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Abstract

A constant of motion is defined for a one-dimensional and nth-differential-order au-
tonomous system. A generalization of the Legendre transformation is given that allows one
to obtain a relation among the constant of motion. the Lagrangian, and the Hamiltonian.
The approach is used to obtain the constant of motion associated with the nonrelativistic

third-differential-order Abraham-Lorentz radiation damping equation.

I. INTRODUCTION

Finding the constant of motion of a dynamical system is one of the best approaches
to understanding some of the system's local and global characteristics {1]. In addition,
the constants of motion are of considerable importance in physics [2,3], since they are
closely connected with the concept of “energy” and invariants of motion [4]. The constant
of motion approach has been used to study the relationship among this constant, the La-
grangian, and the Hamiltonian for one-dimensional and second-differential-order dynamical
systems [5,6]. In this paper, the study of the constant of motion and its relation with the
Lagrangian and the Hamiltonian is extended to one-dimensional and nth-differential-order
autonomous systems. The approach is applied to the nonrelativistic third-differential-order

Abraham-Lorentz radiation damping problem.

II. CONSTANT OF MOTION

A one-dimensional autonomous system of nth-order of differentiation is described by the

equation

d*z 1 -1

o = F(z,zM . 2"~y (1)
where t represents the time, z represents the position, (!, : = 1,...,n — 1 is the ith-

differentiation with respect to time (z*) = d'z/ dt'), and the function F does not depend

explicitly on time. Using the definitions

=29 i=1....n (2a)




and

o=1 . (2b)

Eq. (1) can be written as the following dynamical system:

d€i—1

gdt =&,1=1,...,n-1 (3a)
and

dé,

di (2.6, en1) (38)

A constant of motion of this system is a function,

KIK(I,fl,....én_l), (4)

such that its total differentiation with respect to time is null (dA/dt = 0), i.e., the func-

tion A must be a solution of the following partial differential equation:

n-1 .
25,3&_ + F(z,€1,... €n=1) =0. (5)

vt 8{,,_

This equation can be solved by the characteristics method [7], where the equations for the

characteristics are given by

dx _ d{l _ . d&n—l _ dK

=—=...= = 6
d&y . d& F(z,&,.. . &) 0 (6)
Finding n — 1 characteristics curves, C; = Ci(z,&1,...,€p~1),¢ = 1,...,n, the general

solution of Eq. (6) is given by any arbitrary function of the characteristics,

K = K(Cy,...,Cy) . | (7)




III. RELATION WITH THE LAGRANGIAN

Define the operator (?# as

# et
— _1\e—ig,
O = 5_;( DF (8)
1=
and the generalized Legendre transformation as
n—1
oL
> Wor—L=G, (9)
u=1 Su
where L is the Lagrangian associated with Eq. (1) and G(z,£,...,&,-1) is any arbitrary
function. Applying the total time differentiation operator,
d X ]
el (v+1)
dt ’ 8z(¥) (10)
to Eq. (9) and making some rearrangements, the result is
n—1
: d* OL 0L dG
-1 putl ® Y - .
&1 {;( Lo 8¢, Oz } dt (11)

This expression brings about the relation among the constant of motion, the Legendre-
transformation. and the Lagrangian. If L is the Lagrangian of the system (1) (meaning
that the expression inside the braces of Eq. (11) is null), the function G must be a constant
of motion of the system (G = K). On the other hand, if G is a constant of motion,

then L represents the Lagrangian of the system (&; # 0).

Iv. RELATION WITH THE HAMILTONIAN

Defining the generalized momenta w,,u=1,...,n -1, as
oL
.uﬂ(:r.fl,...,fn_l)z—a——,y:l,...,n——l, (12)
Cu

the Legendre transformation (9) becomes

n—-1 u

DI ) R (13)

p=11=1

H




where ;u;(l”_') represents the total (u — ¢)th differentiation with respect to the time of the

new variable w,, and function # is given by

H(z.wy.....wp1) = K(x.fl(:c.wl,...,wn_l),...,én_l(x,wl,...,wn_l)) . (14)

Of course, the jacobian of the transformation & to w must be different from zero. Making
the differential variation in Eq. (13) and rearranging terms, the generalized Hamiltonian

equations follow:

OH _ o~ juei | 0T 06| oL ' ]
7~ 227 [&TW E (15a)
and
9H &< i | (i) 96 Bt ™V %<3 _
Dy “uzl {;(-1) i:vd;z. aw/\'*‘fz Doy ‘—u)ua;: A=1...,n-1. (15b)

V. SPECIAL CASES

Clearly, Eqs. (9), (11), (13), and (15) are reduced themselves to the well-known ex-
pressions for a second-order-differential autonomous system (n = 2). For a third-order-
differential dynamical system, the Legendre transformation (9) represents a second-order

partial differential equation of variable coefficients:

d\ 0L oL R
(a—v—>55+v79—;—1§=}\., (16a)

where v = £; is the velocity, a = £; is the acceleration, and the total time differentiation

operator is given by
d 5} g

4 _,9 .9 .
i T T W

9
da

The solution of Eq. {16) is not trivial and depends on the dynamics, which is determined

(16b)

by the equation

% = F(z,v,a) . (17)

This fact contrasts with the second-order case of Reference 6, where all the dynamics is

kept in the constant of motion K.




V. ABRAHAM-LORENTZ RADIATION DAMPING
The third-order Abraham-Lorentz equation for the electromagnetic radiation of a

charged particle [8] that is moving freely in one-dimensional space can be written as
2@ —r® =0, (18a)

where the parameter T characterizes the dissipation of energy and is given by

2 €2
T= ——
3mcd’

(18b)

e being the charge of the particle. m its mass. and c the speed of light. The dynamical

system associated with Eq. (18) is expressed by the equations

V=, (19a)
2 =a, (19%)

and
¥ =q/r, (19¢)

where v represents the velocity, and a is the acceleration of the charge. The constant of

motion satisfies the following partial differential equation:

oK 0K adK
v +a i =

Ox Bv+;8a_

0. (20)
It is not difficult to find from Eqgs. (6) and (19) the following two characteristic curves:
Ci=v—ra (21a)

and
Co=r {v + (v — 7a) log(ra)] —-T. (21b)

Therefore, the general solution of Eq. (‘20) is

K(z,v,a)=G(Cy,C?) , (22)




where G is an arbitrary function of the characteristic curves. Selecting this function of the

form

1 2
G(Cl.Cg)zngf—i—Tg(Cg). (23)
one is allowed to recover the usual expression for the nonrelativistic energy when the
damping factor 7 goes to zero. (Clearly, the arbitrary function ¢ must remain finite
for 7 equal to zero.) Thus. the constant of motion for this system can be written as

K 1 L] 2 )
Alr.v.a)==-mv- — rmva -~ 57 ma’ + rg(rv + (v —7a)log(ra) — ) . (24)

The function ¢ is arbitrary and may be determined from experimental analysis on the
radiating syvstem. Substituting this expression in Eq. (16) and solving the resulting partial
differential equation. the Lagrangian should be obtained. However. to do this requires

much more elaborate and complex analysis that will not be performed here.

VII. CONCLUSIONS

A constant of motion was defined for one-dimensional and nth-differential-order
autonomous systems. By generalizing the Legendre transformation on these systems. a
relation is obtained between thé Lagrangian and the constant of motion. The relation be-
tween the constant of motion and the Hamiltonian also follows from the generalized Legen-

dre transformation. Finally. for the nonrelativistic Abraham-Lorentz radiation damping

system, an explicit constant of motion is deduced using the above approach.
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