scattering 
amplitude for the larger process is represented by the bubble on the left-hand 
side of 

(2.1) 
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The original tuo-ta-two proceaaea is represented by the central bubble on the 
right-hand Bide. 

Consider now the unitarity equation 

iB 

W 
= o 

where the subscript c denotes connected part. Zt can be separated »o four 
terms 

*EJ 

<B. 

3 F *EEE 

33s <G+ 
+ R = 0 

where R is the sum of contributions to (2.2) not appearing in any of Che 
first three terms. For brevity this equation is written 

A + - A_ - »fl + R - 0 . (2.3) 

The term R gives no contribution to the four-fold multiple-pole at p * mp . 
The contributions of the first three terms are displayed in the equations 

Cquoclon {2.1*} continued next page 
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Equation {2.4} continued 

+ R0 

(2.4) 

A plus or alnus sign a. on a line L. of a nubble diagram signifies 
the restriction of essential support of the displayed function to the part 
generated by the indau equations with the restriction a.a, > 0. This means 

that the IWSS-E; '. delta function associated with this line Is replaced by a 
pole, according the rules 

<2.5) 

- ^ - - -"P., 2 " •«* " " • 
in the sense that the displayed function in a neighborhood of one of these 
singularities is represented by a function having a pole factor of the indicated 
type (2.5) and having the indicated residue. This residue is the product of 
the displayed bubble functions, times a factor of plus 1 for each plus line 
and a factor of minus i for each minus line. These factors of 1 come from 
the residues of the pole factors (2.S). 

The remaining terra R t R , and R. in (2.4) have no four-fold multiple-pole 
2 2" 

contribution at p • a a • l«-"#4. 
The momentum-energy variable p is the momentum-energy variable associated 
with internal line a: 

i e E a 
where E is the set of labels 1 of the external lines of the outer bubble 
connected to line a. 

Multiplication of (2.3) by the factor 

Tf-flV" 
gives 
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A? - A' - A' + R' - 0 (2.fl) 
+ - 0 

where A' » | ] A etc. 

Each of the three central functions in (2.4) has certain singularities in the 
complex mass-shell of the four particles a » !,•••,4. When variable 

2 '2 P * (Pj'*" , pl6* goes to the pole position p * n , a • 1*2,3*4, Che 
singularities of these central functions in (2.4) will produce singularities 
in the corresponding primed functions in (2.8). These latter singularities 
cannot be present at p • m but absent at nearby points p + m : there 
is a general theorem of functions of several complex variables (Bremermann's 
special continuity theorem) that rules this out. 
These neighboring singularities of the primed functions are associated with the 
Landau diagrams of the larger process In which the four intermediate pole lines 
in (2.4) are contracted to points. These contributions to the singularities of 
the prised functions are represented by the first terms in the equations 

<2.9) 

(2.10) 

(2.11) 

Each first term represents a function that becomes equal to the displayed 
2 2 product of bubble functions at the mass-shell points p • m a • I,*",4* 

and shae outside these mass-shell points has only singularities corresponding to 
the Landau diagrams that fit into these bubble diagrams. The remaining terms 
R*, R\ and RI have no singularities corresponding to diagrams that fit into 



HENRY P. STAFF 

a • 1, — ,4, along with their discontinuities. The equations <2.9), (2.10), 
and (2.11) represent essentially decompositions of the singularities of A', A 
and Ai Into those that have discontinuities having nonzero multiple-residue 
at p - m • 0, a - l.**>,4. are those that do not. 

Consider now a path in the variables of the larger process 

The variable s is the square of the cantar-of-naaa energy of the central 
2 2 2 

process. The variable p is the Condon value of the variables p , and ta 
2 ° 

is the (assumed connon) value of the a . The t variable of the central 
process can be fixed at zero, and the other variables of the larger process 
changed in some minimal way that keeps all •otentusrenergy vectors p real, 

except near infinitesimal iE distortions around singularity surfaces. 2 2 Let P + be a mass-shell (p a • » a , o • l,-.-f4) point lying above the 
physical threshold at s * 4m . Let A* be continued first at constant s 

2 2 2 2 2 
from p * n to p • 0, and then at constant p • 0 to p - p, • 0. This 
path will follow a plus ie (physical) continuation around the singularities 
associated with the plus bubbles of (2.9) and a Minus ie (antiphysical) 
continuation around the singularities associated with the minus bubbles of 
(2.9). The path is allowed, however, to pass through cuts corresponding to 
singularities of the function R* of (2.9). In crossing such a cut the 
function A' changes by just the discontinuity of R' across this cut. In 
this way the function on the path remains always the function A £ defined above. 

2 At the point p • s - 0 the term A' vanishes, because this point lies below 2 the lowest threshold s » 4u in the s channel. Thus by adding R', which 
can be considered to be the discontinuity across a cut, one obtains the 

2 ? 
function A % which is then continued at p » 0 back to s » 4m , and then at 
constant s to the mass shell point P . Thus one has a path that follows 
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veil-defined it rules for singularities corresponding to diagrams having the 
four vertices a, but that jumps across cuts associated with the functions 
R]_, R", and R\ 

this path of 
In this shift of the path of continuation one keeps track of the various cuts 
of the functions R', R*, and R\ that the path jumps across, but does not 
seek to avoid then: instead one adds the discontinuities across these cuts. 
However, one does try to distort the path away from singularities corresponding 
to diagrams that have the four vertices a. 

In tracing out the distortion of the path one stay consider the five parts 
separately; one traces out the notion of tha singularity surfaces of Che 
individual bubbles of (2.9), (2.10), ami (2.11) as the "mass variable" p 2 

corresponding to the vertices a increase from zero to s> . 

Consider first the path In the variables of Che central bubble. For p • 0 
2 

this path starts at a point s • 4m + e above threshold,continues down to 
s • 0T crosses the line Is • • 0, and continues back. As one shifts p 

2 from zero to a certain singularities say cut across this original path in 
the s plane and force a distortion. However, In the first stage of the 
iterative procedure one considers only normal threshold singularities. These 
stay fixed in the s plane and hence cause no distortion of the path. Normal 

2 2 2 
thresholds in p must lie at p > m , and hence are not encountered in the 
continuation. 

Consider next the paths in the variables of the outer bubbles. These can be 
made to trace exactly the sane paths along the original and return portions of 

2 2 2 2 
the part between p • m and p » 0 it fixed s > 4m . Moreover, since the 
invariant variables of the outer parts are Independent of s one can keep the 
same patli in the space of invariants for all *.-
After the path is shifted into the mass shell, which it certainly possible at 
the first stage of the iteration procedure, one has a mass-shell path of 
continuation that connects the residue at P. to the residue at P_. This 
path jumps across various cuts of the functions R", R*, and R*, but the 

2 * 2 discontinuities across these cuts vanish on the mass shell p • a 
a - 1,••-,(. Thus the analytic continuation of the residue At P along the 
uass-sliell path to the point P_ yields the residue at P_. 

The residue at P + is, by virtue of the pole-factorization theorem, the product 
of the five functions represented by the first term of (2.9). Similarly the 
residue at P_ is the product of the five functions represented by the first 
term of (2.10). 
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The five functions in the residue tit P. continue independently. The variables 
of the outer processes remain always at the same point in the space of the 
invariants, and trace out only a trivial path in p space. Thus in the continua­
tion from P to P_ the outer functions continue into themselves, and hence 
into Che outer functions occurring in the residue at P_. Therefore the inner 
function must continue from its value in the residue at P. to its value in the 
residue at P_. That is, the function represented by the plus bubble must con­
tinue into the function represented by the minus* bubble. The path of continuation 
in the variables of the central process, is, at the first stage of the construc­
tion of the singularity structure in the cucplex mass shell, a path that starts 

2 at a physical point above the physical threshold * = <*•», moves in the upper 
half plane (i.e. via the plus le rule) to * • 0, where it BOVJB into the 2 lower half plane and returns via the minus ie rule to the region s > Am . 
This relation between the plus and minus bubbles is called hermitian analyticity. 
AC a later stage of the construction of the singularity structure some singularity 
Bay move across the original s-plone path of continuation during the shift from 
2 2 2 

p «* 0 to p • m , and cause a distortion of the path away from its original 
posieion. An example will be given later. But at the initial stage, where only 
noraal threshold cuts are considered, the plus and minus bubbles represent two 
different boundary values of the sane analytic function. 
The same argument works for multiparticle amplitudes, and shows chat our good 
functions M are the boundary values indicated by G of a single analytic 
function, at least at the first stage of the construction of the complex singu­
larity structure. To obtain this result the larger space is constructed by 
replacing each line of the 6-particle process by four lines, as in (2.1). The 
needed equation in this larger space can be constructed, in the formal framework, 
fay defining the functions T„ by the same equations in terms of B~ as before, 
but with the T's now functions in this larger space* and the D 's now the 
natural images of the or: 
proceeds as just before. 
As an example consider the case where g • i - •. designates an initial subenergy 
channel. It is sufficient to enlarge the process only with respect to the two 
initial lines 2 and 3. As before, the T of the enlarged process is continued 

2 2 2 
first from P + to p,, • p_ - 0, at fixed s,, • (p_ + p ) and then to s~o " PT " 9t " °- A t this point the discontinuity function T * T, " i 3 g 1 
vanishes, and T can be replaced by T - T • T e, modulo R-type functions, 2 2 2 2 which are functions that lack the double pole at p, •«.-,, p, - m- . Then 
T 6 - T - T is continued back to P_, following the ie prescription approp­
riate to it, and jumping across R cuts, and also across the cuts attached to 
exceptional surfaces, by adding the appropriate discontinuities. Finally the 
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path is distorted1 into the mass shell p- * m_ , p_ » m, , and the residues 
the double pole in T and T - T considered. These two functions .ire 

8 
analytically connm-tod by the mass-shell path obtained by distorting into the 

2 mass shell the original P]" " P7' 

path starts in s. 23 ™2 

1 0 path in the a,, plane. That original 
then runs down to s-_ » 0 following the 23 

plus ie rule for singularities not of R type, and then runs back to 
s 2 3 (m, + in,) following the ic rules appropraite to T 8 * M . Again the 
two uter factors can be factored out, leaving the analytic connection between 
T and T - T in the space of the six original particles. This path jumps 
across cuts attached to exceptional surfaces. The placement of such cuts will 
be discussed later. 

By similar arguments one can derive 

unLY) 

(2.12) 

where the left-hand side represents the continuation of S <o,S; V) to belou the 
complete set of cuts that start at the threshold paint 

.2 

• ( 1 - 0 • (2.13) 
lea 

The -a box is, as before, an operator in a space, which is the space of 
sets of particles the sum of whose masses is s , and is the inverse of the 
restriction of the S-matrix to this space. In deriving (2.12) the original 
path in the variables of the larger process can be taken to lie at p • m - e, 
with c arbitrarily small, instead of at p * 0, and to describe an infinitesi­
mal contour in the space of variables of the central process, since this small 
contour Is enough to take it into the region s < s , where the threshold 
term vanishes. Thus the continuation that connects S (a,B; i) to the function 

c 
represented on the left-hand side of (2,12) is nondist-irted; It is an infinitesi­
mal circle around the t! reshold point that is the continuation into the mass-2 2 shell of a infinitesiraal circle originally defined for p • m - e, for 
e > 0. 

3. Crossing, 
Crossing is the property whereby the analytic continuation of the scattering 
function for any given process describes also the various p-ocesses related to 
it by rltfiij'litfi various sots initial particles into final antiparticles, and 
vie*.'' versa. It is derived by methods very similar to those just described, so a 
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very brief description will suffice. 

Consider, for example, a pole in a four-to-four amplitude 

C E * =<%«= 
This pole lies at p • a , where 

pa " Z ! ei pi 
icE 

a 
is the exchanged momentum-energy. If the exchanged particle has an artciparticle 
then this same four-to-four amplitude will have, in another portion of its 

2 2 physical region, another pole at p • m : 

3 3 - = ^ 
The first pole lies in the region p > m , whereas the second lies in 

region. 

Let f be the four-to-four scattering amplitude, and consider the continuation 

C3.3) 
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This continuation stares a mass-shell point P., at which the residue function 
is i times 

= ^ = 

and moves, staying always in the physical region of f , to a mass-shell point 
P » at which the residue function is i times 

C3.5) 

Let this path now be shifted into the mass shell p ' 
cuts of the R-type, which are cuts corresponding to diagrams that are not 
separated into parts in the manner indicated in (3.4) and (3*5). As before, 
the discontinuities of the residue function across these R-type cuts will 

2 2 vanish at p • m , because they do not correspond to one-particle exchange 
diagrams, and hence lack the pole singularity. However, the discontinuity across 
the singularities corresponding to diagrams chat fit into the bubbles (3.4) and 
(3.5) will be nonzero, in general, and should be avoided, if possible. 

At the first stage of the procedure for building up the singularity structure 
the path of continuation can certainly be shifted into the mass shell, for the 
only normal threshold singularity that could block the shift would be one in 

2 2 2 
the variable p , whereas the point p • m lies below the lowest communi­
cating normal threshold in this channel, by virtue of the stability or particle 

If the path can be shifted into the mass shell then the product represented by 
(3.4) continues into the product represented by (3.5). The individual factors 
are functions of different variables and hence they also continue into each 
other, modulo constant factors c and c . 

These factors c and c~ can be taken to be unity. To see this let c - c. 
be defined by 

*<•••! ---P^) - cf +(---p 1
C; •-•) (3.6) 

and 
f{p t

c... ; ...) . c"1 f +(... ; -p t
C..-) . (3.7> 

where the functions on the left-hand sides represent the contfnutions of 



E (--.; -"p,) and E (p.---; • • • ) ! respectively, from their original physical 
regions along an on-mass-shell crossing path to the real point p » which has 
negative energy component, and Che bar over -p. indicates that tlu; associated 
suppressed type-variable is t. * ~ c

(i which designates the antiparcicle i>f the 
particle of type t . Continuation of (3.6) along the path of hermitian 
conjugation of the function on the right gives 

• C f ( . . . -p i •• •) 
. c £ " ( - -ch •-P ; • ••) 
- c( - f + ( -5 c h» * 
lion of t : + ( - i • • • P i ) along I t s path of 

• f " ( . . . 

-CfY * 

hermitIan conjugation gives 

(3.9) 

Continuation of (3.9) along the path of crossing of the function on the right-
hand side gives, by virtue of (3.7) (and bose statistics), 

«•••; •••p i
h c> - -(c" 1 £ +(...; • • • - 5 i

h c ) ) * . (3.: 

The paths ch and he are homotopically equivalent, at least at the first 
stage of the iterative procedure. Hence the points p and p represent 
the same points on the Rienann surface. Thus comparison of (3.8) and (3.10) 
yields 

c - <=-V , ' 
which says that c = c, is a phase factor: c • exp If.. 

Because of the factorized form of (3.4) and (3.5} this phase factor 
c, depends only on the type t of the particle exchanged. This factor may 

be removed completely by redefining the phase of the S-matrix: 

c, * -1 for L »!,•••,m 
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e. - +1 for i * mfl|-*>»n 

The phases will always be chosen so that the c, are unity. 

The above arguments yield hermitian analyticity and crossing only at the first 
stage of the iterative procedure for building up the singularity structure in the 
complex nass shell, but this is all that is needed to start the procedure going. 
At later stages certain cuts generated by the iterative procedure may block the 
continuations, but these cuts, since they are generated by unitarity should, 
in principle, have their discontinuities determined by unitarity. If they do 
then it is not important whutber they block or do not block the paths w 
crossing and hermitian analyticity. 
it. Triangle Diagram Cuts 
The second stage of the iterative procedure generates cuts associated with 
triangle diagram singularities 

Consider, for example, the six-particle function f as a function of one initial 
subenergy o, with seven other variables s held fixed and nonreal. At the first 
stage of the iterative procedure the function f near the o normal threshold 
can be represented by the Cauchy formula with a principal contribution 

.An,2 2iii (o 1 - o) 

The discontinuity is given by 

Disco f(a') - 1ZQEJII(V) (4.2) 

Let a represent some triangle diagram 

' • X^r ' 

and consider the discontinuity of (4.2) around L(A). The discontinuity of a 
bubble diagram function F around a singularity surface L(D) is obtained by 
summing, ovi-r all ways tlutt D fits Into B, the discontinuity associated with 
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this particular way. This latter discontinuity in oti.ained by replacing each 
bubble b of B by the discontinuity function associated with the part D. of 
D that fits into b. 

In iur case the diagram a fits into (4.2) In tuo ways. In the first way the 
initial vertex fits into the minus bubble and the other tuo vertices fit Into 
the plus bubble. In trie second way cite leading vertex is considered to be a 
contraction i»f several vortices, one of which fits in the minus bubble, and the 
rest of which fit into the plus bubble. (Only unsigned lines our lie cfnt rjt-ted. > 
Actually th-.-se latter diagrams D are different from a but, because of rht> 
contraction of vertices, the surfaces coincide, and they should be considered 
togetiwr. 

The sum of contributions corresponding to these various ways of fitting fl into 
(4.2) is 

• Disc. Disc t (4,4) 
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Disc. Dtsc f » D 1 B C A { (4.5) 

This relation (4.5) aieans what the surface l(L) need not be singular on all 
sheets of the a cut: the a singularity can be "shielded" by the a cut, 
and not appear on alL sheets. 

Consider, for simplicity, a theory with nil masses equal, Then the physical 
region in the real o - s plane consists of the two shaded regions in 

(A. 6) 

The little oval in the 4-by-i box represents the location of the triangle 
diagram singularity for the case in which each set of lines o, 6, and y 

of A consists of one line. A condition on the singularity structure entailed 
by the arguments of the preceding subsections is that if the singularity 
structure is fomallv continued off-mass-shell to a tieighlDrhood of the origin 
p - 0, then that neighborhood should be free of singularities. This condition 
entails that the dotted portion of the triar-ie singularity not be present on 
the physical sheet: it oust H e on an unphysical sheet of the o cut. 
Tracing the motion of the A singularities In the o plane as s increases 
from a value slightly lt-ss than three, .md moves on a path infinitesimally 
above the real axis, one finds 
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uhere the solid line represents the physical-sheet part of the trajectory. 
This path is also traced out in (4.6). The two singularities of the discon­
tinuity function (4.4) at each value of a are connected by a cut, which is 
here pictured for s • 10; 

°J 5=10 

3—3 

S=|0 

a— t 

This cue separates the real a axis into cue- parts, in which lie the 3 -» 3 
and 2 - 4 physical regions. The discontinuity formula in the 3 -* 3 physical 
region is represented by 

(4.9) 
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whereas that In the 2 •* A physical region is represented by 

=OnnQE 

This cut that separates the two physical regions or the discontinuity function 
does not separate the two physical regions of the scattering function itself: 
they are connected by a direct path that remains always near the real o axis. 
This is because the part of the cut in the discontinuity that lies in the 
upper-half o plane lies on the unphysical sheet of the scattering function. 
On the other hand, the part of this cut that lies in the lower-half o plane 
extends into the physical sheet of the scattering functions, and hence gives an 
extra contribution to the dispersion (i.e., Cauchy) formula. 

As one formally increases the mass m of line y in A the tip of the cut 
curls around and at a • Z it touches the underside of the 3 -*- 3 physical 
region: 

2J s= 10 LM 
2 — 4 

C4.ll) 

This singularity sits in the region associated with the function M , where g 
identifies the o cut that we have been discussing. The continuation of M 8 

is blocked by this singularity surface, which is one of the exceptional surfaces 
mentioned in earlier sections. 

This surface does no*, cause any serious difficulty for dispersion relations, 
[n the principal contribution to the Cauchy formula, i.e., in the contribution 
from the normal threshold cut, or.e uses the normal threshold discontinuity 
formula (4.8) or (4.10) at all pointcs nlonp the cut. However, there is also 
the contribution cor respond IIIR to the Loop in the lower-half plane of (4.11). 
The discontinuity ;ii*n>. s this Litter cut Is yfven hy (4.5). 

http://C4.ll
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This relatively simple situation can be contrasted to conceivable ones in which 
Che singularity lies at the end of a cut Chat bounds the physical sheet and 
extends to infinity, and for which no discontinuity foraula is known. Such a 
cut would add an uncontrolled contribution to the dispersion relation. 
As the mass m increases above 2, with a small negative imaginary part, the 
A diagram cut passes thrcugh the sequence of positions shown below (3 - 10) 

.eJ 
IW/V///W -ezzzzzzz 

(IW/V/VI- -vzzzzzzz 

[ ZZZZZZZ2- -vzzzzzzz 

That is, it rapidly retreats from the physical sheet, and then moves, in the 
uftphysical sheet, away from the real axis. 

The situation indicated in (4.11) occurs when m • m„ + 1» and o and s are 
large enough so that the process represented by the triangle diagram (4.3) is 

oove to larger va!ue*s of s and o. The physical-sheet pares of tne A cuts 
are confined to a neighborhood of the gap between the two physical regions 
that grot-* only aa ''.pa (or "\/~s). Hence these singularities becor increasingly 
localized on rays chat run almost parallel to the line o - s: th do not 
go into the region where 0 >* s or m » 0. This is true both for the case 
above, where m • nv and the cut curls into the 3 ** 3 region, and also 
for the cane m. > m fhere the cut curls into the 2 •* 4 region. This 
localization of these complex outs will be used In the discussion of the 
generalized fixed-i i<spr>rsion relation.1;. 

5. Higher Cuts 
Ek . diagram cuts and r'.Rher-ord«r cues are generated by the same procedure. Box 
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diagram cuts soaetimes protrude from triangle diagram cut*, etc. In the 
examples studied so far nothing happens that Is significantly different from 
what happened in the a case, and all the new physical-region cuts appear to 
be localized in the neighborhood of the gap. 

REFERENCES TO PROOFS OF THEOREMS 

Theorem 1 is Theorem i of Chandler (lJ. Theorem 2 is trivial. Theorem 3 if 
proved in Stapp (lO). Pram's Theorem is proved in Pham (9). Theorem 4 la 
part of Theorem 6 of Chandler (lj. A similar result tX nonpositive-o. points 
la proved in Section 3 of Coster (2) (see (3.10) of that reference). A still 
more general version is lemma A9 of Appendix A of Coster (5). Theorem S is 
Theorem 7 of Chandler (l). Theorem 6 is contained in Theorea 6 of Chandler (l) • 
The connection between Landau surfaces and apace-time diagrams is discussed In 
detail in Chandler (l), in Coster {z), and in Iagolnitzer (s). 

The formal method is developed in Coster (4} and in Coster (s). where the 
uniqueness of the T. and T is shown. The general formula for the discon­
tinuity.of f around LQ ( D ) is derived by finite methods in Coster (2) 
for all points lying below the lowest 4-particle threshold. The results (4.1) 
and (5.1) of Section V are Eqs. (83) and (5.7) of Coster (3). The properties 
of the -a box are described in detail in Coster (?), where a is replaced 
by i. 

The discussion given here is more general than that of the earlier works in 
that It uses the newer stronger version of the structure theorem recently 
proved by Iagolnitzer, and discussed in the preceding series of lectures. 
This allows some unnecessary assumptions to be eliminated. 

The proof of hermitian analyticity and crossing is essentially the argument 
of Olive, which is described in Eden (*), and developed in Stapp (ll). The 
discussion of the triangle diagram cuts is based on the work of Hwa (7). 
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