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.Parametric Instabilities Excited by Localized Pumps 

Near the Lower-:-Hybrid Frequency 

Y. Y. Kud artd Liu Chen 

Plasma Physics Laboratory, Princeton University, 

Princeton, New Jersey 08540 

ABSTRACT 

Parametric instabilities.excited in non-

. uniform plasmas by spatial·ly localized pump 

fields oscillating near the local lower-hybrid 

frequency are analytically investigated. 

Corresponding threshold conditions, temporal 

growth rates, and spatial amplification factors 

are obtained for the oscillating-two-"stream 

instability and the decay instabilities due 

to nonlinear electron and ion Landau dampi.n1s-
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I. ·INTRODUCTION 

Plasma heating usipg rf waves with frequency near the lower-

hybrid freq~ency has attracted much theoretical and experimental 

interest. Currently, it is well known that nonlinear processes 

such as parametric instabilities play crucial roles in this heat-

ing scheme. While there has been extensive theoretical studies 

on the parametric instabilities in this frequency range, most·of 

them are done with uniform plasmas and pumps of infinite spatial 

1 extent. Yet, in realistic situations, the plasmas are always 

nonuniform and the pump waves are usually of finite spatial 

extent. Furthermore, studies on laser-plasma interactions have 

shown that both the plasma nonuniformities and spatial localiza-

tion of pumps significantly modify the nature of parametric 

processes. It is, therefore, important to investigate these two 

effects on the lower-hybrid parametric instabilities in order to 

develop a better understand!ng of the heating processes. 

Resonant and nonresonant (ion quasimode} decay instabilities 

2 in the WKB approximation were examined by Porkolab. . In the 

present work, we first study th~ oscillating-two-stream insta-

bility (OTSI} in the WKB approximation. We then investigate the 

nonresonant decay processes when the WKB approximation is invalid. 

We find that for sufficiently strong pumps the instability may 

become absolute (i •. e., temporally g:r:owing} instead of being 

. convective (Le., spatially amplifying} as ·predicted with .the WKB 

. . 2 approx1mat1on. 
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The basic set of equations and the·theory of OTSI are pre­

sented in Sec. II. Section III contains the theo~y of nonresonant 

decay instabilities. Final conclusions and discussions are in 

Sec .. IV. 
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II. OSCILLATING-TWO-STREM1 INSTABILITY 

We consider~ninho~ogeneous plasma having a density gradient 

in the x direction with scale length L o The. pump is assumed to 

be spatially confined in the x direction and its frequency w
0 

is 

close to the local lower-hybrid frequencyo Since the waves con-

sidered here are electrostatic, the plasma dynamics can ·be 

described by the equation of motion, the· continuity equation 

and Poisson's equation, 

and 

~ 

'V(y n T ) 
s s s 

n m s s 

an 
__ s + ~·(n V ) = 0 at s s 

'IJ 2
A- = - 4rr ~ n q 
'f' L.J S S I 

s 

~ 

'V<P + 

~ v s 

s = e,i 

(1) 

(2) 

( 3) 

~ 

where Vs denotes the velocity, ns the density, rs the damping 

rate, Ts the temperature, qs the charge, ms the mass, and ys the 

ratio of the specific heat of the s species. The external magnetic 
'+ 

field B
0 

is in the z direction and <P is the electrostatic potential. 

Let the pump frequency satis:fy the condition that wee >> w
0 

>> wei , 

where w , w . are the electron and ion cyclotron frequencies, ce c1. 

the ions thus respond as uninagnetized·to both.the pump 

field and all the high frequency mode~ which have frequericico 
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wh - w
0 

• For the low-frequency modes, we assume that the fre-

quencieS W are mUCh Smaller than WCe 1 bUt larger than w . • 
c~ 

The 

case for w << w . will be presented later. The low-frequency modes 
c~ 

are coupled to the high-frequency ones through the pump via the 
. + + . 

electron (V'.l. •V')Vil term, wh·ere V.l. is dominantly the E x B dr~ft 

velocity. On the other hand, the dominant nonlinear contribution 

to the high-frequency modes comes from the coupling between the 

pump and the low-fre.quency electron density perturbation, n.e. 

The coupled equations, by taking <Ph - exp(- iwht + ikyy + ik 11 z> 
and n.e. - exp(- iwt.+ ikyy + i~ 11z> are found as 

2 
Wp; + o+ + __ .... ·v· (n.(,.E > 
N

0 
o ( 4) 

= :::: [(- ( 5) 

where 



and 

d = .2 

2 w pe 

- w -h. 

a = 1 + 
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I 

( 1 + ~ ) I 

b = 1 + d {:t + ~-) ~ d (1 + ~ ) 

(6) 

(7) 

( 8) 

Here, ve , Vi are the electron and ion thermal velocities, N
0 

wpe , wpi are the background plasma density and the plasma fre­

quencies at X = 0 1 V
0

e is the excursion V¢locity of electrons 
2 2 

caused by the pump, r 2 = [fi + (k me)/(kl~i>reJ is the damping 

decrement, and cs2 = (y .. T. + y T )/m. i.s the ion sound velocity. 
~ ~ e e -~ 

In deriving Eqs. (4) and (5), we also assume lk.l.V jw. I . e. ce << 1 ' 

kJ.2 >> k211. ' W. - W pe ce , and I w I < < I k 11v e I < < wh . 

In order to solve the coupled equations analytically, we 

proceed in the WKB approximat~on by letting 

<Ph - <P±(x) exp(- i(w + w
0
)t + ik X 

X 
+ ikyY + ik 11z) ( 9) 

.e.. n(x) exp[- iwt + ikxx + ikyY + ik 11z] h - ' 
(10) 

E
0 

- E(x) exp(iw
0
t) + c. c. (11) 
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where kx is much larger than the quantities 1/L 1 (a~;ax)/~ I 

(an;ax)/n 1 and (aE/ax)/E. Substituting the above expressions 

into Eqs. (4) and (5) 1 we obtain 

and 

where 

6 = 

(JL + dx 61 

n 

+ X (­
L 

= 

. ( 2w . r ) + J. 1 

2iV 
gx 

v . 
. gx = -

n = 
2 

- k w w y o pe 

- s) ;_ 

a(E~ 

2ik A . X . 

I 

"' nn E 1 

"' * = - nn E I 

*" 
- .E ~+) 

(12) 

(13} 

(14) 

(15) 

(16) 

(17) 

(18) 
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CL = . ( 19} 

e = 1 + (20} 

2 ( y.V. 1 + 
~ ~ I ( 21} 

o2 
is the frequency mismatch defined by 

2 2 + .1'2 y.V.k u 
~ ~ 

, (22} 

and r 1 is the linear damping rate of the high-frequency mode.· The 

only explicit dependence on the scale length L o~ the coupled equa-

tions is through 61 , which corresponds to wavenumber mismatch due 

to plasma inhomogeneities. It is-obvious that, using the expres-

sion for n in (14}, the differential Eqs. (12) and (13) are linear 

functions of cp ± , and the 61 term can be easily eliminated by a trans­

format.ion cp± .. exp(- ! s1 dx) • Therefore, the scale length of the 

background plasma in our WKB approximation does not play a direct 

role in determining the eigenfrequency and the region of localiza-

tion for the instabilities. The importance of L may come in 

indirectly through the locali.zation of the pump caused by the· back­

ground plasma density gradient. We also want to point out that the 

rnisma,tch 0 2 (which is understood to be much less than w~} can have 

·any importance at all only if the condition 

2 2 2 2 (m.k 11/m k ) == k A0 • is satisfied. · ~ · e x ~ 
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Let us write the pump field in the form of 

E(x) = E f(x) 

and make the transformation;±= B± ~ !(-:-81 + iA.Ifl
2 

+ f*)dx 

we obtain from Eq. (12) - (14) the second order differential 

eq1,1ation 

where 

with 

- 2 
A. = inaiEI = 

= cLEI 
.B 

So far we have derived a general formula for OTSI without 

(23) 

(24) 

specifying the spatial dependence of the pump wave. It is essen-

tial to know the function f (x) in ord·er to calculate the turning 

points which in turn determines the growt~ rate and the spatial 

extent of localization for the instabilities. Because the formal-

ism of Eq. (23) resembles a great deal to that for a Langmuir pump 

derived by Kuo etal.3 except that B is replaced by- B , we are 

going to employ the same Lorentzien type of pump and quote the 

analytic solution from there directly to gain some insight into 
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the general behavior of the threshold and the growth rate for 

OTSI in various pump strengths. 

Let f(x) = 1/(~ + i) , where ~ is the width of the pump, 

which can be either (LA.~i)l/J for the pump that obliquely 

incidents upon the resonant layer, or, in a crude approximation, 

the width of the resonance cone for a lower-hybrid pump. 

The instabilities are.differentiated into two categories accord-

ing to whether the turning points xT for the instability are 

larger or smaller than~; i.e., whether the instabilities are 

localized within or·outside the pump width. And for each category 

we have calculated for the case; (i) w << C k , when the pump s 

power is near threshold, and (ii) w >> C k , when the pump power s 

is high that the growth rate is very large. 

The results obtained are tabulated in Table I. We find 

that near the threshold, the waves confined within the pump width 

2 
(xT < ~) will grow as U0 , while those outside (xT >. ~) will 

grow as u~13 . The instabilities are stabilized not only by the 

usual linear damping but also by the convective loss due to the 

localization .of the pump. Another fea·tu.r·e of the instabilities 

in the presence of a finite pump is the real frequency 

shift w for OTSI. Both w and the convective loss vanish when 
r r 

~ + oo • Recall that in our calculation, the background plasma 

density scale length L does not play a direct role in evaluating 

the eigenvalue w , therefore, our results should hold true also 

for the OTSI generated by a finite pump in a homogeneous plasma. 

The mismatch 62 contributes to the convective loss; i.e., the 
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larger the value of o2 is, the higher the threshold value of the 

instability will be. However, if the pump power remains the 

same, there would. be a threshold region for the pump frequency 

w , so that the mismatch o2 ~ould be minimized to destabilize 0 ' 

the· instabilities. The threshold pump power for the modes with 

xT > 6 is slightly larger than that with xT < 6 • 

As to the case of a high pump power that w >> Csk , the 

2/3 waves will be localized within 6 and grow as U
0 

if 

{k A2/w ·.w k 2k6>.
0

.) < 1 ; and be outside of 6 and grow as u2 
X p~ 0 ~ 0 

otherwise. Finally, as we had in the case for a Langmuir pump, 

the localization of the waves whose turning po~rtts are out~idc 

of 6 , is in the overdense region of the peak of the·pump when 

w << C k , and shift toward the peak when w >> Csk . 
!3 

Before we go on to the nonresonant decay instabilities, 

we would like to present the calculation for OTSI when 

w << w . 
c~ 

Equation (4) is still true for the high fre.-

quency mode, while Eq. ( 5) for the low- frequency ones ne.eds to 

be modified as 

2 

= :::J(- J 
ee 

{25) 
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which changes the expression ~ of'Eq. (24) to 

A. = 

2 2 2 2 4 
w k :>.. 0 k 11w • 

o y e .. p1. ( 26) 

and r 2 to (fi + mefe/mi) • Then all of the previous calculations 

can be followed th.r:ough to investigate ·the frequency ranges of 

(i). w << cskll, and (ii) w >> cskll. The obtained results are 

tabulated· in Table II.· · 
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III. NONRESONANT DECAY INSTABILITIES 

In this section, we investigate the nonresonant decay insta-

bilities due to nonlinear electron and ion Landau dampings; i.e., 

the induced scattering proce~ses (also called the quasimode 

decays). For this decay, we ignore the upper sideband as being 

off-resonant; tha~ is, according to Eq. (9) with wr , w
0 

> 0 , 

we ignore <f>_ • We then have from Eq. (4) th~ tollowinc.; equation 

for the lower sideband <P+ , 

[y .v~ -1 1 

7 + 

4neck E: ,.. 
------::.:-'Y,.__ n . 

w+Bo 

(25) 

Here, + ifl/2 and "2 d 2/dx 2 k2 To describe w,... - w - w = - . 
0 J. y 

"' the low-frequency density response n to the high-frequt:!ncy fields, 

we have to use the Vlasov equ.:ltion for both electrons i;!,nd ion::; in 

order to include the effect of nonlin~ar Landau damp~ng. Si~ce, 

as mentioned in the preceding section, the dominant nonlinear 
~ . 

coupling comes from the parallel (to B
0

) ponderomotive force on 

- [~~ ,.e 
electrons, - me (V•\f)VI~e , we can use this force along with the 

self-consistent electric field in the electron one-dimensional 
..... . -

(in B direction) Vlasov equation to obtain the electron density 0 . 

response. As to the effectively unmagnetized (w > wei) ions, they 

6nly respond linearly to the self-consistent field. Substituting 

these density responses into Poisson's equation, we obtain a 

relation between the self~consistent field and the ponderornotive 

field produced by the high-frequency fields, which in turn gives 

.. · 
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the following relation between the low-frequency density perturba-

tion n and the high-frequency fields 

where 

and 

+ 
* ck E 

4Tiee:(k , w , x)n 2 = - k X X· e l. 

y 

X· = . l. 

2 
w . (x) f ~Pl. 

k2 

e: = 1 + X· + X 
l. e 

df ./dV 
01. 

V - w/k dV 

( 26) 

(27) 

(28) 

(29) 

Note that k in general should be interpreted as an operator, 

ik = V • The procedures used in deriving Eq. (26) is similar 

to those used by Drake et al. , 3 for unrnagnetized .plasmas.· In 

the following, we look for solutions of the coupled equations, 

Eqs. (25) and (26), both with and without the WKB approximation. 
. 2 

The WKB solutions, which previously have been studied by Pbrkolab, 

are included here to have a complete description of the decay 

instabilities as well as to pre~ent a comparison wiLh the 

solutions obtained without the WKB approximation. 
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First, we investigate the solutions with the WKB approxima-

tion. Let V = ik + d/dx and lkxl >> ld/dxl 
X X 

Equation (25) 

then reduces to Eq. (12), written in a more apparent form, 

nnE (30) 

Here, Vgx and n are defined, respectively, in Eqs. (17) and (18). 

As to the low-frequency dynamics described by Eq. (26) , since 

it is not a normal mode and the scale length of the pump field 

~ is much less than the scale length of the inhomogeneity L , 

we can simply let Vx = ikx and use the values at x = 0 for Xe 

x . and e: ; i. e • , 
l. 

n = (31) 

Here, the superscript 0 denotes qtiantities evaluated at x = 0 . 

Combining Eqs. (30) and (31), we· obtain 

(32) 

where with 

(33) 

F (x) iw - A w H (x)] /V + 8
1 

(x) , o o gx 
(34) 
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y 
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This instability is convective. For a constant source I at 

x = x
0 

, the solution (assuming Vgx > 0) is 

= I exp(-Ix: F (x') dx'} , (36) 

For a typical H(x) with scale length ~ , the spatial amplifica­

tion factor A is approximately given by 

A - (y - r 1 /2) (~/V ) . o gx (37) 

He~e, y
0 

= w Re(A ) is the growth rate in uniform plasmas due to 
0 0 

a dipole pump. Hence, a sufficiently large amplification 

(A > 1) occurs if 

vgx rl 
Yo>~+ 2 (38) 

Because the parametric coupling coefficient A
0 

is only pro­

portional to k , it is also interesting-to examine the decay y 

instabilities when lkx~l - 1 such tnat the WKB approximation 

becomes inv~lid. In this case, we assume I ky I > > I :xI in order 

to have appreciable couplings;.· ·which. is equivalent to assuming 
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I ky~ I >> 1- • Expanding Eq. (25) to order (d2 /dx2 ) and combining 

with Eq. (26), we obtairi with z = k x y 

( 39) 

where 

Q = (40) 

( 41) 

cEk 2 (X X·r -2 A = -----2 . eE:1. A , (42) 
Bowo 

and 

2r 2 . -1 
-2 

w2(1 + wpe (k2 .v~ - 2 kllmi) ( 4 3) A = o 2 yY~ ~ wlh -2- . 
w k m ce y e 

To analyze further, we have to know H(z) . Let us assume H(z) 

is given as 

( 4 3) 

Note that ~ = ky~ and ~ is the characteristic width of pump 
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localization. Equation (39) then can be reduced to a parabolic 

cylinder equation of the form 

where 

arid 

We, thus, have spatially localized solutions which fall off 

away from the turning points like 

if a = 

2 exp(- ~ /4) 

- (n + 1) 
2 or 

= exp -[lA k (x- x )
2/26] , y 0 

( 44) 

( 45) 

(46) 

( 4 7) 

(48) 

( 49) 

Equation (49) is the desired dispersion relation of the absolute 

instability. Note.ImA > 0 and x = z /k = K16/2A. In order to 
. . 0 0 . y . 

be consistent with H(z) given by E~. (43), we require that the 

turning points zt be within 6 i.e. , 
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ll + n;Aj << 1 , (50) 

which indicates that the growth rate is approximately given by 

that of uniform plasma with a dipole pump 

w. 
l. 

1 

2 1 + 

-
;o 2 .I B c~ 

w· /w 1 o o 
p~ r:~ 

In deriving Eq. (50), we have assumed that lx I << 6. or 
0 

cEk 2 y 
Bowo 

(51) 

(52) 

Furthermore, to be consistent. with Eq. (49), the following condi-

tion also needs to be satisfied 

Sine~ 16./LI << 1 and ~2 - 0(1) ,·Eq. (53) is usually the more 

stringent condieion. Because lx x-/~1 ~ O(l/k
2

A0
2 

) and e 1. · y e 
2 w .o O(wpi> , Eq. (~3) can also be written approximately as 

(53) 

(54.) 

Currently, lower-hybrid heating experiments are usually running 
-

with lcE/B C I ~ 0(1) and lk 61 >> 1 (because k is only limited 
0 s - . y . y 
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by ADi through ion Landau damping and 1~1 >> IA 0 il> , Eq. {54) 

is easily a~hievable~ Finally~ we remark that we have obtained 

similar results using a pump field with sharp boundaries. 
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IV. CONCLUSIONS AND DISCUSSIONS 

We have calculated the threshold and the temporal growth 

rate for OTSI and nonresonant decay instabilities excited in 

an inhomogeneous plasma by a pump of finite spatial extent at a 

frequency close to the local lower-hybrid !requency. We have 

found thq.t it is true for both an inhomogeneous and a homage-

mious plasma. that the localization of the pump causes fi.rstly a 

convective loss in addition to the usual damping of the insta-

bilities, and secun~ly a £rcq~eney ~hift for the OTSI from the 

pump frequency. Due to the mismatch of frequency, there is a 

threshold value for the frequency as well as thE:! power of th~ 

pump field. We have also investigated the nonresonant decay 

instabilities due to nonlinear electron and ion Landau dampings. 

With WKB approximation, we recover the previous results that the 

instabilities are spatially amplifying. We demonstrate that 

without WKB approxima .. Lion, however; for pump powers currently 

used in the lower-hybrid heating experiments, the instabilities 

can be temporally growing. 

Finally, we would like to point out that our calculations 

are carried out under the· assumi:Jt.lol'l that th~ p1.1mp fielo is 

only localized in the x direction. If the pump wave does not 
-+ 

propagate along but at an angle with respect to the B
0 

direction, 

the general formalism should be similar, and we expect that all 

the main features of OTSI and the nonresonant decay instabilities 

remain the same. 
•. 
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Table I 

Pump Power Pump Width . Growth Rate 

·-

Frequency Shift 
Turning 
Points 

-------------1--------f--------- -------·----·---········-----·-·--· ····--------·--------·-. ------

w 
r 

X < I:J. 
.T 

------------------~--------+--------------------------·-----------·----------------------4------

X < I:J. 
T 

------------------~----------t--------·--------·-------·-·--------1-----.. ------·--·- ·-------

X > f:J. 
T 

-----------~----~1---..:_-----------------+-------___;,-_____ .. __ ---

~-----------------L--~-------~-------------------------------~~---------~------·--

Threshold powers, growth rates, and frequency shifts for OTSI when the low 
frequency w >> w . • 

C1 
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Table II 

Pump Power Pump Width Growth Rate · Frequency Shift 

'l 

k IA .. I 
X w - -
k~6w2 

w. 
r 0 

- ·0 

. Threshold powers, growth rates, and frequency shifts for OTSI when the low frequency 
(J) < < (I) • • 

C1 

Turning 
Points 

X < 6 
T 

> 6 




