
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of iH<i United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof.

EXPERIMENTATION AND CONCEPT FORMATION
BY AN AUTONOMOUS MOBILE ROBOT* CONF-900729—1

by DE9 0 003063

P. F. Spelt, G. deSaussure,
G. Oliver, and M. Silliman

Center for Engineering Systems Advanced Research 
Oak Ridge National Laboratory 

Oak Ridge, TN 37831-6364

Cmf'Qoc'jM

"The submitted manuscript has been 
authored by a contractor of the U.S. 
Government under contract No. DE- 
AC05-84OR21400. Accordingly, the U.S. 
Government retains a nonexclusive, 
royalty-free license to pubfish or reproduce 
the published form of this contribution, or 
allow others to do so. for U.S. Government 
purposes."

Submitted to: Japan-USA Symposium on 
Flexible Automation

July 9 - 11, 1990 
Kyoto, Japan

* Research sponsored by the Engineering Research Program of 
the Office of Basic Energy Sciences, of the U. S. Department 
of Energy, under contract No. DE-AC05-840R21400 with Martin 
Marietta Energy Systems, Inc.

MASTER ,
distribution of this document is unlimited



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



EXPERIMENTATION AND CONCEPT FORMATION 
BY AN AUTONOMOUS MOBILE ROBOT

by

P. F. Spelt, G. deSaussure,
G. Oliver,and M. Silliman

Center for Engineering Systems Advanced Research 
Oak Ridge National Laboratory 

Oak Ridge, TN 37831-6364

The Center for Engineering Systems Advanced Research 
(CESAR) conducts basic research in the area of intelligent 
machines. In this paper, we describe our approach to a 
class of machine learning which involves autonomous concept 
formation using feedback from trial-and-error experimenta­
tion with the environment. Our formulation was experi­
mentally validated on an autonomous mobile robot, which 
learned the task of control panel monitoring and manipu­
lation for effective process control. Conclusions are 
drawn concerning the applicability of the system to a more 
general class of learning problems, and implications for 
the use of autonomous mobile robots in hostile and unknown 
environments are discussed.



I. Introduction
The Center for Engineering Systems Advanced Research (CESAR) 

has recently undertaken several research activities in the field of 
machine learning. This paper describes work in autonomous learning 
using HERMIES-IIB, the third in our series of robotic experimental 
testbeds. The integrated system in HERMIES-IIB (Hostile Environment 
Robotic Machine Intelligence Experiment Series IIB) is designed to 
ultimately perform in environments which humans cannot readily enter. 
A detailed description of this machine and its navigation 
capabilities has appeared in IEEE Expert.* Briefly, the computing 
power consists of two components -- a VME subsystem for vision input 
and for the I/O devices, and an IBM 7532 (an industrialized PC-AT) 
for the "brain". Four AT expansion slots house boards which provide 
an onboard 16-node NCUBE hypercube parallel computer. The hypercube 
machine is used for both vision processing and for running the Expert 
Systems used for navigation and learning.

Research using the HERMIES series of robots emphasizes 
computational autonomy, with all processing done using the onboard 
computer system described above. To date, research has focused on 
navigation in a dynamic environment, including the ability of the 
robot to deal with unexpected moving obstacles using any of several 
strategies. These strategies include replanning the goal path, moving 
small obstacles out of the way, or waiting until moving obstacles 
have cleared the robot's path^. The robot's navigational goal is to 
position itself in front of a process control panel, enabling it to 
read meters and manipulate buttons and levers. Here we describe a 
system which learns the control panel's system dynamics and remembers 
the most efficient series of responses to "shut down" a control 
process, for future encounters with similar (but not necessarily 
identical) situations. The system also infers a classification 
scheme for panel categories, enabling it to hypothesize about 
correct response sequences for new panel configurations. The system 
includes a hypothesis-generating scheme which permits the robot to 
make a "best guess" about a response sequence for panels it is 
unable to classify.

II. Machine Learning Background
Carbonell2 recently argued that machine learning is central to 

all areas of the field of artificial intelligence, and is defensibly 
a prerequisite to any form of intelligence. In this context, he 
identified four major paradigms, each with its own subdivisions.
These are inductive learning, analytic learning (explanation-based 
learning), genetic algorithms, and artificial neural networks. The 
first two are qualitative, symbol oriented types; the latter two are 
quantitative, mathematical types. Michalski^ identified five modes 
by which machines can transform information in the learning 
situation: rote learning, learning by instruction, learning by 
deduction, learning by analogy, and learning by induction, listed in 
increasing order of complexity of inferencing on the part of the 
learner (3, p.14). Learning by induction was further divided into 
learning by observation and discovery, and learning from examples, 
with the examples provided either by a knowledgeable teacher or by 
the environment. When the environment does the teaching, the learner



performs experiments from which it receives feedback on the 
correctness of the performance, with each experiment resulting in an 
example from which the learner can generalize. For this instance-to- 
class generalization, the learner uses these experiment-generated 
examples, inferring from them a general classification scheme which 
describes the classes.

Spelt^ has presented a broader conceptualization of both 
biological and machine learning paradigms, arranged in a hierarchical 
form which emphasizes the fact that so-called "higher" cognitive 
functions (e.g., concept formation and problem solving) are based on 
more elementary forms of learning (e.g., operant conditioning and 
discrimination learning). Such a scheme holds that learning 
paradigms higher in the hierarchy build on the knowledge and skills 
acquired through types of learning which fall lower in the hierarchy.

Most of the recent research published on machine learning has 
focused on the higher cognitive functions (problem solving, concept 
formation, rule learning, etc.; see 3, 5, and the journal Machine 
Learninql. with almost none appearing in the robotics literature.
This interest in higher cognitive abilities understandably stems from 
the perception that these are uniquely human attributes directly 
associated with "Intelligent Behavior". However, such exclusively 
cognitive tasks require no motor behavior capabilities such as our 
robot displays -- one needs only a stationary "electronic brain" to 
do the information processing. McMillan®, whose work provides an 
exception to this trend, discussed other learning paradigms which 
might serve as helpful models for learning in intelligent machines. 
Some of these models are especially useful for work with an 
autonomous mobile robot, which can move around and manipulate the 
environment. McMillan's work simulated a low-level learning paradigm 
(Classical or Pavlovian Conditioning) which was used to adjust an 
operating system's presentation of a command menu. The new sequence 
selects an anticipated next command, based on the user's past use of 
those commands. Similarly, Laird, Rosenbloom and Newel r have devel­
oped a system called SOAR, which exhibits automated learning in a 
wide variety of tasks including motor performance, and which takes 
biological models as a source for some of its concepts.

Operant Conditioning (also known as Trial-and-Error Learning), 
involves the manipulation of objects in the environment with such 
behavior followed by some type of feedback (reinforcement or 
punishment) concerning the suitability of the responses in that 
setting. Examples include the use of a wide variety of ON/OFF 
switches on appliances and machinery by humans, and the cracking open 
of many shelled sources of food such as nuts and oysters by animals). 
In robotics work, an approach by Mitchell® uses feedback from the 
environment to guide learning by a manipulator to skillfully move 
objects around in an incompletely known environment. Mitchell's 
system is an application of explanation-based learning to robotics, 
in which the system applies domain knowledge to explain response 
failures.

Because much of so-called higher human learning is based on



these simpler forms of conditioning at various points in the human's 
learning history, it seems useful to explore such learning for 
autonomous robots, as a foundation for more cognitive kinds of robot 
activities. Therefore, our system was designed to perform learning- 
by-induction using instance-to-class generalization from examples the 
robot has provided for itself by experimenting with the CESAR process 
control panel. The system presented here forms concepts for 
classifying control panel examples on the basis of knowledge acquired 
through trial-and-error learning provided either by a computer 
simulation or by direct experience of the robot with the control 
panel.

III. The Learning Expert System
The problem space the robot learned was comprised of 81 panel 

configurations, each defined by a combination of initial settings of 
2 meters (high, middle or low) and 2 levers (right, middle or left). 
These 81 panel states are grouped into a set of categories initially 
defined by the response sequence which terminates the "Danger" light 
on the panel. Each category has a constant set of defining 
attributes based on a subset of initial meter and lever settings. 
Different categorization schemes can be created by using different 
combinations of attribute settings, each coupled with its unique 
response string".

The Learning Expert System was implemented as a rule-base in the 
expert system shell CLIPS10. The rule-base consists of three major 
components: a Hypothesis-Generating unit which permits the robot to 
hypothesize about possible correct solutions for previously unseen 
problems; a Response-Sequence Learning unit which learns sequences of 
responses on problems for which the robot cannot generate a correct 
hypothesis; and an inferencing (Category Formation) component to 
generalize from the examples, enabling the robot to infer categories 
of problems. The rule-base underwent several major revisions during 
development. Data from three stages are presented in the evaluation 
section. However, only the final rule-base is described here. 
Important differences between this version and earlier ones are 
mentioned in the results section.

A. Hypothesis Generation
The first step in solving a new panel problem is Hypothesis 

Generation, shown in Figure 1. If no match is possible, the system 
defaults to the Response Selection process described in the next 
section. If a match is possible, the first determination is whether 
it is an exact match or one which places the new panel problem into 
an existing category. In either case, the response sequence 
associated with the panel or category is proposed as the solution to 
the new problem.

Insert Fig. 1 about here

In cases where there is a partial match, but no categorization 
is possible, the system calculates a "Best Guess". This process 
assigns weighted values to attributes of the new problem which match, 
to varying degrees, the attribute values of each memory vector 
stored. The response sequence of the vector with the highest weight



is proposed as the solution to the current problem. Should that 
sequence fail at some point, the system selects the next most highly- 
weighted sequence, picking up at the point at which the previous 
sequence failed. Thus, the "Best Guess" process should provide 
greater response-learning efficiency in situations where the robot 
has some previous experience, but not enough to create accurate 
category descriptions. This is most likely to occur early in 
training, before many categories have been defined.

B. Response Selection and Learning
Response selection occurs whenever the robot confronts a new 

panel problem, with the particular selection strategy depending on 
the availability and type of prior experience (see Figure 2). If no 
prior experience exists, responses are selected from the arbitrarily 
ordered list, as described below. Otherwise, the system should be 
able to generate a hypothesis about what the correct solution might 
be, as described in part A of this section.

Insert Fig. 2 about here

The Response-Sequence Learning unit^ operates when the naive 
robot has no past experience to guide its behavior at the panel. It 
consists of a subset of the rule base which discovers, by trial-and- 
error learning, the appropriate sequence of control panel button and 
lever actions to solve problems represented by the values of various 
attributes (the initial settings of the 2 meters and the 2 levers) of 
the panel. As indicated at the top of Figure 2, this sequence 
learning process involves a breadth-first search through an 
arbitrarily-ordered list of responses to discover which one is 
appropriate at a particular point in the problem-solving process. In 
the case where there is some past experience but no reasonable hypo­
thesis can be created (as when there is only one example for various 
categories), the robot can choose from a table of weighted responses. 
This weighting, compiled across all classification schemes the robot 
has experienced, is a simple tabulation of the frequency with which a 
particular response has occurred at a given point in previous 
sequences.

Whichever response selection method the robot uses, it tries the 
selected response on the control panel and examines the consequences. 
A correct response receives immediate feedback, and the system then 
adds that component to the sequence being built. An incorrect 
response receives no feedback, and the robot then selects the next 
response to try. Once the entire correct sequence has been 
determined (indicated by extinguishing the "Danger" light), the 
system then associates that response sequence with the initial set of 
panel attributes in which the sequence was learned.

The result of the panel manipulation process just described is a 
set of memory vectors, one per panel problem solved, each containing 
a coding of the initial panel state associated with a 4-unit response 
sequence which turned off the "Danger" light for that panel 
configuration. Thus, this process learns the basic category 
examples, consisting of these initial environmental states and



associated response chains, which form the basis for inferring 
problem categories by the Inferencing, or Concept Formation part of 
the system.

C. Autonomous Category (Concept) Formation
The third component of the rule base is the Category Inferencing 

unit, detailed in Figure 3. This is a similarity-based (3, p 16) 
generalization system which explores examples and counter-examples of 
a category (inter-example relationships) to create concept descrip­
tions. It searches for attribute values shared by examples in the 
same class and ignores those that are different. It also identifies 
those attribute values which are different among the different 
categories, permitting discrimination among those categories.

Insert Fig. 3 about here

As illustrated in Figure 3, there are four steps to defining 
categories. First, the system assumes that all panels which operate 
the same way belong to the same category, and therefore, all memory 
vectors are grouped according to the response sequence which turned 
off the Danger light. Second, the attributes of the initial states 
for one pair of memory vectors from a group are parsed to identify 
both those attributes which have a common value and those which do 
not. Dissimilar attributes within a group can be ignored, unless 
subsequent experience indicates to the robot that they belong to a 
logically complementary category, such as a meter being low or middle 
but NOT high. Once common attribute values have been identified in a 
pair of category examples, all other examples from that category are 
parsed for consistency with the category descriptors. At this point, 
adjustments to the descriptors are made to achieve an accurate 
category description as, for example, in the case of the logical 
complement descriptors mentioned for the NOT-high meter. This 
condition requires extra processing on an additional example in order 
to establish the precise conditions under which examples will fit the 
category or be excluded.

The final step in establishing category descriptions is to check 
among the various groups to make sure the descriptors can 
differentiate among the categories as defined by the response 
sequences. The process involves checking the defining attributes to 
be sure their values permit discriminating among the categories.
This is done sequentially, the first attempt being to discriminate on 
the basis of one attribute. If this does not succeed, then pairs of 
attributes are considered, and finally triads. Once all examples in 
the robot's current working memory have been processed, the system is 
ready to attempt a new panel problem.

IV. Evaluation of the Expert System
Because the proper logical operation of the rule base is in­

dependent of the robot's actual interaction with the panel, we were 
able to use a two-computer system which simulates the interaction 
between the robot and the panelH. This system consists of PC/XT- 
type machines communicating with each other through serial ports. As 
shown in Figure 4, the panel emulator presents the rule base a series



of problems randomly selected from a batch file, and records the 
number of errors made on each problem. The robot simulator runs the 
expert system rule-base, sending commands concerning responses 
attempted to the panel emulator. The panel emulator also returns 
information concerning the current state of the panel, including 
feedback, to the Expert System. The data presented below were 
obtained using this simulator. It should be noted that the system 
has also been tested on the robot9, showing the same performance as 
on the simulator.

Insert Fig. 4 about here

A. Experimental Procedure
Five classification schemes were devised to test the flexibility 

of the Expert System. In order to simplify information processing 
during the initial development of the expert system, the analog 
values of the levers and meters were mapped into the previously 
mentioned 3-valued logic system inside the rule base. We assumed the 
buttons would all be OFF when the robot first approached the panel, 
and the Danger light ON, signaling that the robot must do something. 
Our five classification schemes used different subsets of the four 
devices to define categories, with two of the schemes using logical 
complement characteristics. In a classification system with a fixed 
number of examples, the number of examples per category is a function 
of the number of defining attributes: one attribute can create three 
categories, one for each value of the defining attribute (low/left, 
middle, or high/right), creating a system with 27 examples per cate­
gory. Similarly, two attributes can define 9 categories, and three 
can define 27. All our schemes were logically complete: all panels 
were categorized, and a panel could only appear in one category.

B. Results
Figure 5 presents data from three versions of the expert system 

rule-base, the original version (left panel), an intermediate version 
(middle panel) and the latest version with the BEST Guess segment 
(right panel). The 14 problems were presented in random order, 
although the data have been paired for presentation in the graphs.
The problems were selected to give the rule-base 2 examples from each 
of the 7 categories, thus permitting complete category description 
after the initial 14 problems. This "friendly teacher" approach was 
necessary for the original rule-base to form category descriptions, a 
process carried out only after all 14 problems had been presented.
The intermediate version (middle panel, Figure 5) processed memory 
vectors to obtain category descriptions any time it had two examples 
from one category available. The right panel in Figure 5 shows the 
performance of the rule-base with the Best Guess unit added.

Insert Fig. 5 about here

As can be seen in Figure 5, performance improved only slightly 
from the original to the intermediate version of system. However, 
the change from memory processing only after sufficient examples for 
all categories (one-shot inductive learning) to processing as much as 
possible after each example (incremental induction) was an important



step which permitted the rule-base to make use of the Best Guess 
component. Addition of the Best Guess unit dramatically improved the 
performance of the system. As Figure 5 shows, the expert system made 
fewer errors with the Best Guess function than without. In fact, the 
only categories on which the rule-base made errors on the second 
category example (white bars) were those which involved the logical 
complement descriptors (categories 5 and 6). Moreover, because of 
inadvertent similarities among the response sequences, the new rule- 
base was more efficient on all problems except the first, in which 
both systems were equally naive, and the fourth, in which the new 
system did slightly worse on the first example. Finally, no version 
of the rule-base made any errors after the initial 14 problems.

Thorough testing of the Best Guess version of the rule-base 
involved use of a variety of random sequences for presenting the 81 
panel problems, each presentation starting with a naive rule-base. 
Typical results from one sequence are presented in Figure 6. The 
graph is truncated at problem 21, as no further errors were made 
after problem 20. Note that errors occurred on exactly 14 problems, 
one pair for each of the 7 categories in this scheme, and that there 
were 6 correct classifications within the 20 problems required for 
total knowledge about the classification scheme. Also, a number of 
the problems had few errors, especially problems 18 and 19, as a 
result of the efficient performance of the Best Guess function -- 
even when it made a wrong classificatin, it generated some correct 
resposnes.

Insert Fig. 6 about here

Figure 7 presents total errors on all 81 panel problems for each 
of the three rule-base versions on 2 different schemes. These 
schemes used different numbers and different combinations of 
attributes to create classification schemes which had either 9 or 27 
examples per category. This permitted assessment of the flexibility 
and robustness of the logical inferencing system in the rule-base.
As can be seen in Figure 7, the rule-base made fewer errors on the 
classification scheme which had fewer categories (dark gray ys light 
gray bars), as would be expected. More importantly, the number of 
errors decreases with the addition of the Best Guess routine. The 
right bars show the performance of the system using the weighted 
table described earlier. This addition did not improve performance 
beyond the Best Guess routine. Thus, the rule-base is clearly more 
efficient at learning response sequences and at classifying problems 
as a result of the best guess function.

Insert Fig. 7 about here

V. Summary and Conclusions
We have presented a learning expert system for an autonomous 

mobile robot. The expert system learns from experience generated by 
the robot as it experiments with the environment, and generalizes 
from that experience to infer categories in which it can classify new 
problem configurations. As currently designed, the system learns a 
sequence of responses to alter or shut down a control process.



However, the general methodology is applicable to any situation in 
which a robot needs to learn a sequence of motor operations and then 
make inferences about a classification scheme, such as assembly or 
disassembly of a mechanical device.

We also described the use of a simulation system to train the 
robot prior to its entering a hostile or critical environment. This 
training, coupled with the system's ability to solve novel tasks by 
generalizing, eliminates the need to pre-program all possible real 
world situations. We showed that by presenting a set of panel 
configurations with proper feedback for learning, the robot can 
develop the capacity to handle a wide variety of unanticipated panel 
configurations, making a minimum number of errors. After training on 
a subset of the panel problems and inferring categories, the expert 
system makes no further errors on new panel problems from the same 
classification scheme.

The combination of a robot capable of learning and a simulation 
system to provide rapid and efficient training seems to be a viable 
way of creating a robot prepared to cope with a dynamic environment 
whose characteristics cannot be known in advance. The inability to 
precisely know the robot's environment precludes programming the 
ability to handle all problems in advance. Use of simulators to 
train the robot on a variety of potential emergency situations 
provides a rapid and efficient way of dealing with those emergencies 
-- one needs only to load the proper memory disk into the robot to 
have a specifically trained robot which can deal with that situation 
and continue to learn from its new experiences.
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