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Abstract

This paper examines the properties of sequential probability ratio
tests (SPRT’s) and the application of these tests to nuclear power
reactor operation. Recently SPRT’s have been applied to delayed-
neutron (DN) signal data analysis using actual reactor data from
the Experimental Breeder Reactor-II, which is operated by Argonne
National Laboratory. The implementation of this research as part of
an expert system is described. Mathematical properties of the SPRT
are investigated, and theoretical results are validated with tests that
use DN-signal data taken from the EBR-II in Idaho. Variations of
the basic SPRT and applications to general signal validation are also

explored.



1 Introduction

A sequential probability ratio test (SPRT) is a statistical hypothesis
test which differs from the standard fized-sample test in the way
in which statistical observations are employed. In the fixed-sample
test a given number of observations are used to select one hypothesis
from two or more alternatives. The SPRT, however, examines one
observation at a time and at some point makes a decision and selects
an hypothesis, or, if the SPRT is not closed, it may continue to
examine observations indefinitely without reaching a conclusion with
some nonzero probability. SPRT’s have been studied extensively in
the statistical literature for quite some time beginning with Wald
[1] and Wald and Wolfowitz [2]. Only more recently, however, have
SPRT’s found beneficial applications in the areas of safety and re-
liability of nuclear power reactor operation.

Given certain reasonable assumptions SPRT’s have been shown
to possess optimal properties versus corresponding fixed-sample tests
(2,3,4]. For example, when choosing between two alternative hy-
potheses, the SPRT can malie a correct decision faster (on average)

than the fixed-sample test to which it corresponds. When this is the



case it is said that the SPRT is more efficient than the fixed-sample
test. The validity of the above statement in a specific instance de-

pends upon a number of statistical properties of the problem being
studied, such as the form of the hypotheses, the underlying statisti-
cal distribution, the true value of various parameters and the specific
kind of SPRT being used.

More recently SPRT’s have been applied to pattern recognition
problems [3]. A compound SPRT has been used to improve effi-
ciency in two-class recognition problems with first-order Markov de-
pendence among pattern classes [5], and a nonparametric SPRT has
been formed to investigate Markov dependent data and problems
which test more than two hypotheses [6].

It has been shown that the SPRT is generally more efficient than
the fixed-sample size likelihood ratio test for the problem of detecting
a constant signal in additive noise {7]. The SPRT has also been used
to estimate system availability in systems which are continuously
“on station”, eg. early warning systems, patrol craft, etc. [§]

A project was initiated at the U.S. Nuclear Regulatory Com-

mission in 1980 to attempt to transform the SPRT into a practical



tool for nuclear power plant data analyses [9]. This study endorses
the value of a SPRT and encourages further testing. A truncated
SPRT has been shown to possess large potential savings in aver-
age time spent monitoring employees for radiation exposure at the
Rocky Flats Plant in Golden, Colorado [10]. A SPRT has also been
suggested for rapid decision making and the ability to track sig-
nals smitted by radiation monitors used for nuclear safeguards and
security [11].

The research presented in this paper primarily consists of the
development of new SPRT signal-analysis tools and focuses on the
integration of these tools into an Al based expert system to be used
as an operator decision aid for liquid-metal cooled nuclear reactors
(LMR’s) that are licensed to operate with failed fu;el [12]. The expert |
system is embodied in a device which monitors, processes and inter-
prets information from nine groups of redundant plant sensors and
displays to the reactor operator the diagnostic informatioﬁ needed
to make proper decisions about technical-specification conformance

during run-beyond-clad-breach (RBCB) operation.



The expert system is expected to enhance the safety, economics
and licensibility of future-design LMR’s. The system will enhance
plant safety by making available to the operator online diagnosis and
interpretation of a bewildering variety of interacting physical vari-
ables during exposed-fuel operation. Currently, full interpretation of
these variables requires several days to weeks of detailed analysis by
teams of specialists. The new system will provide the operator with
very rapid (within one minute) identification of off-normal RBCB
conditions, thereby enabling him to terminate or avoid events which
might challenge safety or radiological performance guidelines. The
system will enhance plant availability and economics by minimizing
unnecessary reactor trips caused by events having no safety signifi-
cance.

A detailed mathematical aﬁalysis has been performed on the ap-
plications of SPRT’s to RBCB operation in relation to the aforemen-
tioned expert system. Current practice in all countries that have
LMR programs (except possibly the Soviets) is to set conservative
shutdown limits on the magnitude of delayed-neutron (DN) signals

coming from breached fuel. By combining and evaluating informa-



tion from several groups of redundant plant sensors, the Al-based
system will make it possible to significantly relax the conservatism
in DN shutdown limits without compromising plant-safety assurance.
Currently, the SPRT is being applied to the problem of providing
rapid annunciation of discrepant signals or failed sensors with min-
imal “false alarm” probabilities. Since DN signals are functions of
a number of interacting physical variables, a future goal is to apply
the SPRT to questions about individual physical variables and com-
binations of physical variables influencing the DN signal. Examples

include:

1. determining whether a change in the statistical quality of a
DN signal (annunciated with a SPRT developed in the present
paper) is a result of a change in source condition (breach condi-
tion or fission rate), or a change in primary pump performance

characteristics and

o

. using a modification of the SPRT developed here for rapid de-
parture-from-background annunciation, which can pinpoint the

onset of a new breach in the presence of background DN events



(from fissioning of “tramp” uranium) with greater accuracy and
a lower “false-alarm” probability than simple threshold-limit

tests currentiy in use for LMR’s.

In most cases, the SPRT will provide an answer to each of these
questions faster than all other statistical tests.

The expert system described above has been developed for in-
corporation into the conceptual design of Argonne National Labo-
ratory’s Integral Fast Reactor. Plans are underway to install a pro-
totype apparatus at the EBR-11 in Idaho. The device is also being
incorporated into the conceptual design of General Electric’s Power

Reactor Inherently Safe Module.

2 Preliminaries
Consider the problem of discriminating between two simple hypothe-

ses

Hy:0=0,, Hi:0=0,, 6 #6, (1)
In this case, we concentrate on the family F;,(Xn;0),0 = 6o, 0, (ie.
the cumulative distribution function of the observations z;,z,,...,2zn

given the parameter ) containing only two distinct distributions [4].



In the usual sense, define

a = the probability that H; is chosen or accepted when
Hy is true,
1 —a = the probability that Hy is accepted when Hj is true,
B = the probability that Hy is accepted when H; is true,
1 -8 = the probability that H, is accepted when H, is true,
and n = the number of observations required to accept either
Hy or H.

« and 3 are called error probabilities and are usually determined
by the nature of the problem, and n.is called the sample number.
There exist a number of statistical tests to approach this problem.
A ‘good’ test should accept Hy when 8 is close to Yy and reject Hy
(accept H,) when 8 is close to 8, with high probability. Define the
operating characteristic function (OC), Q{0), as the probability that
Hp is accepted as a function of 8, and the power function, P(0), as
the probability that H; is accepted as a function of 6. As in [4], we
impose the validity criteria P(n < 0o | 8) =1 for 6 = 8,,6;, and

Qo) 21—a, Q(6)<B (2)



Thus, the statistical test will always make a decision given a finite
number of observations when 8 = 6, or § = 8,. Also, the test will
correctly accept Ho when 8 = 6, at least 100(1-a) per cent of the
time and will correctly accept H; when 8 = 8, at least 100(1-3) per
cent of the time. Note that if P(n < co | 8) =1 for all values of

0, the test is closed, i.e. it always makes a decision after some finite
number of observations, and Q(6) + P(8) = 1 for all 6.

We now discuss two remaining questions in turn. Firstly, what
statistical test shall we employ? A fixed-sample test, in which a
constant n is selected so as to satisfy (2), is standard and simple.
However, we shall choose a sequential probability ratio test for the
reason discussed in the next paragraph. A sequential probability ra-
tio test (SPRT) S(b,a) for (1) is defined by {4]: Observe the sequence
of observations {2;} (2 =1,2,...) successively, and at stage n > 1
(1) accept Hp if Z, < b,

(i1) reject Hy if Z, > q,

(iii) continue by observing z,4, if b < Z, < q,

where the stopping bounds (b,a), —o0 < b < a < co, are two real



numbers, and

fn( n 1)
(i 00)

is the natural logarithm of the probability ratio at stage n. The

forn >1

inequality b < Z, < a is called the eritical wmeguaiity of 5{p,a) at
stage n. The sample number n at which a decision is made depends
upon the observations themselves and the value of #. In many cases,
the average sample number (ASN) can be computed as a function
of § and is denoted by E(n;6).

It can be shown [4] that if S(b,a) is any SPRT which tests Hy
vs. Hy in (1) in a one-parameter family \Qith OC function Q(8)
and ASN function E(n;#8), if the ; are independent identically dis-
tributed random variables and if certain other quite general assump-
tions hold, then for any other rival statistical test S whose OC func-
tion satisfies Qg(8) > @Q(0) for all § < &', Qs(8) < Q(6) for all
6 > ¢', where ¢’ satisfies E(z;6') = 0 and

f(=;6,)
f(zi60)’

we have Es(n;8) > E(n;0) for all 8 # ¢'. Note that E(z;6) is the

z=In

expected value of z and is, in general, a function of §, since z is



a function of z, and 2 is a function of 8. ¢ is the value of # that
makes E(z;0) equal to zero. The proof that Es(n;8) > E(n;0) for
all 6 # @' is uot given here, but is provided in detail in {4]. Hence,
the SPRT makes a faster decision (on average) than any other test,
which has equal or smaller error probabilities, provided ihe above
assumptions are satisfied. Such a test is called a uniformly m st
efficient (UME) test. This is the major reason why the SPRT is a

useful test and, in many cases, the best statistical test.

3 Main Results
We now turn to the second question of interest. What problem do
we wish to solve? The problem of interest is that of determining
whether DN detectors are functicning correctly. Consider the case
in which there are two redundant detectors monitoring the same
process. (See Figure 1.)

We form a discrete difference function X = X;(¢;) — Xo(¢x) by
subtracting corresponding observations of X; and X, sampled at
times ¥, k= 1,2,.... Since both sensors are monitoring the same

process, X should have mean 0. (See Figure 2.) We develop the

10



X1

Time

X, = signal from Sensor #1

Xz

Sensor #2 A e e AN A e e A e e P e

Time

X, = signal from Sensor #2

Figure 1. Two detectors monitoring the sams process.
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Figure 2. Graph of the difference function Xj.

following statistical hypotheses and use a SPRT to test them.

Hy: X is Gaussian with mean yo = 0 and variance o?

Hy: X is Gaussian with mean p; # 0 and variance o?
The value of 62 can be estimated from actual data. If the SPRT
accepts H,, we declare sensor 1 or 2 failed. Note, however, that the
SPRT alone does not indicate which sensor has failed.

If one sensor fails, it is possible for both # and ¢? to change.
However, the SPRT as defined herein only tests for a change in
the mean. Although the SPRT will continue to accept the null
hypothesis, Hy, if only the variance of the signai changes, the SPRT
is sensitive to a change in the variance of the signal. Because the
ASN is directly proportional to a2, the variance of the difference

function, as shown below, a change in the variance of one signal will

12



affect ¢ and will subsequently cause 2 change in the ASN of the
SPRT. Further study is currently underway to examine the effects
of various kinds of failures on the properties of the SPRT.

Qur test has been formulated as a test of Gaussian means. This
leads to the question of whether the underlying DN sig:al distribu-
tion is Gaussian. This question has been explored using actual
DN signals from experiments conducted at full power in EBR-IIL
Although a number of statistical tests of normality, including the
sensitive Shapiro-Wilk test [13], indicate that the underlying distri-
bution of X is not Gaussian, it can be seen (See Table 1) t.h;tt the
assumption that X is normally distributed does not significantly af-
fect the performance of the SPRT for our application. That is, for
the simulated SPRT applied to real DN-signal data the ASN was
seldom more than 10% greatér and was often significantly less than
the theoretically predicted value of the ASN using the assumption
that the DN-signal data were normally distributed. Hence, the
mathematical theory of the SPRT applied to testing the mean of a
Gaussian distribution provides accurate and conservative estimates

for the ASN of the SPRT that has been applied to real DN-signal

13



data. This is fortunate, since much theoretical work has already
been done in the area of SPRT’s applied to normally distributed
data.

The question of how close to Gaussian the signal has to be is
very complicated. This issue is being studied carefully for DN sig-
nals, as well as for pump power and pump speed signals, and it
has been shown that, in general, the SPRT becomes less accurate
when | g1 — o |< o. For this reason, the authors are studying
the applicability of various transformations to normality. SPRT’s
can be formulated for applications to signals contaminated by non-
Gaussian noise, as long as the underlying signal distribution can be
represented mathematically in some closed form or transformed to
normality, but the analytical complexity may become far gr=ater.

Signals containing periodic components pose no problem to SPRT
analysis provided the components are in phase on the two instru-
ment channels, as is the case when the periodicities originate in the
bhysical process being observed by redundant sensors with identical

time constants. In this case the periodic phenomena are filtered by

14



the differencing process.

Several properties of the SPRT are of interest. These are:

1. Reliability

2. Average sample number

3. Effect of the choice of

4. Robustness

The reliability or accuracy of the SPRT is determined by the error
probabilities, « and B. Since these values are generally chosen based
upon the nature of the problem, they can be selected by the SPRT
user. As expected, their values do have an effect on other properties
of the SPRT as shown below.

The authors have determined various other facts regarding the re-
maining SPRT properties. It can be shown [4] that the ASN is given

by the following approximation when the underlying distribution is

Gaussian:
. ~ 20° {A v lnl——a A" B" ln_—}
Eln; p} =~ o
(#1 Ilo)(-!— ~ {1 — Ho)
where
-9 1 —
potrtpo=2 4 1-B p_ B
K1 = po a l-a

and In is the natural logarithm. Clearly, the ASN is a function of

15



i, the true mean of the underlying distribution. As can be seen
in Table 1, this approximation can be used to provide an accurate
theoretical estimate of the ASN when the SPRT is applied to real
DN-signal data. Note that the approximate ASN:

is directly proportional to o2

is inversely proportional to (u; — fo)?

is bounded, ie. has a maximum value

oW

increases slowly as a and 3 decrease

It is not surprising that the ASN increases as o2 does. One would ex-
pect the SPRT to take lenger to make a decision when the values ob-
served vary to a greater degree. Conversely, it is easier for the SPRT
to select an hypothesis as p; and po grow farther apart. In fact, the
SPRT takes longest to make a decision when g = (g1 + go)/2. The
ASN reaches a maximum at this point. Finally, a decrease of one
order of magnitude in a and 3 only approximately doubles the ASN.
This is Wha.tiwe mean by ‘increases slowly.’

The above properties of the ASN are encouraging. The SPRT
also appears to be robust with respect to a number of important

probability distributions. Hence, even if the underlying distribution

16



is not the distribution being used in theoretical calculations, those
calculations can still often be used as an accurate estimate of the
SPRT properties, as was seen to be the case in our research on
the DN-signal data. What we desire is an underlyving distribution,
which, although it may not statistically be Gaussian, Poisson, etc.,
is ‘close enough’ for our theory to provide reasonable estimates. A

distribution is close enough if

where s is the simulated value, t is the theoretical value, and

0 < p < 1is the allowable percentage error between the theoretical
and actual OC, power and ASN. This percentage error is determined
by the application. The theoretical value is that theoretical value
calculated under the assumption of Gaussian data.

These considerations lead us to a discussion of the third property
of the SPRT. What value should be chosen for y;. In general, the
authors suggest choosing the value for p, based upon the sensitive
malfunction value of y, say p'. If the value of p, is chosen to be
4y, then the SPRT will begin signaling a problem (accepting H,)

relatively often when p = p' = (o + p21)/4. However, it will do so

17



quickly, since p has not yet reached (ug + ©1)/2, the point at which
the ASN is maximum. The value of ' depends upon the situation
being analyzed and upon the nature of sensor malfunction, ie. linear,
quadratic, step, exponential, etc. The value of o2 also has an effect
on the choice of y;, since the ASN and robustness of the SPRT are
functions of (y; — po)/o. Additional work needs to be done in the

area of how to choose ;i) appropriately.

4 Example and Numerical Results

Table 1 illustrates the ASN, OC and power functions of the SPRT
for theoretical (assuming an underlying normal distribution) and
simulated (using actual DN-signal data from EBR-II) tests. The

critical inequality is

(In&)az+#o+#ln<im;< (1n.1_;!2)0-2+#0+mn

H1— Fo 2 i=1 £y — po 2

Other values are yo = 0, o2 = 800.5138, a = B = 0.001, and N=700
data values. The three values of y; were chosen to be approximately
equal to o (4 =28), 30 (p;=14), and 1o (4; =6). It should be

noted that, in practice, six sensor readings per second are common.
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Thus an ASN value of 100 indis>tzs that the SPRT takes approxi-
mately 17 seronds to select an hypothesis. This is much faster than
methods currently used, which often take two to ten minutes. It can
be seen that the theoretical values yield very accurate estimates for
real DN-signal data. Errors are usually highest near g = (po+41)/2,
and they are conservative, ie. the theoretical ASN is higher than
the simulated ASN. Corresponding fixed sample tests yield samiple
numbers of n=39 (g, = 28), n=156 (x; = 14), and n=850 (y; = 6),
which are also greater than SPRT ASN’s, even for simulations when
i is very close to (ug + p1)/2. Discrepancies in the OC and power
functions are also small, and indications are that the SPRT that is
simulated on DN data is slightly more prone to signal a problem
than is theoretically predicted. If this is a serious problem, a and
B can be appropriately decreased with relatively small increases in

the ASN, as indicated above.



Theoretical Simulated
™ B ASN Q P ASN Q P
28 -5.000 10.39 .9999 .0001 11.34 1.000 0.000
0.000 14.08 .999 .001 1538 1.000 0.000
5.000 21.43 938 012 20.76 0.939 0.061
10.000 37.32 878 122 34.45 0.830 0.130
14.000 48.69 .50 .50 4250 0.50 0.50
18.000 37.32 122 .878 36.74 0.158 0.542
23.000 21.43 .012 .988 23.20 0.033 0.967
28.000 14.08 .001 .999 15.47 0.000 1.000
33.000 10.39 .0001 .9999 11.78 0.000 1.000
14 -5.000 32.91 .99999  .00001 34.05 1.000 0.000
0.000 56.31 .999 .001 57.67 1.000 0.000
5.000 149.27 878 122 §6.00 0.750 0.250
7.000 194.85 .50 .50 93.17 0.50 0.50
10.000 118.67 .049 951 99.57 0.143 0.837
14.000 56.31 .001 .999 58.55 0.000 1.000
19.000 32.91 .00001 .99999 34.80 0.000 1.000
6 -3.000 153.58 .999999 .000001 123.00 1.000 0.000
0.000 306.55 .999 .001 166.00 1.000 0.000
3.000 1060.75 .50 .50 279.50 0.50 0.50
6.000 306.55 .001 999 300.00 0.000 1.000
9.000 153.538 .000001 .999999 151.50 0.000 1.000

ASN, OC and power function of the SPRT.
Table I
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5 Conclusions

The SPRT has been chosen as the method of selecting an hypothesis,
because it has been mathematically proven to possess many proper-
ties desired by the statistician and has been shown to perform very
well in the analysis of DN-signal data. Future goals of the work

presented herein include:

e Mathematical investigation of optimum methods for selecting
L1, and a determination of the factors, which cause the max-
imum simulated ASN to be more significantly less than the

maximum theoretical ASN as p, approaches gq.

o Further mathematical investigation of the relationship between
various variables and properties of the SPRT, ie. a, 8, ASN,
OC, power and robustness. Extensive testing with newly avail-
able DN-signal data will be taken during breached-fuel oper-
ation under a variety of plant conditions. The 700 data val-
ues employed in the investigations to date were obtaired dur-
ing a brief steady-state exposed-fuel test conducted in EBR-
IT in May, 1988. (See Figure 3.) Plant modifications are cur-

rently underway (Spring, 1989) to install new high-sensitivity
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DN detectors (DNDs). The'new DND configuration will per-
mit acquisition of DN-signal data from a series of breached-fuel
tests that will be conducted under a variety of steady-state,
transient-power and transient-flow conditions. This extensive
experimental database will provide reliable values of the ASN,
OC and power functions and enalle the authors to fully explore
the quality of the SPRT and discrepancies between theoretical
and simulated values under all breached-fuel conditions antici-

pated during normal operation of an LMR.

Research on the generalized truncated SPRT (GSPRT) to re-
duce the ASN [4]. This SPRT uses ‘variable stopping bound-
aries’ with the goal of enabling it to reach a decision faster
when g is close to (g + p1)/2. This advantage of the GSPRT
has been shown to become more pronounced as the error prob-
abilities become smaller [14). The authors ultimately desire
to combine the generalized truncated SPRT and the standard
SPRT and to utilize the strong points of each to result in a
faster decision. Research on the GSPRT is currently underway

and results are encouraging.
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e Research on clipped SPRT’s and moving window SPRT"s. These
SPRT’s do not allow the ASN to exceed some prespecified
value. This is done by simply beginning the SPRT again
(clipped SPRT) or by changing the function of observations in
the critical inequality (moving window SPRT) in some mathe-

matically convenient way.
e Application of the SPRT to more than two detectors.

¢ Encoding the final system in FORTRAN and implementing it
as part of the expert system described in the introduction of

this paper.

o Extension of the SPRT from analysis of DN-signal data, spe-
cifically, to general signal validation and sensor operability ap-
plications for all areas of nuclear reactor operation iherein a
given physical variable is being monitored by multiple, redun-
dant sensors (e.g. thermocouples, pressure transducers, flux

monitors, flow meters, etc.).
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