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ABSTRACT 

Many d e t a i l e d  mul t ig roup  t r a n s p o r t  c a l c u l a t i o n s  r e q u i r e  
group-to-group Legendre t r a n s f e r  c o e f f i c i e n t s  t o  r e p r e s e n t  
s c a t t e r i n g  p r o c e s s e s  i n  v a r i o u s  n u c l i d e s .  These ( f i n e  group) 
c o n s t a n t s  must f i r s t  b e  g e n e r a t e d  from t h e  b a s i c  d a t a .  T h i s  
paper  o u t l i n e s  an  a l t e r n a t i v e  t e c h n i q u e  f o r  g e n e r a t i n g  such 
d a t a ,  g iven  t h e  t o t a l  s c a t t e r i n g  c r o s s  s e c t i o n  o f  a  p a r t i -  
c u l a r  n u c l i d e  on a p o i n t w i s e  energy  b a s i s ,  u ( E 1 ) ,  and some 
i n f o r m a t i o n  r e g a r d i n g  t h e  a n g u l a r  s c a t t e r i n g  d i s t r i b u t i o n  
f o r  each i n i t i a l  energy p o i n t .  

The e v a l u a t i o n  o f  g e n e r a l i z e d  mul t ig roup  t r a n s f e r  
m a t r i c e s  f o r  t r a n s p o r t  c a l c u l a t i o n s  r e q u i r e s  a double  
i n t e g r a t i o n  e x t e n d i n g  o v e r  t h e  pr imary and secondary energy 
groups  where, f o r  a  g iven  i n i t i a l  energy ,  t h e  i n t e g r a t i o n  
o v e r  t h e  secondary energy group may be  r e p l a c e d  by an  
i n t e g r a l  over  t h e  p o s s i b l e  s c a t t e r i n g  a n g l e s .  I n  t h e  p res -  
e n t  work, a n a l y t i c  e x p r e s s i o n s  f o r  t h e s e  a n g u l a r  i n t e g r a l s  
a r e  d e r i v e d  which , a r e  f r e e  of t r u n c a t i o n  e r r o r .  D i f f e r -  
ences  between t h e  p r e s e n t  method ( a s  implemented i n  ROLAIDS) 
and o t h e r  methods ( a s  implemented i n  M I N X  and NEWXLACS) w i l l  
be  e x p l o r e d .  Of p a r t i c u l a r  i n t e r e s t  i s  t h e  f a c t  t h a t ,  f o r  
hydrogen, t h e  a n g u l a r  i n t e g r a t i o n  i s  shown t o  s i m p l i f y  t o  
t h e  p o i n t  t h a t ,  f o r  many weigh t  f u n c t i o n s ,  t h e  i n t e g r a t i o n  
o v e r  t h e  pr imary energy  group might  a l s o  b e  performed 
analyt i -cal ly :  T h i s  comple te ly  a n a l y t i c  t r e a t m e n t  f o r  
hydrogen h a s  r e c e n t l y  been implemented i n  NEWXLACS. 

Given t h e  Legendre c o e f f i c i e n t s  o f  t h e  s c a t t e r i n g  c r o s s  s e c t i o n  on 
a po in t -wise  b a s i s ,  u I I , (E1+E) ,  t h e  group-to-group Legendre t r a n s f e r  
c o e f f i c i e n t s  a r e  d e f i n e d  as: 



where t h e  s p a t i a l  dependence o f  each  t e r m  is unders tood  and' 4 (El) 
R 

r e p r e s e n t s  t h e  Legendre c o e f f i c i e n t s  o f  t h e  a n g u l a r  f l u x  d i s t r i b u t i o n  
a t  each  s p a t i a l  p o i n t .  I n  p r a c t i c e ,  t h e  h i g h e r  o r d e r  terms, + R ( E ' ) ,  
a r e  r e p l a c e d  by a n  energy  dependent  we igh t  f u n c t i o n  $ ( E l ) .  I n  ROLAIDS1, 
f o r  example,  t h i s  would be  t h e  (zone averaged)  s c a l a r  f l u x  r e s u l t i n g  
from t h e  s o l u t i o n  of t h e  i n t e g r a l  s lowing  down e q u a t i o n  on a  p o i n t -  
w i s e  b a s i s .  I n  o t h e r  codes ,  such a s  X L A C S , ~ ' ~  t h e  we igh t  f u n c t i o n  may 
b e  s p e c i f i e d  by t h e  u s e r .  The Legendre c o e f f i c i e n t s  o f  t h e  po in t - to -  
p o i n t  a n g u l a r  s c a t t e r i n g  c r o s s  s e c t i o n  a r e  f o r m a l l y  d e f i n e d  a s  

I n  t h e  f a s t  and e p i t h e r m a l  r a n g e ,  however, t h e r e  i s  a  unique r e l a t i o n -  
s h i p  between t h e  i n i t i a l  and f i n a l  e n e r g i e s ,  t h e  e x i t a t i o n  energy (Q),  
t h e  mass o f  t h e  t a r g e t  n u c l i d e  (A),and t h e  c o s i n e  of t h e  a n g l e  o f  s c a t t e r  
i n  t h e  l a b  sys tem:  

R e p r e s e n t i n g  t h i s  a s  a d e l t a  f u n c t i o n  i n  Eq. ( 2 )  y i . e lds  

and 

The a c c u r a t e  e v a l u a t i o n  o f  t h i s  e x p r e s s i o n  r e p r e s e n t s  a  s e v e r e  computa- . 

t i o n a l  burden which must b e  addressed  by any c r o s s  s e c t i o n  p r o c e s s i n g  
code.  The p r e s e n t  method d i f f e r s  from p r e v i o u s  approaches  i n  t h a t  i t  
y i e l d s  a n  a n a l y t i c  s o l u t i o n  f o r  t h e  i n t e g r a l  on dE which i s  f r e e  of . , 



t r u n c a t i o n  e r r o r  when t h e  s c a t t e r i n g  f u n c t i o n  i s  g i v e n  by a  Legendre 
expans ion  i n  e i t h e r  t h e  center-of-mass (C) o r  t h e  l a b  (L) sys tem.  

The s c a t t e r i n g  f u n c t i o n ,  u ( E 1 - + E ) ,  r e p r e s e n t s  a  d i s t r i b u t i o n  o v e r  
t h e  secondary  energy  (E) and hence o v e r  t h e  s c a t t e r i n g  a n g l e .  Thus,  

where u c  is t h e  c o s i n e  o f  t h e  s c a t t e r i n g . a n g l e  i n  t h e  center-of-mass 
sys tem and f ( E 1 , u c )  i s  t h e  a n g u l a r  d i s t r i b u t i o n  f u n c t i o n  i n  t h a t  
sys tem.  A s i m i l a r  e x p r e s s i o n  cou ld  c e r t a i n l y  have been w r i t t e n  f o r  t h e  
l a b  sys tem.  Because a l l  s c a t t e r i n g  p r o c e s s e s  appear  more i s o t r o p i c  i n  
t h e  C sys tem and because  most s c a t t e r i n g  i n v o l v i n g  t h e  f o r m a t i o n  o f  a  
compound n u c l e u s  i s  i n  f a c t  i s o t r o p i c  i n  t h e  C sys tem,  t h e  p r e s e n t  
c h o i c e  was made. While t h e  p r e s e n t  method can e a s i l y  accomodate 
a n i s o t r o p i c  s c a t t e r i n g ,  i t  i s  most e a s i l y  i n t r o d u c e d  assuming i s o t r o p i c .  
e l a s t i c  s c a t t e r i n g  i n  t h e  C sys tem [ f ( ~ ' , p ~ )  = 1/4n ,  Q = 01. The ' 

i n t e g r a l  on dE can t h e n  b e  w r i t t e n  a s  
i 

where EU and EL depend on t h e  l o c a t i o n  of t h e  secondary  energy group 
r e l a t i v e  t o  E' a s  shown i n  F ig .  1, and t h e  r e l a t i o n s h i p  between pc and 
UL i s  g iven  by 



Fig. 1. Possible~Location of an Arbitrary Secondary Energy 
Group Relative to the Range of Possible Secondary Energies E1+ctE' 
and the Limits of Integration that Should be Used in Each Case. 



S i n c e  PQ(pL) i s  s imply a polynomial  i n  uLY i t  i s  n e c e s s a r y  on ly  t o  e v a l -  
u a t e  i n t e g r a l s  of t h e  form: 

The i n t e g r a l s  r e p r e s e n t e d  by gn(x) and hn(x)  a r e  l e s s  obvious  t h a n  t h o s e  
r e p r e s e n t e d  by f n ( x ) .  The can however, be  e v a l u a t e d  a n a l y t i c a l l y  by 
s e t t i n g  x = a t a n  8 = a m ,  u s i n g  t h e  Binomial theorem t o  expand 
i n t e g e r  powers of ( s e c 2 8  - I ) ,  and a p p l y i n g  a s t a n d a r d  r e d u c t i o n  formula  
t o  i n t e g r a t e  powers of ( s e c  8 ) .  D e f i n i n g  r = + x2 and l e t t i n g  m = n / 2  
f o r  n = even and m = (n  - 1 ) / 2  f o r  n = odd, t h e  r e s u l t s  may be  w r i t t e n  
as : 



where 

Despite their appearance, these.expressions are generally quite simple. 
For example: 



Note t h a t  t h e s e  a n a l y t i c  e x p r e s s i o n s  a r e  i n  c l o s e d  form, and do n o t  
s imply r e p r e s e n t  t h e  f i r s t  few terms o f  a n  i n f i n i t e  s e r i e s .  It i s  f o r  
t h i s  r e a s o n  t h a t  t h e  p r e s e n t  method h a s  been i n c o r p o r a t e d  i n  t h e  
ROLAIDS c r o s s  s e c t i o n  p r o c e s s i n g  code.  l 

For a n i s o t r o p i c  s c a t t e r i n g  i n  t h e  C-system, t h e  a n g u l a r  d i s t r i b u -  
t i o n  f u n c t i o n  f ( E 1 , u c )  would l o o k  l i k e :  

and PR(pL) i n  Eq. (7c)  would b e  r e p l a c e d  by t h e  p roduc t  Pk(pc)PR(pL) .  
Using Eq. (8) t o  r e p r e s e n t  each power o f  pc  i n  Pk(pc) ,  Eq. (7c)  cou ld  
s t i l l  b e  w r i t t e n  i n  terms o f  f n ( x ) ,  gn(x)  and h n ( x ) .  Thus, t h e  
r e s u l t i n g  e x p r e s s i o n s  cou ld  a g a i n  b e  w r i t t e n  i n  c l o s e d  form w i t h  no 
t r u n c a t i o n  e r r o r .  

The p r e s e n t  method a s  d e s c r i b e d  above i s  t o  be advocated whenever 
t h e  a n g u l a r  s c a t t e r i n g  f u n c t i o n  i s  known i n  t h e  C-system. I f ,  on t h e  
o t h e r  hand,  i t  i s  s p e c i f i e d  a s  an  expans ion  i n  t h e  L-system such  t h a t  

i t  would b e  more e x p e d i e n t  t o  w r i t e  t h e  s c a t t e r i n g  f u n c t i o n  a s  



and s u b s t i t u t e  Eqs. (21) and (22) d i r e c t l y  i n t o  Eq. (5 )  where t h e  
i n t e g r a t i o n  i n  t h e  L-system would i n v o l v e  o n l y  t h e  p r o d u ~ t & ( l - ' ~ ) P a ( ~ ~ ) .  
Such terms r e p r e s e n t  s i m p l e  polynominals  i n  p ~ ' a n d  a r e  e a s i l y  i n t e -  
g r a t e d . 4  To t a k e  advan tage  of t h i s  s i m p l i c i t y ,  t h e  M I N X  code5 u s e s  
Ams ter 's t r a n s  format ion6 t o  c o n v e r t  C-system expans ions  t o  L-system 
expans ions  p r i o r  t o  performing t h e  i n t e g r a t i o n .  Note,  however, t h a t  
even t h e  s i m p l i s t  f u n c t i o n  i n  t h e  C-system [ f ( E f y p c )  = 1 / 4 1 ~ ]  r e q u i r e s  
a n  i n f i n i t e  number o f  Leg'endre terms i n  t h e  L-system. I n  p r a c t i c e ,  
t h e  L-system expansion must be  t r u n c a t e d ,  l e a v i n g  some r e s i d u a l  e r r o r  
n o t  found i n  t h e  p r e s e n t  method. 

For comparison purposes ,  i t  s h o u l d  be  n o t e d  t h a t  NEWXLACS~ uses  
a numer ica l  q u a d r a t u r e  t o  perform t h e  a n g u l a r  i n t e g r a t i o n  i n  t h e  eva lu -  
a t i o n  o f  o g ( g f + g ) .  8 y 9 y  l o  To be  more p r e c i s e ,  i t  c a l c u l a t e s  o e ( g l + g )  
as 

where €(pLn) = 1 if pL(Ef ,EL,Q,A) 5 "n 5 P ~ ( E ' , E ~ , Q , A )  f o r  
~ g '  - < E' ~ g ' - l ,  and E ( U  ) = 0 o t h e r w i s e .  The integration over  E' i s  

Ln 
t h e n  done s e m i - a n a l y t i c a l l y .  The power of t h e  method i s  t h a t  i t  is  
ex t remely  f a s t  and r e a s o n a b l y  a c c u r a t e  i n  most c a s e s .  It i s ,  however, 
a n  approximate  method. Its c h i e f  weakness i s  t h a t  one must use  h i g h e r  
o r d e r  q u a d r a t u r e s  t o  o b t a i n  f a i r l y  a c c u r a t e  r e s u l t s  a s  t h e  group 
s t r u c t u r e  b&comes f i n e r .  For l i g h t  n u c l i d e s  t h i s  method may a l s o  l e a v e  
h o l e s  i n  t h e  mul t ig roup  t r a n s f e r  m a t r i c e s  which shou ld  p h y s i c a l l y  n o t  
b e  p r e s e n t .  Numerical exper iments  do,  however, i n d i c a t e  t h e  approxima- 
t i o n  t o  be q u i t e  good f o r  heavy n u c l i d e s , a n d  adequa te  f o r  a l l  n u c l i d e s  

' b u t  hydrogen. I n  a l l  c a s e s ,  t h e  accuracy  of t h e  approx imat ion  may b e  
i n c r e a s e d  by i n c r e a s i n g  N.  

To be p e r f e c t l y  r i g o r o u s  i n  t h e  c a s e  o f  hydrogen,  one shou ld  
account  f o r  t h e  f a c t  t h a t  t h e  a tomic  mass i s  l e s s  t h a n  u n i t y .  
The r a d i c a l s  in Eq .  (7c)  would t h e n  become where b Z  = 1 - A ~ .  
A s u b s t i t u t i o n  o f  t h e  form p~ = b s e c  9 would t h e n  a l l o w  Eq. (7c)  t o  be 
w r i t t e n  i n  terms of p . ( x ) .  T h i s  e x a c t  t r e a t m e n t ,  however, would . , 

J r e p r . e s e n t  a n  unnecessa ry  d e g r e e  o f  accuracy  i n  most c a s e s .  

A most i n t e r e s t i n g  and ex t remely  u s e f u l  s i m p l i f i c a t i o n  o f  Eq. (7c)  
r e s u l t s  i n  t h e  c a s e  o f  hydrogen where one i s  w i l l i n g  t o  make t h e  A = 1 
approx imat ion .  I n  t h a t  c a s e , t h e  b r a c k e t t e d  q u a n t i t  i n  E q .  (7c)  
s i m p l i f i e s  t o  4pL, Eq. ( 3 )  s i m p l i f i e s  t o  p~ = JW; and Eq. (5)  becomes 



D e f i n i n g  a  a s  t h e  c o e f f i c i e n t s  o f  p e  i n  PL(.pL), i t  becomes conven ien t  R , n  
t o  d e s c r i b e  a L ( g l +  g) a s  

The terms ~ ~ , ~ ( g ' + g )  can t h e n  b e  w r i t t e n  as 

where p  = (n+2) /2  and 

(7 R,n (gl+g)  = (s) [[Eg-9 - [ E g ) j  f o r  g l < g  

f o r  g f  = g 

(26) 

I n  t h e  c a s e  o f  hydrogen,  t h e  p iecewise  con t inuous  ENDF s p e c i f i c a t i o n '  
f o r  a ( E 1 )  i s  always o f  t h e  form 

. 1 . . . . 

f o r  l o - '  e v  < El < 20 Mev. A s  l o n g  a s  $ ( E l )  i s  r e p r e s e n t e d  i n  a . - - 
p i e c e w i s e  con t inuous  f a s h i o n  by one o f  t h e  f i v e  ENDP i n t e r p o l a t i o n  
fo rmulas ,  t h e  i n t e g r a l  i n  Eq. (28) may be e v a l u a t e d  a n a l y t i c a l l y .  
Assuming, f o r  example, t h a t  t h e  we igh t  f u n c t i o n  i s  l / E f ,  Eq. (28) 
y i e l d s  



This completely analytic treatment for hydrogen has recently been 
implemented in NEWXLACS. l 1  Because of the analytic treatment and the 
A = 1 approximation, a full down-scatteri'ng matrix is generated with no 
holes. 
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