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Abstract

This paper examines the properties of sequential probability ratio

tests (SPRT's) and the application of these tests to nuclear power

reactor operation. Recently SPRT's have been applied to delayed-

neutron (DN) signal data analysis using actual reactor data from

the Experimental Breeder Reactor-II, which is operated by Argonne

National Laboratory. The implementation of this research as part of

an expert system is described. Mathematical properties of the SPRT

are investigated, and theoretical results are validated with tests that

use DN-signal data taken from the EBR-II in Idaho. Variations of

the basic SPRT and applications to general signal validation are also

explored.



1 Introduction

A sequential probability ratio test (SPRT) is a statistical hypothesis

test which differs from the standard fixed-sample test in the way

in which statistical observations are employed. In the fixed-sample

test a given number of observations are used to select one hypothesis

from two or more alternatives. The SPRT, however, examines one

observation at a time and at some point makes a decision aud selects

an hypothesis, or, if the SPRT is not closed, it may continue to

examine observations indefinitely without reaching a conclusion with

some nonzero probability. SPRT's have been studied extensively in

the statistical literature for quite some time beginning with Wald

[1] and Wald and Wolfowitz [2]. Only more recently, however, have

SPRT's found beneficial applications in the areas of safety and re-

liability of nuclear power reactor operation.

Given certain reasonable assumptions SPRT's have been shown

to possess optimal pi'operties versus corresponding fixed-sample tests

[2,3,4]. For example, when choosing between two alternative hy-

potheses, the SPRT can make a correct decision faster (on average)

than the fixed-sample test to which it corresponds. When this is the



case it is said that the SPRT is more efficient than the fixed-sample

test. The validity of the above statement in a specific instance de-

pends upon a number of statistical properties of the problem being

studied, such as the form of the hypotheses, the underlying statisti-

cal distribution, the true value of various parameters and the specific

kind of SPRT being used.

More recently SPRT's have been applied to pattern recognition

problems [3]. A compound SPRT has been used to improve effi-

ciency in two-class recognition problems with first-order Markov de-

pendence among pattern classes [5], and a nonparametric SPRT has

been formed to investigate Markov dependent data and problems

which test more than two hypotheses [6].

It has been shown that the SPRT is generally more efficient than

the fixed-sample size likelihood ratio test for the problem of detecting

a constant signal in additive noise [7]. The SPRT has also been used

to estimate system availability in systems which are continuously

"on station", eg. early warning systems, patrol craft, etc. [8]

A project was initiated at the U.S. Nuclear Regulatory Coin-

mission in 1980 to attempt to transform the SPRT into a practical



tool for nuclear power plant data analyses [9]. This study endorses

the value of a SPRT and encourages further testing. A truncated

SPRT has been shown to possess large potential savings in aver-

age time spent monitoring employees for radiation exposure at the

Rocky Flats Plant in Golden, Colorado [10]. A SPRT has also been

suggested for rapid decision making and the ability to track sig-

nals emitted by radiation monitors used for nuclear safeguards and

security [11].

The research presented in this paper primarily consists of the

development of new SPRT signal-analysis tools and focuses on the

integration of these tools into an AI based expert system to be used

as an operator decision aid for liquid-metal cooled nuclear reactors

(LMR's) that are licensed to operate with failed fuel [12]. The expert

system is embodied in a device which monitors, processes and inter-

prets information from nine groups of redundant plant sensors and

displays to the reactor operator the diagnostic information needed

to make proper decisions about technical-specification conformance

during run-beyond-clad-breach (RBCB) operation.



The expert system is expected to enhance the safety, economics

and licensibility of future-design LMR's. The system will enhance

plant safety by making available to the operator online diagnosis and

interpretation of a bewildering variety of interacting physical vari-

ables during exposed-fuel operation. Currently, full interpretation of

these variables requires several days to weeks of detailed analysis by

teams of specialists. The new system will provide the operator with

very rapid (within one minute) identification of off-normal RBCB

conditions, thereby enabling him to terminate or avoid events which

might challenge safety or radiological performance guidelines. The

system will enhance plant availability and economics by minimizing

unnecessary reactor trips caused by events having no safety signifi-

cance.

A detailed mathematical analysis has been performed on the ap-

plications of SPRT's to RBCB operation in relation to the aforemen-

tioned expert system. Current practice in all countries that have

LMR programs (except possibly the Soviets) is to set conservative

shutdown limits on the magnitude of delayed-neutron (DN) signals

coming from breached fuel. By combining and evaluating informa-



tion from several groups of redundant plant sensors, the Al-based

system will make it possible to significantly relax the conservatism

in DN shutdown limits without compromising plant-safety assurance.

Currently, the SPRT is being applied to the problem of providing

rapid annunciation of discrepant signals or failed sensors with min-

imal "false alarm" probabilities. Since DN signals are functions of

a number of interacting physical variables, a future goal is to apply

the SPRT to questions about individual physical variables and com-

binations of physical variables influencing the DN signal. Examples

include:

1. determining whether a change in the statistical quality of a

DN signal (annunciated with a SPRT developed in the present

paper) is a result of a change in source condition (breach condi-

tion or fission rate), or a change in primary pump performance

characteristics and

2. using a modification of the SPRT developed here for rapid de-

parture-from-background annunciation, which can pinpoint the

onset of a new breach in the presence of background DN events



(from fissioning of "tramp" uranium) with greater accuracy and

a lower "false-alarm" probability than simple threshold-limit

tests currently in use for LMR's.

In most cases, the SPRT will provide an answer to each of these

questions faster than all other statistical tests.

The expert system described above has been developed for in-

corporation into the conceptual design of Argonne National Labo-

ratory's Integral Fast Reactor. Plans are underway to install a pro-

totype apparatus at the EBR-II in Idaho. The device is also being

incorporated into the conceptual design of General Electric's Power

Reactor Inherently Safe Module.

2 Preliminaries

Consider the problem of discriminating between two simple hypothe-

ses

HO:0 = 6Q, H1-.e = eu eQ^e1 (i)

In this case, we concentrate on the family Fn{Xn; 0), 6 = 60,9\ (ie.

the cumulative distribution function of the observations X\, 12,. • •, xn

given the parameter 0) containing only two distinct distributions [4].



In the usual sense, define

a = the probability that Hi is chosen or accepted when

Ho is true,

1 — Q = the probability that Ho is accepted when Ho is true,

/3 = the probability that Ho is accepted when Hi is true.

1 — /3 = the probability that H\ is accepted when Hi is true,

and n = the number of observations required to accept either

Ho or Hx.

a and /? are called error probabilities and are usually determined

by the nature of the problem, and n is called the sample number.

There exist a number of statistical tests to approach this problem.

A 'good' test should accept Ho when 0 is close to t)0 and reject HQ

(accept Hi) when 9 is close to 0X with high probability. Define the

operating characteristic junction (OC), 0(0), as the probability that

Ho is accepted as a function of 6, and the power function, P(0), as

the probability that Ht is accepted as a function of 6. As in [4], we

impose the validity criteria P(n < oo | 6) = 1 for 6 = 0Q, 9X, and

</3 (2)



Thus, the statistical test will always make a decision given a finite

number of observations when 6 = do or 6 = 0\. Also, the test will

correctly accept Ho when 9 = 6Q at least lOO(l-a) per cent of the

time and will correctly accept Hi when 8 = 6X at least 100(1-/3) per

cent of the time. Note that if P(n < 00 | 0) = 1 for all values of

6, the test is closed, i.e. it. always makes a decision after some finite

number of observations, and Q(9) + P(8) = 1 for all 6.

We now discuss two remaining questions in turn. Firstly, what

statistical test shall we employ? A fixed-sample test, in which a

constant n is selected so as to satisfy (2). is standard and simple.

However, we shall choose a sequential probability ratio test for the

reason discussed in the next paragraph. A sequential probability ra-

tio test (SPRT) S(b,a) for (1) is defined by [4]: Observe the sequence

of observations {2,-} (i = 1,2,...) successively, and at stage n > 1

(i) accept Ho if Zn < 6,

(ii) reject Ho if Zn > a,

(iii) continue by observing i n + 1 if b < Zn < a,

where the stopping bounds (b,a), —00 < b < a < 00, are two real



numbers, and

is the natural logarithm of the probability ratio at stage n. The

inequality b < Zn < a is called the critical inequality of i>i,b,a) a^

stage n. The sample number n at which a decision is made depends

upon the observations themselves and the value of 0. In many cases,

the average sample number (ASN) can be computed as a function

of 0 and is denoted by E(n; 0).

It can be shown [4] that if S(b,a) is any SPRT which tests Ho

vs. Hi in (1) in a one-parameter family with OC function Q{0)

and ASN function E(n; 0), if the x,- are independent identically dis-

tributed random variables and if certain other quite general assump-

tions hold, then for any other rival statistical test S whose OC func-

tion satisfies Qs(6) > Q{0) for all 0 < 0r, Qs(0) < Q{9) for all

0 > 0', where 0' satisfies E{z;0') = 0 and

we have Es{n;0) > E{n;0) for all 0 ^ 0'. Note that E{z; 0) is the

expected value of z and is, in general, a function of 0, since z is



a function of a:, and x is a function of 9. 9' is the value of 9 that

makes E(z;6) equal to zero. The proof that Es(n;9) > E{n;9) for

all 9 ̂  0' is uot given here, but is provided in detail in [4]. Hence,

the SPRT makes a faster decision (on average) than any other test,

which has equal or smaller error probabilities, provided the above

assumptions are satisfied. Such a test is called a uniformly w ->st

efficient (UME) test. This is the major reason why the SPRT is a

useful test and, in many cases, the best statistical test.

3 Main Results

We now turn to the second question of interest. What problem do

we wish to solve? The problem of interest is that of determining

whether DN detectors are functioning correctly. Consider the case

in which there are two redundant detectors monitoring the same

process. (See Figure 1.)

We form a discrete difference function Xk = Xi(tk) — A"2(ffc) by

subtracting corresponding observations of X\ and A*2 sampled at

times ifc, k = 1,2, Since both sensors are monitoring the same

process, Xk should have mean 0. (See Figure 2.) We develop the

10



Sensor #1

X2

Sensor #2

Xi = signal from Sensor

Time

Time
X2 = signal from Sensor #2

Figure 1. Two detectors monitoring the spme process.
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+

xk
Time

Figure 2. Graph of the difference function Xk-

following statistical hypotheses and use a SPRT to test them.

Ho'- X is Gaussian with mean ^o = 0 and variance a2

H\: X is Gaussian with mean fix ^ 0 and variance a2

The value of a2 can be estimated from actual data. If the SPRT

accepts Hi, we declare sensor 1 or 2 failed. Note, however, that the

SPRT alone does not indicate which sensor has failed.

If one sensor fails, it is possible for both fi and a2 to change.

However, the SPRT as defined herein only tests for a change in

the mean. Although the SPRT will continue to accept the null

hypothesis, Ho, if only the variance of the signal changes, the SPRT

is sensitive to a change in the variance of the signal. Because the

ASN is directly proportional to a3, the variance of the difference

function, as shown below, a change in the variance of one signal will

12



affect a2 and will subsequently cause a change in the ASN of the

SPRT. Further study is currently underway to examine the effects

of various kinds of failures on the properties of the SPRT.

Our test has been formulated as a test of Gaussian means. This

leads to the question of whether the underlying DN signal distribu-

tion is Gaussian. This question has been explored using actual

DN signals from experiments conducted at full power in EBR-II.

Although a number of statistical tests of normality, including the

sensitive Shapiro-Wilk test [13], indicate that the underlying distri-

bution of X is not Gaussian, it can be seen (See Table 1) that the

assumption that X is normally distributed does not significantly af-

fect the performance of the SPRT for our application. That is, for

the simulated SPRT applied to real DN-signal data the ASN was

seldom more than 10% greater and was often significantly less than

the theoretically predicted value of the ASN using the assumption

that the DN-signal data were normally distributed. Hence, the

mathematical theory of the SPRT applied to testing the mean of a

Gaussian distribution provides accurate and conservative estimates

for the ASN of the SPRT that has been applied to real DN-signal

13



data. This is fortunate, since much theoretical work has already

been done in the area of SPRT's applied to normally distributed

data.

The question of how close to Gaussian the signal has to be is

very complicated. This issue is being studied carefully for DN sig-

nals, as well as for pump power and pump speed signals, and it

has been shown that, in general, the SPRT becomes less accurate

when \ pi — po \< a. For this reason, the authors are studying

the applicability of various transformations to normality. SPRT's

can be formulated for applications to signals contaminated by non-

Gaussian noise, as long as the underlying signal distribution can be

represented mathematically in some closed form or transformed to

normality, but the analytical complexity may become far greater.

Signals containing periodic components pose no problem to SPRT

analysis provided the components are in phase on the two instru-

ment channels, as is the case when the periodicities originate in the

physical process being observed by redundant sensors with identical

time constants. In this case the periodic phenomena are filtered by

14



the differencing process.

Several properties of the SPRT are of interest. These are:

1. Reliability

2. Average sample number

3. Effect of the choice of y.\

4. Robustness

The reliability or accuracy of the SPRT is determined by the error

probabilities, a and 0. Since these values are generally chosen based

upon the nature of the problem, they can be selected by the SPRT

user. As expected, their values do have an effect on other properties

of the SPRT as shown below.

The authors have determined various other facts regarding the re-

maining SPRT properties. It can be shown [4] that the ASN is given

by the following approximation when the underlying distribution is

Gaussian:

where

y.\ — no o 1 — a

and hi is the natural logarithm. Clearly, the ASN is a function of

15



fi, the trus mean of the underlying distribution. As can be seen

in Table 1, this approximation can be used to provide an accurate

theoretical estimate of the ASN when the SPRT is applied to real

DN-signal data. Note that the approximate ASN:

1. is directly proportional to a2

2. is inversely proportional to (/̂ i — no)2

3. is bounded, ie. has a maximum value

4. increases slowly as a and /3 decrease

It is not surprising that the ASN increases as <r2 does. One would ex-

pect the SPRT to take longer to make a decision when the values ob-

served vary to a greater degree. Conversely, it is easier for the SPRT

to select an hypothesis as y.\ and fi0 grow farther apart. In fact, the

SPRT takes longest to make a decision when \i = (fii + fJ-o)/'2. The

ASN reaches a maximum at this point. Finally, a decrease of one

order of magnitude in a and 0 only approximately doubles the ASN.

This is what we mean by 'increases slowly.'

The above properties of the ASN are encouraging. The SPRT

also appears to be robust with respect to a number of important

probability distributions. Hence, even if the underlying distribution

16



is not the distribution being used in theoretical calculations, those

calculations can still often be used as an accurate estimate of the

SPRT properties, as was seen to be the case in our research on

the DN-signal data. What we desire is an underlying distribution,

which, although it may not statistically be Gaussian, Poisson. etc.,

is 'close enough' for our theory to provide reasonable estimates. A

distribution is close enough if

s-t
— <P

where 5 is the simulated value, t is the theoretical value, and

0 < p < 1 is the allowable percentage error between the theoretical

and actual OC, power and ASN. This percentage error is determined

by the application. The theoretical value is that theoretical value

calculated under the assumption of Gaussian data.

These considerations lead us to a discussion of the third property

of the SPRT. What value should be chosen for px. In general, the

authors suggest choosing the value for /^ based upon the sensitive

malfunction value of fi, say fi'. If the value of /J.I is chosen to be

4/z', then the SPRT will begin signaling a problem (accepting Hi)

relatively often when fi = fi' = (fiQ + Mi)/4- However, it will do so

17



quickly, since y. has not yet reached (po + fa)/2, the point at which

the ASN is maximum. The value of p' depends upon the situation

being analyzed and upon the nature of sensor malfunction, ie. linear,

quadratic, step, exponential, etc. The value of a2 also has an effect

on the choice of fa. since the ASN and robustness of the SPRT are

functions of (fa — /^o)/cr. Additional work needs to be done in the

area of how to choose fa appropriately.

4 Example and Numerical Results

Table 1 illustrates the ASN, OC and power functions of the SPRT

for theoretical (assuming an underlying normal distribution) and

simulated (using actual DN-signal data from EBR-II) tests. The

critical inequality is

fa- fj.0 2

Other values are nQ = 0, a2 = 800.513S, <* = /? = 0.001, and N=700

data values. The three values of fa were chosen to be approximately

equal to a (fa =28), \a (fa = 14), and \o (fa =6). It should be

noted that, in practice, six sensor readings per second are common.

18



Thus an ASN value of 100 jndk-r.tas that the SPRT takes approxi-

mately 17 seconds to select an hypothesis. This is much faster than

methods currently used, which often take two to ten minutes. It can

be seen that the theoretical values yield very accurate estimates for

real DN-signal data. Errors are usually highest near fi = (/xo+^1)/2,

and they are conservative, ie. the theoretical ASN is higher than

the simulated ASN. Corresponding fixed sample tests yield sample

numbers of n=39 (^i = 2S), n=156 (/*i = 14), and n=S50 {^ - 6).

which are also greater than SPRT ASN's, even for simulations when

fi is very close to (/z0 + /*i)/2- Discrepancies in the OC and power

functions are also small, and indications are that the SPRT that is

simulated on DN data is slightly more prone to signal a problem

than is theoretically predicted. If this is a serious problem, a and

ft can be appropriately decreased with relatively small increases in

the ASN, as indicated above.

19



Mi M

28 -5.000
0.000
5.000

10.000
14.000
lS.OOO
23.000
2S.000

ASN

10.39
14.0S
21.43
37.32
48.69
37.32
21.43
14.08

Theoretical
Q

.9999

.999

.988

.S7S

.50

.122

.012

.001

P

.0001

.001

.012

.122

.50

.87S

.988

.999

Simulated
ASN

11.34
15.38
20.76
34.45
42.50
36.74
23.20
15.47

Q

1.000
1.000
0.939
0.S50
0.50
0.158
0.033
0.000

P

0.000
0.000
0.061
0.150
0.50
0.842
0.967
1.000

33.000 10.39 .0001 .9999 11.78 0.000 1.000

14 -5.000 32.91 .99999 .00001 34.05 1.000 0.000
0.000 56.31 .999 .001 57.67 1.000 0.000
5.000 149.27 .878 .122 S6.00 0.750 0.250
7.000 194.S5 .50 .50 93.17 0.50 0.50

10.000 118.67 .049 .951 99.57 0.143 0.857
14.000 56.31 .001 .999 5S.55 0.000 1.000
19.000 32.91 .00001 .99999 34.S0 0.000 1.000

6 -3.000 153.5S .999999 .000001 123.00 1.000 0.000
0.000 306.55 .999 .001 166.00 1.000 0.000
3.000 1060.75 .50 .50 279.50 0.50 0.50
6.000 306.55 .001 .999 300.00 0.000 1.000
9.000 153.5S .000001 .999999 151.50 0.000 1.000

ASN, OC and power function of the SPRT.
Table I
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5 Conclusions

The SPRT has been chosen as the method of selecting an hypothesis,

because it has been mathematically proven to possess many proper-

ties desired by the statistician and has been shown to perform very

well in the analysis of DN-signal data. Future goals of the work

presented herein include:

• Mathematical investigation of optimum methods for selecting

Hi, and a determination of the factors, which cause the max-

imum simulated ASN to be more significantly less than the

maximum theoretical ASN as pi approaches y.Q.

• Further mathematical investigation of the relationship between

various variables and properties of the SPRT, ie. a, j3, ASN,

OC, power and robustness. Extensive testing with newly avail-

able DN-signal data will be taken during breached-fuel oper-

ation under a variety of plant conditions. The 700 data val-

ues employed in the investigations to date were obtained dur-

ing a brief steady-state exposed-fuel test conducted in EBR-

II in May, 19SS. (See Figure 3.) Plant modifications are cur-

rently underway (Spring, 1989) to install new high-sensitivity

21
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DN detectors (DNDs). The'new DND configuration will per-

mit acquisition of DN-signal data from a series of breached-fuel

tests that will be conducted under a variety of steady-state,

transient-power and transient-flow conditions. This extensive

experimental database will provide reliable values of the ASN,

OC and power functions and enable the authors to fully explore

the quality of the SPRT and discrepancies between theoretical

and simulated values under all breached-fuel conditions antici-

pated during normal operation of an LMR.

Research on the generalized truncated SPRT (GSPRT) to re-

duce the ASN [4]. This SPRT uses 'variable stopping bound-

aries' with the goal of enabling it to reach a decision faster

when ft is close to (fi0 + ^i)/2. This advantage of the GSPRT

has been shown to become more pronounced as the error prob-

abilities become smaller [14]. The authors ultimately desire

to combine the generalized truncated SPRT and the standard

SPRT and to utilize the strong points of each to result in a

faster decision. Research on the GSPRT is currently underway

and results are encouraging.
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• Research on clipped SPRT's and moving window SPRT's. These

SPRT's do not allow the ASN to exceed some prespecified

value. This is done by simply beginning the SPRT again

(clipped SPRT) or by changing the function of observations in

the critical inequality (moving window SPRT) in some mathe-

matically convenient way.

• Application of the SPRT to more than two detectors.

• Encoding the final system in FORTRAN and implementing it

as part of the expert system described in the introduction of

this paper.

• Extension of the SPRT from analysis of DN-signal data, spe-

cifically, to general signal validation and sensor op er ability ap-

plications for all areas of nuclear reactor operation wherein a

given physical variable is being monitored by multiple, redun-

dant sensors (e.g. thermocouples, pressure transducers, flux

monitors, flow meters, etc.).
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