
A* 9*0 Co 
SLAC-K1B—5184 » 

DE90 008011 

SCALABLE COHERENT INTERFACE 

Knut Alrucs & Ernst H. Kristianscn. Dolphin Server Technology A.S., Oslo, Norway 
David B. Gustavson*, Stanford Linear Accelerator tenter, Stanford, California 

David V. James, Apple Computer, Cupertino, California 

Abstract 

The Scalable Coherent Interface (IEEE P1596) is 
establishing an interface standard for very high performance 
multiprocessors, supporting a cache-coherent-memory model 
scalable to systems with op to 64K nodes. This Scalable 
Coherent Interface (SCI) will supply a peak bandwidth per 
node of 1 GigaByte/second. The SCI standard should 
facilitate assembly of processor, memory, I/O and bus bridge 
cards from multiple vendors into massively parallel systems 
with throughput far above what is possible today. 

The SCI standard encompasses two levels of interface, a 
physical level and a logical level. The physical level specifles 
electrical, mechanical and thermal characteristics of 
connectors and cards that meet the standard. The logical level 
describes the address space, data transfer protocols, cache 
coherence mechanisms, synchronization primitives and error 
recovery. In this paper we address logical level issues such as 
packet formats, packet transmission, transaction handshake, 
flow control, and cache coherence. 

1 INTRODUCTION 

The Scalable Coherent Interface (SCO Project started in 
November 1987 as a study group under the Microprocessor 
Standards Committee (MSC) of the Technical Committee on 
Mini- and Microcomputers in the IEEE Computer Society. 
Paul Sweazey was the chairman of the study group, which 
used the working name SuperBus. In July 1988 the study 
group became a working group, adopting the name Scalable 
Coherent Interface, chaired by David 3 . Gustavson. 

The objective of the SCI working group is to define an 
interconnect system which scales well as the number of 
attached processors increases, provides a distributed cache-
coherent memory system, and defines a simple interface 
between modules (1.4,5,7,8,11]. 

We quickly discovered that a traditional backplane bus 
could not achieve our goals. Today's buses are limited by the 
distance a signal must travel and the propagation delay across 
a backplane. In asynchronous buses, the limit is die lime 
needed for a handshake signal to propagate from the sender to 
die receiver and for a response to return to the sender. In 

synchronous buses, it is die time difference between clock and 
data signals which originate in different places. 

Transmission lines in backplanes are disturbed by con­
nectors and variations in loading as the number of inserted 
modules varies. This makes reliable high speed signalling on 
a backplane bus very difficult. In addition, a backplane bus 
can only service one request at a time and dierefore becomes a 
bottleneck in multiprocessor systems. 

The SCI working group solves these problems by defining 
a radically different interconnect system. We are defining an 
interface standard which enables a system integrator to attach 
his board to in interconnect which may have many different 
configurations. These configurations may range from simple 
rings to complex multistage switching networks. 

The interface standard defines a point-to-point commu­
nication between neighbor nodes, greatly reducing 
transmission line problems. This point-to-point link uses 
differential ECL signalling, allowing high speed transfers of 
1 Gbyte/second though the link is only 2 bytes wide. Small 
packets carry data from node to node across these links. 
Buffering in the node interfaces accommodates many 
simultaneous requests, making SCI well suited to high 
performance multiprocessor systems. The SCI standard 
allows up to 64K nodes to be connected to an interconnect, 
and should provide the next generations of computers with 
sufficient interconnection bandwidth, 

A bit-serial link is also under development, for use with 
fiber optic or coaxial cable links over longer distances (but at 
lower speeds). The bit serial version will support the same 
architecture and protocols as the 2-byie-wide version. 

Cache coherence is an important part of the proposed 
standard. Current mechanisms prove insufficient when the 
number of processors increases dramatically. Thiscallsfora 
new approach to the cache consistency problem. The SCI 
working group is defining a scalable distributed directory 
scheme where processors sharing cache lines are linked 
together by pointers stored in the caches. 

High volume products using the SCI standard are expected 
to become available by the mid-1990*s. Figure 1 gives a 
rough estimate of future volumes of board level products[2]. 

* Work supported by Ihe Department of Energy, contract DE-AC03-
76SF00515. 

Presented at CompEuro 90, Tel Aviv, Isael, May 7-9, 1990 MASTER 
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED 



technology Thmds • San>l«Ud alandwd* 

1964 

Figure 1. Technology sends. 

The following sections provide more insight into the 
solutions which the SCI working group is currently pursuing. 
The next section describes various configurations of an SCI 
system and emphasizes interfacing via different interconnects. 
The packet format and packet transmission is described in 
section three. In section four we focus on the mechanisms for 
packet flow control. Section five gives a brief overview of the 
cache coherence model. Finally, we summarize the 
standardized Control and Status Register space and the stains 
of realization in silicon. 

2 CONFIGURATIONS 

SCI supports multiple configurations ranging from simple 
low cost implementations to high perfonnance, high cost 
systems. An important property of SCI is that it includes hooks 
to allow several different implementations to reside 

Converter |Node| |Node| Converter | 

VMEbUS Futurebus 

Figure 2. SCI Configuration. 

simultaneously in a system. This is done by separating the 
interfacing node from die transporting interconnect. A view of 
a typical system is illustrated in Figure 2. 

2.1 SCI viewed by a node 

An SCI node receives a steady stream of data and transmits 
another stream of data. These streams consist of SCI packets 
and idle symbols. A node is responsible for operating on these 
packets and idle symbols according to the SCI standard. To 
do that, a node may have the construction shown in Figure 3. 

Figure 3 . SCI interface. 

When there is no traffic on the SCI interconnect, a node re­
ceives idle symbols. Since the utilization is zero in this case. 
all nodes are free to transmit. The idle symbols convey this 
information to the nodes. In case the node has nothing to send 
and the bypass fifo is empty, the output consists of idle 
symbols only. 

When a node receives a packet, it checks the packet's des­
tination. Packets destined for other nodes are routed to the 
bypass fifo and transmitted onward. The retransmitted packet 
accumulates flow-control information for other SCI nodes. 
The flow-control information is divided between the packet 
header and the (minimum one) idles separating the packets. 
The arbitration, priority and forward progress schemes are 
enforced this way. 

When a node receives a packet which is destined for it (and 
it is ready to accept it), the packet is routed to the input fifo 
until the node has time to process it further. The packet's 
header information is also used to generate a short 'echo' 
packet, which is routed to the bypass fifo, ultimately to be 
received by the packet's sender. The echo is part of the 
arbitration, priority and forward-progress mechanisms. 

A node which is granted interconnect access and which has 
an empty bypass fifo is allowed to transmit a packet. Since 
many nodes may have interconnect access simultaneously, 
multiple nodes may transmit at the same time. This contention 
is solved either by buffering in the interconnect or by filling 

2 



the bypass fifo of the transmitting node(s). The SCI system 
uses idles, packet headers, and echoes to selectively grant 
interconnect access under heavy system loading. 

22 SCI interconnect 

SCI can be configured in many ways. However, there are 
two basic structures—the ring and the switch. The ring 
implementation is the simplest. In a ring, nodes pass packets 
to their neighbors. In such a structure there are no active 
components except the nodes. This means that the nodes 
themselves have to control the arbitration, priority and forward 
progress schemes. 

Figure 4. Ring interconnect. 

A switch looks at the destination address and routes the 
packet directly to the destination. A switching structure can 
have various complexities and costs, including full crossbar 
switches and butterfly switches. In a switching structure, 
priority and forward progress schemes must be enforced by the 
switch. However, the node interfaces are the same in both a 
ring and a switch implementation. 

23 Interconnection to other buses 

Another important feature of SCI is the ability to interface 
to other buses. Some SCI transactions and cache states arc 
specifically defined to accommodate other buses. 

A bus bridge will respond to a range of destination 
addresses. The bus bridge node is responsible for converting 
SCI transactions into native bus transactions. Two cases are 
handled with special care: bus locking and cache coherence. 

Most backplane buses accommodate a unique read-modify-
write transaction to manipulate semaphores and other critical 
data. During the read transaction a lock signal is asserted, 
inhibiting the use of the bus until the data is written. Since 
SCI is defined with a four-phase transaction protocol with no 
guaranteed delivery order, a lock must be executed as a single 
SCI transaction. 

Some bus protocols also incorporate a cache coherence 
scheme. Most use a snooping scheme where bus interfaces 
monitor all bus activity and update their cache states 
accordingly. In SCI this is not possiuie, since no one node can 
observe all the relevant transactions. 

2.4 Scalability 

A significant aspect of SCI is scalability. It should be 
possible to have a simple, cheap system with the same basic 
properties as a high performance one. To achieve this, a large 
and important task of the SCI working group is to assure 'hat 
enough, but not too much, functionality is included in the 
standard. 

A simple and cheap system would be a ring, with all 
packets at the same priority. This results in round-robin 
arbitration. A requesting node is simplified by allowing only 
one packet outstanding at any lime, but it still needs separate 
request and response queues. A responding node might only 
be able to handle a single request at a time. If it is busy, a 
busy echo will inform the sender to re-transmit the packet 

A more complex, but still fairly inexpensive, system could 
use a combination of rings and bridges. The rings would be 
used between nodes which require low latency and where the 
ring bandwidth is sufficient The bridges would be used to 
connect rings. Such a system could even support a dynamic 
interconnect where any node can be plugged into any socket. 
Multiple outstanding requests and live insertion might be 
supported. 

The most complex system would be a switching 
interconnect built of elements like the butterfly switch. This 
interconnect is hardwired, so a node can only be plugged into 
its addressed location. This kind of interconnect would handle 
more traffic, and multiple outstanding requests from a 
requesting node could be supported. In addition to the round-
robin arbitration scheme, multiple priority levels could be 

FigureS. Switch interconnect. 



provided. This interconnect also supports live insertion and 
withdrawal, and may be able to implement request-combining 
schemes to reduce the effect of congestion at hot spots. 

3 PHYSICAL L A Y E R 

SCI specifics signals at an interface to an interconnect 
system. All signals are unidirectional differential 100k ECL 
compatible signals. IS signals are sent from a node: 16 data 
signals. I flag bit and 1 clock signal. The frequency of the 
clock is 250 MHz. The skew between the signals is one of the 
most critical items. 

Power distribution is solved by distributing 48 VDC to all 
nodes and using on-board power converters. This reduces the 
number of pins needed for power and ground, allows the 
vendor to select the optimal voltages for various logic families 
and interface needs, greatly simplifies power-on module 
replacement, and makes uninterruptible power supplies very 
simple via storage baueries. 

The board size recommended is 6U (233.35mm) x 280mm. 

4 PACKET FORMAT 

Figure 6 shows the packet format. The width of a packet 
word is 16 bits. In addition, a flag indicates that a packet is 
being received or transmitted. Each word in die packet is 
clocked with a differential clock line. A node receives 2 bytes 
at a rate of SOOMHz resulting in an interconnect bandwidth of 
1 Qbyte/second. 

A packet consists of three main sections: a header section, 
an address and data section, and an error check word. The 
first 16-bit word of the header contains the ID code of die final 
receiving node. By looking at the first word of a packet, a 
node can quickly determine if the packet is addressed to that 
node. During routing through an SCI interconnect, 

intermediate nodes and switches look at the target word to 
determine where to route the packet. The third word of the 
packet contains die ID code of the sender, needed to address 
the response back to the correct sender, as shown in Figure 7. 

The command word of the header controls packet flow and 
interconnect access. Priority arbitration is supported with 
round robin arbitration on the lowest level. Flow control and 
arbitration will be discussed in more detail in section 5. The 
command word of the header also contains the transaction type 
and the packet length. 

• 11 

* n « 
naweanM | Gtmmai 

l l M W 

| Swnonntar 

Figure 6. Packet format 

Figure 7. Header format. 

The command field contains the command a responder 
must execute, In a multiprocessor SCI environment, a 
command is often applied to a cache line. The cache line size 
is 64 bytes, out manipulations on smaller and larger data sizes 
are also supported. The commands can be divided into cache 
coherence transactions, lock transactions, DMA transactions, 
and I/O register transactions. The cache coherence 
transactions manipulate a linked-list structure used to maintain 
a coherent memory image. 

The sequence number in the control word is a label which 
identifies a packet A node connected to an SCI interconnect 
may send many requests (up to 64), before a response is 
received. This transaction pipeline can cause responses to be 
returned out of order, and therefore a sequence number is 
needed to identify a response with the corresponding requesL 

The target word and the three first address words define the 
64-bit SCI address. The data pan may contain from 16 to 256 
bytes. When a packst is transmitted, a cyclic redundancy code 
(CRQ for the packet is computed, and this code is attached 
after the last word of the packet. The CRC is a "serial-
parallel'' version of the 16-bit CCITT-CRC. 

4.1 Packet reception 
In an SCI interconnect, a node is addressed by a 16-bit 

identification code, which is located in the first word of the 
packet. This allows 64K nodes to be attached to the 
interconnect. This allows for easy detection, and decisions to 
pick up the packet can be made quickly. An input flag marks 
the beginning of a packet; if die target ID of the packet 

4 



matches the ID code of the node, the packet is stripped from 
the interconnect. While the packet is being stripped and 
received, a CRC for the packet is computed. Hie computed 
CRC code is compared with the CRC code at the end of the 
packet. If they match, the reception is completed; otherwise 
the packet is discarded. 

A stripped packet creates a small echo packet, with in­
terchanged target and source IDs. The echo packet is relumed 
to the sender for flow control. If the input fifo was not empty, 
the busy bit in the control word of the echo is set, so that the 
sender knows it must retransmit the packet later. If bad CRC 
is received, the echo CRC is complemented so it will be 
discarded (it is too late to avoid its transmission). 

42 Packet transmission 

A node may transmit if the bypass fifo is empty (see 
Figure 3) and the node is granted interconnect access through 
the flow control mechanism. Before transmission, the packet 
is put into the output fifo. 

Transmission starts by putting the target word onto the 
output and setting the output flag high. Tt-i output flag is high 
while the packet is being transmitted. A CRC is attached to 
(he end of the packet when the output flag goes low. 

If a packet enters the node interface during transmission, 
and the packet is not for this node, the packet is put into the 
bypass fifo until the transmission is done. The size of the 
bypass fifo must therefore be at least as large as the maximum 
transmitted packet size to avoid fifo overflow. 

43 Transaction handshake 
SCI supports a transaction pipeline up to 64 transactions 

deep. This means that a node may send up to 64 requests 
without waiting for a response. A normal transaction consists 
of two subactions, a request subaction and a response 
subaction. Together with each subaction there is an echo 

SENDER 

Raquut 

RECEIVER 

Echo 

Response 

Echo 

Figure 8. Split transaction handshake. 

pocket returned to the sender, as shown in Figure 8. 

When the request is transmitted, it is labelled with a 
sequence number. The ID code of the sender and the sequence 
number uniquely identify a packet in the SCI interconnect. 
When a responder accepts a packet, the sequence number in 
.ie request packet is saved. The responder will add this 

sequence number to the response packet when the response is 
transmitted back to the sender. 

Transmission errors could cause many kinds of problems. 
Fault recovery has been carefully considered, and most of the 
burden placed on software error handlers. The principle relied 
on is that transmission errors are detected by a time-out 
mechanism so the sender can retry a transaction if no echo or 
•espouse has been received within the time-out interval. 

CPU/CACHE 

Packal 1 
• S D H 

central lar 

« * 
REO RES RES REO 
a a 

_ 2 ^ i r 

Input Output 
^_ quaua* qiwuM 

1 1 n~ •" r 1 i 

In
 fi

fo
 S. 

5= 

1 i i 

• Bypan 1 ' • Bypan 

Figure 9. Node interface. 

5 FLOW CONTROL 

In SCI, flow control of packets is needed to maintain high 
throughput and fair access when many packets are sent to the 
interconnect at the same time. The flow control issues 
discussed in this section are arbitration, deadlocks, servicing, 
and congestion. 

As explained earlier, a node may transmit when its bypass 
fifo is empty. This means that up to 64K nodes may start to 
transmit at once, allowing 64K packets to exist in the 
interconnect. However, nodes connected to a ring can not 

5 



retransmit until their bypass fifos are empty. To avoid 
starvation, an arbitration algorithm ensures that alt nodes have 
access to the ring. Our current algorithm is based on fair and 
priority transactions. The arbitration mechanism is enforced 
by header information and idle symbols between packets. The 
priority level of a transaction is coded into the command word 
of the packet header (as shown in Figure 7). 

Another node which wants to transmit and has a higher 
priority marks the header of a passing packet This informs 
the packet's sender that another node with a higher priority 
wants to transmit. This flow-control information is also 
distributed to others, in idle symbols between the packets. 

To avoid deadlocks, separate request and response queues 
are added to each input and output fifo as shown in Figure 9. 
To ensure fairness, packets are selectively accepted into these 
queues, based on an approximate packet aging protocol. Also, 
the acceptance protocol can be influenced by the incoming 
packet's priority. 

6 C A C H E COHERENCE 

High performance processors need local caches to reduce 
the effective memory access latency. In a multiprocessor 
environment this leads to potential conflicts because several 
processors may simultaneously want to modify locally cached 
copies of the same data. 

Cache coherence protocols define mechanisms that guar­
antee consistent data even if data is cached and modified by 
several processors. The SCI definition supports a hardware-
based cache coherence protocol, reducing the programmer's 
software effort to secure consistency, and also reducing 
operating system complexity. 

Many existing cache coherence protocols use a snooping 
technique and rely on transactions like broadcast and 
eavesdropping to guarantee data consistency. In a large high 
speed distributed system, the broadcast transaction is 
ineffective at best, and eavesdropping is impossible to 
implement because it requires a bus common to all processors 
in the system. Since a highly scalable interconnect system is 
one of the main objectives in defining the SCI, these and 
similar mechanisms are unsuitable. 

We have developed a directory-based cache coherence 
protocol[6] with distributed properties, where all the nodes 
with cached copies participate in die control. The principle is 
that every sharablc block in memory is associated with a list of 
processors sharing that block. A memory block is usually the 
size of a cache line, which is 64 bytes. 

The selection of 64 bytes as the cache line size is based on 
many factors. The density of current state of die art ECL chips 
prohibits packet sizes larger than 80 bytes because of the fifo 
buffering. An 80-byte maximum packet size has a reasonable 
overhead, making cache line transfers efficient for a 64-byte 

line size and less efficient for a 32-byte line size. Concern 
about false sharing makes a 128-byte line size less attractive, 
and trace driven simulations [10] show that a 64-byte line size 
is a good choice for SCI. Futurebus+ has also selected 64 
bytes, making the interface between SCI and Futurebus+ 
simpler and more efficient. 

Every block has a tag which includes a pointer to the 
processor at the head of the list. Each processor cache lag has 
a pointer to the next node sharing that cache line. In effect, all 
nodes with cached copies of a memory block are linked 
together by these pointers. The nodes have a forward pointer 
and a backward pointer to connect them with the previous and 
next node in the list The resulting doubly linked list is shown 
in Figure 10. 

Figure 10. SCI sharing list. 

This distributed list concept ensures good scaling prop­
erties. Even as the number of nodes in a list grows 
dramatically, the corresponding memory tag size is constant. 
However, two pointer locations are associated with every 
cached block in a node. 

The list pointers are actually die interconnect addresses for 
the processors. When a node accesses memory to get a copy 
of snared data, it provides memory with its own address. If 
there are currently no nodes with cached copies the requesting 
node is made the head of a new list and memory saves the 
node address in the tag for this block. If, however, there exist 
nodes with cached copies of data, the pointer to the head of the 
sharing list is returned from memory to the requesting node, 
and this node inserts itself at the bead of the lisL Currently 
cached data is always returned from die old head, rather than 
from memory. 

The nodes in a linked list typically have read access to 
shared data. When a node wants write access, and it is 
currently the list head, then it purges the rest of the list. If it is 
in another poition of the list, the node first deletes itself from 
die list, then performs another memory real to move to the 

6 



head of the list. Write access is restricted to the bead node 
wily. 

All bus transactions concerning cache coherence are im­
plemented within the standard packet format described above. 

The cache coherence protocol described above has not yet 
been tried in real systems. We are therefore relying on several 
people at the University of Oslo who are using their expertise 
10 do formal verification^], 

7 CONTROL AND STATUS REGISTERS 

The Control and Status Registers (CSRs) are an important 
part of the proposed standard. The CSR definitions are 
essential for all initialization and exception handling. Some of 
the CSRs must be SCI specific, but the majority of the 
necessary definitions can be common with other standards^]. 
The IEEE has approved a request for a standard project for 
defining CSRs. The project number is IEEE P1212, chaired 
by David V. James. The CSR standard is being coordinated 
with Futurebus+, Serial Bus and SCI. It will also try to 
coordinate with the ongoing CSR activity for VMEbus. 

8 REALIZATION 

Realization in commercial systems is important for 
acceptance of a defined standard. Therefore the first 
implementation is being done in parallel with the 
standardization work. So far we have done measurements that 
assure us that it will be possible to make implementations for 
the 1 Gigabyte/second transfer rate. 

We have both a high level and a low level simulation 
model of an SCI system running. We have simulated both the 
arbitration and the cache coherence scheme. The length of a 
maximum data packet will initially be limited to 64 bytes (i.e. 
a cache line). For the first implementation we are using ECL 
gate arrays, with one chip (or perhaps two) for the SCI 
interface and the cache coherence protocol. This interface 
chip will be common for all nodes. In addition. Dolphin 
Server Technology is making a physically addressed cache 
controller which can be used as a second level cache 
controller, and a global memory controller chip that supports 
the necessary directory handling'in global memory. 

The first configuration will be a ring mucture with high 
performance CPU's, large main memory and connection to 
standard buses like VMEbus for VO functions. We expect to 
have prototypes ready for testing late this year. 

9 CONCLUSION 

This paper has presented an overview of the objectives of 
the SCI working group, and the solutions which are currently 
being pursued. Scalability of a system is a key aspect as many 
high performance computer manufacturers are moving toward 
large multiprocessor systems. In order to utilize these systems 

efficiently, a cache coherence mechanism must have good 
scaling properties. Also, for a system to both be cost effective 
and support high performance solutions, it is necessary to 
separate the module interface from the tntercocnect 
implementation. 

We feel that our current proposals meet these objectives. 
The SCI project is moving rapidly and has attracted 
participants from many of the high performance computer 
companies. We already have a first draft of the standard 
available, and we hope to send it out for ballot late this year. 
The proposed architecture appears to be achievable based on 
technology available today. 

If you would like to participate in this work, or if you 
would like more detailed information, please contact one of 
the authors or the chairman of the project: 

David B. Gustavson, IEEE P1S96 Chairman 
Computation Research Group, bin 88 
Stanford Linear Accelerator Center 
Stanford, CA 94309, USA 
tel: (4 < 5) 926-2863 
fax: (415)961-3530 or (415)926-3329 
Email: DBG@SLACVM.bitnet 

10 ACKNOWLEDGMENTS 

Many people have aiitady contributed to SCI's devel­
opment; though we cannot list them all, we wish to 
acknowledge a few contributions which seem to us to be 
particularly significant. 

Paul Sweazey, originally of National Semiconductor and 
recently of Apple Computer, started the SuperBus study 
group, which he chaired until the SCI working group was 
organized. Paul has also brought a thorough understanding of 
the cache coherence problem, due to his work coordinating the 
Futurebus Cache Coherence task group. 

Paul Borrill of Sun Microsystems. Futurebus+ chairman, 
helped push our goals to much higher bandwidths and to 
increased parallelism through the use of switches instead of 
shared buses. 

John Moussotiris, a co-founder of MIPS Computers, has 
provided critical insights inio the directions we need to take in 
order to rendezvous with future technology, has helped put us 
in touch with the appropriate experts, aim has helped expose 
problems and errors in various models. 

Phil Ponting of CERN in Geneva has provided effective 
and vital communications and redistribution to the many 
European participants. 

Hans Wiggers of Hewlett Packard Laboratories has helped 
us examine various physical layers, and is considering the 
implications of an optical fiber implementation of SCI. 

7 



Mack Williams of Hewlett Packard leads a joint task group 
lo consider the interface between SCI and Fururebus*. 

Stein Gjessing, Stein Krogdahl and Ellen Munthc-Kaas at 
the University of Oslo are working on formal specification and 
verification of die SCI cache coherence protocols. 

11 AUTHORS 

Knul Alnaes, originally of Norsk Data and now a staff 
member of Norsk Data subsidiary Dolphin Server Technology 
A.S., Oslo, Norway, is involved in SCI simulation and is 
responsible for the interface chip design, 

David B. Guscavson works in the Compulation Research 
Group of the Stanford Linear Accelerator Center at Stanford 
University. Palo Alto. California. He is chairman of the IEEE 
PI 596 (SCI) working group. He has had experience with 
many standard buses, beginning with the early S-100 (IEEE 
696) but especially Futurebus (IEEE P896.*) and Fastbus 
(IEEE 960-1986, IEC 935). He also chairs the Fastbus 
Software Working Group (IEEE 1177-1990). 

David V. James, originally o f Hewlett Packard and re­
cently of Apple Computer, Cupertino, California, has broad 
experience with multiprocessor architecture, which he is 
applying to SCI's needs, from control register and I/O 
architecture to distributed cache coherence and forward 
progress. David is vice chairman of SCI, coordinator of the 
Logical task group and has written the majority of the working 
documents. He is also die chairman of the CSR project 
(TEEEP1212). 

Ernst Kristiansen was responsible for development of 
memory systems, proprietary buses and VO-systems at Norsk 
Data, and is now at Norsk Data's subsidiary. Dolphin Server 
Technology A.S., Oslo, Norway, where he is project manager 
for the SCI implementation. 

12 REFERENCES 

1. D. B. Gustavson, D. V. James, J. Moussouris and P. Sweazey. 
"The Scalable Coherent Interface Project (SuperBus)", draft of 
August 22.1988. 

2 P. L. Borrill "VMEbus—The Next 5 Years", VMEbus in 
Research. October 1988. 

3. D. V. James. "Scalable I/O Architecture for Buses", COMPCON 
Spring 1989, pp 539-544. 

4. D. B. Gustavson, "Scalable Coherent Interface", COMPCON 
Spring 1989, pp 536-538. 

5. E. H. Kristiansen. "IEEE SCI (P1596)". VMEbus in Research, 
October 3988. 

6. A. Agarwal, R. Simoni, J. Hennessy and M. Horowiz, "An 
Evaluation of Directory Schemes for Cache Coherence", 1 5 t h 

International Symposium on Computer Architecture. June 1988. 

7. E. H. Kristiansen. K. Ames. B. O. Bakka and M. Jenssen, 
"Scalable Coherent Interface", Eurobus Munich, May 1989. 

8. P. Sweazey, "Cache Coherence on SCI", EEE/ACM Computer 
Architecture Workshop, Eilst, Israel, June 1989. 

9. S. Gjessing, S. Krogdahl, E. Munthe-Kaas. "Formal 
Specification and Verification of SCI Cache Coherence", NIK 
89, Suvanger, Norway. November 1989. 

IOL H. O. Bugge, E. H. Kristiansen. "Trace Driven Simulations for 
Decisionmaking on Cache line Size and Cache Size in a Two 
Level Cache Design". NIK 89, Stavanger. Norway. November 
3989. 

11. D. B. GusUvson. "The Scalable Coherent Interface, IEEE 
P1596. Status and Possible Applications to Data Acquisition and 
Physics", IEEE Nuclear Science Symposium. 1989. 

IS, 
ilBli 
IP! 
mm 

8 


