

**ENGINEERING DEVELOPMENT OF ADVANCED  
PHYSICAL FINE COAL CLEANING FOR PREMIUM  
FUEL APPLICATIONS**

**US DOE Contract No. DE-AC22-92PC92208-21  
Amax R&D Subcontract No. 91445-B**

**Task 11:  
Topical Report**

***Commercial CWF Production Cost Study***

Prepared for:  
**Amax R&D, Inc.  
Golden, Colorado**

Prepared by:  
**Technology & Consulting  
Bechtel Corporation  
San Francisco, CA**  
Principal Investigators:  
*Horst Huettenhain  
M. K. V. Chari*

June 1997



### **Notice**

This report was prepared by Bechtel Corporation in the course of preparing work contracted for and sponsored by Amax R&D. The opinions expressed in this report do not necessarily reflect those of Bechtel or Amax R&D and references to any specific product, service, process or method does nor necessarily constitute an implied or expressed recommendation or endorsement of same. Further, neither Bechtel nor Amax R&D makes any warranties or representations, expressed or implied, as to the fitness for particular purpose, marketability of any product, apparatus or service or the usefulness, completeness or accuracy of any processes, methods or other information described, disclosed or referred to in this report.

# Contents

---

| <u>Section</u>                                                        | <u>Page</u> |
|-----------------------------------------------------------------------|-------------|
| <b>1 EXECUTIVE SUMMARY</b>                                            | 1-1         |
| 1.1 Introduction                                                      | 1-1         |
| 1.2 Conceptual Designs                                                | 1-1         |
| 1.3 Cost of Premium CWF - Column Flotation                            | 1-4         |
| 1.4 Cost of Premium CWF - Selective Agglomeration                     | 1-5         |
| 1.5 Conclusions & Recommendations                                     | 1-6         |
| 1.6 Acknowledgements                                                  | 1-6         |
| <b>2 INTRODUCTION</b>                                                 | 2-1         |
| <b>3 CONCLUSIONS &amp; RECOMMENDATIONS</b>                            | 3-1         |
| <b>4 COMMERCIAL CWF PLANT DESIGN CRITERIA</b>                         | 4-1         |
| 4.1 Coal Feed Stock                                                   | 4-1         |
| 4.2 CWF Specifications                                                | 4-2         |
| 4.3 Annual Capacity of the Plant                                      | 4-2         |
| 4.4 Plant Location                                                    | 4-3         |
| 4.5 Plant Operating Schedule                                          | 4-3         |
| 4.6 Coal Receiving                                                    | 4-3         |
| 4.7 Storage                                                           | 4-3         |
| 4.8 Crushing and Grinding                                             | 4-3         |
| 4.9 Coal Cleaning Processes                                           | 4-4         |
| 4.10 Clean Coal Dewatering, Water Clarification and Tailings Handling | 4-4         |
| 4.11 Tailings Disposal                                                | 4-4         |
| 4.12 Preparation of CWF                                               | 4-4         |
| 4.13 CWF Storage and Loading                                          | 4-5         |
| <b>5 CONCEPTUAL DESIGN OF CWF PLANT - COLUMN FLOTATION</b>            | 5-1         |
| 5.1 Process Design Criteria                                           | 5-1         |
| 5.2 Facility Description                                              | 5-1         |
| <b>6 CONCEPTUAL DESIGN OF CWF PLANT - SELECTIVE AGGLOMERATION</b>     | 6-1         |
| 6.1 Process Design Criteria                                           | 6-1         |
| 6.2 Facility Description                                              | 6-2         |

| <u>Section</u>                                                                                      | <u>Page</u> |
|-----------------------------------------------------------------------------------------------------|-------------|
| <b>7 COST OF PREMIUM CWF- COLUMN FLOTATION</b>                                                      | 7-1         |
| 7.1    Capital Costs                                                                                | 7-1         |
| 7.2    O&M Costs and Cost of CWF                                                                    | 7-2         |
| 7.3    Sensitivity Analysis                                                                         | 7-4         |
| <b>8 COST OF PREMIUM CWF - SELECTIVE AGGLOMERATION</b>                                              | 8-1         |
| 8.1    Capital Costs                                                                                | 8-1         |
| 8.2    O&M Costs and Cost of CWF                                                                    | 8-2         |
| 8.3    Sensitivity Analysis                                                                         | 8-5         |
| <b>9 LIST OF ACRONYMS AND ABBREVIATIONS</b>                                                         | 9-1         |
| <b>APPENDICES</b>                                                                                   | A-1         |
| <b>A CAPITAL COST ESTIMATE -<br/>COLUMN FLOTATION</b>                                               | A-2         |
| <b>B CAPITAL COST ESTIMATE -<br/>SELECTIVE AGGLOMERATION</b>                                        | A-6         |
| <b>C COST SENSITIVITY ANALYSIS CALCULATIONS -<br/>COLUMN FLOTATION Tables C-1 through C-5</b>       | A-12        |
| <b>D COST SENSITIVITY ANALYSIS CALCULATIONS -<br/>SELECTIVEAGGLOMERATION Tables D-1 Through D-5</b> | A-17        |

**TABLES**

| <u>Table</u> |                                                                                            | <u>Page</u> |
|--------------|--------------------------------------------------------------------------------------------|-------------|
| 5.1.1        | Commercial CWF Plant- Column Flotation Process Design Criteria                             | 5-5         |
| 5.2.1        | Commercial CWF Plant- Column Flotation Major Equipment List                                | 5-7         |
| 6.1.1        | Commercial CWF Plant- Selective Agglomeration Process Design Criteria                      | 6-8         |
| 6.2.1        | Commercial CWF Plant- Selective Agglomeration Major Equipment List                         | 6-11        |
| 6.2.2        | Plant 200: Crushing and Grinding- Material and Heat Balance                                | 6-17        |
| 6.2.3        | Plant 350: Selective Agglomeration- Material and Heat Balance                              | 6-18        |
| 6.2.4        | Plant 400: Clean Coal Dewatering- Material and Heat Balance                                | 6-20        |
| 6.2.5        | Plant 500: Water Clarification and Tailings Handling- Material and Heat Balance            | 6-21        |
| 6.2.6        | Plant 600: CWF Preparation and Loading- Material and Heat Balance                          | 6-22        |
| 7.1.1        | Premium CWF Production- Column Flotation Capital Cost Summary                              | 7-5         |
| 7.2.1        | Premium CWF Production- Column Flotation Variable and Fixed O&M Costs- Cost of CWF         | 7-6         |
| 7.2.2        | Premium CWF Production- Column Flotation Flocculant Consumption                            | 7-8         |
| 7.2.3        | Premium CWF Production- Column Flotation Operating and Maintenance Personnel               | 7-9         |
| 7.3.1        | Cost of Premium CWF - Column Flotation Factors for Product Cost Sensitivity Analysis       | 7-10        |
| 7.3.2        | Premium CWF Cost Sensitivity- Column Flotation                                             | 7-11        |
| 8.1.1        | Premium CWF Production- Selective Agglomeration Capital Cost Summary                       | 8-6         |
| 8.2.1        | Premium CWF Production- Selective Agglomeration Variable and Fixed O&M Costs- Cost of CWF  | 8-7         |
| 8.2.2        | Premium CWF Production- Selective Agglomeration Flocculant Consumption                     | 8-9         |
| 8.2.3        | Premium CWF Production- Selective Agglomeration Operating and Maintenance Personnel        | 8-10        |
| 8.3.1        | Cost of Premium CWF- Selective Agglomeration Factors for Product Cost Sensitivity Analysis | 8-11        |
| 8.3.2        | Premium CWF Cost Sensitivity - Selective Agglomeration                                     | 8-12        |

**ILLUSTRATIONS**

| <u>Figure</u> |                                                                                                          | <u>Page</u> |
|---------------|----------------------------------------------------------------------------------------------------------|-------------|
| 1.1           | Premium CWF Production - Block Flow diagram                                                              | 1-8         |
| 1.2           | Plant Layout                                                                                             | 1-9         |
| 1.3           | Cost of Premium CWF- Column Flotation                                                                    | 1-10        |
| 1.4           | Cost of Premium CWF- Selective Agglomeration                                                             | 1-11        |
| 5.1           | Column Flotation-Plant 100: Raw Coal Handling-<br>Process Flow diagram                                   | 5-10        |
| 5.2           | Column Flotation-Plant 200: Crushing and Grinding-<br>Process Flow diagram                               | 5-11        |
| 5.3           | Column Flotation-Plant 300: Column Flotation<br>Process Flow Diagram                                     | 5-12        |
| 5.4           | Column Flotation-Plant 400: Clean Coal Dewatering-<br>Process Flow Diagram                               | 5-13        |
| 5.5           | Column Flotation-Plant 500: Water Clarification and<br>Tailings Handling- Process Flow Diagram           | 5-14        |
| 5.6           | Column Flotation-Plant 600: CWF Preparation and<br>Loading- Process Flow Diagram                         | 5-15        |
| 6.1           | Selective Agglomeration-Plant 100: Raw Coal Handling-<br>Process Flow diagram                            | 6-22        |
| 6.2           | Selective Agglomeration-Plant 200: Crushing and Grinding-<br>Process Flow diagram                        | 6-23        |
| 6.3           | Selective Agglomeration-Plant 350: Selective Agglomeration-<br>Process Flow Diagram (Sheets 1 through 5) | 6-24        |
| 6.4           | Selective Agglomeration-Plant 400: Clean Coal Dewatering-<br>Process Flow Diagram                        | 6-29        |
| 6.5           | Selective Agglomeration-Plant 500: Water Clarification<br>and Tailings Handling- Process Flow Diagram    | 6-30        |
| 6.6           | Selective Agglomeration-Plant 600: CWF Preparation & Loading-<br>Process Flow Diagram                    | 6-31        |

# Section 1

## Executive Summary

---

### 1.1 INTRODUCUTION

Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides estimates of the cost of production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two plant scenarios are presented, one using advanced column flotation technology to clean the coal and the other, selective agglomeration for the same purpose. The study forms part of US Department of Energy program “Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications,” (Contract No. DE-AC22-92PC92208), under Task 11, Project Final Report.

The primary objective of the Department of Energy program is to develop a design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb of ash/MBtu (860 grams of ash/GJ) of HHV and preferably less than 1 lb of ash/MBtu (430 grams of ash/GJ). Advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover at least 80 percent of the heating value in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs do not exceed \$2.50/MBtu (\$2.37/GJ), including the mine mouth cost of the raw coal. This cost compares with a No. 6 fuel oil cost of approximately \$3.35 MBtu (\$3.17/GJ).

Laboratory, bench-scale, and Process Development Unit (PDU) testing were completed earlier under the research program with selected raw coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R&D, Golden, Colorado for process evaluation and testing. The tests successfully demonstrated the capability of column flotation as well as selective agglomeration to produce ultra-clean coal at specified levels of purity and recovery efficiency. Test results and the experience gained during the operation of the PDU have provided valuable insights into the processes studied the design bases for commercial plants.

To facilitate the cost estimating effort, conceptual designs for two commercial plants have been developed each using an advanced coal cleaning technology.

### 1.2 CONCEPTUAL DESIGNS

Based on process design bases obtained from the test work and a set of project design criteria, two sets of conceptual designs for commercial CWF production plants have been developed, one using column flotation and the other, selective agglomeration.

### 1.2.1 Plant Design Criteria

The following design criteria have been adopted for the plant designs.

**Coal Feed Stock** Bituminous high-volatile compliance coals which meet ash liberation requirements for advanced cleaning processes are suitable feed stocks for the plants. Pre-washed Taggart (Upper Elkhorn No. 3), Elkhorn No. 3, and Sunnyside seam coals and run of mine (ROM) Hiawatha seam coal were found to fulfill these requirements during evaluations conducted under this research program. Other coals, such as No. 2 Gas (Campbell Creek), could also be suitable. The named coals are low in organic form of sulfur which cannot be eliminated by physical coal cleaning processes such as column flotation and selective agglomeration.

**Premium CWF Specifications** In addition to ash and sulfur content limitations noted in the program objectives there are limits on slurry viscosity and slurry heating value to make the CWF an attractive fuel. Discussions with industry indicate that the viscosity of the fuel should not exceed 500 cp. at a  $100\text{ s}^{-1}$  shear rate. Its HHV should be not less than 8900 Btu/lb which translates into a solids concentration of not less than 60 percent by weight of ultra-clean (dry) coal.

**Plant Capacity and Location** The plant designs are based on an annual out-put capacity of 1.5 million st (US ton) of ultra-clean coal (dry basis) formulated into 2.5 million st of CWF containing 60 dry solids percent by weight. This amount of fuel is adequate to fuel 500 MW of electric power plant. Other recent coal preparation studies have also used similar capacity as the basis for economic assessments.

The plants are designed to operate all 24 hours of the day in three shifts and all 7 days of the week. However, 2 shifts in a week and 2 weeks in a year are set aside for maintenance work. Based on the expected percentage yield of clean coal (weight recovery) and plant availability, the hourly design in-put capacities of the two plant scenarios have been calculated and found to be nearly the same at 233 st/h (dry basis). The plant using column flotation is expected provide a clean coal yield of 90.3 percent and have a plant availability of 81 percent. The second design based on selective agglomeration is expected to provide a higher yield of 93 percent, but, being more complex, have a lower plant availability of 79 percent.

The plants are located in the Ohio valley in an industrial area with good infrastructure facilities and close to a city like Cincinnati or Cleveland with many potential consumers of CWF in the proximity.

The selective agglomeration plant requires a significant amount of low pressure steam. It would perfectly complement an existing power plant which could provide low pressure steam as a by-product. The plant could be situated where steam could be purchased for approximately \$3.00/MBtu. The cost estimates are based on buying steam for that price.

### 1.2.2 Plant Description

Figure 1.1 shows a block flow diagram of the facilities. A plant layout is shown in Figure 1.2. Except for the coal cleaning sections, Plant 300 Column Flotation and Plant 350 Selective Agglomeration as shown in the block flow diagram, the two designs are very similar. The description provided below addresses both plant designs.

**Coal Receiving and Storage (Plant 100)** Coal feed to the plant, 2 inch x 0 in size, is supplied in open gondola type rail cars which are unloaded by a car dumper at a rate of 2000 st/h. Storage facilities for raw coal at the plant site include three concrete silos with a total capacity of 30,000 st. This capacity equals a 5-day consumption.

**Crushing and Grinding (Plant 200)** After an initial crushing to size 1/2 in. x 0 in hammer mills, the coal is ground in wet closed-circuit ball mills to size 325 mesh (45 microns) (D80) at a rate of 233 st/h (dry basis). Two parallel and identical trains are used in the grinding section. The ground slurry is delivered to the coal cleaning section, Plant 300 (or Plant 350).

**Column Flotation (Plant 300)** Twelve identical and parallel trains of column flotation equipment are used to clean the coal. Each train has a capacity to process approximately 20 st/h. Each flotation column has a diameter of 14 feet.

**Selective Agglomeration (Plant 350)** The selective agglomeration section comprises ten identical trains each with a capacity of 23 st/h. Heptane is used as the bridging liquid which is recovered and reused in the process. Unlike the column flotation plant, plant design for the selective agglomeration process includes special facilities like the gas holders, cooling water ponds and flares as shown in the Layout, Figure 1.2.

**Clean Coal Dewatering (Plant 400)** Clean coal from column flotation (or selective agglomeration) is dewatered using vacuum filters. This plant section includes 6 identical and parallel filtration trains.

**Water Clarification and Tailings Handling (Plant 500)** Tailings from column flotation (or selective agglomeration) are thickened and clarified water is recovered in this plant section. The water is recycled in the plant. It is cooled with chilled water in the selective agglomeration case before recycling.

The thickened tailings are filtered and loaded into trucks for disposal as a solid waste.

**CWF Preparation and Loading (Plant 600)** Clean coal filter cake from Plant 400 is mixed with dispersant additive A-23 and the solids content adjusted by adding measured amounts of water. The product slurry is pumped to slurry storage tanks for loading into rail cars or pumping by pipeline to clients located in the area. The storage tanks have a total capacity equivalent to 48 hours of plant production.

### **1.3 COST OF PREMIUM CWF - COLUMN FLOTATION**

The estimated capital cost of the plant based on column flotation is \$69.6 million (First Quarter -1997). CWF production cost (without considering the cost of coal in the product) including capital charges is estimated at \$0.91/MBtu.

Major elements of the cost are as follows:

| Cost Element                                    | \$/MBtu     | %          |                   |
|-------------------------------------------------|-------------|------------|-------------------|
| Capital charges and interest on Working Capital | 0.27        | 29.1       |                   |
| CWF additive, A-23                              | 0.23        | 25.6       |                   |
| Labor                                           | 0.13        | 14.6       |                   |
| Electric power                                  | 0.11        | 12.3       |                   |
| Flotation reagents & Flocculant                 | 0.07        | 7.5        |                   |
| Btu Loss                                        | 0.05        | 5.5        |                   |
| Others                                          | <u>0.05</u> | <u>5.4</u> |                   |
| Total Cost of CWF                               | 0.91        | 100        | Less cost of coal |

The above break down of costs of \$0.91 is shown graphically in Figure 1.3. Including the cost of coal delivered to plant site at \$1.24/MBtu, the total cost of production of premium CWF comes to \$2.15/MBtu (\$1.24+\$0.91).

The target set under the research program for the cost of production of premium CWF is \$2.50/MBtu including the mine mouth cost of coal. The above mentioned cost of \$2.15/MBtu includes a transportation cost of 0.20 \$/MBtu for the raw coal. Based on mine mouth coal cost, the estimated cost of production of premium CWF is \$1.95/MBtu (\$2.15 less \$0.20) which is well below the targeted cost of production. This makes it an attractive replacement fuel for oil at current prices of petroleum products.

**Sensitivity Studies** One of the major elements in the cost of manufacture of CWF is the cost of A-23 additive dispersant. Use of the additive becomes necessary to meet the specified 60 percent solids loading of the product. If the solids loading could be reduced to around 54 percent, the slurry could be produced without the use of this additive. In such an event the total cost of CWF would be reduced from \$2.15/MBtu to \$1.92 representing a reduction of \$0.23/MBtu. With a reduced solids content of 54 percent, the HHV of premium fuel is lowered to 8100 Btu/lb, a value below the target specification which calls for a minimum HHV of 8900 Btu/lb. It is believed that for the user, the penalty for reduced HHV will be more than off-set by the reduction of \$0.23/MBtu in fuel costs.

A series of sensitivity analysis have been performed to evaluate the sensitivity of the cost of production of CWF to variations in other selected cost components. In addition to capital cost and the cost of raw coal, the factor that could affect the production cost most significantly, as may be expected, is the annual production rate.

#### **1.4 COST OF PREMIUM CWF - SELECTIVE AGGLOMERATION**

The estimated capital cost of the plant based on selective agglomeration is \$97.2 (First Quarter -1997) million. CWF production cost (without considering the cost of coal in the product) including capital charges is estimated at \$1.18/MBtu. Major cost elements are as follows:

| Cost Element                                    | \$/MBtu | %   |                |
|-------------------------------------------------|---------|-----|----------------|
| Capital charges and Interest on Working Capital | 0.37    | 31  |                |
| CWF additive, A-23                              | 0.23    | 20  |                |
| Labor                                           | 0.17    | 15  |                |
| Electric power                                  | 0.15    | 13  |                |
| Steam                                           | 0.13    | 11  |                |
| Others (including Heptane)                      | 0.13    | 10  |                |
| Total Cost of CWF                               | 1.18    | 100 | Less coal cost |

The above break down of costs of \$1.18 is shown graphically in Figure 1.4. Including the cost of coal delivered to plant site at \$1.24/MBtu, the total cost of production of premium CWF is estimated at \$2.42/MBtu (\$1.24+\$1.18).

The above mentioned cost of \$2.42/MBtu includes a transportation cost of 0.20 \$/MBtu for the raw coal to the plant site. Based on mine mouth coal cost, the estimated cost of production of premium CWF is \$2.22/MBtu (\$2.42 less \$0.20). This value is well below the targeted cost of production of \$2.50/MBtu set for the research program based on mine mouth cost of coal.

**Sensitivity Studies** A major element in the cost of manufacture of CWF is the cost of A-23 additive dispersant. Use of the additive becomes necessary to meet the specified 60 percent solids loading of the product. If the solids loading could be reduced to around 54 percent, the slurry could be produced without the use of this additive. In such an event the total cost of CWF would be reduced from \$2.42/MBtu to \$2.19 representing a reduction of \$0.23/MBtu. A reduction in the solids content to 54 percent lowers the HHV of premium to 8,100 Btu/lb, a value below the target specification of 8,900 Btu/lb. It is believed that the penalty for the reduced HHV will be more than off-set to the consumer by the reduction of \$0.23/MBtu in fuel costs.

A series of sensitivity analysis was performed to evaluate the sensitivity of the cost of production of CWF to variations in other selected cost input parameters. In addition to

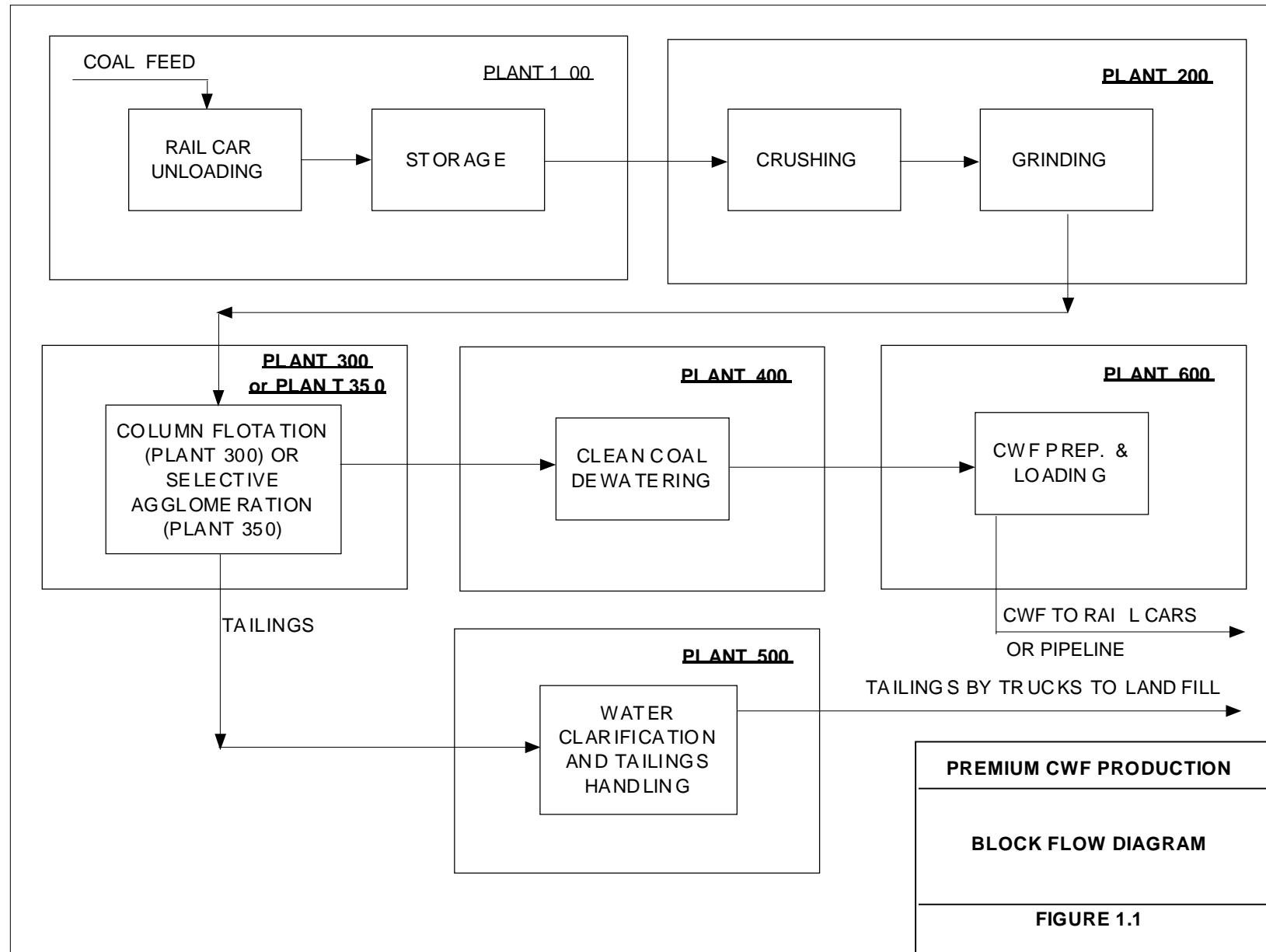
capital cost and the cost of raw coal, the factor that could affect the production cost most significantly, as may be expected, is the annual production rate.

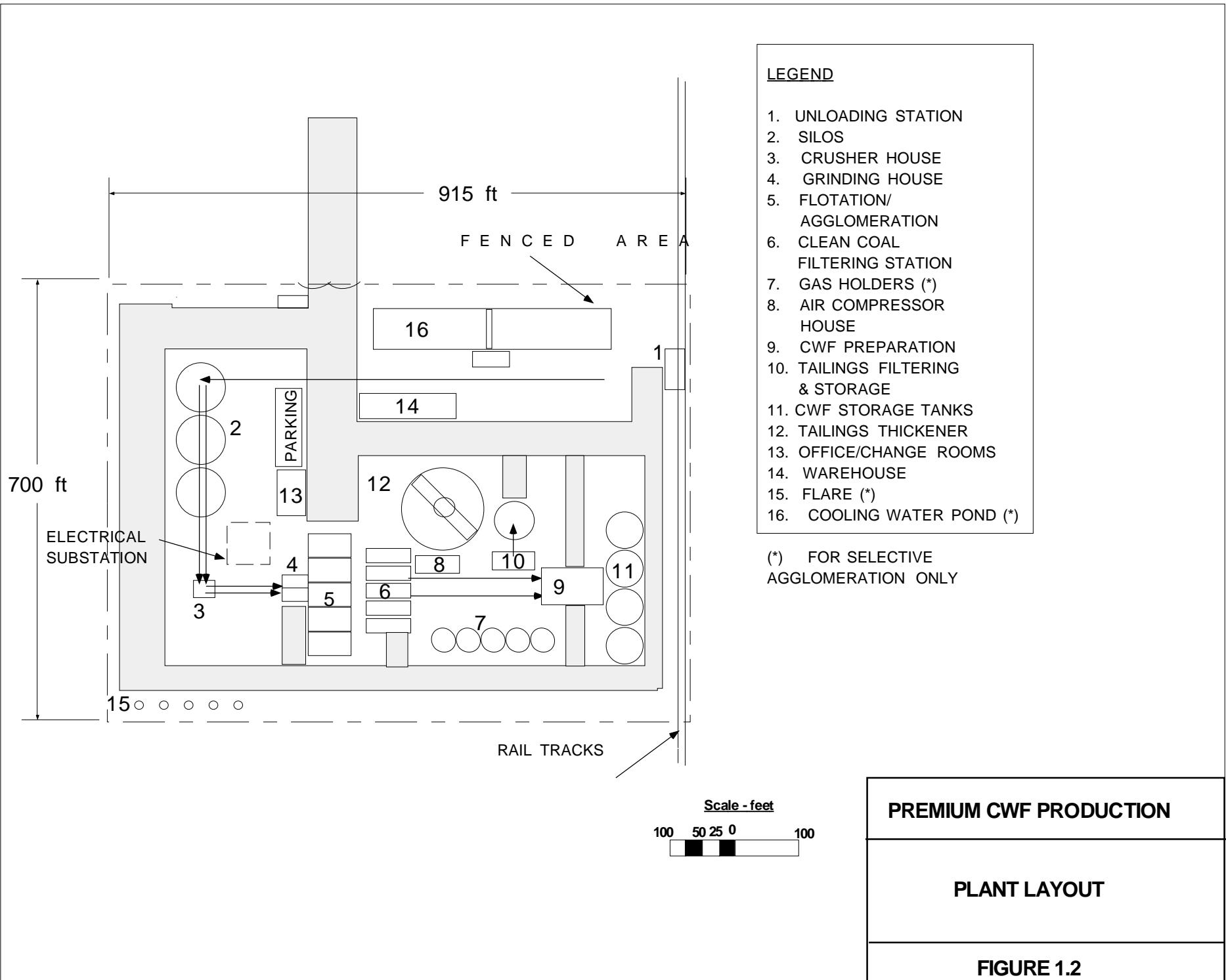
### **1.5 CONCLUSIONS & RECOMMENDATIONS**

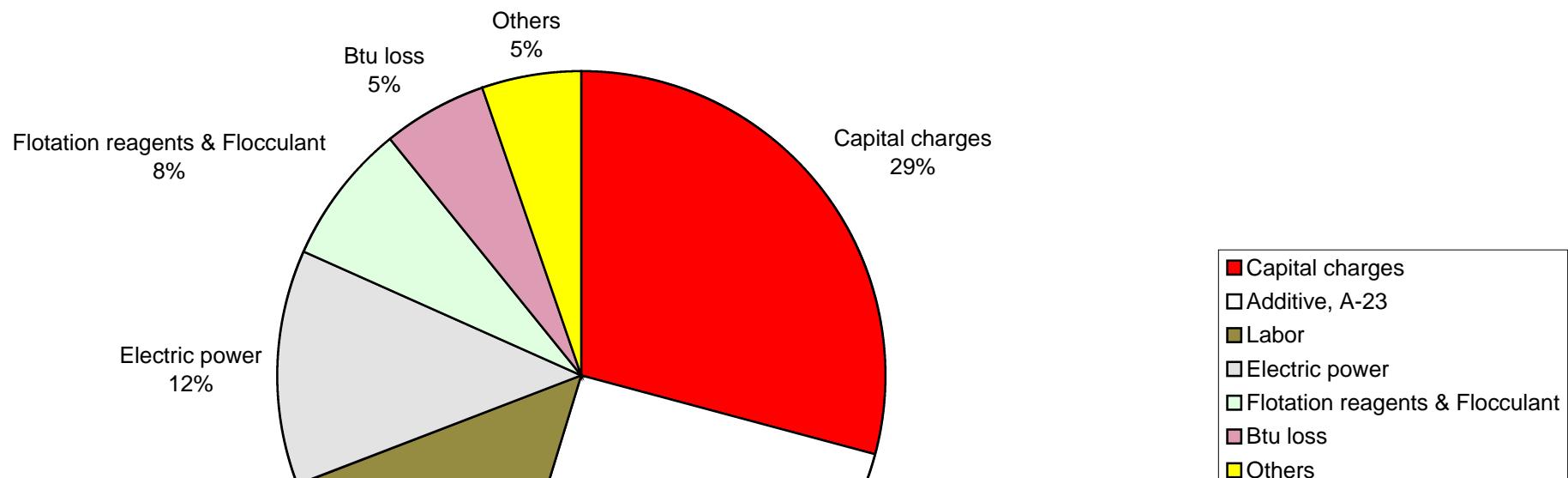
The estimated cost of commercial production of premium CWF using either column flotation or selective agglomeration is encouraging. Column flotation, in particular, is more promising. This process, in spite of its lower energy and weight recovery, is found more economical than selective agglomeration while offering a comparable quality product. Total processing cost with column flotation at \$0.91/MBtu is significantly lower than the cost of \$1.18/MBtu estimated for the plant using the selective agglomeration.

As found during CWF cost sensitivity analysis, one of the significant factors that could vitally affect production costs is the annual sustainable production rate. Product costs would escalate drastically if the annual production rate of 1.5 million st cannot be achieved in plants built according to conceptual designs presented herein. Two significant technical factors that could adversely affect production are: (a) reduced plant availability due to worse than anticipated plant operability or maintenance requirements (b) feed coal harder to grind than expected. This will reduce the grinding capacity and thus the plant out-put.

These technical uncertainties are best resolved by operating experience with a larger scale plant and for a longer term than was possible with the PDU phase of the program. It was noticed during the conceptual design stage that plants with a capacity of 1.5 million st/year of ultra-clean coal will need 12 parallel trains of commercial size flotation columns or ten parallel trains of commercial size equipment for the selective agglomeration plant. This would suggest installation of demonstration/production plant using a single train of commercial size equipment with a capacity ranging from 125,000 to 150,000 st/y.


Another issue of uncertainty is the acceptability of the product. Before long-term commitments could be made, all potential clients would need verification, by meaningful plant scale testing, of the suitability of premium CWF for their applications. A single train demonstration/production plant of the capacity suggested will enable production of adequate quantities of premium CWF for this purpose.

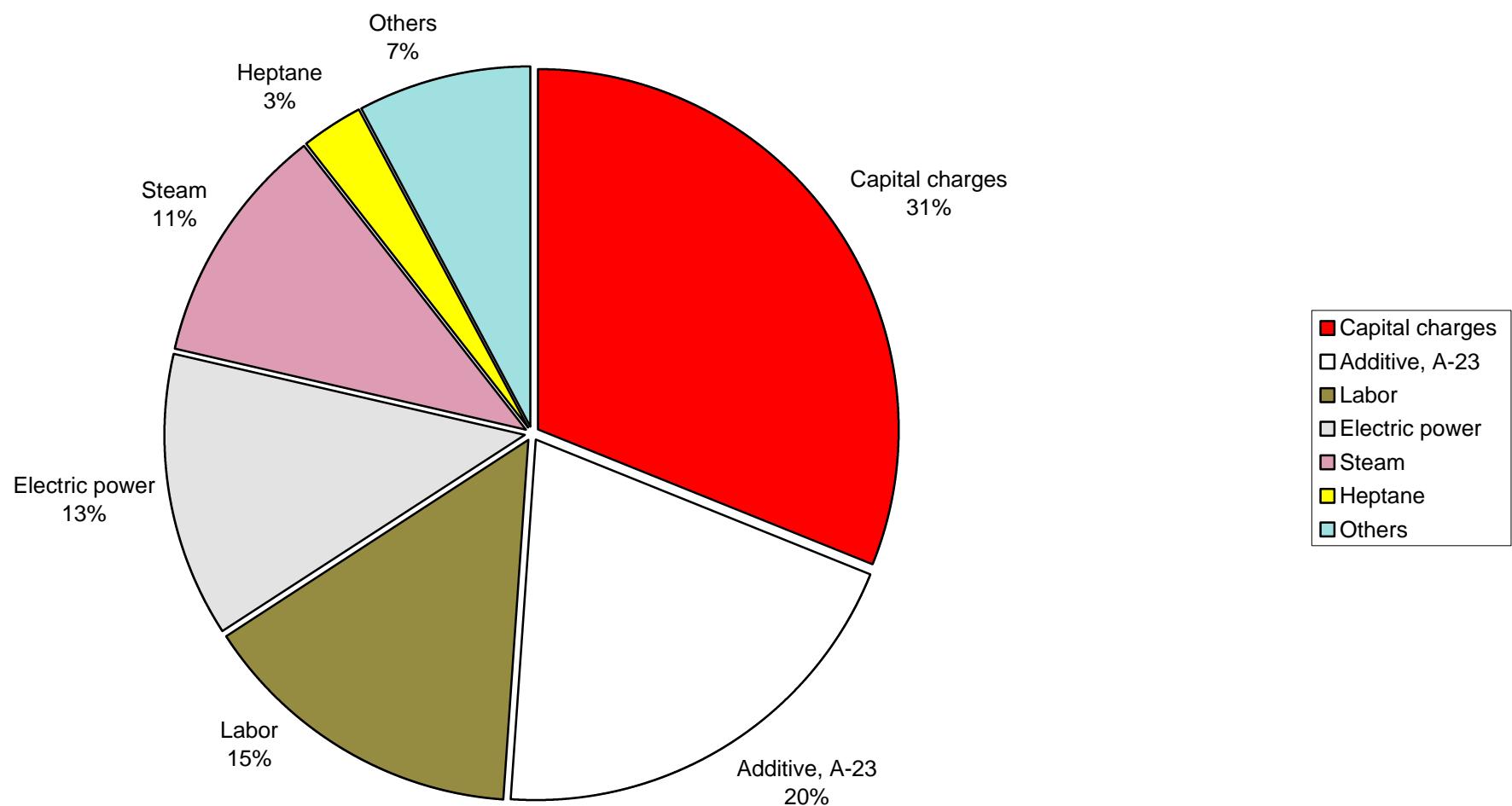

The demonstration/production plant is preferably built close to a coal mine so that costs associated with coal transportation, refuse disposal and rail car unloading facilities can be eliminated or minimized.


### **1.6 ACKNOWLEDGMENTS**

The project team consisted of Cyprus Amax Minerals Company through its subsidiaries Amax Research & Development Center (Amax R&D) and Cyprus Amax Coal Company (Midwest and Cannelton Division), Bechtel Technology & Consulting of Bechtel National Inc., Arcanum Corp. (of Ann Arbor, Michigan), Center for Applied Energy

Research (CAER) of the University of Kentucky, and Center for Coal and Mineral Processing (CCMP) of the Virginia Polytechnic Institute and State University. Entech Global managed the project for Amax R&D. Dr. John Dooher of Adelphi University and DR. Douglas Keller, Jr. of Syracuse University were consultants to the project.








TOTAL COST OF PRODUCTION  
\$0.91/ MBtu - Less cost of coal

PREMIUM CWF PRODUCTION  
COST OF CWF  
SELECTIVE AGGLOMERATION

FIGURE 1.3



TOTAL COST OF PRODUCTION  
\$1.18/ MBtu - Less cost of coal

PREMIUM CWF PRODUCTION

COST OF CWF  
SELECTIVE AGGLOMERATION

FIGURE 1.4

## Section 2

# Introduction

---

Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program "Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications," (Contract No. DE-AC22-92PC92208), under Task 11, Project Final Report.

The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed \$2.5 /MBtu (\$ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes.

Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R&D, Golden, Colorado by Entech Global for process evaluation tests. The tests successfully demonstrated the capability of advanced column flotation as well as selective agglomeration to produce ultra-clean coal at specified levels of purity and recovery efficiency. Test results and the experience gained during the operation of the PDU have provided valuable insights into the processes studied.

Based on the design data obtained from the test work and a set of project design criteria, two sets of conceptual designs for commercial CWF production plants have been developed, one using column flotation and the other using selective agglomeration process. Using these designs, Capital as well as Operating and Maintenance (O&M) cost estimates for the plants have been compiled. These estimates have then been used to derive the annualized cost of production of premium CWF on a commercial scale. Further, a series of sensitivity analysis have been completed to evaluate the effects of variations in selected cost components and process parameters on the overall economics of premium fuel production

The rest of this report is arranged as follows. Study results and Conclusions & Recommendations are provided under Section 3. The design criteria used in the development of conceptual designs for commercial CWF plants are included in Section 4. Descriptions of the conceptual designs based on column flotation and selective agglomeration technologies appear in Section 5 and 6 respectively. Capital and O&M cost estimates as well as the production cost of CWF are presented in Sections 7 and 8 for the two technologies. The two sections also discuss cost sensitivity to variations in selected parameters. A list of Acronyms and Abbreviations is placed under Section 9. Details of capital cost estimates are placed in Appendices A and B. Calculations relating to the sensitivity analysis are under Appendices C and D for column flotation and selective agglomeration cases respectively.

## Section 3

# Conclusions and Recommendations

---

Column Flotation and selective agglomeration test work with selected coals was completed earlier under the research program. The laboratory, bench-scale, and 2 st/h capacity Process Development Unit (PDU) tests successfully demonstrated the capability of column flotation as well as selective agglomeration to produce ultra-clean coal at specified levels of purity and recovery efficiency. Test results and the experience gained during the operation of the PDU have helped develop design bases for commercial plants.

Based on process design data obtained from the test work and a set of project design criteria, two sets of conceptual designs for commercial CWF production plants have been developed, one using column flotation and the other, selective agglomeration. Each design was for commercial plant with a capacity to produce 2.5 million st of premium CWF, containing 60% solids by weight (1.5 million st per year dry clean coal). Capital, O&M cost estimates have been developed based on these conceptual designs leading to the cost of production of premium CWF on a commercial scale.

### 3.1 COST OF PREMIUM CWF - COLUMN FLOTATION

The estimated capital cost of the plant based on column flotation is \$69.6 million (First Quarter -1997). CWF production cost (without considering the cost of coal in the product) including capital charges is estimated at \$0.91/MBtu. Major elements of the cost are as follows:

| <u>Cost Element</u>                                | <u>\$/MBtu</u> | <u>%</u>          |
|----------------------------------------------------|----------------|-------------------|
| Capital charges and interest<br>on Working Capital | 0.27           | 29.1              |
| CWF additive, A-23                                 | 0.23           | 25.6              |
| Labor                                              | 0.13           | 14.6              |
| Electric power                                     | 0.11           | 12.3              |
| Flotation reagents<br>& Flocculant                 | 0.07           | 7.5               |
| Btu Loss                                           | 0.05           | 5.5               |
| Others                                             | <u>0.05</u>    | <u>5.4</u>        |
| <u>Total Cost of CWF</u>                           | <u>0.91</u>    | <u>100.0</u>      |
|                                                    |                | Less cost of coal |

Including the cost of coal delivered to plant site at \$1.24/MBtu, the total cost of premium CWF comes to \$2.15/MBtu (\$1.24+\$0.91).

The target set under the research program for the cost of production of premium CWF is \$2.50/MBtu including the mine mouth cost of coal. The above mentioned cost of \$2.15/MBtu includes a transportation cost of 0.20 \$/MBtu for the raw coal. Based on mine mouth coal cost, the estimated cost of production of premium CWF is \$1.95/MBtu (\$2.15 less \$0.20) which is well below the targeted cost of production.

**Sensitivity Studies** One of the major elements in the cost of production of CWF is the cost of A-23 additive dispersant. Use of the additive becomes necessary to meet the specified 60 percent solids loading of the product. If the solids loading could be reduced to 54 percent, the slurry could be produced without the use of this additive. In such an event the total cost of CWF would be reduced from \$2.15/MBtu to \$1.92 representing a reduction of \$0.23/MBtu. With a reduced solids content of 54 percent, the HHV of premium fuel is lowered to 8100 Btu/lb, a value below the target specification which calls for a minimum HHV of 8900 Btu/lb. It is believed that for the user, the penalty for reduced HHV will be more than off-set by the reduction of \$0.23/MBtu in fuel costs.

A series of sensitivity analysis have been performed to evaluate the sensitivity of the cost of production of CWF to variations in other selected cost components. In addition to capital cost and the cost of raw coal, the factor that could affect the production cost most significantly, as may be expected, is the annual production rate.

### 3.2 COST OF PREMIUM CWF - SELECTIVE AGGLOMERATION

The estimated capital cost of the plant based on selective agglomeration is \$97.2 million (First Quarter -1997). CWF production cost (without considering the cost of coal in the product) including capital charges is estimated at \$1.18/MBtu. Major cost elements are as follows:

| <u>Cost Element</u>                                | <u>\$/MBtu</u> | <u>%</u>   |                |
|----------------------------------------------------|----------------|------------|----------------|
| Capital charges and<br>Interest on Working Capital | 0.37           | 31         |                |
| CWF additive, A-23                                 | 0.23           | 20         |                |
| Labor                                              | 0.17           | 15         |                |
| Electric power                                     | 0.15           | 13         |                |
| Steam                                              | 0.13           | 11         |                |
| Others                                             | 0.13           | 10         |                |
| <u>Total Cost of CWF</u>                           | <u>1.18</u>    | <u>100</u> | Less coal cost |

Including the cost of coal delivered to plant site at \$1.24/MBtu, the total cost of producing premium CWF is estimated at \$2.42/MBtu (\$1.24+\$1.18) for the selective agglomeration process.

The target set under the research program for the cost of production of premium CWF is \$2.50/MBtu including the mine mouth cost of coal. The above mentioned cost of \$2.42/MBtu includes a transportation cost of 0.20 \$/MBtu for the raw coal to the plant site. Based on mine mouth coal cost, the estimated cost of production of premium CWF is \$2.22/MBtu (\$2.42 less \$0.20). This value is well below the targeted cost of production of \$2.50/MBtu set for the research program based on mine mouth cost of coal.

**Sensitivity Studies** A major element in the cost of production of CWF is the cost of A-23 additive dispersant. Use of the additive becomes necessary to meet the specified 60 percent solids loading of the product. If the solids loading could be reduced to 54 percent, the slurry could be produced without the use of this additive. In such an event the total cost of CWF would be reduced from \$2.42/MBtu to \$2.19 representing a reduction of \$0.23/MBtu. A reduction in the solids content to 54 percent lowers the HHV of premium CWF to 8100 Btu/lb, a value below the target specification of 8900 Btu/lb. It is believed that the penalty for the reduced HHV will be more than off-set to the consumer by the reduction of \$0.23/MBtu in fuel costs.

A series of sensitivity analysis are performed to evaluate the sensitivity of the cost of production of CWF to variations in other selected cost input parameters. In addition to capital cost and the cost of raw coal, the factor that could affect the production cost most significantly, as may be expected, is the annual production rate.

### 3.3 RECOMMENDATIONS

The estimated cost of commercial production of premium CWF using either column flotation or selective agglomeration is encouraging. Column flotation, in particular, is more promising. This process, in spite of its lower energy and weight recovery, is found more economical than selective agglomeration while offering a comparable quality product. Total processing cost with column flotation at \$0.91/MBtu is significantly lower than the cost of \$1.18/MBtu estimated for the plant using the selective agglomeration.

As found during CWF cost sensitivity analysis, one of the significant factors that could vitally affect production costs is the annual sustainable production rate. Product costs would escalate drastically if the annual production rate of 1.5 million st cannot be achieved in plants built according to conceptual designs presented herein. Two significant technical factors that could adversely affect production are: (a) reduced plant availability due to worse than anticipated plant operability or maintenance requirements (b) feed coal harder to grind than expected, which will reduce the grinding capacity and thus the plant out-put.

These technical uncertainties are best resolved by operating experience with a larger scale plant and for a longer term than was possible with the PDU phase of the program. It was noticed during the conceptual design stage that plants with a capacity of 1.5 million st/year of ultra-clean coal will need 12 parallel trains of commercial size flotation columns or ten parallel trains of commercial size equipment for the selective agglomeration plant. This would suggest installation of demonstration/production plant using a single train of commercial size equipment with a capacity of 125,000 st/y.

Another issue of uncertainty is the acceptability of the product. Before long-term commitments could be made, all potential clients would need verification, by meaningful plant scale testing, of the suitability of premium CWF for their applications. A single

## **Conclusions and Recommendations**

---

train demonstration/production plant of the capacity suggested will enable production of adequate quantities of premium CWF for this purpose.

The demonstration/production plant is preferably built close to a coal mine so that costs associated with coal transportation, refuse disposal and rail car unloading facilities can be eliminated or minimized.

## Section 4

# Commercial CWF Plant Design Criteria

---

This section presents design criteria which have been used for the development of two conceptual designs for commercial premium CWF production plants. One of the designs uses advanced column flotation for cleaning the coal and the other selective agglomeration. Process design and equipment selection criteria specific to column flotation and selective agglomeration are addressed in Section 5 and Section 6 respectively.

## 4.1 COAL FEED STOCK

Several dozen coals from different regions of the US were evaluated and many were tested in the laboratory under Task 2. The tests were designed to identify coals that could significantly benefit from advanced column flotation and/or selective agglomeration and produce economically ultra-clean coal to specifications. Coal characteristics tested included: (a) sulfur content and forms of sulfur occurrence (organic and mineral or pyritic) and (b) ash liberation characteristics. The latter determines to a large extent electric power requirements to prepare the coal by grinding ahead of the cleaning processes. Six coals were then selected for process research and development in bench scale. Finally, three coals were tested in the PDU. Based on these studies, the most appropriate coal feed stock for the commercial production of premium CWF is a bituminous high-volatile sulfur-compliance coal which also meets ash liberation requirements for advanced cleaning processes. Pre-washed Taggart (Upper Elkhorn No. 3), Elkhorn No. 3, and Sunnyside seam coals and the unwashed Hiawatha seam coal were found to fulfill these requirements during evaluations conducted earlier under this. Other coals, such as No. 2 Gas (Campbell Creek), are also likely to be suitable.

**Feed Coal Sulfur Content** Specifications for premium CWF call for a sulfur content below 0.6 lb/MBtu, the limit for compliance coals. Physical coal cleaning processes like column flotation and selective agglomeration can only remove the pyritic form of sulfur in coal and not the organic form. A special effort was made to identify non-compliance raw coals with significantly high pyritic sulfur content but a low (below the limit for compliance coals) organic sulfur component. No such coal could be found. The non-compliance coals that were evaluated had consistently more than 0.6 lb of sulfur per MBtu of organic sulfur. Thus it would appear that the feed stock to the commercial plant will most likely be a compliance coal to begin with.

**Grinding Power Requirements** Electric power required to grind the coal prior to cleaning is a major element in the cost of production of ultra-clean coals. Power consumption for grinding is affected largely by ash-mineral liberation characteristics of the coal and, to a lesser extent, its grindability. Grindability is often expressed in terms of the Hardgrove Grindability Index (HGI). A coal with unfavorable ash-mineral liberation characteristics contains ash disseminated in the coal mass as extremely fine particles. Such a coal will need ultra-fine grinding at an exorbitant power consumption to liberate

ash minerals ahead of the cleaning step. Poor grindability further aggravates energy consumption.

The coals listed above (Taggart, Elkhorn # 3, Sunnyside, Hiawatha) were found to be the most appropriate feed stocks after taking the relevant factors into consideration.

Significant characteristics of the design feed coal, which could be a blend of more than one coal, are:

| Proximate Analysis:              |        |        |  |
|----------------------------------|--------|--------|--|
| Ash                              | wt %   | 7.0    |  |
| Volatile Matter                  | wt %   | 30.0   |  |
| Fixed Carbon                     | wt %   | 56.0   |  |
| Moisture-total                   | wt %   | 7.0    |  |
| Inherent Moisture                | wt %   | 2.0    |  |
| Surface Moisture                 | wt %   | 5.0    |  |
| Ash-dry basis                    | wt %   | 7.5    |  |
| Heating Value -as received basis | Btu/lb | 13,070 |  |
| Nominal Size                     | inch   | 2 x 0  |  |
| Hardgrove Grindability Index     |        | 52     |  |

## **4.2 CWF SPECIFICATIONS**

The target specifications for the CWF (product) are given below:

|                                                     |         |            |
|-----------------------------------------------------|---------|------------|
| Ash-dry basis                                       | wt %    | < 2.8      |
| Ash content                                         | lb/MBtu | < 1.8      |
| Sulfur-dry basis                                    | wt %    | < 0.88     |
| Sulfur-dioxide emission potential                   | lb/MBtu | < 1.2      |
| Sulfur                                              | lb/MBtu | < 0.6      |
| Solids loading -based on dry solids                 | wt %    | 60-62      |
| Slurry viscosity at 100 s <sup>-1</sup> shear rate  | cp.     | < 500      |
| Slurry viscosity at 1000 s <sup>-1</sup> shear rate | cp.     | < 1,000    |
| Higher Heating value of CWF                         | Btu/lb  | 8900-9,400 |
| Maximum particle size                               | mesh    | 100        |

## **4.3 ANNUAL CAPACITY OF THE PLANTS**

Conceptual designs and cost estimates are based on an annual out-put capacity 2.5 million st of CWF containing 60 percent by weight of dry solids. This quantity of CWF will require an annually production of 1.5 million st of ultra-clean coal on a dry basis.

#### **4.4 PLANT LOCATION**

The plant is to be located near an industrial center like Cincinnati or Cleveland in the Ohio river valley. It is assumed that the plant site has adequate infra-structure normally available in industrial areas.

The infra-structure facilities include utility lines, highways and rail tracks close to the property. In addition, the selective agglomeration plant will be located near a power station which could supply low pressure steam to the plant. Availability of efficient rail links to the sites is essential to permit flexibility in coal procurement from different sources and in the shipment of the product. Roads, utility distribution lines and rail tracks within the battery limits are included in the cost estimates.

#### **4.5 PLANT OPERATING SCHEDULE**

The plants are designed to operate three 8-hour shifts a day and 19 shifts a week. Two shifts in each week are set aside for maintenance. In addition, an annual 2 week shut down is taken for major maintenance work. This schedule gives 7,600 operating hours in a year.

#### **4.6 COAL RECEIVING**

Coal is supplied to the plants in unit trains of open gondola cars from one or more mines. Facilities are provided to unload cars during winter months under freezing conditions. Unlike the rest of the plants, coal unloading is designed to operate 2-shifts a day and 5 days a week. The shorter schedule and higher unloading rates are selected to minimize detention of rail cars at plant sites. The cars are unloaded using a rotary car dumper at a rate of 2000 st/h. The unloading section includes thawing sheds to heat frozen car loads. Rail tracks included within the battery limits are adequate to accept coal and product cars.

#### **4.7 STORAGE**

Facilities will store thirty thousand st of as received coal at the plant site. This level of on-site storage allows the production facilities to operate continuously at design rate for 5 days without any additional receipt of rail delivered coal. Silos have been selected as they represent environmentally the most acceptable method for large scale coal storage in the proximity of major settlements.

#### **4.8 CRUSHING AND GRINDING**

Raw coal is crushed and then ground to a nominal 100 mesh top size (D80= 325 mesh) for both column flotation and selective agglomeration plants. The coal is crushed to a top size of 1/2 inch ahead of the ball mills used for grinding the coal. Wet closed circuit grinding has been adopted to reduce both grinding energy consumption and generation of super fines. Super fines are difficult to dewater, tend to increase slurry viscosity, and, for column flotation, difficult to clean.

#### **4.9 COAL CLEANING PROCESSES**

Either column flotation or selective agglomeration are used to clean and enhance coal quality to the level specified for the premium CWF. Selective agglomeration includes recovery of the bridging liquid, heptane.

#### **4.10 CLEAN COAL DEWATERING, WATER CLARIFICATION AND TAILINGS HANDLING**

The circuits for clean coal and tailings dewatering and systems for water clarification use largely similar if not identical equipment for both column flotation and selective agglomeration plants.

Vacuum filters are used for filtering the clean coal. Tailings after thickening in a static thickener are dewatered using a continuous belt press.

#### **4.11 TAILINGS DISPOSAL**

The tailings after dewatering, the solid waste from the plant, are disposed off in a land fill by trucks. Depending upon site specific conditions, alternate and more economical disposal methods could be available.

#### **4.12 CWF PREPARATION**

The plant is designed to produce highly loaded CWF with minimum water content. The slurry fuel must, at the same time, exhibit a viscosity low enough for easy pumping and handling. It is expected that the slurry viscosity must be below 500 cp. to be acceptable. The highest solid loading achievable in a coal-water mixer without exceeding viscosity limits depends upon several variables. The most significant of these are: mass mean diameter of the particles, particle size distribution, particle shape, packing tendencies of the particles, type and quantity of additives and inherent coal moisture. It is well known that a 'bimodal' particle size distribution promotes high solid loading in a slurry. A bimodal particle size distribution is one with large concentrations of particles in the coarsest as well as the finest ends of the particle size distribution spectrum. Such a distribution helps pack the solids and thus improve solid loading without a significant increase in viscosity.

A series of slurry formulation tests were conducted with flotation and selective agglomeration concentrates during the program. Several tests were performed to evaluate benefits of modifying the size distribution and simulate a bimodal particle size distribution. A fine size fraction of the clean coal concentrates weighing up to 30 percent of the total was reground to sizes finer than 325 mesh and mixed back with the rest of the concentrates. The reformed concentrates with modified size distribution were slurried and tested in the laboratory to determine the improvement in the solid loading at the

permitted level of viscosity. The tests produced less than satisfactory results. Blending of even large amounts of reground fines (30 percent) with the concentrates did not improve the solid loading with Taggart and Elkhorn No. 3 CWF. With Hiawatha and Sunnyside coals this procedure brought about only a marginal improvement, from 59-60 percent solids to 61 to 63 percent (Page 13, Subtask 6.4 CWF Formulation Studies-Topical-Report).

Further, duplicating this procedure for size consist modification on an industrial scale will be complicated. It would involve, (a) an operation to separate a fine coal fraction from the concentrate slurry stream, (b) partial dewatering of the stream so separated for additional regrinding, (c) regrinding, and (d) mixing the ground product with unground concentrates. These steps entail significant capital and operating costs. Considering the poor benefits seen with laboratory scale testing, it is considered that size consist modification will not be economically viable. No provision has therefore been made in the commercial plant designs for size consist modification. Consequently, the specification for solid loading for CWF have been reduced and set at 60 percent which was found to be achievable with the use of dispersant (A-23) additives alone.

The solids in the highly loaded CWF tend to settle out. The slurry has to be modified if it has to have adequate stability for long duration storage and transportation. One procedure would be to add a stabilizer additive such as Flocon. The additive is relatively expensive. At the required dosage of approximately 800 ppm of the slurry and a price of \$ 3.50 per pound, the cost of the stabilizer alone is expected to be around \$ 8 per ton of solids in the CWF or \$0.27 per MBtu. Therefore the base design does not include stabilizers.

### **4.13 CWF STORAGE AND LOADING**

Storage facilities for the product at the plant site are provided in the form of agitated tanks with a total capacity equivalent to 2 days of production.

CWF is shipped to customers in RR tank cars. Alternately, the product may be sent to customers from the storage tanks by pipeline.

## Section 5

# Conceptual Design of CWF Plant - Column Flotation

---

A conceptual design for a commercial premium CWF production plant based on column flotation technology is presented in this section. It includes a discussion of the process design criteria and a description of the integrated facility.

## 5.1 Process Design Criteria-Column Flotation

Process design and equipment selection criteria used in the conceptual design are summarized and presented in Table 5.1.1.

With the design coal, it is expected that column flotation will achieve a heating value recovery of over 96 percent while producing specification quality clean coal. A clean coal weight recovery of approximately 90 percent will also be attained. As noted in Section 4, the plant operates 3 shifts a day and 19 shifts a week. However, there is an annual shut down for two weeks for major maintenance work. Based on this schedule, the weight recovery, and an availability of 94 percent of scheduled operating time, a design input capacity of 233 st/h (dry basis) has been calculated to produce 1.5 million st of clean coal per year (on a dry basis). If the availability is calculated on the basis of 8,760 hours (365 x 24) in a year, the selected hourly design capacity reflects an availability of 81 percent. This level of availability is considered achievable with adequate complement of standby equipment at critical locations of the plant.

Significant process and equipment design parameters such as energy for grinding, solids concentration in the flotation feed, the number and size of columns, consumption of compressed air and reagents, wash water usage, and tailings recirculation are shown in Table 5.1.1. The data are based on laboratory, bench-scale, and PDU testing.

Table 5.1.1 also provides details of process and equipment design criteria for clean coal dewatering, water clarification, tailings dewatering and handling, CWF preparation, and loading sections of the plant.

## 5.2 Facility DESCRIPTION

The commercial column flotation based CWF plant consists of the following sections:

- Raw Coal Handling - Plant 100
- Crushing and Grinding - Plant 200
- Column Flotation - Plant 300
- Clean Coal Dewatering - Plant 400
- Water Clarification and Tailings Handling - Plant 500
- CWF Preparation and Loading - Plant 600

A list of major equipment appears under Table 5.2.1.

### 5.2.1 Raw Coal Handling - Plant 100

A process flow diagram for the raw coal handling section, Plant 100, is presented in Figure 5.1. Feed coal, crushed to a top size of 2 inch, is delivered to the CWF plant in RR cars. The cars are unloaded using a car dumper. The rail car unloading system includes thawing sheds for heating the cars during the winter months when freezing conditions could be encountered. A shunting locomotive is used to position the cars over the dumper. The cars are dumped, one car at a time, into a 200 ton dump hopper. A bar grid located at the top of the dump hopper prevents large lumps of frozen coal from entering the hopper. A frozen coal crusher (lump breaker) is used to break such lumps of coal over the grid.

Two variable capacity belt feeders located below the dump hopper deliver the coal to a raw coal conveyor which transports and elevates the coal to the top of the coal silos.

The raw coal conveyor working with two silo feed conveyors fills three raw coal concrete silos. Each silo has a capacity of 10,000 st.

The raw coal handling section is rated for a capacity of 2000 st/h. It includes a comprehensive dust collection system to control emission of dust during coal dumping and conveying operations.

### 5.2.2 Crushing and Grinding - Plant 200

Figure 5.2 represents a process flow diagram for this plant section. A material balance is also shown in the figure.

This section of the plant includes two parallel and identical trains to crush and grind the coal ahead of flotation. Two variable speed belt feeders are provided below each of the coal silos for withdrawal of coal. Two crusher feed conveyors receive coal from the belt feeders. The conveyors deliver the coal to two hammer mill type crushers. The crushers are designed to crush the coal to a top size of 1/2 inch. Tramp iron magnets are included for the protection of the hammer mills. Crushed coal from the hammer mills is delivered to the ball mills by two ball mill feed conveyors. Each conveyor serves a grinding train.

Each grinding system includes a 4000 HP ball mill served by a set of three cyclone clusters for closed circuit operation. Each cyclone cluster has multiple cyclones. Coal is ground in the mills with water. The discharge slurry from each ball mill is diluted and pumped to the cyclone clusters. A distributor is used to distribute the flow equally among the cyclone clusters. Partially ground material exiting the cyclone apex (cyclone underflow) is returned to the mills for further grinding.

Cyclone overflow represents the finish ground slurry. It is sluiced to the flotation section in Plant 300.

### 5.2.3 Column Flotation - Plant 300

Figure 5.3 presents a process flow diagram and a material balance for the column flotation section, Plant 300. The following description addresses one of two parallel and identical trains of equipment included in this section.

Ground slurry from the crushing and grinding plant (Plant 200) is received in a flotation feed sump provided with a mixer (agitator). Measured amount of water is added in the sump to ensure a constant pre-set solids content in the slurry fed to the flotation columns. There are six flotation columns in a train, a total of twelve in the plant. Each flotation column has a dedicated slurry feed pump. It is complete with dedicated reagent feeders, a tailings recirculation pump, a static air-slurry mixer, and a froth launder. A common air compressor provides air to six flotation columns. Froth from each flotation train (6 flotation columns) is collected in a clean coal sump, generously sized to accommodate and break the froth. Clean coal slurry from the sump is pumped to a slurry distributor which is included in Plant 400. All clean coal pumps are provided with installed spares of equal capacity.

### 5.2.4 Clean Coal Dewatering - Plant 400

Figure 5.4 shows a process flow diagram and a material balance for this plant section.

The clean coal dewatering section consists of two identical trains like the column flotation section (Plant 300). Each train is provided with six identical and parallel vacuum filtration lines. Clean coal slurry is dewatered and a filter cake with a surface moisture content of approximately 35 percent is produced. Filter cake from each set of six filters is collected by a dewatered coal conveyor. The two dewatered coal conveyors deliver the coal to two coal- additive mixers provided under Plant 600.

The water separated by the vacuum filters, the filtrate, may contain some solids. It is therefore recirculated through the flotation plant. It is pumped to the flotation feed sumps in Plant 300. All pumps in this section (Plant 400) are also provided with installed spares.

### 5.2.5 Water Clarification and Tailings Handling - Plant 500

Figure 5.5 presents a process flow diagram and a material balance for this plant section.

Tailings from flotation columns are collected in a thickener. The tailings solids are thickened and the water is clarified with the addition of measured amounts of flocculants to the feed slurry. The thick underflow from the thickener is pumped to a tailings filter sump. Additional amounts of flocculants are mixed with the slurry in the filter sump to facilitate filtering. A continuous Andritz type belt filter is used to dewater the tailings. The filtered tailings are collected by a tailings conveyor and conveyed to a storage pile under a shed. The tailings are loaded into trucks using front-end loaders for transport and

disposal at a landfill. Clarified water from the thickener, the thickener overflow, is recirculated to the CWF preparation, flotation and grinding sections of the facility.

### 5.2.6 CWF Preparation and Loading - Plant 600

A process flow diagram and a material balance for this plant section is shown in Figure 5.6. This plant section also comprises two parallel and identical trains.

Dewatered flotation concentrates from the vacuum filters (the filter cake) is fed to two coal-additive mixers (one on each train). Here the cake is mixed intensely with the dispersant additive A-23 to obtain a good dispersal of the additive. The mixture is then fed to slurry mix tanks (one in each train) where measured amounts of water is added to obtain the desired solids content in the prepared CWF. From the slurry mix tanks, the CWF is pumped to storage tanks.

A total of four storage tanks are included with adequate capacity to hold a two day production of CWF. From the storage tanks, the CWF is pumped into RR tank cars. Alternately, the slurry fuel in the storage tanks may be pumped to nearby customers through pipe lines installed by others.

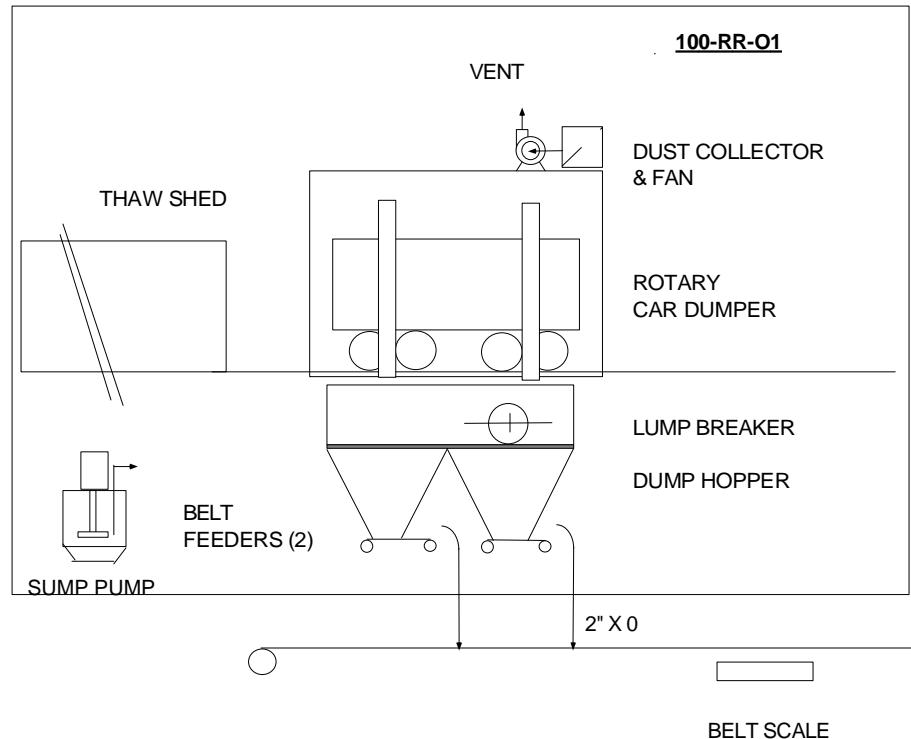
**Table 5.1.1**  
**COMMERCIAL CWF PLANT - COLUMN FLOTATION**  
**Process Design Criteria**

|                                                        |                         |                     |  |
|--------------------------------------------------------|-------------------------|---------------------|--|
| <b>I COLUMN FLOTATION PERFORMANCE</b>                  |                         |                     |  |
| Heating value (HHV) recovery                           | %                       | 96.1                |  |
| Feed ash content- dry basis                            | %                       | 7.5                 |  |
| Weight recovery                                        | %                       | 90.3                |  |
| Feed HHV- dry basis                                    | Btu/lb                  | 14,054              |  |
| Product HHV-dry basis                                  | Btu/lb                  | 14,962              |  |
| Product ash per MBtu of HHV                            | lb/MBtu                 | <2.0                |  |
| Product ash- dry basis                                 | %                       | <2.8                |  |
| <b>II OPERATING SCHEDULE</b>                           |                         |                     |  |
| Hours per shift                                        | h/shift                 | 8                   |  |
| Shifts per day                                         | shifts/day              | 3                   |  |
| Days per week                                          | days/week               | 7                   |  |
| Scheduled maintenance shifts per week                  | shifts/week             | 2                   |  |
| Scheduled operating shifts per 7 day week              | shifts/week             | 19                  |  |
| Scheduled operating weeks per year                     | weeks/y                 | 50                  |  |
| Scheduled operating hours per year                     | h/y                     | 7,600               |  |
| <b>III DESIGN HOURLY FEED RATE TO FLOTATION</b>        |                         |                     |  |
| Annual output required - dry basis                     | Million st/y            | 1.5                 |  |
| Average output per operating hour-dry basis            | st/h                    | 197                 |  |
| Plant availability based on scheduled operating hours. | %                       | 94                  |  |
| Design output capacity-dry basis                       | st/h                    | 211                 |  |
| Design weight recovery                                 | %                       | 90.3                |  |
| Plant design input capacity-dry basis                  | st/h                    | 233                 |  |
| Inherent moisture                                      | wt %                    | 2.0                 |  |
| Plant design input capacity-surface dry basis          | st/h                    | 238                 |  |
| Plant availability based on 24 h/day and 365 d/y       | %                       | 81                  |  |
| <b>IV FLOTATION FEED SLURRY PREPARATION</b>            |                         |                     |  |
| Grinding circuit configuration                         |                         | Wet, closed circuit |  |
| Ground product - nominal, 100 % passing                | mesh                    | 100                 |  |
| Size (D80)                                             | mesh                    | 325                 |  |
| Size of coal feed to grinding mills                    | in                      | 1/2                 |  |
| Specific power for grinding                            | HP/(st/h)               | 34                  |  |
| Flotation feed solids content                          | wt %                    | 6                   |  |
| <b>V FLOTATION COLUMNS</b>                             |                         |                     |  |
| Flotation feed sump -retention time                    | min                     | 1.5                 |  |
| Design clean coal flow rate-surface dry basis          | st/h                    | 215                 |  |
| Specific froth load at the column                      | (st/ft <sup>2</sup> )/h | 0.12                |  |
| Column overflow surface area required                  | ft <sup>2</sup>         | 1,792               |  |
| Selected diameter of column (largest available)        | ft                      | 14                  |  |
| Overflow area available per column                     | ft <sup>2</sup>         | 154                 |  |

**Table 5.1.1 (continued)**  
**COMMERCIAL CWF PLANT - COLUMN FLOTATION**  
**Process Design Criteria**

|                                                        |                                                            |                     |                      |
|--------------------------------------------------------|------------------------------------------------------------|---------------------|----------------------|
| <b>V FLOTATION COLUMNS (Continued)</b>                 | No of columns required                                     | unit                | 12                   |
|                                                        | Specific wash water usage- based on flotation feed         | gpm/(st/h)          | 30                   |
|                                                        | Bias Ratio                                                 | %                   | 64                   |
|                                                        | Tailings recirculation at column-based on flotation feed   | gpm/(st/h)          | 240                  |
|                                                        | Solids content of froth                                    | wt%                 | 24                   |
|                                                        | Air requirement                                            | scfm/(st/h)         | 18.3                 |
|                                                        | Frother dosage                                             | lb/st               | 0.75                 |
|                                                        | Collector dosage                                           | lb/st               | 0.75                 |
| <b>VI CLEAN COAL DEWATERING</b>                        | Equipment type                                             | wt %                | Vacuum Filter        |
|                                                        | Filter cake moisture content                               |                     |                      |
| <b>VII WATER CLARIFICATION AND TAILINGS DEWATERING</b> | Equipment type                                             | gpm/ft <sup>2</sup> | Thickener and Filter |
|                                                        | Tailings thickener -Specific thickening rate               |                     |                      |
|                                                        | Thickener under flow -surface moisture content             |                     |                      |
|                                                        | Tailings filter- type                                      | wt %                | Belt press           |
|                                                        | Moisture content of dewatered tailings, filter cake        |                     |                      |
| <b>VIII CWF PREPARATION AND LOADING</b>                | Additives:                                                 | lb /st              | A-23                 |
|                                                        | Dispersant Additive                                        |                     |                      |
|                                                        | Dispersant (Solid) dosage per dry ton of coal              |                     |                      |
|                                                        | Water content of solution                                  |                     |                      |
|                                                        | Stabilizer                                                 | h                   | Not used             |
|                                                        | Storage capacity for CWF at site at normal production rate |                     |                      |
|                                                        | Type of storage                                            |                     |                      |
|                                                        | Rail car loading rate:                                     |                     |                      |
| CWF                                                    |                                                            | gpm                 | 3,000                |
|                                                        | Coal on a dry basis                                        |                     |                      |
|                                                        |                                                            | st/h                | 500                  |

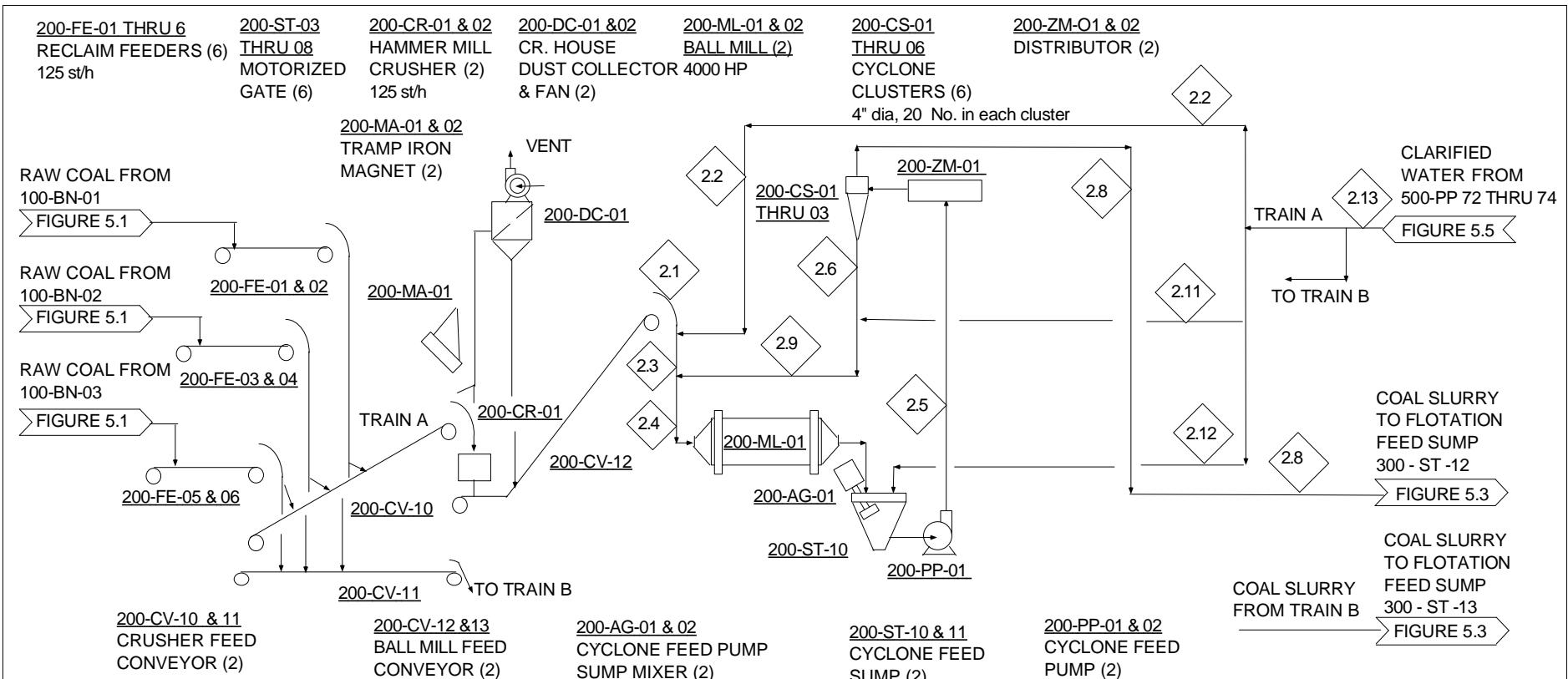
**Table 5.2.1**  
**COMMERCIAL CWF PLANT- COLUMN FLOTATION**  
**Major Equipment List**


| Equipment I.D |               | Qty | Title                                 | Description                                                                                                                                                                                                                         | Power- ea. HP | Total installed HP |
|---------------|---------------|-----|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|
| 100           | BN-01 thru 03 | 3   | Raw coal silos, No. 1, 2, and 3       | 10,000 st (ea.), 70 ft dia x 150 ft ht                                                                                                                                                                                              |               |                    |
| 100           | CV-01         | 1   | Raw coal conveyor                     | 2000 st/h, 60 in wide x 750 ft lg., 220 ft lift, 500 fpm, with belt scale                                                                                                                                                           | 600           | 600                |
| 100           | CV-02         | 1   | Silo feed conveyor No. 1              | 2000 st/h, 60 in wide x 80 ft lg., 10 ft lift, 500 fpm                                                                                                                                                                              | 50            | 50                 |
| 100           | CV-03         | 1   | Silo feed conveyor No. 2              | 2000 st/h, 60 in wide x 80 ft lg., no lift, 500 fpm                                                                                                                                                                                 | 50            | 50                 |
| 100           | DC-01 thru 03 | 3   | Silo top dust collector with fan      | 7000 cfm, filtering area 1200 sq. ft including fan                                                                                                                                                                                  | 40            | 120                |
| 100           | RR-01         | Lot | Rail car unloading system             | For 2000 st/h unloading rate including rotary car dumper, shunting locomotive, 200 st dump hopper, grizzly, frozen coal crusher, thawing shed, dust collection, raw coal conveyor tunnel, sump pump, feeders, rail track of 2 miles | 700           | 700                |
| 100           | ST-01 & 02    | 2   | Motorized gate                        | Capacity- 2000 st/h                                                                                                                                                                                                                 | 10            | 20                 |
| 200           | AG-01 & 02    | 2   | Cyclone feed pump sump mixers         | For Cyclone feed sump                                                                                                                                                                                                               | 15            | 30                 |
| 200           | CN-01         | 1   | Mill house crane                      | 30 t main hook, 5 ton aux                                                                                                                                                                                                           | 75            | 75                 |
| 200           | CR-01 & 02    | 2   | Hammer mill crusher                   | 125 st/h, feed size 2" x 0 and product 1/2" x 0                                                                                                                                                                                     | 300           | 600                |
| 200           | CS-01 thru 06 | 6   | Cyclone cluster                       | Flow 1200 gpm/cluster-20 no. of 4 in cyclones per cluster                                                                                                                                                                           |               |                    |
| 200           | CV-10 & 11    | 2   | Crusher feed conveyor                 | 125 st/h, 30 in wide x 300 ft lg., 25 ft lift, 350 fpm, with belt scale                                                                                                                                                             | 15            | 30                 |
| 200           | CV-12 & 13    | 2   | Ball mill feed conveyor               | 125 st/h, 30 in wide x 100 ft lg., 25 ft lift, 350 fpm                                                                                                                                                                              | 15            | 30                 |
| 200           | DC-10 & 11    | 2   | Crusher house dust collector with fan |                                                                                                                                                                                                                                     | 50            | 100                |
| 200           | FE-01 thru 06 | 6   | Reclaim feeder                        | 125 st/h, 36 in wide x 40 ft lg., 75 fpm, (max.) variable speed drive                                                                                                                                                               | 10            | 60                 |
| 200           | MA-01 & 02    | 2   | Tramp iron magnet                     | 125 st/h, 36 in belt                                                                                                                                                                                                                | 10            | 20                 |
| 200           | ML-01 & 02    | 2   | Ball mill                             | 125 st/h, 14.5 ft dia x 29 ft                                                                                                                                                                                                       | 4000          | 8000               |
| 200           | PP-01 thru 04 | 4   | Cyclone feed pump                     | Horizontal slurry pump, flow 3500 gpm, sp gr 1.2, TDH 130 ft, 2 operating and 2 spare                                                                                                                                               | 225           | 900                |

**Table 5.2.1**  
**COMMERCIAL CWF PLANT- COLUMN FLOTATION**  
**Major Equipment List (continued)**

| Equipment<br>I.D |               | Qty | Title                         | Description                                                                 | Power-<br>ea.<br>HP | Total<br>installed<br>HP |
|------------------|---------------|-----|-------------------------------|-----------------------------------------------------------------------------|---------------------|--------------------------|
| 200              | ST-03 thru 8  | 6   | Motorized gate                | Capacity- 125 st/h                                                          | 5                   | 30                       |
| 200              | ST-10 & 11    | 2   | Cyclone feed sump             | 7000 gal capacity (2 min.)-14ft dia x 15 ft ht, conical                     |                     |                          |
| 200              | ZM-01 & 02    | 2   | Distributor                   | 3 way-3500 gpm                                                              | 5                   | 10                       |
| 300              | AG-03 & 04    | 2   | Flotation feed sump mixer     |                                                                             | 30                  | 60                       |
| 300              | CP-01 & 02    | 2   | Air compressor                | 2250 SCFM, 125 psig with air receiver                                       | 400                 | 800                      |
| 300              | FT-01 thru 12 | 12  | Column flotation unit         | 14 ft dia, Micro cell or equal                                              |                     |                          |
| 300              | PP-05 thru 16 | 12  | Flotation feed pump           | Horizontal slurry pump, flow 1100 gpm, sp gr 1.02, TDH 65 ft                | 30                  | 360                      |
| 300              | PP-17 thru 28 | 12  | Recirculation pump            | Horizontal slurry pump, flow 5,000 gpm, sp gr 1.02, TDH 65 ft (14 x 12 Ash) | 150                 | 1800                     |
| 300              | PP-29 thru 32 | 4   | Clean coal pump               | Horizontal slurry pump, flow 2200 gpm, sp gr 1.02, TDH 65 ft (6 x 5 Ash)    | 60                  | 240                      |
| 300              | PP-33 thru 44 | 12  | Frother dosing pump           | Variable speed peristaltic pump (Omega FPU258 or equal)                     | 0.25                | 3                        |
| 300              | PP-45 thru 56 | 12  | Collector dosing pump         | Variable speed peristaltic pump (Omega FPU258 or equal)                     | 0.25                | 3                        |
| 300              | ST-12 & 13    | 2   | Flotation feed sump           | 17500 gal capacity (2.3 min.)-14 ft dia x 16 ft (Cylindrical)               |                     |                          |
| 300              | ST-16 & 17    | 2   | Clean coal sump               | 17500 gal capacity (5 min.-froth factor 3)-14 ft dia x 16 ft ht Cylindrical |                     |                          |
| 300              | ST-20 & 21    | 2   | Frother storage drum          | At 1.5 lb/st, 200 h, 460 ft3, 6.7 ft dia, 12 ft long, 3 st wt each          |                     |                          |
| 300              | ST-22 & 23    | 2   | Collector storage drum        | At 1.5 lb/st, 200 h, 460 ft3, 6.7 ft dia, 12 ft long, 3 st wt each          |                     |                          |
| 400              | CV-15         | 2   | Coal solid conveyor           | Capacity 130 st/h-24 in wide, 125 st/h, 30 ft lift,                         | 5                   | 10                       |
| 400              | FT-10 thru 15 | 6   | Filtration systems            | Capacity 40 st/h - vacuum filter systems                                    | 700                 | 4200                     |
| 400              | PP-62 & 65    | 4   | Filtrate pump                 | Flow 2500 gpm, TDH 30 ft, 2-Operating and 2- Spare                          | 30                  | 120                      |
| 400              | ST-26 & 27    | 2   | Filtrate sump                 | Capacity- 5000 gal                                                          |                     |                          |
| 400              | ZM-05 & 06    | 2   | Slurry distributor            | Capacity-3000 gpm                                                           | 10                  | 20                       |
| 500              | AG-09         | 1   | Tailings filter sump agitator | Capacity of sump - 1000 gal                                                 | 10                  | 10                       |

**Table 5.2.1**  
**COMMERCIAL CWF PLANT- COLUMN FLOTATION**  
**Major Equipment List (continued)**


|                                                             |                                                                        |                                                                    |                                                               |                                                               |                                                                        |
|-------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|
| <u>100-RR-01</u><br>RAIL CAR UNLOADING SYSTEM<br>2,000 stph | <u>100-CV-01</u><br>RAW COAL CONVEYOR<br>WITH BELT SCALE<br>2,000 st/h | <u>100-BN-01 THRU O3</u><br>RAW COAL SILOS (3)<br>10,000 st (each) | <u>100-ST-01 &amp; 02</u><br>MOTORIZED GATE (2)<br>2,000 st/h | <u>100-CV-02 &amp; 03</u><br>SILO FEED CONVEYOR<br>2,000 st/h | <u>100-DC-01 THRU 03</u><br>SILO TOP<br>DUST COLLECTOR<br>WITH FAN (3) |
|-------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|



## PREMIUM CWF PRODUCTION

PLANT 100: RAW COAL  
HANDLING  
PROCESS FLOW DIAGRAM

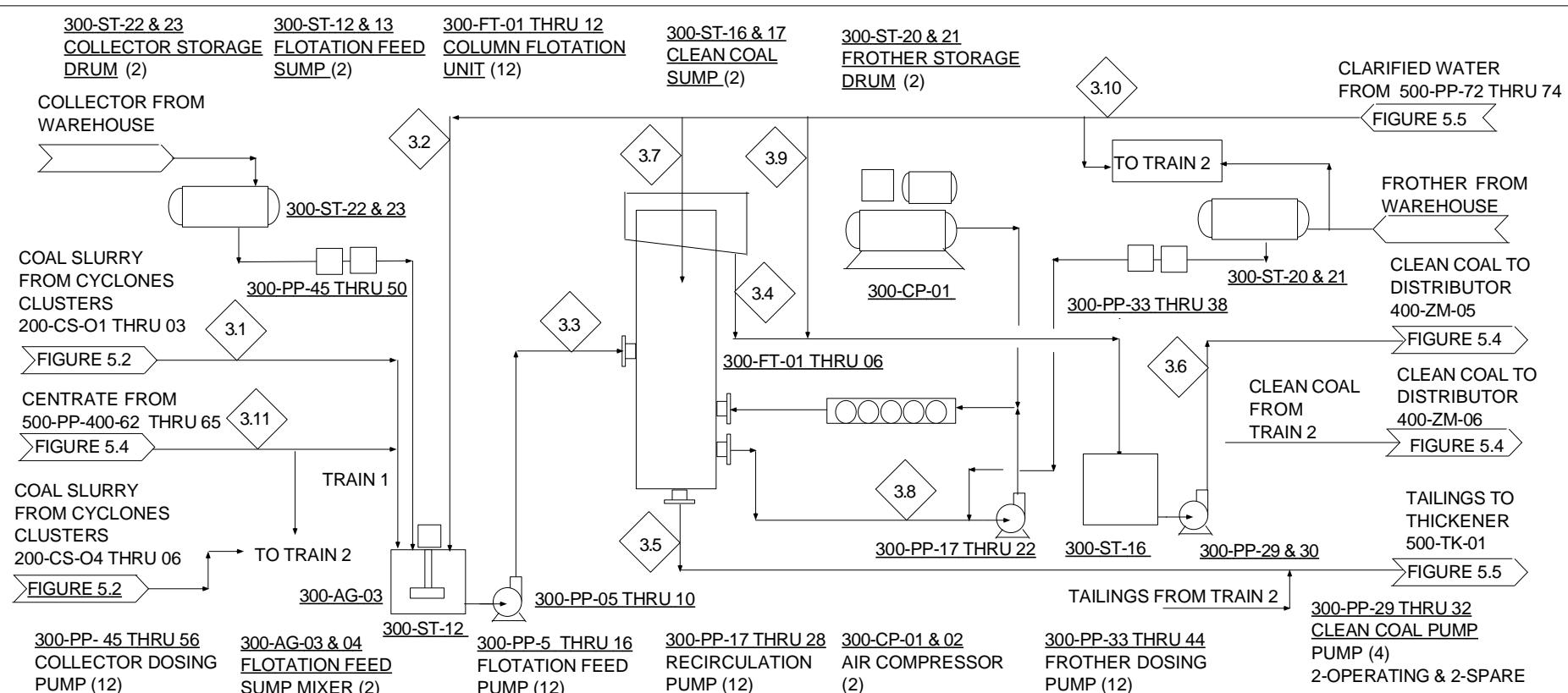
FIGURE 5.1



## Plant 200: Crushing and Grinding

## Material Balance

**Flow quantities are total for two trains**


| Stream Number                   | 2.1       | 2.2                       | 2.3      | 2.4                | 2.5             | 2.6            | 2.7      | 2.8            | 2.9             | 2.10     | 2.11                  | 2.12                       | 2.13               |
|---------------------------------|-----------|---------------------------|----------|--------------------|-----------------|----------------|----------|----------------|-----------------|----------|-----------------------|----------------------------|--------------------|
| Stream Name                     | Feed coal | Water Addition at B' Mill | 2.1 +2.2 | Feed to Ball Mills | Feed to Cyclone | Cyclone U'flow | Not Used | Cyclone O'flow | Recycle to Mill | Not Used | Water to Cycl. U'flow | Water to Cyclone Feed Sump | Water to Plant 200 |
| Coal -Surface Dry Free Moisture | st/h gpm  | 238 75                    | 560      | 238 635            | 357 1,211       | 357 5,971      | 119 476  | 238 5,495      | 119 576.0       |          | 100                   | 4,760                      | 5,420              |
| Total Flow                      | gpm       | 807                       | 560      | 1,367              | 2,309           | 7,069          | 842      | 6,227          | 942             |          | 100                   | 4,760                      | 5,420              |
| Total Free Moisture             | wt%       | 7.30                      |          | 40                 | 46              | 81             | 50       | 85             | 55              |          |                       |                            |                    |

## COLUMN FLOTATION

# PLANT 200: CRUSHING AND GRINDING PROCESS FLOW DIAGRAM

**NOTE:**  
**ONE OF TWO IDENTICAL TRAINS OF EQUIPMENT SHOWN**

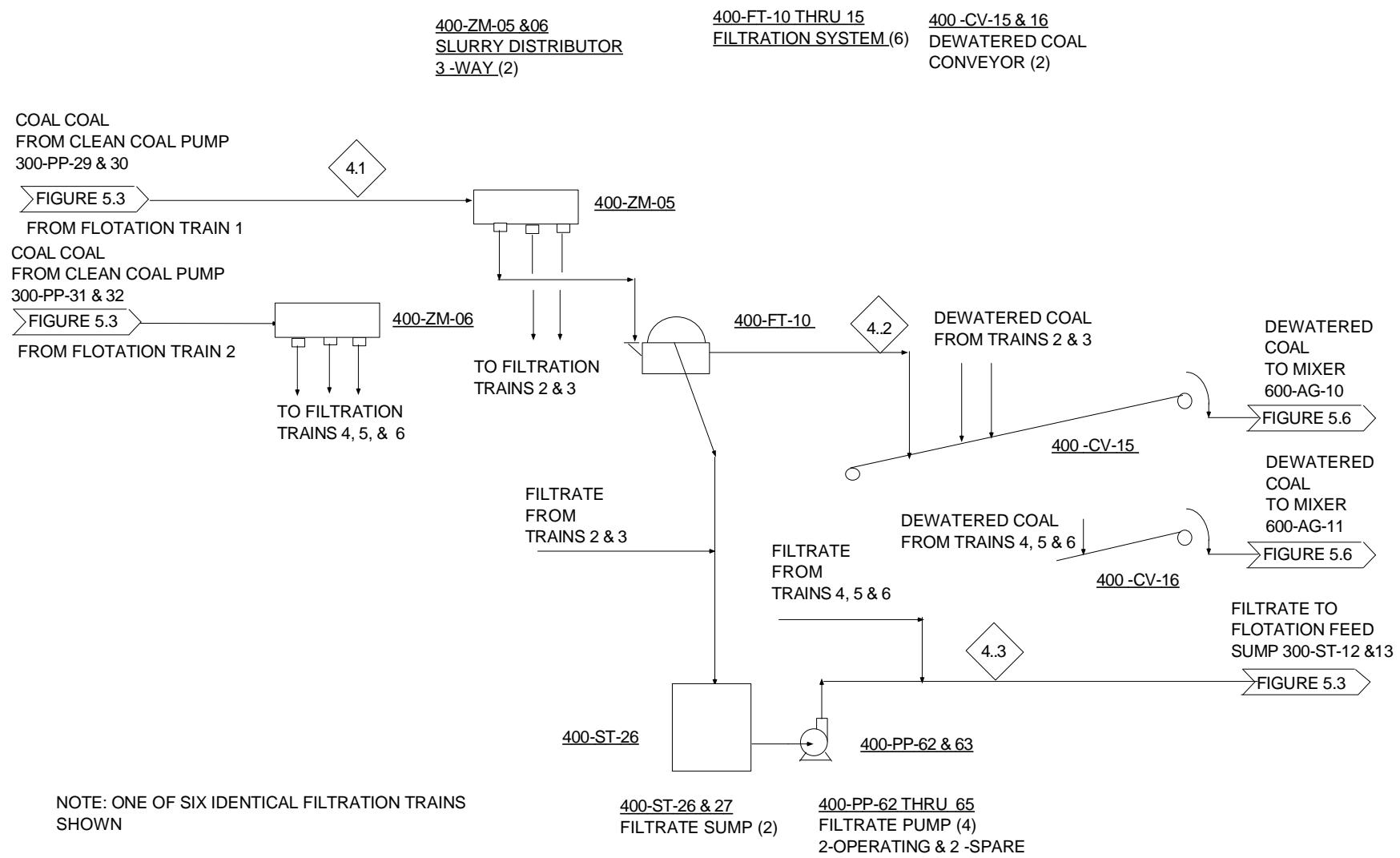
## FIGURE 5.2



## Plant 300: Column Flotation

## Material Balance

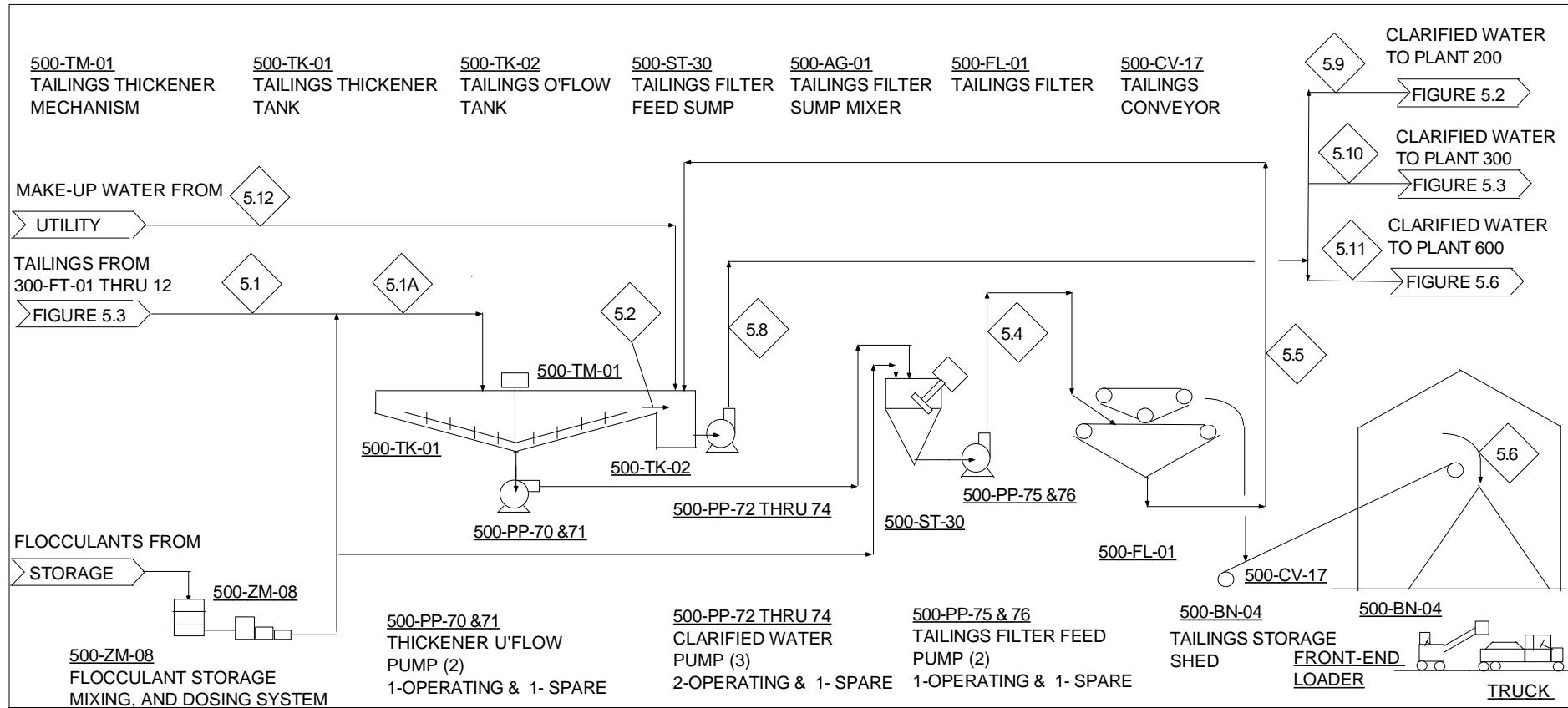
**Flow quantities are total for two trains**


| Stream Number       | 3.1               | 3.2               | 3.3               | 3.4    | 3.5      | 3.6           | 3.7           | 3.8                 | 3.9             | 3.10                  | 3.11     |
|---------------------|-------------------|-------------------|-------------------|--------|----------|---------------|---------------|---------------------|-----------------|-----------------------|----------|
| Stream Name         | Cyclone<br>U'flow | Dilution<br>Water | Flotation<br>Feed | Froth  | Tailings | Clean<br>Coal | Wash<br>Water | Tailings<br>Recycle | Froth<br>Sprays | Water to<br>Flotation | Filtrate |
| Coal -Surface Dry   | st/h              | 238               |                   | 238    | 215      | 23            | 215           |                     | 69              |                       |          |
| Free Moisture       | gpm               | 5,495             | 9,420             | 14,915 | 2,722    | 19,290        | 3,439         | 7,098               | 57,420          | 716                   | 14,259   |
| Total Flow          | gpm               | 6,227             | 9,420             | 15,647 | 3,384    | 19,361        | 4,100         | 7,098               | 57,631          | 716                   | 14,259   |
| Total Free Moisture | wt%               | 85                |                   | 94     | 76       | 100           | 80            |                     | 99              |                       | 100.0    |

## COLUMN FLOTATION

NOTE: ONE OF TWO IDENTICAL TRAINS OF EQUIPMENT SHOWN

# PLANT 300: COLUMN FLOTATION PROCESS FLOW DIAGRAM

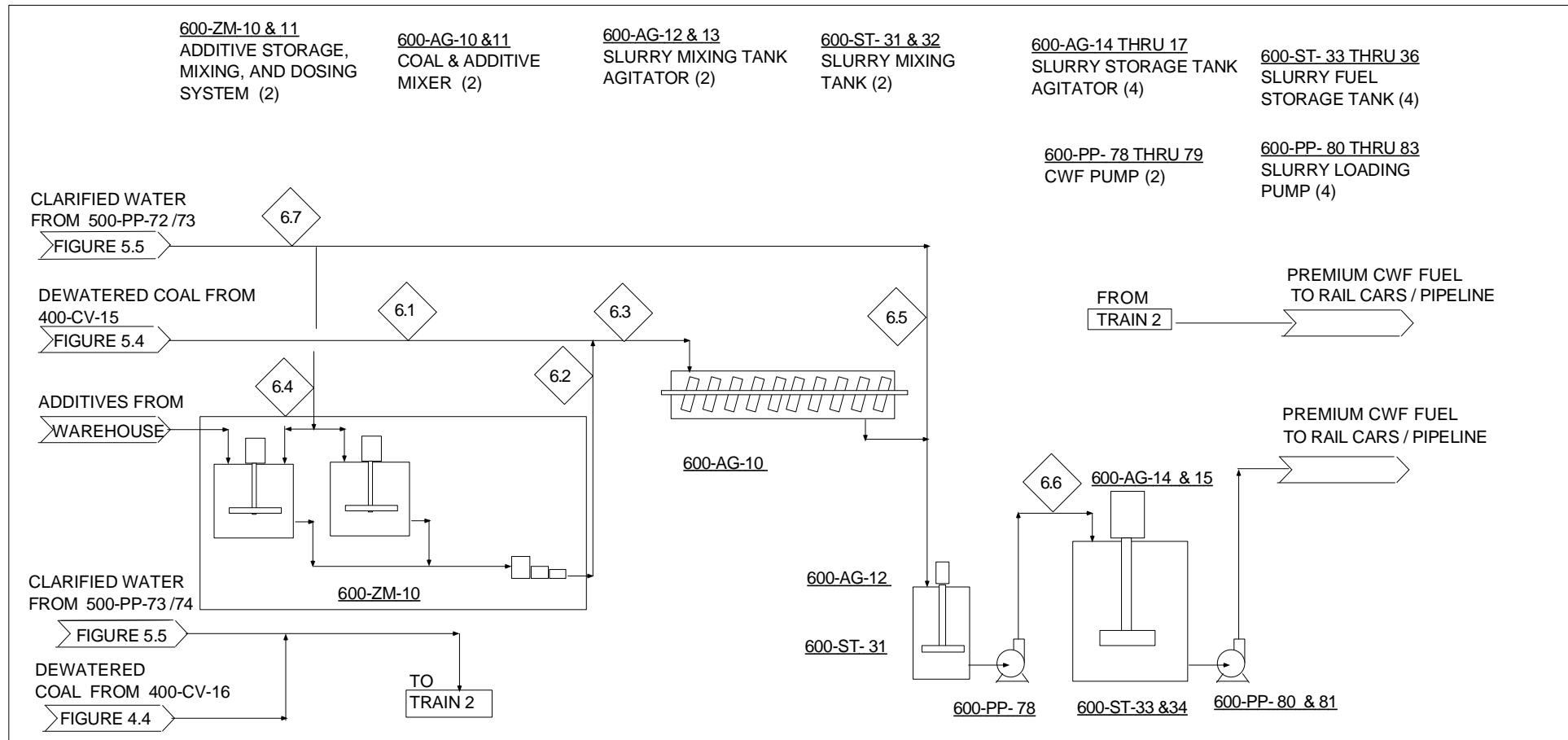

### FIGURE 5.3



| Plant 400: Clean Coal Dewatering          |      | Material Balance |             |                     |
|-------------------------------------------|------|------------------|-------------|---------------------|
| Flow quantities are total for all trains. |      | 4.1              | 4.2         | 4.3                 |
| Stream Number                             |      | Filter Feed      | Filter Cake | Clean Coal Filtrate |
| Stream Name                               |      |                  |             |                     |
| Coal -Surface Dry Free Moisture           | st/h | 215              | 215         | 2,976               |
| Total Flow                                | gpm  | 3,439            | 463         | 2,976               |
| Total Free Moisture                       | gpm  | 4,100            | 1,124       | 2,976               |
| Total Free Moisture                       | wt%  | 80               | 35          | 100                 |

**COLUMN FLOTATION**  
**PLANT 400: CLEAN COAL DEWATERING PROCESS FLOW DIAGRAM**

**FIGURE 5.4**




| Plant 500: Water Clarification and Tailings Handling |      |          |                    |                  |                  |                      |                   |               |          |                 |                    |                    | Material Balance   |                           |  |  |
|------------------------------------------------------|------|----------|--------------------|------------------|------------------|----------------------|-------------------|---------------|----------|-----------------|--------------------|--------------------|--------------------|---------------------------|--|--|
| Stream Number                                        |      | 5.1      | 5.1A               | 5.2              | 5.3              | 5.4                  | 5.5               | 5.6           | 5.7      | 5.8             | 5.9                | 5.10               | 5.11               | 5.12                      |  |  |
| Stream Name                                          |      | Tailings | Feed to Thick-ener | Thickener O'flow | Thickener U'flow | Tailings Filter Feed | Tailings Filtrate | Tailings Cake | Not used | Clarified Water | Water to Plant 200 | Water to Plant 300 | Water to Plant 600 | Total Plant Make-up Water |  |  |
| Coal -Surface Dry                                    | st/h | 23       | 23                 | 19,013           | 23               | 23                   | 23                | 23            |          | 19,760          | 5,420              | 14,259             | 82                 | 531                       |  |  |
| Free Moisture                                        | gpm  | 19,290   | 19,290             | 19,361           | 277              | 277                  | 215               | 62            |          | 19,760          | 5,420              | 14,259             | 82                 | 531                       |  |  |
| Total Flow                                           | gpm  | 19,361   | 19,361             | 19,013           | 348              | 348                  | 215               | 133           |          | 19,760          | 5,420              | 14,259             | 82                 | 531                       |  |  |
| Total Free Moisture                                  | wt%  | 100      | 100                |                  | 75               | 75                   | 40                |               |          |                 |                    |                    |                    |                           |  |  |

### COLUMN FLOTATION

### PLANT 500: WATER CLARIFICATION AND TAILINGS HANDLING PROCESS FLOW DIAGRAM

FIGURE 5.5



### Plant 600: CWF Preparation & Loading

Flow quantities are total for all trains

### Material Balance

| Stream Number          | 6.1             | 6.2      | 6.3                         | 6.4                       | 6.5            | 6.6                | 6.7                 | COLUMN FLOTATION                                            |
|------------------------|-----------------|----------|-----------------------------|---------------------------|----------------|--------------------|---------------------|-------------------------------------------------------------|
| Stream Name            | De-watered Coal | Additive | Feed to Coal/additive Mixer | Water in Additive Mixture | Water Addition | Premium Fuel (CWF) | Water for Plant 600 | PLANT 600: CWF PREPARATION AND LOADING PROCESS FLOW DIAGRAM |
| Coal -Dry              | st/h            | 210      |                             | 210                       |                | 210                |                     |                                                             |
| Coal -Surface Dry      | st/h            | 215      |                             | 215                       |                | 215                |                     |                                                             |
| Free Moisture          | gpm             | 462      | 5                           | 467                       | 5              | 544                | 81                  |                                                             |
| Total Flow -           | gpm             | 1,122    | 5                           | 1,127                     | 5              | 1,204              | 81                  |                                                             |
| Total Free Moisture    | wt%             | 35       |                             | 35                        |                | 39                 |                     |                                                             |
| Solid Additive         | st/h            |          | 1.05                        | 1.05                      |                | 1.05               |                     |                                                             |
| Total Moisture Content | wt%             |          |                             |                           |                | 40                 |                     |                                                             |

FIGURE 5.6

## Section 6

# Conceptual Design of CWF Plant - Selective Agglomeration

---

A conceptual design for a commercial plant based on selective agglomeration technology for the production of premium CWF is presented in this section. A discussion of the process design criteria and a description of the integrated facility are also included.

## 6.1 PROCESS DESIGN CRITERIA-SELECTIVE AGGLOMERATION

The laboratory, bench-scale, and PDU testing conducted earlier form the bases for process design and equipment selection criteria used in the conceptual design. These are summarized in Table 6.1.1.

With the design coal, it is expected that selective agglomeration will achieve a heating value recovery of 99 percent while producing specification quality clean coal. A clean coal weight recovery of 93 percent will be achieved. As noted in Section 4, the plant operates 3 shifts a day and 19 shifts of the week. There is an annual shut down for two weeks for major maintenance work. Based on the schedule, the weight recovery, and an availability of 91 percent of scheduled operating time, a design input capacity of 233 st/h (dry basis) has been calculated to produce 1.5 million st of clean coal on a dry basis. If the availability is calculated on the basis of a total of 8,760 hours (365 x 24) in a year, the selected hourly design capacity reflects an availability of 79 percent. This level of availability is considered achievable with multiple (10 trains) and adequate complement of standby equipment at critical locations of the plant. Scale-up issues were considered in deciding the capacity and total number of trains used.

Significant process and equipment design parameters such as energy for grinding, solids concentration of the agglomeration feed, retention times for agglomeration, the number and stages of agglomeration, consumption of power for agglomeration, and the criteria for the heptane recovery circuit are shown in Table 6.1.1. The table also provides details of process and equipment design criteria for clean coal dewatering, water clarification, tailings dewatering and handling, CWF preparation, and loading sections of the plant.

Operating experience and recent analysis of test data from the PDU indicate certain potential improvements to agglomeration plant design and criteria. These are presented below for the benefit of future plant designs.

**Froth Skimmer Design:** A slender column with a relatively small cross section area would be more effective than the 5 feet diameter unit used in the 2 t/h PDU. Such an unit will allow improved nitrogen dispersion across the column and provide higher solids/area ratio for the froth layer.

**Screen spray/wash water:** Recent experience would indicate a spray water rate of 8.3 gpm per ton per hour of clean coal agglomerates.

**Solid Concentration in Low Shear Reactor:** For some coals, a solid concentration of 8 percent combined with a retention time of 2 minutes improved product quality at the same level of energy recovery. The concept designs are based on a solids concentration of 10 percent and a retention time of 3 minutes.

**Grind Size:** Tests indicate that, for the same low ash content product, a finer coal grind is often needed with the Selective Agglomeration Process as compared to Column Flotation. Selective agglomeration tends to place coal particles aggressively in the clean coal. As a result, even particles with minor coal surface are collected as clean coal. Such behavior of the process dilutes product quality and creates a need for finer grinding and better liberation of the feed.

### 6.2 FACILITY DESCRIPTION

The commercial CWF plant based on selective agglomeration consists of the following sections:

- Raw Coal Handling - Plant 100
- Crushing and Grinding - Plant 200
- Selective Agglomeration - Plant 350
- Clean Coal Dewatering - Plant 400
- Water Clarification and Tailings Handling - Plant 600
- CWF Preparation and Loading - Plant 600

A list of major equipment is provided under Table 6.2.1

#### 6.2.1 Raw Coal Handling - Plant 100

A process flow diagram for the raw coal handling section, Plant 100, is presented in Figure 6.1. It is identical to the raw coal handling section described under Section 5.2.1 for the plant based on column flotation.

Raw coal, pre-crushed to a top size of 2 inch, is delivered to the CWF plant in RR cars. The cars are unloaded using a car dumper. The rail car unloading system includes thawing sheds for heating the cars during the winter months when freezing conditions could be encountered. A shunting locomotive is used to position the cars over the dumper. The cars are dumped, one car at a time, into a 200 ton dump hopper. A bar grid located at the top of the dump hopper prevents large lumps of frozen coal from entering the hopper. A frozen coal crusher is used to break such lumps of coal over the grid.

Two variable capacity belt feeders located below the dump hopper deliver the coal to a raw coal conveyor which transports and elevates the coal to the top of the coal silos.

The raw coal conveyor working with two silo feed conveyors fills three raw coal concrete silos. Each silo has a capacity of 10,000 st.

The raw coal handling section is rated for a capacity of 2000 st/h. It includes a comprehensive dust collection system to control emission of dust during coal dumping and conveying operations.

### 6.2.2 Crushing and Grinding - Plant 200

Figure 6.2 represents a process flow diagram for this plant section. A material and heat balance is shown in Table 6.2.2. This plant section is similar to the one provided for the plant based on column flotation and described in Section 5.2.2.

The crushing and grinding section includes two parallel and identical trains to crush and grind the coal ahead of selective agglomeration. Two variable speed belt feeders are provided below each of the coal silos for withdrawal of coal. Two crusher feed conveyors receive coal from the belt feeders. The conveyors deliver the coal to two hammer mill type crushers. The crushers are designed to crush the coal to a top size of 1/2 inch. Tramp iron magnets are included for the protection of the hammer mills. Crushed coal from the hammer mills is delivered to the ball mills by two ball mill feed conveyors. Each conveyor serves a grinding system.

Each grinding system includes a 4000 HP ball mill served by a set of three cyclone clusters for closed circuit operation. Each cyclone cluster has multiple cyclones. Coal is ground in the mills with water. The discharge slurry from each ball mill is diluted and pumped to the cyclone clusters. A distributor is used to distribute the flow equally among the cyclone clusters. Partially ground material exiting the cyclone apex (cyclone underflow) is returned to the mills for further grinding.

The over flow from cyclones represents the ground slurry. The solids content of the slurry is controlled at a preset value of approximately 15 percent by the addition of water. The slurry is sluiced to the selective agglomeration section, Plant 350.

### 6.2.3 Selective Agglomeration - Plant 350

Sheets 1 through 5 of Figure 6.3 represent process flow diagrams for the selective agglomeration section, Plant 350. Material and heat balances are shown in Table 6.2.3.

Ground slurry from each of the two trains of the crushing and grinding plant (Plant 200) is received in a 5-way distributor. Each of the two distributors splits the feed slurry equally to 5 agglomeration trains. The ten parallel agglomeration trains included in the section are identical except for some equipment which are shared by two trains. Such shared equipment are clearly identified in the equipment list and process flow diagrams. The following description addresses one of the agglomeration trains.

**Production of Agglomerates** Feed coal slurry from the distributor is received in the agglomeration feed tank. The slurry is then pumped to a high shear reactor (HSR) vessel. A measured stream of heptane from a metering pump joins the feed coal slurry ahead of the HSR vessel. Under conditions of the intense agitation in HSR vessel created by the impeller a phase inversion takes place. Micro agglomerates of ultra-clean coal are formed. Particles of hydrophobic coal coalesce as agglomerates with heptane acting as the bridging liquid. Hydrophilic particles of mineral matter (the tailings) remain dispersed in

water as discrete particles. The slurry with the micro agglomerates overflows from the HSR vessel and flows through a set of two low shear reactor (LSR) vessels. The vessels are arranged in series. A measured amount of water is added in the first LSR vessel to dilute the slurry. In the LSR vessel the micro agglomerates grow to approximately 3 mm in diameter, under relatively gentle agitation conditions. The slurry from the second LSR vessel overflows to a vibrating screen. Here the agglomerates are separated from the slurry which is laden with non-coal mineral matter. The agglomerates are sprayed with water on the screen deck to help remove tailings adhering to the agglomerates. The screened agglomerates are now ready for the heptane stripping.

The underflow from the screen, which is essentially water laden with mineral matter (tailings) flow into a froth skimmer tank with a conical bottom. The tank is provided with a rotating froth skimmer at the top. The tendency of coal agglomerates to float in water is used in this tank to capture any misplaced coal present in the tailings as part of the screen under flow. The floating coal agglomerates in the tank are skimmed and directed to the main agglomerate stream from the vibrating screen. Heated clarified water is used as push water in the launder for the floats.

The slurry from the bottom of the froth skimmer tank, the tailings, are pumped to a sampling pot. At the sampling pot a constant stream of purge nitrogen is passed through the slurry. A hydrocarbon detector constantly scans the nitrogen exiting the sampling pot for the presence of heptane. If no heptane is detected, the tailings stream is directed to a tailings thickener included in Plant 500. When the presence of heptane is detected, the tailings slurry is directed to a slop tank instead of the tailings thickener.

The slop tank serves as a holding vessel for off grade slurries and spills that could contain heptane. Periodically, the contents of the tank are heated with steam to vaporize the heptane and render the slurry heptane free. The processed slurry is sent to the tailings thickener.

**Heptane Stripping** Heptane in the coal agglomerates is vaporized and recovered during the heptane stripping operation. It is vaporized in two stages to enhance recovery of heptane.

The screened agglomerates and the material from the froth skimmer are collected in a steam stripper feed drum. The contents of the drum are diluted by the addition of heated clarified water to a pumpable consistency and pumped to the first stage steam stripper, steam stripper A. In this vessel which is provided with an agitator, the slurry is heated by steam from the second stage steam stripper (steam stripper B) to a temperature of approximately 225 degrees F. The vessel is maintained at a pressure of 1 to 3 psig. Close to the entire quantity (99%) of heptane in the agglomerates and some water are vaporized. The slurry in stripper A is then pumped to steam stripper B which is maintained at a higher pressure of 5 to 10 psig for the removal of last traces of heptane in the agglomerates. Steam at a pressure of 20 psig is sparged through the contents of steam stripper B to elevate slurry temperature and vaporize heptane and water. Vapors from steam stripper B are passed through steam stripper A. The vapors raises slurry temperature and vaporizes heptane with water in steam stripper A.

Vapors from steam stripper A are condensed in an air cooler. The condensed liquids, water and heptane, are further cooled to a temperature of 80° F in a heat exchanger. Cooling is done with chilled water. The cooled liquids gravitate to an oil/water separator where the two liquids are separated using gravity. Liquid heptane from the separator is sent to a heptane drum for reuse. Metering pumps deliver heptane from the drum back to the feed end of the agglomeration section.

Water from the oil/water separator is passed through activated carbon in a carbon drum and used again for steam raising.

Approximately 220,000 lb. per hour of steam at a pressure of 20 psig will be required for the heptane stripping operation. This amount of relatively low pressure steam is produced most economically in a local power station (It is assumed that a power station will be in the vicinity to produce and sell steam to the CWF plant).

After heptane stripping, the hot clean coal slurry from steam stripper B is cooled in two stages. In the first stage of cooling, clarified recycle water is used for cooling. The heated clarified water is used in the system to dilute and pre-heat the slurry in the steam stripper feed drum. It is also used as a push water in the froth skimmer. Thus a significant amount of heat in the hot clean coal slurry is recycled. In the second stage of cooling, the clean coal slurry is cooled using pond water. Cooled clean coal slurry at 80° F is piped to slurry distributors in the clean coal dewatering section, Plant 400.

**Gas Blanketing System** All vessels in this plant section which could contain heptane are connected to a nitrogen gas blanketing system which is constantly maintained at a positive pressure of 3 to 6 inches of water. The gas blanket prevents ingress of atmospheric air into the vessels where it could form a flammable mixture with heptane vapors. A gas holder forms part of the nitrogen blanketing system. It helps maintain a constant positive pressure in the system. By increasing or decreasing the hold up, the variable volume gas holder accommodates volume changes in the blanketing system due to temperature changes and variations in the void volumes of vessels. Should nitrogen

be lost from the system for any reason it will be indicated by a low level in the gas holder. In such an instance the losses are made-up by drawing gas from a liquid nitrogen package.

The liquid nitrogen package also provides gas for purging vessels and displace all air in them at the start of operations.

During occasions of excessive build up of nitrogen in the system indicated by a high level in the gas holder, the surplus gas is flared off.

The plant is also provided with a relief vent system. This system will kick-in if pressure in side any vessels should exceed pre-set value.

Building areas handling heptane are provided with heptane vapor detectors that are connected to dedicated ventilation fans. Should heptane vapors be detected due to a spill, the ventilation fans are activated immediately to thoroughly ventilate the area and render it safe. A comprehensive fire prevention and protection system is also included.

Cooling water supply for the plant is from two on-site lined ponds. The closed cooling water circuit will use atmospheric cooling and evaporation to maintain required water temperatures. In addition, a chiller is used to provide refrigerated cooling water during summer months for use in cooling circuits which need cooling water at 50° F.

### 6.2.4 Clean Coal Dewatering - Plant 400

Figure 6.4 shows a process flow diagram for this plant section. A material and heat balance is given in Table 6.2.4. This section is very similar to the one described in Section 5.2.4 under Design of CWF Plant - Column Flotation.

The clean coal dewatering section consists of two identical trains. Each train is provided with six parallel vacuum filtration lines. Clean coal slurry is dewatered and a filter cake with a moisture content of approximately 37 percent (35 percent surface moisture) is produced. Filter cake from each set of six filters is collected by a dewatered coal conveyor. The two dewatered coal conveyors deliver the coal to two coal- additive mixers provided under Plant 600.

The water separated by the vacuum filters, the filtrate, may contain some solids. It is therefore pumped to the tailings thickener. Coal solids in the filtrate, if any, tends to float in the thickener. These are removed periodically.

All pumps in this section are provided with installed spares.

### 6.2.5 Water Clarification and Tailings Handling - Plant 500

Figure 6.5 presents a process flow diagram for this plant section. A material and heat balance appears in Table 6.2.5. This plant section is similar to the one described in Section 5.2.5 for plant design based on column flotation.

Tailings slurry from selective agglomeration are collected in a thickener. The tailings (solids) are thickened and the water is clarified with the addition of measured amounts of flocculants to the feed slurry. The thick underflow from the thickener is pumped to a tailings filter sump. Additional amounts of flocculants are mixed with the slurry in the

filter sump to facilitate filtering. A continuous Andritz type belt filter is used to dewater the tailings.

The filtered tailings are collected by a tailings conveyor and conveyed to a storage pile under a shed. The tailings are loaded into trucks using front-end loaders for transport and disposal at a landfill.

Clarified water from the thickener, the thickener overflow, is recirculated to the CWF preparation, selective agglomeration, and grinding sections of the facility. The water sent to the later two plant sections is cooled in a heat exchanger for removal of excess heat from the plant system. Chilled water is used in this heat exchanger.

### 6.2.6 CWF Preparation and Loading - Plant 600

A process flow diagram for this plant section is shown in Figure 6.6. The material and heat balance is presented in table 6.2.6. This plant section also comprises two parallel and identical trains. This plant section comprises two parallel and identical trains. It is identical to the one described in Section 5.2.6 for plant design based on column flotation.

Dewatered clean coal from the vacuum filters (the filter cake) is fed to two coal-additive mixers (one on each train). Here the cake is mixed intensely with the dispersant additive A-23 to obtain a good dispersal of the additive. The mixture is then fed to slurry mix tanks (one in each train) where measured amounts of water is added to obtain the desired solids content in the prepared CWF. From the slurry mix tanks, the CWF is pumped to storage tanks.

A total of four storage tanks are included with adequate capacity to hold a two day production of CWF. From the storage tanks, the CWF is pumped into RR tank cars. Alternately, the slurry fuel in the storage tanks may be pumped to nearby clients through pipe lines installed by others.

**Table 6.1.1**  
**COMMERCIAL CWF PLANT- SELECTIVE AGGLOMERATION**  
**Process Design Criteria**

|                                                     |  |              |                     |
|-----------------------------------------------------|--|--------------|---------------------|
| <b>I SELECTIVE AGGLOMERATION PERFORMANCE</b>        |  |              |                     |
| Heating value recovery                              |  | %            | 99.0                |
| Feed ash content- dry basis                         |  | %            | 7.5                 |
| Feed HHV- dry basis                                 |  | Btu/b        | 14,054              |
| Weight recovery                                     |  | %            | 93.0                |
| Product ash- dry basis                              |  | %            | 2.8                 |
| Product HHV-dry basis                               |  | Btu/lb       | 14,962              |
| Ash per million Btu of HHV in the product           |  | lb/MBtu      | <2.0                |
| <b>II OPERATING SCHEDULE</b>                        |  |              |                     |
| Hours per shift                                     |  | h/shift      | 8                   |
| Shifts per day                                      |  | shifts/day   | 3                   |
| Days per week                                       |  | days/week    | 7                   |
| Scheduled maintenance shifts per week               |  | shifts/week  | 2                   |
| Scheduled operating shifts per 7 day week           |  | shifts/week  | 19                  |
| Scheduled operating weeks per year                  |  | weeks/y      | 50                  |
| Scheduled operating hours per year                  |  | h/y          | 7,600               |
| <b>III DESIGN HOURLY FEED RATE TO AGGLOMERATION</b> |  |              |                     |
| Annual output required - dry basis                  |  | Million st/y | 1.5                 |
| Average output per operating hour-dry basis         |  | st/h         | 197                 |
| Plant utilization based on scheduled operating hrs  |  | %            | 91                  |
| Design output capacity-dry basis                    |  | st/h         | 217                 |
| Design weight recovery                              |  | %            | 93.0                |
| Plant design input capacity-dry basis               |  | st/h         | 233                 |
| Inherent moisture                                   |  | wt %         | 2.0                 |
| Plant design input capacity-surface dry basis       |  | st/h         | 238                 |
| Plant availability based on 24 h/day and 365 d/y    |  | %            | 79                  |
| <b>IV AGGLOMERATION FEED SLURRY PREPARATION</b>     |  |              |                     |
| Grinding circuit configuration                      |  |              | Wet, closed circuit |
| Ground product - nominal, 100 % passing             |  | mesh         | 100                 |
| Size (D80)                                          |  | mesh         | 325                 |
| Size of coal feed to grinding mills                 |  | in.          | 1/2                 |
| Specific power for grinding                         |  | HP/(st/h)    | 34                  |
| Agglomeration feed solids content                   |  | wt %         | 15                  |
| Storage for ground slurry                           |  |              | Not required        |
| <b>V SELECTIVE AGGLOMERATION</b>                    |  |              |                     |
| <b>High shear reactor (HSR)</b>                     |  |              |                     |
| Feed solids content (dry basis)                     |  | wt %         | 15                  |
| Retention time                                      |  | seconds      | 30                  |
| Design feed to agglomeration -dry basis             |  | st/h         | 233                 |
| Water flow rate                                     |  | gpm          | 5,287               |
| Design slurry flow rate                             |  | gpm          | 6,004               |
| Power for agglomeration                             |  | kW/(st/h)    | 12.5                |
|                                                     |  | HP/(st/h)    | 16.8                |

**Table 6.1.1 (continued)**  
**COMMERCIAL CWF PLANT- SELECTIVE AGGLOMERATION**  
**Process Design Criteria**

|                                                                                    |           |              |
|------------------------------------------------------------------------------------|-----------|--------------|
| Total volume required in HSRs                                                      | gallon    | 3,002        |
| Number of parallel circuits                                                        |           | 10           |
| Volume of each HSR                                                                 | gallon    | 300          |
| Required dia : ht ratio                                                            |           | 1:2          |
| Calculated minimum diameter of HSR                                                 | in.       | 35.32        |
| Calculated minimum height of HSR                                                   | in.       | 70.6         |
| Selected dia x ht (Arcanum recommendation)                                         | in. x in. | 38 x 80      |
| Material of construction:                                                          |           |              |
| Vessel                                                                             |           | CS           |
| Impeller, shaft, baffles, and vessel attachments                                   |           | SS           |
| Motor Power (Arcanum recommendation)                                               | kW/(st/h) | 12.5         |
| Power per impeller based on total No. selected                                     | kW        | 292          |
| Variable speed drive                                                               |           | Not Required |
| <b>Low shear reactor (LSR)</b>                                                     |           |              |
| Feed solids content -dry basis                                                     | wt %      | 10           |
| Retention time                                                                     | seconds   | 180          |
| Design feed to agglomeration -dry basis                                            | st/h      | 233          |
| Design water flow rate                                                             | gpm       | 8,397        |
| Design slurry flow rate                                                            | gpm       | 9,114        |
| Volume required in LSR                                                             | gallons   | 27,343       |
| Assumed number of trains                                                           |           | 10           |
| LSR Volume of each trains                                                          | gallons   | 2734         |
| No. of LSR in each train- arranged in series                                       |           | 2            |
| LSR Volume - each unit                                                             | gallons   | 1,367        |
| Required dia : ht ratio                                                            |           | 1:2          |
| Calculated minimum diameter of LSR                                                 | in.       | 58.5         |
| Calculated minimum height of LSR                                                   | in.       | 117.1        |
| Selected dia x ht (Arcanum recommendation)                                         | in. x in. | 60 x 120     |
| Material of construction:                                                          |           |              |
| Vessel                                                                             |           | CS           |
| Impeller, shaft, baffles, and vessel attachments                                   |           | SS           |
| Motor Power (Arcanum recommendation)                                               | kW/(st/h) | 3.0          |
| Power per impeller based on total No. selected                                     | HP/(st/h) | 4.0          |
| Variable speed drive                                                               | kW        | 35           |
| Not Required                                                                       |           |              |
| <b>Agglomerate Screen</b>                                                          |           |              |
| Inclined screen-(6 °downhill), 48 mesh deck,<br>thin solid layer with water sprays |           |              |
| Dilution water addition in o'flow launder- temp.                                   | °F        | 190          |
| <b>Froth Skimmer</b>                                                               |           |              |
| Froth solids - wt % of total clean coal                                            | wt %      | 1            |
| Moisture content of froth (before water addition)                                  | wt %      | 60           |
| Temperature of flush water to froth launder                                        | °F        | 190          |

**Table 6.1.1 (continued)**  
**COMMERCIAL CWF PLANT- SELECTIVE AGGLOMERATION**  
**Process Design Criteria**

|                                                                                                                                                                                                                                                                                                                                                                              |                                  |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|
| <b>VI CLEAN COAL DEWATERING</b> <ul style="list-style-type: none"> <li><b>Steam Stripper A</b></li> <li>Solid content of slurry - stripper outlet</li> <li>Residence time</li> <li>Normal operating pressure</li> <li>Normal vapor composition by wt; Heptane : Water</li> <li><b>Steam Stripper B</b></li> <li>Residence time</li> <li>Normal operating pressure</li> </ul> | wt %<br>minutes<br>psig<br>Ratio | 30<br>5<br>3<br>100:70 |
|                                                                                                                                                                                                                                                                                                                                                                              | minutes<br>psig                  | 10<br>10               |
|                                                                                                                                                                                                                                                                                                                                                                              | Vacuum filter                    | 35                     |
|                                                                                                                                                                                                                                                                                                                                                                              | Thickener and Filter             | 2.0                    |
|                                                                                                                                                                                                                                                                                                                                                                              | gpm/ft <sup>2</sup>              | 75                     |
|                                                                                                                                                                                                                                                                                                                                                                              | wt%                              | 75                     |
|                                                                                                                                                                                                                                                                                                                                                                              | Belt press                       | 40                     |
|                                                                                                                                                                                                                                                                                                                                                                              | wt %                             | 40                     |
|                                                                                                                                                                                                                                                                                                                                                                              | A-23                             | 10                     |
|                                                                                                                                                                                                                                                                                                                                                                              | lb /st                           | 55                     |
| <b>VII WATER CLARIFICATION AND TAILINGS DEWATERING</b> <ul style="list-style-type: none"> <li>Equipment type</li> <li>Tailings thickener -Specific thickening rate</li> <li>Thickener under flow -surface moisture content</li> <li>Tailings filter- type</li> <li>Moisture content of dewatered tailings, filter cake</li> </ul>                                            | wt %                             | Not used               |
|                                                                                                                                                                                                                                                                                                                                                                              | h                                | 48                     |
|                                                                                                                                                                                                                                                                                                                                                                              | gpm                              | Agitated tanks         |
|                                                                                                                                                                                                                                                                                                                                                                              | st/h                             | 3,000                  |
|                                                                                                                                                                                                                                                                                                                                                                              | 500                              |                        |

**Table 6.2.1**  
**COMMERCIAL CWF PLANT- SELECTIVE AGGLOMERATION**  
**Major Equipment List**

| Equipment I.D       | Qty | Title                                 | Description                                                                                                                                                                                                                         | Power (ea) HP | Total installed HP |
|---------------------|-----|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|
| 100 BN-01,02,03     | 3   | Raw coal silos, No. 1, 2, and 3       | 10,000 st (ea), 70 ft dia x 150 ft ht                                                                                                                                                                                               |               |                    |
| 100 CV-01           | 1   | Raw coal conveyor                     | 2000 st/h, 60 in wide x 750 ft lg., 220 ft lift, 500 fpm, with belt scale                                                                                                                                                           | 600           | 600                |
| 100 CV-02           | 1   | Silo feed conveyor No. 1              | 2000 st/h, 60 in wide x 80 ft lg., 10 ft lift, 500 fpm                                                                                                                                                                              | 50            | 50                 |
| 100 CV-03           | 1   | Silo feed conveyor No. 2              | 2000 st/h, 60 in wide x 80 ft lg., no lift, 500 fpm                                                                                                                                                                                 | 50            | 50                 |
| 100 DC-01,02,03     | 3   | Silo top dust collector with fan      | 7000 cfm, filtering area 1200 sq. ft including fan                                                                                                                                                                                  | 40            | 120                |
| 100 RR-01           | Lot | Rail car unloading system             | For 2000 st/h unloading rate including rotary car dumper, shunting locomotive, 200 st dump hopper, grizzly, frozen coal crusher, thawing shed, dust collection, raw coal conveyor tunnel, sump pump, feeders, rail track of 2 miles | 700           | 700                |
| 100 ST-01 & 02      | 2   | Motorized gate                        | Capacity- 2000 st/h                                                                                                                                                                                                                 | 10            | 20                 |
| 200 AG-01 & 02      | 2   | Cyclone feed pump sump mixers         | For Cyclone feed sump                                                                                                                                                                                                               | 15            | 30                 |
| 200 CN-01           | 1   | Mill house crane                      | 30 t main hook, 5 ton aux                                                                                                                                                                                                           | 75            | 75                 |
| 200 CR-01,02        | 2   | Hammer mill crusher                   | 125 st/h, feed size 2" x 0 and product 1/4" x 0                                                                                                                                                                                     | 300           | 600                |
| 200 CS-01 thru 06   | 6   | Cyclone cluster                       | Flow 1200 gpm/cluster-20 no. of 4 in cyclones per cluster                                                                                                                                                                           |               |                    |
| 200 CV-10 & 11      | 2   | Crusher feed conveyor                 | 125 st/h, 30 in wide x 300 ft lg., 25 ft lift, 350 fpm, with belt scale                                                                                                                                                             | 15            | 30                 |
| 200 CV-12 & 13      | 2   | Ball mill feed conveyor               | 125 st/h, 30 in wide x 100 ft lg., 25 ft lift, 350 fpm                                                                                                                                                                              | 15            | 30                 |
| 200 DC-10 & 11      | 2   | Crusher House dust collector with fan |                                                                                                                                                                                                                                     | 50            | 100                |
| 200 FE-01 thru 06   | 6   | Reclaim feeders                       | 125 st/h, 36 in wide x 40 ft lg., 75 fpm, (max.) variable speed drive                                                                                                                                                               | 10            | 60                 |
| 200 MA-01 & 02      | 2   | Tramp Iron Magnet                     | 125 st/h, 36 in belt                                                                                                                                                                                                                | 10            | 20                 |
| 200 ML-01 & 02      | 2   | Ball Mill                             | 125 st/h, 14.5 ft dia x 29 ft                                                                                                                                                                                                       | 4000          | 8000               |
| 200 PP-01 thru 04   | 4   | Cyclone feed pump                     | Horizontal slurry pump, flow 3500 gpm, sp gr 1.2, TDH 130 ft, 2 operating and 2 spare                                                                                                                                               | 225           | 900                |
| 350 PP-175 thru 178 |     | Not used                              |                                                                                                                                                                                                                                     |               |                    |
| 200 ST-03 thru 8    | 6   | Motorized gate                        | Capacity- 125 st/h                                                                                                                                                                                                                  | 5             | 30                 |
| 200 ST-10 & 11      | 2   | Cyclone feed sump,                    | 7000 gal capacity (2 min.)-14ft dia x 15 ft ht, conical                                                                                                                                                                             |               |                    |
| 200 ZM-01 & 02      | 2   | Distributor                           | 3 way-3500 gpm                                                                                                                                                                                                                      | 5             | 10                 |
| 350 AG-90 thru 99   | 10  | Feed tank agitator                    | Tank volume -4000 gals.                                                                                                                                                                                                             | 1.5           | 15                 |

**Table 6.2.1 (continued)**  
**COMMERCIAL CWF PLANT- SELECTIVE AGGLOMERATION**  
**Major Equipment List**

| Equipment I.D       | Qty | Title                     | Description                                                                                              | Power (ea) HP | Total installed HP |
|---------------------|-----|---------------------------|----------------------------------------------------------------------------------------------------------|---------------|--------------------|
| 350 AG-100 thru 109 | 10  | HSR impeller              | Special                                                                                                  | 400           | 4000               |
| 350 AG-109 thru 129 | 20  | LSR impeller              | Special                                                                                                  | 50            | 1000               |
| 350 AG-130 thru 139 | 10  | Froth skimmer             |                                                                                                          | 5             | 50                 |
| 350 AG-140 thru 149 |     | Not used                  |                                                                                                          |               |                    |
| 350 AG-150 thru 159 | 10  | Steam stripper A agitator |                                                                                                          | 20            | 200                |
| 350 C-100 thru 109  | 10  | HSR vessel                | Volume: 360 gals. Diameter: 38 inch ht 88 inch - CS- Design Pressure 15 psig- Temp 145 deg F. 34 secs.   |               |                    |
| 350 C-110 thru 129  | 20  | LSR vessel                | Volume 1445 gals. Diameter: 60 inch ht 132 inch - CS- Design Pressure 15 psig- Temp 145 deg F. 184 secs. |               |                    |
| 350 C-130 thru 139  | 10  | Froth skimmer tank        | Volume: 2000 gals.- 2.5 min                                                                              |               |                    |
| 350 C-140 thru 149  | 10  | Steam stripper feed drum  | Volume: 300 gals.- 1 min                                                                                 |               |                    |
| 350 C-150 thru 159  | 10  | Steam stripper A          | Volume: 1500 gals.- 5 min                                                                                |               |                    |
| 350 C-160 thru 169  | 10  | Steam stripper B          | Volume: 3000 gals.- 10 min                                                                               |               |                    |
| 350 C-170 thru 179  | 10  | Oil/water separator       | Volume: 750 gals. - 15 min                                                                               |               |                    |
| 350 C-180 thru 189  | 10  | Sampling pot              | Volume: 200 gals. - 15 secs                                                                              |               |                    |
| 350 C-190 thru 194  | 10  | Heptane drum              | Volume: 700 gals. - 20 min                                                                               |               |                    |
| 350 C-195 thru 199  | 5   | Emergency slop tank       | Volume: 5000 gals                                                                                        |               |                    |
| 350 C-200 thru 204  | 5   | Carbon filter drum        | Volume: 600 gals                                                                                         |               |                    |
| 350 C-204 thru 209  | 5   | Relief KO drum            | Volume: 800 gals                                                                                         |               |                    |
| 350 CP-01           | 1   | Air compressor            | 1000,SCFM, 125 psig with air receiver                                                                    | 200           | 200                |
| 350 D-100 thru 109  | 10  | Floor sump                | 5000 gals. Concrete                                                                                      |               |                    |
| 350 D-110 & 111     | 2   | Boiler feed water tank    | 5000 gals. Concrete                                                                                      |               |                    |
| 350 D-112 & 113     | 2   | Cooling water pond        | 400,000 gals                                                                                             |               |                    |
| 350 E-100 thru 109  | 10  | Vapor condenser           | Air Cooler-Heat Duty: 11 MBtu/h                                                                          | 60            | 600                |
| 350 E-110 thru 119  | 10  | Condensate cooler         | Plate type-Heat Duty: 1 MBtu/h                                                                           |               |                    |

**Table 6.2.1 (continued)**  
**COMMERCIAL CWF PLANT- SELECTIVE AGGLOMERATION**  
**Major Equipment List**

| Equipment I.D       | Qty | Title                      | Description                                                                                           | Power (ea) HP | Total installed HP |
|---------------------|-----|----------------------------|-------------------------------------------------------------------------------------------------------|---------------|--------------------|
| 350 E-120 thru 129  | 10  | Water preheater            | Plate type-Heat Duty: 7 MBtu/h                                                                        |               |                    |
| 350 E-130 thru 139  | 10  | Slurry cooler              | Plate type-Heat Duty: 12 MBtu/h                                                                       |               |                    |
| 350 E-140 thru 149  | 10  | Blanket gas cooler         | Plate type-Heat Duty: 150,000 Btu/h                                                                   |               |                    |
| 350 F-100           | 1   | Steam lines                | Flow- 2500 lb of steam at 50 psia-heat required 300 MBtu/h-                                           |               |                    |
| 350 F-102 & 106     | 5   | Flare                      |                                                                                                       |               |                    |
| 350 PP-100 thru 109 | 10  | HSR feed pump              | Horizontal slurry pump, flow 800 gpm, sp gr 1.02, TDH 80 ft                                           | 30            | 300                |
| 350 PP-110 thru 119 | 10  | Tailings transfer pump     | Horizontal slurry pump, flow 1000 gpm, sp gr 1.01, TDH 50 ft                                          | 25            | 250                |
| 350 PP-120 thru 129 | 10  | Sump pump                  | Vertical slurry pump, flow 50 gpm, sp gr 1.2, TDH 50 ft                                               | 5             | 50                 |
| 350 PP-130 thru 139 | 10  | Steam stripper A feed pump | Diaphragm type, flow 350 gpm, sp gr 1.05, Delta P 20 psi, Design temp 240 deg F                       |               |                    |
| 350 PP-140 thru 149 | 10  | Steam stripper B feed pump | Moyno type, flow 350 gpm, sp gr 1.05, Design Pressure 50 psi, Delta P 30 psi, Design temp 250 deg F   | 10            | 100                |
| 350 PP-150 thru 159 | 10  | Clean coal slurry pump     | Moyno type, flow 350 gpm, sp gr 1.05, Design Pressure 50 psi, Delta P 30 psi, Design temp 250 deg F   | 10            | 100                |
| 350 PP-160 thru 169 | 10  | Heptane pump               | Metering type, flow 400 gpm, sp gr 0.7, Design Pressure 30 psi, Delta P 30 psi, Design temp 100 deg F | 10            | 100                |
| 350 PP-170 thru 174 | 5   | Emergency slop pump        | Diaphragm type, flow 350 gpm, sp gr 1.05, Delta P 20 psi, Design temp 220 deg F                       | 10            | 50                 |
| 350 PP-175 thru 178 |     | Not used                   |                                                                                                       |               |                    |
| 350 PP-179 thru 183 | 5   | K. O. Drum pump            | Horizontal water pump                                                                                 | 3             | 15                 |
| 350 PP-184 thru 187 | 4   | Chilled water pump         | Horizontal water pump, flow 1700 gpm, TDH 120 ft, 2 Operating and 2 spare                             | 3             | 12                 |
| 350 PP-188 thru 191 | 4   | Cooling water pump         | Horizontal water pump, flow 3000 gpm, TDH 120 ft, 2 Operating and 2 spare                             | 150           | 600                |
| 350 ST-90 thru 99   | 10  | Agglomeration feed tank    | capacity- 4000 gal (6 min)                                                                            |               |                    |
| 350 ST-100 & 101    | 2   | Chilled water tank         | 17500 gal capacity -14 ft dia x 16 ft ht<br>Cylindrical-10 min total                                  |               |                    |
| 350 V-101 & 102     | 2   | Nitrogen package           |                                                                                                       |               |                    |
| 350 V-103 & 104     | 2   | Chiller                    | duty=8.5 MBtu/h                                                                                       | 800           | 1600               |
|                     |     |                            |                                                                                                       |               | 0                  |

**Table 6.2.1 (continued)**  
**COMMERCIAL CWF PLANT- SELECTIVE AGGLOMERATION**  
**Major Equipment List**

| Equipment I.D      | Qty | Title                                       | Description                                                                                                        | Power (ea) HP | Total installed HP |
|--------------------|-----|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------|--------------------|
| 350 Y-100 thru 109 | 10  | Screen                                      | Vibrating, Sizetech type, 450 upward, linear, 3.4 mm stroke, 1800 rpm, 6' x 16' feet                               | 15            | 150                |
| 350 Y-110 thru 114 | 5   | Gas holder and                              |                                                                                                                    |               |                    |
| 350 ZM-100 & 101   | 2   | 5-way distributor                           | Flow- 3500 gpm                                                                                                     |               |                    |
| 400 FT-10 thru 15  | 6   | Filtration systems                          | Capacity 40 st/h - vacuum filter systems                                                                           | 700           | 4200               |
| 400 CV-15 & 16     | 2   | Coal conveyor                               | Capacity 130 st/h-24 in wide, 125 st/h, 30 ft lift,                                                                | 5             | 10                 |
| 400 PP-62 & 65     | 4   | Filtrate pump                               | Flow 900 gpm, TDH 30 ft, 2- Operating and 2- Spare                                                                 | 15            | 60                 |
| 400 ST-26 & 27     | 2   | Filtrate sump                               | Capacity- 5000 gal                                                                                                 |               |                    |
| 400 ZM-05 & 06     | 2   | Slurry distributor                          | Capacity-1500 gpm                                                                                                  | 10            | 20                 |
| 500 AG-09          | 1   | Tailings filter sump agitator               | Capacity of sump - 1000 gal                                                                                        | 10            | 10                 |
| 500 BN-04          | 1   | Tailings load-out shed                      | Capacity- 100 st                                                                                                   |               |                    |
| 500 CV-16          | 1   | Tailings conveyor                           | Capacity - 50 st/h, 24 in x 100 ft                                                                                 | 5             | 5                  |
| 500 FL-01          | 1   | Tailings filter                             | Capacity-30st/h, 3,5 m wide belt                                                                                   | 22            | 22                 |
| 500 PP-70 & 71     | 2   | Thickener underflow pump                    | Horizontal slurry- capacity 500 gpm, 50 ft head, sp gr 1.0, 1- Operating, 1- Spare                                 | 15            | 30                 |
| 500 PP-72 thru 74  | 3   | Clarified water pump                        | Horizontal water- capacity 5,000 gpm, 80 ft head, 2- operating, 1- spare                                           | 150           | 450                |
| 500 PP-75 & 76     | 2   | Tailings filter feed pump                   | capacity 420 gpm, 30 ft head, sp gr 1.07. 1- Operating, 1- Spare                                                   | 15            | 30                 |
| 500 ST-30          | 1   | Tailings filter feed sump                   | Capacity 1000 gal                                                                                                  |               |                    |
| 500 TK-01          | 1   | Tailings thickener tank                     | 90 ft diameter thickener tank with tunnel                                                                          |               |                    |
| 500 TK-02          | 1   | Thickener overflow tank                     | Capacity 30,000 gal (concrete)                                                                                     |               |                    |
| 500 TM-01          | 1   | Tailings thickener mechanism                | 90 ft dia thickener mechanism with controls                                                                        | 15            | 15                 |
| 500 ZM-08          | 1   | Flocculant storage,mixing and dosing system |                                                                                                                    | 5             | 5                  |
| 600 AG-10 & 11     | 2   | Coal additive mixer                         | Retention 5 min.:                                                                                                  | 40            | 80                 |
| 600 AG-12 & 13     | 2   | Slurry mixing tank agitator                 |                                                                                                                    | 40            | 80                 |
| 600 AG-14 thru 17  | 4   | Slurry storage tank agitator                |                                                                                                                    | 75            | 300                |
| 600 PP-78 & 79     | 2   | CWF pump                                    | Horizontal slurry- Capacity-1500 gpm, 60 ft head, sp gr 1.17                                                       | 60            | 120                |
| 600 PP-80 thru 83  | 4   | Slurry loading pump                         | Horizontal slurry- Capacity-dry solids 500 st/h- slurry 3,000 gpm, 60 ft head, sp gr 1.17, 4-Operating and 4-spare | 100           | 400                |
| 600 ST-31 & 32     | 2   | Slurry mixing tank                          | 10 min. each. Volume:                                                                                              |               |                    |

**Table 6.2.1 (continued)**  
**COMMERCIAL CWF PLANT- SELECTIVE AGGLOMERATION**  
**Major Equipment List**

| Equipment<br>I.D             | Qty | Title                                           | Description                                              | Power (ea)<br>HP | Total<br>installed<br>HP |
|------------------------------|-----|-------------------------------------------------|----------------------------------------------------------|------------------|--------------------------|
| 600 ST-33 thru 36            | 4   | Slurry fuel storage tank                        | 0.85 million gal- 55 ft dia and 53 ft high- total 24 hr. |                  |                          |
| 600 ZM-10 & 11               | 2   | Flocculant storage,<br>mixing and dosing system |                                                          | 10               | 20                       |
| <b>TOTAL MAJOR EQUIPMENT</b> |     |                                                 |                                                          | <b>26674</b>     |                          |

**TABLE 6.2.2**  
**PLANT 200: CRUSHING AND GRINDING**  
**Material and Heat Balance**

Quantities are total for all trains

| STREAM NO.                                                      |                                 | 201                             | 202            | 203                            | 204                            | 205               | 206                            | 207                           | 208                             |
|-----------------------------------------------------------------|---------------------------------|---------------------------------|----------------|--------------------------------|--------------------------------|-------------------|--------------------------------|-------------------------------|---------------------------------|
| STREAM NAME                                                     |                                 | RAW COAL                        | DILUTION WATER | 201+202                        | BALL MILL FEED                 | MILL HEAT RELEASE | BALL MILL DISCHARGE            | WATER TO CYCLONE FEED SUMP    | FEED TO CYCLONE                 |
| SOLIDS (DRY)<br>WATER                                           | lb/h<br>lb/h                    | 466,000<br>37,784               |                | 466,000<br>643,524             | 699,000<br>876,524             |                   | 699,000<br>876,524             | 1,997,143                     | 699,000<br>2,873,667            |
| STREAM TOTAL                                                    | lb/h                            | 503,784                         | 605,740        | 1,575,524                      | 1,575,524                      |                   | 1,575,524                      | 1,997,143                     | 3,572,667                       |
| SOLIDS (DRY)<br>WATER                                           | gpm<br>gpm                      | 717<br>76                       |                | 717<br>1,211                   | 1,075<br>1,287                 |                   | 998.6<br>1,753.0               | 3,994.3<br>3,994.3            | 998.6<br>5,747.3                |
| STREAM TOTAL                                                    | gpm                             | 792                             | 1,211          | 2,004                          | 2,470                          |                   | 2,751.6                        | 3,994.3                       | 6,745.9                         |
| SOLIDS CONTENT<br>TEMPERATURE<br>PRESSURE<br>ENTHALPY (rounded) | wt %<br>deg °F<br>psia<br>Btu/h | 92.5<br>70<br>14.7<br>6,748,000 |                | 42<br>70<br>14.7<br>23,018,000 | 44<br>70<br>14.7<br>29,766,000 |                   | 44<br>75<br>14.7<br>46,922,000 | -<br>70<br>14.7<br>75,891,000 | 20<br>72<br>14.7<br>122,814,000 |

% of total connected mill HP transferred as heat to the slurry      25%      Total HP= 8,000

| STREAM NO.                                                      |                                 | 209                            | 210                             | 211                              |
|-----------------------------------------------------------------|---------------------------------|--------------------------------|---------------------------------|----------------------------------|
| STREAM NAME                                                     |                                 | CYCLONE U'FLOW                 | GROUND PRODUCT                  | WATER TO GRINDING FROM PLNT 500  |
| SOLIDS (DRY)<br>WATER                                           | lb/h<br>lb/h                    | 233,000<br>233,000             | 466,000<br>2,640,667            | 2,602,883                        |
| STREAM TOTAL                                                    | lb/h                            | 466,000                        | 3,106,667                       | 2,602,883                        |
| SOLIDS (DRY)<br>WATER                                           | gpm<br>gpm                      | 358<br>466                     | 717<br>5,281                    | 5,206                            |
| STREAM TOTAL                                                    | gpm                             | 824                            | 5,998                           | 5,206                            |
| SOLIDS CONTENT<br>TEMPERATURE<br>PRESSURE<br>ENTHALPY (rounded) | wt %<br>deg °F<br>psia<br>Btu/h | 50<br>72<br>14.7<br>12,065,000 | 15<br>72<br>14.7<br>110,749,000 | 70<br>15.0<br>15.0<br>98,910,000 |

**Table 6.2.3**  
**PLANT 350: SELECTIVE AGGLOMERATION**  
**Material and Heat Balance**

Note 1. Quantities are total for all trains  
Note 2. Later tests indicate that spray to be 1800 gpm for better results

| STREAM NO.          |              | 301                        | 302                | 303                                 | 303A                           | 304              | 305               | 305A                            | 306              | 307                      | 307A<br>(NOTE 2)        | 308              | 309                                |
|---------------------|--------------|----------------------------|--------------------|-------------------------------------|--------------------------------|------------------|-------------------|---------------------------------|------------------|--------------------------|-------------------------|------------------|------------------------------------|
| STREAM NAME         |              | AGGLOME-<br>RATION<br>FEED | BRIDGING<br>LIQUID | MIXED FEED<br>TO AGGLOME-<br>RATION | HEAT OF<br>HSR<br>MIXER<br>(*) | HSR<br>DISCHARGE | DILUTION<br>WATER | HEAT OF<br>LSR<br>MIXER<br>(**) | LSR<br>DISCHARGE | SCREEN<br>SPRAY<br>WATER | TOTAL<br>SCREEN<br>FEED | TAILINGS         | AGGLO-<br>MERATES &<br>BRIG. LIQD. |
| SOLIDS (DRY)        | lb/hr        | 466,000                    |                    | 466,000                             |                                | 466,000          |                   | 466,000                         |                  | 466,000                  |                         | 32,620           | 433,380                            |
| WATER               | lb/hr        | 2,640,667                  |                    | 2,640,667                           |                                | 2,640,667        |                   | 2,640,667                       |                  | 250,000                  |                         | 4,010,614        | 316,997                            |
| HEPTANE             | lb/hr        |                            |                    |                                     |                                |                  |                   |                                 |                  |                          |                         |                  | 116,384                            |
| STEAM               | lb/hr        |                            |                    |                                     |                                |                  |                   |                                 |                  |                          |                         |                  |                                    |
| HEPTANE- VAPOR      | lb/hr        |                            |                    |                                     |                                |                  |                   |                                 |                  |                          |                         |                  |                                    |
| <b>TOTAL STREAM</b> | <b>lb/hr</b> | <b>3,106,667</b>           | <b>116,384</b>     | <b>3,223,050</b>                    |                                | <b>3,223,050</b> | <b>1,436,943</b>  |                                 | <b>4,659,994</b> | <b>250,000</b>           | <b>4,909,994</b>        | <b>4,043,234</b> | <b>866,760</b>                     |
| SOLIDS (DRY)        | gpm          | 717                        |                    | 717                                 |                                | 717              |                   | 717                             |                  | 717                      |                         | 717              | 667                                |
| LIQUID              | gpm          | 5,281                      |                    | 340                                 |                                | 5,621            |                   | 5,621                           |                  | 8,495                    |                         | 500              | 8,021                              |
| <b>TOTAL FLOW</b>   | <b>gpm</b>   | <b>5,998</b>               | <b>340</b>         | <b>6,338</b>                        |                                | <b>6,338</b>     | <b>2,874</b>      |                                 | <b>9,212</b>     | <b>500</b>               | <b>9,712</b>            | <b>8,071</b>     | <b>1,641</b>                       |
| SOLIDS CONTENT      | wt %         | 15                         |                    | 14                                  |                                | 14               |                   | 10                              |                  |                          |                         | 1                | 50                                 |
| TEMPERATURE         | °F           | 72                         |                    | 72                                  |                                | 73               |                   | 72                              |                  | 70                       |                         | 72               | 72                                 |
| PRESSURE            | psia         | 15                         |                    | 15                                  |                                | 15               |                   | 15                              |                  | 15                       |                         | 15               | 15                                 |
| ENTHALPY (rounded)  | Btu/h        | 110,749,000                |                    | 2,950,000                           |                                | 113,698,000      |                   | 2,484,000                       |                  | 116,183,000              |                         | 54,604,000       |                                    |
|                     |              |                            |                    |                                     |                                |                  |                   |                                 |                  |                          |                         | 599,000          |                                    |
|                     |              |                            |                    |                                     |                                |                  |                   |                                 |                  |                          |                         | 171,385,000      |                                    |
|                     |              |                            |                    |                                     |                                |                  |                   |                                 |                  |                          |                         | 9,500,000        |                                    |
|                     |              |                            |                    |                                     |                                |                  |                   |                                 |                  |                          |                         | 180,885,000      |                                    |
|                     |              |                            |                    |                                     |                                |                  |                   |                                 |                  |                          |                         | 160,577,000      |                                    |
|                     |              |                            |                    |                                     |                                |                  |                   |                                 |                  |                          |                         | 20,308,000       |                                    |

|                    |        | Reactor power kW             |                        |                          | 2912.5                     |                          | 702         |                     | % to slurry            |                   | 25                        |                             | 25                       |  |
|--------------------|--------|------------------------------|------------------------|--------------------------|----------------------------|--------------------------|-------------|---------------------|------------------------|-------------------|---------------------------|-----------------------------|--------------------------|--|
| STREAM NO.         |        | 310                          | 311                    | 312                      | 313                        | 314                      | 315         | 316                 | 317                    | 318               | 319                       | 320                         | 321                      |  |
| STREAM NAME        |        | CLARIFIED WATER HEATER INLET | HEATED CLARIFIED WATER | FEED TO STEAM STRIPPER-A | FLOW FROM STEAM STRIPPER-B | FEED TO STEAM STRIPPER-B | STEAM       | VAPOR TO AIR COOLER | LIQUID FROM AIR COOLER | COOLED CONDENSATE | SLURRY TO WATER PREHEATER | SLURRY FROM WATER PREHEATER | COOLED CLEAN COAL SLURRY |  |
| SOLIDS (DRY)       | lb/hr  |                              |                        |                          |                            |                          |             |                     |                        |                   |                           |                             |                          |  |
| WATER              | lb/hr  |                              |                        |                          |                            |                          |             |                     |                        |                   |                           |                             |                          |  |
| HEPTANE            | lb/hr  |                              |                        |                          |                            |                          |             |                     |                        |                   |                           |                             |                          |  |
| STEAM              | lb/hr  |                              |                        |                          |                            |                          |             |                     |                        |                   |                           |                             |                          |  |
| HEPTANE- VAPOR     | lb/hr  |                              |                        |                          |                            |                          |             |                     |                        |                   |                           |                             |                          |  |
| TOTAL STREAM       | lb/hr  | 584,835                      | 584,835                | 1,451,595                | 190,857                    | 1,444,600                | 214,000     | 197,852             | 197,852                | 197,852           | 1,467,743                 | 1,467,743                   | 1,467,743                |  |
| SOLIDS (DRY)       | gpm    |                              |                        |                          |                            |                          |             |                     |                        |                   |                           |                             |                          |  |
| LIQUID             | gpm    | 1,170                        | 1,170                  | 667                      |                            | 667                      |             |                     |                        |                   |                           |                             |                          |  |
| TOTAL STREAM       | gpm    | 1,170                        | 1,170                  | 2,143                    |                            | 2,022                    |             |                     |                        |                   |                           |                             |                          |  |
| SOLIDS CONTENT     | wt %   |                              |                        |                          |                            |                          |             |                     |                        |                   |                           |                             |                          |  |
| TEMPERATURE        | °F     | 72                           | 190                    | 135                      | 240                        | 220                      | 256         | 224                 | 140                    | 80                | 240                       | 177                         | 80                       |  |
| PRESSURE           | psia   | 20                           | 15                     | 18                       | 25                         | 25                       | 33          | 19                  | 17                     | 17                | 45                        | 40                          | 35                       |  |
| ENTHALPY (rounded) | Btu/lb | 23,295,000                   | 92,404,000             | 112,712,000              | 221,509,000                | 211,229,000              | 210,470,000 | 110,992,000         | 15,636,000             | 6,860,000         | 242,190,000               | 173,081,000                 | 55,890,000               |  |

| STREAM NO.                                                             |                                                    | 322                                      | 323                             | 324                       | 325                         | 326             | 327                      | 328                       | 329                                             | 330 TO 350              |
|------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------|---------------------------------|---------------------------|-----------------------------|-----------------|--------------------------|---------------------------|-------------------------------------------------|-------------------------|
| STREAM NAME                                                            |                                                    | CHILLED WATER AT CONDENSATE COOLER INLET | CW AT CONDENSATE COOLER OUT LET | CW AT SLURRY COOLER INLET | CW AT SLURRY COOLER OUT LET | WATER CONDENSED | CONDENSED HEPTANE LIQUID | MAKE-UP BOILER FEED WATER | HEAT OUTPUT OF BOILER (ENTHALPY INCREASE OF FW) | STREAM NUMBERS NOT USED |
| SOLIDS (DRY)<br>ASPHALT<br>WATER<br>HEPTANE<br>STEAM<br>HEPTANE- VAPOR | lb/hr<br>lb/hr<br>lb/hr<br>lb/hr<br>lb/hr<br>lb/hr | 135,008                                  | 135,008                         | 2,604,243                 | 2,604,243                   | 81,468          | 116,384                  | 132,532                   |                                                 |                         |
| TOTAL STREAM                                                           | lb/hr                                              | 135,008                                  | 135,008                         | 2,604,243                 | 2,604,243                   | 81,468          | 116,384                  | 132,532                   |                                                 |                         |
| SOLIDS (DRY)<br>LIQUID                                                 | gpm<br>gpm                                         | 270                                      | 270                             | 5,208                     | 5,208                       | 163             | 340                      | 265                       |                                                 |                         |
| TOTAL STREAM                                                           | gpm                                                | 270                                      | 270                             | 5,208                     | 5,208                       | 163             | 340                      | 265                       |                                                 |                         |
| TEMPERATURE<br>PRESSURE                                                | °F<br>psia                                         | 50<br>25                                 | 115<br>20                       | 70<br>25                  | 115<br>20                   | 80<br>17        | 80<br>17                 | 70<br>20                  |                                                 |                         |
| ENTHAI PY (rounded)                                                    | Btu/h                                              | 2,430,000                                | 11,206,000                      | 98,961,000                | 216,152,000                 | 3,910,000       | 2,950,000                | 5,036,000                 | 240,524,000                                     |                         |

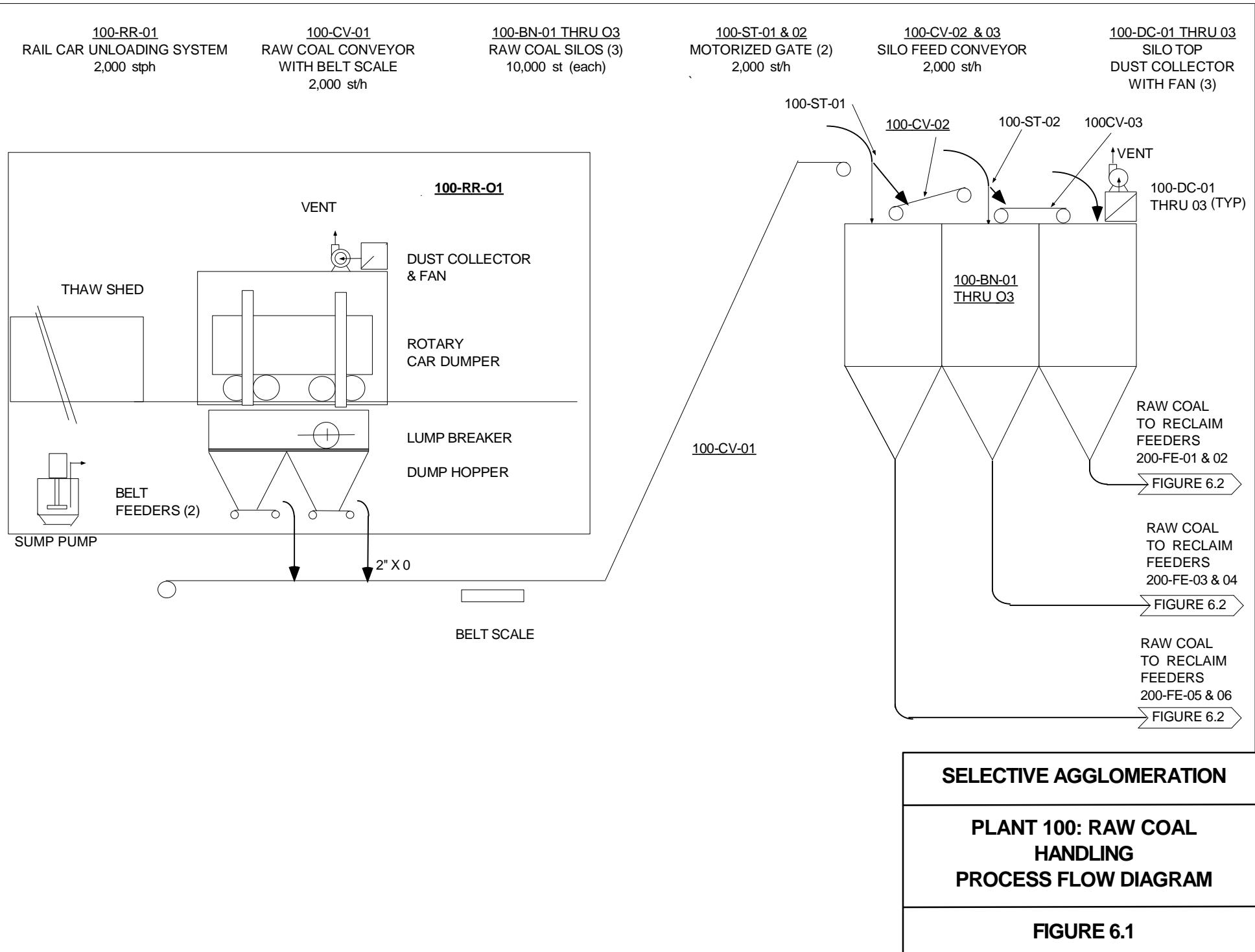
(CONTINUED)

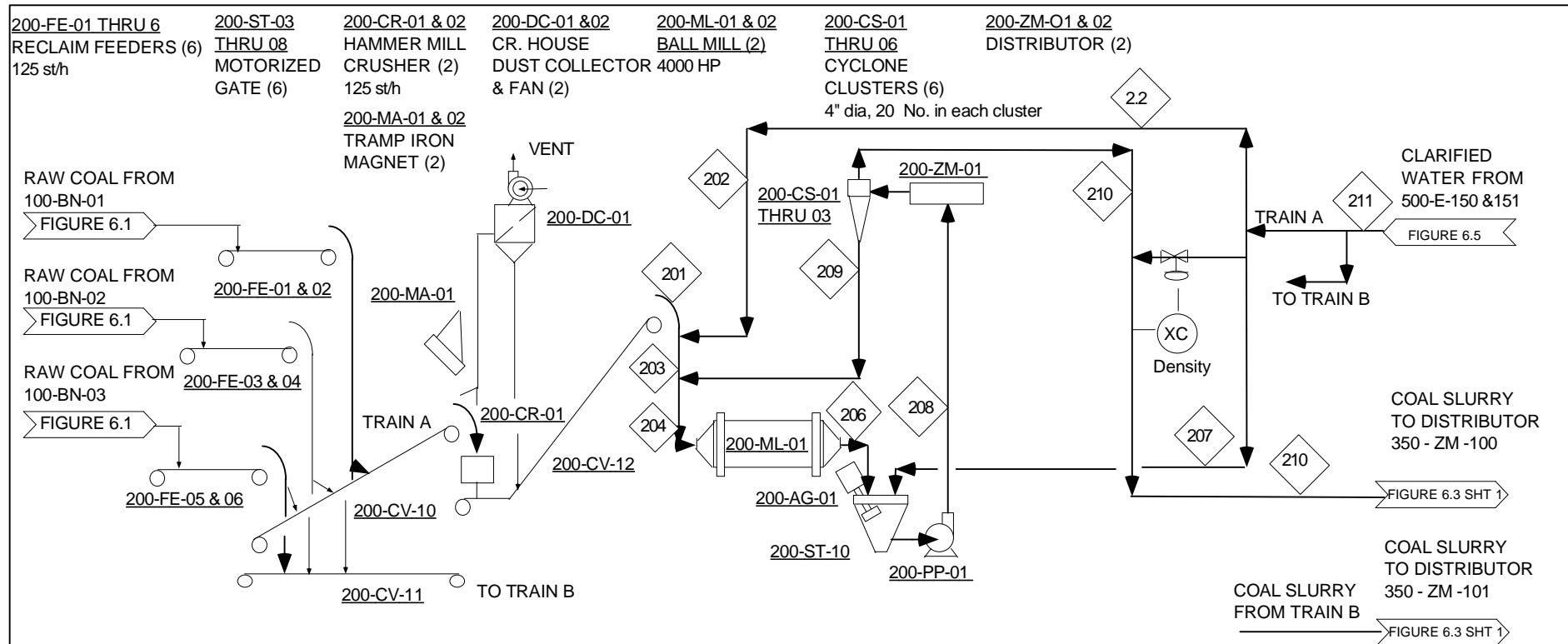
**Table 6.2.3 (Continued)**  
**PLANT 350: SELECTIVE AGGLOMERATION**  
**Material and Heat Balance**

| STREAM NO.              |                |  | 351                        | 352                   | 353                              | 354                 | 355                      | 356                                 | 357                                     | 358                                   |
|-------------------------|----------------|--|----------------------------|-----------------------|----------------------------------|---------------------|--------------------------|-------------------------------------|-----------------------------------------|---------------------------------------|
| STREAM NAME             |                |  | CW RETURN<br>TO<br>CW POND | WATER FROM<br>CW POND | POND WATER<br>TO CHILLER<br>DRUM | WATER TO<br>CHILLER | WATER<br>FROM<br>CHILLER | CHILLED<br>WATER-1N<br>RECY WTR CLR | CHILLED WATER<br>TO BLNKT GAS<br>COOLER | CW RETURN<br>FROM BLNKT<br>GAS COOLER |
| SOLIDS (DRY)<br>WATER   | lb/h<br>lb/h   |  | 2,739,252                  | 2,739,252             | 135,008                          | 1,549,256           | 1,549,256                | 1,264,248                           | 150,000                                 | 150,000                               |
| STREAM TOTAL            | lb/h           |  | 2,739,252                  | 2,739,252             | 135,008                          | 1,549,256           | 1,549,256                | 1,264,248                           | 150,000                                 | 150,000                               |
| SOLIDS (DRY)<br>WATER   | gpm<br>gpm     |  | 5,479                      | 5,479                 | 270                              | 3,099               | 3,099                    | 2,528                               | 300                                     | 300                                   |
| TOTAL FLOW              | gpm            |  | 5,479                      | 5,479                 | 270                              | 3,099               | 3,099                    | 2,528                               | 300                                     | 300                                   |
| SOLIDS CONTENT          | wt %           |  |                            |                       |                                  |                     |                          |                                     |                                         |                                       |
| TEMPERATURE<br>PRESSURE | deg °F<br>psia |  | 115<br>18.0                | 70<br>50              | 70<br>15                         | 60.9<br>70          | 50<br>60                 | 50<br>25                            | 50<br>50                                | 60<br>15                              |
| ENTHALPY (round off)    | Btu/h          |  | 227,358,000                | 104,092,000           | 5,130,000                        | 44,729,000          | 27,887,000               | 22,756,000                          | 2,700,000                               | 4,200,000                             |

**Table 6.2.4**  
**PLANT 400: CLEAN COAL DEWATERING**  
**Material and Heat Balance**  
Quantities are total for all trains

| STREAM NO.         |        | 401                     | 402                          | 403                       |
|--------------------|--------|-------------------------|------------------------------|---------------------------|
| STREAM NAME        |        | CLEAN<br>COAL<br>SLURRY | CLEAN<br>COAL<br>FILTER CAKE | CLEAN<br>COAL<br>FILTRATE |
| SOLIDS (DRY)       | lb/h   | 433,380                 | 433,380                      |                           |
| WATER              | lb/h   | 1,034,363               | 254,525                      | 779,838                   |
| STREAM TOTAL       | lb/h   | 1,467,743               | 687,905                      | 779,838                   |
| SOLIDS (DRY)       | gpm    | 667                     | 667                          |                           |
| WATER              | gpm    | 2,069                   | 509                          | 1,560                     |
| STREAM TOTAL       | gpm    | 2,735                   | 1,176                        | 1,560                     |
| SOLIDS CONTENT     | wt %   | 30                      | 63                           |                           |
| TEMPERATURE        | deg °F | 80                      | 80                           | 80                        |
| PRESSURE           | psia   | 15                      | 15                           | 15                        |
| ENTHALPY (rounded) | Btu/h  | 55,890,000              | 18,458,000                   | 37,432,000                |


**Table 6.2.5**  
**PLANT 500: WATER CLARIFICATION AND TAILINGS HANDLING**  
**Material and Heat Balance**


| STREAM NO.         |       | 501                 | 502               | 503                 | 503A                             | 504                 | 505                | 506              | 507                          | 508                                    | 509                                |
|--------------------|-------|---------------------|-------------------|---------------------|----------------------------------|---------------------|--------------------|------------------|------------------------------|----------------------------------------|------------------------------------|
| STREAM NAME        |       | TAILINGS            | TAILINGS FILTRATE | THICKENER FEED      | HEAT LOSS IN THICKENER (assumed) | THICKENER UNDERFLOW | THICKENER OVERFLOW | TAILINGS CAKE    | CLARIFIED WATER TO PLANT 600 | UTILITY WATER TO THICKENER O'FLOW TANK | THICKENER O'FLOW TANK + STREAM 508 |
| SOLIDS (DRY) WATER | lb/h  | 32,620<br>4,010,614 | 69,900            | 32,620<br>4,860,352 |                                  | 32,620<br>130,480   | 4,729,872          | 32,620<br>60,580 | 35,840                       | 180,629                                | 4,910,501                          |
| STREAM TOTAL       | lb/h  | 4,043,234           | 69,900            | 4,892,972           |                                  | 163,100             | 4,729,872          | 93,200           | 35,840                       | 180,629                                | 4,910,501                          |
| SOLIDS (DRY) WATER | gpm   | 50<br>8,021         | 140               | 50<br>9,721         |                                  | 50<br>261           | 0<br>9,460         | 50<br>121        | 72                           | 361                                    | 9,821                              |
| STREAM TOTAL       | gpm   | 8,071               | 140               | 9,771               |                                  | 311                 | 9,460              | 171              | 72                           | 361                                    | 9,821                              |
| SOLIDS CONTENT     | wt %  | 0.81                |                   | 0.67                |                                  | 20                  |                    | 35               |                              |                                        |                                    |
| TEMPERATURE        | °F    | 72                  | 73                | 73                  |                                  | 73                  | 73                 | 73               | 73                           | 70                                     | 73                                 |
| PRESSURE           | psia  | 14.7                | 15                | 15                  |                                  | 20                  | 12                 | 12               | 45                           | 12                                     | 60                                 |
| ENTHALPY (rounded) | Btu/h | 160,577,000         | 2,883,000         | 200,893,000         | 900,000                          | 5,786,000           | 194,207,000        | 2,903,000        | 1,468,000                    | 6,863,912                              | 201,070,697                        |

| STREAM NO.         |        | 510                                   | 511                        | 512                         | 513                             | 514                          | 514A                           | 515                                | 516                                 | 517                       | 518                       |
|--------------------|--------|---------------------------------------|----------------------------|-----------------------------|---------------------------------|------------------------------|--------------------------------|------------------------------------|-------------------------------------|---------------------------|---------------------------|
| STREAM NAME        |        | CLARIFIED WATER TO 350-E-120 THRU 129 | RECYCLE WATER COOLER INLET | RECYCLE WATER COOLER OUTLET | CLARIFIED WATER TO LSR & SCREEN | CLARIFIED WATER TO PLANT 200 | RECYCLE WATER COOLER HEAT LOAD | CHILLED WATER-1N RECYCLE WATER CLR | COOLING WATER-OUT RECYCLE WATER CLR | TOTAL PLANT MAKE-UP WATER | BOILER FEED WATER MAKE-UP |
| SOLIDS (DRY) WATER | lb/h   | 584,835                               | 4,289,826                  | 4,289,826                   | 1,686,943                       | 2,602,883                    |                                | 1,264,248                          | 1,264,248                           | 313,161                   | 132,532                   |
| STREAM TOTAL       | lb/h   | 584,835                               | 4,289,826                  | 4,289,826                   | 1,686,943                       | 2,602,883                    |                                | 1,264,248                          | 1,264,248                           | 313,161                   | 132,532                   |
| SOLIDS (DRY) WATER | gpm    | 1,170                                 | 8,580                      | 8,580                       | 3,374                           | 5,206                        |                                | 2,528                              | 2,528                               | 626                       | 265                       |
| STREAM TOTAL       | gpm    | 1,170                                 | 8,580                      | 8,580                       | 3,374                           | 5,206                        |                                | 2,528                              | 2,528                               | 626                       | 265                       |
| SOLIDS CONTENT     | wt %   |                                       |                            |                             |                                 |                              |                                | 50                                 | 60                                  | 70                        | 70                        |
| TEMPERATURE        | deg °F | 73                                    | 73                         | 70                          | 70                              | 70                           |                                | 25                                 | 15                                  | 15                        | 20                        |
| PRESSURE           | psia   | 45                                    | 45                         | 45                          | 50                              | 50                           |                                |                                    |                                     |                           |                           |
| ENTHALPY (rounded) | Btu/h  | 23,947,000                            | 175,656,000                | 163,013,000                 | 64,104,000                      | 98,910,000                   | 12,642,000                     | 22,756,000                         | 35,399,000                          | 11,900,000                | 5,036,000                 |

**Table 6.2.6**  
**PLANT 600: CWF PREPARATION AND LOADING**  
**Material and Heat Balance**  
Note: Quantities are total for two trains

| STREAM NO.         |       | 601                        | 602                                   | 603                      | 604               | 605                                | 606                 | 607               | 608                              |
|--------------------|-------|----------------------------|---------------------------------------|--------------------------|-------------------|------------------------------------|---------------------|-------------------|----------------------------------|
| STREAM NAME        |       | DEWATERED<br>CLEAN<br>COAL | CLARIFIED<br>WATER<br>TO<br>PLANT 600 | PREMIUM<br>FUEL<br>(CWF) | SOLID<br>ADDITIVE | WATER<br>IN<br>ADDITIVE<br>MIXTURE | ADDITIVE<br>MIXTURE | FEED TO<br>MIXERS | WATER FOR<br>FINAL<br>ADJUSTMENT |
| SOLIDS (DRY)       | lb/h  | 433,380                    |                                       | 433,380                  |                   |                                    |                     | 433,380           |                                  |
| SOLID ADDITIVE     | lb/h  |                            |                                       | 2,167                    | 2,167             |                                    |                     | 2,167             |                                  |
| WATER              | lb/h  | 254,525                    | 35,840                                | 290,365                  |                   | 2,648                              | 2,648               | 257,173           | 33,191                           |
| STREAM TOTAL       | lb/h  | 687,905                    | 35,840                                | 725,912                  | 2,167             | 2,648                              | 4,815               | 692,720           | 33,191                           |
| SOLIDS (DRY)       | gpm   | 667                        |                                       | 667                      | 3                 |                                    | 3                   | 667               |                                  |
| WATER              | gpm   | 509                        | 72                                    | 581                      |                   | 5                                  | 5                   | 514               | 66                               |
| STREAM TOTAL       | gpm   | 1,176                      | 72                                    | 1,247                    | 3                 | 5                                  | 8                   | 1,181             | 66                               |
| SOLIDS CONTENT     | wt %  | 63                         |                                       | 60                       |                   |                                    | 45                  | 63                |                                  |
| TEMPERATURE        | °F    | 80                         | 73                                    | 79                       | 70                | 73                                 | 72                  | 83                | 39                               |
| PRESSURE           | psia  | 15                         | 15                                    | 15                       | 15                | 15                                 | 15                  | 15                | 15                               |
| ENTHALPY           | Btu/h | 18,457,861                 | 1,467,537                             | 19,950,100               | 24,703            | 108,446                            | 133,148             | 19,708,506        | 241,594                          |
| ENTHALPY (rounded) | Btu/h | 18,458,000                 | 1,468,000                             | 19,950,000               | 25,000            | 108,000                            | 133,000             | 19,708,000        | 242,000                          |



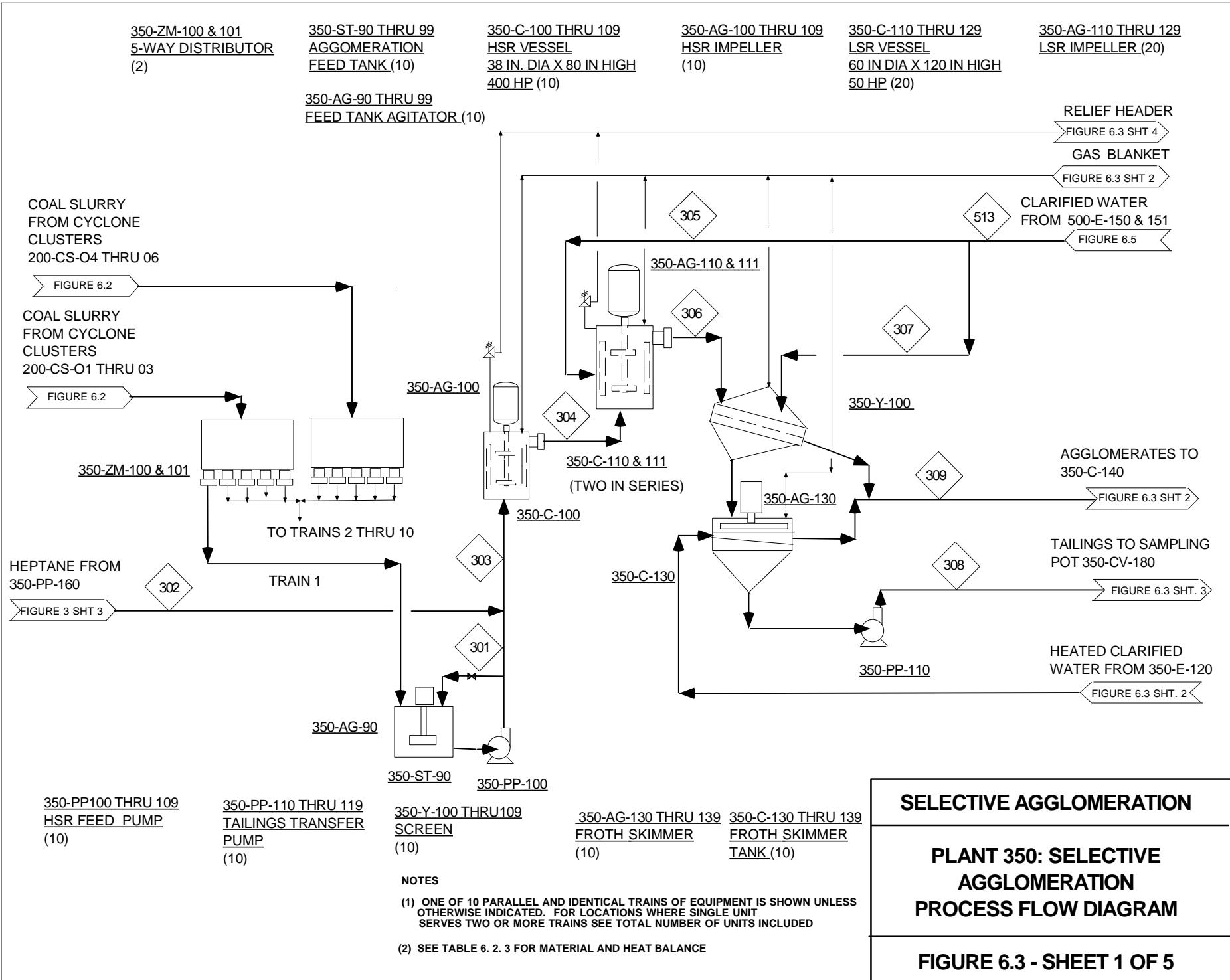


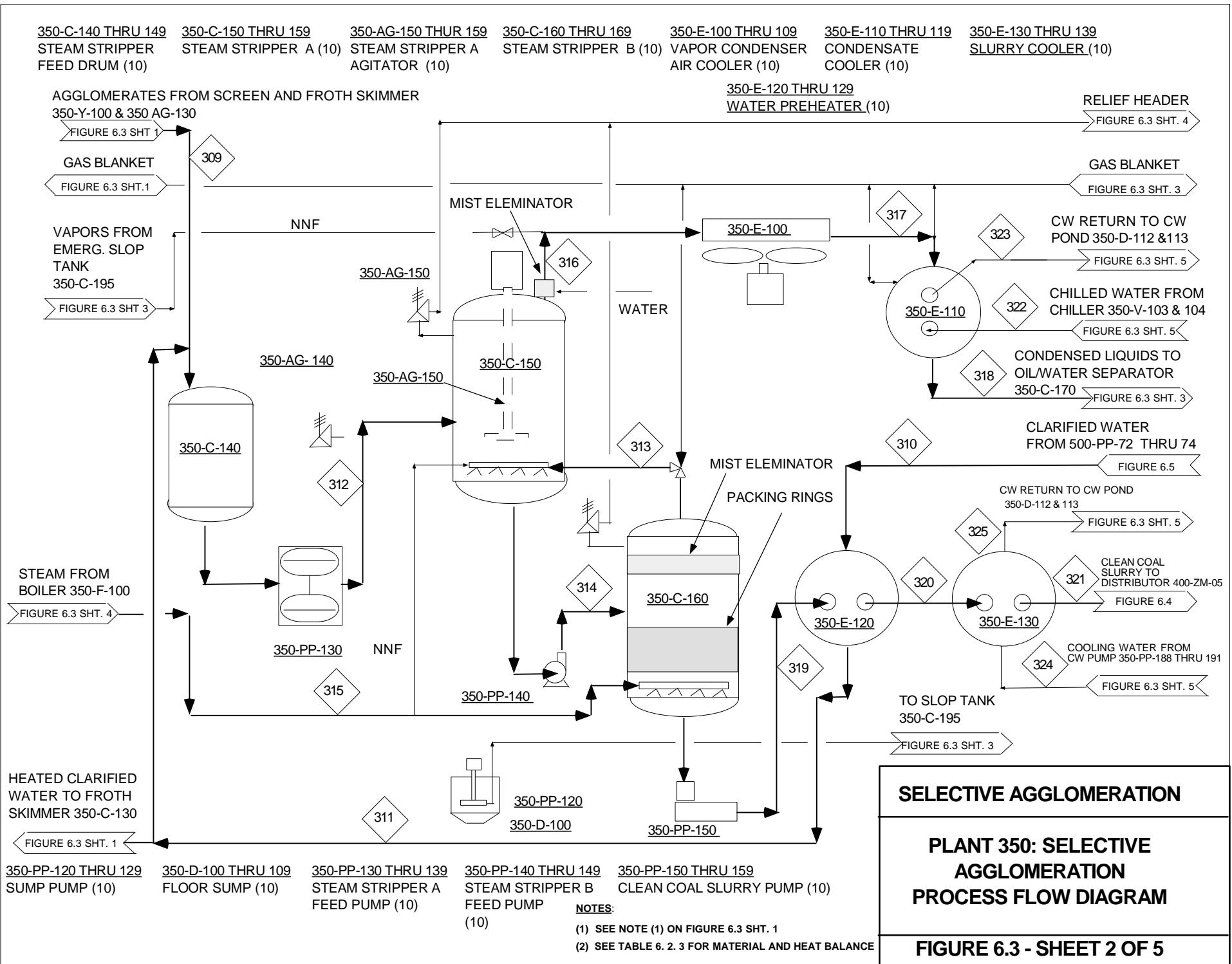
200-CV-10 & 11  
CRUSHER FEED  
CONVEYOR (2)

200-CV-12 & 13  
BALL MILL FEED  
CONVEYOR (2)

200-AG-01 & 02      200-ST-10 & 11  
CYCLONE FEED PUMP   CYCLONE FEED  
SUMP MIXER (2)          SUMP (2)

200-PP-01 & 02  
CYCLONE FEED  
PUMP (2)


## SELECTIVE AGGLOMERATION


# PLANT 200: CRUSHING AND GRINDING PROCESS FLOW DIAGRAM

## NOTES:

1. ONE OF TWO PARALLEL AND IDENTICAL TRAINS OF EQUIPMENT IS SHOWN
2. SEE TABLE 6.2.2 FOR MATERIAL AND HEAT BALANCE

## FIGURE 6.2





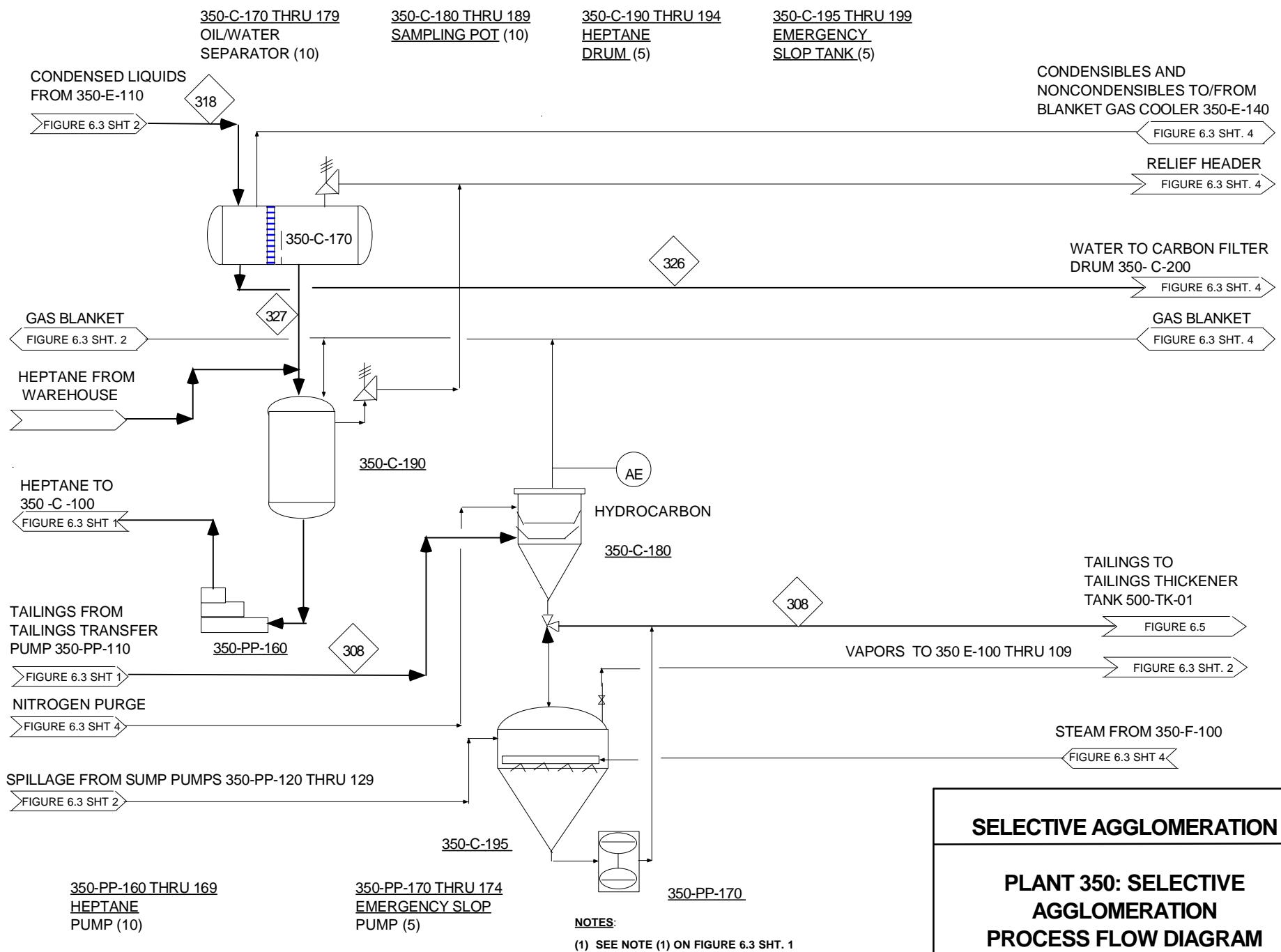
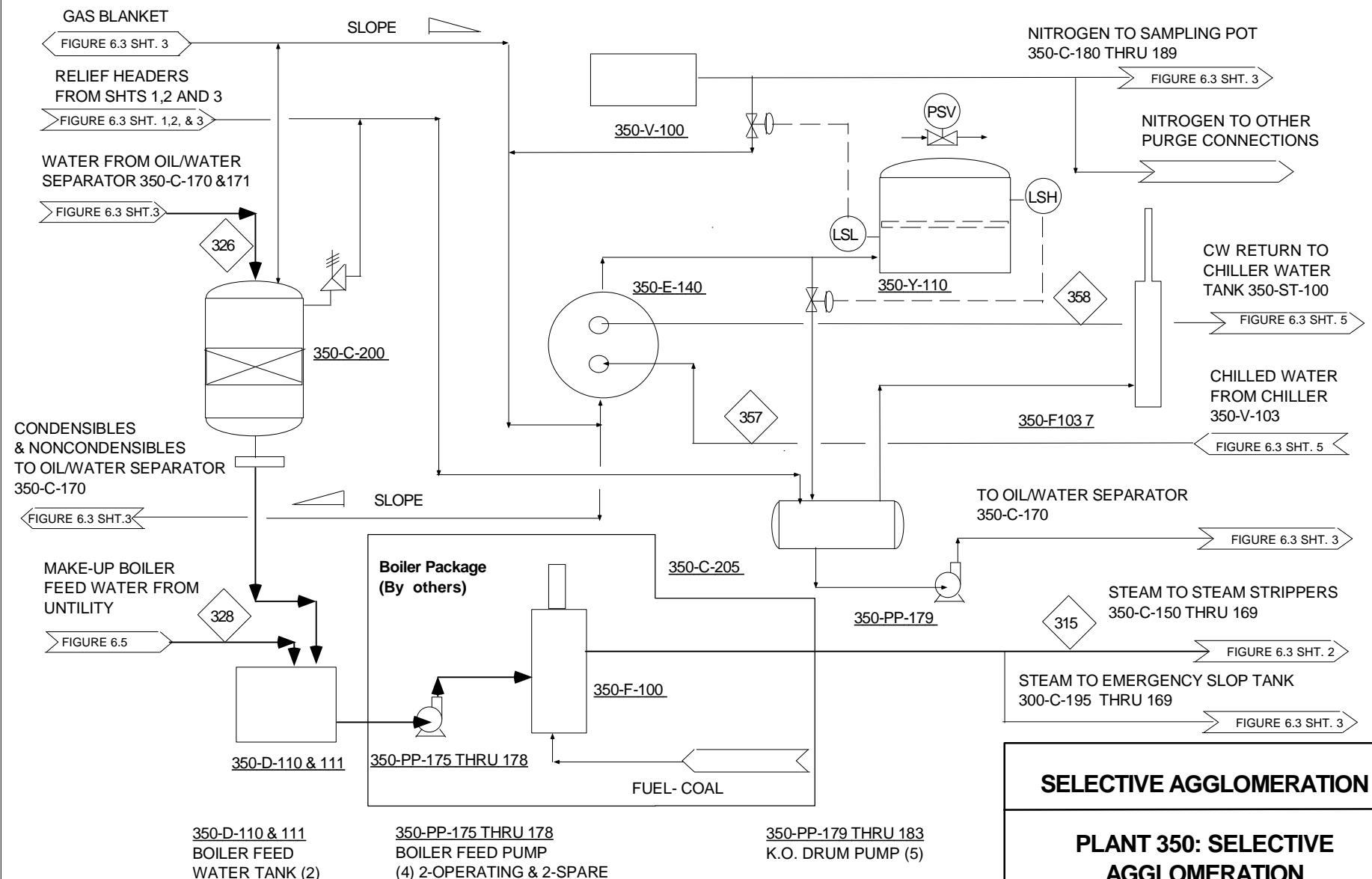



FIGURE 6.3 - SHEET 3 OF 5

350-C-200 THRU 204  
CARBON FILTER  
DRUM (5)

350-F-100  
BOILER PACKAGE


350-E-140 THRU 149  
BLANKET  
GAS COOLER (10)

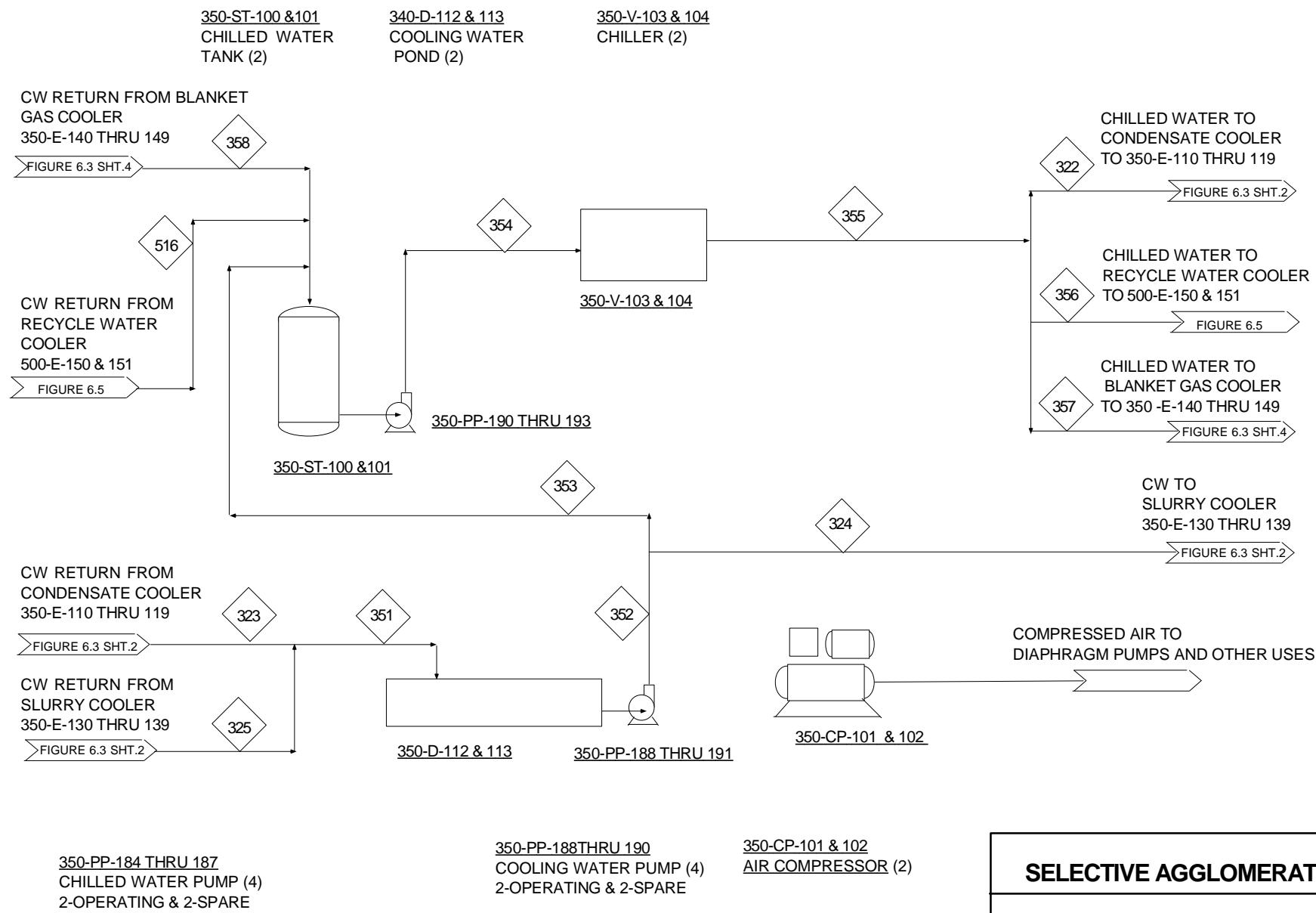
350-V-100 & 101  
NITROGEN  
PACKAGE (2)

350-C-205 & 209  
RELIEF K.O.  
DRUM (5)

350-Y-110 THRU 114  
GAS HOLDER (5)

350-F-102 THRU 106  
FLARE (5)

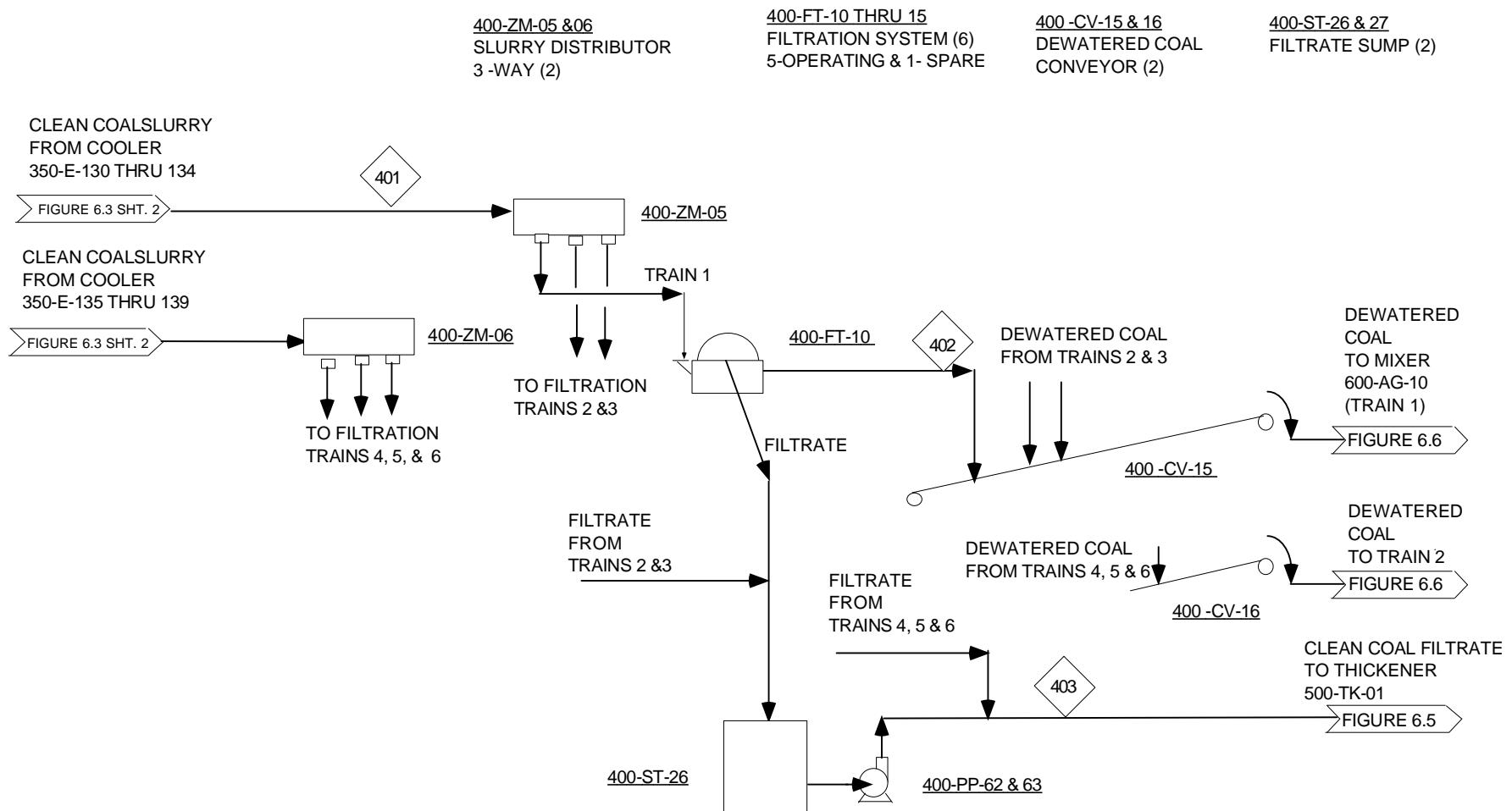



## SELECTIVE AGGLOMERATION

### PLANT 350: SELECTIVE AGGLOMERATION PROCESS FLOW DIAGRAM

FIGURE 6.3 - SHEET 4 OF 5

#### NOTES:


- (1) SEE NOTE (1) ON FIGURE 6.3 SHT. 1
- (2) SEE TABLE 6.2.3 FOR MATERIAL AND HEAT BALANCE



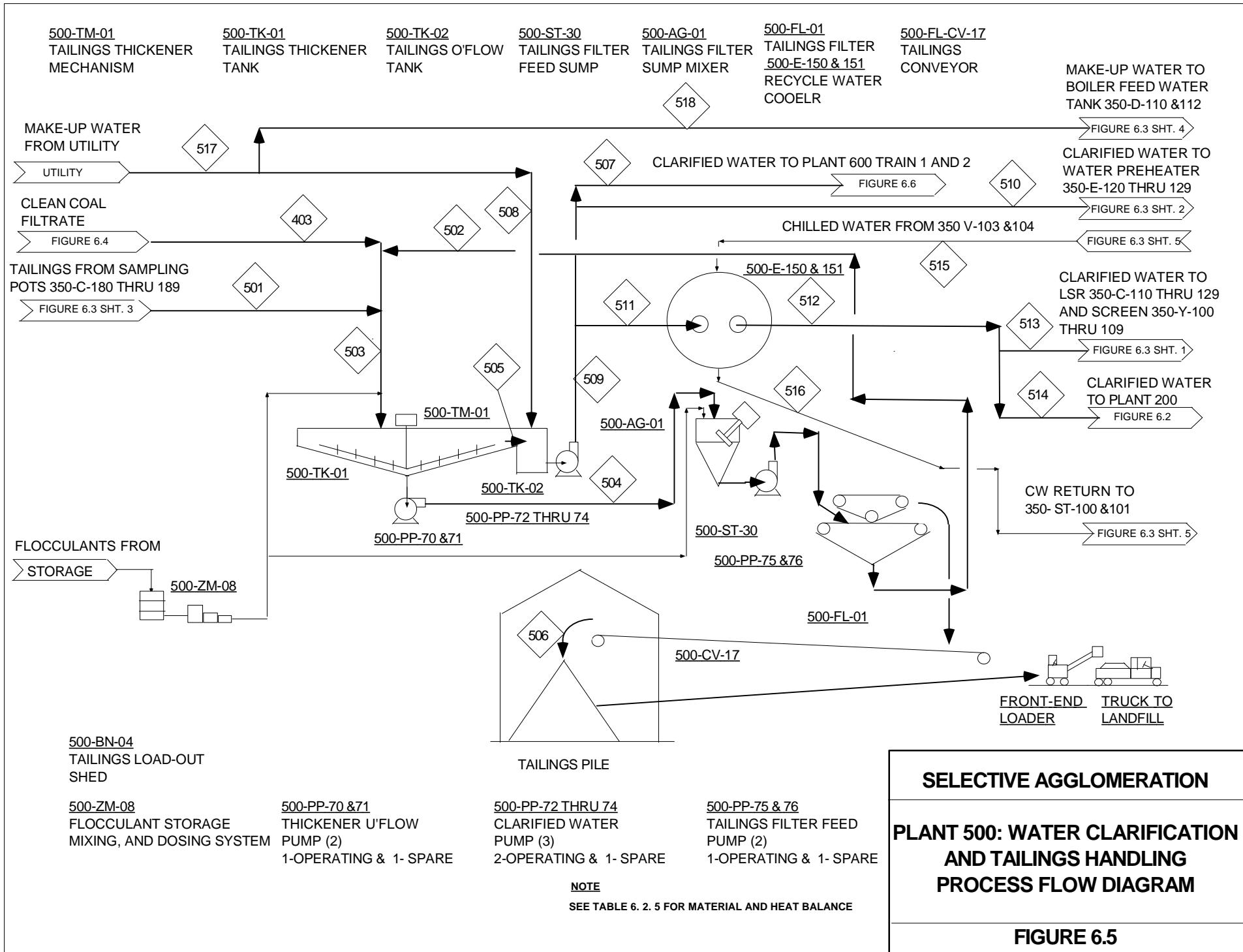
## SELECTIVE AGGLOMERATION

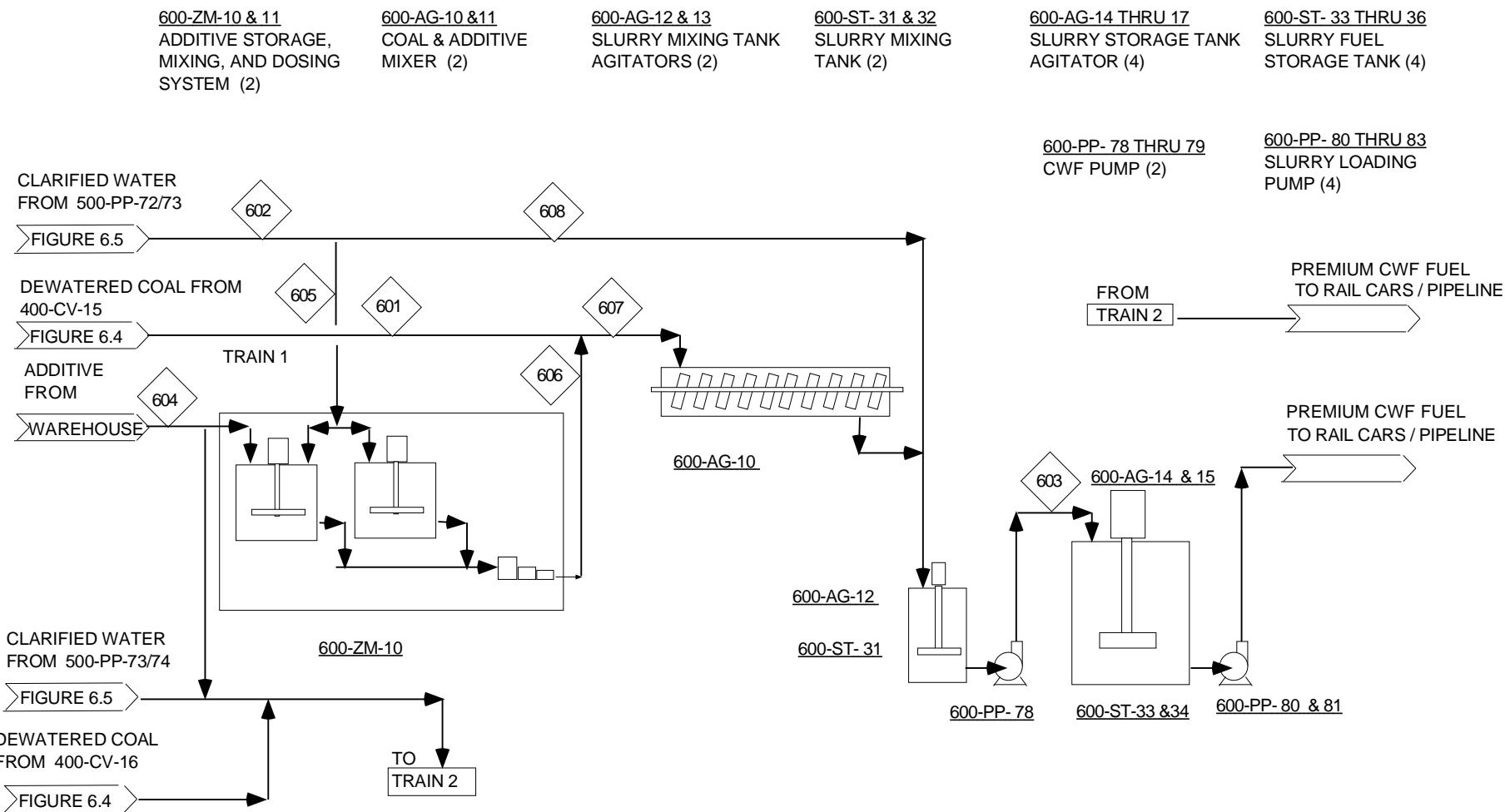
### PLANT 350: SELECTIVE AGGLOMERATION PROCESS FLOW DIAGRAM

FIGURE 6.3 SHEET 5 OF 5



## SELECTIVE AGGLOMERATION


### PLANT 400: CLEAN COAL DEWATERING PROCESS FLOW DIAGRAM


**FIGURE 6.4**

#### NOTES

(1) SEE TABLE 6.2.4 FOR MATERIAL AND HEAT BALANCE

(2) ONE OF SIX IDENTICAL FILTERING TRAINS SHOWN





## SELECTIVE AGGLOMERATION

### PLANT 600: CWF PREPARATION AND LOADING PROCESS FLOW DIAGRAM

FIGURE 6.6

#### NOTES:

- (1) SEE TABLE 6. 2. 6 FOR MATERIAL AND HEAT BALANCE
- (2) ONE OF TWO IDENTICAL AND PARALLEL TRAINS OF EQUIPMENT IS SHOWN

## Section 7

# Cost of Premium CWF - Column Flotation

---

This section presents conceptual capital and annual operating and maintenance (O&M) cost estimates for a commercial plant for the production of premium CWF. The plant employs the column flotation process. Based on the estimates, the cost of production of CWF (\$/MBu) has been calculated. Further, a number of analysis have been performed to evaluate the sensitivity of the cost of production to variations in the process criteria, unit cost of selected in-puts, plant performance and capital investment.

## 7.1 CAPITAL COSTS

Capital cost estimates have been developed based on the criteria, description, flow diagrams, material balances and major equipment list included in Sections 4 and 5. Details of capital cost estimates are placed under Appendix A. A summary of the capital cost estimates is presented in Table 7.1.1 which includes a break down showing costs for different plant sections. The estimated capital cost of the project is \$ 69.6 million (First Quarter 1997).

### 7.1.1 Total Field Costs

Procedures employed for the development of cost estimates are consistent with the conceptual nature of the plant engineering definition at this stage. These include informal vendor contacts for pricing major equipment such as the grinding mills as well as use of current Bechtel in-house data, with extrapolation and adjustment if appropriate.

Quantities of bulk materials for civil, structural, electrical, instrumentation and piping work necessary for the construction of the plant are not computed due to lack of more detailed engineering. As per normal accepted practice in such cases, the costs of these items are estimated as percentages of identified equipment costs. The percentages are derived from Bechtel experience with similar projects.

It is expected that equipment installation and field construction work will be performed by union labor. Job hours for equipment installation have been developed using typical job hours for machinery units of similar size and nature. An average labor rate of \$30 per hour has been applied to the job hours. The rate which includes payroll additives, fringe benefits, workmen's compensation, and spot overtime has also been used for field construction job hours. It is based on current union labor agreements for a 40-hour week in the Cleveland, Ohio area.

A 3% sales tax is included for procured items. An allowance for freight to plant site is included at 3 percent of the ex-works cost of equipment and bulks.

Indirect Field Costs which include items such as indirect manual labor, temporary construction facilities, tools and tackle, and field office are included at 60 percent of direct labor costs.

### 7.1.2 Total Project Capital Cost and Working Capital

**Total Installed Plant Cost** The Total Installed Plant Cost is derived by adding engineering and home office costs as well as contingencies to the Total Field Costs.

Engineering and home office costs (engineering, procurement, and project management) are calculated at 7 percent of Total Direct Field Costs (Total Field Costs less Indirect Field Costs).

The estimated capital costs are intended to reflect costs of a 'nth' CWF production facility after problems associated with initial ventures of a new technology application have been satisfactorily resolved. Also, the column flotation section (new technology) accounts for less than 15 percent of the total field costs. Based on these consideration a provision of 15 percent has been made for contingencies.

**Startup and Land** An allowance of 1 percent of the Total Installed Plant Cost has been made for plant start-up and operator training. Cost of land for plant and facilities is estimated at \$120,000.

**Exclusions in Capital Cost Estimates** The Total Project Capital Cost does not include owners' permitting and other such costs, taxes, and escalation beyond the First Quarter of 1997. Cost of utility lines outside the plant battery limits are also not included.

**Working Capital** Working capital requirements have been calculated on the basis of a month's cost of coal and two month's expenditure against labor and variable O&M costs.

## 7.2 O&M COSTS AND COST OF CWF

The annual O&M cost estimates are based on the design criteria shown in Section 4 and 5 conceptual information generated during the study. Calculations of annual Variable and Fixed O&M costs are summarized in Table 7.2.1

### 7.2.1 Variable O&M Costs

Major reagents and consumable used in the CWF production facility are: collector and frother for flotation, ball charge, flocculants, CWF additive, power and water. O&M supplies, refuse disposal and loss of coal heating value (Btu) with tailings (refuse) are other items of Variable O&M costs. The usage or consumption rates of these consumable are shown in Table 7.2.1. Table 7.2.2 provides details of flocculant consumption.

The O&M cost estimates use consumption rates for the collector (fuel oil) and the frother (MIBC) at 0.75 lb/st based on the coal feed to flotation columns. This is the median value for all coals tested earlier under the program.

Consumption of balls for grinding coal is estimated at 1 lb/st of coal ground. Recommended dosage for flocculants shown in Table 8.2.2 is taken from EPRI's Coal Cleaning Cost Model (EPRI Report TRI 101025). Median values of the recommended ranges have been used in the estimates.

## Cost of Premium CWF - Column Flotation

---

Based on tests conducted in the laboratory under the program an average consumption of 10 lb (solid) of additive A-23 has been recommended for producing the required solids loading and viscosity of the CWF.

The cost of consumable O & M supplies such as spare parts are estimated based on Bechtel experience at 5 percent of the cost of major equipment in the plant. Consumption rates for electric power and water have been derived from the major equipment list and material balances respectively.

An allowance of \$5.00/st (dry) has been made for tailings disposal. Disposal costs could vary significantly depending upon conditions at the selected site.

The plant is expected to operate with a Btu recovery of 96.1 percent. Thus tailings from the plant include 3.9 percent of the energy supplied to the CWF production plant in the form of raw coal. The monetary value of the Btu lost with the tailings is calculated based on the delivered cost of coal energy (\$/MBtu).

Based on annual consumption as described above, Variable O&M costs have been calculated using the following unit cost rates.

| Cost Element                              | Unit        | Cost (\$) |
|-------------------------------------------|-------------|-----------|
| Collector (fuel oil)                      | \$/lb       | 0.20      |
| Frother (MIBC)                            | \$/lb       | 0.85      |
| Ball charge                               | \$/st       | 600       |
| Flocculants                               | See Table   | 7.2.2     |
| CWF additive (A-23) - solids              | \$/lb       | 0.70      |
| Electric power                            | \$/kWh      | 0.055     |
| Water                                     | \$/1000 gal | 0.60      |
| Refuse disposal                           | \$/dry ton  | 5.00      |
| Cost of raw coal: delivered (as received) | \$/st       | 32.5      |
|                                           | \$/MBtu     | 1.24      |

### 7.2.2 Fixed O&M Costs

Labor costs and capital charges with interest on Working Capital are included in fixed O&M costs.

Table 7.2.3 provides a listing of management, operating and maintenance personnel required to staff the facility. A total of 81 employees is envisaged. Labor costs are estimated at an average cost of \$75,000 per employee per annum.

Annual capital charges are calculated for the Total Project Capital cost based on a 20 year life and 15 percent rate of return which is considered reasonable. Interest on working capital has been calculated at 8 percent per annum.

### 7.2.3 Total Annual Variable and Fixed O&M Costs- Cost of CWF

As shown in Table 7.2.1 total Variable and Fixed O&M costs are estimated at \$0.913/MBtu of heating value in the premium CWF without considering the cost of coal. A break down of the costs is as follows:

| Cost Element                                    | \$/MBtu | %     |
|-------------------------------------------------|---------|-------|
| Capital Charges and interest on Working Capital | 0.27    | 29.1  |
| CWF additive, A-23                              | 0.23    | 25.6  |
| Labor                                           | 0.13    | 14.6  |
| Electric Power                                  | 0.11    | 12.3  |
| Flotation Reagents & Flocculant                 | 0.07    | 7.5   |
| Btu Loss                                        | 0.05    | 5.5   |
| Others                                          | 0.05    | 5.4   |
| Total Cost of CWF                               | 0.91    | 100.0 |

Less cost of coal

Including the cost of coal delivered to plant site at 1.24/MBtu, the total cost of production of premium CWF is estimated at \$2.15/MBtu.

### 7.3 SENSITIVITY STUDIES

One of the major elements in the cost of production of CWF is the cost of A-23 dispersant additive. Use of the additive becomes necessary to meet the specified 60 percent solids loading of the product. If the solids loading could be reduced to around 54 percent, the product could be produced without the use of the additive A-23. In such an event the total cost of CWF would be reduced from \$2.15/MBtu to \$1.92 representing a reduction of \$0.23/MBtu.

A series of sensitivity analysis was performed to evaluate the sensitivity of the cost of production of CWF to variations in other selected cost input parameters. The cases studied are listed in Table 7.3.1. Results of the analysis are shown in Table 7.3.2. Details of calculation are placed in Appendix C.

As may be expected, variations in coal prices have the maximum impact on the cost of CWF. The cost of coal accounts for nearly 60 percent (57.5+2.3) of the cost of the product in the base case. The other significant factor is the annual production rate.

**Table 7.1.1**  
**PREMIUM CWF PRODUCTION- COLUMN FLOTATION**  
**Capital Cost Summary**

|                                                       | \$ x 1000     | %            |
|-------------------------------------------------------|---------------|--------------|
| Raw Coal Handling - Plant 100                         | 13,886        | 24.7         |
| Crushing and Grinding - Plant 200                     | 19,249        | 34.2         |
| Column Flotation - Plant 300                          | 6,984         | 12.4         |
| Clean Coal Dewatering - Plant 400                     | 7,216         | 12.8         |
| Water Clarification and Tailings Handling - Plant 500 | 3,135         | 5.6          |
| CWF Preparation and Loading - Plant 600               | 5,799         | 10.3         |
| <b>Total Field Costs</b>                              | <b>56,268</b> | <b>100.0</b> |
| Engineering and Home Office                           | 3,535         |              |
| Contingency @ 15%                                     | 8,970         |              |
| <b>Total Installed Plant Cost</b>                     | <b>68,773</b> |              |
| Startup and Operator training 1 %                     | 688           |              |
| Land-60 acres at \$ 2000 per acre                     | 120           |              |
| <b>Total Project Capital Cost</b>                     | <b>69,581</b> |              |
| <b>Working Capital</b>                                | <b>10,000</b> |              |

Not Included: Cost of permits and escalation beyond first quarter of 1997.

**Table 7.2.1**  
**PREMIUM CWF PRODUCTION - COLUMN FLOTATION**  
**Variable and Fixed O & M Costs - Cost of CWF**

| Cost element                                                | Usage         |       | Unit cost     |        | st/h | \$/h | Plant Availability % | 1000 x \$/y | Cost of CWF |              |         |                  |
|-------------------------------------------------------------|---------------|-------|---------------|--------|------|------|----------------------|-------------|-------------|--------------|---------|------------------|
|                                                             | unit          | value | unit          | \$     |      |      |                      |             | \$/st       | product coal | \$/MBtu | % Excluding coal |
| <b>Variable O&amp;M Costs</b>                               |               |       |               |        |      |      |                      |             |             |              |         |                  |
| Collector                                                   | lb/st of feed | 0.75  | \$/lb         | 0.20   | 233  | 35   | 81                   | 249         | 0.17        | 0.006        | 0.6     | 0.3              |
| Frother                                                     | lb/st of feed | 0.75  | \$/lb         | 0.85   | 233  | 149  | 81                   | 1,059       | 0.71        | 0.024        | 2.6     | 1.1              |
| Ball charge                                                 | lb/st of feed | 1.00  | \$/ton        | 600    | 233  | 70   | 81                   | 498         | 0.33        | 0.011        | 1.2     | 0.5              |
| Flocculant                                                  | (1)           |       | \$/st         | 11.0   | 22.6 | 248  | 81                   | 1,764       | 1.18        | 0.039        | 4.3     | 1.8              |
| CWF additive-A23                                            | lb/st (2)     | 10    | \$/lb         | 0.70   | 211  | 1474 | 81                   | 10,500      | 7.00        | 0.234        | 25.6    | 10.8             |
| O&M supplies (3)                                            |               |       |               |        |      |      |                      | 773         | 0.52        | 0.017        | 1.9     | 0.8              |
| Electric power (4)                                          | 10^6 kWh/st   | 61    | \$/kWh        | 0.055  | 211  | 705  | 81                   | 5,023       | 3.35        | 0.112        | 12.2    | 5.2              |
| Water                                                       | gpm           | 531   | \$/1000 gal   | 0.60   |      | 19   | 81                   | 136         | 0.09        | 0.003        | 0.3     | 0.1              |
| Refuse (tailings) disposal                                  |               |       | \$/st         | 5.0    | 22.6 | 113  | 81                   | 806         | 0.54        | 0.018        | 2.0     | 0.8              |
| Btu losses (5)                                              | 10^6 MBtu/h   | 253   | \$/MBtu       | 1.24   |      | 315  | 81                   | 2,243       | 1.50        | 0.050        | 5.5     | 2.3              |
| <b>Total Variable O &amp; M Costs</b>                       |               |       |               |        |      |      |                      | 23,052      | 15.37       | 0.514        | 56.2    | 23.8             |
| <b>Fixed O &amp; M Costs</b>                                |               |       |               |        |      |      |                      |             |             |              |         |                  |
| Labor                                                       | Employees     | 81    | \$/y/employee | 75,000 |      |      |                      | 6,075       | 4.05        | 0.135        | 14.8    | 6.3              |
| Capital Charges & Interest on working capital (6)           |               |       |               |        |      |      |                      | 11,916      | 7.94        | 0.265        | 29.0    | 12.3             |
| <b>Total Fixed O &amp; M Costs</b>                          |               |       |               |        |      |      |                      | 17,991      | 11.99       | 0.401        | 43.8    | 18.6             |
| <b>Total Variable and Fixed O &amp; M Costs</b>             |               |       |               |        |      |      |                      | 41,043      | 27.36       | 0.914        | 100.0   | 42.4             |
| Raw Coal                                                    |               |       | \$/MBtu       | 1.243  |      |      |                      | 55,807      | 37.2        | 1.243        |         | 57.6             |
| <b>Total cost of Premium CWF including cost of raw coal</b> |               |       |               |        |      |      |                      | 96,850      | 64.57       | 2.158        |         | 100.0            |

(1) Per st of dry feed to tailings (refuse) thickener and belt press filter- See Table 7.2.2

(2) Per dry st of coal

(3) 5 % of major equipment cost

(4) Power consumption per st of dry coal in product

(5) Calculated Btu losses per hour =  $(233.2 \times 14054 \times 2000) - (211 \times 14962 \times 2000) = 253.3 \text{ MBtu/h}$

(6) Charges against capital cost: 69,581 (\$x1000) , Terms- 15 %-20yr- factor= 15.98% Equals 11,116 (\$x1000 per year)  
'-Interest on Working Capital at 8% Equals 800 (\$x1000 per year)

**Table 7.2.1 (continued)**  
**PREMIUM CWF PRODUCTION - COLUMN FLOTATION**  
**Variable and Fixed O & M Costs - Cost of CWF**

**Calculation basis**

|                                  |         |        |
|----------------------------------|---------|--------|
| Raw coal-HHV (dry basis)         | Btu/lb  | 14,054 |
| Coal in product- HHV (dry basis) | Btu/lb  | 14,962 |
| Feed (dry basis)                 | st/h    | 233    |
| Product (dry basis)              | st/h    | 211    |
| Btu loss/h                       | MBtu/h  | 253    |
| Energy recovery                  | %       | 96.1   |
| Cost of raw coal (delivered)     | \$/st   | 32.5   |
| Feed coal HV (as received)       | Btu/lb  | 13,070 |
| Cost /MBtu of raw coal           | \$/MBtu | 1.24   |
| Weight recovery                  | %       | 90.3   |

**Table 7.2.2**  
**PREMIUM CWF PRODUCTION- COLUMN FLOTATION**  
**Flocculant Consumption**

Tailings (Refuse) dry solid feed rate to thickener and belt press = 22.62 st/h

|                           | Thickener              |                     | Belt press         |                     | Total usage | Reagent cost (2) | Flocculant cost \$/st of tailings |
|---------------------------|------------------------|---------------------|--------------------|---------------------|-------------|------------------|-----------------------------------|
|                           | Range (1) (2)<br>lb/st | Value used<br>lb/st | Range (2)<br>lb/st | Value used<br>lb/st |             |                  |                                   |
| Anionic                   | 1.5-2.5                | 2.0                 | 2.5-3.5            | 3.0                 | 5.0         | 1.75             | 8.8                               |
| Cationic                  | 2.0-3.0                | 2.5                 | 2.5-3.5            | 3.0                 | 5.5         | 0.40             | 2.2                               |
| Total cost of flocculants |                        |                     |                    |                     |             |                  | 11.0                              |

(1) Expected range of requirement per ton of tailings fed to the thickener and belt press

(2) Source: Coal Cleaning Cost Model - EPRI, Report TRI101025, March 1993 with unit cost escalated.

**Table 7.2.3**  
**PREMIUM CWF PRODUCTION - COLUMN FLOTATION**  
**Operating and Maintenance Personnel**

|                                                  |           |
|--------------------------------------------------|-----------|
| <b>Management:</b>                               |           |
| Plant Manager                                    | 1         |
| General Foreman                                  | 1         |
| Chemist/Engineer                                 | 2         |
| Clerk                                            | 1         |
| Total Management                                 | <u>5</u>  |
| <b>Operating and Maintenance labor / shift:</b>  |           |
| Shift foreman                                    | 1         |
| Control Room Operator                            | 1         |
| Electrician                                      | 1         |
| Mechanic                                         | 3         |
| Mechanic helper                                  | 3         |
| Welder                                           | 1         |
| Unloading and loading operations                 | 1         |
| Crushing and grinding plant                      | 2         |
| Flotation                                        | 1         |
| CWF Plant                                        | 1         |
| Thickener and centrifuge                         | 2         |
| Warehouse                                        | 1         |
| Lab assistant                                    | 1         |
| Total labor per shift                            | <u>19</u> |
| <b>Summary</b>                                   |           |
| Management                                       | 5         |
| Labor strength based on (4) Operating shifts (*) | <u>76</u> |
| <b>Total Employees</b>                           | <u>81</u> |

(\*) Strength required to staff 3 shifts/day and 7 days/week operating schedule.

**Table 7.3.1**  
**COST OF PREMIUM CWF - COLUMN FLOTATION**  
**Factors for Product Cost Sensitivity Analysis**

| Item                                                     | Base        |        | Variation        | Low Value | High Value | Remarks                                                                                 |
|----------------------------------------------------------|-------------|--------|------------------|-----------|------------|-----------------------------------------------------------------------------------------|
|                                                          | Unit        | Value  |                  |           |            |                                                                                         |
| <b>A Process Parameters</b>                              |             |        |                  |           |            |                                                                                         |
| (i) Ash in feed coal -dry basis                          | wt %        | 7.5    | +/- 50%          | 3.75      | 11.25      | Raw coal price of \$1.24/MBtu remains same at all ash levels- No change in Btu recovery |
| (ii) Loss of Btu                                         | %           | 4.9    | +100 to (-) 50 % | 2.45      | 9.80       |                                                                                         |
| <b>B Operating Cost Parameters</b>                       |             |        |                  |           |            |                                                                                         |
| (i) Price of feed coal                                   | \$/MBtu     | 1.24   | +/- 10%          | 1.116     | 1.36       | Base price equals \$32.50/st-delivered                                                  |
| (ii) Labor                                               | 1000 x \$/y | 6,075  | +/- 10%          | 5,468     | 6,683      |                                                                                         |
| (iii) Electricity                                        | 1000 x \$/y | 5,023  | +/- 10%          | 4,520     | 5,525      |                                                                                         |
| (iv) Reagents and additives                              | 1000 x \$/y | 11,808 | +/- 10%          | 10,627    | 12,989     | Frother, Collector and A-23 (no flocculant)                                             |
| <b>C Plant Parameters</b>                                |             |        |                  |           |            |                                                                                         |
| (i) Plant Production- same operating schedule            | 10 ^6 st/y  | 1.5    | +/- 10%          | 1.35      | 1.65       | Better or worse equipment performance                                                   |
| (ii) Plant Production- due to reduced operating schedule | 10 ^6 st/y  | 1.5    | - 46% / -21 %    | 0.79      | 1.18       | Base=19 shifts/wk: Reduced High=15 shifts /wk: Reduced Low=10 shifts/wk                 |
| <b>D Investment Parameters</b>                           |             |        |                  |           |            |                                                                                         |
| (i) Capital                                              | 1000 x \$   | 69,581 | - 10% /+ 20 %    | 62,623    | 83,497     |                                                                                         |

**Table 7.3.2**  
**PREMIUM CWF COST SENSITIVITY- FLOTATION**

| Sensitivity Study Cases                        | Notes | Unit        | Base Value | Low Value | High Value | Reference Table in Appendix C |
|------------------------------------------------|-------|-------------|------------|-----------|------------|-------------------------------|
| <b>A Process Parameters</b>                    |       |             |            |           |            |                               |
| (i) Ash in feed coal -dry basis                | (1)   | wt %        | 7.5        | 3.75      | 11.25      | See Table C-3                 |
| Cost /MBtu of Premium CWF                      |       | \$/MBtu     | 2.16       | 2.11      | 2.21       |                               |
| (ii) Loss of Btu                               | (1)   | %           | 4.9        | 2.45      | 9.80       | See Table C-3                 |
| Cost /MBtu of Premium CWF                      |       | \$/MBtu     | 2.16       | 2.14      | 2.17       |                               |
| <b>B Operating Cost Parameters</b>             |       |             |            |           |            |                               |
| (i) Price of feed coal                         |       | \$/MBtu     | 1.24       | 1.12      | 1.36       | See Table C-3                 |
| Cost /MBtu of Premium CWF                      |       | \$/MBtu     | 2.16       | 2.03      | 2.29       |                               |
| (ii) Labor                                     |       | 1000 x \$/y | 6,075      | 5,468     | 6,683      | See Table C-4                 |
| Cost /MBtu of Premium CWF                      |       | \$/MBtu     | 2.16       | 2.14      | 2.17       | See Table C-4                 |
| (iii) Electricity                              |       | 1000 x \$/y | 5,023      | 4,520     | 5,525      |                               |
| Cost /MBtu of Premium CWF                      |       | \$/MBtu     | 2.16       | 2.15      | 2.17       | See Table C-4                 |
| (iv) Reagents and additives                    | (2)   | 1000 x \$/y | 11,808     | 10,627    | 12,989     | Collector, Frother & A-23     |
| Cost /MBtu of Premium CWF                      |       | \$/MBtu     | 2.16       | 2.13      | 2.18       | See Table C-4                 |
| <b>C Plant Parameters</b>                      |       |             |            |           |            |                               |
| (i) Plant Production- same operating schedule  | (3)   | 10 ^6 st/y  | 1.5        | 1.35      | 1.65       | See Table C-5                 |
| Cost /MBtu of Premium CWF                      |       | \$/MBtu     | 2.16       | 2.20      | 2.12       |                               |
| (ii) Plant Production- due to reduced schedule | (4)   | 10 ^6 st/y  | 1.5        | 0.79      | 1.18       | See Table C-5                 |
| Cost /MBtu of Premium CWF                      |       | \$/MBtu     | 2.16       | 2.40      | 2.23       |                               |
| <b>D Investment Parameters</b>                 |       |             |            |           |            |                               |
| (i) Capital                                    |       | 1000 x \$   | 69,581     | 62,623    | 83,497     | See Table C-5                 |
| Cost /MBtu of Premium CWF                      |       | \$/MBtu     | 2.16       | 2.13      | 2.21       |                               |

(1) Raw coal price (\$1.24/MBtu) and Btu recovery are same for these cases

(2) Flocculants not considered

(3) Better or worse equipment performance

(4) Base=19 shifts/wk: Reduced High=15 shifts /wk: Reduced Low=10 shifts/wk

## Section 8

# Cost of Premium CWF - Selective Agglomeration

---

This section presents conceptual capital and annual operating and maintenance (O&M) cost estimates for a commercial plant for the production of premium CWF. The plant employs the selective agglomeration process. Based on the estimates, the cost of production of CWF (\$/MBtu) has been calculated. Further, a number of analysis have been performed to evaluate the sensitivity of the cost of production to variations in the process criteria, unit cost of selected in-puts, plant performance and capital investment.

## 8.1 CAPITAL COSTS

Capital cost estimates have been developed based on the criteria, description, flow diagrams, material balances and major equipment list included in Sections 4 and 6. Details of capital cost estimates are placed under Appendix B. A summary of the capital cost estimates is presented in Table 8.1.1 which includes a break down showing costs for different plant sections. The estimated capital cost of the project is \$ 97.24 million (First Quarter 1997).

### 8.1.1 Total Field Costs

Procedures employed for the development cost estimates are consistent with the conceptual nature of the plant's engineering definition at this stage. These include informal vendor contacts for pricing major equipment such as the grinding mills as well as use of current Bechtel in-house data, with extrapolation and adjustment if appropriate.

Quantities of bulk materials for civil, structural, electrical, instrumentation and piping work necessary for the construction of the plant are not computed due to lack of more detailed engineering. As per normal accepted practice in such cases, the costs of these items are estimated as percentages of identified equipment costs. The percentages are derived from Bechtel experience with similar projects.

It is expected that equipment installation and field construction work will be performed by union labor. Job hours for equipment installation have been developed using typical job hours for machinery units of similar size and nature. An average labor rate of \$30 per hour has been applied to the job hours. The rate which includes payroll additives, fringe benefits, workmen's compensation, and spot overtime has also been used for field construction job hours. It is based on current union labor agreements for a 40-hour week in the Cleveland, Ohio area.

A 3% sales tax is included for procured items. An allowance for freight to plant site is included at 3 percent of the ex-works cost of equipment and bulks.

Indirect Field Costs which include items such as indirect manual labor, temporary construction facilities, tools and tackle, and field office are included at 60 percent of direct labor costs.

### 8.1.2 Total Project Capital Cost and Working Capital

**Total Installed Plant Cost** The Total Installed Plant Cost is derived by adding engineering and home office costs as well as contingencies to the Total Field Costs.

Engineering and home office costs (engineering, procurement, and project management) are calculated at 7 percent of Total Direct Field Costs (Total Field Costs less Indirect Field Costs).

The estimated capital costs are intended to reflect costs of a 'nth' CWF production facility after problems associated with initial ventures of a new technology application have been satisfactorily resolved.

The selective agglomeration section, Plant 350, accounts for approximately 38 percent of the Total Field Costs. Considering the uncertainties in the estimate for this plant section, an enhanced contingency allowance of 22.5 percent has been made for this part of the Total Field Cost. A 15 percent contingency has been allowed for the rest of the plant sections which represent relatively proven technology. Average contingency for the entire plant works out to 17.7 percent.

**Startup and Land** An allowance of 1 percent of the Total Installed Plant Cost has been made for plant start-up and operator training. Cost of land for plant and facilities is estimated at \$120,000.

**Exclusions in Capital Cost Estimates** The Total Project Capital Cost does not include owners' permitting and other such costs, taxes, and escalation beyond the First Quarter of 1997. Cost of utility lines outside the plant battery limits are also not included.

**Working Capital** Working capital requirements have been calculated on the basis of a month's cost of coal and two month's expenditure against labor and variable O&M costs.

## 8.2 O&M COSTS AND COST OF CWF

The annual O&M cost estimates are based on the design criteria shown in Section 4 and 6 conceptual information generated during the study. Calculations of annual Variable and Fixed O&M costs are summarized in Table 8.2.1

### 8.2.1 Variable O&M Costs

Major reagents and consumable used in the CWF production facility are: heptane, steam, ball charge, flocculants, CWF additive (A-23), power, and water. O&M supplies, refuse disposal and loss of coal heating value (Btu) with tailings (refuse) are other items of Variable O&M costs. The usage or consumption rates of these consumable are shown in Table 8.2.1. Table 8.2.2 provides details of flocculant consumption.

Of the reagents used, approximately 1 percent of heptane is lost with the solids, coal and minerals, leaving the process. In addition, handling losses have been estimated at 0.05 percent of the heptane in circulation. This reflects a recovery efficiency of 98.95 percent. This level of recovery should be achievable in a continuous with completely enclosed processing vessels .

## Cost of Premium CWF - Selective Agglomeration

---

Quantities of steam consumption are derived from heat and material balances. Consumption of ball charge for grinding coal is estimated at 1 lb/st of coal ground. Recommended dosage for flocculants shown in Table 8.2.2 is taken from EPRI's Coal Cleaning Cost Model (EPRI Report TRI 101025). Median values of the recommended ranges have been used in the estimates.

Based on tests conducted in the laboratory under the program an average consumption of 10 lb (solid) of additive A-23 has been recommended for producing the required solids loading and viscosity of the CWF.

Consumption rates for electric power and water have been derived from the major equipment list and material balances respectively.

The cost of consumable O & M supplies such as spare parts are estimated based on Bechtel experience at 5 percent of the cost of major equipment in the plant.

An allowance of \$5.00/st (dry) has been made for tailings disposal. Disposal costs could vary significantly depending upon conditions at the selected site.

The plant is expected to operate with a Btu recovery of 99.0 percent. Thus tailings from the plant include 1.0 percent of the energy supplied to the CWF production plant in the form of raw coal. The cost of the heating value (Btu) lost with the tailings is calculated based on the delivered cost of coal energy (\$/MBtu).

Based on annual consumption as described above, Variable O&M costs have been calculated using the following unit cost rates.

| Cost Element                 | Unit        | Cost (\$) |
|------------------------------|-------------|-----------|
| Heptane                      | \$/lb       | 0.175     |
| Steam                        | \$/MBtu     | 3.00      |
| Ball charge                  | \$/st       | 600       |
| Flocculant                   | See Table   | 8.2.2     |
| CWF additive (A-23) - solids | \$/lb       | 0.70      |
| Electric power               | \$/kWh      | 0.055     |
| Water                        | \$/1000 gal | 0.60      |
| Refuse disposal              | \$/dry ton  | 5.00      |
| Cost of raw coal: delivered  | \$/st       | 32.5      |
|                              | \$/MBtu     | 1.24      |

### 8.2.2 Fixed O&M Costs

Labor costs and capital charges with interest on working capital are included in Fixed O&M costs.

Table 8.2.3 provides a listing of management, operating and maintenance personnel required to staff the facility. A total of 104 employees is envisaged. Labor costs are estimated at an average cost of \$75,000 per employee per annum.

Annual capital charges are calculated for the Total Project Capital cost based on a 20 year life and 15 percent rate of return which is considered reasonable. Interest on working capital has been calculated at 8 percent per annum.

### 8.2.3 Total Annual Variable and Fixed O&M Costs- Cost of CWF

As shown in Table 8.2.1 total Variable and Fixed O&M costs are estimated at \$1.14/MBtu of heating value in the premium CWF without considering the cost of coal. A break down of the costs is as follows:

| Cost Element                                    | \$/MBtu | %                 |
|-------------------------------------------------|---------|-------------------|
| Capital charges and interest on Working Capital | 0.37    | 31                |
| CWF additive, A-23                              | 0.23    | 19                |
| Labor                                           | 0.17    | 15                |
| Electric power                                  | 0.15    | 13                |
| Steam                                           | 0.13    | 11                |
| Others (including Heptane)                      | 0.10    | 10                |
| Total Cost of CWF                               | 1.18    | 100               |
|                                                 |         | Less cost of coal |

The above data is shown graphically in Figure 1.4. Including the cost of coal (delivered to site) at 1.24/MBtu, the total cost of production of premium CWF is estimated at \$2.42/MBtu.

The target set for the program for the cost of production of CWF is \$2.50/MBtu including the mine mouth cost of raw coal. The above mentioned cost of \$2.42/MBtu is based on coal cost delivered to the plant site in Ohio. It includes a transportation cost of \$0.20/MBtu for the raw coal. Based on mine mouth coal cost, the estimated production cost is \$2.22/MBtu (\$2.42 less \$0.20) which is well below the targeted cost of production.

### 8.3 SENSITIVITY STUDIES

One of the major elements in the cost of production of CWF is the cost of A-23 dispersant additive. Use of the additive becomes necessary to meet the specified 60 percent solids loading of the product slurry. If the solids loading could be reduced to around 54 percent, the slurry could be produced without the use of the additive. In such an event the total cost of CWF would be reduced from \$2.42/MBtu to \$2.19/MBtu representing a reduction of \$0.23/MBtu.

A series of sensitivity analysis was performed to evaluate the sensitivity of the cost of production of CWF to variations in other selected cost input parameters. The cases considered are listed in Table 8.3.1. Results of the analysis are shown in Table 8.3.2. Details of calculation are placed in Appendix D.

As may be expected, variations in coal prices have the maximum impact on the cost of CWF. The cost of coal accounts for nearly 51.9 (51.4 + 0.5) percent of the cost of the product in the base case. The other significant factor is the annual rate of production.

**Table 8.1.1**  
**PREMIUM CWF PRODUCTION- SELECTIVE AGGLOMERATION**  
**Capital Cost Summary**

|                                                       | \$ x 1000     | %            |
|-------------------------------------------------------|---------------|--------------|
| Raw Coal Handling - Plant 100                         | 13,886        | 18.1         |
| Crushing and Grinding - Plant 200                     | 19,249        | 25.0         |
| Selective Agglomeration - Plant 350                   | 27,868        | 36.2         |
| Clean Coal Dewatering - Plant 400                     | 7,216         | 9.4          |
| Water Clarification and Tailings Handling - Plant 500 | 2,873         | 3.7          |
| CWF Preparation and Loading - Plant 600               | 5,799         | 7.5          |
| <b>Total Field Costs</b>                              | <b>76,891</b> | <b>100.0</b> |
| Engineering and Home Office                           | 4,790         |              |
| Contingency-% 17.72 (*)                               | 14,472        |              |
| <b>Total Installed Plant Cost</b>                     | <b>96,153</b> |              |
| Startup and Operator training 1 %                     | 962           |              |
| Land-60 acres at \$ 2000 per acre                     | 120           |              |
| <b>Total Project Capital Cost</b>                     | <b>97,235</b> |              |
| Working Capital                                       | 11,000        |              |

Not Included: Cost of permits and escalation beyond first quarter of 1997.

(\*) Contingency % = (22.5 % on Selective agglomeration and 15 % on rest) 17.72

**Table 8.2.1**  
**PREMIUM CWF PRODUCTION - SELECTIVE AGGLOMERATION**  
**Variable and Fixed O & M Costs - Cost of CWF**

| Cost element                                                | Usage         |       | Unit cost     |        | st/h | \$/h | Plant Availability % | 1000 x \$/y | Cost of CWF        |         |                  |                  |
|-------------------------------------------------------------|---------------|-------|---------------|--------|------|------|----------------------|-------------|--------------------|---------|------------------|------------------|
|                                                             | unit          | value | unit          | \$     |      |      |                      |             | \$/st product coal | \$/MBtu | % Excluding coal | % Including coal |
| <b>Variable O&amp;M Costs</b>                               |               |       |               |        |      |      |                      |             |                    |         |                  |                  |
| Heptane                                                     | lb/st of feed | 5.40  | \$/lb         | 0.175  | 233  | 220  | 79                   | 1,524       | 1.02               | 0.034   | 2.89             | 1.40             |
| Steam                                                       | MBtu/st       | 1.27  | \$/MBtu (1)   | 3.0    | 217  | 825  | 79                   | 5,706       | 3.80               | 0.127   | 10.81            | 5.25             |
| Ball charge                                                 | lb/st of feed | 1.00  | \$/ton        | 600    | 233  | 70   | 79                   | 483         | 0.32               | 0.011   | 0.92             | 0.45             |
| Flocculant                                                  |               |       | \$/st (2)     | 11.0   | 16.3 | 179  | 79                   | 1,238       | 0.83               | 0.028   | 2.35             | 1.14             |
| CWF additive-A23                                            | lb/st (3)     | 10    | \$/lb         | 0.70   | 217  | 1518 | 79                   | 10,500      | 7.00               | 0.234   | 19.89            | 9.67             |
| O&M supplies (4)                                            |               |       |               |        |      |      |                      | 1,123       | 0.75               | 0.025   | 2.13             | 1.03             |
| Electric power (5)                                          | 10^6 kWh/st   | 82    | \$/kWh        | 0.055  | 217  | 975  | 79                   | 6,743       | 4.50               | 0.150   | 12.77            | 6.21             |
| Water                                                       | gpm           | 531   | \$/1000 gal   | 0.60   |      | 19   | 79                   | 132         | 0.09               | 0.003   | 0.25             | 0.12             |
| Refuse (tailings) disposal                                  |               |       | \$/st         | 5.0    | 16.3 | 82   | 79                   | 565         | 0.38               | 0.013   | 1.07             | 0.52             |
| Btu losses (5)                                              | 10^6 MBtu/h   | 66    | \$/MBtu       | 1.24   |      | 82   | 79                   | 564         | 0.38               | 0.013   | 1.07             | 0.52             |
| <b>Total Variable O &amp; M Costs</b>                       |               |       |               |        |      |      |                      | 28,579      | 19.05              | 0.637   | 54.13            | 26.32            |
| <b>Fixed O &amp; M Costs</b>                                |               |       |               |        |      |      |                      |             |                    |         |                  |                  |
| Labor                                                       | Employees     | 104   | \$/y/employee | 75,000 |      |      |                      | 7,800       | 5.20               | 0.174   | 14.77            | 7.18             |
| Capital Charges & Interest on Working Capital (6)           |               |       |               |        |      |      |                      | 16,414      | 10.94              | 0.366   | 31.09            | 15.11            |
| <b>Total Fixed O &amp; M Costs</b>                          |               |       |               |        |      |      |                      | 24,214      | 16.14              | 0.539   | 45.87            | 22.30            |
| <b>Total Variable and Fixed O &amp; M Costs</b>             |               |       |               |        |      |      |                      | 52,793      | 35.20              | 1.176   | 100.00           | 48.61            |
| Raw Coal                                                    |               |       | \$/MBtu       | 1.24   |      |      |                      | 55,807      | 37.20              | 1.243   |                  | 51.39            |
| <b>Total cost of Premium CWF including cost of raw coal</b> |               |       |               |        |      |      |                      | 108,600     | 72.40              | 2.419   |                  | 100.00           |

(1) Based on \$ 6 per st of steam - EPRI Tag 1983 escalated to January 1997

(2) Per st of dry feed to tailings (refuse) thickener and belt press filter- See Table 8.2.2

15,744

(3) Per dry st of coal

(4) 5 % of major equipment cost

(5) Power consumption per st of dry coal in product

(6) Calculated Btu losses per hour =  $(233.2 \times 14054 \times 2000) - (217 \times 14962 \times 2000) = 65.6 \text{ MBtu/h}$

(7) Charges against capital cost of 97,235 (\$x1000) : Terms- 15 %-20yr- factor 15.98% Equals 15534 (\$x1000 per year)  
-Interest on working capital at 8% Equals 880 (\$x1000 per year)

**Table 8.2.1 (continued)**  
**PREMIUM CWF PRODUCTION - SELECTIVE AGGLOMERATION**  
**Variable and Fixed O & M Costs - Cost of CWF**

**Calculation basis**

|                                    |         |        |
|------------------------------------|---------|--------|
| Raw coal-HHV (dry basis)           | Btu/lb  | 14,054 |
| Coal in product-HHV (dry basis)    | Btu/lb  | 14,962 |
| Feed (dry basis)                   | st/h    | 233    |
| Product (dry basis)                | st/h    | 217    |
| Btu loss/h                         | MBtu/h  | 66     |
| Energy recovery                    | %       | 99.0   |
| Cost of raw coal (delivered)       | \$/st   | 32.5   |
| Feed coal HHV (as received)        | Btu/lb  | 13,070 |
| Cost /MBtu of raw coal (delivered) | \$/MBtu | 1.24   |
| Weight recovery                    | %       | 93.0   |

**Table 8.2.2**  
**PREMIUM CWF PRODUCTION - SELECTIVE AGGLOMERATION**  
**Flocculant Consumption**

Tailings (Refuse) dry solid feed rate to thickener and belt press = 16.35 st/h

|                           | Thickener              |                     | Belt press         |                     | Total usage<br>lb/st | Reagent cost (2)<br>\$/lb | Flocculant cost<br>\$/st of tailings |
|---------------------------|------------------------|---------------------|--------------------|---------------------|----------------------|---------------------------|--------------------------------------|
|                           | Range (1) (2)<br>lb/st | Value used<br>lb/st | Range (2)<br>lb/st | Value used<br>lb/st |                      |                           |                                      |
| Anionic                   | 1.5-2.5                | 2.0                 | 2.5-3.5            | 3.0                 | 5.0                  | 1.75                      | 8.8                                  |
| Cationic                  | 2.0-3.0                | 2.5                 | 2.5-3.5            | 3.0                 | 5.5                  | 0.40                      | 2.2                                  |
| Total cost of flocculants |                        |                     |                    |                     |                      |                           | 11.0                                 |

(1) Expected range of requirement per ton of tailings fed to the thickener and belt press

(2) Source: Coal Cleaning Cost Model - EPRI, Report TRI101025, March 1993 with unit cost escalated.

**Table 8.2.3**  
**PREMIUM CWF PRODUCTION - SELECTIVE AGGLOMERATION**  
**Operating and Maintenance Personnel**

|                                                  |            |
|--------------------------------------------------|------------|
| <b>Management:</b>                               |            |
| Plant Manager                                    | 1          |
| General Forman                                   | 1          |
| Chemist/Engineer                                 | 1          |
| Clerk                                            | 1          |
| Total Management                                 | <u>4</u>   |
| <b>Operating and Maintenance labor / shift:</b>  |            |
| Shift foreman                                    | 1          |
| Plant operator                                   | 1          |
| Electrician                                      | 1          |
| Mechanic                                         | 3          |
| Mechanic helper                                  | 3          |
| Welder                                           | 1          |
| Unloading and loading operations                 | 1          |
| Crushing and grinding plant                      | 2          |
| Agglomeration                                    | 6          |
| Thickener and centrifuge                         | 2          |
| Product handling and CWF plant                   | 2          |
| Lab assistant and Warehouse                      | 2          |
| Total labor per shift                            | <u>25</u>  |
| <b>Summary</b>                                   |            |
| Management                                       | 4          |
| Labor strength based on (4) Operating shifts (*) | <u>100</u> |
| <b>Total Employees</b>                           | <u>104</u> |

(\*) Strength required to staff 3 shifts/day and 7 days/week operating schedule.

**Table 8.3.1**  
**COST OF PREMIUM CWF - SELECTIVE AGGLOMERATION**  
Factors for Product Cost Sensitivity Analysis

| Item                                                         | Base        |        | Variation        | Low Value | High Value | Remarks                                                                                 |
|--------------------------------------------------------------|-------------|--------|------------------|-----------|------------|-----------------------------------------------------------------------------------------|
|                                                              | Unit        | Value  |                  |           |            |                                                                                         |
| <b>A Process Parameters</b>                                  |             |        |                  |           |            |                                                                                         |
| (i) Ash in feed coal -dry basis                              | wt %        | 7.5    | +/- 50%          | 3.75      | 11.25      | Raw coal price of \$1.24/MBtu remains same at all ash levels- No change in Btu recovery |
| (ii) Loss of Btu                                             | %           | 1.0    | +100 to (-) 50 % | 0.50      | 2.00       |                                                                                         |
| <b>B Operating Cost Parameters</b>                           |             |        |                  |           |            |                                                                                         |
| (i) Price of feed coal                                       | \$/MBtu     | 1.24   | +/- 10%          | 1.116     | 1.36       | Base price equals \$32.50/st (delivered)                                                |
| (ii) Labor                                                   | 1000 x \$/y | 7,800  | +/- 10%          | 7,020     | 8,580      |                                                                                         |
| (iii) Electricity                                            | 1000 x \$/y | 6,743  | +/- 10%          | 6,069     | 7,418      |                                                                                         |
| (iv) Reagents and additives                                  | 1000 x \$/y | 12,024 | +/- 10%          | 10,822    | 13,227     |                                                                                         |
| (v) Steam                                                    | 1000 x \$/y | 5,706  | +/- 10%          | 5,135     | 6,276      |                                                                                         |
| <b>C Plant Parameters</b>                                    |             |        |                  |           |            |                                                                                         |
| (i) Plant Production- same operating schedule                | 10 ^6 st/y  | 1.5    | +/- 10%          | 1.35      | 1.65       | Better or worse equipment performance                                                   |
| (ii) Plant Production- due to reduced operating schedule (*) | 10 ^6 st/y  | 1.5    | -54 %/- 21%      | 0.69      | 1.18       | Base=19 shifts/wk Reduced High=15 shifts /wk Reduced Low=10 shifts/wk                   |
| <b>D Investment Parameters</b>                               |             |        |                  |           |            |                                                                                         |
| (i) Capital                                                  | 1000 x \$   | 97,235 | - 10% / +20%     | 87,511    | 116,682    |                                                                                         |

(\*) When operated 10 shifts a week, or 2 shifts a day- approximately 2 hours on each working day will be lost due orderly starts and shut downs- plant availability suffers by additional  $(100*2/16= 12.5\%)$  12.5 % compared to 3 shift operation. Selective agglomeration plant takes significantly more time than flotation systems to start and shut down.

**Table 8.3.2**  
**PREMIUM CWF COST SENSITIVITY - SELECTIVE AGGLOMERATION**

| Sensitivity Study Cases                        | Notes | Unit        | Base   | Low Value | High Value | Reference Table in Appendix D |
|------------------------------------------------|-------|-------------|--------|-----------|------------|-------------------------------|
| <b>A Process Parameters</b>                    |       |             |        |           |            |                               |
| (i) Ash in feed coal -dry basis                | (1)   | wt %        | 7.5    | 3.75      | 11.25      |                               |
| Cost of Premium CWF                            |       | \$/MBtu     | 2.41   | 2.36      | 2.47       | See Table D-3                 |
| (ii) Loss of Btu                               | (1)   | %           | 1      | 0.5       | 1.5        |                               |
| Cost of Premium CWF                            |       | \$/MBtu     | 2.41   | 2.40      | 2.41       | See Table D-3                 |
| <b>B Operating Cost Parameters</b>             |       |             |        |           |            |                               |
| (i) Price of feed coal                         |       | \$/MBtu     | 1.24   | 1.12      | 1.37       |                               |
| Cost of Premium CWF                            |       | \$/MBtu     | 2.41   | 2.28      | 2.53       | See Table D-3                 |
| (ii) Labor                                     |       | 1000 x \$/y | 7,800  | 7,020     | 8,580      |                               |
| Cost of Premium CWF                            |       | \$/MBtu     | 2.41   | 2.39      | 2.43       | See Table D-4                 |
| (iii) Electricity                              |       | 1000 x \$/y | 6,743  | 6,069     | 7,418      |                               |
| Cost of Premium CWF                            |       | \$/MBtu     | 2.41   | 2.39      | 2.42       | See Table D-4                 |
| (iv) Reagents and additives (Heptane & A-23)   | (2)   | 1000 x \$/y | 12,024 | 10,822    | 13,227     |                               |
| Cost of Premium CWF                            |       | \$/MBtu     | 2.41   | 2.38      | 2.44       | See Table D-4                 |
| (v) Steam                                      |       | 1000 x \$/y | 5,706  | 5,135     | 6,276      |                               |
| Cost of Premium CWF                            |       | \$/MBtu     | 2.41   | 2.40      | 2.42       |                               |
| <b>C Plant Parameters</b>                      |       |             |        |           |            |                               |
| (i) Plant Production- same operating schedule  | (3)   | 10 ^6 st/y  | 1.5    | 1.35      | 1.65       |                               |
| Cost of Premium CWF                            |       | \$/MBtu     | 2.41   | 2.47      | 2.36       | See Table D-5                 |
| (ii) Plant Production- due to reduced schedule | (4)   | 10 ^6 st/y  | 1.5    | 0.69      | 1.18       |                               |
| Cost of Premium CWF                            |       | \$/MBtu     | 2.41   | 2.86      | 2.50       | See Table D-5                 |
| <b>D Investment Parameters</b>                 |       |             |        |           |            |                               |
| (i) Capital                                    |       | 1000 x \$   | 97,235 | 87,511    | 106,958    | See Table D-5                 |
| Cost of Premium CWF                            |       | \$/MBtu     | 2.41   | 2.37      | 2.48       |                               |

(1) Raw coal price (\$1.24/MBtu- delivered to site) and Btu recovery are same for these cases

(2) Flocculants not considered

(3) Better or worse equipment performance

(4) Base=19 shifts/week: Reduced High=15 shifts /week: Reduced Low=10 shifts/week

## Section 9

# List of Acronyms and Abbreviations

---

A list of Acronyms and Abbreviations used in the report is given below.

|       |                                    |
|-------|------------------------------------|
| \$    | U. S. Dollar                       |
| acfm  | actual cubic feet per minute       |
| bar   | one atmospheric pressure           |
| Btu   | British Thermal Unit               |
| ft    | foot or feet                       |
| GJ    | Giga ( $10^9$ ) Joules             |
| gm    | gram                               |
| gpm   | gallons per minute                 |
| h     | hour                               |
| HV    | Heating Value                      |
| HHV   | Higher Heating Value               |
| HP    | Horse Power                        |
| k     | kilo                               |
| kg    | kilogram                           |
| kJ    | kilo ( $10^3$ ) Joules             |
| kW    | kilowatt electricity               |
| in.   | inch                               |
| lb    | pound                              |
| m     | meter                              |
| min   | minute                             |
| mm    | millimeter                         |
| MJ    | Mega ( $10^6$ ) Joules             |
| MJ/kg | Mega Joules per kilogram           |
| MBtu  | Million British thermal unit       |
| O&M   | Operating and Maintenance          |
| PDU   | Process Development Unit           |
| ROM   | Run-of-Mine                        |
| scfm  | standard cubic feet per minute     |
| st    | short ton (1 short ton = 2,000 lb) |
| t     | metric ton (metric ton = 1,000 kg) |
| wt    | weight                             |
| y     | year                               |

## **APPENDICES**

---

**APPENDIX A**  
**Capital Cost Estimate- Column Flotation**  
All costs are \$ x1000

| Equipment I.D     | Qty | Title                                 | Description                                                                                                                                                                                                                         | Power-ea.<br>HP | Total<br>HP | Installed<br>Equipment Cost |  | Sub-contract | Total cost | Equip-unit<br>cost<br>supply-ea | Installation cost |       |                        |
|-------------------|-----|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-----------------------------|--|--------------|------------|---------------------------------|-------------------|-------|------------------------|
|                   |     |                                       |                                                                                                                                                                                                                                     |                 |             |                             |  |              |            |                                 | each              | total |                        |
| 100 BN-01,02,03   | 3   | Raw coal silos, No. 1, 2, and 3       | 10,000 st (ea.), 70 ft dia x 150 ft ht                                                                                                                                                                                              |                 |             |                             |  |              | 5,250      | 5,250                           |                   |       | subcontract            |
| 100 CV-01         | 1   | Raw coal conveyor                     | 2000 st/h, 60 in wide x 750 ft lg., 220 ft lift, 500 fpm, with belt scale                                                                                                                                                           | 600             | 600         | 810                         |  |              | 810        | 675                             | 135               | 135   |                        |
| 100 CV-02         | 1   | Silo feed conveyor No. 1              | 2000 st/h, 60 in wide x 80 ft lg., 10 ft lift, 500 fpm                                                                                                                                                                              | 50              | 50          | 101                         |  |              | 101        | 86                              | 14                | 14    |                        |
| 100 CV-03         | 1   | Silo feed conveyor No. 2              | 2000 st/h, 60 in wide x 80 ft lg., no lift, 500 fpm                                                                                                                                                                                 | 50              | 50          | 101                         |  |              | 101        | 86                              | 14                | 14    |                        |
| 100 DC-01,02,03   | 3   | Silo top dust collector with fan      | 7000 cfm, filtering area 1200 sq. ft including fan                                                                                                                                                                                  | 40              | 120         | 100                         |  |              | 100        | 85                              | 15                | 45    |                        |
| 100 RR-01         | Lot | Rail car unloading system             | For 2000 st/h unloading rate including rotary car dumper, shunting locomotive, 200 st dump hopper, grizzly, frozen coal crusher, thawing shed, dust collection, raw coal conveyor tunnel, sump pump, feeders, rail track of 2 miles | 700             | 700         |                             |  |              | 6,000      | 6,000                           |                   |       | subcontract, installed |
| 100 ST-01 & 02    | 2   | Motorized gate                        | Capacity- 2000 st/h                                                                                                                                                                                                                 | 10              | 20          | 36                          |  |              | 36         | 15                              | 3                 | 6     |                        |
| 200 AG-01 & 02    | 2   | Cyclone feed pump sump mixer          | For Cyclone feed sump                                                                                                                                                                                                               | 15              | 30          | 40                          |  |              | 40         | 18                              | 2                 | 4     |                        |
| 200 CN-01         | 1   | Mill house crane                      | 30 t main hook, 5 ton aux                                                                                                                                                                                                           | 75              | 75          | 201                         |  |              | 201        | 175                             | 26                | 26    |                        |
| 200 CR-01,02      | 2   | Hammer mill crusher                   | 125 st/h, feed size 2" x 0 and product 1/4" x 0                                                                                                                                                                                     | 300             | 600         | 138                         |  |              | 138        | 60                              | 9                 | 18    | PENN CR QUOTE          |
| 200 CS-01 thru 06 | 6   | Cyclone cluster                       | Flow 1200 gpm/cluster-20 no. of 4 in cyclones per cluster                                                                                                                                                                           |                 |             | 780                         |  |              | 780        | 115                             | 15                | 90    |                        |
| 200 CV-10 & 11    | 2   | Crusher feed conveyor                 | 125 st/h, 30 in wide x 300 ft lg., 25 ft lift, 350 fpm, with belt scale                                                                                                                                                             | 15              | 30          | 270                         |  |              | 270        | 108                             | 27                | 54    |                        |
| 200 CV-12 & 13    | 2   | Ball mill feed conveyor               | 125 st/h, 30 in wide x 100 ft lg., 25 ft lift, 350 fpm                                                                                                                                                                              | 15              | 30          | 102                         |  |              | 102        | 42                              | 9                 | 18    |                        |
| 200 DC-10 & 11    | 2   | Crusher House dust collector with fan |                                                                                                                                                                                                                                     | 50              | 100         | 180                         |  |              | 180        | 75                              | 15                | 30    |                        |
| 200 FE-01 thru 06 | 6   | Reclaim feeder                        | 125 st/h, 36 in wide x 40 ft lg., 75 fpm, (max.) variable speed drive                                                                                                                                                               | 10              | 60          | 360                         |  |              | 360        | 50                              | 10                | 60    |                        |
| 200 MA-01 & 02    | 2   | Tramp Iron Magnet                     | 125 st/h, 36 in belt                                                                                                                                                                                                                | 10              | 20          | 120                         |  |              | 120        | 50                              | 10                | 20    |                        |
| 200 ML-01 & 02    | 2   | Ball Mill                             | 125 st/h, 14.5 ft dia x 29 ft                                                                                                                                                                                                       | 4000            | 8000        | 5,676                       |  |              | 5,676      | 2,470                           | 368               | 736   | SWADELA Q              |
| 200 PP-01 thru 04 | 4   | Cyclone feed pump                     | Horizontal slurry pump, flow 3500 gpm, sp gr 1.2, TDH 130 ft, 2 operating and 2 spare                                                                                                                                               | 225             | 900         | 184                         |  |              | 184        | 40                              | 6                 | 24    |                        |
| 200 ST-03 thru 8  | 6   | Motorized gate                        | Capacity- 125 st/h                                                                                                                                                                                                                  | 5               | 30          | 90                          |  |              | 90         | 13                              | 2                 | 12    |                        |
| 200 ST-10 & 11    | 2   | Cyclone feed sump                     | 7000 gal capacity (2 min.)-14ft dia x 15 ft ht, conical                                                                                                                                                                             |                 |             | 21                          |  |              | 21         | 9                               | 2                 | 3     |                        |
| 200 ZM-01 & 02    | 2   | Distributor                           | 3 way-3500 gpm                                                                                                                                                                                                                      | 5               | 10          | 56                          |  |              | 56         | 24                              | 4                 | 8     |                        |

**APPENDIX A**  
**Capital Cost Estimate- Column Flotation**  
All costs are \$ x1000

| Equipment I.D     | Qty | Title                         | Description                                                                                       | Power- ea.<br>HP | Total<br>HP | Installed<br>Equipment Cost |  | Sub-<br>contract | Total cost | Equip-unit<br>cost<br>supply-ea | Installation cost |       |  |
|-------------------|-----|-------------------------------|---------------------------------------------------------------------------------------------------|------------------|-------------|-----------------------------|--|------------------|------------|---------------------------------|-------------------|-------|--|
|                   |     |                               |                                                                                                   |                  |             |                             |  |                  |            |                                 | each              | total |  |
| 300 AG-03 & 04    | 2   | Flotation feed sump mixer     |                                                                                                   | 30               | 60          | 70                          |  |                  | 70         | 30                              | 5                 | 10    |  |
| 300 CP-01 & 2     | 2   | Air compressor                | 2250 SCFM, 125 psig with air receiver                                                             | 400              | 800         | 420                         |  |                  | 420        | 180                             | 30                | 60    |  |
| 300 FT-01 thru 12 | 12  | Column flotation unit         | 14 ft dia, Micro cell or equal                                                                    | *                |             | 1,680                       |  |                  | 1,680      | 120                             | 20                | 240   |  |
| 300 PP-05 thru 16 | 12  | Flotation feed pump           | Horizontal slurry pump, flow 1100 gpm, sp gr 1.02, TDH 65 ft                                      | 30               | 360         | 240                         |  |                  | 240        | 15                              | 5                 | 60    |  |
| 300 PP-17 thru 28 | 12  | Recirculation pump            | Horizontal slurry pump, flow 5,000 gpm, sp gr 1.02, TDH 65 ft (14 x 12 Ash)                       | 150              | 1800        | 372                         |  |                  | 372        | 27                              | 4                 | 48    |  |
| 300 PP-29 thru 32 | 4   | Clean coal pump               | Horizontal slurry pump, flow 2200 gpm, sp gr 1.02, TDH 65 ft (6 x 5 Ash) 2 and Operating 2- Spare | 60               | 240         | 60                          |  |                  | 60         | 13                              | 2                 | 8     |  |
| 300 PP-33 thru 44 | 12  | Frother dosing pump           | Variable speed peristaltic pump (Omega FPU258 or equal)                                           | 0.25             | 3           | 8                           |  |                  | 8          | 1                               | 0                 | 1     |  |
| 300 PP-45 thru 56 | 12  | Collector dosing pump         | Variable speed peristaltic pump (Omega FPU258 or equal)                                           | 0.25             | 3           | 8                           |  |                  | 8          | 1                               | 0                 | 1     |  |
| 300 ST-12 & 13    | 2   | Flotation feed sump           | 17500 gal capacity (2.3 min.)-14 ft dia x 16 ft ht Cylindrical                                    |                  |             | 50                          |  |                  | 50         | 22                              | 3                 | 7     |  |
| 300 ST-16 & 17    | 2   | Clean coal sump               | 17500 gal capacity (4 min.-froth factor 2)-14 ft dia x 16 ft ht Cylindrical                       |                  |             | 50                          |  |                  | 50         | 22                              | 3                 | 7     |  |
| 300 ST-20 & 21    | 2   | Frother storage drum          | At 1.5 lb/st, 200 h, 460 ft3, 6.7 ft dia, 12 ft long, 3 st wt each                                |                  |             | 20                          |  |                  | 20         | 8                               | 2                 | 5     |  |
| 300 ST-22 & 23    | 2   | Collector storage drum        | At 1.5 lb/st, 200 h, 460 ft3, 6.7 ft dia, 12 ft long, 3 st wt each                                |                  |             | 20                          |  |                  | 20         | 8                               | 2                 | 5     |  |
| 400 FT-10 thru 15 | 6   | Filtration systems            | Capacity 40 st/h - vacuum filter systems                                                          | 700              | 4200        | 2,580                       |  |                  | 2,580      | 400                             | 30                | 180   |  |
| 400 CV-15         | 2   | Coal solid conveyor           | Capacity 130 st/h-24 in wide, 125 st/h, 30 ft lift,                                               | 5                | 10          | 371                         |  |                  | 371        | 137                             | 49                | 98    |  |
| 400 PP-62 & 65    | 4   | Filtrate pump                 | Flow 2500 gpm, TDH 30 ft, 2- Operating and 2- Spare                                               | 30               | 120         | 30                          |  |                  | 30         | 6                               | 2                 | 6     |  |
| 400 ST-26 & 27    | 2   | Filtrate sump                 | Capacity- 5000 gal                                                                                |                  |             | 22                          |  |                  | 22         | 9                               | 2                 | 4     |  |
| 400 ZM-05 & 06    | 2   | Slurry distributor            | Capacity-3000 gpm                                                                                 | 10               | 20          | 36                          |  |                  | 36         | 15                              | 3                 | 6     |  |
| 500 AG-09         | 1   | Tailings filter sump agitator | Capacity of sump - 1000 gal                                                                       | 10               | 10          | 10                          |  |                  | 10         | 8                               | 2                 | 2     |  |
| 500 BN-04         | 1   | Tailings load-out shed        | Capacity- 100 st                                                                                  |                  |             | 0                           |  |                  | 60         | 60                              |                   |       |  |
| 500 CV-16         | 1   | Tailings conveyor             | Capacity - 50 st/h, 24 in x 100 ft                                                                | 5                | 5           | 32                          |  |                  | 32         | 24                              | 8                 | 8     |  |
| 500 FL-01         | 1   | Tailings filter               | Capacity-30st/h, 3.5 m wide                                                                       | 22               | 22          | 680                         |  |                  | 680        | 600                             | 80                | 80    |  |
| 500 PP-70 & 71    | 2   | Thickener underflow pump      | Horizontal slurry- capacity 500 gpm, 50 ft head, sp gr 1.07. 1- Operating, 1- Spare               | 15               | 30          | 40                          |  |                  | 40         | 15                              | 5                 | 10    |  |

**APPENDIX A**  
**Capital Cost Estimate- Column Flotation**  
All costs are \$ x1000

| Equipment I.D                | Qty | Title                                        | Description                                                                                                         | Power- ea.<br>HP | Total<br>HP | Installed<br>Equipment Cost |     | Sub-<br>contract | Total cost | Equip-unit<br>cost<br>supply-ea | Installation cost |       |     |
|------------------------------|-----|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------|-------------|-----------------------------|-----|------------------|------------|---------------------------------|-------------------|-------|-----|
|                              |     |                                              |                                                                                                                     |                  |             |                             |     |                  |            |                                 | each              | total |     |
| 500 PP-72 thru 74            | 3   | Clarified water pump                         | Horizontal water- capacity 10,000 gpm, 35 ft head, sp gr 1.07. 2-Operating, 1- Spare                                | 125              | 375         | 72                          |     |                  | 72         | 20                              | 4                 | 12    |     |
| 500 PP-75 & 76               | 2   | Tailings filter feed pump                    | Capacity 420 gpm, 30 ft head, sp gr 1.07. 1-Operating, 1- Spare                                                     | 15               | 30          | 40                          |     |                  | 40         | 15                              | 5                 | 10    |     |
| 500 ST-30                    | 1   | Tailings filter feed sump                    | Capacity 1000 gal                                                                                                   |                  |             | 11                          |     |                  | 11         | 8                               | 3                 | 3     |     |
| 500 TK-01                    | 1   | Tailings thickener tank                      | 120 ft diameter thickener tank with tunnel                                                                          |                  |             |                             |     | 400              | 400        |                                 |                   | 0     |     |
| 500 TK-02                    | 1   | Thickener overflow tank                      | Capacity 60,000 gal (concrete)                                                                                      |                  |             |                             |     | 70               | 70         |                                 |                   | 0     |     |
| 500 TM-01                    | 1   | Tailings thickener mechanism                 | 120 ft dia thickener mechanism with controls                                                                        | 20               | 20          | 205                         |     |                  | 205        | 178                             | 27                | 27    |     |
| 500 ZM-08                    | 1   | Flocculant storage,mixing and dosing system  |                                                                                                                     | 5                | 5           | 25                          |     |                  | 25         | 20                              | 5                 | 5     |     |
| 600 AG-10 & 11               | 2   | Coal additive mixer                          | Retention 5 min.:                                                                                                   | 40               | 80          | 360                         |     |                  | 360        | 150                             | 30                | 60    |     |
| 600 AG-12 & 13               | 2   | Slurry mixing tank agitator                  |                                                                                                                     |                  | 40          | 80                          | 82  |                  |            | 82                              | 35                | 6     | 12  |
| 600 AG-14 thru 17            | 4   | Slurry storage tank agitator                 |                                                                                                                     |                  | 75          | 300                         | 600 |                  |            | 600                             | 120               | 30    | 120 |
| 600 PP-78 & 79               | 2   | CWF pump                                     | Horizontal slurry- Capacity-1500 gpm, 60 ft head, sp gr 1.17                                                        | 60               | 120         | 52                          |     |                  | 52         | 22                              | 4                 | 8     |     |
| 600 PP-80 thru 83            | 4   | Slurry loading pump                          | Horizontal slurry- Capacity-dry solids 500 st/h- slurry 3,000 gpm, 60 ft head, sp gr 1.17, 4-Operating and 4- spare | 100              | 400         | 144                         |     |                  | 144        | 30                              | 6                 | 24    |     |
| 600 ST-31 & 32               | 2   | Slurry mixing tank                           | 10 min. each. Volume:                                                                                               |                  |             | 60                          |     |                  | 60         | 25                              | 5                 | 10    |     |
| 600 ST-33 thru 36            | 4   | Slurry fuel storage tank                     | 0.85 million gal- 55 ft dia and 53 ft high- total 48 hr.                                                            |                  |             |                             |     | 2500             | 2,500      |                                 |                   |       |     |
| 600 ZM-10 & 11               | 2   | Flocculant storage, mixing and dosing system |                                                                                                                     | 10               | 20          | 140                         |     |                  | 140        | 50                              | 20                | 40    |     |
| <b>TOTAL MAJOR EQUIPMENT</b> |     |                                              |                                                                                                                     |                  | 20538       | 17,956                      |     | 14280            | 32236      |                                 |                   | 2,493 |     |

**APPENDIX A**  
**Capital Cost Estimate- Column Flotation**  
All costs are \$ x1000

## SUMMARY Cost Breakdown

| Cost Breakdown:                          |  | Total field cost-less home office | Total project-less contingency |  | Total project-with contingency |
|------------------------------------------|--|-----------------------------------|--------------------------------|--|--------------------------------|
| Plant 100 Raw Coal Handling              |  | 13,886                            | 14,831                         |  | 17,056                         |
| Plant 200 Raw Coal Crushing and Grinding |  | 19,249                            | 20,412                         |  | 23,474                         |
| Plant 300 Column Flotation               |  | 6,984                             | 7,404                          |  | 8,515                          |
| Plant 400 Clean Coal Dewatering          |  | 7,216                             | 7,656                          |  | 8,804                          |
| Plant 500 Water Clarification            |  | 3,135                             | 3,329                          |  | 3,829                          |
| Plant 600 Coal Slurry Preparation        |  | 5,799                             | 6,171                          |  | 7,096                          |
| <b>Total Plant</b>                       |  | <b>56,268</b>                     | <b>59,803</b>                  |  | <b>68,773</b>                  |

**APPENDIX B**  
**PREMIUM CWF PRODUCTION FACILITY - AGGLOMERATION**  
**Conceptual Cost Estimate**

All costs are \$ x1000

| Equipment I.D     | Qty | Title                                 | Description                                                                                                                                                                                                                         | Power ea<br>HP | Total<br>HP | Installed Equipment<br>Cost | Sub-<br>contract | Total cost | Equip-unit<br>cost<br>supply-ea | Installation cost |       |                        |
|-------------------|-----|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-----------------------------|------------------|------------|---------------------------------|-------------------|-------|------------------------|
|                   |     |                                       |                                                                                                                                                                                                                                     |                |             |                             |                  |            |                                 | each              | total |                        |
| 100 BN-01,02,03   | 3   | Raw coal silos, No. 1, 2, and 3       | 10,000 st (ea.), 70 ft dia x 150 ft ht                                                                                                                                                                                              |                |             |                             |                  | 5,250      | 5,250                           |                   |       | subcontract            |
| 100 CV-01         | 1   | Raw coal conveyor                     | 2000 st/h, 60 in wide x 750 ft lg., 220 ft lift, 500 fpm, with belt scale                                                                                                                                                           | 600            | 600         | 810                         |                  | 810        | 675                             | 135               | 135   |                        |
| 100 CV-02         | 1   | Silo feed conveyor No. 1              | 2000 st/h, 60 in wide x 80 ft lg., 10 ft lift, 500 fpm                                                                                                                                                                              | 50             | 50          | 101                         |                  | 101        | 86                              | 14.4              | 14.4  |                        |
| 100 CV-03         | 1   | Silo feed conveyor No. 2              | 2000 st/h, 60 in wide x 80 ft lg., no lift, 500 fpm                                                                                                                                                                                 | 50             | 50          | 101                         |                  | 101        | 86                              | 14.4              | 14.4  |                        |
| 100 DC-01,02,03   | 3   | Silo top dust collector with fan      | 7000 cfm, filtering area 1200 sq. ft including fan                                                                                                                                                                                  | 40             | 120         | 100                         |                  | 100        | 85                              | 15                | 45    |                        |
| 100 RR-01         | Lot | Rail car unloading system             | For 2000 st/h unloading rate including rotary car dumper, shunting locomotive, 200 st dump hopper, grizzly, frozen coal crusher, thawing shed, dust collection, raw coal conveyor tunnel, sump pump, feeders, rail track of 2 miles | 700            | 700         |                             |                  | 6,000      | 6,000                           |                   |       | subcontract, installed |
| 100 ST-01 & 02    | 2   | Motorized gate                        | Capacity- 2000 st/h                                                                                                                                                                                                                 | 10             | 20          | 36                          |                  | 36         | 15                              | 3                 | 6     |                        |
| 200 AG-01 & 02    | 2   | Cyclone feed pump sump mixers         | For Cyclone feed sump                                                                                                                                                                                                               | 15             | 30          | 40                          |                  | 40         | 18                              | 2                 | 4     |                        |
| 200 CN-01         | 1   | Mill house crane                      | 30 t main hook, 5 ton aux                                                                                                                                                                                                           | 75             | 75          | 201                         |                  | 201        | 175                             | 26.25             | 26.25 |                        |
| 200 CR-01,02      | 2   | Hammer mill crusher                   | 125 st/h, feed size 2" x 0 and product 1/4" x 0                                                                                                                                                                                     | 300            | 600         | 138                         |                  | 138        | 60                              | 9                 | 18    |                        |
| 200 CS-01 thru 06 | 6   | Cyclone cluster                       | Flow 1200 gpm/cluster-20 no. of 4 in cyclones per cluster                                                                                                                                                                           |                |             | 780                         |                  | 780        | 115                             | 15                | 90    |                        |
| 200 CV-10 & 11    | 2   | Crusher feed conveyor                 | 125 st/h, 30 in wide x 300 ft lg., 25 ft lift, 350 fpm, with belt scale                                                                                                                                                             | 15             | 30          | 270                         |                  | 270        | 108                             | 27                | 54    |                        |
| 200 CV-12 & 13    | 2   | Ball mill feed conveyor               | 125 st/h, 30 in wide x 100 ft lg., 25 ft lift, 350 fpm                                                                                                                                                                              | 15             | 30          | 102                         |                  | 102        | 42                              | 9                 | 18    |                        |
| 200 DC-10 & 11    | 2   | Crusher House dust collector with fan |                                                                                                                                                                                                                                     | 50             | 100         | 180                         |                  | 180        | 75                              | 15                | 30    |                        |
| 200 FE-01 thru 06 | 6   | Reclaim feeders                       | 125 st/h, 36 in wide x 40 ft lg., 75 fpm, (max.) variable speed drive                                                                                                                                                               | 10             | 60          | 360                         |                  | 360        | 50                              | 10                | 60    |                        |
|                   | 2   | Tramp Iron Magnet                     | 125 st/h, 36 in belt                                                                                                                                                                                                                | 10             | 20          | 120                         |                  | 120        | 50                              | 10                | 20    |                        |
| 200 ML-01 & 02    | 2   | Ball Mill                             | 125 st/h, 14.5 ft dia x 29 ft                                                                                                                                                                                                       | 4000           | 8000        | 5,676                       |                  | 5,676      | 2,470                           | 368               | 736   | SWADELA C              |
| 200 PP-01 thru 04 | 4   | Cyclone feed pump                     | Horizontal slurry pump, flow 3500 gpm, sp gr 1.2, TDH 130 ft, 2 operating and 2 spare                                                                                                                                               | 225            | 900         | 184                         |                  | 184        | 40                              | 6                 | 24    |                        |
|                   |     |                                       |                                                                                                                                                                                                                                     |                | 0           |                             |                  |            |                                 |                   | 0     |                        |
| 200 ST-03 thru 8  | 6   | Motorized gate                        | Capacity- 125 st/h                                                                                                                                                                                                                  | 5              | 30          | 90                          |                  | 90         | 13                              | 2                 | 12    |                        |
| 200 ST-10 & 11    | 2   | Cyclone feed sump,                    | 7000 gal capacity (2 min.)-14ft dia x 15 ft ht, conical                                                                                                                                                                             |                |             | 21                          |                  | 21         | 9                               | 1.5               | 3     |                        |

**APPENDIX B**  
**PREMIUM CWF PRODUCTION FACILITY - AGGLOMERATION**  
**Conceptual Cost Estimate**

All costs are \$ x1000

| Equipment I.D       | Qty | Title                     | Description                                                                                              | Power ea<br>HP | Total<br>HP | Installed Equipment<br>Cost | Sub-<br>contract | Total cost | Equip-unit<br>cost<br>supply-ea | Installation cost |       |    |
|---------------------|-----|---------------------------|----------------------------------------------------------------------------------------------------------|----------------|-------------|-----------------------------|------------------|------------|---------------------------------|-------------------|-------|----|
|                     |     |                           |                                                                                                          |                |             |                             |                  |            |                                 | each              | total |    |
| 200 ZM-01 & 02      | 2   | Distributor               | 3 way-3500 gpm                                                                                           | 5              | 10          | 56                          |                  | 56         | 24                              | 4                 | 8     |    |
| 350 AG-90 thru 99   | 10  | Feed tank agitator        | Tank volume -4000 gals.                                                                                  | 1.5            | 15          | 55                          |                  | 55         | 5                               | 0.5               | 5     |    |
| 350 AG-100 thru 109 | 10  | HSR impeller              |                                                                                                          | 400            | 4000        | 1,815                       |                  | 1,815      | 166                             | 15                | 150   |    |
| 350 AG-109 thru 129 | 20  | LSR impeller              |                                                                                                          | 50             | 1000        | 760                         |                  | 760        | 33                              | 5                 | 100   |    |
| 350 AG-130 thru 139 | 10  | Froth skimmer             |                                                                                                          | 5              | 50          | 251                         |                  | 251        | 21                              | 4                 | 40    |    |
| 350 AG-140 thru 149 | 10  | Steam stripper feed mixer | deleted                                                                                                  |                |             |                             |                  |            |                                 |                   |       |    |
| 350 AG-150 thru 159 | 10  | Steam stripper A agitator |                                                                                                          | 20             | 200         | 400                         |                  | 400        | 36                              | 4                 | 40    |    |
| 350 C-100 thru 109  | 10  | HSR vessel                | Volume: 360 gals. Diameter: 38 inch ht 88 inch - CS- Design Pressure 15 psig- Temp 145 deg F. 34 secs.   | 0              | 0           | 160                         |                  | 160        | 13                              | 3.5               | 35    |    |
| 350 C-110 thru 129  | 20  | LSR vessel                | Volume 1445 gals. Diameter: 60 inch ht 132 inch - CS- Design Pressure 15 psig- Temp 145 deg F. 184 secs. | 0              | 0           | 437                         |                  | 437        | 15                              | 7                 | 140   |    |
| 350 C-130 thru 139  | 10  | Froth skimmer tank        | Volume: 2000 gals.- 2.5 min                                                                              | 0              |             | 184                         |                  | 184        | 16                              | 2                 | 20    |    |
| 350 C-140 thru 149  | 10  | Steam stripper feed drum  | Volume: 300 gals.- 1 min                                                                                 |                | 0           | 94                          |                  | 94         | 7                               | 2                 | 20    |    |
| 350 C-150 thru 159  | 10  | Steam stripper A          | Volume: 1500 gals.- 5 min                                                                                | 0              |             | 267                         |                  | 267        | 23                              | 4                 | 40    |    |
| 350 C-160 thru 169  | 10  | Steam stripper B          | Volume: 3000 gals.- 10 min                                                                               | 0              |             | 448                         |                  | 448        | 39                              | 6                 | 60    |    |
| 350 C-170 thru 179  | 10  | Oil/water separator       | Volume: 750 gals.- 15 min                                                                                | 0              |             | 115                         |                  | 115        | 9                               | 2                 | 20    |    |
| 350 C-180 thru 189  | 10  | Sampling pot              | Volume: 200 gals. - 15 secs                                                                              | 0              |             | 60                          |                  | 60         | 5                               | 1                 | 10    |    |
| 350 C-190 thru 194  | 10  | Heptane drum              | Volume: 700 gals. - 20 min                                                                               | 0              |             | 98                          |                  | 98         | 8                               | 2                 | 20    |    |
| 350 C-195 thru 199  | 5   | Emergency slop tank       | 5000 gals                                                                                                | 0              |             | 119                         |                  | 119        | 20                              | 3.5               | 17.5  |    |
| 350 C-200 thru 204  | 5   | Carbon filter drum        | 600 gals                                                                                                 | 0              |             | 325                         |                  | 325        | 60                              | 5                 | 25    |    |
| 350 C-204 thru 209  | 5   | Relief KO drum            | 800 gals                                                                                                 | 0              |             | 59                          |                  | 59         | 10                              | 2                 | 10    |    |
| 350 CP-01           | 1   | Air compressor            | 1000,SCFM, 125 psig with air receiver                                                                    | 150            | 150         | 158                         |                  | 158        | 150                             | 8.00              | 8     |    |
| 350 D-100 thru 109  | 10  | Floor sump                | 5000 gals. Concrete                                                                                      | 0              | 0           | 8                           |                  | 8          |                                 |                   |       |    |
| 350 D-110 & 111     | 2   | Boiler feed water tank    | 5000 gals. Concrete                                                                                      | 0              | 0           | 120                         |                  | 120        |                                 |                   |       |    |
| 350 D-112 & 113     | 2   | Cooling water pond        | 400,000 gals                                                                                             |                | 0           | 200                         |                  | 200        |                                 |                   |       |    |
|                     |     |                           |                                                                                                          |                | 0           | 0                           |                  | 0          |                                 |                   |       |    |
| 350 E-100 thru 109  | 10  | Vapor condenser           | Air Cooler-Heat Duty: 11 MMBtu/h                                                                         | 60             | 600         | 692                         |                  | 692        | 67                              | 2.0               | 20    |    |
| 350 E-110 thru 119  | 10  | Condensate cooler         | Plate type-Heat Duty: 1 MMBtu/h                                                                          | 0              |             | 68                          |                  | 68         | 5                               | 2.0               | 20    |    |
| 350 E-120 thru 129  | 10  | Water preheater           | Plate type-Heat Duty: 7 MMBtu/h                                                                          | 0              |             | 176                         |                  | 176        | 16                              | 2.0               | 20    |    |
| 350 E-130 thru 139  | 10  | Slurry cooler             | Plate type-Heat Duty: 12 MMBtu/h                                                                         |                | 0           | 565                         |                  | 565        | 51                              | 5.0               | 50    |    |
| 350 E-140 thru 149  | 10  | Blanket gas cooler        | Plate type-Heat Duty: 150,000 Btu/h                                                                      |                | 0           | 92                          |                  | 92         | 7                               | 2.0               | 20    |    |
| 350 F-100           | 1   | Steam lines               |                                                                                                          | 9              | 0           | 0                           |                  | 196        | 196                             |                   |       |    |
| 350 F-102 & 106     | 5   | Flare                     |                                                                                                          |                | 0           | 0                           |                  | 364        | 364                             | 64                | 9.0   | 45 |

**APPENDIX B**  
**PREMIUM CWF PRODUCTION FACILITY - AGGLOMERATION**  
**Conceptual Cost Estimate**  
**All costs are \$ x1000**

| Equipment I.D       | Qty | Title                      | Description                                                                                                      | Power ea<br>HP | Total<br>HP | Installed Equipment<br>Cost | Sub-<br>contract | Total cost | Equip-unit<br>cost<br>supply-ea | Installation cost |       |  |
|---------------------|-----|----------------------------|------------------------------------------------------------------------------------------------------------------|----------------|-------------|-----------------------------|------------------|------------|---------------------------------|-------------------|-------|--|
|                     |     |                            |                                                                                                                  |                |             |                             |                  |            |                                 | each              | total |  |
| 350 PP-100 thru 109 | 10  | HSR feed pump              | Horizontal slurry pump, flow 800 gpm, sp gr 1.02, TDH 80 ft                                                      | 30             | 300         | 200                         |                  | 200        | 15                              | 5.0               | 50    |  |
| 350 PP-110 thru 119 | 10  | Tailings transfer pump     | Horizontal slurry pump, flow 1000 gpm, sp gr 1.01, TDH 50 ft                                                     | 25             | 250         | 30                          |                  | 30         | 3                               | 0                 | 0     |  |
| 350 PP-120 thru 129 | 10  | Sump pump                  | Vertical slurry pump, flow 50 gpm, sp gr 1.2, TDH 50 ft                                                          | 5              | 50          | 100                         |                  | 100        | 8                               | 2.0               | 20    |  |
| 350 PP-130 thru 139 | 10  | Steam stripper A feed pump | Diaphragm type, flow 350 gpm, sp gr 1.05, Delta P 20 psi, Design temp 240 deg F                                  |                | 0           | 230                         |                  | 230        | 20                              | 3.0               | 30    |  |
| 350 PP-140 thru 149 | 10  | Steam stripper B feed pump | Progressive cavity pump, flow 350 gpm, sp gr 1.05, Design Pressure 50 psi, Delta P 30 psi, Design temp 250 deg F | 10             | 100         | 350                         |                  | 350        | 30                              | 5.0               | 50    |  |
| 350 PP-150 thru 159 | 10  | Clean coal slurry pump     | Progressive cavity pump, flow 350 gpm, sp gr 1.05, Design Pressure 50 psi, Delta P 30 psi, Design temp 250 deg F | 10             | 100         | 350                         |                  | 350        | 30                              | 5.0               | 50    |  |
| 350 PP-160 thru 169 | 10  | Heptane pump               | Metering type, flow 400 gpm, sp gr 0.7, Design Pressure 30 psi, Delta P 30 psi, Design temp 100 deg F            | 10             | 100         | 310                         |                  | 310        | 25                              | 6.0               | 60    |  |
| 350 PP-170 thru 174 | 5   | Emergency slop pump        | Diaphragm type, flow 350 gpm, sp gr 1.05, Delta P 20 psi, Design temp 220 deg F                                  | 10             | 50          | 340                         |                  | 340        | 60                              | 8.0               | 40    |  |
| 350 PP-175 thru 178 | 4   | Not used                   |                                                                                                                  |                |             |                             |                  |            |                                 |                   |       |  |
| 350 PP-179 thru 183 | 5   | K. O. Drum pump            |                                                                                                                  | 3              | 15          | 30                          |                  | 30         | 5                               | 1.0               | 5     |  |
| 350 PP-184 thru 187 | 4   | Chilled water pump         | Horizontal water pump, flow 1700 gpm, TDH 120 ft, 2 Operating and 2 spare                                        | 3              | 12          | 30                          |                  | 30         | 6                               | 1.5               | 6     |  |
| 350 PP-188 thru 191 | 4   | Cooling water pump         | Horizontal water pump, flow 3000 gpm, TDH 120 ft, 2 Operating and 2 spare                                        | 150            | 600         | 40                          |                  | 40         | 8                               | 2.0               | 8     |  |
| 350 ST-90 thru 99   | 10  | Agglomeration feed tank    | capacity- 4000 gal (6 min)                                                                                       |                | 0           | 70                          |                  | 70         | 6                               | 1.0               | 10    |  |
| 350 ST-100 & 101    | 2   | Chilled water tank         | 17500 gal capacity -14 ft dia x 16 ft ht Cylindrical-10 min total                                                | 0              | 0           | 34                          |                  | 34         | 15                              | 2.0               | 4     |  |
| 350 V-101 & 102     | 2   | Nitrogen package           |                                                                                                                  |                | 0           | 0                           | 300              | 300        | 0                               | 0.0               | 0     |  |
| 350 V-103 & 104     | 2   | Chiller                    | duty=8.5 MBtu/h                                                                                                  | 800            | 1600        | 346                         |                  | 346        | 153                             | 20.0              | 40    |  |
|                     |     |                            |                                                                                                                  |                | 0           | 0                           |                  | 0          |                                 |                   | 0     |  |
| 350 Y-100 thru 109  | 10  | Screen                     | 6' x 16' feet                                                                                                    | 15             | 150         | 730                         |                  | 730        | 65                              | 8.0               | 80    |  |
| 350 Y-110 thru 114  | 5   | Gas holder and blanketing  |                                                                                                                  |                | 0           | 0                           | 250              | 250        |                                 |                   | 0     |  |
| 350 ZM-100 & 101    | 2   | 5-way distributor          | Flow- 3500 gpm                                                                                                   |                | 0           | 22                          |                  | 22         | 9                               | 2.0               | 4     |  |
| 400 FT-10 thru 15   | 6   | Filtration systems         | Capacity 40 st/h - vacuum filter systems                                                                         | 700            | 4200        | 2,580                       |                  | 2,580      | 400                             | 30                | 180   |  |

**APPENDIX B**  
**PREMIUM CWF PRODUCTION FACILITY - AGGLOMERATION**  
**Conceptual Cost Estimate**

All costs are \$ x1000

| Equipment I.D     | Qty | Title                                       | Description                                                                                                         | Power ea<br>HP | Total<br>HP | Installed Equipment<br>Cost | Sub-<br>contract | Total cost | Equip-unit<br>cost<br>supply-ea | Installation cost |       |  |
|-------------------|-----|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------|-------------|-----------------------------|------------------|------------|---------------------------------|-------------------|-------|--|
|                   |     |                                             |                                                                                                                     |                |             |                             |                  |            |                                 | each              | total |  |
| 400 CV-15         | 2   | Coal solid conveyor                         | Capacity 130 st/h-24 in wide, 125 st/h, 30 ft lift,                                                                 | 5              | 10          | 371                         |                  | 371        | 137                             | 49.08             | 98.16 |  |
| 400 PP-62 & 65    | 4   | Filtrate pump                               | Flow 2500 gpm, TDH 30 ft, 2-Operating and 2- Spare                                                                  | 30             | 120         | 30                          |                  | 30         | 6                               | 1.5               | 6     |  |
| 400 ST-26 & 27    | 2   | Filtrate sump                               | Capacity- 5000 gal                                                                                                  |                |             | 22                          |                  | 22         | 9                               | 2                 | 4     |  |
| 400 ZM-05 & 06    | 2   | Slurry distributor                          | Capacity-3000 gpm                                                                                                   | 10             | 20          | 36                          |                  | 36         | 15                              | 3                 | 6     |  |
| 500 AG-09         | 1   | Tailings filter sump agitator               | Capacity of sump - 1000 gal                                                                                         | 10             | 10          | 10                          |                  | 10         | 8                               | 2                 | 2     |  |
| 500 BN-04         | 1   | Tailings load-out shed                      | Capacity- 100 st                                                                                                    |                |             | 0                           | 60               | 60         |                                 |                   |       |  |
| 500 CV-16         | 1   | Tailings conveyor                           | Capacity - 50 st/h, 24 in x 100 ft                                                                                  | 5              | 5           | 32                          |                  | 32         | 24                              | 8                 | 8     |  |
| 500 FL-01         | 1   | Tailings filter                             | Capacity-30st/h, 3,5 m wide                                                                                         | 22             | 22          | 680                         |                  | 680        | 600                             | 80                | 80    |  |
| 500 PP-70 & 71    | 2   | Thickener underflow pump                    | Horizontal slurry- capacity 500 gpm, 50 ft head, sp gr 1.07. 1-Operating, 1- Spare                                  | 15             | 30          | 40                          |                  | 40         | 15                              | 5                 | 10    |  |
| 500 PP-72 thru 74 | 3   | Clarified water pump                        | Horizontal water- capacity 5,000 gpm, 80 ft head., 2- operating, 1- spare                                           | 150            | 450         | 72                          |                  | 72         | 20                              | 4                 | 12    |  |
| 500 PP-75 & 76    | 2   | Tailings filter feed pump                   | capacity 420 gpm,30 ft head, sp gr 1.07. 1- Operating, 1- Spare                                                     | 15             | 30          | 40                          |                  | 40         | 15                              | 5                 | 10    |  |
| 500 ST-30         | 1   | Tailings filter feed sump                   | Capacity 1000 gal                                                                                                   |                |             | 11                          |                  | 11         | 8                               | 3                 | 3     |  |
| 500 TK-01         | 1   | Tailings thickener tank                     | 90 ft diameter thickener tank with tunnel                                                                           |                |             |                             | 327              | 327        |                                 |                   | 0     |  |
| 500 TK-02         | 1   | Thickener overflow tank                     | Capacity 30,000 gal (concrete)                                                                                      |                |             |                             | 43               | 43         |                                 |                   | 0     |  |
| 500 TM-01         | 1   | Tailings thickener mechanism                | 90 ft dia thickener mechanism with controls                                                                         | 15             | 15          | 167                         |                  | 167        | 146                             | 22                | 22    |  |
| 500 ZM-08         | 1   | Flocculant storage,mixing and dosing system |                                                                                                                     | 5              | 5           | 25                          |                  | 25         | 20                              | 5                 | 5     |  |
| 600 AG-10 & 11    | 2   | Coal additive mixer                         | Retention 5 min.:                                                                                                   | 40             | 80          | 360                         |                  | 360        | 150                             | 30                | 60    |  |
| 600 AG-12 & 13    | 2   | Slurry mixing tank agitator                 |                                                                                                                     | 40             | 80          | 82                          |                  | 82         | 35                              | 6                 | 12    |  |
| 600 AG-14 thru 17 | 4   | Slurry storage tank agitator                |                                                                                                                     | 75             | 300         | 600                         |                  | 600        | 120                             | 30                | 120   |  |
| 600 PP-78 & 79    | 2   | CWF pump                                    | Horizontal slurry- Capacity-1500 gpm, 60 ft head, sp gr 1.17                                                        | 60             | 120         | 52                          |                  | 52         | 22                              | 4                 | 8     |  |
| 600 PP-80 thru 83 | 4   | Slurry loading pump                         | Horizontal slurry- Capacity-dry solids 500 st/h- slurry 3,000 gpm, 60 ft head, sp gr 1.17, 4-Operating and 4- spare | 100            | 400         | 144                         |                  | 144        | 30                              | 6                 | 24    |  |
| 600 ST-31 & 32    | 2   | Slurry mixing tank                          | 10 min. each. Volume:                                                                                               |                |             | 60                          |                  | 60         | 25                              | 5                 | 10    |  |
| 600 ST-33 thru 36 | 4   | Slurry fuel storage tank                    | 0.85 million gal- 55 ft dia and 53 ft high- total 24 hr.                                                            |                |             |                             | 2,500            | 2,500      |                                 |                   |       |  |

**APPENDIX B**  
**PREMIUM CWF PRODUCTION FACILITY - AGGLOMERATION**  
**Conceptual Cost Estimate**  
All costs are \$ x1000

| Equipment I.D                | Qty | Title                                        | Description | Power ea<br>HP | Total<br>HP | Installed Equipment<br>Cost | Sub-<br>contract | Total cost | Equip-unit<br>cost<br>supply-ea | Installation cost |       |             |
|------------------------------|-----|----------------------------------------------|-------------|----------------|-------------|-----------------------------|------------------|------------|---------------------------------|-------------------|-------|-------------|
|                              |     |                                              |             |                |             |                             |                  |            |                                 | each              | total |             |
| 600 ZM-10 & 11               | 2   | Flocculant storage, mixing and dosing system |             | 10             | 20          | 140                         |                  | 140        | 50                              | 20                | 40    |             |
| <b>TOTAL MAJOR EQUIPMENT</b> |     |                                              |             |                |             |                             |                  |            |                                 |                   |       | <b>3431</b> |

Summary

| <b>Total Major Equipment</b>                             |                              | Equipment     | Bulks         | Labor         | SC            | Total         |
|----------------------------------------------------------|------------------------------|---------------|---------------|---------------|---------------|---------------|
| <b>Bulks</b>                                             | <b>%</b>                     | <b>22,464</b> |               | <b>3,431</b>  | <b>15,254</b> | <b>41,148</b> |
| J Instruments                                            | 8                            |               |               |               |               |               |
| L Piping                                                 | 10                           |               | 1,797         | 540           |               | 2,337         |
| M Structural                                             | 14                           |               | 2,246         | 1,481         |               | 3,728         |
| N Insulation and Fire protection                         | 3                            |               | 3,145         | 1,414         |               | 4,559         |
| P Electrical                                             | 14                           |               | 674           | 444           |               | 1,118         |
| Q Concrete                                               | 13                           |               | 3,145         | 2,358         |               | 5,503         |
| R Building                                               | 5                            |               | 2,920         | 3,593         |               | 6,514         |
| S Site work                                              | 3 (including internal roads) |               | 674           | 832           |               | 1,505         |
| X Painting                                               | 1                            |               |               |               |               | 225           |
| <b>Total Bulk Materials</b>                              | <b>71</b>                    | <b>22,464</b> | <b>14,601</b> | <b>10,663</b> | <b>1,348</b>  | <b>26,612</b> |
| Freight                                                  |                              | 0.03          | 674           |               |               | 674           |
| <b>Total Direct Field Costs</b>                          |                              |               | <b>23,137</b> | <b>14,601</b> | <b>14,094</b> | <b>16,602</b> |
| Indirect Field Costs                                     |                              | 60            |               |               |               | 8,456         |
| <b>Total Field Costs</b>                                 |                              |               |               |               |               | <b>76,891</b> |
| Home Office and Engineering                              |                              | 7             |               |               |               | 4,790         |
| <b>Total Installed Plant Costs less Contingency</b>      |                              |               |               |               |               | <b>81,681</b> |
| Contingency                                              |                              | 17.72         |               |               |               | 14,472        |
| <b>Total Installed Plant Costs Including Contingency</b> |                              |               |               |               |               | <b>96,153</b> |

**APPENDIX B**  
**PREMIUM CWF PRODUCTION FACILITY - AGGLOMERATION**  
**Conceptual Cost Estimate**  
All costs are \$ x1000

| Equipment<br>I.D | Qty | Title | Description | Power ea<br>HP | Total<br>HP | Installed Equipment<br>Cost | Sub-<br>contract | Total cost | Equip-unit<br>cost<br>supply-ea | Installation cost |       |  |
|------------------|-----|-------|-------------|----------------|-------------|-----------------------------|------------------|------------|---------------------------------|-------------------|-------|--|
|                  |     |       |             |                |             |                             |                  |            |                                 | each              | total |  |
|                  |     |       |             |                |             |                             |                  |            |                                 |                   |       |  |

**Cost Breakdown**

|                                          | Cont/ ra<br>contin | %     | Total field cost (less home<br>office) |               | Total project-<br>less<br>contingency | Total project-<br>with<br>contingency |
|------------------------------------------|--------------------|-------|----------------------------------------|---------------|---------------------------------------|---------------------------------------|
|                                          |                    |       | 13,886                                 | 0             |                                       |                                       |
| Plant 100 Raw Coal Handling              | 0.15               | 2.7   | 18.1                                   | <b>13,886</b> | <b>0</b>                              | <b>0</b>                              |
| Plant 200 Raw Coal Crushing and Grinding | 0.15               | 3.8   | 25.0                                   | <b>19,249</b> | <b>0</b>                              | <b>0</b>                              |
| Plant 350 Selective Agglomeration        | 0.225              | 8.2   | 36.2                                   | <b>27,868</b> | <b>58,067</b>                         | <b>68,355</b>                         |
| Plant 400 Clean Coal Dewatering          | 0.15               | 1.4   | 9.4                                    | <b>7,216</b>  | <b>12,398</b>                         | <b>14,594</b>                         |
| Plant 500 Water Clarification            | 0.15               | 0.6   | 3.7                                    | <b>2,873</b>  | <b>8,218</b>                          | <b>9,674</b>                          |
| Plant 600 Coal Slurry Preparation        | 0.15               | 1.1   | 7.5                                    | <b>5,799</b>  | <b>2,999</b>                          | <b>3,530</b>                          |
| <b>Total Plant</b>                       | Total              | 17.72 | 100.0                                  | <b>76,891</b> | <b>81,681</b>                         | <b>96,153</b>                         |

**APPENDIX C**  
**CWF COST SENSITIVITY CALCULATIONS - COLUMN FLOTATION**  
**Table C-1**  
**Changes in Coal Feed Rates and Tailings Generation for the Same Output**

| CASE              |                                           | Base   | Low    | High   | Remarks                                                                                                           |
|-------------------|-------------------------------------------|--------|--------|--------|-------------------------------------------------------------------------------------------------------------------|
| <b>Item A-(1)</b> | Variation in Feed Ash                     |        |        |        |                                                                                                                   |
|                   | Ash in Feed Coal (Dry basis) wt%          | 7.5    | 3.75   | 11.25  | (+) or (-) 50% over Base                                                                                          |
|                   | Feed Coal HV (Dry basis) Btu/lb           | 14,054 | 14,763 | 13,346 | HV= 15472-Ash%*189                                                                                                |
|                   | Clean coal ash - (Dry basis) wt %         | 2.7    | 2.7    | 2.7    |                                                                                                                   |
|                   | Clean Coal HV (Dry basis) Btu/lb          | 14,962 | 14,962 | 14,962 |                                                                                                                   |
|                   | lb Ash /MBtu                              | 1.8    | 1.8    | 1.8    |                                                                                                                   |
|                   | Heating value recovery -%                 | 96.1   | 96.1   | 96.1   | same in all cases- assumed                                                                                        |
|                   | Weight recovery-%                         | 90.3   | 94.9   | 85.8   |                                                                                                                   |
|                   | Feed coal st/st of Clean Coal             | 1.11   | 1.05   | 1.17   |                                                                                                                   |
|                   | Feed coal wt as proportion of base case   | 1.00   | 0.95   | 1.05   | Effect Capital: on raw coal handling, grinding, flotation O&M grinding power, flotation reagents                  |
| <b>Item A-(2)</b> | Tailings st/st of clean coal              | 0.11   | 0.05   | 0.17   |                                                                                                                   |
|                   | Tailings generation as proportion of base | 1.00   | 0.50   | 1.55   | Capital: refuse filter and thickener; O&M flocculants, Refuse disposal                                            |
|                   | Variation in heating value losses         |        |        |        |                                                                                                                   |
|                   | Ash in Feed Coal (Dry basis) wt%          | 7.5    | 7.5    | 7.5    | No change                                                                                                         |
|                   | Heating value losses -%                   | 3.9    | 1.9    | 5.8    | (+) or (-) 50% over Base                                                                                          |
|                   | Heating value recovery -%                 | 96.1   | 98.1   | 94.2   | Based on feed coal Btu                                                                                            |
|                   | Feed Coal HV (Dry basis) Btu/lb           | 14,054 | 14,054 | 14,054 |                                                                                                                   |
|                   | Clean Coal HV (Dry basis) Btu/lb          | 14,962 | 14,962 | 14,962 |                                                                                                                   |
|                   | Weight recovery-%                         | 90.3   | 92.1   | 88.5   |                                                                                                                   |
|                   | Feed coal st/st of Clean Coal             | 1.11   | 1.09   | 1.13   |                                                                                                                   |
| <b>Item A-(3)</b> | Feed coal wt as proportion of Base case   | 1.00   | 0.98   | 1.02   | Effect Capital : on raw coal handling, grinding, flotation O&M grinding power, flotation reagents-Both Negligible |
|                   | Tailings- st/st of clean coal             | 0.11   | 0.09   | 0.13   |                                                                                                                   |
|                   | Tailings wt as proportion of Base case    | 1.00   | 0.80   | 1.21   | Capital: refuse filter and thickener; O&M flocculants, Refuse disposal                                            |
|                   | Btus lost as % of Btu in Product          | 4.0    | 2.0    | 6.2    |                                                                                                                   |
|                   | Btu loss as proportion of Base case       | 1.0    | 0.49   | 1.53   | O&M cost Btu loss- to be accounted                                                                                |

**APPENDIX C**  
**Table C-2**  
**CWF COST SENSITIVITY CALCULATIONS - COLUMN FLOTATION**  
**IMPACTS ON CAPITAL COSTS**

|                                                            |                  | Base Case     | Low Case      | High Case     | Remarks                      |
|------------------------------------------------------------|------------------|---------------|---------------|---------------|------------------------------|
| <b>I Capital Cost Impacts</b>                              |                  |               |               |               |                              |
| <b>A (i) Variations in Feed Coal ash content- wt %</b>     |                  |               |               |               |                              |
| Ash in Feed Coal (Dry Basis)                               | %                | 7.5           | 3.8           | 11.25         | Variation +/- 50 %           |
| Coal feed and Processing rate (Table C-1)                  | Ratios           | 1.00          | 0.952         | 1.053         |                              |
| Tailings generation as proportion of base coal (Table C-1) | %                | 1.00          | 0.50          | 1.55          |                              |
| Capital cost-Crushing, Grinding and Flotation              | \$ x 1000        | 33,135        | 32,012        | 34,355        | $C2=C1*(Q2/Q1)^{.7}$         |
| Capital cost- Water clarification & Tailings Handling      | \$ x 1000        | 3,135         | 1,942         | 4,255         | $C2=C1*(Q2/Q1)^{.7}$         |
| Rest of plant                                              | \$ x 1000        | 33,312        | 33,312        | 33,312        |                              |
| Total Project Capital Cost                                 | \$ x 1000        | 69,581        | 67,266        | 71,922        |                              |
| <b>Capital Cost Impact</b>                                 | <b>\$ x 1000</b> | <b>Base</b>   | <b>-2,316</b> | <b>2,341</b>  |                              |
| <b>A (ii) Variations in Loss in Btu</b>                    |                  |               |               |               |                              |
| Btu losses                                                 | %                |               | 1.95          | 7.5           | Variation (+)100 to (-) 50 % |
| Coal feed and Processing rate (Table C-1)                  | Ratios           | 1.00          | 0.98          | 1.02          |                              |
| Refuse generation rate (Table C-1)                         | Ratios           | 1.00          | 0.80          | 1.21          |                              |
| Capital cost-Crushing, Grinding and Flotation              | \$ x 1000        | 33,135        | 33,135        | 33,135        | Negligible change            |
| Capital cost- Water clarification & Tailings Handling      | \$ x 1000        | 3,135         | 2,674         | 3,585         | $C2=C1*(Q2/Q1)^{.7}$         |
| Rest of plant                                              | \$ x 1000        | 33,312        | 33,312        | 33,312        |                              |
| <b>Total Project Capital Cost</b>                          | <b>\$ x 1000</b> | <b>69,581</b> | <b>69,121</b> | <b>70,032</b> |                              |
| <b>Capital Cost Impact</b>                                 | <b>\$ x 1000</b> | <b>Base</b>   | <b>-461</b>   | <b>450</b>    |                              |

**APPENDIX C**  
**Table C-3**  
**CWF COST SENSITIVITY CALCULATIONS - COLUMN FLOTATION**  
Case A (i) and A (ii) Process Parameters  
Case B (i) Price of Feed Coal  
Variable and Fixed O & M Costs- Cost of CWF

| Cost element                            | Cost of CWF Base |                          |         | Cost of CWF Case A (i)-Ash in Feed Coal |             |         |        |             |         | Cost of CWF Case A (ii)-Loss of Btu |             |         |        |             |         | Cost of CWF Case B (i)- Coal Price |             |         |        |             |         |
|-----------------------------------------|------------------|--------------------------|---------|-----------------------------------------|-------------|---------|--------|-------------|---------|-------------------------------------|-------------|---------|--------|-------------|---------|------------------------------------|-------------|---------|--------|-------------|---------|
|                                         | 1000 x \$/y      | \$/st<br>product<br>coal | \$/MBtu | Low                                     |             |         | High   |             |         | Low                                 |             |         | High   |             |         | Low                                |             | High    |        |             |         |
|                                         |                  |                          |         | Factor                                  | 1000 x \$/y | \$/MBtu | Factor | 1000 x \$/y | \$/MBtu | Factor                              | 1000 x \$/y | \$/MBtu | Factor | 1000 x \$/y | \$/MBtu | Factor                             | 1000 x \$/y | \$/MBtu | Factor | 1000 x \$/y | \$/MBtu |
| <b>Variable O&amp;M Costs</b>           |                  |                          |         |                                         |             |         |        |             |         |                                     |             |         |        |             |         |                                    |             |         |        |             |         |
| Collector                               | 249              | 0.17                     | 0.01    | 0.95                                    | 237         | 0.01    | 1.05   | 262         | 0.01    | 0.98                                | 244         | 0.01    | 1.02   | 254         | 0.01    | 1.00                               | 249         | 0.01    | 1.00   | 249         | 0.01    |
| Fother                                  | 1,059            | 0.71                     | 0.02    | 0.95                                    | 1,008       | 0.02    | 1.05   | 1,115       | 0.02    | 0.98                                | 1,038       | 0.02    | 1.02   | 1,081       | 0.02    | 1.00                               | 1,059       | 0.02    | 1.00   | 1,059       | 0.02    |
| Flocculant                              | 1,764            | 1.18                     | 0.04    | 0.50                                    | 890         | 0.02    | 1.55   | 2,729       | 0.06    | 0.80                                | 1,406       | 0.03    | 1.21   | 2,137       | 0.05    | 1.00                               | 1,764       | 0.04    | 1.00   | 1,764       | 0.04    |
| CWF additive-A23                        | 10,500           | 7.00                     | 0.23    | 1.00                                    | 10,500      | 0.23    | 1.00   | 10,500      | 0.23    | 1.00                                | 10,500      | 0.23    | 1.00   | 10,500      | 0.23    | 1.00                               | 10,500      | 0.23    | 1.00   | 10,500      | 0.23    |
| <b>O&amp;M supplies and ball charge</b> | 1,272            | 0.85                     | 0.03    | 0.97                                    | 1,229       | 0.03    | 1.03   | 1,314       | 0.03    | 0.99                                | 1,263       | 0.03    | 1.01   | 1,280       | 0.03    | 1.00                               | 1,272       | 0.03    | 1.00   | 1,272       | 0.03    |
| Electric power                          | 5,023            | 3.35                     | 0.11    | 0.95                                    | 4,781       | 0.11    | 1.05   | 5,289       | 0.12    | 0.98                                | 4,924       | 0.11    | 1.02   | 5,126       | 0.11    | 1.00                               | 5,023       | 0.11    | 1.00   | 5,023       | 0.11    |
| Water                                   | 136              | 0.09                     | 0.00    | 1.00                                    | 136         | 0.00    | 1.00   | 136         | 0.00    | 1.00                                | 136         | 0.00    | 1.00   | 136         | 0.00    | 1.00                               | 136         | 0.00    | 1.00   | 136         | 0.00    |
| Refuse (tailings) disposal              | 806              | 0.54                     | 0.02    | 0.50                                    | 406         | 0.01    | 1.55   | 1,246       | 0.03    | 0.80                                | 642         | 0.01    | 1.21   | 976         | 0.02    | 1.00                               | 806         | 0.02    | 1.00   | 806         | 0.02    |
| Btu loss                                | 2,243            | 1.50                     | 0.05    | 1.00                                    | 2,243       | 0.05    | 1.00   | 2,243       | 0.05    | 1.00                                | 2,243       | 0.05    | 1.00   | 2,243       | 0.05    | 0.90                               | 2,019       | 0.045   | 1.10   | 2,468       | 0.05    |
| <b>Total Variable O &amp; M Costs</b>   | 23,052           | 15.37                    | 0.51    | -                                       | 21,432      | 0.48    | -      | 24,836      | 0.55    | -                                   | 22,396      | 0.50    | -      | 23733       | 0.53    | -                                  | 22,827      | 0.51    | -      | 23,276      | 0.52    |
| <b>Fixed O &amp; M Costs</b>            |                  |                          |         |                                         |             |         |        |             |         |                                     |             |         |        |             |         |                                    |             |         |        |             |         |
| Labor                                   | 6,075            | 4.05                     | 0.14    | 1.00                                    | 6,075       | 0.14    | 1.00   | 6,075       | 0.14    | 1.00                                | 6,075       | 0.14    | 1.00   | 6,075       | 0.14    | 1.00                               | 6,075       | 0.14    | 1.00   | 6,075       | 0.14    |
| Capital Charges                         | 11,916           | 7.94                     | 0.27    | 0.97                                    | 11,520      | 0.26    | 1.03   | 12,317      | 0.27    | 0.99                                | 11,837      | 0.26    | 1.01   | 11,993      | 0.27    | 1.00                               | 11,916      | 0.27    | 1.00   | 11,916      | 0.27    |
| <b>Total Fixed O &amp; M Costs</b>      | 17,991           | 11.99                    | 0.40    |                                         | 17,595      | 0.39    |        | 18,392      | 0.41    |                                     | 17,912      | 0.40    |        | 18,068      | 0.40    |                                    | 17,991      | 0.40    |        | 17,991      | 0.40    |
| <b>Total O &amp; M Costs</b>            | 41,043           | 27.36                    | 0.91    |                                         | 39,026      | 0.87    |        | 43,228      | 0.96    |                                     | 40,309      | 0.90    |        | 41,801      | 0.931   |                                    | 40,819      | 0.91    |        | 41,267      | 0.92    |
| Raw Coal                                | 55,807           | 37.20                    | 1.2433  | 1.00                                    | 55,807      | 1.24    | 1.00   | 55,807      | 1.24    | 1.00                                | 55,807      | 1.24    | 1.00   | 55,807      | 1.24    | 0.90                               | 50,226      | 1.119   | 1.10   | 61,388      | 1.37    |
| <b>Total Premium CWF</b>                | 96,850           | 64.57                    | 2.1577  |                                         | 94,833      | 2.11    |        | 99,035      | 2.21    |                                     | 96,116      | 2.14    |        | 97,608      | 2.17    |                                    | 91,045      | 2.0284  |        | 102,655     | 2.29    |

**APPENDIX C**  
**Table C-4**  
**CWF COST SENSITIVITY CALCULATIONS - COLUMN FLOTATION**  
**Case B (ii) Labor, Case B (iii) Electricity, Case B (iv) Reagents and Additives**

| Case I. D    | Cost Element         | Variation |      | Base Case        |                    | Increase/<br>Decrease<br>\$/MBtu | Revised<br>Cost of CWF<br>\$/MBtu |
|--------------|----------------------|-----------|------|------------------|--------------------|----------------------------------|-----------------------------------|
|              |                      | Type      | %    | Total<br>\$/MBtu | Element<br>\$/MBtu |                                  |                                   |
| Case B (ii)  | Labor                | Low       | -10% | 2.16             | 0.135              | -0.014                           | 2.14                              |
|              |                      | High      | 10%  | 2.16             | 0.135              | 0.014                            | 2.17                              |
| Case B (iii) | Electricity          | Low       | -10% | 2.16             | 0.112              | -0.011                           | 2.15                              |
|              |                      | High      | 10%  | 2.16             | 0.112              | 0.011                            | 2.17                              |
| Case B (iv)  | Reagents & Additives | Low       | -10% | 2.16             | 0.263              | -0.026                           | 2.13                              |
|              |                      | High      | 10%  | 2.16             | 0.263              | 0.026                            | 2.18                              |

APPENDIX C

Table C - 5

**CWF COST SENSITIVITY CALCULATIONS - COLUMN FLOTATION**

Case C (i) Lower or Higher Plant Production- Same Operating Schedule

Case C (ii) Reduced Plant Production Due to fewer Operating Shifts

| Case I. D       | Production |          | Variable O&M |         | Fixed O&M |         | Coal    |         | Revised Cost of CWF<br>\$/MBtu |
|-----------------|------------|----------|--------------|---------|-----------|---------|---------|---------|--------------------------------|
|                 | Base       | Variant  | Base         | Variant | Base      | Variant | Base    | Variant |                                |
|                 | 10^6st/y   | 10^6st/y | \$/MBtu      | \$/MBtu | \$/MBtu   | \$/MBtu | \$/MBtu | \$/MBtu |                                |
| Case C (i)-Low  | 1.5        | 1.35     | 0.51         | 0.51    | 0.40      | 0.45    | 1.24    | 1.24    | 2.20                           |
| Case C (i)-High | 1.5        | 1.65     | 0.51         | 0.51    | 0.40      | 0.36    | 1.24    | 1.24    | 2.12                           |

| Case I. D         | Production |          | Schedule |         | Employees |         | Variable O&M |         | Labor   |         | Capital charges |         | Coal    |         | Revised Cost of CWF<br>\$/MBtu |
|-------------------|------------|----------|----------|---------|-----------|---------|--------------|---------|---------|---------|-----------------|---------|---------|---------|--------------------------------|
|                   | Base       | Variant  | Base     | Variant | Base      | Variant | Base         | Variant | Base    | Variant | Base            | Variant | Base    | Variant |                                |
|                   | 10^6st/y   | 10^6st/y | sht/wk   | sht/wk  | No.       | No.     | \$/MBtu      | \$/MBtu | \$/MBtu | \$/MBtu | \$/MBtu         | \$/MBtu | \$/MBtu | \$/MBtu |                                |
| Case C (ii)-Low   | 1.5        | 0.79     | 19       | 10      | 81        | 44      | 0.51         | 0.51    | 0.14    | 0.14    | 0.27            | 0.50    | 1.24    | 1.24    | 2.40                           |
| Case C (ii)- High | 1.5        | 1.18     | 19       | 15      | 81        | 64      | 0.51         | 0.51    | 0.14    | 0.14    | 0.27            | 0.34    | 1.24    | 1.24    | 2.23                           |

**Case D (i), D (ii) Lower or Higher Capital Costs**

|                  | Capital Cost |         | Base Cost of CWF<br>\$/MBtu | Capital charges |         | Revised Cost of CWF<br>\$/MBtu |
|------------------|--------------|---------|-----------------------------|-----------------|---------|--------------------------------|
|                  | Base         | Variant |                             | Base            | Variant |                                |
|                  | \$ x 1000    | %       |                             | \$/MBtu         | \$/MBtu |                                |
| Case D (i)-Low   | 69,581       | -10%    | 2.158                       | 0.265           | -0.027  | 2.131                          |
| Case D (i)- High | 69,581       | 20%     | 2.158                       | 0.265           | 0.053   | 2.211                          |

**APPENDIX D**  
**Table D-1**  
**SENSITIVITY CALCULATIONS- AGGLOMERATION**  
**Changes in Coal Feed Rates and Tailings Generation for the Same Output**

| CASE              |                                           | Base   | Low    | High   | Remarks                                                                                                           |
|-------------------|-------------------------------------------|--------|--------|--------|-------------------------------------------------------------------------------------------------------------------|
| <b>Item A-(i)</b> | Variation in Feed Ash                     |        |        |        |                                                                                                                   |
|                   | Ash in Feed Coal (Dry basis) wt%          | 7.5    | 3.75   | 11.25  | (+) or (-) 50% over Base                                                                                          |
|                   | Feed Coal HHV (Dry basis) Btu/lb          | 14,054 | 14,763 | 13,346 | HHV'= 15472-Ash%*189                                                                                              |
|                   | Clean coal ash - (Dry basis) wt %         | 2.7    | 2.7    | 2.7    |                                                                                                                   |
|                   | Clean Coal HHV (Dry basis) Btu/lb         | 14,962 | 14,962 | 14,962 |                                                                                                                   |
|                   | lb Ash /MBtu                              | 1.8    | 1.8    | 1.8    |                                                                                                                   |
|                   | Heating value recovery -%                 | 99.0   | 99.0   | 99.0   | same in all cases- assumed                                                                                        |
|                   | Weight recovery-%                         | 93.0   | 97.7   | 88.3   |                                                                                                                   |
|                   | Feed coal st/st of Clean Coal             | 1.08   | 1.02   | 1.13   |                                                                                                                   |
|                   | Feed coal wt as proportion of base case   | 1.00   | 0.95   | 1.05   | Effect Capital: on raw coal handling, grinding, flotation O&M grinding power, flotation reagents                  |
| <b>Item A-(2)</b> | Tailings st/st of clean coal              | 0.08   | 0.02   | 0.13   |                                                                                                                   |
|                   | Tailings generation as proportion of base | 1.00   | 0.31   | 1.76   | Capital: refuse filter and thickener; O&M flocculants, Refuse disposal                                            |
|                   | Variation in heating value losses         |        |        |        |                                                                                                                   |
|                   | Ash in Feed Coal (Dry basis) wt%          | 7.5    | 7.5    | 7.5    | No change                                                                                                         |
|                   | Heating value losses -%                   | 1      | 0.5    | 1.5    | (+) or (-) 50% over Base                                                                                          |
|                   | Heating value recovery -%                 | 99     | 99.5   | 98.5   | Based on feed coal Btu                                                                                            |
|                   | Feed Coal HHV (Dry basis) Btu/lb          | 14,054 | 14,054 | 14,054 |                                                                                                                   |
|                   | Clean Coal HHV (Dry basis) Btu/lb         | 14,962 | 14,962 | 14,962 |                                                                                                                   |
|                   | Weight recovery-%                         | 93.0   | 93.5   | 92.5   |                                                                                                                   |
|                   | Feed coal st/st of Clean Coal             | 1.08   | 1.07   | 1.08   |                                                                                                                   |
| <b>Item A-(2)</b> | Feed coal wt as proportion of Base case   | 1.00   | 0.99   | 1.01   | Effect Capital : on raw coal handling, grinding, flotation O&M grinding power, flotation reagents-Both Negligible |
|                   | Tailings- st/st of clean coal             | 0.08   | 0.07   | 0.08   |                                                                                                                   |
|                   | Tailings wt as proportion of Base case    | 1.00   | 0.93   | 1.07   | Capital: refuse filter and thickener; O&M flocculants, Refuse disposal                                            |
|                   | Btus lost as % of Btu in Product          | 1.0    | 0.5    | 1.5    |                                                                                                                   |
|                   | Btu loss as proportion of Base case       | 1.0    | 0.50   | 1.51   | O&M cost Btu loss- to be accounted                                                                                |

**APPENDIX D**  
**Table D-2**  
**SENSITIVITY CALCULATIONS- AGGLOMERATION**  
**CAPITAL COST IMPACTS**

|                                                        |           | Base Case | Low Case      | High Case    | Remarks                        |
|--------------------------------------------------------|-----------|-----------|---------------|--------------|--------------------------------|
| <b>I Capital Cost Impacts</b>                          |           |           |               |              |                                |
| <b>A (i) Variations in Feed Coal ash content- wt %</b> |           |           |               |              |                                |
| Ash in Feed Coal (Dry Basis)                           | %         | 7.5       | 3.75          | 11.25        | Variation +/- 50 %             |
| Coal feed and Processing rate (Table D-1)              | Ratios    | 1.00      | 0.952         | 1.053        |                                |
| Tailings generation as proportion of base (Table D-1)  | Ratios    | 1.00      | 0.31          | 1.76         |                                |
| Capital cost-Crushing, Grinding and Flotation          | \$ x 1000 | 33,135    | 32,012        | 34,355       | C2=C1*(Q2/Q1)^.7               |
| Capital cost- Water clarification & Tailings Handling  | \$ x 1000 | 2,873     | 1,278         | 4,263        | C2=C1*(Q2/Q1)^.7               |
| Rest of plant                                          | \$ x 1000 | 61,227    | 61,227        | 61,227       |                                |
| Total plant                                            | \$ x 1000 | 97,235    | 94,517        | 99,845       |                                |
| <b>Capital Cost Impact</b>                             | \$ x 1000 | Base      | <b>-2,718</b> | <b>2,610</b> |                                |
| <b>A (ii) Variations in Loss in Btu</b>                |           |           |               |              |                                |
| Btu losses                                             | %         | 1.00      | 0.50          | 2.00         | Variation (+)100 to (-) 50 %   |
| Coal feed and Processing rate (Table D-1)              | Ratios    | 1.00      | 0.99          | 1.01         | Negligible changes in these pl |
| Tailings generation (Table D-1)                        | Ratios    | 1.00      | 0.93          | 1.07         |                                |
| Capital cost- Water clarification & Tailings Handling  | \$ x 1000 | 2,873     | 2,728         | 3,018        | C2=C1*(Q2/Q1)^.7               |
| Rest of plant                                          | \$ x 1000 | 94,361    | 94,361        | 94,361       |                                |
| Total plant                                            | \$ x 1000 | 97,235    | 97,089        | 97,379       |                                |
| <b>Capital Cost Impact</b>                             | \$ x 1000 | Base      | <b>-146</b>   | <b>144</b>   |                                |

**APPENDIX D**  
**Table D-3**  
**SENSITIVITY CALCULATIONS - AGGLOMERATION**  
Case A (i) and A (ii) Process Parameter Variations  
Case B (i) Feed Coal Price Variations  
Variable and Fixed O & M Costs- Cost of CWF

| Cost element                          | Cost of CWF Base |                          |             | Cost of CWF Case A (i)-Ash in Feed Coal |                |             |        |                |             | Cost of CWF Case A (ii)-Loss of Btu |                |             |        |                |              | Cost of CWF Case B (i)- Coal Price |                |             |        |                |             |      |      |  |
|---------------------------------------|------------------|--------------------------|-------------|-----------------------------------------|----------------|-------------|--------|----------------|-------------|-------------------------------------|----------------|-------------|--------|----------------|--------------|------------------------------------|----------------|-------------|--------|----------------|-------------|------|------|--|
|                                       | 1000 x \$/y      | \$/st<br>product<br>coal | \$/MBtu     | Low                                     |                |             | High   |                |             | Factor                              | 1000 x \$/y    | \$/MBtu     | Factor | 1000 x \$/y    | \$/MBtu      | Factor                             | 1000 x \$/y    | \$/MBtu     | Factor | 1000 x \$/y    | \$/MBtu     |      |      |  |
|                                       |                  |                          |             | Factor                                  | 1000 x \$/y    | \$/MBtu     | Factor | 1000 x \$/y    | \$/MBtu     |                                     |                |             |        |                |              |                                    |                |             |        |                |             |      |      |  |
| <b>Variable O&amp;M Costs</b>         |                  |                          |             |                                         |                |             |        |                |             |                                     |                |             |        |                |              |                                    |                |             |        |                |             |      |      |  |
| Heptane                               | 1,524            | 1.02                     | 0.03        | 0.95                                    | 1,451          | 0.03        | 1.05   | 1,605          | 0.04        | 0.99                                | 1,517          | 0.03        | 1.01   | 1,532          | 0.03         | 1.00                               | 1,524          | 0.03        | 1.00   | 1,524          | 0.03        |      |      |  |
| Steam                                 | 5,706            | 3.80                     | 0.13        | 0.95                                    | 5,431          | 0.12        | 1.05   | 6,008          | 0.13        | 0.99                                | 5,677          | 0.13        | 1.01   | 5,735          | 0.13         | 1.00                               | 5,706          | 0.13        | 1.00   | 5,706          | 0.13        | 0.00 | 0.00 |  |
| Flocculant                            | 1,238            | 0.83                     | 0.03        | 0.31                                    | 389            | 0.01        | 1.76   | 2,175          | 0.05        | 0.93                                | 1,149          | 0.03        | 1.07   | 1,328          | 0.03         | 1.00                               | 1,238          | 0.03        | 1.00   | 1,238          | 0.03        |      |      |  |
| CWF additive-A23                      | 10,500           | 7.00                     | 0.23        | 1.00                                    | 10,500         | 0.23        | 1.00   | 10,500         | 0.23        | 1.00                                | 10,500         | 0.23        | 1.00   | 10,500         | 0.23         | 1.00                               | 10,500         | 0.23        | 1.00   | 10,500         | 0.23        |      |      |  |
| O&M supplies and ball charge          | 1,607            | 0.75                     | 0.03        | 0.97                                    | 1,562          | 0.02        | 1.03   | 1,650          | 0.03        | 0.999                               | 1,604          | 0.02        | 1.001  | 1,609          | 0.03         | 1.00                               | 1,607          | 0.03        | 1.00   | 1,608          | 0.03        |      |      |  |
| Electric power                        | 6,743            | 4.50                     | 0.15        | 0.95                                    | 6,419          | 0.14        | 1.05   | 7,101          | 0.16        | 0.99                                | 6,709          | 0.15        | 1.01   | 6,778          | 0.15         | 1.00                               | 6,743          | 0.15        | 1.00   | 6,743          | 0.15        |      |      |  |
| Water                                 | 132              | 0.09                     | 0.00        | 1.00                                    | 132            | 0.00        | 1.00   | 132            | 0.00        | 1.00                                | 132            | 0.00        | 1.00   | 132            | 0.00         | 1.00                               | 132            | 0.00        | 1.00   | 132            | 0.00        |      |      |  |
| Refuse (tailings) disposal            | 565              | 0.38                     | 0.01        | 0.31                                    | 178            | 0.00        | 1.76   | 993            | 0.02        | 0.93                                | 525            | 0.01        | 1.07   | 606            | 0.01         | 1.00                               | 565            | 0.01        | 1.00   | 565            | 0.01        |      |      |  |
| Btu loss                              | 564              | 0.38                     | 0.01        | 1.00                                    | 564            | 0.01        | 1.00   | 564            | 0.01        | 1.00                                | 564            | 0.01        | 1.00   | 564            | 0.01         | 0.90                               | 507            | 0.011       | 1.10   | 620            | 0.01        |      |      |  |
| <b>Total Variable O &amp; M Costs</b> | <b>28,579</b>    | <b>18.73</b>             | <b>0.63</b> | -                                       | <b>26,626</b>  | <b>0.58</b> | -      | <b>30,729</b>  | <b>0.67</b> | -                                   | <b>28,377</b>  | <b>0.62</b> | -      | <b>28,783</b>  | <b>0.63</b>  | -                                  | <b>28,523</b>  | <b>0.62</b> | -      | <b>28,636</b>  | <b>0.63</b> |      |      |  |
| <b>Fixed O &amp; M Costs</b>          |                  |                          |             |                                         |                |             |        |                |             |                                     |                |             |        |                |              |                                    |                |             |        |                |             |      |      |  |
| Labor                                 | 7,800            | 5.20                     | 0.17        | 1.00                                    | 7,800          | 0.17        | 1.00   | 7,800          | 0.17        | 1.00                                | 7,800          | 0.17        | 1.00   | 7,800          | 0.17         | 1.00                               | 7,800          | 0.17        | 1.00   | 7,800          | 0.17        |      |      |  |
| Capital Charges and Interest          | 16,414           | 10.94                    | 0.37        | 0.97                                    | 15,955         | 0.36        | 1.03   | 16,855         | 0.38        | 1.00                                | 16,390         | 0.37        | 1.00   | 16,439         | 0.37         | 1.00                               | 16,414         | 0.37        | 1.00   | 16,414         | 0.37        |      |      |  |
| <b>Total Fixed O &amp; M Costs</b>    | <b>24,214</b>    | <b>16.14</b>             | <b>0.54</b> |                                         | <b>23,755</b>  | <b>0.53</b> |        | <b>24,655</b>  | <b>0.55</b> |                                     | <b>24,190</b>  | <b>0.54</b> |        | <b>24,239</b>  | <b>0.54</b>  |                                    | <b>24,214</b>  | <b>0.54</b> |        | <b>24,214</b>  | <b>0.54</b> |      |      |  |
| <b>Total O &amp; M Costs</b>          | <b>52,793</b>    | <b>34.87</b>             | <b>1.17</b> |                                         | <b>50,382</b>  | <b>1.11</b> |        | <b>55,383</b>  | <b>1.22</b> |                                     | <b>52,567</b>  | <b>1.16</b> |        | <b>53,022</b>  | <b>1.170</b> |                                    | <b>52,737</b>  | <b>1.16</b> |        | <b>52,850</b>  | <b>1.17</b> |      |      |  |
| Raw Coal                              | 55,807           | 37.20                    | 1.24        | 1.00                                    | 55,807         | 1.24        | 1.00   | 55,807         | 1.24        | 1.00                                | 55,807         | 1.24        | 1.00   | 55,807         | 1.24         | 1.00                               | 50,226         | 1.12        | 1.10   | 61,388         | 1.37        |      |      |  |
| <b>Total Premium CWF</b>              | <b>108,600</b>   | <b>72.08</b>             | <b>2.41</b> |                                         | <b>106,189</b> | <b>2.36</b> |        | <b>111,190</b> | <b>2.47</b> |                                     | <b>108,374</b> | <b>2.40</b> |        | <b>108,829</b> | <b>2.41</b>  |                                    | <b>102,963</b> | <b>2.28</b> |        | <b>114,237</b> | <b>2.53</b> |      |      |  |

APPENDIX D

Table D-4  
SENSITIVITY CALCULATIONS- AGGLOMERATION

Case B (ii) Labor, Case B (iii) Electricity, Case B (iv) Reagents and Additives, Case B (v) Steam

|              | Cost Element         | Variation |      | Base Case     |                 | Increase/Decrease \$/MBtu | Revised Cost of CWF \$/MBtu |
|--------------|----------------------|-----------|------|---------------|-----------------|---------------------------|-----------------------------|
|              |                      |           |      | Total \$/MBtu | Element \$/MBtu |                           |                             |
|              |                      | Type      | %    |               |                 |                           |                             |
| Case B (ii)  | Labor                | Low       | -10% | 2.41          | 0.174           | -0.017                    | 2.39                        |
|              |                      | High      | 10%  | 2.41          | 0.174           | 0.017                     | 2.43                        |
| Case B (iii) | Electricity          | Low       | -10% | 2.41          | 0.150           | -0.015                    | 2.39                        |
|              |                      | High      | 10%  | 2.41          | 0.150           | 0.015                     | 2.42                        |
| Case B (iv)  | Reagents & Additives | Low       | -10% | 2.41          | 0.268           | -0.027                    | 2.38                        |
|              |                      | High      | 10%  | 2.41          | 0.268           | 0.027                     | 2.44                        |
| Case B (v)   | Steam                | Low       | -10% | 2.41          | 0.127           | -0.013                    | 2.40                        |
|              |                      | High      | 10%  | 2.41          | 0.127           | 0.013                     | 2.42                        |

**APPENDIX D**  
**Table D - 5**  
**SENSITIVITY CALCULATIONS- AGGLOMERATION**

Case C (i) Lower or Higher Plant Production- Same Operating Schedule  
Case C (ii) Reduced Plant Production Due to fewer Operating Shifts

| Case I. D       | Production |          | Variable O&M |         | Fixed O&M |         | Coal    |         | Revised Cost of CWF<br>\$/MBtu |
|-----------------|------------|----------|--------------|---------|-----------|---------|---------|---------|--------------------------------|
|                 | Base       | Variant  | Base         | Variant | Base      | Variant | Base    | Variant |                                |
|                 | 10^6st/y   | 10^6st/y | \$/MBtu      | \$/MBtu | \$/MBtu   | \$/MBtu | \$/MBtu | \$/MBtu |                                |
| Case C (i)-Low  | 1.5        | 1.35     | 0.63         | 0.63    | 0.54      | 0.60    | 1.24    | 1.24    | 2.47                           |
| Case C (i)-High | 1.5        | 1.65     | 0.63         | 0.63    | 0.54      | 0.49    | 1.24    | 1.24    | 2.36                           |

| Case I. D         | Production |          | Schedule |         | Employees |         | Variable O&M |         | Labor   |         | Capital charges |         | Coal    |         | Revised Cost of CWF<br>\$/MBtu |
|-------------------|------------|----------|----------|---------|-----------|---------|--------------|---------|---------|---------|-----------------|---------|---------|---------|--------------------------------|
|                   | Base       | Variant  | Base     | Variant | Base      | Variant | Base         | Variant | Base    | Variant | Base            | Variant | Base    | Variant |                                |
|                   | 10^6st/y   | 10^6st/y | sht/wk   | sht/wk  | No.       | No.     | \$/MBtu      | \$/MBtu | \$/MBtu | \$/MBtu | \$/MBtu         | \$/MBtu | \$/MBtu | \$/MBtu |                                |
| Case C (ii)-Low   | 1.5        | 0.69     | 19       | 10      | 104       | 54      | 0.63         | 0.63    | 0.17    | 0.20    | 0.37            | 0.79    | 1.24    | 1.24    | 2.86                           |
| Case C (ii)- High | 1.5        | 1.18     | 19       | 15      | 104       | 79      | 0.63         | 0.63    | 0.17    | 0.17    | 0.37            | 0.46    | 1.24    | 1.24    | 2.50                           |

| Case I. D        | Capital Cost |         | Base  | Capital charges |         | Revised Cost of CWF<br>\$/MBtu |
|------------------|--------------|---------|-------|-----------------|---------|--------------------------------|
|                  | Base         | Variant |       | Base            | Variant |                                |
|                  | \$ x 1000    | %       |       | \$/MBtu         | \$/MBtu |                                |
| Case D (i)-Low   | 97,235       | -10%    | 2.409 | 0.366           | 0.329   | 2.372                          |
| Case D (i)- High | 97,235       | 20%     | 2.409 | 0.366           | 0.439   | 2.482                          |