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Abstract

The Scalable Coherent Interface (IEEE P1596) is
establishing an inierface siandard for very high performance
multiprocessors, supporting a cache-coherent-memory model
scalable to systems with up to 64K nodes. This Scalable
Coherent Interface (SCI) will supply a peak bandwidth per
node of 1 GigaByte/second. The SCI standard should
facilitate assembly of processor, memory, 1/O and bus bridge
cards from multiple vendors into massively parallel systems
with throughput far above what is possible today.

The SCI standard encompasses two levels of interface, a
physical level and a logical Jevel. The physical level specifies
electrical, mechanical and thermal characteristics of
connectors and cards that meet the standard. The logical level
describes the address space, data transfer protocols, cache
coherence mechanisms, synchronization primitives and error
recovery. In this paper we address logical level issues such as
packet formats, packet trensmission, transaction handshake,
flow control, and cache coherence.

1 INTRODUCTION

The Scalable Coherent Interface (SCI) Project started in
November 1987 as a study group under the Microprocessor
Standards Committee (MSC) of the Technical Committee on
Mini- and Microcomputers in the IEEE Computer Saociety.
Paul Sweazey was the chairman of the swudy group, which
used the working name SuperBus, In July 1988 the study
group became a8 working group, adopting the name Scalable
Coherent Interface, chaired by David B. Gustavson.

The objective of the SCI working group is to define an
imerconnect system which scales well as the number of
anached processors increases, provides a distributed cache-
coherent memory system, and defines a simple interface
between modules §1.4,5,7.8,11).

We quickly discovered that a traditional backplanc bus
could not achieve our goals. Today’s buses are limited by the
disiance a signal must travel and the propagation delay across
a backplane. In asynchronous buses, the limit is ihe lime
needed for a handshake signal to propagate from the sender to
the receiver and for a response to retum 1o the sender. In

* Work supported by the Department of Energy, contract DE-ACO3-
T6SFO0515.

synchronous buses, it is the time difference berwesn clock and
data signals which originate in different places.

Transmission lines in backplanes are disturbed by con-
neclors and variations in loading as the number of inserted
modules varies. This makes reliable high speed signalling on
a backplane bus very difficult. In addition, a backplane bus
can only service one request at a time and therefore becomes a
bottleneck in multiprocessor sysiems.,

The SCI working group solves thesc problems by defining
a radically different inkerconnect system. We are defining an
interface standard which enables a system integrator to attach
his board to an interconnect which may have many different
configurations. These configurations may range from simple
rings to complex multistage switching networks.

The inteface standard defines a point-to-point commu-
nication between neighbor nedes, greatly reducing
transmission linc problems. This point-to-point link uses
differential ECL signalling, allowing high speed transfers of
1 Gbyte/second though the link is only 2 bytes wide. Small
packets carry data from node o node across these links.
Buffering in the node interfaces accommodates many
simultaneous requests, making SCI well suited to high
performance multiprocessor systems, The SCI sicadard
allows up 1o 64K nodes to be connected Lo an interconnect,
and should provide the next generations of computers with
sufticient interconnection bandwidth,

A bit-serial link is also under development, for use with
fiber optic or coaxial cable links over longer distances (but at
lower speeds). The bit serial version will support the same
architecture and protocols as the 2-byte-wide version.

Cache coherence is an important pant of the proposed
standard. Cumrent mecherisms prove insufficient when the
osumber of processors increases dramatically. This calls fora
new approach to the cache consistency problem, The SCI
working group is defining a scalajjle distributed directory
scheme where processors sharing cache lines are linked
together by pointers stored in the caches.

High volume products using the SCT standard are expected
10 become available by the mid-1990°s. Figure 1 gives a
rough estimate of future volumes of board level productsf2).
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Figure 1. Technology trends.

The following sections provide more insight into the
solutions which the SCI working group is currently pursuing.
The next section describes various configurations of an SCI
system and emphasizes interfacing via different interconnects.
The packet format and packet transmission is described in
section three, In section four we focus on the mechanisms for
packet flow control. Section five gives & bricf overview of the
cache coherence model, Finally, we summarize the
standarcized Control and Status Register space and the status
of realization in silicon.

2 CONFIGURATIONS

SCI supporis multiple configurations ranging from simple

low cost implementations to high performance, high cost

systems. An important property of SCI is that itincludes hooks
1o allow several different implementations to reside
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Figure 2. SCI Configuration.

simultancously in a system. This is done by separating the
interfacing node from the transporting interconnect. A view of
a lypical system is illustrated in Figure 2.

2.1 SCI viewed by a node

An SCT node receives a steady stream of data and transmits
another stream of data. These streams consist of SCI packets
and idle symbols. A node is responsible for operating on these
packeis and idle symbols according 10 the SCI standard. To
do that, a node may have the construction shown in Figure 3.

Figure 3. SClinterface.

‘When there is no traffic on the SCI interconnect, a node re-
ceves idle symbols. Since the wilization is zero in this case,
all nodes are free o transmit. The idle symbols convey this
information to the nodes. In case the node has nothing to send
and the bypass fifo is empty, the output consists of idle
symbols only.

When a node receives a packet, it checks the packet’s des-
tination. Packets destined for other nodes are routed to the
bypass fifo and transmitted onward. The retransmitted packet
accumulates flow-control information for other SCI nodes.
The flow-contro! information is divided between the packet
header and the (minimum one) idles separating the packets.
The arbitration, priority and forward progress schemes are
enforced this way.

‘When a node receives a packet which is destined for it (and
it is ready 1o accept it), the packet is routed to the input fifo
until the node has time to process it further. The packet’s
header information is also used to generate a short ‘echo’
packet, which is routed to the bypass fifo, ultimately 1o be
received by the packer’s sender. The echo is part of the
arbitration, priority and forward-progress mechanisms.

A node which is granted interconnect access and which has
an empty bypass fifo is allowed to transmit a packet. Since
many nodes msy have interconnect access simuliancously,
multiple nodes may transmit at the same time. This contention
is solved cither by buffering in the interconnect or by filling




the bypass fifo of the transmitting node(s). The SCI system
uses idles, packel headers, and echoes to selectively gram
interconnect access under heavy system loading.

2.2 SCI interconnect

SCI can be configured in many ways. However, there arc
two basic structures—the ring and the swiich. The ring
implementation is the simplest. In a ring, nodes pass packets
10 their neighbors. In such a structure there are no active
components except the nodes. This means that the nodes
themselves have to conwrol the arbitration, priority and forward

progress schemes.

Figure 4. Ring interconnect.

A switch Jooks at the destination address and routes the
packet direcily to the destination. A switching struciure can
have varions complexities and costs, including full crossbar
switches and butterfly switches. In a switching structure,
priority and forward progress schemes must be enforced by the
switch. However, the node interfaces are the same in both a
ring and a switch iraplementation.

2.3 Interconnection to other buses

Another important feature of SCI is the ability to interface
to other buses. Some SCI transactions and cache states arc
specifically defined to accommodate other buses.

A bus bridge will respond to a range of destination
addresses. The bus bridge node is responsible for converting
SCI transactions into native bus transactions. Two cases are
handled with special care: bus locking and cache coherence.

Most backplane buses accommodate a unique read-modify-
write transaction to manipulate semaphores and other critical
data. During the read transaction a lock signal is asserted,
inhibiting the gse of the bus until the data is written. Since
SCl is defined with a four-phase transaction protocol with no
guaranteed delivery order, a Iock must be exccuted as a single
SCI transaction,

Some bus protocols also incorporate a cache coherence
scheme. Moslt use a snooping scheme where bus imerfaces
monitor all bus activity and update their cache states
accordingly. In SCI this is not possivie, since no one node can
observe all the relevant transactions.

24 Scalability

A significant aspect of SCI is scalability. It should be
possible to have a simple, cheap system with the samc basic
properties as a high performance one. To achieve this, a large
and important task of the SCI working group is 1o assur. tha
enough, but not toc much, functionality is included in the
standard.

A simple and cheap system would be a ring, with all
packels at the same priority. This results in round-robin
arbitration. A requesting node is simplified by allowing only
one packet outstanding at any time, but it still needs separate
request and response queues. A responding node might orly
be able to handle a single request at a time. If it is busy, a
busy echo will inform the sender 1o re-transmit the packetl

A more complex, but still fairly inexpensive, system could
use a combination of rings and bridges. The rings would be
used between nodes which require low latency and where the
ring bandwidth is sufficient. The bridges would be used to
connect rings. Such a system could even support a dynamic
interconnect where any node can be plugged into any socket.
Multiple outstanding requests and live insertion might be

supported.

The most complex system would be a switching
interconnect built of elements like the butterfly swiich, This
interconnect is hardwired, so a node can only be plugged into
its addressed location, This kind of interconnect would handle
more traffic, and mulliple ouisianding requesis from a
requesting node could be supported. In addition 1o the round-
robin arbitration scheme, multiple priority levels could be
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Figure 5. Switch interconnect.




provided. This interconnect also supports live insertion and
withdrawal, and may be able to implement request-combining
schemes to reduce the effect of congestion at hot spots.

3 PHYSICAL LAYER

SCI specifies signals at an interface (0 an interconnect
system. All signals are unidirectional differential 100k ECL
compatible signals. 18 signals are sent from a node: 16 daia
signals, 1 flag bit and 1 clock signal. The frequency of the
clock is 250 MHz. The skew between the signals is one of the
most critical items.

Power distribution is solved by distributing 48 VDC to all
nodes and using on-board power converters. This reduces the
number of pins needed for power and ground, allows the
vendor to select the optimal voltages for various logic families
and interface needs, greatly simplifies power-on module
replacement, and makes uninterrupiible power supplies very
simple via storage baneries.

‘The board size recommended is 6U (233.35mm) X 280mm.
4 PACKET FORMAT

Figure 6 shows the packet format. The width of a packet
wortd is 16 bits. In addition, a flag indicales that a packet is
being received or transmitted. Each word in the packet is
clocked with a differential clock line, A node receives 2 bytes
at a rate of SOOMHz resulting in an interconnect bandwidth of
1 Gbyte/second.

A packet consists of three main sections: a header section,
an address and data section, and an error check word. The
first 16-bit word of the header contains the ID code of the final
receiving node. By looking at the first word of a packet, a
node can guickly determine if the packer is addressed 10 that

node. During vonting through an SCI interconnect,
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Figure 6. Packet format.

intermediate nodes and switches look at the target word 10
determine where to route the packet. The third word of the
packet conains the 1D code of the sender, needed to address
the response back to the comect sender, as shown in Figure 7.

The command word of the header controls packet {Tow and
interconnect access. Priority arbitration is suprorted with
round robin arbitration on the lowest level. Flow control and
arbitration will be discussed in more detail in section 5. The
command word of the header also contains the transaction type
and the packet length.

Pow convel Command

Target
|
Sousce

|Mm

Figure 7. Header format.

The command field contains the command a responder
must execute. In a multiprocessor SCI environment, a
command is ofien applied to a cache line. The cache line size
is 64 bytes, but manipulations on smaller and larger data sizes
are also supported. The commands can be divided into cache
coherence transactions, lock transactions, DMA transactions,
and 1/O register transactions. The cache coherence
transactions manipulate a linked-list structure used to maintain
a coberent memory image.

The sequence number in the control word is a label which
identifies a packel. A node connected 1o an SCI interconnect
may send many requests (up to 64), before a response is
received. This transaction pipeline can cause responses to be
returned out of order, and therefore a sequence number is
needed to identify a response with the comesponding request.

The targer word and the three first address words define the
64-bit SCJ address. The data pant may contain from 16 to 256
bytes. When a packst is ransmitted, a cyclic redundancy code
(CRC) for the packet is computed, and this code is attached
after the last word of the packet. The CRC is a “serial-
parallel” version of the 16-bit CCITT-CRC.

4.1 Packet reception

In an SCI interconnect, a node is addressed by a 16-bit
identification code, which is located in the first word of the
packet. This allows 64K nodes to be arached to the
interconnect. This allows for easy detection, and decisions to
pick up the packet can be made quickly, An input flag marks
the beginning of a packet; if the target ID of the packet



maiches the ID code of the node, the packet is stripped from
the interconnect.  While the packet is being stripped and
received, a CRC for the packet is computed. The computed
CRC code is compared with the CRC code at the end of the
packet. If they match, the reception is completed; otherwise
the packet is discarded.

A stripped packet creates a small echo packet, with in-
terchanged target and source IDs. The echo packet is retumed
to the sender for flow control. If the input fifo was not empty,
the busy bit in the control word of the echo is set, so that the
sender knows it must retransmit the packet later, If bad CRC
is received, the echo CRC is complemented so it will be
discarded (it is too late to avoid its transmission).

4.2 Packet transmission

A node may transmit if the bypass fifo is empty (see
Figure 3) and the node is granted interconnect access through
the flow control mechanism. Before transmission, the packet
is put into the output fifo.

Transmission starts by putting the target word onto the
output and serting the output flag high. Ttz curput flag is high
while the packet is being transmitted. A CRC is attached to
the end of the packet when the output flag goes low.

If a packet enters the node interface during transmission,
and the packet is not for this node, the packet is put into the
bypass fifo until the transmission is done. The size of the
bypass fife must therefore be at least as large as the maximum
transmitted packet size o avoid filo overflow.

4.3 Transaction handshake

SCI supports a transaction pipeline up 10 64 transactions
deep. This means that a node may send up to 64 requests
without waiting for a response. A normal transaction consists
of two subactions, a request subaction and a response
subaction. Together with each subaction there is an echo

SENDER RECEIVER
Requast?
—
Echo
¢
. Response
Echo R

Figure 8. Split transaction handshake,

packet returned to the sender, as shown in Figure 8.

When the request is transmitted, it is labelled with a
sequence number. The 1D code of the sender 2nd the sequence
number uniquely identify a packet in the SCI interconnect.
When a responder accepts a packel, the scquence number in

a¢ request packet is saved. The responder will add this
sequence number to the response packet when the response is
ransmiwed back to the sender.

Transmission emrors could cause many kinds of problems.
Fault recovery has been carefully considered, and most of the
burden placed on software error handlers. The principle relied
on is that transmission errors are detected by a time-out
mechanism so the sender can retyy a transaction if no echo or
response has been received within the time-out interval.
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Figure 9. Node interface.

S FLOW CONTROL

In SCI, flow control of packets is needed to maintain high
throughput and fair access when many packets are sent 1o the
interconnect at the same time. The flow control issues
discussed in this section are arbitration, deadlocks, servicing,
and congestion.

As explained earlicr, a node may transmit wher its bypass
fifo is empty. This means that up to 64K nodes may start to

transmit at once, allowing 64K packets to exist in the
interconnect. However, nodes connected 10 a ring can not



retransmit until their bypass fifos arc empty. To avoid
slarvation, an arbitration algorithm ensures that all nodes have
access o the ring. Qur current algorithm is based on fair and
priority transactions. The arbitration mechanism is enforced
by header information and idle symbols between packets. The
priority level of a transaction is coded into the command word
of the packet header (as shown in Figure 7),

Another node which wants 10 transmit and has 2 higher
priority marks the header of a passing packet. ‘This informs
the packet's sender that another node with a higher priority
wants to transmit. This flow-control information is also
distributed to others, in idle symbols between the packets,

To avoid deadlocks, separate request and response queues
are added to each input and output fifo as shown in Figure 9.
To ensure faimess, packets are selectively accepted into these
queues, based on an approximate packel aging protocol. Also,
the acceptance protocol can be influenced by the incoming
packet's priority.

6 CACHE COHERENCE

High performance processers need local caches to reduce
the effeclive memory access latency. In a multiprocessor
environment this leads to potential conflicts becanse several
processors may simultaneously want to modify locally cached
copies of the same data.

Cache coherence protocols define mechanisms that guar-
antee consistent data even if data is cached and modified by
several processoss. The SCI definition supports a hardware-
based cache coherence protocol, reducing the programmer’s
software effort to secure consistency, and also reducing
aperating system complexity.

Many existing cache coherence protocols use a snooping
technique and rely on transactions like broadcast and
cavesdropping to guarantee data consistency. In a large high
speed distributed system, the broadcast transaction is
ineffective at best, and eavesdropping is impossible to
implement because it requires a bus common to all processors
in the system. Since a highly scalable interconnect system is
one of the main objectives in defining the SCI, these and
similar mechanisms are unsuitable.

We have developed a directory-based cache coberence
protocol[6] with distributed properties, where all the nodes
with cached copies participate in the control. The principle is
that every sharablc block in memory is associated with a tist of
processors sharing that block. A memory block is usually the
size of a cache line, which is 64 bytes,

The selection of 64 bytes as the cache line size is based on
many factors. The density of current state of the art ECL chips
prohibits packet sizes larger than 80 bytes because of the fifo
buffering. An 80-byte maximum packet size has a reasonable
ovcrhead, making cache line transfers efficient for a £4-byte

line size and less efficient for a 32-byte line size. Concem
about false sharing makes a 128-byte line size less attractive,
and trace driven simulations [10] show that a 64-byte line size
is a good choice for SCL.  Futurebus+ bas also selected 64
bytes, making the interface between SC1 and Futurebus+
simpler and more efficient.

Every block has a tag which includes a pointer to the
processor at the head of the list. Each processor cache tag has
a pointer 10 the next node sharing that cache line. In effect, all
nodes with cached copics of a memory block are linked
togather by these pointers. The nodes have a forward pointer
and a backward pointer 1o connect them with the previous and
next node in the list. ‘The resulting doubly linked list is shown
in Figure 10.

Figure 10. SCI sharing list.

This distibuted list concept ensures good scaling prop-
erties. Even as the number of nodes in a list grows
dramatically, the comresponding memory tag size is constant,
However, two pointer locations are associated with every
cached block in anode.

The list pointers are actually the interconnect addresses for
the processors. When 2 node accesses memory to get a copy
of shared data, it provides memory with its own address. If
there are currently no nodes with cached copiee, the requesting
node is made the head of a new list and memory saves the
node adress in the tag for this block. If, however, there exist
nodes with cached copies of data, the pointer to the head of the
sharing list is returned from memory 10 the requesting node,
and this node inserts itself at the head of the list. Currently
cached data is always returned from the old head, rather than
from memory.

Ths nodes in a linked list typically have read access o
shared data. When a node wants write access, and it is
currently the list head, then it purges the rest of the Jist, fitis
in another portion of the list, the node first deletes itself from
the list, then performs another memory rewd to move to the



head of the list. Write access is restricted to the head node
only.

All bus transactions concemning cache coherence are im-
plemented within the standard packet format described above.

The cache coherence protocol described above has not yet
been tried in real systems. We are therefore relying on several
people at the University of Oslo who are using their expertise
w do formal verification[9].

7 CONTROL AND STATUS REGISTERS

The Control and Stams Registers (CSRs) are an important
part of the proposed standard, The CSR definitions are
essential for all initialization and exception handling. Some of
the CSRs must be SCI specific, but the majocity of the
necessary definitions can be common with other standards{3].
The IEEE has approved a request for a standard project for
definiag CSRe. The project number is [EEE P1212, chaired
by David V. James. The CSR standard is being coordinated
with Futurebus+, Serial Bus and SCI. It will also try to
coordinate with the ongoing CSR activity for VMEbus.

8 REALIZATION

Realization in commercial systems is important for
acceptance of a defined standard. Therefore the first
implementation is being done in paraillel with the
standardization work. So far we have done measurements that
assure us that it will be possible to make implementations for
the 1 Gigabyte/second transfer rale.

We have both a high level and a low level simulation
model of an SCI system running. We have simulaied both the
arbitration and the cache coherence scheme. The lengthof a
maximum data packet will initially be limited 10 64 bytes (i.e.
acache line). For the first inplementation we are using ECL
gaie arrays, with one chip {or perhaps two) for the SCI
interface and the cache coherence protocol. This interface
chip will be common for all nodes. In addition, Dolphin
Server Technology is making a physically addressed cache
controller which can be used as a second level cache
controller, and a global memory controller chip thal supports
the necessary directory handling in global memory.

The first configuration will be a ring struciure with high
performance CPU’s, large main memory and conncction 10
standard buses like VMEbas for [/O functions. We expect o
have prototypes ready for testing late this year.

9 CONCLUSION

‘This paper has presented an overview of the objectives of
the SCI working group, and the solutions which are curremiy
being pursued. Scalability of a system is a key aspect as many
high performance computer manufacturers are moving toward
large multiprocessor systems. In order w utilize these systems

efficiently, a cache coherence mechanism must have good
scaling properties. Also, for a sysiem to both be cost effective
and support high performance solutions, it is necessary to
separate thc module interface from the intercownect
implementation.

We feel that our current proposals meet these objectives.
The SCI project is moving rapidly and has attracted
participants from many of the high performance computer
companies. We already have a first draft of the standard
available, and we hope 10 send it out for ballot lawe this ycar.
The proposed architecture appears to be achievable based on
technology available today.

If you would like to participate in this work, or if you
would like more detailed information, please contact one of
the authors or the chairman of the project:

David B. Gustavson, IEEE P1596 Chairman
Computation Research Group, bin 8
Stanford Lincar Accclerator Center
Stanford, CA 94303, USA

tel: (415) 926-2863

fax: (415)Y961-3530 or (415)926-3329
Email: DBG@SLACVM.bimet
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