
tout^ooUD:'1To be presented at the International Symposium on Robotics and AutonjAtion, July 18, 1990, Vancouver f RCi

ARCHIMEDES: AN EXPERIMENT IN AUTOMATING 
MECHANICAL ASSEMBLY l rf.ff; * V' \J%j s i

DAVID STRIP
Sandia National Laboratories 

Albuquerque, N. M.

ANTHONY A. MACIEJEW^^ 5 19g0
Department of Electrical Engineering 

Purdue University 
West Lafayette, IN.

SAND—89-2561C

Abstract DE90 009001

Archimedes is a prototype mechanical assembly system which generates 
and executes robot assembly programs from a CAD model input The system 
addresses the unrealized potential for flexibility in robotic mechanical assembly 
applications by automating the programming task. Input is a solid model of the 
finished assembly. Using this model, Archimedes deduces geometric assembly 
constraints and then produces an assembly plan that satisfies the geomedic 
constraints, as well as other constraints such as stability and accessibility. A 
retargetable plan compiler converts the generic plan into robot and cell specific 
code, including recognition routines for a vision system. In the prototype 
system the code is executed in a workcell containing an Adept Two robot, a 
vision system, and other parts handling equipment.

1 Introduction

Archimedes is a prototype system for automating mechanical assembly. It 
accepts a solid model of an assembly as input and generates a robot program for 
carrying out the assembly.

Although robots offer the potential for truly flexible manufacturing systems, their 
application has usually been limited to situations in which the robot can operate in 
a relatively fixed manner for a reasonably long production run. The complexity of 
programming robots, designing fixtures, arranging workcells, and interacting with 
the output of the design process are the principle reasons for this limitation. The 
Archimedes system is motivated by the desire to significantly simplify the task of 
programming and setting up a mechanical assembly task.

Our goal is a system which accepts a set of plans and parts as inputs and produces 
an assembled product. In more practical terms, this translates into providing a 
solid model as input to a computer program and producing as output the necessary 
manipulation and sensing programs for carrying out the assembly on a robot and 
ancillary systems. As we are concerned with manufacturing systems, we assume 
that the environment can be be structured in order to simplify the task, although 
we must obviously restrict the degree of structure in order to maintain our goal of 
flexibility.

This work was performed at Sandia National Laboratories and supported by the U. S. Depart ment 
of Energy under contract DE-AC04-76DP00789.

DISTRIBUTION OF THIS DOCUMENT IS^yM
t̂FTED



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



Figure 1: Pattern Wheel Assembly

Early efforts in automating assembly include Fahlman’s BUILD System [1], 
which focused on planning, but contains a very interesting approach to stability 
analysis. Several task level programming systems have been proposed, such as 
Lama [4] and AML/X [8], both of which use the idea of skeleton strategies. These 
are both textually oriented and procedural in nature. Rapt [7] moves away from the 
procedural format, and uses a textual input describing the geometric relationships 
among the parts. These task-level systems are primarily conceptual designs; little 
experience is reported on their application to assembly tasks using physical robots. 
Somewhat more closely related to our work are approaches that use a geometric 
representation as part of their input Autopass [2] is an early example in this 
direction. Again, little is reported on the actual implementation or application of 
these concepts. To our knowledge, Lozano-Perez’s Handey system [5] is the only 
other planning system that we are familiar with that emphasizes implementation. 
Related work in a different vein includes de Mello’s [3] ideas on AND-OR graphs 
for finding feasible subassembly and related planning issues. In our work we assume 
that important information on the breakdown into subassemblies is part of the design 
information, although provision is made for identifying additional subassemblies that 
are important for assembly purposes.

2 Overview of the Archimedes I Experiment

Figure 1 show the pattern wheel assembly from the dual stronglink, a safety 
component designed at Sandia National Laboratories. This assembly contains 13 
parts (mostly pins and cogs) and is representative of a large fraction of the over 250 
parts in this clockwork-like mechanism. For assembly planning, the parts can be 
modeled as stepped cylinders with holes in them. This simple model is sufficient for 
all the parts in the pattern wheel assembly, as well as a substantial fraction of the 
other parts in the dual stronglink. The motions needed for this particular assembly 
are uni-directional, as are a great many of the motions needed for assembling other 
parts of the larger mechanism. This is consistent with the frequently cited study of 
Nevins and Whitney [6] on assembly. The goal of the Archimedes I experiment is 
to accept a CAD model of the assembled pattern wheel and the parts as input and 
to produce an assembled pattern wheel as output

The workcell for assembling this component consists of an Adept Two manip­
ulator with a tool changer, a two-finger pneumatic gripper, a vacuum gripper, alv 
remote center compliance, a force sensor, an arm mounted video camera, and 'a

2

3481



VMEbus-based computing system to supplement the commercial controller.
The modeling and planning software, written in Common Lisp, are executed on a 

Symbolics Lisp machine. The plan compiler, which takes the output of the planner 
and produces code for the robot controller, is written in C++ and executed on a 
Sun 3. The VMEbus system contains several processors; some are specialized for 
image processing, while others are single-board 68020 systems programmed in C++ 
and operating under VxWorks. The Adept controller is connected to the VMEbus 
system via a serial interface. Our concept is to develop a robot program offline 
and then download the program to a commercial controller for execution, using the 
robot controller to handle the (anticipated) error conditions and take the appropriate 
branching action. In line with this concept, the Adept program is generated offline 
on a Sun and downloaded to the controller via a serial link.

3 The modeler

The role of the solid modeler in Archimedes is to represent parts in the as­
sembly and to answer the types of queries necessary to generate an assembly plan. 
Most available solid modelers are unable to respond to our queries in a reasonable 
amount of time. In addition, most are unable to represent assemblies and varia­
tional information such as tolerances. Fortunately, the relative simplicity of the part 
domain makes it possible to write a very fast, domain-specific modeler to address 
these issues.

The modeler we developed is able to model stepped cylinders with arbitrarily 
located stepped holes, although all cylinder and hole axes must be parallel. This 
makes queries such as detection of interference (null object detection of the in­
tersection of two components) computationally straightforward. Collisions of two 
objects on certain simple paths are also very easy to detect in this domain. While 
this initially sounds like a very restrictive parts domain, examination of the service 
manual for a car of one of the authors reveals that the bulk of the drivetrain, as well 
as many other sub-assemblies of the car could be modeled in this domain.

In order to generate the set of allowable assembly sequences, we need to first 
find which parts interfere with others when moved in given directions. Here the 
uni-directional nature of the assembly speeds the process by reducing the number 
of interference checks that we need to make. The 2 1/2 dimensional nature of this 
domain allows the interference test to be reduced to a series of simple planar tests, 
which can be carried out quickly. Applying this operation to the pattern wheel 
assembly we can find the constraints which parts place on one another. One way 
to represent these constraints (with a loss of some of the information, however) is 
as an exploded diagram. (Exploded drawings are currently made by artists or by 
the operators of CAD systems, not automatically.) Figure 2 is an automatically 
generated exploded view. Using the solid modeler, the constraints among the parts 
are determined. The drawing is made by placing each part at the lowest possible 
level in the drawing such that it is above all parts that constrain it from below.

Moving from this simple domain to a more general domain will occur in several 
stages. We are now working on a generalized 2 1/2D modeler. This will retain 
much of the speed of the existing system while enriching the domain to include

3



Figure 2: Automatically generated exploded diagram of pattern wheel assembly.

many currently manufactured designs. A general 3D domain requires the use of a 
true 3D solid modeler. Many such modelers exist, and their design is a research topic 
in itself. Many of the tests for part interference that we now use can be couched as 
queries to a general solid modeler, although they may take longer to evaluate than 
in the specialized modeler. The uni-directional assumption of this example cannot 
be expected to hold in general. For the 3D case, we are looking at a number of 
approaches for finding candidate directions for motion, both algorithmic, based on 
the part geometry, and knowledge-based, using information such as part categories 
or rules relating to previously discovered assembly directions.

4 The planner

There are many possible orders in which the parts may be assembled based 
solely on the geometric constraints determined by the solid modeler. Some of these 
orders may be inefficient; for example, many tool changes are required. Others may 
be infeasible due to instability of intermediate stages. The role of the planner is 
to evaluate candidate orders, determine their quality, and try to find a good order. 
Since we view the context of our problem as the batch manufacturing environment, 
planning is really a one-time offline task, so there is a strong motivation to spend 
the time to optimize the plan, which is to be executed many times.

The planner currently recognizes 4 types of infeasibilities: instability of inter­
mediate stages, inaccessibility of weld surfaces, placing objects through the support 
surface, and out-of-order assembly. The planner takes a candidate sequence and 
evaluates it for feasibility against these four criteria. (In fact, the system is arranged 
to guarantee that only valid orderings are generated, so the last criterion does not 
have to be checked.)

For each type of infeasibility, there are one or more fixes that the planner can try. 
For instability, the alternatives are a different sequence or a fixture. Inaccessible

4



surfaces may be made accessible by inverting parts or subassemblies. Fixtures 
or resequencing are used when parts penetrate the support surface. The search 
among the various possible assembly orders is controlled by assigning a “score” to 
a sequence based on the type and number of infeasibilities, and backtracking when 
the an operation fails to improve the score. Currently, the search stops when a 
feasible solution is found; no attempt is made at further optimization.

It is possible that no feasible sequence can be found using these operators. This 
is because no allowance is made for inverting a partially completed sub-assembly. 
The system allows the definition of new sub-assemblies as a solution to this problem.

Some assemblies, including the pattern wheel assembly in our example, cannot 
be assembled by a single manipulator without the use of fixtures. Our planner is 
capable of designing certain simple fixtures when necessary to allow development 
of feasible plans. The fixture design is output as standard dimensioned 3-view 
drawings, familiar to any machinist.

5 The compiler

The compiler is the part of the system that translates a generic, high-level plan 
into detailed instructions that can be directly executed in a robot workcell. The 
central principle in the development of Archimedes is modular design to maintain 
flexibility. Fundamental to this concept is the separation of the compiler front-end, 
which deals with a workcell-independent specification of allowable assembly plans, 
from the back-end which is responsible for generating the machine-specific control 
commands for the robot(s) and ancillary systems. As with traditional computer 
language compilers, information is passed between the modules through the use of 
a symbol table.

Input to the compiler is generated by the planner, and is in the form of an assem­
bly plan which consists of a sequence of calls to assembly primitives. This assembly 
plan, together with the solid model of the completed assembly, specifies all of the 
relative motions between individual parts required to complete the assembly. One 
of the primary responsibilities of the compiler is to bind these relative part positions 
to absolute workcell locations. This mapping is performed by a workspace manager 
module which is a three-dimensional analog of the run-time memory management 
found in computer systems.

The workspace manager is responsible for maintaining the status of the reachable 
workspace of the robot for which the plan is being compiled. Parts are assigned 
absolute positions within the workspace based on their bounding spheres and order of 
use. The strategy seeks a compromise between minimizing workspace fragmentation 
(which would dictate a global best fit policy) and minimizing manipulator motion 
based on the proximity of related parts. The workspace manager is also able to 
reclaim portions of the workspace to be reused later in the assembly. This space 
is most commonly used to store subassemblies that have been created from the 
individual parts which had occupied this area.

While the workspace manager is responsible for assigning the position of a part, 
the nominal orientation of a part is specified by the grasp planning module. The 
philosophy of the grasp planner is to choose the initial orientation at which a part is

5



presented to the workcell in such a way that regrasping is unnecessary. The grasp 
planner generates an initial set of grasps based on the no regrasp criterion. The 
resulting set of grasps is then mapped to the part’s starting position and pared on 
the basis of stability. The set of orientation trajectories resulting from pairing each 
valid starting configuration with the set of valid ending grasps is then compared to 
the kinematic capabilities of the robot being used in the assembly. This procedure 
identifies all of the initial part orientations which result in a physically achievable 
motion trajectory that does not require regrasping. A unique solution from this set 
can be obtained by using the stability ranking, a dexterity measure, or a combination 
of the two.

The outputs of the workspace manager together with the grasp planner specify 
a nominal workcell design. However, due to the positional uncertainty inherent in 
material handling systems, the actual position and orientation of the parts presented 
to the workcell will vary. To accurately identify the locations of these parts at 
assembly time the compiler generates code with calls to the vision system. Since 
the nominal position of a part is already known, the system does not need to deal 
with part identification except to flag errors. The majority of this calculation is 
performed off-line at compile time. A single matrix multiply is all that is required 
at assembly time in order to perform a least-squares fit of the data to the part model. 
The advantages of this approach are faster execution time and flexibility in the target 
hardware.

After establishing absolute workcell locations for all parts in the assembly, the 
compiler translates the planner language commands into the control language for 
a specific system controller. The compiler is currently capable of outputting V 
code to run the Adept manipulator and GSL code for the IGRIP computer graphic 
simulation system, which was used in debugging the compiler code. The ability 
to easily modify the compiler for alternate manipulator controllers is a direct result 
of the separation between the assembly-dependent responsibilities of the compiler 
from the robot-dependent responsibilities.

6 Experimental Results

The planner and compiler described here were initially applied to the pattern 
wheel assembly presented earlier. We first compiled the plan into GSL code for the 
IGRIP simulation system and executed the assembly as a simulation. As noted, this 
was of great assistance in debugging the code generator. When the workcell was 
completed, we began compiling into Adept’s V programming language. The primary 
difficulties that arose in this stage were similar to those encountered when manually 
programming a robotic task: accurately defining fixed locations in the workcell, 
getting various pieces of equipment to talk to one another, etc. Instead of using 
the compiler generated locations, we used a manually designed part tray that would 
allow part kitting. The vision system was used to locate the large cog-like parts, 
while the small pins were precisely located in holes in the part kit delivery tray. This 
corresponds to a situation in which the cogs are provided by an outside manufacturer 
and are manually added to the kits, while the pins are fabricated in house and are 
precisely kitted as they leave the turning station. The force sensor in the initial

6



system is only used for guarded moves (and searches) rather than force-directed 
actions. A passive RCC on the arm provided the required compliance for the tight 
insertions. In spite of the limited capabilities of the workcell, the compiler generated 
code allows consistently successful assembly of the pattern wheel assembly. The 
plan creation and compilation each take less than one second to exectute. The 
assembly requires a few minutes in the workcell.

The Archimedes / system is capable of dealing with a large variety of interesting 
real-world assemblies, including a parts of the automobile drivetrain such as the 
transmission and differential; many subassemblies in machine tools; many household 
appliances like blenders, mixers, drills, etc; consumer electronics like VCRs and 
personal stereos (“Walkman”); and so on. We are taking advantage of the modular 
implementation of the system to expand its capabilities. We are extending the 
modeler to more general 2 1/2 D capabilities, and working on a true 3D approach. 
We are also adding sophistication to the planner, and adding capabilities for motion 
planning and error handling.

References

[1] S. E. Fahlman, “A Planning System for Robot Construction Tasks,” Ph.D. The­
sis, M. I. T., Cambridge, MA., 1973.

[2] L. I. Lieberman and M. A. Wesley, “AUTOPASS: An Automatic Programming 
System for Computer Controlled Mechanical Assembly,” IBM J. Research and 
Development, Vol. 21, no. 4, July, 1977.

[3] L. S. Ho mem de Mello and A. C. Sanderson, “And/Or Graph Representation of 
Assembly Plans,” Proc. AAAI 86, Philadelphia, PA, 1986.

[4] T. Lozano-Perez and P. Winston, “LAMA: A language for automatic mechanical 
assembly,” Proc. 5th Int’l Joint Conf. Artificial Intelligence, Cambridge, MA., 
1977.

[5] T. Lozano-Perez, et. al., “Handey: A Robot System that Recognizes, Plans, and 
Manipulates,” Proc. IEEE Int’l Conf. on Robotics and Automation, Raleigh, 
NC, 1987.

[6] J. L. Nevins and D. E. Whitney, “Assembly Research,” Automatica, Vol. 16, 
1980, pp. 595-613.

[7] R. J. Popplestone, A. P. Ambler, and I. Bellos, “An Interpreter for a Language 
Describing Assemblies,” Artificial Intelligence, Vol. 14, No. 1, pp 79-107.

[8] R. H. Taylor, P. D. Summers, and J. M. Meyer, “AML: A Manufacturing 
Language,” Int’l. J. Robotics Research, Vol. 1, No. 3, Fall, 1982.

Acknowledgements

The authors would like to thank Cliff Loucks and Colin Selleck for their assis­
tance in making the robotic systems work.

7


