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ABSTRACT

Many detailed multigroup transport calculations require
group—to—group Legendre transfer coefficients to represent
scattering processes in various nuclides. These (fine group)
constants must first be generated from the basic data. This
paper outlines an alternative technique for generating such
data, given the total scattering cross section of a parti-
cular nuclide on a pointwise energy basis, o(E'), and some
information regarding the angular scattering distribution
for each initial energy point.

The evaluation of generalized multigroup transfer
matrices for transport calculations requires a double
integration extending over the primary and secondary energy

" groups where, for a given initial energy, the integration
over the secondary energy group may be replaced by an
integral over the possible scattering angles. In the pres-
ent work, analytic expressions for these angular integrals
are derived which are free of truncation error. Differ-
ences between the present method (as implemented in ROLAIDS)
and other methods (as implemented in MINX and NEWXLACS) will
be explored. Of particular interest is the fact that, for
hydrogen, the angular integration is shown to simplify to
the point that, for many weight functions, the integration
over the primary energy group might also be performed
analytically.” This completely analytic treatment for
hydrogen has recently been implemented in NEWXLACS.

Given the Legendre coefficients of the scattering cross section on
a point-wise basis, o, (E'»E), the group-to-group Legendre transfer
coefficients are defined as: '
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where the spatial dependence of each term is understood and ¢ (E')
represents the Legendre coefficients of the angular flux distribution
at each spatial point. In practice, the higher order terms, ¢£(E'),

are replaced by an energy dependent weight function ¢(E'). In ROLAIDS!,
for example, this would be the (zone averaged) scalar flux resulting
from the solution of the integral slowing down equation on a point-
wise basis. In other codes, such as XLACS,2°3 the weight function may
be specified by the user. The Legendre coefficients of the point-to-
point angular scattering cross section are formally defined as
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In the fast and epithermal range, however, there is a unique relation-
ship between the initial and final energies, the exitation energy (Q),
the mass of the target nuclide (A), and the cosine of the angle of scatter
in the lab system:
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Representing this as a delta function in Eq. (2) yields
oy (E'-E) = o(E'>E) Pyl (E',E,Q,A)] (4)
and
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The accurate evaluation of this expression represents a severe computa-
tional burden which must be addressed by any cross section processing
code. The present method differs from previous approaches in that it
yields an analytic solution for the integral on dE which is free of



truncation error when the scattering function is given by a Legendre
expansion in either the center-of-mass (C) or the lab (L) system.

The séattering function, o(E'-E), represents a distribution over
the secondary energy (E) and hence over the scattering angle. Thus,

g(E'»E) dE = o(E") f(E',uc) 2ﬂduc- - (6)

where u. is the cosine of the scattering. angle in the center-of-mass
system and f(E',u.) is the angular distribution function in that
system. A similar expression could certainly have been written for the
lab system. Because all scattering processes appear more isotropic in
the C system and because most scattering involving the formation of a
compound nucleus is in fact isotropic in the C system, the present
choice was made. While the present method can easily accomodate
anisotropic scattering, it is most easily introduced assuming isotropic
elastic scattering in the C system [£(E',nc) = 1/4m, Q = 0]. The
integral on dE can then be written as
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where Ey and Ep, depend on the location of the secondary energy group
relative to E' as shown in Fig. 1, and the relationship between u. and

vy, is given by

Ly



E
-1
4(uL3)
i -8
: o BES(H L) g-1
Eg’ 0'"L3 Eg (UL4)
' -1
Eg (M o)
G
y H
: Eg (U o)
-1 -1 -1
E ..=0 E . =E8 =12 =E® =
high high Enigh™%0 Ehign~Eo Epign™0
- - w8 g'
E 0 E, = = = -
low low EO Elow,EO Elow E E1ow 0

Fig. 1. Possible Location of an Arbitrary Secondary Energy
Group Relative to the Range of Possible Secondary Energies E'->0oE'
and the Limits of Integration that Should be Used in Each Case.
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Since Py (yy) is simply a polynomial in ¥;» it is necessary only to eval-
uate integrals of the form:

fn(X> = -/;n dx 'n=1,2,3,4,5, sees (2+1) (9
{
n 2. 2 _ } (10)
gn(x) = |x a“+x“ dx 1n=0,1,2,3,4, ..., % ‘
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The integrals represented by gp(x) and hp(x) are less obvious than those
represented by fnp(x). They can, however, be evaluated analytically by
setting x = a tan O = avsec?d — 1, using the Binomial theorem to expand
integer powers of (sec?8 — 1), and applying a standard reduction formula
to integrate powers of (sec 8). Defining r = va? + x° and letting m = n/2
for n = even and m = (n — 1)/2 for n = odd, the results may be written

as:
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Despite their appearance, these expressions are generally quite simple.
For example: :
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Note that these analytic expressions are in closed form, and do not
simply represent the first few terms of an infinite series. It is for
this reason that the present method has been incorporated in the
ROLAIDS cross section processing code. !

For anisotropic scattering in the C-system, the angular distribu-
tion function f(E',u.) would look like:

- 3 ISCT (CM) 2ictl f I 2
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and Pp(pp) in Eq. (7c) would be replaced by the product Py (uc)Py(up).
Using Eq. (8) to represent each power of u. in Pyp(u.), Eq. (7c) could
still be written in terms of f (x), g,(x) and hn(x). Thus, the
resulting expressions could agaln be written in closed form with no
truncation error.

The present method as described above is to be advocated whenever

the angular scattering function is known in the C-system. If, on the
other hand, it is specified as an expansion in the L-system such that
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it would be more expedient to write the scattering function as

G(E'>E) dE = o(E') E(E',uL) 2mduy (22)

7



and substitute Eqs. (21) and (22) directly into Eq. (5) where the
integration in the L-system would involve only the product Pk(UL)PQ(uL).
Such terms represent simple polynominals in uj, ‘and are easily inte-
grated.* To take advantage of this simplicity, the MINX code® uses
Amster's transformation® to convert C-system expansions to L-system
expansions prior to performing the integration. Note, however, that
even the simplist function in the C-system [£(E',u.) = 1/4m] requires
an infinite number of Legendre terms in the L-system. In practice,

the L-system expansion must be truncated, leaving some residual error
not found in the present method.

For comparison purposes, it should be noted that NEWXLACS’ uses
a numerical quadrature to perform the angular integration in the evalu-
ation of oy(g'+g). 829510 15 be more precise, it calculates ol(g“*g)
as
g’y o
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where E(ULn) =1 if UL(E',EL9Q3A) _i UL < UL(E',EU’Q,A) for

E8' < E' <E&8' "1, and e(u; ) = 0 otheTwise. The integration over E' is
then done semi-analytically. The power of the method is that it is

- extremely fast and reasonably accurate in most cases. It is, however,
an approximate method. 1Its chief weakness is that one must use higher
order quadratures to obtain fairly accurate results as the group
structure becomes finer. For light nuclides this method may also leave
holes in the multigroup transfer matrices which should physically not
be present. Numerical experiments do, however, indicate the approxima-
tion to be quite good for heavy nuclides, and adequate for all nuclides
"~ but hydrogen. In all cases, the accuracy of the approximation may be
increased by increasing N.

To be perfectly rigorous in the case of hydrogen, one should

account for the fact that the atomic mass ratio A) is less_than unity.
The radicals in Eq. (7¢) would then become ¢hf —gb%'where b2 = 1 — AZ,

A substitution of the form py = b sec 8 would then allow Eq. (7c) to be
written in terms of p.(x). This exact treatment, however, would

represent an unnecessary degree of accuracy in most cases.

A most interesting and extremely useful simplification of Eq. (7¢)
results in the case of hydrogen where one is willing to make the A = 1
approximation. In that case, the bracketted quantity in Eq. (7c¢)
simplifies to 4up, Eq. (3) simplifies to pp, = YEJE", and Eq. (5) becomes
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Defining a, , as the coefficients of uf in Pl(“L)’ it becomes convenient
to describe’oz(gt+g) as

L
02(8'—>8) = Z az,n Oz,n (g'_)g) o . (25)

n=0

The terms cz,n(g“+g) can then be written as
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where p = (n+2)/2 and
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In the case of hydrogen, the piecewise continuous ENDF specification#
for o(E') is always of the form '

o(E') = a [E']b F | 4 (29)

for 10__5 ev < E' < 20 Mev. As long as ¢(E') is represented in a -
piecewise continuous fashion by one of the five ENDF interpolation
formulas, the integral in Eq. (28) may be evaluated analytically.
Assuming, for example, that the weight function is 1/E', Eq. (28)
yields :
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This completely analytic treatment for hydrogen has recently been
implemented in NEWXLACS.!! Because of the analytic treatment and the

A =1 approximation, a full down-scattering matrix is generated with no
holes.
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