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EXPERIMENTATION AND CONCEPT FORMATION
BY AN AUTONOMOUS MOBILE ROBOT

by

P. F. Spelt, G. deSaussure,
G. Oliver,and M. Silliman

Center for Engineering Systems Advanced Research
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6364

The Center for Engineering Systems Advanced Research
(CESAR) conducts basic research in the area of intelligent
machines. In this paper, we describe our approach to a
class of machine learning which involves autonomous concept
formation using feedback from trial-and-error experimenta-
tion with the environment. Our formulation was experi-
mentally validated on an autonomous mobile robot, which
learned the task of control panel monitoring and manipu-
lation for effective process control. Conclusions are
drawn concerning the applicability of the system to a more
general class of learning problems, and implications for
the use of autonomous mobile robots in hostile and unknown
environments are discussed.



I. Introduction

The Center for Engineering Systems Advanced Research (CESAR)
has recently undertaken several research activities in the field of
machine learning. This paper describes work in autonomous learning
using HERMIES-1IB, the third in our series of robotic experimental
testbeds. The integrated system in HERMIES-IIB (Hostile Environment
Robotic Machine Inte]]igence Experiment Series IIB) is designed to
ultimately perform in environments which humans cannot readily enter.
A detailed description of this machine an? its navigation
capabilities has appeared in IEEE Expert Briefly, the computing

power consists of two components -- a VME subsystem for vision input
and for the I/0 devices, and an IBM 7532 (an industrialized PC-AT)
for the "brain". Four AT expansion slots house boards which provide

an onboard 16-node NCUBE hypercube parallel computer. The hypercube
machine is used for both vision processing and for running the Expert
Systems used for navigation and learning.

Research using the HERMIES series of robots emphasizes
computational autonomy, with all processing done using the onboard
computer system described above. To date, research has focused on
navigation in a dynamic environment, including the ability of the
robot to deal with unexpected moving obstacles using any of several
strategies. These strategies include replanning the goal path, moving
small obstacles out of the wa¥ or waiting until moving obstacles
have cleared the robot’s path{. The robot’s navigational goal is to
position itself in front of a process control panel, enabling it to
read meters and manipulate buttons and levers. Here we describe a
system which learns the control panel’s system dynamics and remembers
the most efficient series of responses to "shut down" a control
process, for future encounters with similar (but not necessarily
identical) situations. The system also infers a classification
scheme for panel categories, enabling it to hypothesize about
correct response sequences for new panel configurations. The system
includes a hypothesis-generating scheme which permits the robot to
make a "best guess" about a response sequence for panels it is
unable to classify.

I11. Machine Learning Background

Carbone112 recently argued that machine learning is central to
all areas of the field of artificial intelligence, and is defensibly
a prerequisite to any form of intelligence. In this context, he
identified four major paradigms, each with its own subdivisions.
These are inductive learning, analytic learning (explanation-based
learning), genetic algorithms, and artificial neural networks. The
first two are qualitative, symbol oriented tgpes; the latter two are
quantitative, mathematical types. Michalski® identified five modes
by which machines can transform information in the learning
situation: rote learning, learning by instruction, learning by
deduction, learning by analogy, and learning by induction, listed in
increasing order of complexity of inferencing on the part of the
Tearner (3, p.l14). Learning by induction was further divided into
learning by observation and discovery, and learning from examples,
with the examples provided either by a knowledgeable teacher or by
the environment. When the environment does the teaching, the learner



performs experiments from which it receives feedback on the
correctness of the performance, with each experiment resulting in an
example from which the learner can generalize. For this instance-to-
class generalization, the learner uses these experiment-generated
examples, inferring from them a general classification scheme which
describes the classes.

Spe]t4 has presented a broader conceptualization of both
biological and machine learning paradigms, arranged in a hierarchical
form which emphasizes the fact that so-called "higher" cognitive
functions (e.g., concept formation and problem solving) are based on
more elementary forms of learning (e.g., operant conditioning and
discrimination learning). Such a scheme holds that learning
paradigms higher in the hierarchy build on the knowledge and skills
acquired through types of learning which fall Tower in the hierarchy.

Most of the recent research published on machine learning has
focused on the higher cognitive functions (problem solving, concept
formation, rule learning, etc.; see 3, 5, and the journal Machine
Learning), with almost none appearing in the robotics literature.
This interest in higher cognitive abilities understandably stems from
the perception that these are uniquely human attributes directly
associated with "Intelligent Behavior". However, such exclusively
cognitive tasks require no motor behavior capabilities such as our
robot displays -- one needs only a statignary "electronic brain" to
do the information processing. McMillan®, whose work provides an
exception to this trend, discussed other learning paradigms which
might serve as helpful models for learning in intelligent machines.
Some of these models are especially useful for work with an
autonomous mobile robot, which can move around and manipulate the
environment. McMillan’s work simulated a low-level learning paradigm
(Classical or Pavlovian Conditioning) which was used to adjust an
operating system’s presentation of a command menu. The new sequence
selects an anticipated next command, based on the user’s_past use of
those commands. Similarly, Laird, Rosenbloom and Newell” have devel-
oped a system called SOAR, which exhibits automated Tlearning in a
wide variety of tasks including motor performance, and which takes
biological models as a source for some of its concepts.

Operant Conditioning (also known as Trial-and-Error Learning),
involves the manipulation of objects in the environment with such
behavior followed by some type of feedback (reinforcement or
punishment) concerning the suitability of the responses in that
setting. Examples include the use of a wide variety of ON/OFF
switches on appliances and machinery by humans, and the cracking open
of many shelled sources of food such as ngts and oysters by animals).
In robotics work, an approach by Mitchel1® uses feedback from the
environment to guide learning by a manipulator to skillfully move
objects around in an incompletely known environment. Mitchell’s
system is an application of explanation-based learning to robotics,
in Yhich the system applies domain knowledge to explain response
failures.

Because much of so-called higher human learning is based on



these simpler forms of conditioning at various points in the human’s
learning history, it seems useful to explore such learning for
autonomous robots, as a foundation for more cognitive kinds of robot
activities. Therefore, our system was designed to perform learning-
by-induction using instance-to-class generalization from examples the
robot has provided for itself by experimenting with the CESAR process
control panel. The system presented here forms concepts for
classifying control panel examples on the basis of knowledge acquired
through trial-and-error learning provided either by a computer
simulation or by direct experience of the robot with the control
panel.
I1I. The Learning Expert System

The problem space the robot learned was comprised of 81 panel
configurations, each defined by a combination of initial settings of
2 meters (high, middle or low) and 2 levers (right, middle or left).
These 81 panel states are grouped into a set of categories initially
defined by the response sequence which terminates the "Danger" light
on the panel. Each category has a constant set of defining
attributes based on a subset of initial meter and lever settings.
Different categorization schemes can be created by using different
combinations of attribute settings, each coupled with its unique
response stringg.

The Learning Expert fastem was implemented as a rule-base in the
expert system shell CLIPS The rule-base consists of three major
components: a Hypothesis-Generating unit which permits the robot to
hypothesize about possible correct solutions for previously unseen
problems; a Response-Sequence Learning unit which learns sequences of
responses on problems for which the robot cannot generate a correct
hypothesis; and an inferencing (Category Formation) component to
generalize from the examples, enabling the robot to infer categories
of problems. The rule-base underwent several major revisions during
development. Data from three stages are presented in the evaluation
section. However, only the final rule-base is described here.
Important differences between this version and ear11er ones are
mentioned in the results section.

A. Hypothesis Generation

The first step in solving a new panel problem is Hypothesis
Generation, shown in Figure 1. If no match is possible, the system
defaults to the Response Selection process described in the next
section. If a match is possible, the first determination is whether
it is an exact match or one which places the new panel problem into
an existing category. In either case, the response sequence
associated with the panel or category is proposed as the solution to
the new problem.

In cases where there is a partial match, but no categorization
is possible, the system calculates a "Best Guess". This process
assigns weighted values to attributes of the new problem which match,
to varying degrees, the attribute values of each memory vector
stored. The response sequence of the vector with the highest weight



is proposed as the solution to the current problem. Should that
sequence fail at some point, the system selects the next most highly-
weighted sequence, picking up at the point at which the previous
sequence failed. Thus, the "Best Guess" process should provide
greater response-learning efficiency in situations where the robot
has some previous experience, but not enough to create accurate
category descriptions. This is most 1likely to occur early in
training, before many categories have been defined.

B. Response Selection and Learning

Response selection occurs whenever the robot confronts a new
panel problem, with the particular selection strategy depending on
the availability and type of prior experience (see Figure 2). If no
prior experience exists, responses are selected from the arbitrarily
ordered Tist, as described below. Otherwise, the system should be
able to generate a hypothesis about what the correct solution might
be, as described in part A of this section.

The Response-Sequence Learning unitl0 operates when the naive
robot has no past experience to guide its behavior at the panel. It
consists of a subset of the rule base which discovers, by trial-and-
error learning, the appropriate sequence of control panel button and
lever actions to solve problems represented by the values of various
attributes (the initial settings of the 2 meters and the 2 levers) of
the panel. As indicated at the top of Figure 2, this sequence
learning process involves a breadth-first search through an
arbitrarily-ordered list of responses to discover which one is
appropriate at a particular point in the problem-solving process. In
the case where there is some past experience but no reasonable hypo-
thesis can be created (as when there is only one example for various
categories), the robot can choose from a table of weighted responses.
This weighting, compiled across all classification schemes the robot
has experienced, is a simple tabulation of the frequency with which a
particular response has occurred at a given point in previous
sequences.

Whichever response selection method the robot uses, it tries the
selected response on the control panel and examines the consequences.
A correct response receives immediate feedback, and the system then
adds that component to the sequence being built. An incorrect
response receives no feedback, and the robot then selects the next
response to try. Once the entire correct sequence has been
determined (indicated by extinguishing the "Danger" light), the
system then associates that response sequence with the initial set of
panel attributes in which the sequence was learned.

The result of the panel manipulation process just described is a
set of memory vectors, one per panel problem solved, each containing
a coding of the initial panel state associated with a 4-unit response
sequence which turned off the "Danger" 1ight for that panel
configuration. Thus, this process learns the basic category
examples, consisting of these initial environmental states and



associated response chains, which form the basis for inferring
problem categories by the Inferencing, or Concept Formation part of
the system.

C. Autonomous Category (Concept) Formation »

The third component of the rule base is the Category Inferencing
unit, detailed in Figure 3. This is a similarity-based (3, p 16)
generalization system which explores examples and counter-examples of
a category (inter-example relationships) to create concept descrip-
tions. It searches for attribute values shared by examples in the
same class and ignores those that are different. It also identifies
those attribute values which are different among the different
categories, permitting discrimination among those categories.

As illustrated in Figure 3, there are four steps to defining
categories. First, the system assumes that all panels which operate
the same way belong to the same category, and therefore, all memory
vectors are grouped according to the response sequence which turned
off the Danger 1ight. Second, the attributes of the initial states
for one pair of memory vectors from a group are parsed to identify
both those attributes which have a common value and those which do
not. Dissimilar attributes within a group can be ignored, unless
subsequent experience indicates to the robot that they belong to a
logically complementary category, such as a meter being low or middle
but NOT high. Once common attribute values have been identified in a
pair of category examples, all other examples from that category are
parsed for consistency with the category descriptors. At this point,
adjustments to the descriptors are made to achieve an accurate
category description as, for example, in the case of the logical
complement descriptors mentioned for the NOT-high meter. This
condition requires extra processing on an additional example in order
to establish the precise conditions under which examples will fit the
category or be excluded.

The final step in establishing category descriptions is to check

among the various groups to make sure the descriptors can
differentiate among the categories as defined by the response
sequences. The process involves checking the defining attributes to
be sure their values permit discriminating among the categories.
This is done sequentially, the first attempt being to discriminate on
the basis of one attribute. If this does not succeed, then pairs of
attributes are considered, and finally triads. Once all examples in
the robot’s current working memory have been processed, the system is
ready to attempt a new panel problem.

IV. Evaluation of the Expert System
Because the proper logical operation of the rule base is in-
dependent of the robot’s actual interaction with the panel, we were
able to use a two-computer syst?T which simulates the interaction
between the robot and the panel'!?. This system consists of PC/XT-
type machines communicating with each other through serial ports. As
shown in Figure 4, the panel emulator presents the rule base a series



of problems randomly selected from a batch file, and records the
number of errors made on each problem. The robot simulator runs the
expert system rule-base, sending commands concerning responses
attempted to the panel emulator. The panel emulator also returns
information concerning the current state of the panel, including
feedback, to the Expert System. The data presented below were
obtained using this simulator. If should be noted that the system
has also been tested on the robot”?, showing the same performance as
on the simulator.

A. Experimental Procedure

Five classification schemes were devised to test the flexibility
of the Expert System. In order to simplify information processing
during the initial development of the expert system, the analog
values of the levers and meters were mapped into the previously
mentioned 3-valued logic system inside the rule base. We assumed the
buttons would all be OFF when the robot first approached the panel,
and the Danger 1ight ON, signaling that the robot must do something.
Our five classification schemes used different subsets of the four
devices to define categories, with two of the schemes using logical
complement characteristics. In a classification system with a fixed
number of examples, the number of examples per category is a function
of the number of defining attributes: one attribute can create three
categories, one for each value of the defining attribute (low/left,
middle, or high/right), creating a system with 27 examples per cate-
gory. Similarly, two attributes can define 9 categories, and three
can define 27. A1l our schemes were logically complete: all panels
were categorized, and a panel could only appear in one category.

B. Results

Figure 5 presents data from three versions of the expert system
rule-base, the original version (left panel), an intermediate version
(middle panel) and the latest version with the BEST Guess segment
(right panel). The 14 problems were presented in random order,
although the data have been paired for presentation in the graphs.
The problems were selected to give the rule-base 2 examples from each
of the 7 categories, thus permitting complete category description
after the initial 14 problems. This "friendly teacher" approach was
necessary for the original rule-base to form category descriptions, a
process carried out only after all 14 problems had been presented.
The intermediate version (middle panel, Figure 5) processed memory
vectors to obtain category descriptions any time it had two examples
from one category available. The right panel in Figure 5 shows the
performance of the rule-base with the Best Guess unit added.

As can be seen in Figure 5, performance improved only slightly
from the original to the intermediate version of system. However,
the change from memory processing only after sufficient examples for
all categories (one-shot inductive learning) to processing as much as
possible after each example (incremental induction) was an important



step which permitted the rule-base to make use of the Best Guess
component. Addition of the Best Guess unit dramatically improved the
performance of the system. As Figure 5 shows, the expert system made
fewer errors with the Best Guess function than without. In fact, the
only categories on which the rule-base made errors on the second
category example (white bars) were those which involved the logical
complement descriptors (categories 5 and 6). Moreover, because of
inadvertent similarities among the response sequences, the new rule-
base was more efficient on all problems except the first, in which
both systems were equally naive, and the fourth, in which the new
system did slightly worse on the first example. Finally, no version
of the rule-base made any errors after the initial 14 problems.

Thorough testing of the Best Guess version of the rule-base
involved use of a variety of random sequences for presenting the 81
panel problems, each presentation starting with a naive rule-base.
Typical results from one sequence are presented in Figure 6. The
graph is truncated at problem 21, as no further errors were made
after problem 20. Note that errors occurred on exactly 14 problems,
one pair for each of the 7 categories in this scheme, and that there
were 6 correct classifications within the 20 problems required for
total knowledge about the classification scheme. Also, a number of
the problems had few errors, especially problems 18 and 19, as a
result of the efficient performance of the Best Guess function --
even when it made a wrong classificatin, it generated some correct
resposnes.

Figure 7 presents total errors on all 81 panel problems for each
of the three rule-base versions on 2 different schemes. These
schemes used different numbers and different combinations of
attributes to create classification schemes which had either 9 or 27
examples per category. This permitted assessment of the flexibility
and robustness of the logical inferencing system in the rule-base.
As can be seen in Figure 7, the rule-base made fewer errors on the
classification scheme which had fewer categories (dark gray vs light
gray bars), as would be expected. More importantly, the number of
errors decreases with the addition of the Best Guess routine. The
right bars show the performance of the system using the weighted
table described earlier. This addition did not improve performance
beyond the Best Guess routine. Thus, the rule-base is clearly more
efficient at learning response sequences and at classifying problems
as a result of the best guess function.

V. Summary and Conclusions
We have presented a learning expert system for an autonomous
mobile robot. The expert system learns from experience generated by
the robot as it experiments with the environment, and generalizes
from that experience to infer categories in which it can classify new
problem configurations. As currently designed, the system learns a
sequence of responses to alter or shut down a control process.



However, the general methodology is applicable to any situation in
which a robot needs to learn a sequence of motor operations and then
make inferences about a classification scheme, such as assembly or
disassembly of a mechanical device.

We also described the use of a simulation system to train the
robot prior to its entering a hostile or critical environment. This
training, coupled with the system’s ability to solve novel tasks by
generalizing, eliminates the need to pre-program all possible real
world situations. We showed that by presenting a set of panel
configurations with proper feedback for learning, the robot can
develop the capacity to handle a wide variety of unanticipated panel
configurations, making a minimum number of errors. After training on
a subset of the panel problems and inferring categories, the expert
system makes no further errors on new panel problems from the same
classification scheme.

The combination of a robot capable of learning and a simulation
system to provide rapid and efficient training seems to be a viable
way of creating a robot prepared to cope with a dynamic environment
whose characteristics cannot be known in advance. The inability to
precisely know the robot’s environment precludes programming the
ability to handle all problems in advance. Use of simulators to
train the robot on a variety of potential emergency situations
provides a rapid and efficient way of dealing with those emergencies
-- one needs only to load the proper memory disk into the robot to
have a specifically trained robot which can deal with that situation
and continue to learn from its new experiences.
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Figure 5. Errors per problem for the three rule-base versions for the
14 problems presented to train the robot on a 7-category scheme.
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