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Consistent Finite-Volume Discretization of
Hydrodynamic Conservation Laws for
Unstructured Grids

Donald E. Burton
Lawrence Livermore National Laboratory

We consider the conservation properties of a staggered-grid Lagrange formulation of the.
hydrodynamics equations (SGH). Hydrodynamics algorithms are often formulated in a relatively ad
hoc manner in which independent discretizations are proposed for mass, momentum, energy, and so
forth. We show that, once discretizations for mass and momentum are stated, the remaining
discretizations are very nearly uniquely determined, so there is very little latitude for variation. As has
been known for some time, the kinetic energy discretization must follow directly from the momentum
equation; and the internal energy must follow directly from the energy currents affecting the kinetic
energy. A fundamental requirement (termed isentropicity) for numerical hydrodynamics algorithms is
the ability to remain on an isentrope in the absence of heating or viscous forces and in the limit of
small timesteps. We show that the requirements of energy conservation and isentropicity lead to the
replacement of the usual volume calculation with a conservation integral. They further forbid the use
of higher order functional representations for either velocity or stress within zones or control volumes,
forcing the use of a constant stress element and a constant velocity control volume. This, in turn,
causes the point and zone coordinates to formally disappear from the Cartesian formulation. The form
of the work equations and the requirement for dissipation by viscous forces strongly limits the possible
algebraic forms for artificial viscosity. The momentum equation and a center-of-mass definition lead
directly to an angular momentum conservation law that is satisfied by the system. With a few
straightforward substitutions, the Cartesian formulation can be converted to a multidimensional
curvilinear one. The formulation in 2D axisymmetric geometry preserves rotational symmetry.

discretization paradigm that seems suited to this situation
is the finite volume method that replaces differential

Introduction operators with surface integrals. It is appropriate for

This paper discusses a Lagrangian hydrodynamics
formulation that is both muitidimensional and suitable
for arbitrarily connected polygonal or polyhedral zones.
In this section, we discuss why such a method is of
interest. The free-Lagrange method (Crowley, 1970) is
one of several principally Lagrange methods suitable for
large deformations. The method is characterized by a set
of mesh optimization operations that provide the ability
to reconnect, relax, refine, and reconstruct the
calculational mesh as necessary,

The specific algorithms used for the mesh
optimization determines the connectivity of the mesh as
well as the geometrical complexity of the cells; in 3D, for
example, a Delaunay scheme produces a tetrahedral grid
while a Voronoi (1908) method yields a polyhedral one.
Each of these mesh types has been shown to perform
well for some class of problems. The operations (and
consequently the mesh types) tend to be mutually
exclusive, so that choosing one makes it difficult to take
advantage of the others. We wish the choice of mesh
optimization to be made at execution time by the code
user who may even wish to employ different methods in
different parts or at different times in a problem.

Further, difference schemes are often tailored to a
particular type of mesh, excluding the possibility of user
selection at the time of execution. Because of the
foregoing, we have chosen an alternative approach that
focuses on developing differencing techniques suitable
for arbitrary polygons in 2D and polyhedra in 3D. In this
way, the numerical differencing is unaffected by choice
of mesh type or optimization algorithm. The only spatial

multidimensional formulations on unstructured grids
formed from polygonal (2D) or polyhedral (3D) cells. In
particular we excluded from consideration (a) the finite
‘element method that is limited to a relatively small set of
polyhedra, and (b) finite difference schemes such as that
of Schulz (1961) because they are restricted to grids that
are logically rectangular. We have recently developed
data structures and discretization templates that
accommodate arbitrary polygonal or polyhedral zoning
and are well suited to the construction of finite volume
integrals (Burton, 1992). '

Notation and Conventions
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Figure 1. Side template for a
rectanguiar zone.




For ease of visualization, we will present our
derivations in the context of the 2D case, although the
results are valid in 1D and 3D. Further, although most
figures will picture quadrilateral zones, the results are
valid for arbitrary polygons in 2D and polyhedra in 3D.

For 2D geometry, the zones are divided into
triangular areas that will be called sides as shown
(darkened) in Figure 1 for the special case of a
rectangular zone. The sides are significant because they
are the templates that provide the connectivity between
points, zones, and so forth. The templates are
generalizations of those described by Cooper (1985).
Each side is divided into two triangular areas called
corners and labeled i. :

The analogous 3D side is shown in Figure 2. To aid
visualization, we have pictured a simple brick zone, but
again the scheme works for any polyhedron. Although it
may appear that we have introduced very fine detail into
the differencing templates, such geometrical detail is
necessary because the polyhedral faces are generally
non-planar. Each side is further divided into two
tetrahedral corner volumes labeled i.

Figures 1 and 2 also show the surface area vectors Si
and Tj that are fundamental in defining finite volume
surface integrals.

Indices are used to point to memory locations in
which data, such as physical coordinates, might be
stored. The p index refers to points that define the mesh.
To form numerical integrals, other auxiliary points are
also needed corresponding to zone (z), edge (e), and face
{f} centers. For each comner index i there is an implied set
of indices {p, 2, e, f, 5}, and for each side index s there is
an implied set of primary indices {pJ, p2, z. f} and an
auxiliary set {i1, i2, 22, €].

n n+1/2 n+l
0 + 1
" ! {
I o ] 1 |
0_0
u, X, Vz Grart of cycle
P E, O,
-
Partial x; Si+Ti+
coordinate v* o
advance z Pz
5 >
0+ 70+ -
cz+ Ji Wg+
Iteration E, O,
>
Acceleration F u, Final state
1 1
ATAR S u, Xp
vip,
E; O,

Figure 3. Time centering of variables.

Figure 2. Side template for a hexahedral
zone. S1 is normal to plane efz7 and T} is
normal to plane fep].

Conservation Laws in Cartesian Geometry

We consider the conservation properties of a
staggered-grid Lagrange formulation of the
hydrodynamics equations (SGH) which is an extension
of a 1D scheme, denoted VNR, due to von Neumann and
Richtmyer (1950). The method is second-order accurate
in the discretized momentum equation on uniform grids.
The term staggered refers to spatial centering in which
position, velocity, and kinetic energy are centered at
nodes, while density, pressure, and internal energy are
within cells. Available space permits only discussion of
a multidimensional Cartesian formulation. Formulations
in curvilinear geometry are described by Burton (1994).

Unlike the original VNR scheme which was also
temporally staggered, our method uses a temporal
centering, termed even-time, in which most final-state
variables are centered at the full timestep. The
simultaneous advancement of both position and internal
energy requires a logically implicit calculation that is
approximated using a predictor-corrector procedure to
calculate a half-timestep acceleration used for advancing
velocity.

The time-centering of the variables is shown in Figure
3 for purposes of establishing notation. The exact
definitions of the variables will be discussed later. We
use the superscript notation (-, 0, +, 1} to indicate ime
centering of {n-1/2, n, n+1/2, and n+1} respectively.
Subscripts refer to spatial centering. Capitalized '
quantities are extensive while lower cased quantities are
intensive or specific.

Mass Conservation

Since we consider only a Lagrangian formulation, we
postulate that the mass in each corner volume is constant.

Mi = constant ' 6}

Zone and point mass are also constant in the Cartesian
formulation and are given by
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Figure 4. Zone and momentum control
volumes, showing surface vectors.
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where the notation <~ and <~i refer to sums over
corners { surrounding respectively a point p or a zone z.
In practice, the zone mass is first computed from the
specified initial density and volume, and the resulting
mass is partitioned to Mj based upon constant mass

fractions @;
M; =¢M, &)

The fractions @; are calculated from the initial

configuration and can be defined in several ways. Qur
experience to date has been that best numerical results
are obtained from a surface area weighting
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where ipz is a unit vector from the zone center to the
respective point and Tj is a zone surface vector.

?; “

Forces

As shown in Figure 4, each point p is surrounded by
surfaces that define the momentum control volume.
Forces resuit from reversible and irreversible stress fields
o and = that exist within the zone or side. The stress on
each element of surface Si of the momentum control
volume results in forces Rj due to reversible fields and
Qi due to the irreversible fields. We will show in a later
section that the reversible stress fields must be centered
‘at the zone, but will not at this point restrict the notation
to reflect this. Sign conventions are such that the
pressure is positive in compression while stress is
positive in tension.

Since stress at + depends upon energy while energy is
incremented from 0 to + by the P8v work, the two
equations must be solved simultaneously. This can be

done in many ways, and we simply note that we use a
predictor-corrector iteration.

Then let us assume that the stresses are known, and
we can calculate forces Fj time centered at + on the

surfaces Sj
F'=R{+Q/ 5)

R} =S} ec} Qf =S§f enf )
so that the total force on point p is
p
Fy =ZFi+ @
1

Conservation requires that the forces sum to zero on
the boundary of the momentum control volume
(Newton’s third law); that is,

Since the opposing surface vectors are of opposite sign,
the finite volume method automatically accomplishes this

providing G} =07, at the surface.

Acceleration and Velocity

The control volume plays the role of an accounting
device in which the conserved momentum of the system
can always be accumulated. The force at + imparts an
acceleration to the momentum control volume,
presumably to the center of mass. Later, we will show
that we must take this acceleration to be constant
throughout the volume, although we do not explicitly
make this assumption at this point. The acceleration is
calculated from

s+ _
M,u; =F; )
which is actually a finite volume surface integral.

Velocity is integrated using a central difference
scheme

1 _ .0 <4 Rt
u, =u, +u, ot (10)

The value at + is not arbitrary, but is chosen for
consistency with kinetic energy equations to be described
below.
- 0 1
“; = %(up + “P)

amn

Kinetic Energy

Trulio and Trigger (1961a, 1961b) observed that the
VNR method was not energy-conserving and proposed
conservative methods for the one-dimensional equations.
Their 1D formulation retained the spatial staggering of
VNR but relinquished the temporal staggering. Burton
(1990a) derived a temporally staggered form for
unstructured multidimensional grids. The following
derivation is for an even-time scheme. By considering
the momentumn equations in the half intervals (0, +] and
[+, 1] and dotting them into the respective velocities at 0
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and 1, the following evolution equation for kinetic
energy can be derived

Kp - Ky =(Kp -Kp)+(Kp - Kp)

~5ry (0 )

P
=317
i (12)

where we have identified the following form preserving
definitions of kinetic energy
M M

Kgs-i"-ugoug K;E-—Tp—uéoug (13)
The latter corresponds to a definition originally made by
Trulio and Trigger. We also identified energy currents J
between the zone and the point arising from forces on the
surface Si
J7 =3t"F' eug (14)

1

Work

The discrete SGH system has only two energy
reservoirs, intemal in the zone and kinetic at the node.
The zone is viewed as a system without explicitly
modeled kinetic energy but with a velocity boundary
condition. Similarly, the node is a system having only
kinetic energy. Thus, the work done by a zone on the
surrounding nodes is simply the sum of the exiting
energy currents about the zone

z Z
W) =X17 =8* T F eu; (15)

This work expression conserves energy exactly but does
not reduce to P&V where 8V is a difference of volumes
that are functions of coordinates Vz=V(xp). Most SGH
hydrodynamics formulations simply assert that the work
is equal to P8V. Such formulations (which we will
denote as PDV), do not exactly conserve energy.
Implications of this will be discussed below.

Internal Energy

Energy is exchanged through the zone boundary via
heat transfer 8H and work W. The zonal internal energy
is then formally obtained from the first law of
thermodynamics

SE} =8H] - W/ (16)

Relationships which are taken for granted in analytical
thermodynarnics are not automatically satisfied in
numerical work. In particular, if the work and heat terms
correctly represent the energy transfer with the
surroundings, Equation (16) is also a statement of energy
conservation . This is true of our work expression.
However, a PDV algorithm which simply substitutes

P35V in (16) might formally claim to satisfy an equation
like the first law, but the result is no longer a statement of
energy conservation.

Entropy

The work can be resolved into parts Wy resulting
from reversible forces R and Wq due to irreversible
viscous or plastic forces Q. The energy balance for the
zone can then be written

SE =T 85} - W,

' amn
=(8H} - W, )- W,
The second law of thermodynamics '
T, 8S; =8H; - W, 28H;, (18)

where S is the entropy and T is the temperature, can be
formally satisfied if we require that all viscous or
plasticity models be dissipative, i.e.,

W, =33 Qi eu; <0 19

To clearly establish terminology, a reversible process has
Wgq =0, an adiabatic process 6H = 0, and an isentropic
or reversible adiabatic process has both.

Isentropic processes. A fundamental requirement
for hydrodynamics algorithms is the ability to remain
numerically on an isentrope of the equation of state
(EOS) in the absence of heating or viscous forces and in
the limit of small timesteps. We will refer to this as the
isentropicity condition.

Our formulation formally conserves energy and
seems to satisfy the second law, but needs further
refinement to satisfy the isentropicity condition. That is,
under isentropic conditions, the energy change for the
zone involves only reversible fields and is exactly given

by
z
SEXY 5 -8t*YRY eu’
: Z P (20)
=-W,
so that
TS =8E; +W, -0 @

Further, if we were to explicitly construct an integrated
entropy from this, it would properly not change under
these conditions. Although it may appear that (21) is
sufficient to satisfy the isentropicity condition, this is
deceptive. Although this integrated entropy does provide
the theoretical basis for constraining the form of the
viscous stresses, it is not used explicitly except perhaps
as a calculational diagnostic.

Again we are faced with relationships that are
consistent analytically, but not necessarily numerically.
We have not yet guaranteed consistency between our
integrated entropy and that defined by the EOS. For
points sufficiently near each other, the EOS was
explicitly constructed to satisfy 8E = -P3V along an
isentrope; and we must be certain the integrated entropy
also satisfies this.




. In our formulation, 6E is fixed by the energy
conserving formulation, and we have not as yet defined
3V. If we make no attempt to guarantee exact
consistency of the two, our numerical model will
generally yield 8E # -P3V even though no viscous forces
are present. Failure of a differencing scheme to satisfy
such a consistency relationship will appear as unintended
entropy errors (deviations from the isentrope). The
solution, of course, is to define a consistent 8V which is
done in the next section.

Since, in the traditional PDV formulation, 3E is
simply set to -P8V, any expression for 8V is consistent
with the EOS. Consequently, PDV formulations
automatically satisfy the isentropicity condition
independent of their inability to exactly conserve energy.
It should be noted that there will always be accuracy
issues associated with large steps because the PS5V
calculation is implicit and not algebraically exact. We
are not concerned with this type of error which is
controllable, but rather with a more serious potential
error associated with the form of 3E.

Volume

Constraint on the stress field. It follows from the
preceding discussion that the form of the strain or
volume calculation cannot be arbitrarily chosen, but is in
Sfact dictated by the initial discretization chosen for the
momentum equation. That is, it must be defined such
that the following is true for a fluid

z
W =-5t* T P*St eu?
: 2 e (22)
- Pfov;

The first step in establishing the desired relationship
is to factor the zonal pressure P from the sum. This can
only be done if Pj = Pz. We are then constrained to use
only a so called constant stress element, resuiting in

Ty+Ty

€2 1,y U

Figure 5. Path independence of the
volume integral

W, =P; {-&*_isr cuy } 23

In particular, extensions to SGH such as side-centered
stresses used in the TTS method (Browne and Wallick,
1971) must be excuded. Note that we are discussing
constraints only on reversible fields, not viscous fields.
For solids, it is necessary to factor the reversible work
into a product of a stress tensor and a deformation tensor
(Burton, 1994). In the next section, we establish that the
above corresponds to a reasonable discretization for 5V;
ie.,

z
v =—:5¢*Z,si+ ouy (24)

Volume integral. Obviously, we cannot simply
postulate that V=V(x). Instead, we propose an evolution
equation for'volume in conservation form and will verify
that it is equivalent to Equation (24)

8V =8t*V; (Veu)=5t"§dTeu

2 (25)
-t ZT,+ ou,

Note that volume is rigorously conserved even though it
may not be exactly what might be calculated directly
from the coordinates. This is easily shown to reduce to
the form required by the reversibility constraint. We rely
upon the fact that the velocity up is constant within the
momentum control volume and that §14S2 = (T1+T2)
as shown in Figure 5. This is simply a statement of the
path independence of the integral between ¢7 and €2
providing 0z and up are constant along the path. The
same result obtains in 3D. Then we have shown that the
volume change can be written as in Equation (24)

5V} =-8t* 3.8t eu? 26)

As was the case with stress, use of a higher order
spatial dependence for up would destroy the path
independence of the integral. In particular, velocity or
acceleration interpolation cannot be used, such as has
been suggested to correct for the center-of-mass of the
momentum control volume (Margolin and Nichols,
1983). Our point is that such extensions to this energy-
conserving form of SGH can be unintentionally
dissipative, not that they fail to improve spatial accuracy
or should not be employed.

Defining VX to be the initial zone volume, the zone
volume and specific volume used in EOS calculations is
given by

Vv, =VX +Y sV}
n

@n
V.

vz
Vz—-

M.

z




Coordinates

After substituting a conservative integral for the
explicit volume expression, examination of the difference
equations reveals an extremely significant fact. The
momentum contained in the control volume about a point
remains important as the primary momentum accounting
device, but the specific point coordinates xp do not play
arole in the differencing. What actually matters are the
coordinates of the edge centers xe (and face centers xf in
3D) that are advanced using a momentum conserving
average of adjacent point velocities given by

1
M,

with similar expressions for fand e at times 0 and 1. In
order to mechanically form the surface Sj vectors, control
points xz and Xp are needed in addition t0 Xe and Xf, but
mathematically drop out of the integrals.

The coordinates for the auxiliary points can be
directly integrated. However, since we use constant mass
weights, a more economical alternative procedure for
caiculating the auxiliary points is possible. If the point
velocity is formally integrated

+ .
u, =

iMiu; (28)

o0 &
p=Xptz U
U
Xp =Xy +5-up
then the auxiliary coordinates can be found using the

same weighted averages as in the velocity equations

1 [

M.x} (30)
A
with similar expressions for xf and xz. We emphasize
that (30) is simply a calculational shortcut and the
differencing remains logically independent of the point
coordinates.

0
X
:’ . (29)
_ +. 0+
—xp+8t ug

+ _
X, =

Hourglass instability and coordinates. It is well
known that SGH suffers from spurious modes on the
scale of the mesh size because of degrees of freedom
unconstrained by the difference equations. One such
mode is the hourglass shown in Figure 6a. By definition,
an hourglass mode is any mode of deformation that does
not change the zone volume or strain and therefore
produces no response from the constitutive model. There
exist many ad hoc anificial viscosity schemes successful
in reducing hourglass distortion without affecting
physical shear modes. The smoothing viscosities
discussed in a later section are effective against
instabilities such as hourglassing.

However, unless we introduce special artificial
viscosities that are themselves sensitive to hourglassing,
the only manifestation of the spurious mode is through
the point coordinates xp. But, as we have shown, the
specific point coordinates do not play a role in the
- differencing either. It follows that the major
consequence of hourglass modes is simply that the grid
may appear distorted, not that the quality of the solution
has been compromised. We are justified therefore in

independently moving the points, without adjusting
velocity, anywhere aesthetics demands. There is not
even a requirement that edges formed from pairs of
points be straight lines. For example, we could advance
the point using the center-of-mass velocity of the
surrounding zones

1 |
p 1

X; =Xp +%Up 31)
XL =X*+& Ul =XJ+8t*U;

As a practical matter, these results do not eliminate
from concern other instabilities such as chevron modes
(Figure 6b) that occur in fluids because the constitutive
model does not respond to shear deformation. Further,
although pure hourglass modes do not themselves
degrade the solution, they are seldom pure. That is,
velocity patterns that appear in one zone as hourglassing
typically show up in an adjacent one as a chevron or
other mode.

Angular Momentum

In Burton (1990b, 1994), we showed that in Cartesian
geometry, a zone-centered conservation law for angular
momentum can be derived since the zone-center is also
the center-of-mass (CM). No similar law can be proved
at the point because it is not a CM. Although

‘conservation of angular momentum on the global scale

has never been in question, this work showed
conservation on a scale somewhat larger than a zone.
The lack of such conservation on the scale of momentum
control volumes gives rise to numerical instabilities such
as-chevron and hourglass modes.

Artificial Viscosity

Artificial viscosity serves two principal functions:
first to attain the correct shock dissipation, and second to
smooth numerical noise. The requirement that the
viscous work be dissipative Wq < 0 greatly constrains the
permissible form of artificial viscosity equations. Two
spatial centerings of the viscosity tensor are common.
We consider here a side-centered form in which the
viscous force is produced on the surfaces S. A more
common zone-centered form is discussed in Burton
(1994).

¢ <

(@ (b)

Figure 6. Typical hourglass (a) and chevron (b)
instabilities.
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For a side centered viscous stress, the viscous work
reduces to

Z
W, =8t*ZQ;’ ouy |
Z
=3 Y iSTuy (32)

z
=3t" Y ®; 1SJu;,

where

— gt +
Uy = upl - upz (33)

: =8 =-8,.

We can guarantee dissipation by choosing a viscous
stress of the form

%, =—p,f §: lﬁl2 'éf u,,

Qi =§]ex;

e aen (34)
=—p,fS; eS; Iulz °c|'“12
=—p,f [S,][,; *&u,,
where
f =(qzfup]+asc)O(uyy) 3%

¢ is the diréction of propagation, c is the soundspeed,
and pg is the zone density. The function © is unity in
compression and zero in expansion. The quantities g}
and q?2 are multipliers for the linear and quadratic
viscosities. In the above form, the restoring force on
each side is proportional to the velocity difference u12

between the two points. The ad hoc factor |iiy, * { has

been introduced to eliminate non-shock components of
u12 such as those which might arise from convergent

flow.
A variation on a form due to Barton (1988)

x; =~p,f |B;; o ii5u,,
Q=S ex; (36)
——p,f|S, ei,|[i;;, e ¢uy,
also produces a restoring force proportional to the
velocity difference u12 and is rigorously dissipative.
The absolute value of the dot product S, # i, has been

taken to avoid pathological attractive forces that could
otherwise occur.

Yet another variation comes from calculating a side
gradient V  u from the motion of the side points {pj, p2,

z.f}
X <P, flxxz‘ Vsl.lT

+ _Q+t +
Q: "'Ss o,

(37

which produces a resulting force that is not necessarily
parallel to u12 , 50 that dissipation is not guaranteed but
has not been a problem in practice. This form (and the
next) can be made rigorously dissipative by retaining
only the component of the gradient parallel to uy2

Vau— [Vuli,b,]d,i, (38)

We have not fully investigated the consequences of this
modification.

A variation of the previous form is a side-centered
viscosity used only for purposes of smoothing

xt by he(Tu- V)
Q! -5t ox! >

Again dissipation is not guaranteed. After decomposing
the gradient into volumetric, deviatoric, and rotational
components, this form becomes a multidimensional
generalization of the spurious-vorticity-damping method
(Burton, 1990b) and is effective against both chevron and
hourglass instability.

Conclusions

Hydrodynamics algorithms are often formulated in a
relatively ad hoc manner in which independent
discretizations are proposed for mass, momentum,
energy, and so forth. We have shown that, once
discretizations for mass and momentum are stated, the
remaining discretizations can be determined in a
consistent manner, so there is little latitude for variation.
The resulting analysis provided some known results and
several previously unreported surprises.

+ As has been known (and largely ignored for some
years) the kinetic energy discretization must follow
directly from the momentum equation; and the
intemai energy must follow directly from the energy
currents affecting the kinetic energy.

« Traditional PDV formulations of SGH do not
exactly conserve energy, although they do satisfy
the isentropicity condition.

+ In our energy-conserving form of SGH, the
requirement of isentropicity unexpectedly forces the
replacement of the usual volume calculation with a
conservation integral.

* Isentropicity further restricts the use of higher order
functional representations for either velocity or
stress within zones or control volumes, forcing the
use of a constant stress element and a constant
velocity control volume.

¢ In tum, the constant stress model causes the zone
center coordinates to formally disappear from the
formulation. Likewise the constant velocity model
causes the point coordinates to formally disappear
from the Cartesian formulation, removing the direct
need for hourglass corrections

« The form of the work equations and the requirement
for dissipation by viscous forces strongly limits the
possible algebraic forms for artificial viscosity. We
have proposed a distinction based upon the shock
dissipation and numerical smoothing functions of
artificial viscosity and have presented forms for




both, as well as two spatial centerings of the
viscosity tensor.

< The momentum equation and a center-of-mass
definition lead directly to an angular momentum
conservation law that is satisfied by the system.
This work shows conservation on a scale somewhat
larger than a zone. The lack of such conservation
within the momentum control volumes gives rise to
numerical instabilities such as chevron and
hourglass modes.

< In Burton (1994), it was shown that, by a few
straightforward substitutions, the Cartesian
formulation can be converted to a multidimensional
curvilinear one. The resuiting equations for
momentum and quantities derived from it are not in
strict conservation form and some conservation
error occurs near the axis.

+ The formulation in 2D axisymmetric geometry was
also shown to preserve rotational symmetry.
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