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CASTOR~1C SPENT FUEL STORAGE CASK DECAY HEAT,
HEAT TRANSFER, AND SHIELDING ANALYSES

1.0 INTRODUCTION

implementation of spent fuel dry storage systems may be required in the
late 1980s because several at-reactor storage pools will attain maximum capac~
ity (DOE 1985). Under the Nuclear Waste Policy Act of 1982 {NMPA}, the U,S5,
Department of Energy (DOE) is assigned the responsibility for assisting utili-
ties with thefr spent fuel storage problems, An additional provision of the
NWPA is that DOE shall provide generic research and development (RED) of alter-
native speat fue) storage systems to enhance utility-provided at-reactor stor-
age capability. As a result of these NKPA provisions, and because DOE and
utilities are planning to conduct tests and demonstrations of dry storage
systems, analysis tools (computer codes) needed to be identified and evaluated
during the first few tests and demonstrations, The compuler codes are aiso
needed to effectively select test conditions, identify spent fuel assemblies,
select assembly loading patierns, and determine instrumentation placements,
and to minimize the number of future expensive, time~consuming tests and
demonstrations,

The Pacific Northwest Laboratory (Pﬁh}ia} selected five computer codes to
support the dry storage system testing and demonstration activities. The codes
were ORIGENZ (decay heat), COBRA-SFS and HYDRA [heat transfer), and (AD and DOT
{shielding).

ORIGENZ (Croff 1980a,b} was selected to predict spent fuel assembly decay
heat generation rates and radiation source rates. The code has been widely
used throughout the nuclear industry to perform design and licensing safety
anglyses,

The COBRA-SFS and HYDRA heat transfer codes were chosen based on their
treatment of the equations for mass, momentum, and enerqy. The codes have been

{a} The Pacific Northwest Laboratory is operated by Battelle Memorial
Institute for the U,8, Department of Energy.
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evaluated since 1%82 using both single-assembly data and multiassembly cask
data, Documentation is planned in 1986 and 1987,

The QAD {Malenfant 1967; ORNL 1977} and DOT (Rhoades and Childs 1982)
computer codes were seiected to predict gamma~ray and neutron dose rates,
respectively, Both codes have been used extensively to perform storage system
shielding analyses.

Anung the spent fuel dry storage systems being examined is the CASTOR-1C
boiling water reactor {Bwﬁj cask designed and manufactured by Gesellschaft fur
Nukiear Services {GNS) of the Federal Republic of Germany. The CASTOR-IC SWR
cask demonstration is reported by Fleisch, Einfeld, and iuhemann {1982}, The
ohjectives of this activity were to 1) predict decay heat rates of spent fuel
used during the cask demonstration; 2} predict cask temperatures and dose rates
prior to having access to test data, i.e., pre~look; 3} compare pre-logk heat
transfer and shielding code oredictions with test data to evaluate the codes;
and 4) perform post-test analyses to improve prediciions, if appropriate.
Comparisons of code predictions with CASTOR-IC cask experimental data reported
herein will be used, along with additional comparisons, to gualify the heat
transfer codes for later use in design and licensing safety analyses of candi-
date dry storage systems. No atiempt was made t0 compare the two heat transfer
codes because results of the other evaluations have not been completed, and
a comparison based on one data set may be premature and Jead to erroneous
conclusions,

Section 2.0 of this report presents the major conciusions drawn from this
work, along with the important recommendations permitted by the results and
conclusions. A brief susmary of the CASTUR-1IC BWR spent fuel storage cask
demonstration 15 provided in Section 3.0. Decay heat, heat transfer, and
shielding analyses, as well as the overall results, are discussed in detatl
in Sections 3,0 through 6,0,
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2.0 CONCLUSIONS AND RECOMMENDATIONS

The major conclusions and important recommendations resulting from these
analyses are presented in this section. In general, all the codes performed
vory well., Pre-test temperature and dose rate predictions compared satig-
factorily with experimental data, Selected post-test heat transfer analyses,
performed with an Improved axial decay heat profile, resulted in significantly
better predictions. In 211 cases, no major changes to the codes themselves
were required to improve comparisons between predictions and data., Changes to
only the input information were necegsary to fmprove heat transfer predictions,
The documented CRIGENZ decay heat and QAD and DOT shielding codes should be
used for design and licenstng analyses of dry storage systems. Once the COBRA-
SFS and HYDRA heat transfer codes are successfully evaluated, they should be
documented and used for these analyses also.

2.3 CONCLUSIONS
The follewing specific conclusions resulted from these analyses:

ORIGENZ Decay Heat Analysis

e The initial total decay heat generation rate in the CASTOR-IC cask
shartly after lcading with Wurgassen BWR spent fuel assemblies was
predicted to be ~13.5 kW {840 W/assembly], less than the 16-kW
(1-kW/assembly) cask design limit,

& The shape of the predicted axial decay heat profile was significantly
changed (the peak osccurred at a higher axial location) when data from
an in-reactor radiation scan was wused in conjunction with ORIGENZ to
determine the profile shape,

COBRASFS Heat Transfer Analysis

# Pre-~look temperature predictions compared very closely with data,
falling within +2% of the total peak-to-ambient temperature drop
at all three decay heat levels, However, despife the excellent
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agreement in peak temperature, there were significant differences
between predicted and measured temperature differences at specific
axial locations.

Pre~took axial temperature profiles for the peak temperature rods do
npt compare favorably with measured profiles. For example, tempera-
tures near the lower gnds of the axial profiles were overpredicted by
as much as 50°C, Temperatures in the upper reqions were underpre-
dicted by as much as 10°C. [t was determined that thess differences
were due primarily to an incorrectly specified axial decay heat
profile,

Existing natural convection heat transfer coefficients significantly
underpredict heat transferc from the cask surface, resulting in a pre-
ook predicted cask surface~to-ambient temperature difference that
was 30 to 40% greater than measured values for all three decay heat
levels.

Both the corner assembly-to-cask surface and the peak rod-to-cask
surface temperature differences were within 10°C of measured values
in all three pre~look simulations. The peak rod-to-cask surface tem-
perature differences were consistently underpredicted in all three
cases.,

The values used for rod-to-fluid convection heat transfer coeffi-
¢ients in the pre-lock analysis were based on constant heat flux from
the rods. The shape of the axial temperature profile suggests that
the coefficignts be changad to those based on constant temperature
conditions,

The post-test peak temperature predictions compared very c¢losely with
data, falling within $2% of the total peak-to-ambient temperature

drop in all three cases. In addition, there were improvements in
comparisons of predicted to measured temperature differences through-
aut the cask.

The use of an axial decay heat profile that reflects the operating
history of tha reactor resulted in much improved agreement between
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the post«test axial {emperature profile predictions and measured
profiles. HNear the lower end of the profiles, differences between
predicted and measured temperatures were 1ess than 5°C in all three
cases. Near the top end of the profile, the temperatures were under-
predicted by as much as 19 to 15°C,

Both the c¢orner assembly-to-cask surface and peak rod-to-cask surface
temperature differences were still within 10°C of measured values in
all three post-test simulations. The decrease in rod-to-flyid heat
transfer coefficients resulted in siight increases in thess tempera-
ture differences for all cases,

HYDRA Heat Transfer Analysis

Pre~look temperature predictions agreed well with test data, being
within 4% of the total peak rod-to-ambient temperature difference.
However, pradictions of temperatures at some axial locations were in
stgnificant disagreement with data,

Pre-taok predictions of axial temperature profiles were as much as
70°C higher than test data in the lower regions of the fuel assem-
Blies. An erroneous initial axial decay heat profile appears to have
been the cause of the majority of the disagreement,

Standard natural convertion heat transfer correlations for the extew
rior surface of the cask resulted in slight {<10°C) overpredictions
of cask surface temperatures. This and other similar analyses (Wiles
et al. 1986, Wheeler et al., 1986} have led to the conclusion that
existing correiztions may not be accurate wodels for very large
casks,

Post-test predictions of peak cladding temperatures were not noticew
ably affected by the use of a more reasonable axial decay heat pro-
file. However, agreement between predictions and data at other axial
Tocations was significantly improved {12°).
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QAD and DOT Shielding Analyses

2,2

QAD code predictions resulted in conservatively high gamma-ray dose
rates for CASTOR-1C, Predictions were as much &s twice as high as
test data,

Secondary gamma-ray contributions to total dose rates were much less
than peimary gamsa~ray contributions.

BOT code predictions of neutron dose rates were gonservatively high
for CASTOR-1C, Predicted values were as much as a factor of four
higher than measuyred values. Neutron source strengths may have been
the cause of the high dose rate predictions.

RECOMMENDATIONS

As a result of comparisons of code predictions with test data, the follow-

ing recommendations are made:

ORIGENZ Decay Heat Predictions

® QRIGENZ should be used to predict decay heat generation rates of

spent fuel assembiies for interim storage system desigp and licensing
safety analyses, This recommendation is based on the results of this
study and of the Wiles et al. {1986} and McKinnon et al. {1986a,b)
studies for BWR assemblies, as well as on Schimittroth's (1984} study
for PRR assemblies.

When ORIGENZ is used to predict decay heat generation rates of BWR
spent fuel assembitfes, cycle-by~cycle burnup values must be used 1o
ernsure good accuracies (£10%}.

COBRA-SFS and HYDRA Heat Transfer Analyses

L

The two codes should continue to be used to predict temperatures in
spent fuel dry storage systems and, once successfully evaluated and
documented, should be used for design and licensing safety analyses,

Predictions of dry storage system temperatures within 28 or 30°C can
be obtained, Further, if it is desirablie to improve this agreement,
the following, in order of importance, should be pursued:
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- System geometries, especially gap widths and characteristics of
contacting surfaces, must be better known to significantly improve

temperature predictions.

- Detailed in reactor radiation scans or assembly gamma scans should
be considered in the development of axial decay heat profiles to
be used as input in future cask analyses, to permit hetter predic-
tions of axial temperature profiles.

- The effects of free-stream turbulence and mixed convection (free
and forced) adjacent to the exterior surface of the cask shouid be

modeled, to improve heat transfer correlations.

- In COBRA-SFS, the two~dimensional momentum and heat transfer in
the regions ahove and helow the basket should be modeled. Sug-
gestions for refinements include radially varying infet condi-
tions, multidimensional heat transfer hetween solid structures,
and a computed velocity field.

- Velocity fields should be measured in simulated casks, and CORRA-
SFS and HYDRA predictions should be evaluated with the measured

distributions to enhance convection heat transfer results.

The heat transfer data contained in this report should be used to
evaluate other heat transfer codes.

QAD and DOT Shielding Analyses

The QAD and DOT codes should continue to be used to predict dose
rates in spent fuel dry storage systems.

Magnitudes of radiation source terms should be determined more
accurately if better prediction accuracies are desired. Space- and
energy-dependent neutron and gamma-ray source strength measurements
are desirable,

Shielding analyses of one or two casks should he performed with a
Monte Carlo code to provide an independent check on methodology and
determine if more accurate predictions are practical.
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