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lNTRODUCTION

In 1938 London [ 1z] offered M explanation of cheobservation earlier that year of supm
fluid Ixhavior in liquid 4He when it is ccmkd below a cridcal teqemure of 2.17 ‘K. I-k argued
that chesuperfluid transidon was analogous to the Bose condensation of em(ideul) gas of non-in-
teracting atoms otwying the sanm Bose4instcin spin-statistics relation as 4Hc atoms. This rela-
tio~ requires chc many-atom wave fimction to be completely syrnmeuic in the atomic cwrdi-
natcs, resulting in a preference for the atoms to occupy tie same single-panicle states, For a fi-
nite system of atoms the momma are quantized in spacings proportional to the invemc of the
systemsize. At high temperatures the fraction of atoms occupying any one of the morncmum
states also scales as the inverse of the size. However, as dw temperature is reduced below a cmi-
cal Bose condemaffon temperatuw a significant fraction of tie atoms, independent of thes ystem
size, begins to mcupy the zero-mornentum sratc. The Bose condetmtefiacnon of an ideal gas
approaches one at ZCTOtemperature. For 4He, by analogy, at high ccrnperaturm in the normal
fluid the condensate hcdon should be zero, but as tempcranuws arc rcduccd below the super-
fluid transition tempcrmure the condensate fraction should rise to a non-zero value. The effect of
the strong interactions among the (non-ideal) *Hc atoms is to deplete the zcru tcmperatm con-
densate fracuon from one in an ideal gas to a va.lucmuch Icss than one for4He. While the analogy
between superfluidity and Bose condensation is imperfect, the concept of a Bose condensate In



the superfluid phase has survived. A variety of imwsaingly sophisticated many-body calcula-
tions have predicted a cmdensate !hcdon of abut 10% at zero tempemture in superfluid 4He at
SW, Beamseof the impmmce of suprfluid.ity and the related phenomenon of superconductiv-
ity to condensed matter physics, this simple prediction has motivated a more than nventy year
effort involving up to one hundred scientists to measure the Bose condensate fmction in 4Hc.

More generally, the goal has been to measure the mmenturn distribution[3], n(p), which
is the probability for an atom tooccupy a @le-particle state of momentum p. The mm promis-
mg rechnique has been neumon scattering experiments at up to 100’sof meV energies, such that
the neutron erimgy is much larger than the chamcteristic ener@es for the collective behavior of
the system such as the phonon+oton qwcuum. If the energy aansferred by W neutron is also
much larger than the potential energies between atoms, then (hopefully! ) the impdse upproxi-
rnanort(IA) may k invoked in which the scattering from the many-atom system is described as
the sum of independent single-atom scatteri.ngs. 1%.ispredicts a simple relation between the mo-
mentum distribution and the measured scattering cross section. Analogous experiments are of
interest in all sub+eld.s of physics, because the momentum disrnbution is an experimentally
accessible chammrimion of the many+uticle wave function. This includes x+ay Compton
~attesing at 10’s of KeV energies to measure electron momentum distributions, quasi+lascic
electron scattering 610UInuclei at GeV energies to measure nucleon momentum disaibutions,
and electron scattering hom nucleons at 100’s of GeV energies to measure quark momentum
distributions. Such experiments wc term &ep inefurdc scatertng. Compton scattering experi-
ments for electronic LUXIMrCUmdisuibudons have been very successful. However, experiments
on atomic moumtum distributions of interest in condensed matter physics, and on nucleon m-
mcntumdistributions of interest in nuclear physics, have bets plagued by uncenai.nties about tic
validity of the impulse approximadon fm tie values of energy and nxmentum uansfer which
can be realistically achieved

Thus, there are several reasons fmthe high interest in the recent experimental and theoreti-
cal progress in undemanding deep inelastic neutron scattering tiom liquid ‘He: it tests the fu.n-
damentitl Landon hyptlseais of a ~on between superfluidity and W condensation; it
provides a quantitative test of ub+ulfo calculational methcu19for all systems with suong corre-
lations which are the focus of current quantum many+miy research; and h establishes the range
of validity of deep inelastic scuering as a methd fcmmeasuringmomentum disuibutions. In the
following secaom w introduce the comepta of impulse approximation in more detail, we de-
scri~ recent progress in the tkwy fcwfinal state corrections to the impulse approximation, we
present quantitative predictions fcwneutron scattering experiments, we coraparc with recent
high energy pulsed neutron source expiments on liquid ‘He by P. Sokol and colleagues as well
as other attempts to extract the Bose condensate hction from the neuuon scattcting data, and we
discuss the implications of this prcgresa for future monmmtsn distribution experiments in other
systems such M liquid ‘He and quaaklastic electron nucleus scattering,

THE IMPULSE APPROXIMATION AND THE BOSE CONDENSATE

For the sake of clasity, in TM section we explicitly consider only nmmon scattering from
many-atom systems, akhough the concepts we shall discuss are common to many other sub-
fields of physics.

In the impulse approximadon, the neutron scattering law maybe written as the sum ofcol -
Iisions from individual atums which have a probability of having M initial momentum, p, given



by tie ummenmm distribution, n(p). Theenergy and momentum transferred by the neutron are
assumed to be high enough that the COUCCUVCdynamics and interactions among He atoms only
show up in initial state nmmentu.m distribution, n(p),and not in the fimalstate. Then, the scatter-
ing law may be written:

Here, pi is the initial momentum of an = ~~= pi + @ is the fmd momentum of dw recoil-

ing atom after tie neutron has transfemcd momentum h Q and energy k , E(p) = h ~2/2M is
the kinetic energy, and Q is the atomic density. The delta function expresses the energy conser-

vation of the scattering prcxe~ S(Q, a) is normalized so M tie integral of it over k equals
nne. Equation (1) provides the sought for simple relation between tie momentum disrnbution
and the scattering law. The impulse apprcx.imation predicts that th scattering law peaks at the
recoil energy thtn a particle atres~ lkJ = A~2/2M. The width of tie peak is h Q A p/IU,where
A p is the width of the momentum diminution, n(p).Anexperimental test to establish hat deep
inelastic scattering condiaons, but (M we shall dicuss) not ncasaarily impulse approximation
conditions, have been resched is Lbcobservation of this peak position varying as Q2 and peak
width varying as Q.

In 1966 Hohenberg and PIPmnan [4] suggested that the Bose condensate fraction in 4He
could IMrmasurcd by high -,mtum uansfer neutron scatming experiments. For an isotropic
system in the presence of a Bose condensate, the momentum disrnbution may k written

I@ “ %@sfl)w(p) + //(./)) , (2)

where ~ is tie Bose conden w hcaon, and n“(p) is a smoorh function. Combining Eqs. (!)

and (2’ yields

S/A(Q,U’) _ n~(ti -W/Uf) + $A(Q,~) , (3)

where S/A●(Q, tv ) is the contribution to the scattam“ g law from n“(p). Thus, in the impuk ap-
proximation rhe scattering law is expected to have a suarp delta function peak with weight k
centered at rherecoil amrgy, which sits atop a broukr peak due to the smmth part of tie momen-
tum distribution. The central goal of most deep inelastic neutron =attering experiments on liq-
uid ‘He has been the Observation of this sha,tppeak in the superfluid at temperatures less than the

superfluid transition temperature, TA=2.17 ‘K. and the absence of such a peak in the normal

fluid at higher ternpeqaturcs.

It is common to rewdte the scattering law as aCompfonpmjlfe, after analogous x-ray scat-
tering experiments on clecuon momentum distributions ctied out by A. H. Compton and J. W,
M. 13uMond in the 1920’s. For neutron scattering, it is given by

QS(Q,CV)
J(Y, Q) m ~ , (4)

where



()+4 g.a
Znzu” (5)

Specializing to the impulse approximation, one obtains

Energy conservation in Eq. (1) requires Yto equal the longitudinal wave vector of the atom, or
the component of initial momentum which is padlel to chemomentum uansfer. In the impulse
approximation, the Compton profile is centered at and symmeaic about Y’=O.It is also indepen-
dent of Q, which is termed Y-scuhg. This is equivalent to the earlier statement that the peak in
S(Q, @) has a position varying linearly in Q2 and a width varying I.ineariy in Q. Figure 1 [6]
shows mcasuml Cornpton profiles for superfluid 4He at Q’s of 7, 12 [7], and 24 A-l [8]. Ai-
though the data arc instrument Ixoadened wdb a full-width-half+naxim um (FWHM) of 0.6
A-l, the fact that these curves fcmdifkent Q’s approximatelylie on top of one anotheris strong
evidence for Y-scaling, es@.ally at higher Q*s. However, Y-scaling is a necessmy, but not a
sticient condition, for the validity of the impulse approximation. G. West [5] was the first to
point out that Y-scaling can be true even if the impulse approti.tion is false. In a folkwi.ng
section on 61M.Istate effecu wc present an explicit countcrcxample to the hypothesis that the
obsemtion of Y+aling conflnns the impulse approximadcm.

Quantitritive predictions fm deep inelastic experiments on 4He can be obtained hm tie
impulse approximation by inpudng themtical momentum distributions, n(p). The solid line in
Fig. 2 shows momentum disaibutionscalculatal by Greens’ Function Monte Carlo (GFMC) [9]
at T = O‘~ which predicts an ~ of 9.24%. ?he dashed line shows the momentum distribution
calculated by Path Integral MomECarlo (PINK!)[ 10]at T = 3,3’~ in which % is predicted to be
zero. Figure 3 shows the ccwrespording predictions fcx Gcnpton profiles. The solid line is the
GFMC-LA prediction fcwthe superfluh$ which has a delta function peak at 1’= Oof weight %.
The dashed line is the PIMC-L4 prdicdon fw the nosnml fluid which is a smooth function.

The expcrimenrd ~ such as Fig. 1,show a shaspning around Y=Oas the temperature is
reduced into rhe su~uhi However, there is no direct evidence for a shaxpdelta function peak
in the superfluid at any Q. The isme has kn how to infer thevalue of ~ from the limited data
avtilable which ineviubly include instnunental broadening, stadsdcal and Wkground uncer-
tainties, and comcdons to the impulse approximadon at the finite values of Q’s which can be
achievwi There have been many reports [11] of determina tions of m, which have involved a
succmsion of improvetmnts In undemanding specmmeters, improvements in the data analysis
procedure, and increases in the values of Q to better approach the conditions for the validity of
the impulse approximadon.

The most extensive data analysis of reactor experiments was carded out in 1982 [12] for
data in the range 4 A-l < Q <7 A-l. At lower Q’s ( <3 A-l ) the neutron scattering law is domi-
nated by the collective behavior such as the phonon and roton spectrum and at higher Q‘s the
neutron flux from reactors becomes prohibitively srrudl for high resoluaon experiments. These
data begin to approach the i.mpul,,: approximation predictions, i.e. the peaks are centmcd at the
recoil energy of a free pardcle and the width arc propcmional to Q, However, tke sue signifi-
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Fig, 2 Theoretkal momentum dlWibutlons for Ilquld ‘He. The solld line Is the
Greens’ Function Monte Carto (QFMC) pmdlotlon for the supwffuld at T= O‘K,
which haa a delta function at p = Owith a 9.2 % Eoae condensate fraction. The
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baIL u=viauum uuu um u.upuhc applu xunanon m tne rorm or asymmeay of Uwpeak shape, as
shown i.nthe Q=7 A-l datainfig. 1,andoscilladons [131of tiepcak width and center tith Q. To
correct for dmsc deviations, which can be quite significant at lower Q ‘s,the data have been sym-
metrized about 1’= Oand average-d over several Q*s.This gives a resultant scattering which is
consistent with the basic predictions of the impulse npproxi.tnation (peaks that are symmetric
and centered at the recoil energy) and whcm the eff=ts of the corrections to the impulse approxi-
mation are minimized l’tte rcsultm data is then convened from S(Q, m ) to n(p), which involves
a differentiation and a division by p according to Eq. (6).

Attempts to directly compare the experimental momentum distribution, obtained using
the procedure above, with theoretical prcdicaons always exhibkd significant disagrecmcm.
Thus, attention turned to tier methods to extract information on the momentum disuibucions
ancLespcially, the condensate fraction, m. The most ppu.lar procedure has been modeling of
the momentum distribution with ~ as an adjustable parameter.

The model used for the momentum distribution in the superfluid will strongly influence
the value of % inferred. In fwx several previous studies have inferred a vanishingly small value
for the condensate based on a particular modeL In the 1982 analysis, only the momentum distri-
bution at small values ofp was needai ‘f’hemodel for the uncondensed component of the mo-
mentum distribution (i.e. evctything but the condensate itscl.tl was:

n“(p) = no(a/#+b/p~ @@c-p) + (1 - no) d.p, T > TA) . (7)

The fnt term in this model represents singular Ixhavior that is induced in no(p)by the appear-
ance of the condensate [14]. This is due to checoupling of long wsr:elength phonons to fluctua-
tions in the condensate. The second term simply rcprcsems a scaled down version of the normal
liquid lxhavior. The n(p, T > TA) is fixed by measurements athigh temperature where ~ is zero.

Based on this model, the 1982 analysis (and subsequent analysis usin8 the same procedure) ex-
tracted values of m around 10%, in surprisingly good agreement with theory.

Unfortunately, this apparent agreeamt benveen theoty and experiment was fortuitous.
The small+ singular behavior drove, which played u very important rolein rhe 1982 analysis,
was the result of an incorrect com!dnadon of the small+ and large+ limiting behaviors. Gnffm
pointed out this etmx [ 15]. Using a mm cotmct form for the small+ singularbehavior, he ob-
tainedvalues of 5 of 4-S %, about half tie theoretical predictions. More rccencly, Sokol, Silver
and Clark [3] have pointed out that information on the small- singular behavior is exwemely
difficult to obtain by deep inelastic neutron scattering measurements, a point to which we will
returnlater.

FINAL STATE EFFECTS

What has been left out of all of the &ta analysis procedures discussed atmve has been a
detailed undawanding of the confections to the impulse appmdrnation, to which we now turn.
These were fme addressed in the original paper of HohenWg and P!atzman [4], The additional
physical effect which must be included is the scattering of the recoiling atom from neighboring
atoms in the condensed phase, resulting in collisional lifetime broadening. A finite col!isional
lifetime, r, results in an uncertainty, h /r, of the energy of the final state of the He atom after
being struck by a neutron, and so this broadening is termedfinuf state @?cts (FSE), This can be
important for He even at high Q’s, &cause tic potential energy between He atoms is steeply rc-
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We now describe this in a fashion which, while not following the original derivation of
Hohenbcrg and Platztnan, will naturally lead to our current undemanding of final state effects.

Assuming that 1~~~ ~, the rate at which the recoiling atom SGmcrsfiotn neighboring atoms

is given by

where u f~(Q) is the He-He total scattering cross section for incident momentum h Q. The rc-
suldng uncertainty in tie energy of the recoiling atom is expressed by adding to E(w) in Eq, ~1)a

self energy Z =-i h /2x. We rewrite the energy connation delta function in Eq. ( 1)in terms of
its integral representation. Then, the effect of coi.1.isionsis to transform it as follows:

‘(m=+d’exp(+“ +J’’XPF=)‘ “)
where A E = IIUJ-E(~) +E(pi) and #can IX interpret as W time ti”icr the neutron collision.
Then by straightforward manipulations the Compton profile becomes

m
r

J(Y, Q) -
J

dY’ RFS(Y- Y’, Q) JIA(Y’) . (lo)

lle broadening function due-~ final state effects is given by a Lorenrzian fortm

where I“ = ~~Q)/2 is the collision me per unit distance traveled by the recoiling atom.

Let us first consider those properdes of this tkmy which we believe remain correct in the
more modem thUXiCS. FirsL tbe M-widthM+naxi.m um (FWHh4) of the broadening is giv-
en by

AYFIW~ ~ w,.(Q) . (12)

(Actually, the original prediction of Hohenberg md Plafzman was a factor of two larger than this,
and the parameter 1’had not yet been suggested as a naturalvariable for the problerm) In the limit
that W He-He potential at short distances can be approximated by a hard sphere, u H(Q) is inde-
pendent of Q md equals 2X r02. Here rOis the hard sphere radius and the factor of 2 is due to
fotward d.iflktive scattering. In this litniL the broadening is independent of Q and the Compton
profile would satisfy Y-scaling even though the impulse approximationwould be invalid. Also,
the collision rate per unit distance traveled by the recoiling atom wot,dd& ~ r02, which is the

value given by classical mechanics. In reality, the He-He potential is steeply repulsive, but not
hard sphere, at short distances resulting in a u U(Q) which decreases approximately logarithmi-
cally with increasing Q, as shown in Fig. 4. The small glory oscillations with Q are a quantum
mechanical fonvard-backward scattering interference effect due to Bose statistics [16]. Then
the final state broadening would decrease only logarithmically with increasing Q, resulting in a



However, sum de arguments show that the Lorentzian lincshapc predicted by this theory
cannot possibly h ccm’ca. The second moment sum rule on che neuuon scattering law can be
rewritten in temM of the Compton profile as

m

\

21u
J(Y, Q) Y* JY = —

3
< K.E. > + 0(~2) .

.-

(13)

The impulse ~,pproximaticm satil%s Eq. ( 13) without the 0(@2) term. If the final state broaden-

ing takes the convolution form in Eq, (10), then one must conclude

a

-m

That is, final state effects cannot alter the second moment of the Compton profile f+om the im-
pulse approximation value in the high Q lird However, the Lorent.zianprcdicuon,Eq. ( 11),has
an infinite wend momenL Evidently, linal state effects if they exist must be much smaller than
given by Eq, (11).

Gcrsch and Rodriguez [17,18] were the ~t to address this problem in 1973.~ey showed
how the second moment sum rule could be satisfied with a non-bcntzian Iineshape for the fi-
nal state broadening. llwy identified the physical origin of a non-brenuian shape as due to a
depmdence of the He-He scattcti.ng rate on the distance awelcd by the recoiling atom. This
distance dependence was due to the red space correlations which ex.iscamong atoms in liquid
He. As we shall show, they calculated a final statebroadeninginqualitative agrearmt wir.hcur-
rent neutron scattering cmasurements. Unformnate ly, this work was ahead of its time and did not
receive the attention it deserved. One possible same of cMkulty was thatthederivation used a
many-lmdy theory involving time ordered cumuhvnt expansions which wete unfamiliar and
have not been further developed Another is that the ntical pralicaons were btied in an ex-

xn~ paperwtih inccnedyobtaind a 2 % Bosemmlensats fracdon. Wo many of thc
inputs to tie calculation were not yet avdlable and had to be severely approximate such as
approxi.madng the radial disuibuaon function g(r) by a step function.

Since then there have been more than twenty papers on the theory for final state effects in
He, and tierc has been a comparable level of inconclusive activity on the analogous problem in
quasielastic electron nucleus scattering in nuclear physics. Many theories continued to obtain
quasi-Lorentzian lineshapes which duxeased as 0( h Q) with inmasing Q, while other popular
theories cla.imcd that the leading cmection to the impulse approximation was asymmetric in Y
and decreased as O(Q-’J Following the Hohenberg Platzman thecmyseveral experimental pa-
pers [7,19] at low Q ( < 12A-l) have idcntifkd apparent oscillations in Q of the width of Y(YQ)
w;rh tic glory oscillations in u,@(Q). However, tie widths obscmcd SICmuch narrower ti~ the

Hohenbcrg Platzman dmory [20], The premature claims to have obsetwed a 10 % Bose conden-
sate in superfluid 4He in apparent agreement w-hhmany+ody theory may have conuibuwd to a
complacency in the Scientilc community, i.e. there was a false sense rhatrid state effects were
unimportant and the quest to measure tie Bose condensate fraction had been achieved [ 12].The
popular view of the subject up to 1987 has been reviewed by Svensson and Glyde and by Sears



and Svensscm [11]. In ma.lity,a distinct deiia-fu.nction peak in the scattering law had never been
directly obsmcdi and the most credible values of the Bose condensate fraction obtained by ig-
noring final smtc effects were 4-5 % [15] in serious disagreement with ma.ny-bmiy theory.

In 1988 SilvcT [21,22] published an independent duivaaon of final state effects which
confirmed and built on the original work of Gersch and Rodriguez We first present a heuristic
derivation of the main results of this theory following our derivation of the Hohenlwrg & Platz-
man Lorcntzian broadening theoty presented earlier. ‘Ike arc two elements of new physics:
fret, the collision rate depends on recoil distance because of correlations in the positions of
atoms M tie cond,en~ phase; and secon& at high Q the De Broglie wavelength of the recoiling
atom is short compared to i.ntcratomic distances so that a semiclassical description of motion of

the recoiling atom is adequate. The distance along the classical trajectory is given by x m h Qt/
M where, again, t is the time after the neutron collision. ‘Theprobability density of finding two
atoms a distance x apmt is given by p g(x), where g(r) is the @ disrnburion fiction of tie

liquid The cdl.ision rate at distance x is given by

The self energy consequently depends on recoil distance, X (x) = - i h /2 t (x).

This essendal physics is illus~ in Fig. 5, which shows the He-He potential and the
radial distribuaon distribution fbnction for liquid 4He. The ptential is steeply repulsive at short
distances and has a weak Van dcr Waa.ls auramion at larger distances. The radial distribution
function shows that the atoms in the condensed phase sit in the anracdve part of the potential well
far from the steeply repulsive core of the potential. After being struck by a neutron, the recoiling
atom must travel for some distance Ixfore it begins to collide with the steeply repulsive cores of
the potentials from neighboring atoms. Therefore, l/t (x) is zero for small x and approaches the
value given by Eq. (8) only at large x. So the final state broadening should be much smaller than
tie Lorcntzian broadening prediction.

Then the energy conservation delta function in Eq. (1) becomes

The final state broadening retains the convolution form, Eq. (10), but now

m

RFS(Y,Q) -
f

* & CXp[iYx- klgad)~] ; r ■ 9 .
-m

(16)

(17)

Let us examine the properties of this final state broadening function. h reduces to the Lo-
rcntzian broadening result, Eq. (11), in the limit of a stmcturcless fluid, g(r) -.1.0. The FWHM
continues to be approximately given by Eq. (12). Again, a Y-scaling correction to the impulse
approximation is obtained in the limit of a hard sphere potential. However, the I.ineshapeis non-
Lorentzian and negative at large /Y/,and it satisfies the second moment sum rule because g(0) =
0.0 in He.



l’-scaling now acquires a geormxical interpretation in the limit of hard sphere interac-
tions between He atoms. l“ loses its impulse approximation interpretation as the component of
initial rncmxntum parallel to the mormntum uansfer. instead, 1’becomes the canonically conju-
gate vsuiabk to the distance,x, along the classical trajectory of the recoiling atom. The final state
broadening function is the Fourier transform of die pm Wty of no collisions as a function of
recoil distance. In the hard sphere limi~ rhe fti state effects depend only on the relative posi-
tions and sizes of atoms, so that the (potcnaally 1P) exaa vtiables in the problem dmp out. For
real pxencials, Y-scaling is obtained to the extent that u W(Q) varies slowly with Q.

A formal derivation of a somewhat more ccmect result has kn discussed in detail elsc-
v.here [21,22], so chat here we only sketch the approach. The goal is to correctly describe the
mynptotic limit of the final swz broadening, which is defined by the approximations of very
high Q andhardsphere shcm distance interactions lwtween He atoms. Real cxpuiments are suf-
ficiently CIOXto tiese conditions that the extension to finite Q and to the real He-He interactions
should not introduce serious error.The results of manytiy calculations (e.g. GFMC, PIMC,
variational) of ground state properties, such as n(p) and g(r), should be used as inputs without
recalculating then llwrefore, a projection superoperar.or method was chosen which enables a

b~on cxption for the dynamicd response about the strongly interacting ground state.
The tl.rudresults, Eqs. ( 1*20), have been subsequently derived by Rinat and Butler [23] using a
multiple scattering formalism which provides a more familiar derivation for some readers.

The projection approach relies on an exact relation betwan theneutron scattering law and
a projection superoperatcwfor sin[le particle-hole excitations outof the me ground state. A Dy-
son equation can be derived by a Mori-Zwanzig+ype [24] perturbative expansion of the Liou-
ville equation & ?Aeti.tm evolution of the single pardcle+ole excitations. All ato~tom scat-
thgs are mummed to all otdcrs in the interaction potential in terms of tw@30dy r+natriccs,
and all interactions between three cmmcweatoms are ignored. The “effective interaction” is then
a product of a twtiy r-matrix ti.ttm the two-baly density matrix in the ground state, which
effecL ~elyscreens the strongly repulsive short distance behavior msuldng in a small parameter
expansion. All terms which do not stive in the asymptotic limit are also ignored. Since Q is
large, a semi-classical on -shell approximadon [25] can b used for the two-body t-mati. The
two-body density matrix is approx.imamd as a factorizable product of n(p) and g(r) in a way
which satisfies che sum rules. ?ltc resulting Dyson equadon may then be solved analytically.

A Feynmandiagram representation of the resulting Dyson equation is shown in Fig. 6. The
neutron scattering law describes the propagation of a particle-hole excitation above the ground
state, which removes a panicle of wave vector k and creates a particle of wave vector k+Q. Ar-
rows denote the direction of rhe flow of momentum. A right arrow denotes a panicle line and the
left mow a hole line. Only the particle lines can carry high momentum on the order of Q, wher-
easthe hole lines must carry low momenta characteristic of the ground state wave function. The
hatched areadenotes the exact result including all scattmlngs of particles and holes. In the im-
pulse approximation, the pmicle and hole are assumed to propagate without scattering. The fi-
nal srateefiects come km the scattering of the high momentum particle creating new particle-
!mle excitations. The approximation indicated keeps only a sing!e additional particle-hole exci-
tation. The shaded box represents the rw~arcicle density matrix describing the correlations be-
tween che two holes in tie ground state, which is related by sum rides cothe radial distribution
function, g(r). The dashed line is the two prick t-matrix which describes the scattering. The
fact that the hatched area appears in both cheexact result and the final suue effects diagram im-
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Ilne, The daahed IIne represent the He-He t-matrix, The box repreeenta the
two-particle density matrix In the ground state. The apperance of the hatched
area on both sldea of the equation Indlcatea that the equation must be solved
self+ onslstently,



The predicted tinal state broadening obtained again takes tie fom of an inugtal over a
classical Irajcctory,

which should be compared to Eq. (17). The collision rate pa unit distance traveled is given by

where b is tie impact parameter for the collision, The quantityfi can lx vmirten in terms of tie

scanering phase shifts, d (b) , as

The d(b) arc calculated in the Jef6eys-Wenuel-Kramcm-Bflouin (JWKB) approximation,

which is valid at high Q no matter how steeply repulsive the potential. We note that r ( ~ ) =
@u W(W2. The thirdtermin Eq. (20) resultsin theglory oscillations of a ~(Q), More gener-

ally, Eqs, (18-20) may& interpreted u the result of a WKB classical trajectory calculation of
the i7.nalstate broadening in which tie quantity Z(x) ■ - ih 2Qr~) /2M serves as an opficul

potential.

PREDICTIONS FOR EXPERIMENT [26]

Figure 7 shows tie flmd state broadening calculated for Q = 30 A-l bm Eqs, ( 18-20) us-
ing as input the experimental g(r) obtained by neuuon diffracdon. One can see that tie FWHM
approximately okys Eq. (12), but ?hetining function goesnegadvc at Iazge/Y/ in order to
sadsfy tie second moment sum rule, The final sw brmden.ing is not a nanow function, but rath-
er it shi.hsJ(Y,Q) intsrtsity among difkrent Yrcgkm. Figure 8 shows the intcgrand of the second
moment sum rule ovcra largcrrartge of Y.While chearea under the curve is zero as required, the
broadening fu.ncdon oscilkes between psitive and negative values at large /Y/, the scale of
which is primarily controlled by the stnlctu.rc in g(r) shown in Fig. 5,

Figure 9 shows the effect of chefl.n.dstate broderdng on the measu.reable Compcon profile
for the normal fluid at T = 3.3 “K and Q -30 A-l, using che Parh Lntegral Monte Cario (PKMC)
momentum distribution [10] as input to tie calculation, l%e dashed line is the i.mpuk approxi-
mation prediction, The solid line (FS) is the predcdon after including final stntc broadening,
Final state effects are vw small for the ncmnal fluid. The calctdated momenturndisaibution for
the normal fluid is almost Claussian, and the second moment sum ntle requires that final state
effects cannot alter the ~aussian width of rhe Compton pmflle. In contmst, the pluses in Fig. 9
shows tie prediction of the lmrentzian broadening theory (LZ), Eq, ( 11).

Figure 1(Ishows the same comparison for the superfluid at T = 0.0 “K, using as inpu[ the
Green’s Function Monte Carlo [9] momentum distribution, The dashd line is the impulse np-
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using the GFMC momontum distribution. The dashed Ilne is the prediction of the
impuise approximation (1A),and the soiid iine is the prediction of the final state
effects theo~ (FS), Eqs. (1&20).



Bose condensate ot weight 9.24 %. The solid line is tie prediction after including fma.1state
broadening. Final state effects arc much larger for the superfluid The FWHM is smcely
changed in accodancc with the second moment sum tie. But the Compton profile prdickd for
tie sqmfluid isdistinctly more sharp]y around Y=Othan for tie normal fluid-The BOWconden-
sate no longer results a distinct pk sitig atop a broader background.

Figure 11shows another way to view the results for ?hc su@luicL The dashed line is the
GFMC momentum disrnbution shown earlier. The solid line is r-he“apparent momentum disrn-
burion” which might be infemcd from the tinal state broadened Compton profile shown in Fig.
10, obtained by ma.lyzingthedatausing tie impulse approximation expression, Eq. (6). This
looks very similar to SOKIEearlier results on momentum disrnbuticms obtind from reactor dma
[11].
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Fig, 11 The solld Ilne Is U?a~ent momentum dlst.rlbutin which would be ob-
talned by analyzlng final atata bmadaned dam such u the SOMline In Fb. 10,
aa If the lm@6a approxlmatton wu ccmactac.axdlng to Eq. (6), The dashed
Ilne Is the GFP& momantum dlatributlon.

However, socm words of caution arc in order reguding compting tic results of Eqs.
(18–20) di.rccciy10expcrimm~

First, tkdcrivation has left out a large numkofwrms which vw u (?(@i) witi increas-
ing Q, While ties.c arc not im~t in the asymptotic lim.i~they may be of importance for the
Q’s achievable in real experiments, These include the initial self energy of he atom in :he many-
kdy state Imforc the neutron collision, the cff-shell Ixhavior of the t-matix, comctions to the
serniclassicat approxi.cruxion,etc. For example, tie semiclassical methods begin to perceptibly
ftil at Q <10 A-l. Eqs, (18-20) rmy be fairly &ccu.ratefortia high Q’s achievable at puiscd neu-
tron SOI.KCS,Thy may require signific~nt corrections in order ~odescrik reactor experiments at
Q c 10 A-l The uyrn.mctry in the Iineshapes ob~rvcd a[ low Q’s is not contained within Eqs,
( 18-20), Tt.c apparent width oscillations obsctwcd at low Q’s arc not predicted by Eqs. ( 18-20),



responsible for glory Osci.Uarionsof tie He-He totai CTOSSsection.
. .

Second, tie convolution form of the fhl state broadening depends on the approximation
used for the two+xjy demity matrix as a fwtorizable product of n(p) and g(r). Ristig and Clark

[27] have pointed out that this choice dms not =tisfy a numbcrof odm known properties of the
twc+body density matrix. The convolution forq Eq. (10), does not hold when a more correct
[wc+ody density matrix is used as @NtL Clark md Rishg have mccnt.ly calculated twMxdy
density marnces for 4He using a Jastrow ansatz, and they have deduced tie general strucru.ral
form for tie tw~y density matrix for any wave function. These should be used in a more
accurate calculation of the scattering law. Even i.fthe quantitative changes rum our to be small,
such a calculation is conceptually important in view of tie classical trajectory interpretation of
tie Y-vtiabk discussed earlier,

Nevertheless, the s.emi~ua.ntitacive predictions of Eqs. (18-20) should be valid for Q >10
A-l, and tie Dyson equation rcprcscntal by Fig. 6 should form the basis for more precise calcu-
lations of final state effects for tncmcntum disuibution exznts by deep inelastic scattering.

EXPERIMENTAL RESULT9

A new set of deep inela.sticexpcrimcnrs [8,2829] on Liquid’He have &en performed acthe
Intense Pulsed Neutron Source at the ArgoMe National Laborat~ by a team led by P.Sokol arm
which included T, k SoSti~ W.M. Snow, and K. Hcrwig. llwexpuimcnts wcrcpcrforrmd on
the PHOENIX ch~ spectrometer, which was designed u a dedicated instrument for deep
inelastic scattering expcrkrent.s. Compared with the c.srlicr low Q reactor experiments, tie new
experiments used the very high epithcrrnal neutron flux of the pulsed source torcach much high-
er Q’s, and they also I-d a mvh better c~ ‘on of the instrument resolution function
which is essential to accurate lineshapc stuclies,Compared with earlier mcasurcmwns at compa-
rable or higher Q’s, the new expcri.tmms arc tie tlrst to have suffkknt instrumental resolution to
reliably exn-u tie li.rtcslqE.

The data analysis ●voided the tmdel fitting procedure with ~ as a free parameter which

has been atumpted with rc.mordasa taken up to 1982. Lnste@ expcri.uwnt and 4 im”ti.otheory
we-mdircctl y compared without any uljusuible parametm. The theory is obtained by combining
the new accurate many-bly calculations of ~ntum d.htxibucionspublished in 1984-87 and
the thcary for final state effects [21,22] fmt pmscnced in 1987. It is essential to recognize that the
data arc funher brodcncd by Lbeinwtumcnt resolution function, which should be convoluted
with tic theoretical predictions for the Cornpton profde, The spectrometer re:olurion function 1s
calculated bya Monte Carlo simulation. At Q = 23 A-L, tlMFWHMof the instm.mcnta.lbroaden-
ing is comparable to that of rhe fl.nd state broadening predicted by Eqs. (18-20), There was alw
an absolute mtellsity Cal.ibmrionof W data witim 5 %.Dcta.ihof the instrument and how the raw
data were processed to exmct k Compton profdes arc discussed in ref. [28],

Thcdata[8]in Fig, 12wcrctakenat Q=23A-1 inthenoruud fluid at T=3.5°K,lle data in
Figure 13 were taken at Q = 23 A-l in tie superfluid at T= O.35‘K. one can see that dwdata are
somewhat more sharply peaked around Y= Oin the superfluid, as expected i.fa Bose condensate
were to fotm, The dashed line in Fig. 11is k PCMC-lA prcd.icttonof Fig. 8, convoluted with [he

Inswmcnml rcscdution function, The solid line is obtained after further convoluting with final

state effects. One can see hat tie norrrud fluid data MCin excellent agreement with hth the im-
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am m.agree wtn Lorcntma.n bmackning curve shown in Fig. 9 and given by Eq. (11). For tie
superfluid dsttain Fig. 12, tie dashed line is again@ GFMC-LA ~md.iction of Rg. 10ag&r~con-
voluted witi the ins~nta.1 broadening, and the solid line is the result obmi.ncd after further

broadening with final sum?effects ?’hc supmhid data disagree wiLhdte impulse approxma-
uon, but hey arc in excellent agrccunt witi tie GIWIC-IA r-hcotybroadened by final SULCef-
fects,

Thus, d inino boxy and expai.mcnt arc in excellent agcement for tmh tie normal fluid
and the superfluid witi no uljustabk parameters, and they am consistent with a Bose condensate
fraction in tic su@luidof 9,24% at T=O°K! Experiment and ab initio dwory are in fact consis-
tent for all tempcmtu.ms mess@ as shown in Fig. 14.

One may wonder about the importance of the condensate induced smd.1~ sing-ultiaes
which played a signi.licant role in tic dataanalysisof the reactor expctimcnts. Clearly r-heGFMC
motncnrum disaibution shown in Fig. 2 does not show these singularities, presumably kcause
of tie ftite system size which can k simulawd in a fcasib!e Quantum Monte Carlo calculation.
However, a variational Hypcrnettcd Chain calculation [30] which cotmcdy includes time sm-
guhrities is also in excellent agrcazmt with tie superfluid &t@ and it predicts almo~l; ? same
Compton profile as GFMC. The reason W singularizes have a relatively small effect is chat in
Eq. (6) n*(p) is multiplied byp. This suppresses the contribution ~f thep-ftermin Eq. (7). How-
ever, a si.n@ar term valying SS,SSy,p4 would WI rcmdt in stmngiy singular txhavior inJIA(Y).

Thus, tic Bose condensate which is infinitely singular sd.11shows up strongly in 1~ (Y), even
dmugh the @cud [14j stnall~ singular terms do not. More gencm.lly,dm inference of the low
p pan of n*(pjfromtheCompton profile data is an exrremcly ill-posed problem [3,28,31] in the
presence of Natistical error.
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Fig, 15 Serwltlvlty of the observed scattering to the magnitude of the conden-
sate fraction at T= 0,35 ‘K, GFMC caJculatlona have been used for the uncon-
densed component, and a namow Clauaslan to represent the condensate, The
best agreement 1sobtaJned for ~ = 10%, The two Ilmltlng values, ~ = 8 md 12

O!., are the lower and upper Ilnes res~ctively,
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One can ask how sensitive tie expaiment is to the actual value of the Bose condensate
fraction. Fig. 15 shows the effect of changing thee-ondcnsatc fhction to 8 and 12%, from the best
fit value of 10 %, assuming GFMC for the non~ondensed atoms and the final state broadening
theory. Application of chcmodel fitting procedure [12] to these new high Q data would yield a
Bose condensate around9 %, provided that the low+ shlguhrities = treated ccmdy [ 1S]and
chatcorrecaons due to final state effects arc added to the procedure. A more complete discussion
is presented in ref. [28].

Assuming that the ummentum distribution calculations am ccm’ccLone can U* these data
to test the other theories for final state brodening [32]. Figure 16 (a & b) shows the comparison
of the data with the Lorentzian brcwdcni.ngpred.iction[33] obtained by taking the limit of a stmc-
tureless flui& i.e. g(r) -1.0 in Eqs. (18-20). The disagreement is strong for both the normal
and the superfluid. Figure 16 (c & d) shows the comparison with the original cheery of Gersch
and Rdrigucz [17,18,34]. The final state broadening is qu.ditatively correcq but it is quantita-
tively too small compared to tie data However, considering the necessary mudeness of the ap-
proximations made (eikonal approximation for the t+atrix, step function approximation for
g(r), etc.) at the-, the agreement between the Gcrsch and Rodriguez 1973 theory and the lat-
est 1989 experiment is impressive.
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Fig. 17 Prellmlnary data for th~ mprfiuld at O = 13 A-l and T= 0.7 ‘K. The
daahed Ilno is the predctlon of the Impulea approximation uelng the QFMC mo-
mentum dlstrlWUon and brotWtned by the InsWmental resolution function. The
sold Ilno Is the predktbn after further broadening by the final stato effects pre-
dkted by Eqa. (1+20). See me text.

Recently new experiments [29] have been performed at lower Q’s for which the insm-
menta.1resolution is much smaller than dw final state broadening. Figure 17 shows prclirnhuy
data for the superfluid at T = 0.7 “K and Q = 13 A-l. Again the dashed line is the GFMC-IA
prediction at T = 0.0 ‘K convoluted with the (much nmower) insnumental rcsoluaon function M
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than the data The solid line shows the prediction after including final state broadening. Now, the
peak shape and height arc in excellent a~crnent with ex@.mcnt.

However, there is a shift in the data to negative Ycompared with theory by about one chan-
nel, approximately 0.07 A-l. The origin of W discrepancy is unclear. A simple q.unent [35]
suggests that tis shift is inconsistent with~- and second moment sum mlcs on S(Q, ~) by more
than nine s’mndarddcviations. A similar shi.ftof k same magnitudes sccnat Q = 18A-l and at a
variety of temperatures, and indeed the cnigi.na.ldata at Q =23 A-’ were also shifted by the same
amounL If LheY-scale were shifted by !be srnd amount required to satisfy the~-sum role, Lhe
agreement between the final state broadened GFMC-I.A theory and experiment would again be
excellen~ Prcxnd.ng an even more convincing case for the final state effects Lhcory in view of
the su~rior instnumnml resolution at dtese lower Q’s. However, tie cm-ma calibmtion of tie
Y-scale should ultimately be resolved by the exprirnentalists.

IMPLICATIONS FOR FUTURE MOMENTUM DISTRIBUTION STUDIES

Despite the few uncertainties discussed in the previous sections, one must conclude t-hatub
initio many-body theory, the theory of fti state effects, and neutron scattering experiment have
all converged for deep inelastic neuuon scartai.ng on liquid ‘He. Although a sharp peak in the
scactctig law due to a Bose condensate appeam to lx unobservable by deep inelastic scattering,
experiment md theory arc consistent wirh a Bose condensate hction in the superfluid of 9.270
at zero rempmurc. In this sccdon, we cbscuss the implications of this achievement for future
deep inelastic ~aturing stuck.

Fire, there remains much to do on liquid 4He. An ma.lys-i.sof tie existing extensive data at
very low Q ( s ICIA-l) may require sign.ilicant additonal inputs to the final state effects rhcory

for the many O(Q-i) effects which have &en left out in the asymptodc l;mit of high Q and h~d
sphere interactions. Jn tic currcndy accessible Q range ( <30 A-l), higher accuracy and lower
background measurements may begin to reveal the rwc+bdy density mamix effects which have
beendiscussed by Clark and IUsag [27]. These include possible deviations horn the convolution
form of the final state broadening. Most impormntly, higher Q and higher resolution experiments
on 4He arc needed to further test and refk the theory of tlnal state effects. Figure 18 shows the
predictions in the region near Y= Ofm superfluid 4He for much larger Q’s. Even at the exper-
imentally unfeasible value of Q = 270 A-l no distinct condensate peak is prcdictd in J(Y,Q).
These prdiccions depend on the He-He potential at short distances [36] which has been calcu-
lated, but has not kn adequately tmasti by atom-atom scatig experiments, However,
since higher Q expcri.unu require a percentage energy resolution which varies as O{Q-’), they
may lx extremely diflicult to pdotm. There is also great interest in expcrimcnc5 aimed at mea-
suring tie Bose condensate fraction fw ‘He in other physical conditions such as in 2-dimension-
al films, in disordered mcdi~ ‘H#He mixtures, etc. presumably the final smtc effects tieoty
discussed here can be achptcd with minimal changes to dcscritx tiesc situations.

lle atomic system of most interest to study next will be normal liquid ‘He, because of the
controversy about the etistence of a shpq Femi surface discontinuity in the momentum disui-
bution, asshown in Fig. 19.A non-intcracmg (iuiaf) gas of Fermiom would have adiscontinu-
ity of 1.(),severld many-body Cdcularions forrea,i ‘He [37,38] p’cd.icta discontinuity of approx-
imately 0.3, and novel alternative wave functions have been proposed [3?] which predict a Fermi
surface diwontinuity is 0.0. In tie impulse approximation the effect of a Fermi surface disconri-
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A-l. T?Mpredica~ns f~r-~e-timpton profile for 1’nearkFare shown in Fig. 20. WIchthe inclu-
sion of final state broadening, even this change in slope is predicted to be smoothed over. In Fig.
21 the apparent momentum distribution for 3He is displayed in an malogous fashion to Fig, 11
for 4He. The apparent Fermi surface obtained by analyzing the tlnal state broadenedCompton
profile assuming the impulse approximation relation, Eq. (6), is unobsenable due to final state
effects. Nevertheless, as was the case for the “unobsewable” Bose condensate peak in 4Hc, onc
should still be able to test the tabinirio many body calculations for 3He by deep inelastic scatter-
ing experiments. Such experiments = a formidable undertaking because of the additional com-
plication of the very strong neutron absorption in 3Hc.

Finally, we turn to quasielastic electron nucleus scattering [4,41]. Lnhis case, the term
“quasi~lasric” refers to the absence of change in the rest mass of the nucleon in the scattering
process, even though tie energy and momenta transferred are large compared to the energies
characterizing collective behavior. l%e term “deep-inelastic” is reserved for experiments which
probe the quark substructure of the nucleon. Despite this unfortunate semanac confusion, the
physics is chesame as for neutron ~attering fimrnHe: i.e. the energies and momenta transferred
by the electron are much larger dim the binding energies of nucleons inside nuclei. Fqyure 22
shows a Y-scaling plot for electron scattering ti’omthe 1* nucleus, where the relativistic %o-
mentum range for exh data set is shown and the Y-variable has kn generalized to relativistic
kinematics. This is meant to be analogous to Fig. 1 for deep inelastic neutron scattering from
4Hc Figure 22 shows that the Y-scaling is observed for negative Y,but chat Y-scafhg h broken
for positive Y because of the possibility of exciting internal degrees of Mom such as the

A (1238 MeV) resonance. The critical quesaon is whether the impulse approximation can be
applied to extract the momentum distribution km these daa and in particular whether the qua-
si~xponential depndence of the Compton profile on Yobserved over four cmh of magnitude
reflects a quasi+xprmential depdence of the nucleon n(p) in nuclei,

To understand the pod ble impmance of final stme effects in this problem, we consider a
comparative plot of tic nucleon-nucleon potential [42], the He-He potential [36], and the Cou-
lomb potential for Na shown in Fig. 23. The potentials arc scaled by the Fermi energy and the
distances are scaled by the Fermi momentum The coulomb potential is the softesI at shorndis-
mnccs, which is the reason that final state effects are relatively unimportant for x+ay Compton
scattering experiments on elecmon ~ntum distributions. The nucleon+ ucleon potential is
much more steeply repulsive u shat distmwes, and the H4e potential Is several orders of
magnitude harder than thaL Thus, we expect that the impulse approximadon will Imapproached
more quickly with increasing Q fcwnuclear physics fhan for He. However, kinematics requires
[hat Q and @ should be low enough to avoid edutioli of Internal degrees of freedom of the
nucleon.CompamNely, wtdle neuuonscattering on ‘He l,m reach Q/@ of umre than fifty, qua-
sielastic electron nucleus scattering is resuictd to Q/&pless than ten,The combinationof these
two effectsleadsto theex~tion that final stateeffects should IMas important for quasielastic
elecuon nucleusscatteringas they are in deep inelastic neutronwattering from He.

Detailed ca.lcula~ons forquaslelasdc electron nucleus scatteringhavenotyet beencarried
out [6], They suffer from uncerta.tndesregsrdlng the appropriatechoice of nuclear potential,
They potentially require inclusion of all the O(Q-l) effects which were left out of the asymptotic
theory for neurron scattering from He. And the reladvistic effects area further essential compli.

caticm, Nevertheless, we expect hat the leading tam of the thco~ to be represented by the same

Dyson equation shown in Fig, 6,
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