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INTRODUCTION

In 1938 London [1,2] offered an explanation of the observation earlier that year of super-
fluid behavior in liquid “He when it is cooled below a critical temperature of 2.17 °K. He argued
that the superfluid transition was analogous to the Bose condensation of an (ideal) gas of non—in-
teracting atoms obeying the same Bose—Einstein spin—statistcs relation as *He atoms. This rela-
tior requires the many--atom wave function to be completely symmerric in the atomic coordi-
nates, resulting in a preference for the atoms to occupy the same single—particle states. For a fi-
nite system of atoms the momenta are quantized in spacings proportional to the inverse of the
system size. At high temperatures the fraction of atoms occupying any one of the momentum
states also scales as the inverse of the size. However, as the temperature is reduced below a criti-
cal Bose condensation temperature a significant fraction of the atoms, independent of the system
size, begins to occupy the zero—momentum state. The Bose condensate fracrion of an ideal gas
approaches one at zero temperature. For 4He, by analogy, at high temperatures in the normal
fluid the condensate fraction should be zero, but as temperatures are reduced below the super-
fluid transition temperature the condensate fraction should rise to a non-zero value. The effect of
the strong interactions among the (non-ideal) “He atoms is to deplete the zero temperature con-
densate fraction from one in an ideal gas to a value much less than one for *He. While the analogy
between superfluidity and Bose condensation is imperfect, the concept of a Bose condensate in



the superfluid phase has survived. A variety of increasingly sophisticated many-body calcuia-
tions have predicted a condensate fraction of about 10 % at zero temperature in superfluid ‘He at
S VP. Because of the importance of superfluidity and the related phenomenon of superconductv-
ity to condensed matter physics, this simple prediction has motivated a more than rwenty year
effort involving up to one hundred scientists to measure the Bose condensate fraction in *He.

More generally, the goal has been to measure thie momentum distribution (3], n(p), which
is the probability for an atom to occupy a ;ingle—particle state of momentum p. The mwst promis-
ing technique has been neutron scattering experiments at up to 100’s of meV energies, such that
the neutron energy is much larger than the characteristic energies for the collective behavior of
the system such as the phonon-roton spectrum. If the energy transferred by the neutron is also
much larger than the potential energies between atoms, then (hopefully!) the impulse approxi-
mation (LA) may be invoked in which the scattering from the many-atom system is described as
the sum of independent single—-atom scatterings. This predicts a simple relation between the mo-
mentum distribution and the measured scattering cross section. Analogous experiments are of
interest in all sub-fields of physics, because the momentum distribution is an cxperimentally
accessible characterization of the many—particle wave function. This includes x—ray Compton
scattering at 10’s of KeV energies to measure electron momentum distributions, quasi—elastic
electron scattering from nuclei at GeV energies to measure nucleon momentum distributions,
and electron scattering from nucleons at 100’s of GeV energies to measure quark momentum
dismibutons. Such experiments we term deep inelastic scartering. Compton scattering experi-
ments for electronic momer tum distributions have been very successful. However, experiments
on atomic momentum distributions of interest in condensed matter physics, and on nucleon mo-
mentum distributions of interest in nuclear physics, have been plagued by uncertainties about the
validity of the impulse approximation for the values of energy and momentum transfer which
can be realistically achieved.

Thus, there are several reasons for the high interest in the recent experimental and theoret-
cal progress in understanding deep inelastic neutron scarttering from liquid “He: it tests the fun-
damental London hypothesis of a connection between superfluidity and 3ose condensation; it
provides a quantitative test of ab—inirio calculational methods for all systems with strong corre-
lations which are the focus of current quantum many-body research; and it establishes the range
of validity of deep inelastic scattering as a method for measuring momentum distributions. In the
following sections we introduce the concepts of impulse approximation in more detail, we de-
scribe recent progress in the theory for final state corrections to the impulse approximation, we
present quantitadve predictions for neutron scaunering experiments, we corapare with recent
high energy pulsed neutron source experiments on liquid “He by P. Sokol and colleagues as well
as other artempts to extract the Bose condensate fraction from the neutron scattering data, and we
di scuss the implications of this prcgress for future momentum distribution experiments in other
systems such as liquid *He and quasi—elastic electron nucleus scartering.

THE IMPULSE APPROXIMATION AND THE BOSE CONCENSATE

For the sake of clarity, in this section we explicitly consider only neutron scattering from
many-atom Systems, although the concepts we shall discuss are common to many other sub-
fields of physics.

[n the impulse approximation, the neutron scattering law may be written as the sum or col-
lisions from individual atums which have a probability Hf having an initial momentum, p, given



by the momentum distribution, n(p). The energy and momentum wansferred by the neutron are
assumed to be high enough that the collective dynamics and interactions among He atoms only
show up in initial state momentum distribution, n(p), and not in the final state. Then, the scatter-
ing law may be written:

S(Q.w) = Su(Q.w) m % ] (—%3 n(pi) d(Aay - E(pp) + E(pi)) . (1)

Here, p; is the initial momentum of an atom, py= p; + AQ is the final momentum of the recoil-

ing atom after the neutron has transferred momentum A Q and energy Aw , E(p) = A%p%/2M is
the kinetic energy, and @ is the atomic density. The delta function expresses the energy conser-

vation of the scattering process. S(Q, @) is normalized so that the integral of it over Aa equals
nne. Equation (1) provides the sought for simple relation between the momentum distribuidon
and the scattering law. The impulse appreximation predicts that the scarttering law peaks at the
recoil energy from a particle atrest, Ag) = & 20%/2M. The width of the peak is A Q A p/M, where
A p is the width of the moraentum distribution, n(p). An experimental test to establish that deep
inelastic scattering conditions, but (as we shall dicuss) not necessarily impulse approximation
conditions, have been reached is the observation of this peak position varying as Q% and peak
width varying as Q.

In 1966 Hohenberg and Plz.tzman (4] suggested that the Bose condensate fraction in *He
could be measured by high mom :ntum transfer neutron scattering experiments. For an isotropic
system in the presence of a Botre condensate, the momentum distribution may be written

n(@) = nQ2A’8¥@ +n'(p) (2)

where n, is the Bose conder: :ate fraction, and n’(p) is a smooth function. Combining Egs. (!)
and (2" yields

5@ = nd(ho N0} /2M) +Sh@@) . ()

where S °(Q, @ ) is the contribution to the scattering law from 2 °(p). Thus, in the inupulse ap-
proximation the scattering law is expected to have a si:arp delta function peak with weight n,
centered at the recoil energy, which sits atop a broader peak due to the smooth part of the momen-
tumn distribution. The central goal of most deep inelastic neutron scattering experiments on liq-
uid “He has been the cbservation of this sharp peak in the superfluid at temperatures less than the
superfluid transition temperature, T3 = 2.17 °K, and the absence of such a peak in the normal
fluid at higher tempe-atures.

[tis commcn to rewrite the scattering law asa Compton profile, after analogous x--ray scat-
tering experiments on electron momentum distributions carried out by A. H. Comptonand J. W.
M. DuMond in the 1920’s. For neutron scattering, it is given by

J¥,Q) =

Q5(Q.w)
" (4)

where
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Specializing to the impulse approximation, one obtains

JiA(Y) = nd(Y) +f“—rzli2; I dppn'(p) . (%)
AN

Energy conservation in Eq. (1) requires Y to equal the longitudinal wave vector of the atom, or
the component of initial momentum which is parallel to the momentum wansfer. In the impulse
approximation, the Compton profile is centered at and symmetric about Y = 0. It is also indepen-
dent of Q, which is termed Y-scaling. This is equivalent to the earlier statemsent that the peak in
5(Q, @) has a position varying linearly in Q2 and a width varying linearly in Q. Figure 1 {6]
shows measured Compton profiles for superfluid “He at Q’s of 7, 12 (7], and 24 A-! [8]. Ai-
thongh the data are instrument broadened wtih a full-width—half-maximum (FWHM) of 0.6
A~ the fact that these curves for different Qs approximately lie on top of one another is strong
evidence for Y-scaling, especially at higher Q's. However, Y-scaling is a necessary, but not a
sutficient condition, for the validity of the impulse approximation. G. West [5] was the first to
point out that Y-scaling can be true even if the impulse approxim.:tion is false. In a foliowing
section on final state effects we present an explicit counterexample to the hypothesis that the
observation of Y-scaling confirms the impulse approximation.

Quantitztive predictions for deep inelastic experiments on “He can be obtained from the
impulse approximation by inputing theoretical momentura distributions, n(p). The solid line in
Fig. 2 shows momentum distributions calculated by Greens’ Function Monte Carlo (GFMC) 9]
at T = 0 °K, which predicts an n, of 9.24 %. The dashed line shows the momentum distribution
calculated by Path Integral Monte Carlo (PIMC) [10] at T = 3.3 °K, in which n, is predicted to be
zero. Figure 3 shows the corresponding predictions for Compton profiles. The solid line is the
GFMC-IA prediction for the superfluid, which has a delta function peak at Y = Q of weight n,.
The dashed line is the PIMC-IA prediction for the normal fluid, which is a smooth function.

The experimental data, such as Fig. 1, show a sharpening around ¥ =0 as the temperature is
reduced into the superfluid. However, there is no direct evidence for a sharp delta function peak
in the superfluid at any Q. The issue has been how to infer the value of n, from the limited data
available which inevitably include instrumental broadening, statistical and background uncer-
tainties, and corrections to the impulse approximation at the finite values of Q's which can be
achieved. There have been many reports (11)] of determinations of n,, which have involved a
succession of improvements in understanding spectrometers, improvements in the data analysis
procedure, and increases in the values of Q to better approach the conditons for the validity of
the impulse approximation.

The most extensive data analysis of reactor experiments was carried out in 1982 [12] for
data in the range 4 A-! <Q <7 A~l. Atlower Q's (<3 A-!) the neutron scattering law is domi-
nated by the collective behavior such as the phonon and roton spectrum and at higher Qs the
neutron flux from reactors becomes prohibitively small for high resolution experiments. These
data begin to approach the impul..s approximation predictions, i.e. the peaks are centrred at the
recoil energy of a free pardcle anc! the widths are proportional to Q. However, there are signifi-
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Fig. 1 Inolastic neutron scattering from liquid ‘He at momentum transfers ot 7
A-'.12A-' (at T= 1.0°K) and 24 A-' (at T=0.35 °K). The results, plotted as .(Y),
all fall on approximatety the same curve, lllustrating the Y-scaling behavior. The
instrumental resolution is about 0.6 A-'.
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Fig. 2 Theoretical momentum diatributions for liquid ‘He. The solid line is the
Greens' Function Monte Carlo (GFMC) prediction for the supertiuid at T= () °K,
which has a deita function at p = 0 with a 9.2 % Bose condensate fraction. The
dashed line is the Path Integral Monte Carlo (PIMC) prediction for the normal
fluid at T= 3.33 °K.
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showninthe Q=7 A-!datain Fig. 1, and oscillations [13) of the peak width and center with Q. To
correct for these deviadons, which can be quite significant at lower Q°s, the data have been sym-
metrized about Y = 0 and averaged over several Q’s. This gives a resultant scattering which is
consistent with the basic predictions of the impulse approximation (peaks that are symmetric
and centered at the recoil energy) and wher= the effects of the corrections to the impulse approxi-
mation are minimized. The resultznt data is then converted from S(Q, @ ) to n(p), which involves
a differentiation and a division by p according to Eq. (6).

Attempts to directly compare the experimental momentum distribution, obtained using
the procedure above, with theoretical predictions always exhibited significant disagreement.
Thus, attention turned to other methods to extract information on the momentum distributons
and, especially, the condensate fraction, n,. The most popular procedure has been modeling of
the momentum distribution with n, as an adjustable parameter.

The model used for the momentum distribution in the superfluid will strongly influence
the value of n, inferred. In fact, several previous studies have inferred a vanishingly small value
for the condensate based on a particular model. In the 1982 analysis, only the momentum distri-
bution at small values of p was needed. The model for the uncondensed component of the mo-
mentum distribution (i.e. everything but the condensate itself) was:

n"0) = nola/p? +b/p} 0Gec-p) + 1-1) n@,T>T)) . D

The first term in this model represents singular behavior that is induced in n*(p) by the appear-
ance of the condensate [14]. This is due to the coupling of long wz""elength phonons to fluctua-
tions in the condensate. The second term simply represenis a scaled down version of the normal
liquid behavior. The n(p, T > T}) is fixed by measurements at high temperature where , is zero.
Based on this model, the 1982 analysis (and subsequent analysis using the same procedure) ex-
tracted values of n, around 10 %, in surprisingly good agreement with theory.

Unfortunately, this apparent agreement between theory and experiment was fortuitous.
The small-p singular behavior above, which played a very important role in the 1982 analysis,
was the result of an incorrect combinadon of the small-p and large-p limiting behaviors. Griffin
pointed out this error [15]. Using a more correct form for the small—p singular behavior, he ob-
tained values of n, of 4-5 %, about half the theoretical predictions. More recently, Sokol, Silver
and Clark [3] have pointed out that information on the small-p singular behavior is extremely
difficult to obtain by deep inelastic neutron scattering measurements, a point to which we will
return later.

FINAL STATE EFFECTS

What has been left out of all of the data analysis procedures discussed above has been a
detailed understanding of the corrections to the impulse approximation, to which we now turn.
These were first addressed in the original paper of Hohenberg and Platzman (4). The additional
physical effect which must be included is the scattering of the recoiling atom from neighboring
atoms in the condensed phase, resulting in collisional lifetime broadening. A finite collisional
lifetime, 7, results in an uncertainty, A/t , of the energy of the final state of the He atom after
being struck by a neutron, and so this broadening is termed final state effects (FSE). This can be
important for He even at high Q's, because the potential energy between He atoms is steeply re-
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Fig. 3 Compton profiles for He calculated in the impulse approximation, J,(Y).
The solid line is the GFMC prediction for the supertiuid at 7= 0 °K, which has a
deita function at Y= Q with weight equal to the Bose condensate fraction, n,. The
dashed line is the PIMC prediction for the normal fluid at T = 3.33 °K.
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Fig. 4 Semiclassical ‘He—*He total cross section for momentum, AQ .



PUadIYC at MIULL WISWANCCS ana never negugible compared to the kinetic energy of the recoiling

atom, A 2Q%2M.

We now describe this in a fashion which, while not following the original derivation of
Hohenberg and Platzman, will naturally lead to our current understanding of final state effects.
Assuming that Ip;] € AQ , the rate at which the recoiling atom scatters from neighboring atoms
is given by

1 AQ
—mpa0 _— 8
T Q Q) ] (8)
where 0 «(Q) is the He-He total scattering cross section for incident momentum A Q. The re-
sulting uncertainty in the energy of the recoiling atom is expressed by adding to E(py) inEq. (1) a
self energy £ =—iA/2+ . We rewrite the energy conservation delta function in Eq. (1) in terms of
its integral representation. Then, the effect of collisions is to transform it as follows:

1 T itAE - 1 [ itAE - iInX
owan =23 | "'°"P( n) | "‘°"P(—r—) O

where A £ = A @ -E(py)+E(p;) and ¢ can be interpreted as the time aficr the neutron collision.
Then by straightforward manipulations the Compton profile becomes
[_J

J¥.Q) = f 4 Res¥-1.Q) Ju¥) . (10)

The broadening function due to final state effects is given by a Lorentzian form,

1 T
Rrs(Y.Q)-——;—”y o A (11)
where [ = pa:,(Q)/2 is the collision rate per unit distance traveled by the recoiling atom.

Let us first consider those properties of this theory which we believe remain correct in the
more modern theories. First, the full-width-half-maximum (FWHM) of the broadening is giv-
en by

AYrwim ™ @0i(@) . (12)

(Actually, the original prediction of Hohenberg and Platzman was a factor of two larger than this,
and the parameter Y had not yet been suggested as a natural variable foz the problem.) In the limit
that the He-He potential at short distances can be approximated by a hard sphere, o ,,,(Q) is inde-
pendent of Q and equals 25 7,2 Here 7, is the hard sphere radius and the factor of 2 is due to
forward diffractive scartering. In this limit, the broadening is independent of Q and the Compton
profile would sadsfy Y—scaling even though the impulse approximation would be invalid. Also,
the collision rate per unit distance traveled by the recoiling atom would be @ 7,2, which is the

value given by classical mecharics. In reality, the He—He potential is steeply repulsive, but not
hard sphere, at short distances resulting in a @ (@) which decreases approximately logarithmi-
cally with increasing Q, as shown in Fig. 4. The small glory oscillations with Q are a quantum
mechanical forward-backward scattering interference effect due to Bose statistics [16]. Then
the final state broadening would decrease only logarithmically with increasing Q, resuldngina



However, sum rule arguments show that the Lorentzian lineshape predicted by this theory
cannot possibly be correct. The second moment sum rule on the neutron scartering law can be
rewritten in terms of the Compton profile as

[J(Y.Q) Y2 d7=%- <KE>+0(Q% . (13)

The impulse ' pproximatien satifies Eq. (13) without the O(Q™2) term. If the final state broaden-
ing takes the convolution form in Eq. (10), then one must conclude

j Resth Y2 dY = O(Q™%) . (14)

That is, final state effects cannot alter the second moment of the Compton profile from the im-
pulse approximation value in the high Q limit. However, the Lorentzian predicton, Eq. (11), has
an infinite second moment. Evidently, final state effects if they exist must be much smaller than
given by Eq. (11).

Gersch and Rodriguez (17,18] were the first to address this problem in 1973. They showed
how the second moment sum rule could be satisfied with a non-Lorcntzian lineshape for the fi-
nal state broadening. They identified the physical origin of a non-Lorentzian shape as due to a
dependence of the He—He scattering rate on the distance traveled by the recoiling atom. This
distance dependence was due to the real space correlations which exist among atoms in liquid
He. As we shall show, they calculated a final state broadening in qualitative agreement with cur-
rent neutron scattering measurements. Unfortunately, this work was ahead of its time and did not
receive the attention it deserved. One possible source of difficulty was that the derivation used a
many-body theory involving time ordered cumulant expansions which wete unfamiliar and
have not been further developed. Another is that the numerical predictions were buried in an ex-
perimental paper which incorrectly obtained a 2 % Bose condensats fraction. Also many of the
inputs to the calculation were not yet available and had to be severely approximated, such as
approximaiing the radial distribution function g(r) by a step function.

Since then there have been more than twenty papers on the theory for final state effects in
He, and there has been a comparable level of inconclusive activity on the analogous problem in
quasielastic electron nucleus scattering in nuclear physics. Many theories continued to obtain
quasi—Lorentzian lineshapes which decreased as O( /n Q) with increasing Q, while other popular
theories claimed that the leading correction to the impulse approximation was asymmetric in ¥
and decreased as O(Q~/). Following the Hohenberg Platzman theory several experimental pa-
pers [7,19] at low Q ( < 12 A-') have identified apparent oscillations in Q of the width of J(Y,Q)
wi.th the glory oscillations in @ ;(@). However, the widths observed are much narrower than the
Hohenberg Platzman theory [20]. The premature claims to have observed a 10 % Bose conden-
sate in superfluid 4He in apparent agreement with many—body theory may have contributed to a
complacency in the scientific community, i.e. there was a false sense that final state effects were
unimportant and the quest to measure the Bose condensate fraction had been achieved [12]. The
popular view of the subject up to 1987 has been reviewed by Svensson and Glyde and by Sears



and Svensson [11]. In reality, a distinct deita—function peak in the scartering law had never been
directly observed, and the most credible values of the Bose condensate fraction obtained by ig-
noring final state effects were 4~5 % [15] in serious disagreement with many-body theory.

In 1988 Silver [21,22] published an independent derivation of final state effects which
confirmed and built on the original work of Gersch and Rodriguez. We first present a heurisac
derivation of the main results of this theory following our derivaton of the Hohenberg & Platz-
man Lorentzian broadening theory presented carlier. There are two elements of new physics:
first, the collision rate depends on recoil distance because of correlations in the positions of
atoms in the condensed phase; and second, at high Q the De Broglie wavelength of the recoiling
atom is short compared to interatomic distances so that a semiclassical description of motion of
the recoiling atom is adequate. The distance along the classical trajectory is givenby x = A Qv/
M where, again, ¢ is the cme after the neutron collision. The probability density of finding two
atoms a distance x apart is given by @ g(x), where g(r) is the radial distribution function of the

liquid. The collision rate at distance x is given by

. aQ
P Q8(x)01x(Q) M (15)

The self energy consequently depends on recoil distance, Z (x) = - i /27 (x) .

This essential physics is illustrated in Fig. 5, which shows the He-He potential and the
radial distribution distribution function for liquid “He. The potential is steeply repulsive at short
distances and has a weak Van der Waals atrraction at larger distances. The radial distribution
function shows that the atoms in the condensed phase sitin the attractive part of the potential well
far from the steeply repulsive core of the potential. After being struck by a neutron, the recoiling
atom must ravel for some distance before it begins to collide with the steeply repulsive cores of
the potentials from neighboring atoms. Therefore, 1/t (x) is zero for small x and approaches the
value given by Eq. (8) only at large x. So the final state broadening should be much smaller than
the Lorentzian broadening prediction.

Then the energy conservation delta function in Eq. (1) becomes

3AE) =» 1 I ds exp(irAE-ilrlZ(lrlﬁQ/ M)) . (16)

2mh A

The final state broadening retains the convolution form, Eq. (10), but now

Res(Y, Q) = 7.17'— I dx exp [in—ltlg(lxl)l."] : ['m E’%(Q . (17

Let us examine the properties of this final state broadening function. It reduces to the Lo-
rentzian broadening result, Eq. (11), in the limit of a structureless fluid, g(r) = 1.0. The FWHM
continues to be approximately given by Eq. (12). Again, a Y-scaling correction to the impulse
approximation is obtained in the limit of a hard sphere potential. However, the lineshape is non-
Lorentzian and negatve at large /Y/, and it satisfies the sccond moment sum rule because g(0) =
0.0 in He.



Y-scaling now acquires a gcometrical interpretation in the limit of hard sphere interac-
tions between He atoms. Y loses its impulse approximation interpretation as the component of
initial momentum parallel to the momentum transfer. instead, Y becomes the canonically conju-
gate variable to the distance, x, along the classical trajectory of the recoiling atom. The final state
broadening function is the Fourier transform of the probability of no collisions as a function of
recoil distance. In the hard sphere limit, the final state effects depend only on the relative posi-
dons and sizes of atoms, so that the (potentially 10%3) extra variables in the problem drop out. For
real potendals, Y-scaling is obtained to the extent that 7 . (Q) varies slowly with Q.

A formal derivation of a somewhat more correct result has been discussed in detail else-
where {21,22], so that here we only sketch the approach. The goal is to correctly describe the
asymptotic limit of the final staiz broadening, which is defined by the approximations of very
high { and hard sphere short distance interactions hetween He atoms. Real cxperiments are suf-
ficiently close to these conditions that the extension to finite Q and to the real He-He interactions
should not introduce serious error. The results of many—body calculations (e.g. GFMC, PIMC,
variational) of ground state properties, such as n(p) and g(r), should be used as inputs without
recalculating them. Therefore, a projecdon superoperator method was chosen which enables a
perturbation expansion for the dynamical response about the strongly interacting ground state.
The final results, Eqs. (18—-20), have been subsequently derived by Rinat and Butler (23] using a
multiple scattering formalism which provides a more familiar derivation for some readers.

The projection approach relies on an exact relation between the neutron scattering law and
a projection superoperator for sinyle particle-hole excitations out of the true ground state. A Dy-
son equation can be derived by a Mori-Zwanzig-type [24] perturbative expansion of the Liou-
ville equation for th= time evolution of the single partcle-hole excitations. All atom-atom scat-
terings are resummed to all orders in the interaction potential in terms of two—body ¢-matrices,
and all interactions between three or more atoms are ignored. The “effective interaction” is then
a product of a two~body r-matrix times the two—-body density matrix in the ground state, which
cffecL sely screens the smongly repulsive short distancz behavior resulting in a small parameter
expansion. All terms which do not survive in the asymptotic limit are also ignored. Since Q is
large, a semi—classical on -shell approximation [25] can be used for the two—body ¢—matrix. The
two—body density matrix is approximated as a factorizable product of n(p) and g(r) in a way
which satisfies the sum rules. The resulting Dyson equation may then be solved analytically.

A Feynman diagram representation of the resulting Dyson equation is shown in Fig. 6. The
neutron scattering law describes the propagadon of a particle—hole excitation above the ground
state, which removes a particle of wave vector k and creates a particle of wave vector k+(. Ar-
rows denote the direction of the flow of momentum. A right arrow denotes a particle line and the
leftarrow a hole line. Only the partcle lines can carry high momentum on the order of Q, where-
as the hole lines must carry low momenta characteristic of the ground state wave function. The
hatched area denotes the exact result including all scatterings of particles and holes. In the im-
pulse approximation, the particle and hole are assumed to propagate without scattering. The fi-
nal state effects come from the scattering of the high momentum particle creating new particle-
hole excitations. The approximation indicated keeps only a sing'e additional particle-hole exci-
tation. The shaded box represents the two—particle density matrix describing the correlations be-
tween the two holes in the ground state, which is related by sum rules to the radial distribution
function, g(r). The dashed line is the two paricle r-matrix which describes the scattering. The
fact that the hatched area appears in both the exact result and the final state effects diagram im-
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Fig. 5 Radial distribution tunction, g(r), for liquid ‘He as measured by neutron
diffraction, and the He—He potential, V(r).
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Fig. 6 Feynman diagram representation of the Dyson equation for deep inelastic
neutron scattering. The left arrow denotes a hole line, the right arrow a particle
line. The dashed line represents the He—He t—matrix. The box represents the
two—particle density matrix in the ground state. The apperance of the hatched
area un both sides of the equation indicates that the equation must be solved
selt—consistently.
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must be calculated self—consistently.

The predicted final state broadening obtained again takes the form of an integral over a
classical majectory,

' lxd
Res(Y, Q) =% J dx exp in—j[’(x’)d.t' , (18)
L] 0

which should be compared to Eq. (17). The collision rate per unit distance traveled is given by

r(x)._mjdbz fo 82 +0Y (19)
0

where b is the impact parameter for the collision. The quantty f can be wrirtten in terms of the
scattering phase shifts, 8 (b) , as

fo = 280) _ 1 4 ) -mQb/2 (20)

The d(b) are calculated in the Jeffreys—Wentzel-Kramers—Brillouin (JWKB) approximation,

which is valid at high Q no matter how steeply repulsive the potental. We note that ['( @ ) =
Q 0 .:(Q)/2 . The third term in Eq. (20) results in the glory oscilladons of 0 .x((Q2). More gener-

ally, Eqs. (18-20) may be interpreted as the result of a WKB classical trajectory calculaton of
the final state broadening in which the quantty Z(x) w —iA?QI'(x) /2M serves as an oprical
potential.

PREDICTIONS FOR EXPERIMENT [26]

Figure 7 shows the final state broadening calculated for Q = 30 A~! from Eqs. (18-20) us-
ing as input the #xperimental g(r) obtained by neutron diffracdon. One can see that the FWHM
approximately obeys Eq. (12), but the broadening function goes negative at large /Y/ in order to
satisfy the second moment sum rule. The final state broadening is not a narrow function, but rath-
er it shifts J(Y,Q) intensity among different Y regions. Figure 8 shows the integrand of the second
moment sum rule over a larger range of Y. While the area under the curve is zero as required, the
broadenisig function oscillates between positive and negative values at large /Y/, the scale of
which is primarily controlled by the structure in g(r) shown in Fig. S.

Figure 9 shows the effect of the final state broadening on the measureable Compton profile
for the normal fluid at 7 = 3.3 °K and Q = 30 A-!, using the Path Integral Monte Carlo (PIMC)
momenturn distribution {10] as input to the calculadon. The dashed line is the impulse approxi-
mation prediction. The solid line (FS) is the prediction after including final state broadening.
Final state effects are very small for the normal fluid. The calculated momentum distribution for
the normal fluid is almost Gaussian, and the second momeat sum rule requires that final state
effects cannot alter the Gaussian width of the Compton profile. In contrast, the pluses in Fig. 9
shows the prediction of the [.orentzian broadening theory (LZ), Eq. (11).

Figure 10 shows the same comparison for the superfluid at T = 0.0 °K, using as input the
Green's Function Monte Carlo [9] momentum distribution. The dashed line is the impulse ap-
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Fig.7 Final state broadening function for ‘He, Res(Y), predicted by Eqs. (18—20)
at Q=30 A-'.
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Fig.8 Aploto! Y?Reg(Y)vs. Yior*He at Q=30 A-'. The area under this curve
must be zero in order to satisty the second moment ("kinetic energy”) sum rule
on the neutron acattering law.
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Fig. 9 Compton profiles, J(Y,Q), predicted for normal liquid “He at T = 3.33 °K
and Q= 20 A-'using the PIMC momentum distribution. The dashed line is the
prediction of the impulse approximation (1A). The solid line is the prediction of the
final state effects theory (FS), Egs. (18—20). The piuses represent the prediction
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of the Lorentzian broadening theory (LZ), Eq. (11).

J(Y.Q)

Fig. 10 Compton profiles predicted for superfiuid “He at 7= 0°K and Q=30 A"
using the GFMC momantum distribution. The dashed line is the prediction of the
impulse approximation (IA), and the solid line is the prediction of the final state
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etfacts theory (FS), Eqs. (18-20).




Bose condensate of weight 9.24 %. The solid line is the prediction after including final state
broadening. Final state effects are much larger for the superfluid The FWHM is scarcely
changed in accordance with the second moment sum rule. But the Compton profile predicted for
the superfluid is distinctly more sharply around Y =0 than for the normal fluid. The Bosc conden-
sate no longer results a distinct peak sitting atop a broader background.

Figure 11 shows another way to view the results for thc superfluid. The dashed line is the
GFMC momentum distribution shown earlier. The solid line is the “apparent momentum distri-
budon’ which might be inferred from the final state broadened Compton profile shown in Fig.
10, obtained by analyzing the data using the impulse approximation expression, Eq. (6). This
looks very similar to some earlier results on momentum distributions obtained from reactor data

[11].
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Fig. 11 The solid line |s the apparent momentum distribution which would be ob-
tained by analyzing final state broadened data, such as the solid line in Fig. 10,
as if the impulse approximation was correct according to EqQ. (6). The dashed
line is the GFMC momentum distribution.

Hcwever, some words of caution are in order regarding comparing the results of Eqs.
(18-20) directiy 1o experiment.

First, the derivation has left out a large number of terms which vary as O(Q~!) with increas-
ing @. While these are not important in the asymptotic limit, they may be of importance for the
Q’s achievable in real experiments. These include the initial self energy of the atom in the many-
body state before the neutron collision, the cff-shell behavior of the t—roatrix, corrections to the
semiclassical approximation, etc. For example, the semniclassical methods tegin to perceptibly
fail atQ < 10 A-!. Eqs. (18-20) may be fairly accurate for ths high Q's achievable at puised neu-
tron sources. They may require significant corrections in order to describe reactor expenments at
Q < 10 A-! The asymmerry in the lineshapes observed at low Q's is not contained within Eqs.
(18-20). The apparent width oscillations observed at low Q's are nnt predicted by Eqgs. (18-20),



responsible for glory oscillations of the He-He totai cross secton.

Second, the convolution form of the final state broadening depends on the approximation
used for the two—-body deasiry matrix as a factorizable product of n(p) and g(r). Ristig and Clark
[27] have pointed out that this choice does not satsfy a number of other known propertes of the
two—-body density matrix. The convolution form, Eq. (10), does not hold when a more correct
two-body density matrix is used as input. Clark and Ristig have recently calculated two—-body
density matrices for “He using a Jastrow ansatz, and they have deduced the general strucrural
form for the two—body density matrix for any wave function. These should be used in a more
accurate calculation of the scattering law. Even if the quantitative changes turn out to be small,
such a calculadon is conceptually important in view of the classical trajectory interpretation of
the Y-vanable discussed earlier.

Nevertheless, the semi—quantitagve predictons of Egs. (18-20) should be valid forQ > 10
A-1, and the Dyson equation represented by Fig. 6 should form the basis for more precise calcu-
lations of final state effects for momentum disoribution experiments by deep inelasdc scattering.

EXPERIMENTAL RESULTS

A new setof deep inelastic experiments [8,28,29] on liquid “He have been performed at the
[ntense Pulsed Neuwron Source at the Argonne Natonal Laboratory by a team led by P. Sokol ana
which included T. R. Sosnick, W. M. Snow, and K. Herwig. The experiments were performed on
the PHOENIX chopper spectrometer, which was designed as a dedicated instrument for deep
inelastic scattering experiments. Compared with the earlier low Q reactor experiments, the new
experiments used the very high epithermal neutron flux of the pulsed source to reach much high-
er Q's, and they also had a much better characterizadon of the insorument resolution function
whick. is essendal to accurate lineshape studies. Compared with earlier measurements at compa-
rablz or higher Q's, the new experiments are the first to have sufficient insorumental resolution to
reliably extract the lineshape.

The data analysis avoided the model fitting procedure with n, as a free parameter which
has been attempted with reactor data taken up to 1982. Instead, experiment and ab initio theory
were directly compared without any adjustable parameters. The theory is obtained by combining
the new accurate many-body calculations of momentum disribudons published in 1984—87 and
the theory for final state effects (21,22] first presented in 1987. [tis essendal to recognize that the
data are further broadened by the instrument resolution furction, which should be convoluted
with the theoretical predictions for the Compton profile. The spectrometer recolution function is
calculated by a Monte Carlo simulation. At Q = 23 A-!, the FWHM of the insoqumental broaden-
ing is comparable to that of the final state broadening predicted by Eqs. (18-20). There was also
an absolute intensity calibradon of the data within 5 %. Details of the instrument and how the raw
data were processed to extract the Compton profiles are discussed in ref. [28].

Thedata (8] in Fig. 12 were taken at Q = 23 A-!in the normal fluid at 7= 3.5°K. The datain
Figure 13 were taken at Q = 23 A-! in the superfluid at T = 0.35 °K. One can see that the data are
somewhat more sharply peaked around Y = () in the superfluid, as expected if a Bose condensate
were to form. The dashed line in Fig. 11 is the PIMC-IA predicuon of Fig. 8, convoluted with the
insrrumental resolution function. The solid line is obtained after further convoludng with final
state effects. One can see that the normal fluid clata are in excellent agreement with both the im-
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Fig. 12 The data Is the measured Compton protile in normal liquid He at T= 3.5
°K and Q=23 A~'. The cashed line is the prediction of the PIMC momentum dis-
tribution and the impulse approximation, broadened by the instrumental resolu-
tion function. The solid line is the prediction after further broadening by the final
state effects function shown in Fig. 7.
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Fig. 13 The data is the measured Compton profile for superfiuid liquid ‘He at T =
0.35°K and Q=23 A~'. The dashed line is the prediction of the GFMC moman-
tum distribution and the impulse approximation, broadened by the instrumental
resolution function. The solid line is the prediction after turther broadening by the
final state affects function shown in Fig. 7.
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Fig. 14 Obsarved scattering at temperatures 0¢0.35,1.0, 1.5, 1.8,2.0,2.3, 2.8,
3.5and 4.2 °K. Thao solid lines a & the theoretical predictions with instrumental
rasolution and final state effacts included. GFMC calculations are used for com-
parison with the 0.35 °K results. PIMC calculations are used for the remainder of
the temperatures. No caiculations are available for comparison with the 2.0 and
4.2 °K measurements.



aata qisagree with Lorentzian broadening curve shown in Fig. 9 and given by Eq. (11). For the
superfluid data in Fig. 12, the dashed line is again the GFMC-IA ,rediction of Fig. 10 aga:zi con-
voluted with the insoqumental broadening, and the solid line is the result obtrined after further
broadening with final scate effects. The superrluid data disagree with the impulse approxima-
tion, but they are in excellent agreement with the GFMC-IA theory broadened by final state ef-
fects.

Thus, ab initio theory and experiment are in excellent agreement for both the normal fluid
and the superfluid with no edjustable parameters, and they are consistent with a Bose condensate
fracton in the superfluid of 9.24% at T = 0 °K! Experiment and ab inito theory are in fact consis-
tent for all temperatures measured, as shown in Fig. 14.

One may wonder about the importance of the condensate induced small—p singularides
which played a significant role in the data analysis of the reactor experiments. Clearly the GFMC
momentum distributdon shown in Fig. 2 does not show these singularities, presumably because
of the finite system size which can be simulated in a feasible Quanturm Monte Carlo calculaton.
However, a variational Hypemerted Chain calculation [30] which correctly includes these sin-
gularites is also in excellent agreement with the superfluid data, and it predicts almosi . ¢ same
Compton profile as GFMC. The reason the singularities have a relatively small effect is that in
Eq. (5) n*(p) is multiplied by p. This suppresses the contribution f the p~/ term in Eq. (7). How-
ever, a singular term varying as, say, p~ would still result in strongly singular behavior in Ji4(Y).
Thus, the Bose condensate which is infinitely singular still shows up strongly in Jj4(Y), even
though the predicted [ 14| small-p singular terms do not. More generally, the inference of the low
p panof n*(p) from the Compton profile data is an exmremely ill-posed problem (3,28,31] in the
presence of statistical error.
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Fig. 15 Sensitivity of the obsarved scattering to the magnitude of the conden-
sate fraction at T = 0.35 °K. GFMC calculations have been used for the uncon-
densed component, and a narrow Qaussian to represent the condensate. The
best agreement is obtained for n, = 10 %. The two limiting values, n, = 8 and 12
%, are the lower and upper lines respectively.



Fig. 16 Comparison of the normal and supertluid data at Q = 23 A -' with other
theories fur final state effects: the lines in a) & b) are the predictions of the 1966
Lorentzian broadening theory (LZ). Eq. (11); the lines in ¢) & d) are the predic-
tions of the 1973 theory of Gersch and Rodriguez (GR).



One can ask how sensitive the experiment is to the actual value of the Bose condensate
fracdon. Fig. 15 shows the effect of changing the condensate fraction to 8 and 12 %, from the best
fit value of 10 %, assuming GFMC for the non—condensed atoms and the final state broadening
theory. Application of the model fitting procedure [12] to these new high Q data would yield a
Bose condensate around 9 %, provided that the low—p singularities are treated correctly { 15] and
that corrections due to final state effects are added to the procedure. A more complete discussion
is presented in ref. [28].

Assuming that the momentum distribution calculations are correct, one can use these data
to test the other theories for final state broadening [32]. Figure 16 (a & b) shows the comparison
of the data with the Lorentzian broadening prediction [33] obtained by taking the limit of a struc-
tureless fluid, i.e. g(r) — 1.0 in Eqs. (18-20). The disagreement is strong for both the normal
and the superfluid. Figure 16 (c & d) shows the comparison with the original theory of Gersch
and Rodriguez [17.18,34). The final state broadening is quelitatively correct, but it is quantita-
tively too small compared to the data. However, considering the necessary crudeness of the ap-
proximations made (eikonal approximation for the t-matrix, step function approximation for
g(r), etc.) at the time, the agreement between the Gersch and Rodriguez 1973 theory and the lat-
est 1989 experiment is impressive.

0.8 U —

J(Y)

Fig. 17 Preliminary data for tha superfiuid at Q= 13 A~ and T = 0.7 °K. The
dashed ling is the prediction of the impulse approximation using the GFMC mo-
mentum distribution and broadened by the instrumental resolution function. The
solid lina is the prediction aftar further broadening by the final state sffects ore-
dicted by Egs. (18—20). See the text.

Recently new experiments (29) have been performed at lower Q’s for which the instru-
mental resolution is much smaller than the final state broadening. Figure 17 shows preliminary
data for the superfluid at T = 0.7 °K and Q = 13 A-!. Again the dashed line is the GFMC-IA
prediction at 7" = 0.0 °K convoluted with the (much narrower) inscrumental resolution function at
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than the data. The solid line shows the prediction after including final state broadening. Now, the
peak shape and height are in excellent agreement with experiment.

However, there is a shift in the data to negatve Y compared with theory by about one chan-
nel, approximately 0.07 A-!. The origin of this discrepancy is unclear. A simple argument [35]
suggests that this shift is inconsistsnt with f- and second moment sum rules on S(Q, @ ) by more
than nine standard deviations. A similar shiftof the same magnitude is seenatQ =18 A-! andata
variety of temperatures, and indeed the original data at Q =23 A~! were also shifted by the same
amount. If the Y-scale were shifted by the small amount required to satsfy the f~sum rule, the
agreement between the final state broadened GFMC-IA theory and experiment would again be
excellent, presenting an even more convincing case for the final state effects theory in view of
the superior instrumental resolution at these lower Q's. However, the cetrect calibration of the
Y—scale should ulumately be resolved by the experimentalists.

IMPLICATIONS FOR FUTURE MOMENTUM DISTRIBUTION STUDIES

Despite the few uncertainties discussed in the previous sections, one must conclude that ab
initio many--body theory, the theory of final state effects, and neutron scarttering experiment have
all converged for deep inelastic neutron scattering on liquid He. Although a sharp peak in the
scartering law due to a Bose condensate appears to be unobservable by deep inelastc scattering,
experiment and theory are consistent with a Bose condensate fraction in the superfluid of 9.2 %
at zero temperature. In this section, we discuss the implicadons of this achievement for future
deep inelastic scartering studies.

First, there remains much to do on liquid “He. An analysis of the existing extensive data at
very low Q ( s 10 A1) may require significant additonal inputs to the final state effects theory
for the many O(Q~) effects which have been left out in the asymptotic }'mit of high Q and hard
sphere interactions. In the currently accessible Q range ( < 30 A-!), higher accuracy and lower
background measurements may begin to reveal the two—body density matrix effects which have
been discussed by Clark and Ristig [27]. These include possible deviations from the convolution
form of the final state broadening. Most importantly, higher ) and higher resolution experiments
on “He are needed 1o further test and refine the theory of final state effects. Figure 18 shows the
predictions in the region near Y = 0 for superfluid “He for much larger Q’s. Even at the exper-
imentally unfeasible value of Q = 270 A-! no distinct condensate peak is predicted in J(Y,Q).
These predictions depend on the He—-He potendal at short distances [36] which has been calcu-
lated, but has not been adequately measured, by atom—atom scattering experiments. However,
since higher 0 experiments require a percentage energy resolution which varies as O(Q~/), they
may be extremely difficult to perform. There is also great inierest in experiments aimed at mea-
suring the Bose condensate fraction for “He in other physical conditions such as in 2—dimension-
al films, in disordered media, He/*He mixtures, etc. Presumably the final state etfects theory
discussed here can be adapted with minimal changes to describe these situations.

The atomic system of most interest to study next will be normal liquid *He, because of the
controversy about the existence of a shrcp Fermi surface discontinuity in the momentum distmi-
bution, as shown in Fig. 19. A non~interacting (idea/) gas of Fermions would have a discontinu-
ity of 1.0, several many—body calculations forreal *He [37,38) predict a discontinuity of approx-
imately 0.3, and novel alternative wave functions have been proposed [39] which predicta Fermi
surface discontinuity is 0.0. In the impulse approximation the effect of a Fermi surface disconu-
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Fig. 18 Compton protiles with increasing Q for superfiuld ‘He at T = 0 °K pre-
dicted by the final state effects theory. Only the region near Y = 0 A~' ralevant to
the Bose condensate is shown. The condensate does not resuit in a distinct
peak at any experimentally feasible Q.
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Fig. 19 Theoretical momentum distributions for normal liquid 3He. The dia-
monds represent the Farmi Hypernetted Chain (FHNC) prediction with Fermi
surface discontinuity at pr = 0.789 A-'. The crosses represent the Gre.e as' Func-
tion Monte Carlo (GFMC) result. The small crosses represent the predicuon oi
the BCS pairing theory of Lhuillier and Bouchaud (LB) which lacks a Fermi sur-
face discontinuity.



Fig. 20 Part of the Compton profile for normal liquid 3Heg in the region near Y =
pe/A . The dashed line is the impulse approximation (lA) prediction using the

FHNC momaentum distribution, showing a change in siope at Y = pe/A . The solid
line (FS) is the prediction after broadening by final state effects, in which the dis-
continuity in siope is smoothed out.

0.01

Fig. 21 Comparison of momentum distributions for 3He. The curve labeled
n(p)FOis the Fermi~Dirac distiibution for a non—interacting gas at the same den-
sity, with discontintity of 1.0 at the Fermi surface. The curve labeled n(p, " Cis
the Fermi Hypern ted Chain (FHNC) praediction with discontinuity of 0.3. The
dashed line, n(p)* 18 the apparent momentum distribution which would be ob-
tained by analyzing final state broadened data as if the Impulse approximation
were correct.
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Fig. 22 Quasielastic electron nucleus scattering (QENS) from '2C at several dit-
ferent relativistic 4~momentum transfers. For —Y > 0.1 GeV/c the resulits all fall
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Fig. 23 Comparison of repuisive cores of the interaction potentials for atomic,
electronic and nuclear systems. The potentials are scaled by the Fermi energy,
Er, and the distances are muitiplied by the Fermi wave vector, k«. The solidline is
the 3He Aziz potential, the long dashed line is the nuclear matter v, potential, and
the short dashed line is the Coulomb potential for Na.
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A=) The predxcuons for the Compton profile for Y near kr are shown in Fig. 20. With the inclu-
sion of final state broadening, even this change in slope is predicted to be smoothed over. In Fig.
21 the apparent momentum distribution for *He is displayed in an analogous fashion to Fig. 11
for “He. The apparent Fermi surface obtained by analyzing the final state broadened Compton
profile assuming the impulse approximation relation, Eq. (6), is unobservable due to final state
effects. Nevertheless, as was the case for the “unobservable” Bose condensate peak in “He, one
should still be able to test the ab inifio many body calculations for *He by deep inelastic scatter-
ing experiments. Such experiments are a formidable undertaking because of the additional com-
plication of the very strong neutron absorption in 3He.

Finally, we tumn to quasielastic electron nucleus scattering [40,41]. In this case, the term
“quasi—elastic” refers to the absence of change in the rest mass of the nucleon in the scattering
process, even though the energy and momenta transferred are large compared to the energies
characterizing collective behavior. The term “deep—inelastic” is reserved for experiments which
probe the quark substructure of the nucleon. Despite this unfortunate semantic confusion, the
physics is the same as for neutron scattering from He: i.e. the energies and momenta transferred
by the electron are much larger than the binding energics of nucleons inside nuclei. Figure 22
shows a Y-scaling plot for electron scattering from the !2C nucleus, where the relativistic 4&-mo-
mentum range for each data set is shown and the Y-variable has been generalized to relatvistic
kinematics. This is meant to be analogous to Fig. 1 for deep inelastic neutron scattering from
4He. Figure 22 shows that the Y—scaling is observed for negative Y, but that Y-scaling is broken
for positive Y because of the possibility of exciting internal degrees of freedom such as the
A (1238 MeV) resonance. The critical question is whether the impulse approximation can be
applied to extract the momentum distribution from these data, and in particular whether the qua-
si-exponential dependence of the Compton profile on ¥ observed over four orders of magnitude
reflects a quasi—exponential dependence of the nucleon n(p) in nuclei.

To understand the pos:ible importance of final state effects in this problem, we consider a
comparative plot of the nucleon—nucleon potential (42], the He-He potential {36), and the Cou-
lomb potential for Na shown in Fig. 23. The potentials are scaled by the Fermi energy and the
distances are scaled by the Fermi momentum. The Coulomb potental is the softest at short dis-
tances, which is the reason that final state effects are relatvely unimportant for x-ray Compton
scattering experiments on electron momentum distributions. The nucleon—nucleon potental is
much more steeply repulsive at short distances, and the He—-He potendal is several orders of
magnitude harder than that. Thus, we expect that the impulse approximation will be approached
more quickly with increasing Q for nuclear physic; than for He. However, kirematics requires
that Q and @ should be low enough to avoid excitation of internal degrees of freedom of the
nucleon. Comparatively, while neutron scartering on *He /.un reach Q/kg of more than fifty, qua-
sielastic electron nucleus scattering is restricted to Q/Ar less than ten. The combination of these
two effects leads to the expectation that final state effects shc.uld be as important for quasielastic
electron nucleus scattering as they are in deep inelastic neutron scattering from He.

Detailed calculations for quasielastic electron nucleus scattering have not yet been carried
out [6). They suffer from uncertaindes regarding the appropriate choice of nuclear potential.
They potentially require inclusion of all the O(Q~!) effects which were left out of the asymptotic
theory for neutron scattering from He. And the relativistic effects are & further essential compli-
cation. Nevertheless, we expect that the leading term of the theory to be represented by the same
Dyson equation shown in Fig. 6.
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