ORNL/M--828

DE90 005815

Using the K-25 C&TD Common File
System: A Guide to CFSI

C&TD User Services

Computing and Telecommunications Division
at Oak Ridge National Laboratory
Post Office Box 2008
Oak Ridge, Tennessee 37831

Date Published - December 1989

MARTIN MARIETTA ENERGY SYSTEMS, INC.
operating the
Oak Ridge National Laboratory Oak Ridge Y-12 Plant
Oak Ridge Gascous Diffusion Plant Paducah Gaseous Diffusion Plant
under contract DE-AC05-840R21400

for the

U.S. Department of Energy

pe

WSTER

15 UNLIMITED

E%ﬂ_

9]
&
;

1

A

L
o Gd

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Table of Contents

ADSITACE . eeiuiriieinee s e i e ettt e e e ette e e e reen e s s et rrat e e s e rra e s enetraaaaees vii
38 05 11 TR OO O PP PPPPP ix
1. A Common File System (CFS) Overview.........ccoooiiiiiiienniiiiniiiiinnniieenans 1-1
2. Working with CFSoooniiiiiiii e 2-1
2.1 The Mechanics of Requests and Responses..........oveueiieiiinieninienneee. 2-1

2.2 REQUESES ocevnneerniieiinieriii ettt ie e ettt e s resiea e s st s e reresaarans s 2-2
221 Commandscceuveiiniiiniiiiii e 23

222 Parametersoeeuvenvenninennieiiiiniiiniraiiieiiietnrnrerarenaasaaaanns 2-6

223 KeYWOIdS....oovvuuureiiiiiniieneneiiiiiiiiiinesieerii e e erenirnieaeaeenees 2-8

224 COMMENES «...oiuiiniinieiieeniiniiiiiiete ittt etsreecaeaseireieranes 2-12

2.2.5 Information pertaining to the use of CFS requests................... 2-12

2.3 RESPONSES ...couniinnniiiniiiiiiiiiii ettt r et e s s e e s e s e 2-16

2.4 Single-Line EXECUIONcc.euiriiiiiiiiiiiiieii it eei e 2-17

2.5 Using cfsi in the Background and in Batch Jobsooeiiiieil. 2-18

3. File Organization on CFSc.oooivviiiiiiiiiiiiiiiii e, 31
3.1 Tree StIUCIUIES...c.uieeiineiiniin e eriairinetiniti ittt sree s et erornnaens 31
3.1.1 More about root nOdescceveeriiiiiiiiiiiiiiin 33

3.1.2 Simple tree Structuresovvvvvviieiiiieiiiiiiiciii e, 3-4

3.1.3 Complex tree SITUCUIESovvriiiniiiirinniiriiin e seeraaens 3-5

3.1.4 Useful information about root nodes and tree structures 3-8

3.2 Paths: Specifying a Node as a Request Parameterooeeeee. 3-8

33 Building a Complex Tree Structurecccooeeiivivniniiiiinnnieninnnnne.. 3-10

4. A Tutorial to Get You Started..........c.oceviiiiiniiniiiiiiiii e 4-1
5. Charges for Use 0f CFS......civiuririiiiieineciiiincii i 5-1
5.1 How CFS Charges are Determined...........coovviiinniiiieniiiiniinnnnnn. 5-1

5.2 Specifying Charge Numbers.........c.cooooeiiiiiiiiiiiiiiimnniiian, 52

5.3 Calculating Interim CFS Charges.........cccooeiiimiiiiiiiiiniinniiiiii 52

6. Working DIreCtOriBS.ovvvvuuiiiiiinnie ettt eeenti e et e e e e eenrie e 6-1

6.1 The Names and Contents of Working Directories...............c.ceveeenn.. 6-2
6.2 Using Working DirectOriesc..vevviiiviinriiiiieiiiee i eiaeinnas 6-3
6.2.1 Using dir0.......coovvmmmiiimiiiinieiiiiie e 6-4
6.2.2 Using dirl through dir9..........coooiiiiiiiii e 6-6
6.3 EXamples......oooumiiiiiiiiii e 6-6
6.4 Working Directory Passwordsc.ccovevririiiiiiiiiiieinieieneeneeeennnns 6-10
To KEYSOUS overiniiiii i e 7-1
7.1 ACtiVe KEYSEES ..evvvuiieiiiiiiiii et 7-2
7.2 Saved KeYSEtS.....cuuuuureiriiiiiieeeeereiiiies e eeteiiiae e e e et e e e et eeeaans 7-7
7.3 An Example of the Use of Saved Keysets.........ccoooeevviiriiiirinninnnens 7-9
8. Security and File Sharingcccooiveiiiiiiiiiiiiiiiic e, 81
8.1 Validation Entriesccoeerveeiiuieeirieiiiiiieeeeiiiiee e e 8-2
8.1.1 General descriptioncooeiiiieiinieiiiiiiiiiieniiieee e, 8-2
8.1.2 Access rights accumulation modifiersc..c.cciveiiiiinnnn 8-9
8.1.3 Access FIghES ..ooiiiiiimiiiiniiiiiece e 8-10
8.1.4 PasSWOTAScoeevuririiriiiirieii i e et e eree e e et ee e et erte e e 8-13
8.2 File Sharing Examplescccooovieiiiiiiiiniiiiiiiiii e 8-15
8.3 Keyset Passwords........cooviiiiiiiimmiiieeiiiiiiiiicciniiiii e 8-19
9. Command DeSCIIPONScccuuiiiiiieriitirerirriieeeeriiseerrraeeeeriienerrrineenns 9-1
9.1 add..oeii e e e e 9-4
9.2 @dOPL....cieiiiiiiiiiiiiii e e 9-6
A 4] o) U 9-7
0.4 CEALE ...ovvvtiiiiiiiiiiiiin et ettt e te e e e e a e reraes 9-11
9.5 delete. . coiiiieiii i 9-14
0.6 €N .. i e e anaas 9-16
L i {1 U UROUUPUR 9-17
1R I TSRO 9-18
0.9 KEEP «.iiiiii i e 9-20
0,10 TSE coetiiiiiiine ettt et e e e e 9-21
9.11 MO ..coviiiiiiiiiiiieiiiee e 9-23
9.12 MOVE ...ouniiiiiiiiii ittt et e re e s et e et e e e et e r e e e a s rannas 9-26
.13 TEIMOVE ..uoiiiniiiiiiiiiiiivra it csiie e et e eenc e e eeetnerteaannneeenneeraanns 9-31
9.14 1ePlaceooiiiiiiiiiiii e e e e e e 9-33
9,15 SAVE ..ottt e e e e e 9-35
916 SEL cevniiiniiin i e aaas 9-37
.17 SHOW .o 9-40
.18 SLALUS ...evieuniitniiiniiin et et e e et st e et et e et e e s b e nn e e e et e eaneaans 9-42
L L I (6 ¢ OO 9-45

iv

10. Parameter DeSCriptions...........cvvuuiiviiiiiiiiiiiiiiiii e 10-1

10.1 Keyset Parametercccooiiiiniiiiiiiiiiciinnniin e 10-2
10.2 Path Parameter......couovuiieiniiiiiiiaieiiei e et e et e et e e enans 10-4
10.3 ROOt Parameterccvuiniiiiiiiiei e et e e et aae s 10-9
10.4 Workerfile Parameterc..oooiviiniiiiinieieiieeeencie e enenn. 10-11
11. Keyword DesCriptionscc..vieeuieiiemiiiiiiiiiiiii i e 11-1
T3] AVAL= oo et e e e e e e e e neaa e nas 11-4
112 Charge=.uiiiiiiiiiiiiiiiii it 11-7
113 eVl = e et a e aeeas 11-8
114 UE7 = i b et a e en 11-10
115 dval= e e e e 11-12
L6 BEP= cvoueeeeeeeeeceeeseeeseeeeeee ettt s ettt 11-14
D B T 1 (o T PN 11-16
118 K PW o ettt et e 11-17
1000 0™ ceieiii i et e e e e e ans 11-18
1110 IPW= o e 11-23
1111 ncharge= ...oioiiiiiiiiiiiii i 11-25
TLI2 DEIP= wovoeeeeeneeeeeet oo et n s n et nereaes 11-26
1133 MR O™ i e e e e e e 11-28
11,14 DDA = it et re et ettt st ea s araans 11-29
1115 mrel= oo ettt e et e e annan 11-30
1010 DUSE ™ oeeieniiiiiiiieieeniiiiee et eeteteseeeeeesrasnerenantncnaassersanenrnsnrasants 11-32
TLI7T PWHE oottt 11-34
1118 SBUTP = coeniiniiiniiitiiit ittt e 11-37
B Yo T OO U U ST 11-39
Appendixes
A. CFS Node Contents.........ccccuuereruueiiiiieiienreeineeriiereniaeesrnessnneenes A-1
B. Text File Format Conversion............c..ooveeeeniiiinieiiiinreieenrcnannaannes B-1
C. More About Specifying Workerfile Parametersccc..cceoeee. C-1
D. Protection Mode for CFS Files Copied to UNICOS........................ D-1
I0AEX e ettt e e ean s I-1
Credits
Distribution

Abstract

A CFS (Common File System) is a large, centralized file management and storage
facility based on software developed at Los Alamos National Laboratory. This
manual is a guide to use of the CFS available to users of the Cray UNICOS system at
Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee.

G I

Preface

The subjects of this manual are

« the K-25 Common File System (CFS), which is available to users of the UNICOS
Cray for file storage, and

o the CFS Interface (cfsi) program used to access the K-25 CFS.*

This manual is intended to serve as a primer for new CFS users and also as a quick
reference for more experienced users. Additional CFS features are described in the

Common File System CFS Interface Reference, which is available in the Programming
Assistance offices.

For help with the K-25 CFS,
contact Programming Assistance
at your site.

K-25 4-8837
X-10 4-5321
Y-12 6-5908

This manual is organized as follows:

« Chapters 1 through 3 explain the basic concepts you need to understand before
beginning to use CFS.

« Chapter 4 contains a tutorial to get you started with basic operations.
o Chapter 5 explains CFS charges and how they are assessed.

o Chapters 6 through 8 cover additional CFS features, including file protection, that
you may want to take advantage of.

» Chapters 9 through 11 provide complete descriptions of individual commands,
parameters, and keywords. The alphabetical listings in each of these chapters is
preceded by a short introductory section that explains the format and conventions
used and provides reminders of where to go for related information.

* A ctsi program is not available on the Cray under CTSS; to access CFS from CTSS, usc mass.

« The appendixes provide supplementary information about using the K-25 CFS.
Several conventions apply throughout the remainder of this manual.

 For case of reading, and in line with common usage, the articles @ and the are
generally omitted where they would ordinarily be expected to precede the terms
CFS and cfsi.

« Some information is boxed for emphasis.

o Italics are used in the text to introduce new terms, for emphasis, and to clarify the
use of certain terms.

o The term userid refers to a CFS user identifier. On the K-25 CFS, this identifier is
the same as a user’s Cray User Number. As explained later in this manual, that
number is reserved for its owner to use as a userid root name; it is also the
number that must be used to identify the user in validation entries.

Your Cray User Number is derived from the three-character UID you use to log
on to the Cray, with each character of your UID being replaced with the
appropriate pair of digits from the chart below.

A=01 B=02 C=03 D=04 E=05 F=06
G=07 H=08 I=09 J=10 K=11 L=12
M=13 N=14 O=15 P=16 Q=17 R=18
S=19 T=20 U=21 V=22 W=23 X=24
Y=25 Z=26 0=30 1=31 2=32 3=33
4=34 5=35 6=36 7=37 8=38 9=39

For example, if your UID is ABC, your Cray User Number is 010203. Your Cray
User Number is displayed as your Z number when you invoke cfsi.

« In the examples, lowercase monospaced entries indicate literal values or names
that must be entered as shown. Lowercase entries are symbolic values that you are
expected to replace with your own, user-specific information. For example, if you
are instructed to enter

get filename
you must enter get, followed by the name of the specific file you want to retrieve.

When the symbolic value userid is indicated, unless otherwise instructed, substitute
your Cray User Number. Examples generally use the arbitrarily selected
identifiers 010203, 040506, and 070809 to refer to other users.

» For simplicity, in examples that copy a file to or from a UNICOS directory, it is
assumed that you invoked cfsi from that directory. You can specify other

directories as the file source or destination; see Chapter 10, Section 10.4 and
Appendix C for instructions.

As explained in Chapter 2, you use CFS by entering requests through the cfsi
program that runs on the UNICOS Cray. When using CFS interactively, you enter
the requests at the cfsi ? prompt and indicate the end of each request by pressing
<RETURN>. In this manual, cfsi prompts and <RETURN>s are omitted from examples.

This manual was tested under
CFS Version 56¢.

xi X/{

December 1989 1-1 Overview

1. A Common File System (CFS) Overview

A Common File System (CFS) is a large, centralized file*
management and storage program that runs on a dedicated
computer. One or more computing systems that are used to
create and manipulate files may be connected to a CFS.
Such systems are known as worker systems. The Cray is the
only worker system attached to the K-25 CFS. If you are a
Cray user, you can transfer files quickly and easily to CFS
for storage. Retrieval of files for use is just as easy. You can
also

e copy, move, replace, or delete stored files;

« organize stored files into simple or complex tree
structures;

o share your stored files with other users who have access
to the K-25 CFS; and

 access other users’ files when the required permission
has been granted.

By default, you are the only user who can access your CFS
files.

You communicate with CFS through a CFS Interface (cfsi)
program on the UNICOS Cray. Using cfsi, you make
requests (e.g., to retrieve a file), which are then executed by
CFS. CFS returns a response for each request.

This manual presents cfsi from the perspective of
interactive use. However, use of cfsi in the background and
in batch jobs is basically the same; for information, see
Chapter 2, Section 2.5.

CFS handles only complete files; access to partial files is not
permitted. The maximum allowable file size is currently 190

million bytes. If your file exceeds that limit, use dd or split
on UNICOS to divide the file into storable sections and cat
to reassemble the parts after retrieval from CFS.

* A file on a CFS is any string of bits with a unique name. The bits can represent text, input data, source
code, output data, etc.

Overview

1-2 December 1989

CFS stores files either online on high-speed disk or offline
on tape cartridge. In each case, the device is selected by the
CFS program to provide the fastest response time to the
most frequently used files. A new file is stored initially on
disk. A file migration program within CFS then moves files
between disk and tape based on the frequency of access of
the file. Thus, when a file is stored on disk, it is
automatically moved to tape if it is not accessed during a
system-set time period. The file remains on tape unless

e it is deleted and stored again by the user, or

e it is automatically moved to disk when the frequency of
access reaches a system-set value, which is based on the
amount and type of available storage.

The file migration program also deletes files with expired
release dates.

The response time for retrieving files from CFS is generally
on the order of a few seconds from disk; from tape, response
time is usually on the order of two to four minutes, but can
be longer in certain cases (e.g., all tape drives are already in
use).

CFS handles files as strings of bits (the basic unit of
computer information) and does not attempt to interpret or
change the format of any file. Thus, if you stored files from
CTSS using mass and want to use those files on UNICOS,
you must convert them from CTSS to UNICOS format.
Appendix B contains conversion instructions for text files.
Conversion of binary files is usually not possible.

No special validation other than what is required to log on to
UNICOS is needed to use the K-25 CFS.

Charges for your use of CFS are assessed to the C&TD
computer charge number(s) you provide. The rate for use of
CFS disk and tape space is considerably lower than the rate
for use of disk space on UNICOS. For more information,
see Chapter 5 and man charges on UNICOS.

December 1989

1- S/I - 7/ Overview

Because the storage devices used are extremely reliable,
there are no automatic system backups of files stored on
CFS. If your files are in the security category mission
essential, you should provide backup as described in Chapter
11, Sections 11.6, 11.12, and 11.18.

December 1989 2-1 Working with CFS

2. Working with CFS

This chapter is an introduction to the use of CFS requests
and to the responses CFS gives to these requests. Many of
the operations you can perform using requests are
mentioned. Actual how-tos, including instructions for
invoking and exiting the CFS Interface program cfsi, are
provided in tutorial form in Chapter 4.

This manual presents cfsi from the perspective of
interactive use. However, use of cfsi in the background and
in batch jobs is basically the same; for information, see
Section 2.5.

2.1 The Mechanics of Requests and Responses

To use CFS interactively, you
o invoke cfsi,
o enter CFS requests at the cfsi prompt (a ?),
o check the response that is returned to each request, then
e exit cfsi and return to the UNICOS system prompt.

As an alternative, you can include the cfsi call and multiple
requests in one execution line followed by a <RETURN>. This
is known as using cfsi in single-line execution mode. All
requests on the line are executed and cfsi returns you to
the UNICOS system prompt. For more information, see
Section 2.4.

When you enter a request, cfsi sends it to the CFS
processor and waits for a response. After a given interval of
time has passed with no response, cfsi sends a status query
to CFS (see Chapter 9, Section 9.18) and returns an
appropriate response to you. cfsi will repeat this procedure
periodically for about an hour or until CFS executes your
request. If you are an interactive user and want to interrupt
this query cycle, enter <CTRL-c>.

If the cfsi status query determines that CFS is down or
that the network connecting the Cray to CFS is down, cfsi
will resend your request periodically for about an hour or

Working with CFS

2.2 Requests

2.2 December 1989

until CFS receives it. If you are an interactive user, you can
enter <CTRL-c> to interrupt a retry cycle.

The basic format for all CFS requests is the command (or
request) line shown below

command parameter keyword=value <comment>
where
o command

describes the desired action, such as storing or retrieving
a file.

e parameter

specifies the object on which the command action is to
be applied (e.g., a file).

o keyword=value
specifies additional information on the request.
o <comment>

is a string of text information that documents a
command. The angle brackets (<>) are required.

Each request must begin with a command; the other
elements of a request may follow in any order. To end a
request line, enter <RETURN>,

All input to cfsi, including file names, must be in
lowercase. An enhancement is being developed that will
permit the use of mixed-case and uppercase file names.
Meanwhile, to make file manipulation easy, use only
lowercase characters when naming your UNICOS files or
refer to the handout Converting to UNICOS for special
procedures that will allow you to preserve case in file names
on CFS. The handout is available from Programming
Assistance.

Sections 2.2.1 through 2.2.4 provide more details about each
component of a CFS request. Section 2.2.5 lists some
information pertaining to the use of CFS requests.

December 1989 2-3 Working with CFS

2.2.1 Commands

A command is a literal name that specifies an action to be
performed. The first word of each CFS request must be a
command; each request may contain only one command.
Most commands can be abbreviated. Each command is
described in detail in Chapter 9.

Table 2.1 provides a summary of CFS commands, by
function. Table 2.2 lists the shortest acceptable abbreviation
for each of these commands. Of necessity, some terms that
have not yet been introduced appear in the command
summaries. These terms are explained in Chapters 3
through 8.

Working with CFS 2-4 December 1989

Table 2.1. Descriptions of CFS commands grouped according to general function

Commands for manipulating roots and subdirectories

add Adds a subdirectory to an existing parent directory.

create’ Creates a root directory.

move Moves an existing CFS node and its subtrees, if any, to
another node; can create a new root node.

remove Removes a subdirectory or root directory.

Commands for manipulating files

copy Copies an existing CFS file into a new CFS file.

delete’ Deletes a file from CFS.

get’ Copies a file from CFS to UNICOS.

replace Replaces an existing CFS file with a file from UNICOS.
save’ Saves a UNICOS file as a new file on CFS.

store Executes a save if the file name does not exist; a replace

if the file name does exist.

Commands for changing administrative information in nodes

modify Modifies the content of a directory node or file descriptor.
Adds or changes user validation entries; estimate of
file activity; file or directory name; charging information,
file release date, etc.

Commands for changing keyword values

set Sets values for keywords in the active keyset. Values remain
in effect until redefined by another set or until an adopt
replaces all keyword values or the session is ended.

Commands for working with saved keysets

adopt Re-establishes a saved keyset as the active keyset.
free Deletes a saved keyset.

keep Stores an active keyset as a saved keyset for future use.
show Displays names and/or contents of saved keysets.

Miscellaneous commands

end” Terminates cfsi.

list” Returns information about a directory or file; may include
user validation entries, immediate descendants, etc.

status® Outputs the status of CFS.

¢ This command is one of the small set needed by most users who just want to store a few files on CFS using their userid
root.

December 1989 2-5 Working with CFS

Table 2.2. CFS commands and their shortest
permissible abbreviations

Command Abbreviation

add a
adopt ado
copy c
create cr
delete del
end en
free fr
get g
keep k
list 1
modify mod
move mov
remove Tem
replace r
save 8
get se
show sh
status sta

store st

Working with CFS

2.2.2 Parameters

2-6 December 1989

A parameter specifies the object upon which the associated
command is to be performed. Multiple parameters are
permitted for most commands, as shown for save in the
following example:

save filenamel filename2
Each parameter must be separated from the next by a space.

Four types of parameters are accepted by CFS. These are
listed below and discussed in Chapter 10 and the additional
references cited.

« Root: the name of a CFS root directory node (may be a
userid or other name). See Chapter 3, Section 3.1.

o Path: a specification for a CFS file or directory node. See
Chapter 3, Section 3.2.

o Workerfile name: (also known as local file name) the
name of a UNICOS working directory file or the path
(relative to the working directory) for a UNICOS file.

» Keyset: the name of a keyset. See Section 2.2.3 and
Chapter 7.

For some commands, a null (i.e., a blank) and/or a minus sign
(-) can be used to represent a parameter. For more
information, see Chapter 10 and individual command
descriptions in Chapter 9.

Each command has its own parameter requirements (see Table
2.3 and the individual command descriptions in Chapter 9). For
instance, the commands adopt, keep, and free, which work
with saved keysets, require a keyset parameter.

The basic set of characters that can be used in request
parameters is composed of the alphanumerics (all letters and
the digits 0 through 9) and the following characters:

$hx+ - . _

December 1989

2-7

Working with CFS

Table 2.3. Parameter requirements for each CFS command

Command Parameter Requirement?
add path ...

adopt keyset

copy pathl to path2 ...

create root ...

delete path ...

end

free keyset ...

get path ... or workerfile:path ...
keep keyset

list path ...

modify path ...

move pathl to path? ...

remove path ...

replace path ... or workerfile:path ...
save path ... or workerfile:path ...
set

show keyset ...

status

store path ... or workerfile:path ...

@ A series of three elipses (...) indicates that multiples of
the associated parameter are allowed. See Chapter 3,
Sections 3.1.1 and 3.2, for explanations of root and path;
Chapter 10 for an explanation of workerfile; and Chapter 7
for a discussion of keysets.

Working with CFS 2-8 December 1989

2.23 Keywords

Keywords are literal names to which values may be assigned.
They are used to define node attributes or conditions for a
request or to exercise display options.

+ Most keywords are used to define node attributes. In
other words, the value assigned to the keyword becomes
the content of the corresponding field in a directory or
file descriptor node when a request using the keyword is
executed. (Nodes are discussed in Chapter 3; node
fields/attributes are introduced in Chapter 3, Section 3.1
and discussed further in Appendix A.) Thus, you can use
charge=000nnnnn with create to define the charge field
for a root node, where nnnnn is a C&TD computer
charge number. Charges associated with files stored
under that root will then be made to charge number
nnnnn.

« Keywords used to define conditions for a request are
dirn=, pwn=, and kpw=. For example, if a password is
required for access to a file, you must use pwn= to satisfy
that condition for access. The use of dirn= and pwn=is
explained in detail in Chapter 6.

« Keywords used to exercise display options are lo=, lpw=,
and so=. For example, you have the option of whether
or not to display any user-defined passwords when listing
certain information on your terminal; you must use
1pw=on to display passwords.

As explained later in this section, not all keywords can be
used with all commands.

The keywords used in this manual are described in Table 2.4
and, in more detail, in Chapter 11.

Keywords can be used in single-value form as shown below
keyword=value

or, for some keywords, in multi-value form with the
following format (lo= is an exception; see Chapter 11,
Section 11.9):

keyword=(valuel value2 ...)

December 1989

2-9

Working with CFS

Table 2.4. Some frequently-used keywords and

their default values

Keyword Function Default Value
aval= Add a user validation entry to an existing null
node; make the initial change in the master
user validation entry for a non-root node
charge= Define a charge number for storage and default number
access charges
cval= Change a user validation entry or a null
previously changed master user validation
entry for an existing node; change the
master user validation entry for a root
dirn= Where n is 0, define a path for the default userid root
working directory
Where » is one of the digits 1-9, define a null
working directory path
dval= Delete a user validation entry from an null
existing node
grp= Define the storage group for a file CFS chooses
info= Insert descriptive text in a directory node null
kpw= Set a password for a saved keyset null
lo= Use with 118t to select various types g for a file
of information depending on value option d for a directory
specified and accompanying parameter
lpw= State whether passwords will be displayed of? (no)
ncharge= Define a new charge number for use witha null
root node
ngrp= Set a storage group for a copied file null
ninfo= Redefine the descriptive text field for a null
node
nname= Sclect a new name for a node null
nrels= Set a new file release date null
nuse= Specify a new estimate of file activity null
pwn= Set a password for use with the working null
directory identified by dirn, where » is one
of the digits 0 through 9
setgrp= Lock a file into the current storage group null
8o= Select information to be output with show names (i.e., n)

Working with CFS

2-10 December 1989

In the multi-value form, values must be separated from each
other by at least one space; spaces are permitted before and
after the =; and the parentheses are required. The values
may be literal or symbolic, depending on the associated
keyword. For example, the pwn= keyword requires a
symbolic value (a user-defined password), while a value
specified in association with lo= must literally be one or
more of the six letters a, 4, g, i, 8, or u, each of which
has a specific meaning. Selected value options for each
keyword are explained in Chapter 11.

A complete set of keywords and all their values is called a
keyset. Keysets are discussed in Chapter 7. When you
invoke cfsi, an active keyset is created with each keyword
set to its default value (see Table 2.4). Most of the default
values are nulls.

Each command has certain keywords that are associated
with it.* When you enter a request, CFS automatically gets
the values for any of these keywords not defined in the
request from your active keyset.

You can change the value associated with any keyword in
your active keyset for the remainder of your session or until
changed again by using the set command as follows:

set keyword=value

However, in this manual, this request is used only with
dirn=, pwn=, and lpw=, The values of other keywords are
changed only for the duration of a request by specifying the
keyword and value in a request with a command other than
set as in the following example:

list /userid lo=u

After execution of the request, the value of lo= in the active
keyset returns to the default (d; see Table 2.4).

You can replace your active keyset with a keyset you have
previously saved. See Chapter 7 for information about
keysets.

* Only the options shown in Table 2.5 are covered in this manual. For a complete list, sce Table 7.2.

December 1989 2-11 Working with CFS

Use standalone keywords (keywords with no = sign or value)
with the set command to view the current value of a
keyword in your active keyset. For example,

set charge

causes the system to respond with the current value of the
keyword charge=. To display your entire active keyset, enter
set.

Table 2.5. Commands and their keyword options”

Command Keywords

add dirn= info= pwn=

adopt kpw=

copy dirn= ngrp= pwn=

create charge= info= pwi=

delete dirn= pwn=

end

free kpvw=

get dirn= pwn=

keep kpw=

list dirn= lo= lpw= pwn=

modify aval= cval= dirn= dval=
ncharge= ninfo= nname= nrel=
nuse= pwn= setgrp=

move dirn= pwn=

remove dirn= pwn=

replace dirn= pwn=

save dirn= grp= pwi=

set® dirn= lpw= pwn=

show kpw= lpw= so=

status

store dirn= grp= pwn=

¢ Only the options, if any, covered in this manual are listed. For a complete list, see
Table 7.2.
® Any keyword may be used in standalone form with set.

Working with CFS 2-12 December 1989

2.2.4 Comments

Use the comment field to include text information in a
request. The comment must be enclosed in angle brackets
(<>). CFS does not process the contents of the comment
field, nor does it echo the contents back to you in the
request response. Therefore, the main use of the comment
field is to document the purpose of CFS requests that are
included in batch jobs.

Only one comment may be included in any one command
line. A comment may not be embedded in a parameter or in
a keyword and its associated values.

2.2.5 Information pertaining to the use of CFS requests

The following statements apply when using CFS requests:

o Requests are sent from the CFS Interface on your
worker system to a CFS processor.

o CFS returns a response for each request it attempts to
execute.

o Each request must begin with a command.

o Parameters, keywords, and a comment can be in any
order following a command. For example, a request
entered in either of the formats shown below means the
same thing to CFS:

command parameter <comment> keyword=value
or
command <comment> keyword=value parameter
o At least one space must separate the command word and
each individual parameter, comment, and keyword.

¢ A request containing a syntax error in a parameter or
keyword is not executed.

December 1989

2-13 Working with CFS

o If a keyword is repeated within a request, the last value

input is used. For example, if you enter the following
request, where xoox and yyyyy are valid C&TD computer
charge numbers,

create charge=000xucxx charge=000yyyyy
the charge number for your new userid root will be yyyyy.

If a command is associated in a request with multiple
parameters, CFS treats cach command/parameter
combination as a separate request. Thus,

command parameterl parameter2 keyword=value
is understood by CFS as the two requests
command parameterl keyword=value
and
command parameter2 keyword=value

CFS attempts to execute each request, even if one causes
an error. A separate response is generated for each
request.

Multiple requests may be entered on the same request
line if they are separated by commas as shown in the
example below.

create, set lpw=on , status

Spaces may be placed on either side of commas, but are
not required.

If there is an error in one request of a multiple-request
line, no attempt is made to execute any following
requests. Thus, if the = sign had been omitted from the
example above, an error message would have been
returned for the set command and the status request
would have been ignored.

Working with CFS

2-14 December 1989

¢ Normally, <RETURN> signals the end of a request line.

However, if you have not finished your request line and
want to continue it on another terminal line, you can
enter a backslash (\) or a pound sign (#) at the end of
the current line,* press <RETURN>, wait for the
continue- prompt, and continue typing. For example,
CFS views the following three lines on a terminal screen
as a single request (prompts and <RETURN>s are shown
for clarity):

? command parameterl parameter2 \<RETURN>
continue-keywordI=value \<RETURN>
continue-keyword2=value<RETURN>

The continuation character is not replaced by a space, so
be sure to enter a space before the continuation
character or at the beginning of the continuation line, if
needed to separate what you have entered at the end of
one line and the beginning of the next. Request lines may
be continued to as many terminal lines as necessary.

The characters listed in Table 2.6 have special meanings
in CFS requests.

* In the examples in this manual, 2 \ is used.

December 1989 2-15 Working with CFS

Character

Table 2.6. Characters with special meanings in CFS requests

Meaning

A comma separates CFS requests on the same line.

A backslash at the end of a line of characters indicates that the next line is
a continuation of the request or series of requests. CFS does not replace
the \ with a space.

A pound sign at the end of a line of characters functions in the same way
asa\.

Quotation marks delimit input text for the info= keyword. To continue
the text from line to line, use the \. A <RETURN> without the \ ends a
quotation.

)

Parentheses enclose multiple values that are assigned to a single keyword.

When used as the value of a keyword, a minus sign indicates that the system
default is to be used rather than a user-defined value.

When used as a path parameter, a minus sign specifies that the path stored in
the default working directory is to be used.

When used as a keyset parameter, a minus sign specifies that your userid (Cray
User Number) is to be used as the keyset name.

When used as the value of the password field in a validation entry, a minus sign
signifies that no password is required.

Angle brackets delimit a comment contained in a request line. A comment may
not be embedded in a parameter or a keyword and its associated values.

A colon associates a workerfile with a CFS path. For example, save a:b
specifies that the UNICOS file a is to be saved on CFS with the name b. The

name preceding the colon must always be the workerfile name; that following the
colon, the CFS file name.

The prime notation (1’) specifies that the working directory dirn is to be used,
where 7 is a number from 0 to 9. The notation also signals the use of the
associated password pwn where relevant.

A slash is the first character of a complete path and precedes each node name
that is part of a path.

Working with CFS

2.3 Responses

2-16 December 1989

CFS attempts to execute each request you enter, and returns
a response for each request (unless the request follows an
incorrect request in a multiple-request line). In most cases,
the response is from the CFS program; in some cases, the
origin of the response is cfsi.

When a request has been successfully executed, a normal
response is returned. When CFS detects an error and cannot
execute a request, an error response is returned, indicating
some reason for the failure.

« The basic format for a normal response is
000 date time command workerfile:path

where command and workerfile:path are the command,
workerfile (if any), and path (if any) indicated in the
corresponding request. The command and path may be
spelled out in full, even if you entered them in
abbreviated form. If your request involves a file transfer,
the name of the workerfile and the number of bits
transferred (in decimal) are included in the response.

The commands list, show, status, and set (alone or
with standalone keywords) are used to request
information. The normal response for each of these
provides the desired information in an appropriate
format.

o The basic format for an error response is

sxsyarning: (Y XXX Z;,, Z,, ...)yy/dd/mm hh:mm text

where

warning may sometimes be replaced by the word
fatal, such as when the CFS program
is stopped temporarily for some reason
or communication with cfsi has been
lost and must be restarted.

Y is a severity code for use within CFS.

XXX is an error code that may be used by

controllers on the Cray.

December 1989

2-17 Working with CFS

Zy, Zy, ... are status bits that may be present and
that may tell more about the type of
error.

yy/mm/dd is the date the message was issued,
where yy is the year, mm the month,
and dd the day.

hh:mm is the time the message was issued,
where il is the hour and mim the
minute.

text is a short message telling what
happened. If the message is continued
over more than one line, continuation
lines begin with a single asterisk (*) in
column 2.

The error and severity codes and any status bits can
generally be ignored because all the information needed
to spot and correct a problem will be contained in the
text message. These messages are usually self-
explanatory and easy to understand; Programming
Assistance can help with any that are unclear.

2.4 Single-Line Execution

In single-line execution, you include the cfsi call and all the
requests in a single execution line, When you enter a
<RETURN> at the end of the line, all of the requests on the
line are executed and cfsi returns you to the UNICOS
system prompt.

For single-line execution, use the following format
cfsi requestl, request2, ...

where each request is the equivalent of the standard request
line introduced in Section 2.2. The space following cfsi and
the commas between requests are required.

Use a backslash (\) or a pound sign (#) to continue an
execute line that is too long to enter as one line on the
terminal screen (see Section 2.2.5).

Working with CFS 2-18 December 1989

2.5 Using cfsi in the Background and in Batch Jobs

Using cfsi in the background and in batch jobs is basically
the same as using cfsi interactively. However, you may find
it helpful to note the following:

« Single-line execution works in the background and in
batch mode. To terminate a single-line process you have
submitted in the background, use the UNICOS
commands ps and kill.

e You can use the continuation characters \ and # in
batch jobs.

o The comment field in a request can be helpful in
documenting scripts.

o The cfsi wait and retry cycle that functions when CFS
or a CFS network connection is down allows a batch job
to remain in a wait state for up to about an hour. If you
do not want a batch job or a job submitted to run in the
background to wait that long, you may want to include in
your shell script an escape based on system-produced
status messages. Alternatively, you may want to include a
status request early in the job and base the decision
about whether to run on the response to that request.

December 1989

3-1 File Organization

3. File Organization on CFS

3.1 Tree Structures

CFS uses a hierarchical file storage structure called a tree.*
When you create a tree, you provide the framework that
allows CFS to locate your files when access is requested and
to maintain pertinent information regarding the files.

Simple and complex tree structures are the subject of
Section 3.1. Section 3.2 explains paths, which are the
roadmaps CFS needs to find specific locations in a tree.
Finally, Section 3.3 provides a brief introduction to the basic
commands needed to work with complex tree structures.

A tree structure on CFS consists of named segments called
nodes connected by branches that indicate the hierarchy. As
described in more detail later in this section, nodes are
special areas where information relevant to the access of
your files is stored. Examples of tree structures are shown in
Figures 3.1 and 3.2 on pages 3-4 and 3-6. By convention,
CFS trees are drawn in inverted form.

There are two types of nodes: directory nodes and file
descriptor nodes. In turn, directory nodes are of two types:
root nodes and subdirectory nodes.

The origin of a tree structure is called the root node, root
directory, or root. It is represented by a triangle in tree-
structure diagrams and is the first level of organization. The
tree in Figure 3.2 originates in a root node named 010203.

Branching out from the root node are descendant nodes,
which may be either

» subdirectory nodes (subdirectories), which are
represented in diagrams by rectangles and can also have
descendants, or

» file descriptor nodes, which are represented by circles
and cannot have descendants.

The structure is similar to that provided under VMS and UNICOS.

File Organization

3-2 December 1989

The direct descendants of the root node represent the
second level of the tree. In Figure 3.2, there are two
second-level descendants, heatcode and reports. In this
case, both are subdirectory nodes. The direct descendants of
second-level subdirectories form the third level of the tree,
etc. In Figure 3.2, data is a subdirectory at the third level
of organization and the descendant files set1 and set2 are
at the fourth level. You can use up to 48 levels of
organization; 6 or 7 is a practical limit.* Note that because
CFS trees “grow down,” the lower the node is located in a
tree, the higher its level number will be.

The parent of a node is connected to it by a branch and is at
the next higher level in the tree. A root node has no parent.
A subtree is any node in a tree and all of its descendants at
all levels. Thus, in Figure 3.2, reports is the parent of
monthly and quarterly. The subtree originating in
reports includes monthly, jan, feb, and quarterly.

You use requests to create directory nodes that establish the
storage groupings and relationships you want for your files.
CFS creates a file descriptor node, in the tree position you
indicate in your request, for each new file you create on the
system. Each file descriptor node will have the same name
as its corresponding file and will contain a pointer to the
actual current storage location of the file.

As already noted, the nodes of a tree are storage areas for
information relevant to access of the files associated with the
tree. The information is categorized (i.e., stored in specific
fields); the fields for each type of node differ somewhat.

o Some of the stored information is for use by CFS only.
An example is the file storage location pointer associated
with a file descriptor node.

Note that the total number of characters in the path to a node (see Section 3.2) cannot exceed 96.

December 1989

3-3 File Organization

« Some of the node information is contained in named
fields that you can display using the list command with
various list options (see Chapter 9, Section 9.10 and
Chapter 11, Section 11.9). For example, the descendants
field for a given directory node contains a list of all the
node’s immediate descendants. CFS uses the list to help
locate descendant files; you can display the list if you
want to view that portion of your tree structure (using
the 1list command with the lo=d option).

Some node fields contain information (e.g., the time a file
was last accessed, the file size, the list of a directory’s direct
descendants) that is updated automatically by CFS as
necessary. Other fields contain default values (usually null
values) or values specified by the user in requests using
certain keywords and commands. For example, the info field
for a subdirectory node will contain the default, a null,
unless you insert descriptive information (e.g., using the
info= keyword with the add command as described in
Chapter 11, Section 11.7).

The contents of the node fields are known as node attributes.
For more information about node fields/attributes, see
Chapter 11, Section 11.9 and Appendix A.

3.1.1 More about root nodes

You must create a root node before you can store any files
on CFS. There are two types of root nodes:

o userid root: a root with your personal user identifier for a
name (your Cray User Number). This root name is
reserved for you and may be the only one you need to
use.

Create your userid root node by entering the following
request

create

Once you have created your userid root, it becomes the
default (i.e., CFS automatically goes to that directory
when you invoke the cfsi program).

File Organization 3-4 December 1989

¢ named root: a root with a name you define. The name
must be unique to the entire CFS system. CFS will return
an error response if you attempt to create a node with a
name that is not unique.

Create a named root node by entering
create root

where root is the name you want to assign to the new
root. The name must start with an alphabetic character,
be no longer than 16 characters in length, and
incorporate only the characters

a~z, A-zi o-gl s: %1 *l +: T e and -

See Chapter 9, Section 9.4 for a procedure for listing the
names of your root nodes.

3.12 Simple tree structures

If you want to store only a few files on CFS, you can
probably use your userid root and a simple tree structure
(one with no subdirectory nodes) as shown in Figure 3.1. In
this figure, the root node is the parent of five file descriptor
nodes; the file descriptor nodes are the direct descendants of
the root node. These relationships are indicated by branches
connecting each file node to the root node.

level 1
(root node)

userid

Fig. 3.1. A simple tree structure.

December 1989 3-5 File Organization

You may store files under your userid root node by entering
save filename

where filename is the name of a file in your current working
directory on UNICOS and also the name the file will have
on CFS. To retrieve a copy of the file, enter

get filename
To delete a file from CFS, enter
delete filename

To see a list of the files in your userid root directory, enter

list lo=d
3.13 Complex tree structures

For numerous files, you may find it helpful to use a complex
tree, grouping related files under subdirectories as shown in
Figure 3.2. In this example, the user whose userid root node
name is 010203 has grouped the files related to the program
heatcode in one subdirectory and his monthly and quarterly
reports in another subdirectory. Creating separate
subdirectories in the heatcode subtree for each version of
heatcode and for the data to be input to both versions is a
further aid to easy location of the associated files.

You should provide meaningful names for the nodes you
create. Doing this will greatly assist you in determining what
cach file contains without having to transfer it to a worker
system for examination. Figure 3.2 is an example of the use
of meaningful node names. Compare this figure to Figure
3.3, which pictures the same tree structure with node names
that leave you guessing as to file content.

To work with complex trees, you must understand paths,
which are described in Section 3.2. An introduction to the
basic commands you will need to work with complex tree
structures is provided in Section 3.3.

heatcode

data

Fig. 32. A complex tree structure with node names that provide guidance as to file content.

versiona

runa

010203
reports
versionb monthly

quarterly

uopjeziued1Q g

6861 12quIddAqQ

N
/\

Fig. 33. A complex tree structure with poorly named nodes.

6861 J9quadng

uonezjuediQ A1y

File Organization

3-8 December 1989

3.1.4 Useful information about root nodes and tree structures

If your projects require more than one charge number, you
must use multiple storage trees (i.e., create named roots in
addition to your userid root), because each tree can have
only one charge number associated with it. Chapter 5
contains information about CFS charges.

You may want to create named root nodes if you have sets
of files you want to share with other users. For an example,
see Chapter 8, Section 8.2.

There is no charge for root and subdirectory nodes. You can
have as many trees in CFS as needed.

Should your projects change in size or scope, you can
reorganize tree structures. The move and modify
commands, described in Chapter 9, are useful for this
purpose.

A root node must have a name unique on CFS. Two or
more non-root nodes may have the same name as long as
they are not immediate descendants of the same parent
node. It is the complete path for the node, not the node
name itself, that must be unique (see Section 3.2).

You cannot view the contents of a file stored on CFS
without first copying the file to UNICOS. Therefore, it is
helpful to use meaningful file names and to place identifying
information in the info fields of nodes (see Chapter 11,
Sections 11.7 and 11.13).

3.2 Paths: Specifying a Node as a Request Parameter

To refer to a node as a parameter in a CFS request (see
Chapter 2, Section 2.2.2), you must give CFS the complete
path (also referred to as the complete path name) for the
node. This means that you must provide the sequence of
node names that describes to CFS the route to follow
through the tree to reach the specific node. For example,
the complete path for the file aoutl, which contains the first
set of output data obtained from running Version A of
heatcode in Figure 32, is

/010203 /heatcode/versiona/runa/aouti

December 1989 3-9 File Organization

The complete path for the userid root node 010203 is
/010203
The following rules apply when specifying complete paths:
e A complete path must be preceded by a slash (/).

o Each node name must be separated from the next by a
slash.

¢ The root node must be the first node entered, followed
by the appropriate second-level node, etc.

o The maximum length for a path, including slashes, is 96
characters.

« You may specify a path in another user’s area if that user
has granted you the necessary access rights to the node
defined by the path (see Chapter 8).

o There are three options for specifying complete paths in
a request.

— You can enter the path in full with a leading slash
as shown in the heatcode example above. Any
path beginning with a slash is taken by CFS to be
a complete path.

— You can enter a partial path with no leading slash
and have CFS retrieve the leading nodes of the
path from a working directory (see Chapter 6).

— You can tell CFS to retrieve a complete path for a
node from a working directory (see Chapter 6).

CFS provides ten working directories for your use. They
are not directories in the same sense as roots or
subdirectory nodes, but simply areas to store complete or
partial paths. Your default working directory diro, by
default, contains the path for your userid root node (i.e.,
/userid). Using working directories can simplify the
process of entering path names associated with complex
tree structures,

If you are using only a userid root node and a simple tree
structure to store unclassified files, a knowledge of working
directories is not necessary (i.e., you can skip Chapter 6).
You need only be aware that when you enter a file name as
the parameter for a request, you are entering a partial path

File Organization 3-10 December 1989

(no leading slash). CFS automatically appends the contents
of dir0 and a slash to form the complete path. Thus, CFS
reads the request

save filename
as
save /userid/filename

You can use either form of the parameter in a request, but
taking advantage of the default working directory means
fewer characters to type.

3.3 Building a Complex Tree Structure

To build a complex tree structure, you will need to use the
following commands, which are described in more detail in
Chapter 9:

create The first step in building a complex tree
structure is to create a root directory as
described in Section 3.1.1.

add Use the add command to add subdirectory
nodes to the root node and to other
subdirectory nodes. Unless you use working
directories, you must enter as the request
parameter the complete path for each
subdirectory to be added; the name of the
subdirectory will be the last node name in the
path.

save, Use the save or store command to add
store file descriptor nodes as files are transferred to
" CFS. Unless you use working directories, you
must enter as the request parameter the
complete CFS path for each file; the name of
the file will be the last node name in the path.

For example, you can use the following set of requests to
build the tree structure shown in Figure 3.4:

December 1989 3- 1%{- 13 File Organization

create reports8s

add /reports88/monthly

add /reports88/quarterly

save /reports88/monthly/jan
save /reports88/monthly/feb
save /reports88/monthly/mar
save /reports88/quarterly/first

reports88

/

monthly quarterly

©

Fig. 3.4. A complex tree structure.

The commands copy, delete, move, remove, and modify
can affcct tree structures. These commands are discussed in
Chaptcr 9.

December 1989 4-1 Tutorial

4. A Tutorial to Get You Started
This chapter contains an eleven-step tutorial to introduce you to use of cfsi on the
UNICOS Cray. The following conventions apply:

o User input: Literal user input is indicated in boldface monospaced type, user-
specific input in italic type.

 System responses: System responses are in regular monospaced type, except for
user-specific information, which is in italics.

Representative responses are shown, but will vary in specifics from those you receive.
UNICOS and cfsi prompts are not shown.

1. Go to the UNICOS directory in which you want to work and create a file called
test. UNICOS is your worker system, and test is a workerfile.

2. Invoke cfsi

cfsi
connected to cfs concentrator, Z number is userid
000 89/11/06 17:48 cts interface started (+00108)

3. Your userid on the Cray is your six-character Cray user number. Create your
userid root node by entering

create /Juserid
000 89/11/06 17:48 create /usenid

(The slash is optional.) Alternatively, because CFS accepts a blank parameter
with create, you can simply enter create; CFS will obtain your userid from
the default working directory dir0, which, by default, contains /userid.

4. Confirm that the root has been created by listing information about the node
using list option a. You can specify the parameter as shown or use a blank
parameter, which, as with create above, will cause CFS to insert the contents
of dir0.

Tutorial 4-2 December 1989

list /userid lo=a

node name: wuserid
node type: root directory
oid:

charge: OO0Onnnnn
space-time product starts: 89/10/30 10:54

online space: 0.00 megabytes

online files: 0

online space-time product: 0.0 megabyte days
offline space: 0.00 megabytes

offline files: 0

offline space-time product: 0.0 megabyte days

Because you did not specify a charge number using the charge= keyword when
you created the root node, the charge field for the node contains the default
charge number for your UNICOS session. All charges associated with files
stored in the root directory tree will be made to that number.

5. Save a copy of the workerfile test on CFS under your userid root.

save test
000 89/11/08 17:48 save test:/userid/test
001 (B784 bits)

Because the parameter you supply (i.e., test) is an incomplete path, CFS
automatically appends the contents of dir0 and a slash (i.e., /userid/) to form
the required complete path /userid/test.

6. Display a list of the direct descendants of your userid root using a blank

parameter.
list lo=d
node name: wusend
node type: root directory
descendants :
test

You could have omitted lo=d because it is the default for directory nodes.

December 1989 4-3 Tutorial

7. Attempt to delete your userid root. Note that CFS will not accept a blank
parameter with remove.

remove /userid
**xxwarning: (1 0104) 89/11/06 17:49 : attempted to remove
* directory node which has one or more descendants.

Because the directory is not empty (it contains the descendant test), CFS does
not execute the request and returns an error response.

8. Retrieve a copy of the file test from CFS; the copy will replace the identical
version currently on UNICOS in the directory from which you invoked cfsi.

get test
000 89/11/08 17:49 get test:/userid/test
001 (6784 bits) last written 89/11/06 17:48

9. Delete the copy of test that resides on CFS.

delete test
000 89/11/06 17:49 delete /userid/test

10. Delete your now-empty userid root.

remove /userid
000 89/11/06 17:49 remove /fuserid

You are now back to where you were in Step 2.

Tutorial 4-4 December 1989

11. Terminate your cfsi session.

December 1989 5-1 Charges for CFS Use

5. Charges for Use of CFS

You must provide at least one valid five-digit C&TD
computer charge number (also known as a C&TD request
number) to which your use of CFS can be billed. Billing is
done on a monthly basis.

This chapter describes how charges are calculated, how you
specify the charge number(s) you want to use, and how you
can determine what storage charges you have accumulated
to date during a monthly accounting period.

5.1 How CFS Charges are Determined

Each of your root nodes has an associated charge number.
To view the current charge number for the root node
defined by path, enter

list path lo=a
and refer to the charge field in the response.

The number listed in the charge field is billed for the storage
of all descendant files, as follows:

o a file charge (also known as a directory charge): a small
fee for each file you have in storage at the end of each
monthly accounting period.

» a storage space charge: a charge based on the size of the
files stored and the length of time they were stored (a
space-time product). The unit of measure is the
megabyte (Mb) month. Your CFS files may be stored on
tape (offline) or disk (online). To check the storage type
device for a file, enter the following request, where path
is the complete path for the file, and look at the storage
type field of the response.

list path lo=g
For the current CFS rates, see man charges on UNICOS.

Charges for CFS Use 5-2 December 1989

5.2 Specifying Charge Numbers

If you are working on projects that have different charge
numbers, you must create a root node for each project and
store your files accordingly.

Use the charge= keyword with the create command to
assign a charge number to a new node. For example, the
following request creates a root node named project
containing the charge number 12345 in the charge field. CFS
charges for files in the associated tree will be assessed to this
number.

create project charge=00012345

If you omit the charge= keyword when you create a root
node, as when you create your userid root by entering

create

the default account number for your UNICOS session will
be assigned to the node.

You can change the charge number associated with one of
your root nodes by entering

modify path ncharge=00Quoox

where path is the path for the root and xxox is the new
charge number. The new number will go into effect
immediately.

53 Calculating Interim CFS Charges

File storage costs are the major component of a monthly bill.
You can figure your file storage charges to date for a
particular root node. An example demonstrating the
procedure is shown below.

o User ABC wants to determine the charges he has
accumulated for the current accounting period for files
stored under his root named project. As a first step he
enters the following request to list accounting
information for project. Accounting information is
updated at least every 24 hours.

list /project lo=a

December 1989

5-3 Charges for CFS Use

CFS returns the following response:

node name: project

node type: root directory

oid:

charge: 00012345

space time product starts: 89/10/30 10:54
online space: 134.969 megabytes

online files: 43

online space time product: 1672.8 megabyte days
offline space: 4.616 megabytes

offline files: 80

offline space time product: 928.6 megabyte days

The space time product starts field indicates the beginning
of the current accounting period.

ABC refers to the man file charges and finds that the
rates listed below apply. Note: these rates may not
correspond to actual current rates.

— file charge: $.055 per file
— online (disk) storage: $1.00 per Mb month
— offline (tape) storage: $1.00 per Mb month

The charge per Mb month is actually based on a 30-day
month. The rate for shorter accounting periods will be
proportionately less and for longer periods,
proportionately more.

ABC then figures his storage charges to date for the
month for files stored under the root project.

— $1.00/Mb month <+ 30 Mb days/Mb month =
$0.0333/Mb day

~— cost for online storage:

1572.8 Mb days x $0.0333/Mb day= $52.37
— cost for offline storage:

928.6 Mb days x $0.0333/Mb day= $30.92

— total storage cost to date: $52.37 + $30.92 =
$83.29

Charges for CFS Use

5.4 December 1989

ABC, in the above example, can obtain a tentative file
charge for the month as follows:

43 online files + 80 offline files = 123 files
123 files x $.055 per file = $6.77

However, the number of files he will have in storage at the
end of the month is likely to differ from any interim total.

December 1989 6-1 Working Directories

6. Working Directories

To identify a file or directory node to CFS in a request (i.e.,
to specify a root or path as a parameter), you must supply a
complete path as described in Chapter 3. Doing this is easy
if you are working with a simple tree structure such as the
one shown in Figure 3.1 on page 3-4. To retrieve a copy of
the file indatal, shown in that figure, you have to enter
only

get /userid/indatat

However, when you have organized your files into a complex
structure such as the one shown in Figure 6.1 on page 6-7,
entering paths can be quite tedious. For example, to retrieve
a copy of aouti, shown in that figure, the following is
required:

get /userid/heatcode/versiona/runa/aoutl

CFS provides the mechanism of working directories to
simplify the task of entering paths with commands that
require a path parameter (see Table 2.3).

Working directories are not to be confused with tree structure
directories. A working directory is simply an area in which to
store a path. After you store a path in a working directory,
you can refer to the directory in requests where use of
working directories is permitted; CFS will automatically
substitute the path contained in the directory.

The first three sections of this chapter describe the most
commonly used features of working directories: Section 6.1
deals with the names and contents of working directories;
Section 6.2 describes how to use working directories; and a
series of examples is provided in Section 6.3.

If the node defined by a given path is protected by a
password (see Chapter 8), you must supply that password in
any request that accesses the node. For each working
directory there is a correspondingly named area in which the
password for the stored path can be placed for automatic
retrieval by CFS. Passwords stored in this way are known as
working directory passwords and are described in Section 6.4.

Working Directories

6-2 December 1989

Note that a working directory password does not supply a
password for access to the corresponding working directory
as the name seems to indicate, but rather to the path
contained in the working directory.

6.1 The Names and Contents of Working Directories

There are ten working directories, dirn, where n is one of
the digits 0 through 9. dir0, the default, can be abbreviated
as dir, dO, or d; the others as dn. Each working directory
is represented in your active keyset (see Chapter 3, Section
3.2 and Chapter 7) by the corresponding dirn= keyword.

Each working directory can contain one path at any given
time. Working directories containing paths that originate

with a root node are most frequently used and so are the
only ones considered in this manual.

Each time you invoke cfsi, dirO contains the complete
path for your userid root (i.e., /userid) and dir1 through
dir9 contain null values.

You can replace the contents of any working directory,
including dir0, with a new path using the corresponding
dirn= keyword in a request. To store a path in a working
directory for

« the remainder of your current CFS session or until
changed again, use the set command with a keyword
and value dirn=path as in

set dir2=/userid/reporte

After execution of this request, the current value for
dir2= in your active keyset is /userid/reports.

o the duration of a single request, use dirn=path with a
command other than set as in the following example

delete first second dirO=/userid/reports

As explained in Section 6.2.1, this use of dir0= causes
/userid/reports/ to be appended automatically to the
partial paths first and second. After execution of the
request, the value for dirO= in your active keyset returns
to what it was prior to execution.

December 1989

6-3 Working Directories

To restore the contents of a working directory to the default
value, use the set command with the dirn= keyword set to
a minus sign (-). For example

set dirO=-

replaces the present contents of dirO with /userid and
get dirl=-

replaces the current contents of dir1 with a null value.

To view the contents of a working directory (i.e., the value of
a dirn= keyword in your active keyset), enter

set dirn

where n is the appropriate working directory number.

If you begin to receive unexpected
responses (particulary node does not
exist) when entering CFS requests, check
the values set for the working directories
you are using to be sure those values are
what you currently need.

Paths you store as part of your active keyset during a cfsi
session are not saved when you exit the session. If you
intend to use one or more paths over a period of time, you
may want to store them as a part of a saved keyset for long-
term use (see Chapter 7).

6.2 Using Working Directories

Use of the default working directory dir0 is discussed in
Section 6.2.1; use of airil through dir9 is the subject of
Section 6.2.2.

Working Directories 6-4 December 1989

6.2.1 Using DIR0

Four rules govern use of your default working directory
dir0.

1. If you omit the path parameter (i.e., use a null
parameter) in a request with list or the root
parameter in a request with create, CFS will
automatically insert the path currently saved in dir0
(i.e., use the current active keyset value for dir0=).
Two examples follow:

— Assuming that dirO contains the default path
/userid, you can list accounting information
about your userid root node by entering

list lo=a

— Assuming that dirO contains the path
/userid/reports, you can list the descendants of
the subdirectory node reports by entering

list

Other commands that require a path parameter will
not accept a null. With those commands, you must
enter a path in full or make use of a working directory
in one of the ways indicated in Rules 2 through 4.

2. For commands that require a path parameter, CFS
automatically appends the contents of the default dir0
and a slash to any partial path in a request unless you
provide other instructions. The following examples
illustrate:

— If you invoke cfsi then enter
save a bc d

CFS makes use of the default value for dir0= in
your active keyset and executes

save /userid/a /userid/b /userid/c \
[userid/d
— If you then enter

save abcd\
dir0O=/userid/reports/monthly

December 1989 6-5 Working Directories

CFS makes use of the value for dir0= specified
in the request and executes

save /userid/reports/monthly/a \
/userid/reports/monthly/b \
/userid/reports/monthly/c \
/userid/reports/monthly/d

to save files a, b, c, and d under the
subdirectory defined by the path
/userid/reports/monthly. The value of dir0=
in your active keyset is restored to /userid after
execution of the request.

— The following two requests are an alternative to
the above procedure:
set dirO=/userid/reports/monthly
save a bc d
The value of dirO= in your active keyset, in this

case, does not revert to /userid after execution
of the save request.

3. A minus sign (-) used as the parameter in a request
refers specifically to the default working directory
dir0. Two examples follow:

— To retrieve a copy of the file book1, which is a
direct descendant of the root named library,
you can enter the two requests shown below.

set dirO=/library/book1
get -

— Using the value just set for dir0, create a copy
of the file book1 under your userid root and call
the copy another.

copy - to /userid/another

4. The shorthand notation n’ described in Section 6.2.2
also applies to dirO.

Working Directories 6-6 December 1989

6.2.2 Using DIR1 through DIR9

Use the n prime notation (n’), where n is the number of the
directory, to tell CFS what working directory to copy a path
from.

The n’ notation used alone tells CFS to use the path stored
in dirn as the complete path. For example, if you enter

set dird=/userid/summary
then enter

get 4°
CFS executes

get /userid/summary

Or, if you want to store a value in dir4 only for the
duration of the request, you can enter

get 4°' dird=/userid/summary
To tell CFS to append the contents of dirn to a partial
path, enter n’path as in the following example:

get 5’jan

If dir6 contains the path /userid/reports, a copy of the file
defined by the path /userid/reports/jan is retrieved. You
also can retrieve a copy of the file jan by entering

get 5°’jan dirb=/userid/reports

6.3 Examples

The following serial examples demonstrate how to place
paths in working directories and how to use those paths in
CFS requests. The examples are based on the tree structure
shown in Figure 6.1 on the next page.

o Place the path /userid/heatcode/versiona in dir3 for
the remainder of the current CFS session or until
another request stores a different path in dir3.

set dir3=/userid/heatcode/versiona

heatcode

data

@@ @ -

versiona

userid

versionb

runb

reports

monthly

quarterly

Fig. 6.1. A complex tree structure.

6861 12quadaq

S3L1030311(] Sunjaop

Working Directories

6-8 December 1989

Now, move a copy of aout1 to UNICQOS using the 3°
notation to tell CFS to append the contents of dir3 to
the partial path that follows.

get 3'runa/aocuti

If you had chosen not to make use of dir3, the following
request would have been required:

get /userid/heatcode/versiona/runa/aoutl
Use the 3’ notation and a partial path to place the path
/userid/heatcode/versiona/runa in dir6 for the

remainder of the current CFS session or until another
request stores a different path in dir6.

set dir6=3'runa

Move a copy of aout2 to UNICOS using dir6.

get 6'aout2
Place the path /userid/reports/monthly in your default
working directory

set dirO=/userid/reports/monthly

so that you can retrieve copies of jan and feb by
entering

get jan feb
instead of

get /userid/reports/monthly/jan \
/userid/reports/monthly/feb

If additional monthly reports are present and have to be
retrieved, this use of dirQ will be even more
advantageous.

December 1989

6-9 Working Directories

e Add a new subdirectory called feedback under the

subdirectory monthly, making use of the present
contents of dir0.

add feedback

The following request could also have been used:
add 0’'feedback

Place a copy of the file aouti under the subdirectory

monthly, making use of the present contents of dir0 and
dir6.

copy 6’aoutl to aoutl
Another abbreviated request could also have been used.
copy 6'aoutl to O'aoutl
Restore the contents of dir0 to the default value (i.e.,
/userid).
set dirO=-
Make it easy to use the file jan in several requests by
placing the complete path for the file in dir0
set dirO=/userid/reports/monthly/jan

where it can be used as the default path in commands
such as

get -

which copies jan to UNICOS,
copy - to /userid/jan

which places a copy of jan under your root node, and
delete -

which deletes the copy of jan that is located in the
monthly subdirectory.

Working Directories 6-10 December 1989

« Set the value of diri=to /userid/heatcode/data for
the duration of one request to simplify deletion of the
files set1 and set2.

delete diri=/userid/heatcode/data 1°'setl \
1’get2

6.4 Working Directory Passwords

Working directory passwords are discussed in this chapter
because their use is linked to the use of working directories.
If you do not intend to share CFS files with other users, you
do not need to be concerned with this section. If you do
intend to share files, you should read Chapter 8 before
proceeding with this section.

If a directory or file node is protected by a password, any
user to whom the password applies must supply that
password in each request that accesses the node.

When using passwords under cfsi, you
must enter a caret () before the
password. Be sure to protect your screen
from observation by others when
passwords are displayed.

For every working directory (dir0 through dir9), a
corresponding space (pwO through pw9) is provided to store
the password required to access the path stored in that
directory. A password stored in one of these locations is
called a working directory password.*

Despite what the term working directory password seems to imply, the password has nothing to do with
access to the working directory, itself.

December 1989

6-11 Working Directories

To view a stored password, enter
set pwn lpw=on, set lpw=off
where n is the appropriate digit.

The password stored in pwO is the default. Just as dir0O can
be shortened to dir, pwO can be expressed as pw.

Each time you invoke cfsi, each of the keywords pwO=
through pw9= is set to a null value in your active keyset. As
with a dirn= keyword, you can store a new pwn = value
either for the duration of a request or for the remainder of
your session.

 To store a working directory password for the duration
of a request, include a pwn= keyword in a request with a
command other than set. The password stored
temporarily replaces the current value for the pwn=
keyword in your active keyset; the current value is
restored after execution of the request.

The most common use of a temporarily stored password
is in requests in which the path parameter is entered in
full. In such cases, use pw= to supply the password as
shown in the following example:

get /userid/experiments/testrunl pw="views

Similarly, use pw= when part of the path is supplied using
dir0.

The following examples typify other common uses of
temporarily stored passwords:

- Assuming that the password views is required for
access to the directory experiments, a direct
descendant of your userid root, you can enter

get dir6=/userid/experiments \
pwb="views 6°'testrun? 6’'testrun3 \
6’'testrund

to retrieve copies of the files testrun2, testrun3,
and testrund from the subdirectory
experiments. Note that the working directory
dir6 (and thus pw6) was chosen arbitrarily; any
other working directory could have been used.

Working Directories

6-12 December 1989

— Assuming that the password enter is required for
access to the subdirectory ideas, a direct
descendant of your userid root, you can enter the
following request to save copies of the UNICOS
files new, old, and super under ideas:

save dir6=/userid/ideas pw6="enter \
6'new 6’'old 6’super

As in the previous example, dir6 was chosen
arbitrarily.

« To store a working directory password for the remainder

of your session or until changed again, use the set
command with a keyword and value pwn=password as
shown below.

set pwb="views
The current value for pw6= in your active keyset is now

views.

Generally, you will want to store a path and the
associated password at the same time as in the example
that follows:

set pwb="views dir6=/userid/experiments

Once you have stored a password using set, CFS
automatically uses that password whenever you refer to
the corresponding working directory in a request. Thus,
after entering the above request, you can enter requests
that access experiments without any reference to
views. For example:

get 6’testruni

get 6’testrun2

get 6’testrun3

save test2:6'testrun2

list lo=g 6°

December 1989

6-13 Woerking Directories

You should note three special situations concerning the use
of working directory passwords.

1.

If a request contains a complete path that requires a
password for access, and you do not supply a password
in the request as in

get /userid/experiments/testruni

CFS tries the password, if any, currently set for pwO=
in your active keyset.

If you use a working directory to supply part of a path
in a request, you must use the corresponding pwn=
keyword to supply the password associated with the
path even if the password is not required for access to
the portion of the path stored in the working directory.

For example, assume that dir4 contains the path
/userid/oldfiles, for which no password is required
for access; oldfiles has a subdirectory, final, for
which the password access has been specified; and
you want to save filel under final. Do this with

set pwi{="access
save 4’final/filel

or

save 4'final/filel pwi="access

The move and copy commands require a parameter
consisting of two paths (i.e., pathl to path2). Either
path or both paths may require a password for access.
If these passwords are different (or if only one path
has a password), at least one of the paths must use the
n’ format to distinguish which password is associated
with which path.

For example, assume that your default working
directory dirO contains the path /userid/programs
and that you have set pwO=to enter, the password
required to access that path. You want to move the file
test from the subdirectory programs to the
subdirectory newsave, which has the complete path
/Tevisions/newsave and the password evalz. Two
ways to accomplish this follow. (Note that if
revisions/newsave belongs to another user, that user

Working Directories 6-14 December 1989

must have granted you either write or insert access
rights to newsave for the move request to be executed;
access rights are described in Chapter 8, Section 8.2.3.)

move test to 3'test dir3=/revisions/newsave \
pw3="evalz

or

set pw3="evalz dir3=/revisions/newsave
move test to 3'test

The following request would not work

move test to /revisions/mewsave/test \
pw="evalz

because CFS would take the use of pw="evalz to be a
temporary setting for pw0. Thus, it would think you
were supplying the wrong password for
/userid/programs and omitting the necessary password
for /revisions/newsave.

December 1989

7. Keysets

7-1 Keysets

A set of all keywords with their assigned values is called a
keyset.*

Keywords are introduced in Chapter 2, Section 2.2.3.
Individual keywords and their value options are described in
Chapter 11. '

There are two types of keysets. Active keysets are discussed
in Section 7.1; saved keysets are introduced in Sections 7.2

and 7.3. All users make use of active keysets; use of saved
keysets is optional. Knowing how to work with keysets can

help make entering CFS requests faster.

Other users cannot use your keysets.

Values for the keywords maval=, mcval=, mdval=, mnval=, and suval=, which are used only to

change the values of other keywords and are not covered in this manual, are not included.

Keysets

7.1 Active Keysets

7-2 December 1989

When you invoke cfsi, an active keyset is created with each
keyword set to its default value (see Table 7.1 on page 7-3).
You can change the value of a keyword in your active keyset
using the set command as follows:

set keyword=value

Specifying a keyword and value in a request with another
command simply replaces the value of the keyword in your
active keyset for the duration of the request. In this manual,
the set keyword=value request is used only with dirn=,
pwn=, and 1lpw=. For other keywords, where a value other
than the default is required, that value is defined in the
request (i.e., is set temporarily).

Each command other than set has a limited set of keywords
associated with it. A complete list for each command,
including keywords not described in this manual, is shown in
Table 7.2 on pages 7-4 and 7-5. You can assign a value to
any of those keywords in a request with the command; CFS
automatically gets the values for any of those keywords not
defined in the request from your active keyset. Thus, when
you enter

list /userid lo=u lpw=on

CFS uses the values for lo= and 1pw= shown and takes the
values for the other associated keywords, dir0=, pwO=, and
talk= from your active keyset. Assuming that those values
are the defaults, the validation entries associated with your

userid root node will be listed with passwords displayed.

This manual does not cover the use of all keywords and,
thus, describes the use of only some of the possible options
for each command (see Table 7.3 on page 7-6). Unless you
require unusual functionality, the default values for the other
keywords should meet your needs and those keywords
should not be of concern.

December 1989

Table 7.1. Default values for the keywords

7-3

described in this manual

Keyword Default Value
aval= null
charge= default number
cval= null
dir0= userid root
diri=, .., dir9= null
dval= null
grp= null (CFS chooses)
info= null
kpw= null
lo= g for a file
d for a directory
lpw= off
ncharge= null
ngrp= null
ninfo= null
nname= null
nrel= null
nuse= null
pwn= null
setgrp= off
so= n or names

Keysets

Keysets

7-4 December 1989
Table 72. Commands and all their associated keywords

Command Keyword®

add cl= dirn= info= muval= pwn=
talk= uval=

adopt kpw= talk=

copy charge= dirn= mnval= ngrp= ninfo=
nrel= nuse= nval= pwn= talk=

create charge= cl= dirn= info= muval=
oid= pwn= talk= uval=

delete dirn= pwn= talk=

end none

free kpw= talk=

get charge= dirn= fm= pwn= talk=

keep kpw= info= talk=

list dirn= lo= 1pw= pwn= talk=

modify aval= cval= dirn= dval= maval=
mcval= mdval= ncharge= ncl= ninfo=
nmaster= nname= noid= npart= nrel=
nuse= pwn= setgrp= talk=

move dirn= ninfo= pwn= talk=

remove dirn= pwn= tall=

replace charge= comp= dirn= fm= info=
nrel= pwn= talk=

save charge= comp= dixrn= fm= gIp=
info= muval= pwn= rel= talk=
use= uval=

December 1989 7-5

Table 7.2. Commands and all their associated keywords (continued)

Command Keyword”?

set aval= charge= cl= comp= cval=
dirn= dval= fm= grp= info=
kpw= lo= 1pw= maval= mcval=
mdval= mnval= muval= ncharge= ncl=
ngrp= ninfo= nmaster= nname= noid=
npart= nrel= nuse= nval= oid=
pwn= rel= setgrp= so= talk=
use= uval=

show kpw= lpw= 80= talk=

status talk=

store charge= comp= dirn= fm= grp=
info= muval= nrel= pwn= rel=
talk= use= uval=

4 Some of these keywords are not described in this manual, and many are used only in a limited
way. If you require capabilities that go beyond the scope of this manual, refer to the Common File
System CFS Interface Reference for more information Copies of that manual are available for

reference in the Programming Assistance offices.

Keysets

Keysets 7-6 December 1989

Table 73. Commands with the associated keywords
covered in this manual

Command Keywords

add dirn= info= pwn=

adopt kpw=

copy dirn= ngrp= pwn=

create charge= info= pwn=

delete dirn= pwn=

end

free kpw=

get dirn= pwn=

keep kpw=

list dirn= lo= 1pw= pwn=

modify aval= cval= dirn= dval=
ncharge= ninfo= nname=
nrel= nuse= pyn= setgrp=

move dirn= pwn=

remove dirn= pwn=

replace dirn= pwn=

save dim= gTp™= pwn=

set’ dirn= lpw= pwn=

show kpw= lpw= so=

status

store dirn= gIp= pun=

¢ Any keyword may be used in standalone form with set.

December 1989

7.2 Saved Keysets

7-7 Keysets

Using the set command to assign dirn= and pwn= values
can save you time if you will be referring frequently to one
or more nodes during a cfsi session. For more information,
see Chapter 6.

To display the keywords and their values for your active
keyset, enter

set
or
set -

To display the value of a particular keyword in your active
keyset, enter

set keyword

where keyword is the keyword without an = sign and value
(i.c., a standalone keyword).

A saved keyset is a copy of an active keyset you have given a
name and stored for future use. The name can be from 1 to

16 characters in length and incorporate any of the following

characters:

a~z, A-zl 0-9, s: %n ¥, 0+, - . and -

When you save a copy of your current active keyset, the
active keyset remains unchanged.

You may have as many saved keysets as needed. However,
unless you make significant changes in your active keyset and
intend to use the altered values frequently, saving a copy of a
keyset for later use may not be worthwhile.

Your saved keysets cannot be used by other users.

You have the option of protecting a keyset you save with a
keyset password. However, because you are the only one
who can access any of your saved keysets, use of keyset
passwords on an unclassified system is of marginal value.
For more information about keyset passwords, see Chapter
8, Section 8.3.

Keysets 7-8 December 1989

To specify a keyset password when you save a keyset and to
supply the password to access the keyset later, use the kpw=
keyword. When using a keyset password in a request, you
must enter a caret (*) before the password.

You can create a saved keyset using the keep command as
shown below, first for a keyset that will not have an
associated password and then for one that will. The
parameter keyset is a keyset name of your choice.

keep keyset or keep keyset kpw="password

The saved keyset will be a copy of your current active keyset.
If a keyset with the name you specify already exists, it is
overwritten.

Once a keyset has been saved, it remains available from
session to session and can be used repeatedly until written
over by another keep request or deleted with the free
command as shown below, where keyset is the name of the
saved keyset:

free keyset or free keyset kpw="password

Use the adopt command, as follows, to retrieve a copy of a
saved keyset and make it the current active keyset, where
keyset is the name of the saved keyset:

adopt keyset or adopt keyset kpw="password

You may store a saved keyset that has your userid as its
name by entering

keep - or keep - kpw="password
To retrieve that keyset, enter
adopt - or adopt - kpw="password

To display the values of a saved keyset use the show
command as described in Chapter 9, Section 9.17.

December 1989 7-9 Keysets

7.3 An Example of the Use of Saved Keysets

The example that makes up the remainder of this section
demonstrates, in a limited way, the use of saved keysets.

Assume that you will be working in two subdirectories
during this and later sessions. One subdirectory is defined by
the path /userid/reports/monthly, the other by
/userid/project.

To make your work as easy as possible, you decide to use
saved keysets. After invoking cfsi, you modify the initial
active keyset using the set command as follows:

set dirO=/userid/project

You then save a copy of this keyset, giving it your userid as
its name.

keep -

Your active keyset still has dir0O= set to /userid/project.
You next make the modification you want to suit your needs
for working in the subdirectory monthly.

set dirO=/userid/reports/monthly
and save a copy of this keyset, giving it the name reptkey.
keep reptkey

You want to save a file under monthly, so you use the
current value for dir0O= in your active keyset and enter

save filename

You next decide to store a file under project. To do this,
all you have to enter is

adopt -

save filename

Finally, you decide to store another file under monthly,
which is done easily as follows:

adopt reptkey
save filename

Keysets 7-10 December 1989

Because you will be storing files under monthly and
project during future sessions, you retain your saved
keysets (i.e., do not free them) so that they can be adopted
when needed.

December 1989 8§-1 Security and File Sharing

8. Security and File Sharing

Security on CFS has three components:*
« classification level,
o access rights, and
o password protection.

The UNICOS Cray is an unclassified, non-sensitive
system.** Thus, all directories and files on the K-25 CFS
have a classification level of unclassified (i.e., the ¢/ field for
each CFS node contains a u). You must not store files of
another classification level on UNICOS or CFS.

Access rights are used to define what type of access a user
will have to a particular node. By default, you are the only
user with access rights to your CFS nodes. If you want to
share your files with other users, you must grant them access
rights to the appropriate nodes.

Passwords are used to help ensure that access is limited to
the users to whom you have granted access rights. Use of
passwords is optional on an unclassified system.

Access rights that are granted and passwords that are
required are specified using master user (owner) and user
validation entries. An entry written for a specific node is
stored, as appropriate, in the master user validation or user
validations field of the node. Once a password is associated
with a user in a validation entry that applies to a node, the
user must supply the password in each request that accesses
the node.

Access rights and passwords are covered as components of
validation entries in Section 8.1. Section 8.2 provides
examples of their use in file sharing.

* See Appendix D for information about the file protection assumed by a file copied from CFS to

UNICOS.

** For security information, see Chapter 6 of 4 Guide 1o Computing at Energy Systems, which can be
ordered through DO MANUAL on the C&TD PDP-10 or by calling 4-0331.

Security and File Sharing 8-2 December 1989

8.1 Validation Entries

You can use keyset passwords with saved keysets. For
instructions, refer to Section 8.3.

For information about the commands mentioned in this
chapter, see Chapter 9; individual keywords are described in
Chapter 11.

A general description of validation entries is presented in
Section 8.1.1. Further information about the components of
validation entries is provided in Sections 8.1.2 through 8.1.4,
as follows:

Section 8.1.2 Access rights accumulation modifiers
Section 8.1.3 Access rights
Section 8.14 Passwords

For examples of how to use validation entries to allow file
sharing and provide protection for your files, see Section 8.2.

8.1.1 General description

Validation entries determine who will have access to your
files and what the limit of the access will be.

A validation entry consists of four fields separated by slashes
(/) as shown below

userid/rights /password/modifier
where

userid is the userid (Cray User Number) of a specific
user for whom rights are being granted.

access rights are one or more single-letter abbreviations
representing the extent of the privileges the
specified user will have for the node; the
choices are r(ead), w(rite), m(odify), i(msert),
b(estow), e(xecute), and a(ppend) as defined
in Section 8.1.3. Possession of one access right
does not imply that you have others. For
example, you may have write access without
having read access. A null (no character or
space between the slashes delimiting the field)

December 1989

8-3 Security and File Sharing

is valid; if the access rights field is a null, as in
the example below,

010203//-/8

any access privileges granted to the user at a
higher level in the tree are removed for this
node and any of its descendants (how access
rights set for one node in a tree affect a lower
level of the tree is explained later in this
section).

password is a password of five to eight alphanumeric
characters required of the specified user to
exercise the access rights granted in the entry
(see Section 8.1.4). A minus sign (-) in the
field signifies that no password is required.
For any node but a root, a null password field
(no character or space between the slashes
delimiting the field) indicates that the
password from a higher level in the tree is to
be used. When entering a password as part of
a request, you must enter a caret (*) before
the password.

modifier is the access rights accumulation modifier. The
three options (set, and, and or) are
described in Section 8.1.2.

If you have modify access, you can view the validation entries
for a node that does not require a password by entering

list path lo=u

and checking the validation field(s) in the response. If any of
the validation entries contain passwords, the passwords will
be displayed as strings of percent signs (i.c., ¥%%%%%%%); to
view those passwords, you must include lpw=on in the
request.

list path lo=u lpw=on

For a node that requires a password for your access, the
following request causes validation entries, including
passwords, to be displayed for the node defined by path.

list path lo=u lpw=on pw="password

Security and File Sharing

8-4 December 1989

Some basic rules that apply to validation entries follow:

1.

Access rights are assigned and passwords specified by
writing validation entries for nodes.

— You, by default, have full access to your root nodes
and all their descendants. Each of your nodes has a
master user validation entry that describes your
access rights to the node.

— User validation entries must be written to allow
other users access to your CFS nodes. CFS allows
only one entry per userid in the user validations
field of a node.

In general, the access rights you assign to a user by
writing a validation entry for one node automatically
apply also to all nodes of its subtree (the descendant
nodes are said to inherit the validation of the parent).
If you want to change the access for the user to a
descendant node in the tree, you must write an
appropriate validation entry for that node; the access
granted by the entry will be passed on to the
descendants of that node.

The same rules apply to passwords and access rights
modifiers.

See Chapter 9, Sections 9.3 and 9.12 for the rules that
determine the validation entries that apply to new files
created using the copy command and files that have
been repositioned using move.

When you attempt to access a directory or file
descriptor node, CFS examines all the validation
entries for you on the specified path. Whether you are
allowed to access the node depends on

— what access rights are accumulated along the path
and

— how the rights are affected by the specified access
rights accumulation modifiers.

You can use list with lo=u to view the validation
entries for a node (modify access to the node
required). The response is as follows:

December 1989

8§-5 Security and File Sharing

— User validation entries

A user validation entry is displayed only in the user
validations field of the node for which it was
written. It does not appear in the user validations
fields of descendant nodes that inherit the
validation.

Master user validation entries

A master user validation entry is displayed in the
master user validation field for every node, whether

written for that node or inherited from a parent
node. For example,

node name: project

node type: file descriptor
master user validation:
userid /rewaibm/-/s

user validations:

If a change has been made to the master validation
entry for any non-root node, duplicate entries for
the owner’s userid are displayed, one in the master

user validation field and one in the user validations
field. For example,

node name: project

node type: file descriptor
master user validation:
userid/reaibm/-/s

user validations:
userid/reaibm/-/8

5. As implied by 2 and 4 above, you may have to check

the protection of the parent or a higher node to
determine the access a specific user has to a given
node.

You should set validations at as high a level as possible
in a tree structure and usually for a directory node
rather than a file descriptor node.

Security and File Sharing 8§-6 December 1989

Modify access to a node allows a user to write (i.e., create
and change) and delete master user and user validation
entries for the node. Bestow access allows a user to write
entries that grant one or more of those rights possessed by
that user. For example, if user 010203 has read and bestow
access to a node, he can write the entry 040506/r/-/s but
not the entry 040506/rw/-/s.

The procedures for creating, changing, and deleting
validation entries are described below. For simplicity,
passwords are not specified and the access rights modifier s
is used in all cases. The access rights field is used to
demonstrate entry changes; however, the same procedures
apply to the password and access rights modifier fields.

o Creating a validation entry
— Master user validation entries

When you create a root node, CFS creates a master
user validation entry in the master user validation field
for that node (see Chapter 3 and Appendix A for
information about fields). For example, if you enter

create

to create your userid root, your master validation for
the root will be

userid/rewaibm/-/s

The entry gives you, as owner, full access rights to the
root. The entry is passed on to all descendant nodes,
unless you make changes as described under the next
bullet in this list. You can include a password in the
entry when you create the root as described in
Section 8.1.4.

— User validation entries

Add these entries after the node has been created.
To do so, use the aval= keyword with the modify
command. For example, enter

modify /userid aval=010203/x/-/s
to grant user 010203 read access to your userid root.

The user validations field for your userid root now
contains the entry 010203/x/-/s.

December 1989

8§-7 Security and File Sharing

o Changing validation entries

— Master user validation entries

Use the cval= keyword with the modify command
to change the master user validation entry for a root
node. For example, to remove your write access to
your userid root, enter

modify /userid cval=userid/reaibm/-/s

CFS will proceed through the directory tree
automatically making the same change to the master
user entries for all descendant nodes. If a node is
encountered for which a different entry has already
been created, this automatic process will not be
applied to that node or any of its descendants. CFS
will not allow the owner’s modify access to a node to
be removed.

The procedure for changing the master user
validation entry for a descendant node depends on
whether a change has previously been made for that
node. If the change is the initial change, you must
use the aval= keyword with the modify command.
For example, assume the entry for your userid root is
/userid/rewaibm/-/8 and that you save the file
project under the root. The root’s master user entry
is automatically passed on to project, as you can see
by entering

list project lo=u

to view the following response:

node name: project

node type: file descriptor
master user validation:
userid/rewaibm/-/s

user validations:

Security and File Sharing

8-8 December 1989

Now, you decide to protect the file from accidental
deletion by removing your write access to the file
descriptor node. To do this, use aval= as shown
below.

modify project aval=userid/reaibm/-/s

The list command above will now produce

node name: project

node type: file descriptor
master user validation:
userid/reaibm/-/s

user validations:
userid/reaibm/~/s

Suppose you decide to delete project. Before doing
this, you must reinstate your write access. Because
this is not the initial change to the validation entry
(i.e., there is an entry for your userid in both the
master user and user validation fields for the node),
you must make the change using cval= with modify
as shown below.

modify project cval=userid/rewaibm/-/s

Any change made to your master user validation
entry for a subdirectory node is passed on to
subsequently created descendant nodes.

’

User validation entries

To change a user validation entry for a node, use the
cval= keyword with the modify command. For
example, if user 010203 has read access to the
second-level subdirectory node calendar and you
want to grant him write access in addition, enter

modify calendar cval=010203/rw/-/s

to replace the validation entry 010203/r/-/8s with
010203/rw/-/8.

December 1989 8-9 Security and File Sharing

» Deleting a validation entry

Use dval= with modify to delete a validation entry for a
node. Set the value of dval= to the userid of the user
whose entry is to be deleted. For example, enter

modify calendar dval=010203

to delete the entry for user 10203 from the node
calendar.

CFS will not permit you to delete a master user
validation entry from a root node. If you attempt to
delete the master user validation entry from a non-root
node, the current entry will be replaced with the entry in
effect for the parent node.

8.1.2 Access rights accumulation modifiers

At each node in the path, any access rights assigned to you
in a validation entry are combined with rights assigned at
earlier nodes in the tree according to the access rights
accumulation modifier (i.e., modifier) specified in the
validation entry for the node. (Note that combining rights
may result in rights being added or removed.) The three
possible modifiers set, or, and and, represented
respectively by the letters s, o, and a, are described below.
To avoid the confusion that can result from many access
settings on many nodes, use s whenever possible.

set (8) The user has only those access rights specified at
the current node. Access rights set at a higher
level in the tree are no longer valid for the
specified node or its descendants.

or (o) The user has all access rights in effect down to
this node plus any assigned in this node. or is
used to add additional rights.

and (a) The user has only those access rights that were
previously assigned and are also assigned at the
current node. and is used to further limit access.
Use of and can result in eliminating all access

rights.

Security and File Sharing 8-10 December 1989

8.1.3 Access rights

Any combination of the following seven access rights can be
included in a validation entry. Use the single-character
abbreviation shown in parentheses to specify the associated

right.
o Read (r) access

For a file descriptor node, read access allows a user to
retrieve the associated file from CFS using the get
command, to specify the file as the source in a copy
request (modify access also required if the user
validations field for the node contains one or more
entries), and to display node information using list with
the lo= keyword set to d, g, i, or s.

For a root or subdirectory node, read access allows a
user to display node information using the list
command with lo=setto a, d,or g.

o Write (w) access

Caution: Write is a very powerful access right. In general,
you should not grant other users write access to your
root nodes. Grant write access to other nodes only when
specific requirements cannot be satisfied by insert access.

For a file descriptor node, write access allows a user to
use the replace, delete, and store (when a replace
results) commands. It also permits using modify with the
keywords nname=, nrel= and ninfo= to change the file
name, release date, and contents of the info field for the
node.

For a root or subdirectory node, write access allows a
user to delete the node using the remove command and
to use modify with ninfo= and nname=, It also permits
adding descendant subdirectory and file nodes using add
and save (or store when a new file descriptor node is
being created).

For CFS to execute a user’s copy or move request, the
user must have write or insert access to the destination
parent directory node.

December 1989

8§-11 Security and File Sharing

« Modify (m) access

Caution: Modify is a very powerful access right. In
general, you should not grant other users modify access
to your root nodes. Grant modify access to other nodes
only when specific requirements cannot be satisfied by
bestow access.

Modify access, when granted for a directory or file
descriptor node, allows a user to list validation entries for
the node using the 1ist command with lo=u and to
add, change, and delete validation entries using modify
with the aval=, cval=, and dval= keywords,
respectively.

The owner of a root must always have modify access to
every node of the associated tree; CFS will not execute a
request that attempts to remove the owner’s modify
access.

In addition to permitting a user to alter validation
entries, modify access allows a user to change other node
attributes using the modify command with the
appropriate keyword as shown in the table below.

Keyword Type of Node

ncharge= Root

ninfo= All
nname= All
nrel= File descriptor
nuse= File descriptor

setgrp= File descriptor

Modify access allows a user to use the node or subtree as
the source in a move request.

Modify access to the source file in a copy request is
required in addition to read access when the user
validations field for the node contains one or more
entries.

Security and File Sharing

8-12 December 1989

o Insert (i) access

Insert access is a limited form of write access that applies
only to directory nodes. It allows subdirectory and file
descriptor nodes to be added (using add and save or
store, respectively) but not replaced, removed, or
deleted from the directory to which the user has this
access.

Having insert access to a directory node also permits a
user to specify that node as the destination parent in a
copy Or move request.

Bestow (b) access

Bestow access allows a user to add user validation entries
to a directory or file descriptor node using modify with
aval=. The user may assign only those access rights he or
she possesses.

Execute (e) access

The intended function of execute access has not yet been
implemented. This access right currently allows a user to
retrieve a copy of a CFS file using the get command,
duplicating a function allowed by read access. Generally,
do not remove this access type from an owner validation
entry and do not include it in validation entries for other
users.

Append (a) access

Not currently available. Generally, do not remove this
access type from an owner validation entry and do not
include it in validation entries for other users.

A few functions are allowed by more than one type of access
right. A summary of these is presented in Table 8.1.

December 1989 8-13 Security and File Sharing

Table 8.1. Functions permitted by more than one access right

Function Node Type Access Rights
Use modify with ninfo=, nrel=, file desc. write

and nname= modify

Use modify with ninfo= and directory write

nname= modify
Specify the node as the directory write
destination parent in a move insert

or copy request

Add subdirectory and file directory write
descriptor nodes using add, insert
save, and store

Add user validation entries directory modify
using aval= with modify file desc. bestow”?
Retrieve a copy of a CFS file file desc. read
using get execute®

4 With bestow, only those access rights possessed may be granted.
® Use read.

8.1.4 Passwords

The password field of the validation entry for a user may
contain

o a minus sign (-), indicating that no password is required;

o anull (i.e., no characters or space between the delimiting
slashes), indicating that the password assigned to the user
at a higher level on the tree is required; or

e a string of five to eight alphanumeric characters.

If you specify a password when you write a validation entry
for another user, you must tell the user what that password
is. If you specify a password for your own access, be sure to
take precautions not to forget it.

Security and File Sharing 8-14 December 1989

If you forget a password required
for you to access your own CFS
nodes, call the Programmer Aide

at your site:
K-25 4-1060
X-10 4-5400
Y-12 4-8376

If a validation entry for a user for a node specifies a
password (i.e., contains a null or a string of characters), the
user must supply that password in any request that accesses
the node. The password is also required for the user’s
access to any descendant nodes unless a change is made
lower in the tree. For information about how to use working
directory passwords to supply passwords in requests, see
Chapter 6, Section 6.4 and Chapter 11, Section 11.19. Note:
if you supply a password when none is required, you will
receive an error response.

To specify a password for yourself when you create a root,
use the pw= keyword as shown in the example below.

create reports pw="sesame

Otherwise, to add, change, and delete password
specifications, follow the procedures for manipulating
validation entries described in Section 8.1.1. For examples of
these procedures involving passwords, see Section 8.2.

Note that a node may have more than one associated
password. For example, the password sesame may be
required for you to access your root named reports and the
password newpass for user 010203 to have read access to
the same node. You can use the following requests to make
this arrangement:

create reports pw="sesame

modify /reports pw="sesame \
aval=010203/x/“nevpass/s

When passwords are displayed, you must protect your screen
from observation by others.

December 1989 8-15 Security and File Sharing

8.2 File Sharing Examples

Examples of four different file sharing arrangements are
provided in this section. The procedures followed in each
case may not be the only ones possible.

The first three examples are based on the tree structure
illustrated in Figure 8.1.

The access rights accumulation modifier s is used in all
cases (as recommended in Section 8.1.2). This modifier
indicates that any rights granted for the specified user at a
higher level on the tree are replaced by the rights specified
at the current node.

userid

T

project reports

datal @ data.fin monthly notes

Fig. 8.1. Tree structure for Examples 1 through 3 in Section 8.2.

Security and File Sharing

8-16 December 1989

o Example 1 (refer to Figure 8.1):

You have specified no passwords for access to your
userid root or to any of its descendants. You want your
supervisor (user 010203) to have read access to any files
stored under monthly, but not to the personal
evaluations stored under notes.

Option 1:
Enter

modify /userid/reports/monthly \
aval=010203/x/-/s

to add the specified validation entry to the node
monthly. The minus sign in the password field of the
entry indicates that user 010203 will not have to supply a
password for access.

When user 010203 enters
get /userid/reports/monthly/jan

CFS examines the validation entries for user 010203
along the path for jan. Although no access is granted
(i.e., there are no applicable validation entries) to the
root or to reports, the entry for monthly permits the
necessary access to that node and its descendants. The
request will be executed. Note that the validation entry
could have been added, instead, to the file descriptor
node jan. However, you would have had to add the
same validation entry for each file (i.e., feb, mar,...) to
which you wanted to permit the access.

If user 010203 enters
delete /userid/reports/monthly/jan

the request will be denied because write access is
required to delete a file.

If user 010203 enters
get /userid/reports/notes/setj

CFS will find no applicable validation entries along the
specified path (i.e., no access has been granted) and will
not execute the request.

December 1989

8-17 Security and File Sharing

Option 2:

If you want, you can place the access permission in the
node reports by entering

modify /userid/reports \
aval=010203/x/-/s

However, you would then have to block the access of
user 010203 to notes and its subtree. You can do this by
using a null access rights field as shown below.

modify /userid/reports/motes \
aval=010203//-/8

Then, when user 010203 enters
get /userid/reports/notes/setj

CFS will find that, although the node reports contains a
validation entry that grants read access, the next node in
the path, notes, contains an entry that removes that
right. The request will not be executed.

Example 2 (refer to Figure 8.1):
This example is the same as Example 1 except that you

specified the password allow for yourself when you
created your userid root by entering

create pw="allow
Enter

modify /userid/reports/monthly pw="allow \
aval=010203/r/“allow/s

to add the validation entry granting read access for user
010203 to the node monthly. In this case, you also
require user 010203 to supply the password allow when
accessing monthly and its descendants.

User 010203 can retrieve a copy of jan by entering

get /userid/reports/monthly/jan pw="allow

Security and File Sharing

8-18 December 1989

o Example 3 (refer to Figure 8.1):

You have specified the password permit for your own
access to your userid root. You want to grant read
access to the three members (users 010203, 040506, and
070809) of a project team to all the data files under
project except for data.fin; they will have both read
and insert access to that file. You do not want to allow
access to anyone but yourself to reports and its
descendants. You decide not to share your password but
rather to require that the project members use the
password newpass.

To grant read access for the three users to project and
its descendants, enter

modify /userid/project pw="permit \
aval=(010203/r/"newpass/s 040506/r/ newpass/s \
070809/x/ “newpass/s)

Then, to add insert access for data.fin, enter

modify /userid/project/data.fin pw="permit \
aval=(010203/ri//s 040506/ri//s 070809/ri//s)

The null password fields indicate that the password that
is required for access to project (i.e., newpass) is also
required to access data.fin. The modifier s indicates
that the rights granted in the entries for the node
data.fin supercede any previous rights.

User 070809 leaves the project and must no longer have
access to the data files. You remove that access by
entering the following two requests:

modify /userid/project/data.fin pw="permit \
dval=070809

modify /userid/project pw="permit \
dval=070809

Example 4:

You create the root data to accumulate the results of
experiments being done by several members of a project
team you are supervising. These members have the
userids 010203, 040506, and 070809. You want these

December 1989

8.3 Keyset Passwords

8-19 Security and File Sharing

users to be able to add files to, but not delete files from,
the directory. You require that everyone accessing the
node supply the password results. To create the root
and place the chosen password in the master user
validation field for the node, enter

create data pw="results
Then enter

modify /data pw="results \
aval=(010203/i/"results/s 040506/i/"results/s \
070809/i/"results/s)

to assign to your colleagues insert access and specify the
password results.

User 040506 can then save his data file called exp1
under data by entering

save /data/expl pw="results

or copy a data file defined by the path /040506/exp2
(which requires the password techn for access) to data
by entering

set dirl=/040506/exp2 pwi="techn

copy 1’ to 2' dir2=/data/exp2 \
Pw2="results

If user 040506 tries to delete exp2 as follows,
delete /data/exp2 pw="results

the request will be denied on the basis of insufficient
access rights.

When you create a saved keyset using the keep command
(see Chapter 7, Section 7.2), you can protect that keyset with
a keyset password using the kpw= keyword. For example, the
following request saves your active keyset as the saved keyset
newkey and specifies the password keypass

keep newkey kpw="keypass

Security and File Sharing 8-20 December 1989

which must then be supplied using the kpw= keyword
whenever you refer to the keyset in an adopt, or free
request such as

free newkey kpw="keypass

However, the value of establishing a keyset password is
marginal because you are the only user who can access your
saved keysets.

If you do specify a password for a saved keyset, the password
can be any combination of from five to eight alphanumeric
characters. When you use a keyset password in a request,
you must enter a caret (*) before the password.

December 1989 9-1 Command Descriptions

9. Command Descriptions

A command indicates the action to be taken by CFS.

Each of the commands introduced in Chapter 2 is described
in more detail in this chapter. The command descriptions
are arranged in alphabetical order and follow the format
outlined below. For each description, outline topics that do
not apply are omitted. The descriptions cover only selected
features; for additional features, see the Common File
System CFS Interface Reference, which is available in the
Programming Assistance offices.

s Command name.
s Functional description.

s Shortest command abbreviation: The shortest

acceptable command abbreviation, if abbreviation is
allowed.

o Parameter(s) required: Parameter options, when a
parameter is required. A series of three elipses (...)
indicates that multiples of the associated parameter are
allowed. For more information about parameters,
including alternative ways of specifying paths, see
Chapter 10.

o Keywords and their values: Keywords, if any, suggested
for use with the command. If you do not specify a value
for an applicable keyword in a request with the
command, CFS automatically uses the value set in your
active keyset. For general information about keywords
and keysets, see Chapters 2 and 7. For more details
about individual keywords and their values, see
Chapter 11.

For most commands, most of the keywords listed relate
to exercising options or defining conditions for the
request. To define or redefine a node attribute (i.c., set
the contents of one of a node’s information fields), you
will usually have to use the modify command with one
or more of its keyword options.

Command Descriptions

9-2 December 1989

« Security considerations: Notes concerning access rights
required to execute the command and, in special cases,
information about how CFS handles validation entries
when executing the command. For general information
about validation entries, passwords, and access rights, see
Chapter 8.

 Additional comments: Additional comments, if any.

o Examples: The first example always demonstrates the
most common, no-frills use of the command. In all cases,
two conditions are assumed unless otherwise stated:

— dix0, the default working directory, contains your
userid root (i.e., /userid) and

— the nodes involved are not password-protected.

In addition, if a request copies a file to or from a
UNICOS directory, it is assumed that you invoked cfsi
from that directory. See Appendix C for information
about how to specify other UNICOS directories in CFS
requests.

The request shown in an example may not be the only
one that can be used to accomplish the described
function.

As explained in Chapter 2, Section 2.2.5, a backslash (\)
at the end of an input line indicates that the request is
continued on the next input line.

If you just want to store a few files in your userid root, the
following commands are the ones you are most likely to
need:

create delete end get
list status save

The first example shown in each of the corresponding
command descriptions is generally the only one you will
need to understand.

December 1989 9.3 Command Descriptions

You may want to use the following tables in Chapter 2 for
quick reference:

Table Information Provided
21 Summary descriptions of command
functions
22 Shortest possible command
abbreviations

23 Command parameter requirements
25 Keywords suggested for use with
each command

When you enter a password in a request, you must enter a
caret (*) before the password as shown in the following
example:

get testfile pw="newpass

If the response to a request you enter may contain
passwords and you have no need to view the passwords, be
sure that the keyword 1pw= is set to off (the default). If
you display the passwords (1pw=on), protect your screen
from observation by others.*

lpw=off does not currently work when set and show arc used to list keyword values. This condition
should be corrected in the future.

Command Descriptions 9-4 December 1989

9.1 add
Adds a subdirectory to an existing parent directory.

Shortest command abbreviation: a

Parameter(s) required: path ...

Keywords and their values:

dirn= a path for use for the duration of the request

info= a text string of up to 80 characters to add
comments to the contents of the subdirectory
node; string must be enclosed in double quotes
(" "); usually used to describe the use to which
the subdirectory will be put

pwn= the password to the parent directory; this
password becomes the password for the new
subdirectory

Security considerations:

To add a subdirectory node, write or insert access to the
parent node is required.

Examples:
« Add the subdirectory reporte to your userid root.
add /userid/reports
or
add reports
To check that reports exists, enter
llist lo=d

December 1989 9-5 Command Descriptions

¢ Add the subdirectories feb, mar, and april to the
named root months, using the dirn= keyword to
simplify the request. Assume that the password
sesame is required for you to access months,

add feb mar april dir0O=/months pwO="sesame

sesame will now also be required for you to access
feb, mar, and april.

o Add the subdirectory procedures to your userid root
and include an explanation of what type of files are to
be stored under the subdirectory.

add procedures info="files containing \
information about documentation procedures"

To display the explanation, enter

list procedures lo=i

Command Descriptions 9-6 December 1989

92 adopt

Replaces the keyword values of the active keyset with the keyword values from a
saved keyset. (To save a keyset, use keep.)

Shortest command abbreviation: ado

Parameter(s) required: keyset or -

Keywords and their values:

kpw= the password to the keyset

Additional comments:

If a minus sign (-) is used as the parameter, your userid will
be the name of the saved keyset.

Keysets are discussed in Chapter 7.
Examples:

o Replace the keyword values of your active keyset with
the values from your userid saved keyset.

adopt -
« Replace the keyword values of your active keyset with
the values from the saved keyset named job33.
adopt job33
o Perform the above procedure, but assume that the
keyset was saved with the keyset password tryme.
adopt job33 kpw="tryme

December 1989 9-7 Command Descriptions

93 copy

Copies an existing CFS file from one path (pathI) to a new CFS file on a new path
(path2).

Shortest command abbreviation: ¢

Parameter(s) required: pathl to path2 ...

Keywords and their values:

dirn= a path for use for the duration of the request

ngrp= an option (a, b, n, or o) to determine selection of
the storage group for the new copy of the file

pwn= the password to the existing source node for pathl
and the password to the parent node for path2; for
more information, see Chapter 6, Section 6.4

Security considerations:

To use copy, write or insert access to the destination parent
and read access to the existing source file (pathl) are
required. Modify access to the source file is also required if
the user validations field for the node has one or more
entries.

A master user validation entry that was written for path1 is
copied to path2. If path1 inherited its master user validation
entry from a higher node, path2 will inherit its master user
validation from a higher node. The entry for path2 may thus
be different from that for pathl.

An entry (whether for the owner or a non-owner) that
appears in the user validations field for a file descriptor node
is copied along with the file. If the entry contains the access
rights modifier s, the access conditions for the specified
userid will be the same for the copy as for the original file.
If access to the original file was determined by an entry at a
higher level in the tree, the userid will have no access to the
copy unless access is granted by an entry in the new parent
or related higher-level node.

To be sure access to the copy of a file is what you intend,
examine the validation entries along the path to the new file
descriptor node.

Command Descriptions

9-8 December 1989

Additional comments:

If the source file has been assigned to a specific storage
group, the copy will be assigned to the same group unless
the ngrp= keyword is used to change the group. If the
source file has not been assigned to a specific storage group,
the copy will be stored on the group on which the source file
currently resides unless a different arrangement is made
using ngrp=. For information about storage groups and their
use in backing up files, see Chapter 11, Sections 11.6, 11.12,
and 11.18.

All the attributes of the source file node, except the storage
group and an inherited master user validation entry, are
automatically carried over to the new file node. Use the
modify command if you want to change any of these values
(e.g., user validation entries, release date) for the new file
node.

After a copy is executed, two copies of the file exist. The
source file descriptor node has a pointer to the original
version; the destination file descriptor node contains a
pointer to the new copy.

The to in pathl to path2 is required.

If either pathl or path2 is stored in dir0, you can use a
minus sign (-) to specify that path.

Examples:

o Assume that filel has as its parent your userid root
node and that dirO contains the path for your userid
root. Make a copy of filel, placing the copy under
the same node and calling it file2 (the source and
destination parent nodes are the same).

copy /userid/filel to /fuserid/file2
or
copy filel to file2

You could also store the path for filel in dir0 and
then use a - in the copy request.

set dirO=/userid/filel
copy - to /userid/file2

December 1989

9-9 Command Descriptions

All the attributes associated with filel will also be
associated with file2.

Assume that you want to perform the above copy, but
that filel was saved on storage group A (i.e., the
storage group field for the file node has been set to a)
and you want file2 to be placed on storage group B
for backup purposes.

copy filel to file2 ngrp=b
or
copy filel to file2 ngrp=o

All attributes associated with filel except the
storage group will also be associated with f£ile2.

Now assume that your userid root contains the user
validation entry 010203/r/-/s. Because filel
inherits this validation from the userid root, the entry
does not appear in the user validations field for the
node and, therefore, is not copied to the new node for
file2. However, because file2 has the same parent,
it also inherits the validation. You decide you do not
want 010203 to access file2.

modify file2 aval=010203//-/s

Perform the copy shown in the first example, but
assume that the file descriptor node for filel
contains the validation entry 010203/ri/sesame/s
and that you do not want to require userid 010203 to
supply a password to access file2. First copy the file
as shown; the contents of the user validations field for
filel will be copied to the new node.

copy filel to file2
Next, enter
modify /userid/file2 cval=010203/ri/-/s

The user validations field for £ile2 now contains the
entry 010203/ri/-/s, granting read and insert access
with no password requirement to userid 010203.

Command Descriptions

9.10 December 1989

o Place a copy of the file defined by the path
/userid/test under the subdirectory (destination
parent) that has the path /programs/runs. Assume
that your userid root includes the validation entry
userid/rewaibm/reopen/s, so that the password
reopen is required to access test. The password
reset is required to access the destination
subdirectory.

copy /userid/test to 2’test \
dir2=/programs/runs pw2="reset pw="Teopen

or

set dirO=/userid/test pwO="reopen

copy O’ to 2’'test dir2=/programs/runs \
pw2="reset

All the file attributes associated with the source
version of test are associated with the new copy of
test. However, because the master user validation
for the original file test was inherited from your
userid root, the new copy will inherit its master user
validation entry from the new parent. Thus, the
password reset will be required to access the new
copy (i.e., /programs/runs/test).

December 1989 9-11 Command Descriptions

94 create

Creates a userid or named root directory and sets the master usér (owner) validation
entry for the root.

Shortest command abbreviation: cr
Parameter(s) required: root ... or null or -
Possible keywords and their values:

charge= three zeros followed by the five-digit C&TD
computer charge number to which the CFS
charges associated with files stored under the
new node are to be billed

info= a text string of up to 80 characters to add
comments to the contents of the root node;
string must be enclosed in double quotes (" ");
usually used to describe the use to which the
root will be put

pwn= the owner password to the root; if specified,
the password becomes part of the owner’s
master user validation entry and will be
required of the owner to access the root and
any of the nodes created in the tree (unless
changes are made later using the modify
command)

Additional comments:

If you use a null or minus sign (-) as the parameter with
create, CFS uses (or attempts to use) the path stored in
your default working directory dirO as the root name. The
root name must be unique to the entire CFS.

A leading slash on the root name is optional.

If charge= is not specified, the defanlt charge number for
your UNICOS session will automatically be associated with
the node.

Command Descriptions

9.12 December 1989

There is no way to list the names of your CFS root nodes
under cfsi. However, all existing CFS nodes are listed in
the CFS file /cfsroots/uroots (updated daily). You can
place a copy of the file in your UNICOS area under the
name uroots by entering the following command at the
cfsi prompt:

get /cfsroots/uroots

The file contains three columns of information. The first
column consists of Cray User Numbers (i.c., CFS userids)
with any leading zeros removed; your userid appears once
for each root node you own followed, in the second column,
by the name of the root. All your root names are grouped
together. To view those names, use an editor or the more
command on UNICOS to search the file uroots for your
userid. Omit a leading zero (e.g., user 010203 would search
for 10203). Roots you have created since the last update of
/cfsroots/uroots will not be listed.

Examples:

« Create a root directory using your userid as the root
. name.

create

The master user validation entry for this node will be
userid/rewaibm/-/s.

Verify that the root exists.
list lo=d

« Create a root directory with the name planning.
create planning
Verify that the root exists.
list /planning lo=d
» Create a root node named enexgy to store files
related to a project. The computer charge number for

the project is 01234, and you want to identify the
purpose of the directory.

create energy charge=00001234 \
info="energy: options for conservation"

December 1989 9-13 Command Descriptions

¢ Create a root node named schedules. Use your
default charge number but specify that you will have
to supply the password whosit to access the root.

create schedules pw="vhosit

The master user validation entry for the new root will
be userid/rewaibm/whosit/s. You now decide to give
userid 010203 read access to the root with the
password whosit, so you enter

modify /schedules aval=010203/r/“whosit/s

Command Descriptions 9-14 December 1989

9.5 delete
Deletes a file and the associated file descriptor node from CFS.

Shortest command abbreviation: del

Parameter(s) required: path ..

Keywords and their values:

dirn= a path for use for the duration of the request

pun= the password to the path for the file or to the path
contained in the corresponding dirn, depending
on the form of the request

Security considerations:
To delete a file, write access to the file is required.
Additional comments:

If the path for the file descriptor node is stored in dir0, you
can use a minus sign (=) as the parameter for the delete
request. However, after the request is executed, be sure to
change the contents of dirO to another value before
continuing with other requests.

Examples:

e Delete the file reports, which is stored under your
userid root node.

delete /userid/reports
Or, if dir0 contains the path for your userid root,
delete reports

You can also use the following command to store the
complete path for reports in dir0

set dirO=/userid/reports
then enter

delete -

December 1989 9-15 Command Descriptions

e Delete the file jan from the root node reports,
which is protected by the password enter.

delete /reports/jan pw="enter
e Delete files a, b, and ¢ from subdirectory new of the
root reports using a temporary setting for dir0
delete a b ¢ dir0=/reports/new
or using a temporary setting for another directory.
delete 5'a 5'b 6°c dirb=/reports/new
o Perform the same operation as in the previous

example, but assume that the password enter is
required to access the subdirectory new.

delete 6'a 6'b 6'c dirb=/reports/mew \
pPw5="enter

Command Descriptions 9.16 December 1989

9.6 end
Terminates a cfsi session.

Shortest command abbreviation: en
Additional comments:
Entering

end <RETURN>

while waiting for a cfsi prompt does not terminate your
connection with cfsi until the outstanding request has been
processed. To terminate the connection (and the outstanding
request) immediately, enter <CTRL-¢>.

The end command is not required in single-line execution
mode (see Chapter 2, Section 2.4).

Examples:
o End your cfsi session at the cfsi prompt.
end

December 1989 9-17 Command Descriptions

9.7 free
Deletes a saved keyset from CFS. (To save a keyset, use keep.)

Shortest command abbreviation: fr
Parameter(s) required: keyset ... or -
Keywords and their values:

kpw= the password to the keyset
Additional comments:

If you use a minus sign (-) as the parameter with free, the
keyset (if you have created one using keep) with your userid
as its name is deleted.

Keysets are discussed in Chapter 7.
Examples:

¢ Delete the keyset that was saved using your userid as
its name.

free -

» Delete the saved keysets named jobl and job2.
free jobl job2
o Delete the keyset newkey that was saved with the
password openup.

free newkey kpw="openup

Command Descriptions

9.8 get

9.18 December 1989

Transfers a copy of a CFS file to the UNICOS worker system; the CFS file remains

intact.

Shortest command abbreviation: g

Parameter(s) required: workerfile:path ... or path .
Keywords and their values:

dirn= a path for use for the duration of the request

pwn= the password to the path for the file or to the path
contained in the corresponding dirn, depending
on the form of the request

Security considerations:

To retrieve a file, read or execute access to the path is
required.

Additional comments:

If a file with the name specified already exists on the worker
system, that file is replaced with the file from CFS.

If dirO contains the complete path for the file you want to
retrieve, you can use a minus sign (-) to represent path.

Specify workerfile in the parameter if you want the file to
have a different name on UNICOS than it has on CFS;
otherwise, the file name will be the same as on CFS (i.e., the
last node name in the complete path for the file).

December 1989

9-19 Command Descriptions

Examples:

» Retrieve a copy of the file procedures from your

userid root node.
get /userid/procedures

Or, if dirO contains the path to your userid root,
get procedures

You can also enter
set dirO=/userid/procedures

to place the complete path for procdures in diro
and then enter

get -
In each case, the copy on UNICOS will retain the

name procedures.

Retrieve a copy of the file procedures from your
userid root node, but call the UNICOS version
workproc.

get workproc:/userid/procedures

Retrieve a copy of the file a from the subdirectory
defined by the path /testruns/new/first, assuming
that the password reopen is required to access first.

get dirb=/testruns/new/first pwb="reopen \
5'a

If the password had been set at the file level rather
than at the subdirectory level, the same request would
have been required to retrieve the file a.

Command Descriptions 9-20 December 1989

9.9 keep
Stores the set of keyword values currently in your active keyset as a saved keyset.

Shortest command abbreviation: k
Parameter(s) required: keyset or -
Keywords and their values:

kpw= the password that will be required for access to
the keyset

Additional comments:

If you use a minus sign (-) as the parameter with keep, your
userid will be the name of the saved keyset.

If a keyset with the name specified already exists, it is
replaced without warning.

Keysets are discussed in Chapter 7.
Examples:

o Store your active keyset, giving it your userid for its
name.

keep -

e Store your active keyset, giving it the name keyseta.
keep keyseta

« Store your active keyset, giving it the name keyseta,

specifying the password valset for access.
keep keyseta kpw="valset

December 1989 9-21 Command Descriptions

9.10 list

Lists information (i.e., attributes; the content of fields) from directory and file
descriptor nodes. (To list keyword values, use set and show. See Chapter 9, Section
9.4 for information about how to list roots.)

Shortest command abbreviation: 1

Parameter(s) required: path ...

Keywords and their values:

dirn= a path for use for the duration of the request

lo= one or more of the list options a, d, g, i, s,
and u; used to specify what information you would
like to view

lpw= either on or off, depending on whether you want

any passwords to be displayed; should be set to
off (the default) unless there is a need to view
passwords

pwn= the password to the path for the node or to the
path contained in the corresponding dirn,
depending on the form of the request

Security considerations:

Read access to the node is required for most list options;
modify access is required to list user validation entries.

Additional comments:

You can use a blank as the parameter in a list request; CFS
will automatically use the path stored in dir0. Using a
minus sign (-) has the same effect.

The output from list varies, depending on the value
assigned to the list option (1o=) keyword and the type of
node being listed (see 1o= in Chapter 11).

— If the path specifies a directory node, the default value
for lo=is d; the names and types of the node’s
immediate descendants are returned.

— If the path specifies a file descriptor node, the default
value for lo=is g; general information for that file is
returned.

Command Descriptions 9.22 December 1989

Specify multiple list options in any order with no delimiters
as in the following example:

list lo=gu
Examples:

«» List information from the node named in your default
working directory using the default value for 1lo= for
that type of node.

list
or
list -
o List the validation entries for root a, which has the
password enter.
list lo=u /a pw="enter

Because the default value for 1pw= is used (i.e., off),
any passwords in the validation entries are displayed
as strings of percent signs.

« List general information and user validations,
including passwords, for files a and b, which are
stored under subdirectory talk of the root trip.

list lo=ug dirO=/trip/talk a b lpw=on

Be sure to protect your screen while the passwords
are displayed and to clear it as soon as possible.

December 1989

9.11 modify

9-23 Command Descriptions

Changes information in directory and file descriptor node fields (i.e., changes specific

node attributes).

Shortest command abbreviation: mod

Parameter(s) required: path .

Keywords and their values: The first two keywords may be
used to specify the path for the node being modified and the
password, if any, required for access to that node. Use the
remaining keywords to change the contents of various fields
for the specified node.

dirn=

pwn=

aval=

cval=

dval=

ncharge=

ninfo=

a path for use for the duration of the request

the password to the path for the node or to
the path contained in the corresponding
dirn, depending on the form of the request

user validation entry to be added for a node
or initial change in the master user validation
for a node; format is

userid /rights/password /modifier, where userid
is the userid of the user with whom the rights
are to be associated

validation entry to replace an existing entry in
the user validations field for a node; format is
userid/rights /password/modifier, where userid
is the userid of the owner or other user with
whom the rights are to be associated

the userid associated with a user validation to
be deleted

a new computer charge number for a root
node (prefixed by three zeros)

a new text string of up to 80 characters to
replace the current contents of the info field;
string must be enclosed in double quotes
""

a new node name; do not attempt to change
the name of another user’s root

Command Descriptions

9-24 December 1989

nrel= a new file release date

nuse= a new estimate for file activity

setgrp= on to lock in the storage group for a file if a
storage group was not specified when the file
was saved.

Security considerations:

The following access rights are required for the changes
possible with modify.

Keyword Type of Node Required Rights

aval= All Modify or Bestow
cval= All Modify

dval= All Modify

ncharge= Root Modify

ninfo= All Modify or Write
nname= All Modify or Write
nrel= File descriptor Modify or Write
nuse= File descriptor Modify

setgrp= File descriptor Modify

Additional comments:

If path is stored in dir0, you can use a minus sign (-) as the
parameter in a modify request.

Examples: (see also individual keyword descriptions)

o Add a validation entry for user 010203 to your userid
root node.

modify /userid aval=010203/r/-/s
Or, if dir0 contains the path for your userid root,
modify - aval=010203/r/-/s

o Assume that the validation entry 010203/r/enter/s
is associated with the subdirectory defined by the path
/reporte/monthly and that the password enter is
also required for you to access monthly. Delete the
validation entry for user 010203.

modify /reports/monthly pw="enter \
dval=010203

December 1989

9-25 Command Descriptions

» Assume that your root reports contains the master
validation entry /userid/rewaibm/enter/s and that its
subdirectory monthly has inherited that entry. Change
the password for your access to monthly.

modify /reports/monthly pw="enter \
aval=yserid/rewaibm/“newpass/s

+ Assume that your root reports contains the master
validation entry /userid/rewaibm/-/s and that the
password enter has been set for your access to its
subdirectory monthly (i.e., the master user validation
field contains the entry /userid/rewaibm/enter/s and
the user validations field also contains that entry).
Change the password for your access to monthly.

modify /reports/monthly pw="enter \
cval=userid/rewaibm/“newpass/s

o Assume that you want to set a release date of June 1,
1990 for the file results, which is a direct descendant
of your userid root.

modify /userid/results nrel=90/06/01

Command Descriptions 9-26 December 1989

9.12 move
Moves an existing node (pathI) and its subtree, if any, to a new node (path2).

Shortest command abbreviation: mov

Parameter(s) required: path1 to path2 ...

Keywords and their values:

dirn= a path for use for the duration of the request

pun= the password to the source node for pathl and to
the new parent node for parh2

Security considerations:

To accomplish a move request, modify access to the source
node pathl and write or insert access to the destination
parent node are required.

An entry (whether for the owner or a non-owner) that
appears in the user validations field for a source node is
moved along with the node.

When you move a node belonging to another user to a node
belonging to you or to a new root node, you become the
owner of the moved node. Conversely, other users can use
move to gain possession of your nodes. For this reason, it is
good practice not to grant other users modify access to your
root nodes and to grant them modify access to other nodes
only when special circumstances require.

When pathl and path2 belong to the same user:

o A master user validation entry that was written for the
source node is moved along with the node. However, if
path2 is a new root, CFS will modify the entry to give the
owner full access rights.

o If pathl inherited its master user validation entry from a
higher node, path2 will do the same. The entry for path2
may thus be different from that for pathl.

To be sure access to a moved node is what you intend,
examine the validation entries along the path to the node at
its new position.

Additional comments:

If either pathl or path2 is stored in dir0, you can use a
minus sign (-) to represent that path in a move request.

December 1989

9.27 Command Descriptions

Only the nodes in the CFS tree are manipulated by move.
The actual files represented by the file descriptor nodes are
not copied or relocated.

If you use move to create a new root, the new root is created
using your default charge number. If the new root name is a
userid, it must be your userid.

Examples: In the following examples, diagrams of the
original tree structure(s) precede the request; the tree
structure(s) resulting from the request follow.

o Example 1:

AN

Place node b (and its subtree) of root a under node
y of root x. 7y is the destination parent node.

move /a/b to /x/y/b

o Example 2:

Command Descriptions 9-.28 December 1989

Place node b (and its subtree) of root a under node
y of root x, but change the name of node b to z in its
new location.

move /a/b to /x/y/z

o Example 3:

Perform the preceding move, but assume that the
password letmein is required to access node b and
the password sesame to access node y.

set diri=/a/b pwi="letmein

move 1’ to 2'z dir2=/x/y pw2="gsesame

o Example 4:

PN

Create a new root node b from the subdirectory b
(and its subtree) of root a. Assume that the master
user validation entry for root a is
userid/rewaibm/letmein/s and that node b inherits
this entry.

December 1989

9-.29 Command Descriptions

move 1' to /b dirl=/a/b pwi="letmein

The master validation for the new root node b will be
userid/rewaibm/letmein/s.

If you had written the master user validation entry
userid/reaibm/-/s for the subdirectory node b, the

master user validation entry for the new root would
have been userid/rewaibm/-/s.

o Example 5:

AN

Change the parent directory of file e from root a to
subdirectory b of root a.

move /a/e to /a/b/e

Command Descriptions 9-30 December 1989

Make root a and its associated tree a part of the tree
associated with root x by making a a direct
descendant of x. Assume that root a has the master
user validation entry userid/rewaibm/sesame/s and
that root x has the master user validation entry
userid/rewaibm/reopen/s and the user validation
entry 010203/w/reopen/s. First enter

set dirO=/a pw="gesame
Then enter either

move O’ to 1'a dirl=/x pwi="reopen
or

move - to 1’a diri=/x pwi="reopen

Both validation entries associated with root a will be
moved with the node.

£ 2\
] @ [
O [x] L]

© ©

December 1989

9.13 remove

9-31 Command Descriptions

Removes an empty directory node (root or subdirectory) from CFS.

Shortest command abbreviation: rem

Parameter(s) required: path ...

Keywords and their values:

dirn= a path for use for the duration of the request

pun= the password to the path for the directory or to
the path contained in the corresponding dirn,
depending on the form of the request

Security considerations:

To delete a directory node, write access to the path is
required.

Additional comments:
If the directory node has descendants, the request will fail.

If the path for the directory node is stored in dir0, you can
use a minus sign (~) as the parameter for the remove
request. However, after the request is executed, be sure to
change the contents of dir0 to another value before
continuing with other requests.

Examples:

¢ Remove the subdirectory alternate from the root
named plans.

remove /plans/alternate
e Assuming that the root plans now has no
descendants, remove plans.
remove /plans
+ Remove the subdirectories a, b, and ¢ from the
parent subdirectory options, which is a direct

descendant of your userid root. The password codes
is required to access options.

remove a b ¢ dirO=/userid/options pw="codes

Command Descriptions 9-32 December 1989

o Remove the directory node named in the working
directory dird.

Temove 4’

December 1989 9-33 Command Descriptions

9.14 replace
Replaces an existing CFS file with a file from the UNICOS worker system.

Shortest command abbreviation: r

Parameter(s) required: path ... or workerfile:path ...
Keywords and their values:

dirn= a path for use for the duration of the request

pwn= the password to the path for the CFS file or to the
path contained in the corresponding dirn,
depending on the form of the request

Security considerations:
To replace a file, write access to the node is required.
Additional comments:

The workerfile name is required as part of the parameter
only if the file is to have a different name on CFS.

All the attributes (e.g., user validation entries, password,
storage group) associated with the file descriptor node
before the request is executed remain the same after the
replacement. Use the modify command to make changes to
these attributes.

If the path defining the file to be replaced is stored in dir0,
you can use a minus sign (=) to represent path in the
replace request.

The original workerfile remains intact after the replace
request has been executed; delete the workerfile if there is
no reason to retain it.

Command Descriptions 9-34 December 1989

Examples:

o Replace testl, which is a direct descendant of your
userid root node, with the UNICOS file called testl.

replace /userid/test1
Or, if dir0 contains the path for your userid root,
replace testl

You might, instead, use the following two requests,
particularly if you intend to use the file as the
parameter in several requests:

set dirO=/userid/test1

replace -

¢ Replace the file choices, which is a direct descendant
of your userid root node, with the UNICOS file called
selection.

replace selection:/userid/choices

o Replace the CFS file defined by the path
/userid/reports/monthly/jan with the UNICOS file
called jan. Assume that the path is protected by the
password stars.

replace /userid/reports/monthly/jan \
pw="stars

December 1989 9-35 Command Descriptions

9.15 save

Creates a new CFS file (and associated file descriptor node) by copying a file from the
UNICOS worker system to CFS.

Shortest command abbreviation: s

Parameter(s) required: path ... or workerfile:path ...
Keywords and their values:

dirn= a path for use for the duration of the request

grp= an option (a, b, or -) to determine selection of
the storage group for the new file

pwn= the password to the path for the CFS file or to the
path contained in the corresponding dirn,
depending on the form of the request

Security considerations:

To save a file on CFS, write or insert access to the parent
node is required.

The new file node on CFS inherits the access of its parent
node. Check the validation entries along the path leading to
the file node to be sure the access is what you intend.

Additional comments:

If a file of the same name exists in the CFS directory
specified, a warning message is sent; you are not permitted
to overwrite the existing file.

The workerfile name is required only if the file is to have a
different name on CFS.

The original workerfile remains intact after the save request
has been executed; delete the workerfile if there is no reason
to retain it.

The new file descriptor node will assume the relevant
attributes defined in your active keyset. Use the modify
command to change the attributes (e.g., release date)
associated with the new file descriptor node and to change
access rights inherited from the parent node.

Command Descriptions 9-36 December 1989

If the path for the new file descriptor node is stored in dir0,
you can use a minus sign (-) to represent path.

Examples:
o Save the file testl as testl under your userid root.
save /userid/testl
Or, if dir0 contains the path for your userid root,
save testl
o Save the UNICOS file testl as function under your

userid root, assuming that the password reopen is
required to access the root.

save testl:/userid/function pw="reopen

o Save the UNICOS file jan on CFS as jan under the
subdirectory defined by the path
/userid/reports/monthly. The password letmein is
required to access monthly.

set dirO=/userid/reports/monthly pwO="letmein

save jan

e Save files a, b, and ¢ under subdirectory options of
root tests. Specify that all three files are to be
placed on storage group B.

save a b c dirO=/tests/options grp=b

December 1989

9.16 set

9-37 Command Descriptions

Lists or changes values for keywords in your active keyset. (Use list to display node
attributes and show to list the values of keywords in saved keysets.)

Shortest command abbreviation: se

Keywords and their values:

Use one of the following requests to list your active keyset:
set or set -

You can use the keyword lpw=* in either request, but note
that doing so makes a permanent, rather than temporary,
change in the value of the keyword in your active keyset.

To list the value of an individual keyword in your active
keyset, specify the keyword in standalone form (i.e., without
an equal sign and value) in a set request as follows:

set keyword
You may use any keyword in this way.

To change the value of a keyword in your active keyset, use
set as follows:

set keyword=value

The new value will remain in effect until changed with
another set request or until you end your cfsi session. In
this manual, set is used to change the value of only the
following three keywords:

dirn= a path

lpw= on or off to indicate whether user-defined
passwords will be displayed when they occur in a
list, set, or show response;** off, the
default, should be used unless there is a reason to
view the passwords (see discussion and examples
in Chapter 11, Section 11.10)

Although you can use 1pw= with set when listing keyword values, 1pw=off docs not currently work, so

any passwords contained in keyword values are always displayed.

** lpw=off does not currently affect the display of passwords when set and show arc used to display
keyword values. A correction to this problem is expected.

Command Descriptions

9-38 December 1989

pwn= the password to the path contained in the
corresponding dirn

When a non-default value for another keyword is desired,
that value is set for the duration of a request by including
the keyword and value in the request. For example,

save filel grp=a
Additional comments:

Forgetting that you have changed the value of a keyword in
your active keyset can cause problems. If you begin receiving
error responses you do not anticipate, check the contents of
your working directories and any working directory
passwords you have set to be sure they are what you
currently need.

If a request contains no command, the set command is
assumed. Thus,

set dir2=/userid/reports
is the same as
dir2=/userid/reports

If you use a minus sign (-) as the keyword value in a set
request, the value of the keyword in the active keyset
becomes the system default (see Table 2.4). Thus,

set lpw=-
sets the value of lpw=to off.
Examples:
« List all your active keyset values.
set
» Determine the value that is in effect in your active
keyset for the dir2= keyword.
set dir2
« Reset the current value of working directory dir3 to
the system default (an empty path).

set dir3=-

December 1989 9-39 Command Descriptions

» Assign the path /userid/project/reports to dir3
and set pw3=to comein, the password required to
access the path.

set dir3=/userid/project/reports pw3="comein

You can now easily save files under reports using
the 3' notation as in

save 3'filel
Later in your session you enter
modify - aval/userid/rewaibm/-/s

to remove the password requirement for access to
reports. You then remember one more file you want
to save and enter

save 3'testfile

CFS returns the error response no access to the
node because pw3 continues to supply a password
even though none is now required. The request will
succeed if you first enter

set pw3=-
to return pw3= to its null default value.

» Assume that you want to save several files (test1,
test2, and test3) under the subdirectory defined by
the path /userid/trials and that you want the files
placed on storage group A.

set dirO=/userid/trials
save testl test2 test3 grp=a

Command Descriptions

9.17 show

9-40 December 1989

Displays contents, date of creation, and date last saved for one or more of your saved
keysets. (To display the values of your active keyset, use set. To save a keyset, use

keep.)

Shortest command abbreviation: sh
Parameter(s) required: keyset ... or blank
Keywords and their values:

kpw= the password required to access the keyset for
which information is being requested

lpw= on or off depending on whether you want any
user-defined passwords included in a keyset (e.g.,
pw3=letmein) to be displayed;* off, the default,
should be used unless there is a need to view
passwords

go= o, n, or a to indicate what information you want
to have displayed. o displays a specific saved
keyset; a displays all your saved keysets; n
displays the names of all your saved keysets. n is
the default.**

Security considerations:

If a keyset is password-protected and the password is not
supplied using the kpw= keyword, the keyset will not be
displayed.

You are the only user who can display your saved keysets.
Additional comments:

Do not use a parameter with n or a. Supply a parameter
with so=o; with this keyword and option, a blank parameter
represents your userid saved keyset.

* The of? setting for this keyword does not currently mask passwords in 2 show response, but should in

the future.

** Currently, you must include so=o in every show request to get consistent responses. Implementation of
the n and a options is expected in the future.

December 1989 9-41 Command Descriptions

Examples:

« Display all the contents of your userid saved keyset.
Assume the keyset is not password-protected.

show so=o
or
show userid so=o
 Perform the above procedure, but assume the keyset
is protected by the password dosay.
show so=o kpw="dosay
» Display the entire contents, including pwn= values, of

the saved keysets named first and second. The
keysets are not password-protected.

show so=o first second lpw=on

Command Descriptions 9-42 December 1989

9,18 status

Checks the status of CFS and its devices and the status of any of your requests not yet
completed.

Shortest command abbreviation: sta
Additional comments:

CFS automatically sends periodic status messages when a
request requires more than about a minute to execute (e.g.,
you may get a waiting for storage device message if the
file you have specified in the request must be retrieved from
tape). If you are running cfsi in the background, you may
want to direct these messages to a file to avoid having them
displayed on your screen.

If you enter a status request, the information you receive
includes

« the number of CFS requests in the queue waiting to be
executed;

« the number of CFS requests being executed; and

o the status of disk and tape storage for storage groups A
and B.

If you have one or more requests in the queue or being
executed, the response will include the following, as
applicable:

¢ the command name,
o when the request was sent to CFS, and
— where the request is in the queue,

— what unavailable device (if any) is inhibiting execution
of the request, or

— when execution started and what percentage of the
current file transmission has been completed.

If you enter status while waiting for a response to a
request, the status response will not be returned until after
the original request has been executed. You will, however,
continue to receive the periodic system messages.

December 1989

9-43 Command Descriptions

Enter <CTRL-c¢> to exit cfsi while waiting for a request to
execute. The request will terminate.

If, when using status, you do not receive a cfsi or
UNICOS system prompt when expected, try entering
<RETURN>,

Examples: (Sample responses are shown following the
requests.)

« Display status information when you do not have a

request pending.
status
queued requests: 0 active requests: 1
status for: disk mass storage
groupa up up
groupb up up

» You want to retrieve the file filel from tape using
single-line execution in the background but do not
want to submit the job unless CFS is running. At the
UNICOS prompt you enter

cfsi status

You receive a response similar to that above
indicating that CFS is up, so you enter

nohup cfsi get filel &

Using the nobup command causes any periodic status
messages from the system to be directed, as part of
the output, to the file nohup.out.

If you have a batch job that invokes cfsi to perform
a function such as saving output files, you may want to
use a status request early in the job to determine
whether to continue or not.

Command Descriptions 9-4 December 1989

» You decide to check on the status of the get request
submitted in the previous example. You can invoke
cfsi and then enter

status
or simply enter

cfsi status

at the UNICOS prompt.
queued requests: 0 active requests: 4
status for: disk mass storage
groupa up up
groupb up up
request status:
command arrived queue waiting on % of file
started . . transmitted

get 13:36 13:36 00000 queue 61

December 1989

9.19 store

9-45 Command Descriptions

Saves or replaces files on CFS.

Shortest command abbreviation: st

Parameter(s) required: path ... or workerfile:path .
Keywords and their values:

dirn= a path for use for the duration of the request

grp= an option (a, b, or -) to determine selection of
the storage group for a new file (applies only if a
save is executed)

pun= the password to the path for the CFS file or to the
path contained in the corresponding dirn,
depending on the form of the request

Security considerations:

Write access to the path is required if the store replaces an
existing file; if a file with the name indicated in path does not
exist (i.e., the store executes a save), write or insert access to
the parent node is required.

Additional comments:

Before store is executed, the active keyset is checked to see if
any pertinent keywords are set. If a file with the specified path
does not cxist, store executes a save request using the
keywords relevant to save. If the file does exist, store
executes a replace using the keywords relevant to replace.

An existing CFS file is overwritten without warning, so use
store carcfully.

The workerfile name is required in the parameter only if the
file is to have a different name on CFS.

If path is stored in dir0, you can use a minus sign (-) to
represent the path in the store request.

The original workerfile remains intact after the store request
has been executed; delete the workerfile if there is no reason to
retain it.

Command Descriptions 9-46 December 1989

Examples:

 Save or replace the file named test1 under your userid
root.

store /userid/testi
Or, if dir0 contains the path for your userid root,

store testl

o Store the UNICOS file named test1 as testisub
under the subdirectory defined by the path
/userid/experiments/firstrun. The password letmein
is required to access firstrun,

store testl:testlsub pw="letmein \
dirO=/userid/experiments/firstrun

« Store the file named test1 under your userid root and
specify that the file be located on storage group B.

store testl grp=b

Note that the grp= keyword is used if a save is
executed, but ignored if a replace occurs (i.e,, if a file
named testl already exists under your userid root). If
a replace occurs, the contents of the group field for the
node remain unchanged.

December 1989 10-1 Parameter Descriptions

10. Parameter Descriptions

A parameter is used in a request to specify the object upon
which the associated command is to be performed. There
are four types of parameters: keysets, paths, roots, and
workerfiles. They are described in Sections 10.1 through
10.4.

Each command has specific parameter requirements as
described in Chapter 9 and summarized in Table 2.3. With
some commands, a minus sign (-) or a null (i.e., a blank)
may be used to represent a parameter. For details, see the
individual command descriptions in Chapter 9.

Multiple parameters are permitted with many commands.
When you use multiple parameters, CFS interprets the
request as multiple requests, one for each parameter, in the
order given. For example, the request

save filel file2 dirO=/userid/collect

which has the two parameters filel and file2, causes CFS
to execute

save filel dirO=/userid/collect
save file2 dirO=/userid/collect

The parameter descriptions in Sections 10.1 through 10.4
follow the format outlined below:

o Parameter name.
o Brief description.

e Commands used with: A list of the commands covered in
this manual that require or can use the parameter.

e Naming restrictions.

o Comments and examples: Comments about use of the
parameter and examples of its use. The examples, in all
cases, assume that no passwords are required.

Parameter Descriptions

10.1 Keyset Parameter

10-2 December 1989

The name of a saved keyset.

Commands requiring a keyset parameter:
adopt, free, keep, show
Naming restrictions:

A keyset name must be 1 to 16 characters in length. Legal
characters for a keyset name are

a-zl A’zl 0-9' s' %' *l +! —l A and -
Comments and examples:

A keyset is a set of all keywords and their assigned values. A
saved keyset is a non-active keyset that is being held for
future use; it is preserved by CFS from session to session
until you delete it or until it is automatically deleted after a
year of disuse. For a discussion of keysets, see Chapter 7.

Other users may not use your keysets.

You can specify a keyset password when you save a keyset.
The password will then be required for future access to the
keyset. For information about the use of keyset passwords,
see Chapter 7, Section 7.2 and Chapter 8, Section 8.3.

When used with the keep command, the keyset parameter is
the name you are giving the keyset you are storing. Thus, if
you want to store your active keyset, giving it the name
keyset2, enter

keep keyset2

When used with adopt, free, or show, the keyset
parameter is the name of an existing saved keyset. For
example, you can make keyset2, saved above, your active
keyset by entering

adopt keyset2

December 1989

10-3 Parameter Descriptions

You can use a minus sign (-) as the keyset parameter; CFS
will substitute your userid as the keyset name. For example,

keep -

stores your active keyset as the keyset named userid, and
adopt -

retrieves that keyset and makes it the active keyset.

If you omit the keyset parameter in a show request, CFS will
use your userid keyset.

Parameter Descriptions 10-4 December 1989

10.2 Path Parameter
A sequence of node names that identifies a node.

Commands requiring a path parameter:

add, copy, delete, get, list, modify, move, remove,
replace, save, store

Naming restrictions:

The node names in a path must be separated by slashes.
Each node name can be up to 16 characters in length. Legal
characters for a node name are

a<z, A-Z, 0-9. s. %, *. +o T e and -

The maximum length of a path, including slashes, is 96
characters. A path can be no more than 48 levels deep; 6 or
7 levels is a practical limit.

Comments and examples:

Paths and tree structures are described in Chapter 3. The
node defined by a path may be password-protected. For
information about password requirements and the use of
passwords, see Chapter 8, Section 8.1.4.

A complete path in a CFS tree is defined as the name of
each node from the root downward to the specified node,
where each node is chained together and preceded by a slash
(/). The sequence describes to CFS the route to follow
through a tree to reach the specific node. For example, the
complete path for the file descriptor node prgmi in Figure

10.1 is /userid/prgni,

Fig. 10.1.

December 1989 10-5 Parameter Descriptions

and the complete path for the file descriptor node jan in
Figure 10.2 is /userid/reports/monthly/jan.

userid

reports

monthly

Fig. 10.2.

To execute a request requiring a path parameter, CFS must
be able to determine the complete path using information
from the request and from your working directories.* The
following general rules apply:

o If the first character of a path is a slash, the path is
considered to be a complete path. Thus, you can specify
the complete path for the node jan in Figure 10.2 by
entering /userid/reports/monthly/jan as the
parameter in a request.

o If the first character of a path is not a slash, as in
reports/monthly/jan, CFS appends the contents of a
working directory to form a complete path. You can
indicate the appropriate working directory in one of two

ways:

Working directories are introduced in Chapter 3, Section 3.2 and discussed in detail in Chapter 6.

Parameter Descriptions

10-6 December 1989

— You can omit reference to a working directory in

the request, causing CFS to append the contents of
working directory dir0. This directory, by default,
contains the path for your userid root. Thus, if you
are working with the tree in Figure 10.1, have not
used the set command to change the contents of
dir0, and enter the request

get prgml

CFS appends /userid to the parameter
specification and executes the request

get /userid/prgmi
You can use the n’ notation to specify the
directory, where n is the number of the working

directory (0 through 9). For example, if dir6
contains /userid/reports/monthly and you enter

get 6’jan
CFS executes
get /userid/reports/monthly/jan

If the n’ notation is used alone, CFS takes the
complete path from the specified dirn. Thus, if
dir6 in the above example had contained
/userid/reports/monthly/jan, you could have
entered

get 6°
to retrieve the file jan.

o If you use a minus sign (-) as the parameter, CFS takes
the complete path from your default working directory.
Thus, if dir0 contains /userid/reports and you enter

get -
CFS executes
get /userid/reports

to retreive a copy of the file reports.

December 1989

10-7 Parameter Descriptions

« If you use a null path (only allowed with 1ist), CFS
takes the complete path from your default working
directory. Thus, if dirO contains the default value
/userid and you enter

list

CFS lists information about your userid root.

If you begin receiving the response node
does not exist, particularly when making
use of dir0, check the contents of the
working directory you are using to be sure
the stored path is the one that is currently
needed.

If you specify a path that does not exist or make a syntax
error in the path specification, CFS will not execute your
request and will return an error response. If you enter a path
incorrectly but, in doing so, describe an existing path, the
request will be executed with results you had not anticipated.
For example, assume you have root nodes named /userid
and /reports and these roots have the associated trees
shown in Figure 10.3. '

Fig. 103.

Parameter Descriptions

10-8 December 1989

Also assume that you want to retrieve the file a that is
stored as a third-level descendant of your userid root. You
intend to make use of dirO to simplify the request and enter

get /reports/a

Because you preceded the parameter with a slash, however,
CFS takes the path to be a complete path, does not append
/userid, and retrieves the file a that is a descendant of the
root reports.

The copy and move commands require that both a source
and a destination path be specified. The format is path1 to
path2. For more information, see the command descriptions
for copy and move in Chapter 9.

If your request involves a UNICOS file
that is or will be located in a directory
other than the one from which you invoked
cfsi or if a file you specify in a request
will have different names on UNICOS and
CFS, you must use a workerfile parameter
with the path parameter. For information,
see Section 10.4.

December 1989 10-9 Parameter Descriptions

103 Root Parameter
The name (or path) of a userid or named root node.

Commands requiring the root parameter: create
Naming restrictions:
There are two types of root names.

« A userid root uses as its name a personal identifier
specifically reserved for a user. Your personal identifier
is your six-digit Cray User Number (see the Preface).

e A named root can be created using the name of your
choice. The root name, however, must start with an
alphabetic character, be no longer than 16 characters in
length, and incorporate only the characters

a-z, A—z: 0—9: sl %l *, 0+, -, ., and -

The root name you select must be unique to CFS. If a
root with the name you select already exists, you will
receive an error response and will have to try another
name,

Comments and examples:

You must create at least one root node before you can store
any files on CFS. A root node is the origin of a tree
structure, which is the basis for file organization on CFS.
Root nodes and tree structures are discussed in detail in
Chapter 3. Roots may be password-protected. For
information about password requirements and the use of
passwords, see Chapter 8, Section 8.2.4.

When you create a root node, you are the owner of that
node and all its descendants (i.e., the master user validation
entry contains your userid).

See Chapter 9, Section 9.4 for information about how to list
the names of all your root nodes.

Parameter Descriptions

10-10 December 1989

You may specify a root parameter by name or by its path.
Thus,

create reports
and

create /reports
are equivalent.

If you use a null or a minus sign (-) as the parameter with
create, CFS will use the path (minus the leading slash)
stored in the default working directory dir0 as the root
name. Thus, if dir0O contains the default value /userid, you
can enter

create
or
create -

to create your userid root. If dirO contains a path with
more than one level, CFS will return an error response
because a root name cannot contain the slash character (/).

December 1989

10-11 Parameter Descriptions

10.4 Workerfile Parameter

The name of a file on UNICOS (i.e., the worker system); used in combination with a
CFS path using the format workerfile : path when different names for a file apply on
UNICOS and CFS or when you are referring to a UNICOS file that does not reside
in the directory from which you invoked cfsi.

Commands that can use a workerfile parameter:
get, replace, save, store
Naming restrictions:

Workerfile names must conform to UNICOS naming

_ conventions.

If the workerfile is associated with your working directory on
UNICOS (i.e., the directory from which you invoked cfsi),
use only the file name. If the workerfile is associated with
another UNICOS directory, specify the UNICOS path for
the file as described in Appendix C.* For simplicity, the
examples in this manual make two assumptions:

o when entering a get request, you have invoked cfsi
from the UNICOS directory into which you want the file
placed; and

o when entering a save, store, or replace request, you
have invoked cfsi from the UNICOS directory
containing the file to be saved.

For example, if you have a subdirectory called subdir under
your login directory on UNICOS and the file testrun is
located in that subdirectory, you could invoke cfsi from
your login directory and then enter

save subdir/testrun:testrun

to save a copy of testrun on CFS. However, this manual
assumes that you enter

cd subdir

* Appendix C also describes how to use ed to change UNICOS directories from within cfei.

Parameter Descriptions

10-12 December 1989

on UNICOS, and then invoke cfsi from subdir, so that
the simple request

save testrun
is all that is required to save testrun.
Comments and examples:

The workerfile: portion of workerfile:path is optional as
described below.

» If you want the file on CFS and the corresponding file on
UNICOS to have the same name, omit workerfile:. CFS
will use the last node name in the CFS path (i.e., the file
name on CFS) as the file name on UNICOS. For
example, the request

get /userid/testrun

gets a copy of the CFS file named testrun and places it
in the UNICOS directory from which you invoked cfsi.
The new file on UNICOS is also named testrun.

» If you want the file on CFS and the corresponding file on
UNICOS to have different names, include workerfile:.
For example, if you have a file named testrun on
UNICOS and want to save it on CFS directly under your
userid root as runi, enter

save testrun:/userid/runi
or, if dir0 contains the path for your userid root,
save testrun:runl

You cannot store a workerfile :path specification in a working
directory.

You may use a space on either side of the colon as shown
below.

rveplace awards2 : awards

The workerfile name must always appear to the left of the
colon.

December 1989 1-1 Keyword Descriptions

11. Keyword Descriptions

Keywords are used to exercise options permitted with a
command, to define node attributes (i.e., the content of node
fields; see Chapter 3, Section 3.1 and Appendix A), or to
define conditions for a request. They are literal names to
which values may be assigned. The values are sometimes
literal (shown in monospaced type in the descriptions) and
sometimes symbolic (shown in italics). The format for
defining a keyword is

keyword=value

A keyset is a complete set of keywords and their values. An
active keyset is the keyset currently in use; a saved keyset is
one that has been stored for future use. Keysets are
described in Chapter 7.

When you invoke cfsi, an active keyset is created with each
keyword set to its default value. Each command has certain
keywords that are associated with it. When you enter a
request, CFS automatically gets the values for any of those
keywords that are not defined in the request from your
active keyset.

You change the value of any keyword in your active keyset
by using keyword=value in a set request, where value is a
new value. However, this manual does this only with dirn=,
pwn=, and 1pw=. You can also change the value of a
keyword for the duration of a request by including the
keyword and its temporary value in the request (with a
command other than set); the keyword must be one of
those associated with the command.

Forgetting that you have changed the value
of a keyword in your active keyset can
cause problems. If you begin receiving
error responses you do not anticipate,
check the contents of your working
directories and any working directory
passwords you have set to be sure they are
what you currently need.

Keyword Descriptions

11-2 December 1989

For more information about keywords see Chapter 2,
Section 2.23. Table 2.4 provides a summary of keyword
functions and default values.

A goal of this manual is to to provide the functionality
required by most users in the shortest and simplest way
possible. To meet this goal, the use of keywords in requests
is limited in two ways.

o First, this manual does not cover all keywords; the
default values for those not covered should meet the
needs of most users.

o Second, for each command, not all associated keywords
are discussed. For example, the keyword nrel= can be
used with several commands including copy (see Table
7.2). In this manual, however, it is used only with
modify. Thus, to copy filel to file2 and give file2
a release date seven days later than the one in effect for
filel, you are instructed to enter

copy filel to file2
modify file2 nrel=007

For a list of all the keywords that are associated with each
command see Table 7.2; Table 2.5 shows the subset of those
options that is covered in this manual. If you find you need
more detailed information about the use of keywords than is
presented in this manual, see the Common File System CFS
Interface Reference, which is available for reference in the
Programming Assistance offices.

The keyword descriptions are presented in alphabetical
order and follow the format outlined below.

o The keyword.
o A functional description.

« Shortest keyword abbreviation: The shortest acceptable
keyword abbreviation, if one is allowed.

+ Commands used with: The commands with which the
keyword can be specified in a request (actually, a subset
of the full list as explained above).

December 1989

11-3 Keyword Descriptions

o Keyword value(s): An explanation of the non-null values

that may be associated with the keyword. A null value is

an option whenever the default value of the keyword in
the active keyset is a null.

 Default value: The default value in the active keyset
when you invoke cfsi.

« Additional comments: Additional comments, if any. If
multiple values can be specified with the keyword (see
Chapter 2, Section 2.2.3), this fact is noted.

« Examples: Examples demonstrating use of the keyword.
In all cases, two conditions are assumed unless otherwise
stated:

— dir0, the default working directory, contains your
userid root (i.e., /userid) and

— the nodes involved are not password-protected.

In addition, if a request copies a file to or from a
UNICOS directory, it is assumed that you invoked cfsi
from that directory.

The request shown in an example may not be the only
one that can be used to accomplish the described
function.

As explained in Chapter 2, a backslash (\) at the end of
an input line indicates that the request is continued on
the next input line.

When entering passwords under cfsi, be sure to protect
your screen from observation by others. If you are
requesting information that includes passwords and have no
need to view the passwords, be sure that the keyword lpw=
is set to off (the default).* If you display the passwords
(1pw=on), protect your screen from observation by others.

lpw=off does not currently mask passwords when keyword values are listed with set and show. This

problem should be corrected in a future version of CFS.

Keyword Descriptions

11.1 aval=

11-4 December 1989

Adds a new validation entry to the user validations field of an existing file descriptor
or directory node. Makes an initial change in the master user validation entry for a
non-root node. (To change any non-owner user validation entry or to change the
master user validation entry for a root or another node for which a change has already
been made, use cval=; to delete an entry, use dval=.)

Shortest keyword abbreviation: av=

Commands used with: modify

Keyword value(s): userid/rights/pw/modifier

where

userid

rights

pw

is the userid being assigned rights.

are any combination of the characters that specify

the following access rights:

r (read) i (insert) a (append)
w (write) b (bestow) e (execute)
r (modify)

If you enter a null in this field (i.e., no character
or space between the first and second slashes), the
specified user will have no access rights. For a
discussion of access rights, see Chapter 8,

Section 8.1.3.

is a password of five to eight alphanumeric
characters to be required of the specified user for
access. If no password is required, use a minus
sign () in this field. Use a null field to show that
the password from a higher level in the tree is to
be used. A null password cannot be specified for a
root, because a root is the highest level in a tree.

Precede each password you enter in a request with
a caret (*). See Chapter 8, Section 8.1.4 for more
information about passwords.

Be sure to protect your screen from view by others
when entering passwords in a request.

December 1989

11-5 Keyword Descriptions

modifier is one of the following characters to specify the
access rights accumulation modifier (see
Chapter 8, Section 8.1.2):

8 (set) o (or) a (and)

Default value: null
Additional comments:
You can specify multiple values with aval=,

CFS creates a master user validation entry in the master user
validation field for a root node as described in Chapter 8,
Section 8.1.1. That entry is inherited by all descendant nodes
and appears in the master user validation field for those
nodes. To change the entry for a descendant node, you do
not initially use cval= as might be expected. Instead, you
use aval= set to the desired new value. aval= causes the
new entry to appear in the master user validation field for the
node and also creates a duplicate entry in the user
validations field. Once this duplicate entry has been created,
you use cval= to make any future changes.

You cannot use aval= to remove an owner’s modify access
to any node.

Because write and/or modify access allow a user so much
control, it is good practice not to grant these rights to other
users for your root nodes. Grant these rights to other nodes
only when special circumstances require.

Examples:

o Permit userids 010203 and 040506 to have read access
to your root directory without a password.

modify aval=(010203/r/-/s 040506/r/-/s) \
Juserid

e Assume that the password lookat is required for
access to your userid root and, therefore, to the
subdirectory defined by the path /userid/uses. Retain
the password lookat for access to /userid, but
require the password reopen for your access to uses.

Keyword Descriptions

11-6 December 1989

modify /userid/uses pw="lookat \
aval=yserid/rewaibm/"reopen/s

The master user validation field of your userid root
still contains the entry userid/rewaibm/lockat/s. The
master user validation and user validations fields for
the node uses each contain the entry
userid/rewaibm/reopen/s. cval= must be used for
future changes to the master user validation entry for
the node uses.

December 1989 11-7 Keyword Descriptions

112 charge=

Sets the C&TD computer charge number for a root node when the node is created
(i.e., sets a value for the node’s charge field). (To change the charge number for a root
node, use ncharge= with the modify command.)

Shortest keyword abbreviation: ch=

Commands used with: create

Keyword value(s):

A valid, five-digit C&TD computer charge number preceded
by three zeros.

Default value:
The default charge number for your UNICOS session.
Additional comments:

All charges associated with files stored under the node are
made to the charge number specified for the node.

You must create a separate root for each charge number
you want to use.

Examples:

e Create a root directory named tests with charge
number 12345 that is different from the default.

create tests charge=000123456

Keyword Descriptions

113 cval=

11-8 December 1989

Changes the rights, password, and/or modifier in a user validation entry listed in the
user validations field for a file descriptor or directory node. Also makes changes to the
master user validation field for a root node and for a node for which an initial change
has been made in that field. (To add a non-owner validation entry or make an initial
change in a non-root master user entry, use aval=; to delete an entry, use dval=)

Shortest keyword abbreviation: cv=

Commands used with: modify

Keyword value(s): userid/rights/pw/modifier

where
usenid

rights

pw

is the userid being assigned rights.

are any combination of the characters that specify
the following access rights:

r (read) i1 (insert) & (append)
v (write) b (bestow) e (execute)
a (modify)

If you enter a null in this field (i.e., no character
or space between the first and second slashes), the
specified user will have no access rights. For a
discussion of access rights, see Chapter 8,

Section 8.1.3.

is a password of five to eight alphanumeric
characters to be required of the specified user for
access. If no password is required, use a minus
sign (-) in this field. Use a null field to show that
the password from a higher level in the tree is to
be used. A null password cannot be specified for a
root, because a root is the highest level in a tree.

Precede each password you enter in a request with
a caret (). See Chapter 8, Section 8.1.4 for more
information about passwords.

Be sure to protect your screen from view by others
when entering passwords in a request.

December 1989

11-9 Keyword Descriptions

modifier is one of the following characters to specify the
access rights accumulation modifier (see
Chapter 8, Section 8.1.2):

8 (set) o (or) a (and)

Default value: null
Additional comments:
You can specify multiple values with cval=.

CFS will not permit you to remove modify access from a
master user validation entry.

You can use cval= to perform two basic functions:

o changing the master user validation entry for a root
node, and

« changing an entry that appears in the node’s user
validations field. If the entry is for the owner’s userid, the
corresponding entry in the master user validation field is
also changed.

If a validation has been inherited from a related, higher-level
node and therefore does not appear as an entry in the user
validations field for the node, use aval= to change it for the
current node (see last example in Section 11.1).

Because write and/or modify access allow a user so much
control, it is good practice not to grant these rights to other
users for your root nodes. Grant these rights to other nodes
only when special circumstances require.

Examples:

o Change the password required for you to access your
root node trials (from oldpwd to newpwd).

modify /trials pw="oldpwd \
cval=userid/rewaibm/“newpwd/s
o Add insert access to the read access already granted
to userid 010203 for the root node examples.

modify /examples cval=010203/ri/-/s

Keyword Descriptions 11-10 December 1989

114 dirn=
Can provide part or all of a path for a CFS request.

Shortest keyword abbreviation: dn=
Commands used with:

add, copy, delete, get, list, modify, move, remove,
replace, save, set, store

Keyword value(s): a path

Default value:

dir0 /userid (your userid root node)
dirl - dir9 null

Additional comments:

Each dirn represents a working directory, where n is one of
the digits 0 through 9. Use the dirn= keywords to define
paths for working directories. When a working directory is
referenced in a request, its contents are used as directed by
CFS in forming the complete path required for the request.

Use the n’ notation to refer to a working directory where n
is the n in dirn. If a password is required to access the path
stored in dirn, the password can be stored as a working
directory password (pwn) using the keyword pwn=. Once
stored, the password will be used automatically by CFS
whenever the corresponding dirn is referenced in a request.

dir0 is the default working directory and can be abbreviated
as dir or d in addition to d0. When no n’ reference is
made in a request where one is required, CFS uses the
contents of dir0.

This manual deals only with working directories containing
paths that begin with a root (i.e., are preceded by a slash).
Sometimes a working directory is used to supply the initial
portion of a path in a request and sometimes to supply the
complete path.

The path contained in a working directory cannot be of the
form workerfile : path.

For a discussion of paths, see Chapter 3. Chapter 6 deals
with working directories and working directory passwords.

December 1989 11-11 Keyword Descriptions

Examples:

o Save the file vegetables under your userid root node
using the default path stored in dirO.

save vegetables

o Save the files first and second under the
subdirectory defined by the path /userid/list using
dir7.

set dir7=/userid/list
save 7'first
save 7'second

The set request established a value for dir7= in your
active keyset that can be referred to in later requests.

o In the above example, assume that the password
letmein is required to access list.

set dirT=/userid/list pw7="letmein
save 7'first

save 7'second

o Copy the file exams defined by the path /userid/misc
to the subdirectory school defined by the path
/outside/school. The password letmein is required
for you to access misc and congrats to access
school.

copy 3’exams to 4’'exams pw3="letmein \
dir3=/userid/misc pwd="congrats \
dir4=/outside/school

The values for dir3=, dird=, pw3=, and pwd= are set
only for the duration of the request.

Keyword Descriptions

115 dval=

11 -12 December 1989

Deletes a validation entry for the specified userid from the user validations field of a
file descriptor or directory node. (To add a validation entry or to make an initial

change in a master user validation for a non-root node, use aval=; to make changes
to the master user validation field for a root node or for the user validations field for

any node, use cval=)

Shortest keyword abbreviation: dv=

Commands used with: modify

Keyword value(s):

The userid of the user validation entry being deleted.
Default value: null

Additional comments:

You can specify multiple keyword values with dval=

If you set dval= to userid/rights/pw/modifier, CFS uses the
userid and ignores the remainder of the input.

You cannot delete the master user validation entry from a
root node.

When you use dval= to delete the master user validation
entry from a non-root node, the current entry in the master
user validation field for the node is replaced by a copy of the
entry for the parent node. In addition, if there is a duplicate
entry for the owner’s userid in the user validations field for
the node, that entry is deleted.

See Chapter 8 for more information about validation entries.
Examples:

« Delete the validation entry for userid 010203 from
your userid root.

modify /userid dval=010203
or

modify - dval=010203

December 1989 11-13 Keyword Descriptions

« Delete the validation entries for userids 010203 and
040506 from the node defined by the path /a/b/c.

modify /a/b/c dval=(010203 040506)
¢ Perform the above procedure, assuming that the root
node a is protected by the password whoisit.

modify /a/b/c dval=(010203 040506) \
pw="whoisit

Keyword Descriptions 11 -14 December 1989

11.6 grp=

Specifies the choice of physical storage group at the time a file is copied from
UNICOS to CFS; either locks a file into group A or B (i.e., sets the value of the
node’s group field to a or b) or allows CFS to select the storage group. (To lock a file
into the current storage group when no storage group has been previously set, use
setgrp= with the modify command; to set the storage group for a file being created
using the copy command, use ngrp=.)

Shortest keyword abbreviation: gr=
Commands used with: save, store
Keyword value(s):

One of three characters as follows:

a to specify storage group A

b to specify storage group B

- to set the keyword value to null (i.e., to specify that
CFS will select the storage group)

Default value: null (CFS selects the group)
Additional comments:

Because the storage devices used by CFS are extremely
reliable, there are no automatic system backups of files
stored on CFS. However, the storage devices are divided
into two physically separate groups, so you can back up
mission-essential files by storing duplicate copies, one on
each group. If a file has been stored (using save or store)
with grp=set to a or b, it will not change groups during a
CFS-initiated migration or execution of a replace request.
Note that backup copies stored under the same directory
node must have different file names (e.g., test and

test .bak).

Unless you are backing up mission-essential files, you should
use the default value for grp= (i.c., do not use grp= in the
request) so that CFS can store and migrate files to balance
the load between storage devices.

Examples:

e Save the file test in the root directory compile and
specify the storage group A.

save /compile/test grp=a

December 1989 11-15 Keyword Descriptions

o test, which was just saved on storage group A, is a
mission-essential file. Back it up by saving another
copy of test in the same directory but on storage
group B. Call this copy test.bak.

save test:/compile/test.bak grp=b

Keyword Descriptions 11-16 December 1989

11.7 info=

Stores text information in the info field of a root or subdirectory node to help identify
the contents of the associated tree. (Change the contents of the info field for a node
or add identifying text information to a file node using ninfo= with the modify
command.)

Shortest keyword abbreviation: inf=
Commands used with: add, create

Keyword value(s):

One to 80 characters of text information enclosed in double
quotes (" ").

Default value: null
Additional comments:

You can list the info field of a node by using the lo=i or
lo=g option with the list command. You may find that an
80-character field is not displayed properly on your terminal.
If so, try limiting the field to 71 or 72 characters.

CFS will not accept uppercase characters in the text for
info=.

Including descriptive information in a node can help identify
files on CFS, saving the trouble of transferring the files to
UNICOS for examination,

Examples:

o Create a root directory reports and include text
describing the purpose to which the node will be put.

create /reports info="final drafts \
of 1988 monthly and quarterly reports"

e Add the subdirectory monthly under the node just
created and include an appropriate text field.

add /reports/monthly info="final drafts \
of 1988 monthly reports"

December 1989 11-17 Keyword Descriptions

11.8 kpw=

Specifies the password that will be required for your access to a saved keyset when
used with the keep command. Supplies the password required for your access to a
saved keyset when used with the free, show, or adopt command.
Commands used with: adopt, free, keep, show
Keyword value(s):
A password of five to eight alphanumeric characters.
Default value: null
Additional comments:

Because you are the only user who can access your saved
keysets, you may not want to bother with using keyset
passwords.

When entering a keyset password in a request, you must
precede the password with a caret ().

Protect your screen from view by others when passwords are
displayed.

For information about saved keysets, see Chapter 7 and
Chapter 8, Section 8.3.

Examples:

» Save your active keyset as key2 and specify that the
password sesame will be required for access to the
keyset.

keep key2 kpw="gesame
o Later, make key2 your active keyset.

adopt key2 kpw="sesame

« Display the contents, including passwords, of the
keyset key2 saved above.

show key2 so=o kpw="sesame lpw=on

Keyword Descriptions 11-18 December 1989

119 lo=

The list option (1o=) keyword selects one or more options for the 1ist command.
Each option displays selected information fields (attributes) for the specified node.

Commands used with: list
Keyword value(s):

One or more of the following characters representing the
indicated information:

accounting information; valid only for root nodes
immediate descendants; valid only for directory nodes
general information

user validation entries

contents of info field

size of file in bits; valid only for file descriptor nodes

Default value:

[T O T - P]

d for a directory node
g for a file descriptor node

Additional comments:

There is no list option that will display the names of your
root nodes. However, you can list your root names by
following the procedure described in Chapter 9, Section 9.4.

The values in some node fields (e.g., date last modified) are
supplied by CFS. Others (e.g., node name, info) depend on
the use of keywords and parameters in the appropriate
requests. In either case, fields to which no specific values
have been assigned contain null values (i.e., are blank).

The options i and s produce components of the
information provided by the g option.

You may specify multiple values with the lo= keyword using
the syntax described on the next page.

Read access to a node is required to execute most list
options for the node; Modify access is required for list
option u.

Appendix A contains some additional information about the
attributes associated with root, subdirectory, and file nodes.

December 1989

11-19 Keyword Descriptions

Examples:

The examples in the bullet list that follows show samples of

the type of output that is produced when various list options
are specified with various parameter types. The general form
of the request is

list parameter lo=option
as in

list /userid/test lo=g
or, for multiple list options,

list parameter lo=optionloption2...
as in

list /userid/test lo=gi

Note that the syntax for specifying multiple list options
differs from that used to specify multiple values for other
keywords (parentheses and spaces are omitted).

e lo=g

— For a root node.

node name: reports

node type: root directory

last modified: 88/09/20 14:16
last user to modify: 010203
created: 88/09/10 12:10

user created by: userid

info: drafts of 1988 reports
partition: green

cku

oid:

— For a subdirectory node.

node name: monthly

node type: subdirectory

last modified: 88/09/20 14:16
last user to modify: 010203
created: 88/09/10 12:10

user created by: userid

info: drafts of monthly reports
partition: green

cu

Keyword Descriptions

11 -20

December 1989

— For a file descriptor node.

e lo=d

node name: jan

node type: file descriptor
last modified: 88/09/20 14:16
last user to modify: userid
created: 88/09/10 12:10
user created by: userid
info:

partition: green

cku

original system: unix
storage type: tape offline
group: a

use: w

size: 884736

release date: never

last written: 88/09/20 14:16
last read:

number of accesses: 1
compression: off

~— For a directory (here, a root node named

reports). Note that in the response,
subdirectories are labeled with the identifier dir
to distinguish them from files.

node name: reports
node type: root directory

descendants:
suba dir
subb dir
filea

fileb

December 1989

11-21

Keyword Descriptions

e lo=u (Modify access to the specified node required)

— For a root node.

node name: reports
node type: root directory
master user validation:
userid frewaibm/- /s

user validations:

010203 /r/-/s
040506/r/-/s

— For a non-root node (here, a subdirectory
named testruns). Note that only user
validations that have been written for the
specified node are listed; the user validations
for related nodes at higher levels of the tree
may affect access to the node. The master user
validation was inherited from the parent node

because no duplicate entry appears in the user
validations field.

node name: testruns
node type: subdirectory
master user validation:
usenid [rewaibm/-/s
user validations:

040506 /r/-/s
070809/1/-/s

Keyword Descriptions 11 - 22 December 1989

e lo=i

— For a file descriptor node (here, named
comments).

node name: comments
node type: file descriptor
info: energy project review comments

e lo=a (see Chapter 5 for information about CFS
charges)

— For a root node.

node name: project

node type: root directory

oid:

charge: 00012345

space time product starts: 86/10/07 12:34
online space: 134.959 Mb

online files: 43

online space time product: 1572.8 Mb days
offline space: 4.615 Mb

offline files: 80

offline space time product: 928.6 Mb days

December 1989

11.10 lpw=

11-23 Keyword Descriptions

Allows or disallows the display of passwords in responses containing validation entries,
working directory passwords, and keyset passwords.

Commands used with: list, set*, show*
Keyword value(s):
One of the following words to select the indicated option:

on list passwords
off do not list passwords

Default value: off

Additional comments:

If 1pw=off, a string of eight percent signs (i.c., %h%A%%%%A%)
indicates the presence of a password.

Set lpw=to on only when it is necessary to view a password.
Protect your screen any time a password is displayed. If you
use the set command to change the value of lpw=to onin
your active keyset, remember to change the value back to
off as soon as possible.

Examples:

 Display the validation entries for the subdirectory
testruns, which requires the password sesame for
access, first displaying the password, then supressing
the password. The responses are shown for
illustration.

lpw=011f does not currently work when used with set or show to display keyword values. However, this

problem should be corrected in the near future.

Keyword Descriptions 11-24 December 1989

list /userid/testruns pw="sesame lpw=on lo=u

node name: testruns
node type: subdirectory
master user validation:
userid [rewaibm/sesame/s
user validations:
040506 /r /sesame/s
010203 /r/sesame/s

list /userid/testruns pw="sesame lo=u

node name; testruns

node type: subdirectory

master user validation:

userid [rewaibm /% % %o To %o %o %o %o | s
user validations:

040506 /r/ % % %o %o % %o %o % [s
010203 /1/% % % %o % % % %e [s

o Check to see what password is associated with dir3.

set pw3 lpw=on
pw3 openup

Note that using 1pw=on with the set command
changes the value of 1pw in the active keyset to on.
To change it to off to prevent passwords from being
unintentionally displayed, enter

set lpw=off

December 1989 11-25 Keyword Descriptions

11.11 ncharge=

Establishes a new C&TD computer charge number for a root node (i.e., sets a new
value for the node’s charge field).

Shortest keyword abbreviation: nch=

Commands used with: modify

Keyword value(s):

A valid, five-digit C&TD computer charge number preceded
by three zeros.

Default value: null
Additional comments:

When you change the charge number associated with a root,
all subsequently incurred charges associated with files stored
under the root are made to the new number.

Use the 1ist command with the lo=a option to check the
current charge number for a root node.

See Chapter 5 for information about CFS charges.
Examples:

o Change the charge number associated with your
userid root to 34567,

modify /userid ncharge=00034567
o Assign the charge number 67899 to the root named

reports, which requires the password sesame for
access.

modify /reports ncharge=00067899 \
pw="sesame

Keyword Descriptions 11-26 December 1989

11.12 ngrp=

Sets the storage group for the new file in a copy request (i.e., establishes a value for
the group field for a file descriptor node). (To lock a file into the current storage
group when no group has been set previously, use setgrp= with the modify
command; to set a storage group for a file being created using save or store, use

gTP=.)

Shortest keyword abbreviation: ngr=
Commands used with: copy
Keyword value(s):

One of four values as follows:

a to specify storage group to A

b to specify storage group to B

n to allow CFS to select the storage group; the group field
for the node will contain a null*

o to assign the new file to the group opposite to that of
the source file; also locks the source file in to the group
on which it resides if the group has not been set
previously

Default value: null (CFS selects the group)
Additional comments:

If ngrp=is not used with the copy command, the value in
the group field of the source file node is assigned to the new
file node.

Because the storage devices used by CFS are extremely
reliable, there are no automatic system backups of files
stored on CFS. However, the storage devices are divided
into two physically separate groups, so you can back up
mission-essential files by storing duplicate copies, one on
each group. If you specify a storage group (A or B) for a
file, it will not change groups during subsequent CFS-
initiated migrations or executions of replace requests.

* This value does not work; the value in the group ficld for the source node is copied to the new node.

December 1989

11-27 Keyword Descriptions

Note that backup copies stored under the same directory
node must have different file names (e.g., test and
test.bak). Use the list command with the lo=g option
to determine what group, if any, has been set for a file.

Examples:

o The file results, a direct descendant of your userid
root, needs to be backed up. The backup copy, which
will also be stored directly under your userid root, will
be called results.bak.

copy results to results.bak ngrp=o

To check the group assignments, enter the following
two requests and check the contents of the group field
in each case.

list results lo=g
list results.bak lo=g

As an alternative to the copy request above, you can
first lock results into the storage group on which it
is currently stored

modify results setgrp=on
then enter
list results lo=g

to determine what that group is. Finally, assuming
results is now assigned to storage group A, execute a
copy assigning results.bak to storage group B.

copy results to results.bak ngrp=b

Keyword Descriptions 11 - 28 December 1989

11.13 ninfo=

Replaces the contents (text or null) of the info field of a file descriptor or directory
node with new text. (Use the info= keyword with create or add to place text in the
info field when creating a root or subdirectory node.)

Shortest keyword abbreviation: ninf=
Commands used with: modify
Keyword value(s):

One to 80 characters of text information enclosed in double
quotes (" ").

Default value: null
Additional comments:

Text is usually placed in the info field of a file descriptor
node to describe the contents of the associated file and in a
directory node to describe the category of files stored in the
tree or subtree.

Including descriptive information in a node can help identify
files on CFS, saving the trouble of transferring the files to
UNICOS for examination.

CFS will not accept uppercase characters in the text for
ninfo=.

Use the lo=i or lo=g option with the list command to
display the info field of a node. You may find that an 80-
character field is not displayed properly on your terminal. If
s0, try limiting the field to 71 or 72 characters.

Examples:
« Change the info field for the root reports.
modify /reports ninfo="monthly reports \
for 1989"

» Place information in the info field for the file
descriptor node associated with the file comments,
which is defined by the path /userid/comments.

modify /userid/comments ninfo="comments \
from review of progress report"

December 1989

11.14 nname=

11-29 Keyword Descriptions

Changes the name of a named root, subdirectory, or file descriptor node. The new
name replaces the former name in the node name field of the node.

Shortest keyword abbreviation: nn=
Commands used with: modify
Keyword value(s):

A name you select; may be up to 16 characters in length and
incorporate any of the following:

a-z, A-Z, 0-9, §, %, *, +, -, ., and _.
The name must not be a path and must not be preceded by

a slash (/). The new name for a root cannot be one already
in use on CFS.

Default value: null
Additional comments:

Renaming a node does not change its owner. If you need to
assume ownership of someone’s CFS files (e.g., you are
taking over the job of someone who is leaving the company),
Programming Assistance can provide assistance.

You cannot rename someone else’s root to your userid.

You should not change the name of a root belonging to
another user.

Examples:

o Change the name of your root node reports88 to
reports89.

modify /reports88 nname=reports89
o Change the name of the file (and its associated file

descriptor node) testorig, defined by the path
/userid/project/testorig, to testnew.

modify /userid/project/testorig \
nname=testnew

Keyword Descriptions 11 -30 December 1989

11.15 nrel=

Defines a new release date for a file (i.e., places a new value in the release date field
for a file descriptor node).

Commands used with: modify
Keyword value(s):

The date you want the file to be released for purging
(deletion) by CFS. Two date formats are allowed:

yy/mm/dd where yy is the year, mm the month, and dd the
day; and

nnn where nnn is a number of days (001 through
365) to be added to the current release date to
create a new release date.

The file is released at midnight on the date you specify.

You can set a file to be released on any date up to 99/12/31.
A date of 99/12/31 is considered by CFS to be never (i.e.,
the file will not be released).

Default value: null
Additional comments:

When you create a file, CFS assigns it an initial release date
of never (i.e., 99/12/31).

Use the list command with the lo=g option to determine
the current release date for a file.

If you copy a file from one location on CFS to another using
the copy command, the new copy will have the release date
of the source file.

December 1989 11-31 Keyword Descriptions

Examples:

o Tell CFS to release the file named info.temp one
week from the current day (August 3, 1988).
info.temp is defined by the path /userid/info.temp.

modify /userid/info.temp nrel=88/08/10
or
modify /userid/info.temp nrel=007
o Change the release date for the file defined by the

path /proposal/quotes from the default to
December 6, 1989.

modify /proposal/quotes nrel=89/12/06

Keyword Descriptions 11-32 December 1989

11.16 nuse=

Defines a revised estimate of file activity (changes the value of the use field in a file
descriptor node).

Shortest keyword abbreviation: nus=
Commands used with: modify
Keyword value(s):

One of the following characters representing an estimate of
the frequency with which you intend to access the specified
file:

d daily

v weekly

m monthly

x file expected to be active for a few days, then may be
stored on tape by the CFS migration program

file expected to be accessed infrequently; will be stored
on disk initially and transferred to tape overnight

Default value: null
Additional comments:

When you create a file, CFS assigns it an initial estimate of
activity of w.

CFS decides whether to place files online on disk or offline
on tape. All files are first placed on disk and are only moved
to tape if not accessed within a system-set time period. The
nuse= keyword allows you to influence the placement of
your files. If you will use a file frequently, it will
automatically be retained on disk and you do not have to be
concerned about the setting of this attribute in the file node.
However, if you know you will not be using a file very often,
you can have it moved to tape overnight by using the a
option.

When you copy a file from one location to another on CFS,
the estimated file activity of the original file node is copied
to the new file node.

December 1989 11-33 Keyword Descriptions

To determine whether a file is stored on tape or disk, enter
list path lo=g

where path is the complete path for the file. Check the
storage type field of the response.

Examples:

 Force the file data.bak, which you intend to retain
only as an emergency backup, to be stored on tape.
data.bak is a direct descendant of your userid root
node.

modify data.bak nuse=a

Keyword Descriptions 11 -34 December 1989

11.17 pwn=

In a request with most commands, can supply the password that allows access to the
path specified as the parameter; with the create command, specifies the password
that will be required of the owner to access the new root.

Commands used with:

add, copy, create, delete, get, list, modify, move,
remove, replace, save, set, store

Keyword value(s):

A password of five to eight alphanumeric characters.
Default value: null

Additional comments:

pwn, where n is one of the digits 0 through 9, is known as a
working directory password (see Chapter 6, Section 6.4). The
password is specified using the pwn= keyword. dirn
represents a working directory. Working directories are
described in Chapter 6. When dirn is used explicitly or by
default in a request, the password set for the correspondingly
numbered pwn= keyword is used automatically.

You can abbreviate pwO= as pw=

When entering a password in a request, precede the
password with a caret (7).

To specify the password when a path is specified in full in a
request, use pw="password.

Be sure to protect your screen from view by others when
entering passwords.

When two paths are required in the parameter for a
command (i.e., pathl to path2 for move and copy), two
pwn= keywords may be required:

— one to allow access to the source file and
— one to allow access to the new parent node.

December 1989 11-35 Keyword Descriptions

Examples:

» Retrieve a copy of the file described by the path
/userid/reports/jan. The password mypass is
required to access reports and its descendants.

get /userid/reports/jan pw="mypass
or

set dirO=/userid/reports pwO="mypass
get jan

e Place a copy of the file newdata, a direct descendant
of your userid root, in the subdirectory defined by the
path /project/firstrun. Call the new copy
newdata.cop. Your userid root is protected by the
password mypass and firstrun by the password
sesame.

copy newdata to 2'newdata.cop \
dir2=/project/firstrun pwO="mypass \
Pw2="sesame

or
set pwO="mypass

copy newdata to 2°'newdata.cop \
dir2=/project/firstrun pw2="sesame

or

set pwO="mypass pw2="sesame \
dir2=/project/firstrun

copy newdata to 2’'newdata.cop
o Change the password you use to access the root node
roota from oldpass to newpass.

modify /roota pw="oldpass \
cval=userid/rewaibm/“newpass/s

Keyword Descriptions 11 - 36 December 1989

o Create your userid root node and specify that you will
have to supply the password sesame to access the
node.

create pw="sesame
If you subsequently enter
list lo=u pw="sesame lpw=on

you will find that the password sesame has been
incorporated in the master user validation field of the
root node.

node name: userid

node type: root directory
master user validation:
userid [rewaibm/sesame/s
user validations:

December 1989 11-37 Keyword Descriptions

11.18 setgrp=

Locks a file into the current storage group (i.e., sets a value for the node’s group field)
if a storage group was not specified when the file was stored. (To set the storage
group for a file being created using the copy command, use ngrp=; to set a storage
group for a file being created using save or store, use grp=.)

Shortest keyword abbreviation: setg=
Commands used with: modify
Keyword value(s):

on locks the file into the storage group on which it
currently resides*

Default value: off
Additional comments:

Because the storage devices used by CFS are extremely
reliable, there are no automatic system backups of files
stored on CFS. However, the storage devices are divided
into two physically separate groups, so you can back up
mission-essential files by storing duplicate copies, one on
each group. If you specify a storage group (A or B) for a
file, it will not change groups during subsequent CFS-
initiated migrations or executions of replace requests.
Note that backup copies stored under the same directory
node must have different file names (e.g., test and
test.bak).

Use the 1ist command with the lo=g option to determine
what group, if any, has been set for a file.

* 'There is currently no option for “unlocking” a file once a group has been set.

Keyword Descriptions 11-38 December 1989

Examples:

o You have stored the file info under your userid root
without specifying a storage group. You have
determined that the file contains mission-essential
information and, thus, must be backed up by ensuring
that a copy exists on each storage group. First, lock in
info on its current storage group as follows

modify info setgrp=on
Next, find out what that storage group is by entering
list info lo=g

and checking the value in the group field. Assume the
group is A. Now create a copy of info, calling it
info.bak and placing it on storage group B.

copy info to info.bak ngrp=b

December 1989 11-39 Keyword Descriptions

11.19 so=

Determines what saved keysets or keyset information will be displayed in response to
a show command.

Commands used with: show

Keyword value(s):

One of three single-character options as follows:*

o outputs for the specified keyset, its name, creation date,
date last saved, and its full set of keywords and their
values

n outputs for each of your saved keysets the keyset name,
creation date, and date last saved

a outputs for each of your saved keysets, the keyset name,
creation date, date last saved, and its full set of
keywords and their values

Default value: n
Additional comments:

Passwords included in keysets are displayed only if the
keyword 1lpw= is set to on.**

Examples:

« Display a complete set of information about your
userid keyset.

show userid so=o
or

show so=o

Currently, only the o option works properly. For consistent results, include so=o and a parameter in
cach show request.

** lpw=off does not currently work with the show command. Therefore, passwords are always displayed.
This condition should be corrected in the future.

Keyword Descriptions 11 - 40 December 1989

 Display complete information about the saved keyset
newkey, which is protected by the keyset password
access.

show newkey so=a kpw="access

December 1989 A-1 CFS Node Contents

Appendix A
CFS Node Contents

Each type of node in a CFS tree structure contains specific information fields as
described in Chapter 3, Section 3.1. This appendix provides an overview of the
information contained in each type of node (i.e., root, subdirectory, and file
descriptor). For information about viewing node fields using the 1ist command with
the lo= keyword, see Chapter 9, Section 9.10 and Chapter 11, Section 11.9.

Root Node Information
¢ The node name and type.
o The master user (i.c., owner’s) validation entry, which consists of the following:

— The userid of the user who is the owner of the tree. The owner is usually
the person who created the root.

— All the owner’s access rights. The owner of the tree initially has all access
rights to the root and all nodes that are added to the tree.

~— A password, if one has been specified for the owner’s access.

— An access rights modifier; s is the default.

¢ Access control information (i.e., user validation entries) about any other userids
for which access rights have been specified (see the keywords aval=, cval=, and

dval= in Chapter 11). The access granted may also affect access to nodes in lower
levels of the tree.

o A five-digit CT&D computer charge number. All charges associated with all files
in the tree are billed to this number.

e Security and administrative information, including the date and time the root was
created and last modified, the userid(s) of the user(s) who created and last
accessed the root, the node’s security partition (always green on the K-25 CFS)
and classification leve! (always unclassified on the K-25 CFS), and accounting
information (i.e., online and offline space use, number of files, cumulative space-
time product).

o A descriptive text field, if one has been entered using the info= or ninfo=
keyword. The text usually explains the use to which the node is being put.

o Owner identification information entered by the user using the oid=, or noid=
keyword. (Note that these keywords are not described in this manual; the field will
contain a null unless you entered information in the field using mass on CTSS.)

o The names of all the root’s immediate descendants. Subdirectory nodes are labeled
dir.

CFS Node Contents A-2 December 1989

Subdirectory Node Information
¢ The name and type of the node.

o A descriptive text field, if one has been entered using the info= or ninfo=
keyword. The text usually explains the use to which the node is being put.

o The names of all the nodes’s inmediate descendants. Subdirectory nodes are
labeled dir.

o The master user (i.c., owner’s) validation entry, which consists of the following:

— The userid of the user who is the owner of the node.

— All the owner’s access rights. *

— A password, if one has been specified for the owner’s access.
— An access rights modifier; s is the default.

o Access control information (i.e., user validation entries) about any other userids
for which access rights to the node have been specified (see the keywords aval=,
cval= and dval= in Chapter 11). To determine the protection for a node, the
user may have to examine and, if the access rights modifiers o or a have been
used, accumulate the protection for the root, any intermediate nodes, and the node
itself. The access granted to a subdirectory node may affect access to nodes at
lower levels of the subtree.

o Security and administrative information, including the date and time the node was
created and last modified, the userid(s) of the user(s) who created and last
accessed the node, and the node’s security partition (always green on the K-25
CFS) and classification level (always unclassified on the K-25 CFS).

File Descriptor Node Information

Note that a file descriptor node does not contain the file itself, but does contain
information about the file and a pointer to the actual file storage location. The
distinction between a file descriptor node and a file is usually not important to users.
Both the node and the file have the same name. When a user specifies the name in a
request, CFS is able to determine whether it is the file or node that is being
referenced. For example,

get filename
results in retrieval of a copy of the specified file while
list filename lo=s

results in retrieval of file-size information from the corresponding file node.

December 1989 A- 3/A'7 CFS Node Contents

The information included in a file descriptor node includes

o The node name and node type.

¢ A descriptive text field, if one has been entered using the ninfo= keyword. The
text is usually used to provide information about the content of the associated file.

e The location of the file in CFS storage, including the pointer used by CFS to

locate the file (not displayed to the user), the file storage group being used, and
whether the file is on disk or tape.

 The original system type (i.e., UNIX).

o Security and administrative information, including the date and time the node was
created, last modified, written, and read; the userid(s) of the user(s) who created
and last accessed the node; and the security partition (always green on the K-25
CFS) and classification level of the file (always unclassified on the K-25 CFS).

e An estimate of how frequently the file will be accessed (see the keyword nuse= in
Chapter 11).

o The master user (i.e., owner’s) validation entry, which consists of the following:

— The userid of the user who is the owner of the node.

— All the owner’s access rights.

— A password, if one has been specified for the owner’s access.
— An access rights modifier; s is the default.

» Access control information (i.e., user validation entries) about any other userids
for which access rights have been specified (see the keywords aval=, cval= and
dval= in Chapter 11). Note: access rights are not generally specified for individual
files. To determine the protection for a file, the user must examine and, if the

access rights modifiers a and o are used, accumulate the protection for the root
and any intermediate nodes.

« The file size in bits and whether the file is compressed. (Note that compression is
not discussed in this manual; it is not available for files in UNICOS format.)

o The file release date (see the keyword nrel= in Chapter 11).

o The number of times the file has been accessed during the current accounting
period.

December 1989 sB -1 / b' 2z File Format Conversion

Appendix B
Text File Format Conversion

You may have text files that were created on CTSS stored on CFS. Before using these
files on UNICOS, you must convert them to UNICOS format. The conversion
procedure is described below. For simplicity, the assumption is made that the CFS
files are located directly under your userid root and that the files on UNICOS are
located in your working directory (the one from which you invoked cfsi).

o Invoke cfsi on UNICOS.

cfsi

o Copy your CTSS format file (oldfile) from CFS to the UNICOS Cray.
get oldfile
The file will have the same name on UNICOS as it has on CFS.

o Exit cfsi.

end

» Convert the file to UNICOS format using the ctou program
ctou oldfile newfile

where oldfile is the current name of the file and newfile is the name you select for
the converted version.

« Invoke cfsi.

cfsi

» Save a copy of the converted file on CFS, retaining the file name.

save newfile

« Delete the CTSS version of the file from CFS.
delete oldfile

o Exit cfsi.
end

o Delete the CTSS version of the file from your UNICOS area.
m oldfile

December 1989 C-1 Specifying Workerfile Parameters

Appendix C
More About Specifying Workerfile Parameters

On UNICOS, the directory in which you are currently located is known as your current
working directory or simply as your working directory. Use the command 1s to list the
contents of the directory and pwd to display the complete pathname for the directory.
To change working directories, use cd.

When using cfsi, the UNICOS directory from which you invoked that program is
your current working directory. For simplicity, the examples in this manual make two
assumptions:

« when entering a get request, you want the CFS file copied to your current
working directory; and

« when entering a save, store, or replace request, the file you want to save is
located in your current working directory.

Under these circumstances, a workerfile parameter is required only if the file on
UNICOS and CFS will have different names. In addition, the necessary workerfile
specification is simply the name of the file on UNICOS. For example, the following
request is all that is required to retrieve a copy of the file trials from CFS and place
it in your UNICOS working directory as trials.

get trials

And, entering

get dryrun:trials
will give the copy of trials the name dryrun on UNICOS.

You can direct files to and from any of your UNICOS directories without exiting
cfsi, changing working directories, and re-invoking cfsi. Two methods are available
as described below.

¢ You can use the UNICOS cd command from within cfsi to change working
directories. To move to a subdirectory of your working directory, indicate the
appropriate relative pathname. To move to a parent or other higher-level
directory, supply the full pathname (some shortcuts such as using .. to represent
the parent of your current working directory, are accepted, others are not). The
file names on UNICOS and CFS may be the same or different.

To illustrate, assume the full pathname for your home directory on UNICOS is
/usr/u/000/uid, where uid represents your three-character UID. You have a tree
structure that includes subdirectories at two levels; the respective full pathnames

Specifying Workerfile Parameters C-2 December 1989

are /usr/u/000/uid/subdirl and /usr/u/000/uid/subdiri/subdir2. You
invoke cfsei from subdiri (i.e., your current working directory is subdirl). Now,
to retrieve a copy of the CFS file testfile and place it under subdiri, enter

get testfile
To place a copy of testfile under subdir2, enter

cd subdir2
get testfile

If you want the copy on UNICOS to have the name newfile, replace the last
command with

get newfile:testfile

To place a copy of testfile in your home directory, enter

cd /usr/u/000/uid or cd ..
get testfile

In the last example, you cannot move to your home directory, as might be
expected, by simply entering cd.

The UNICOS commands 1s and pwd also work from within cfsi

When you end your cfsi session, you are always returned to the UNICOS
directory from which you invoked the cfsi program.

» You can use a UNICOS pathname as the CFS workerfile parameter. If the
UNICOS file will be copied to or from a subdirectory of your working directory,
indicate the appropriate relative pathname of the file. If the UNICOS file will be
copied to or from a parent or other higher-level directory, supply the full
pathname for the file (some shortcuts such as using .. to represent the parent of
your current working directory, are accepted, others are not). The file names on
UNICOS and CFS may be the same or different.

To illustrate, make the same assumptions as for the method just described: the full
pathname for your home directory on UNICOS is /usr/u/000/uid, where uid
represents your three-character UID; you have a tree structure that includes
subdirectories with the full pathnames /uer/u/000/uid/subdiri and
/usr/u/000/uid/eubdir1/subdir2; and you invoke cfsi from subdiri (i.e., your
current working directory is subdir1). Now, to retrieve a copy of the CFS file
testfile and place it under subdiri, enter

get testfile

December 1989 Cc-3 c"/ Specifying Workerfile Parameters

To place a copy of testfile under subdir2, enter

get subdir2/testfile:testfile

To place a copy of testfile under subdir2 and call the copy on UNICOS
newfile, enter

get subdir2/mewfile:testfile

To place a copy of testfile in your home directory, enter
get /usr/u/000/uid/testfile:testfile

or

get ../testfile:testfile

December 1989 D - 1)/} CFS to UNICOS/Protection Mode

Appendix D
Protection Mode for CFS Files Copied to UNICOS

Access permissions on UNICOS can be represented in symbolic mode (i.e., using the
letters r, w, and x to represent read, write, and execute) or as absolute values given in
octal notation (e.g., 777 represents full access for all users). For information about
protection modes on UNICOS, see the handout Converting to UNICOS, which is
available from Programming Assistance.

In general, UNICOS assigns a default protection mode to each file created; the mode
depends on how the file was created. For example, the default mode for an object file
produced by a compiler is 666. The system defaults can be modified using the umask
command to establish a user mask. The argument for the command is the octal
number that, when subtracted from the system defaults, gives the desired protection
modes. For example, on the STC UNICOS Cray, the command

umask 022

has been placed in the system initialization file. This mask causes object files to be
created with the protection mode 644 instead of 666; the protection for files created in
other ways is similarly modified. If you want, you can place a more restrictive umask

commangd in your personal initialization file; this command will override the system
value.

The protection mode for files you retrieve from CFS, although based on the user
mask in effect for your session, is determined by cfsi. The cfai program assigns the
protection mode that results from subtracting your user mask from 777. Unless you
have placed a different umask command in your personal initialization file, this user
mask is 022, as described above. As a result, the protection mode for files you retrieve
using the cfsi get command will be 755 or

Owner read, write, execute
Group read, execute
World read, execute

At a minimum, cfsi will always grant read permission to the owner.

December 1989 I-1 Index

Index

access rights: 1-1, 8-1, 8-4, 9-2 (see also validation entries, fields,
access rights)
access rights accumulation modifier (see validation entries, fields,
modifier)
attributes, node (see nodes, fields)
backups (see CFS, storage groups)
C&TD Computer Charge Number: 1-2, 5-1, A-1 (see also CFS,
charges for use, charge numbers)
CFS: ix, 1-1
charges for use: 1-2, 3-8, 5-1
billing: 5-1
file charge: 5-1
storage space charge: 5-1, 5-2
calculating interim charges: 5-2, 5-4
charge numbers: 4-2, 5-1, 11-7, 11-25
changing: 5-2, 11-25
default: 5-2, 11-7
specifying: 5-2, 11-7
using more than one: 5-2, 11-7
classification level: 8-1
file migration program: 1-2, 11-32
maximum file size: 1-1
request (see request)
response (see response)
status of: 9-42
status of requests on: 2-1, 9-42
storage devices: 1-2, 5-1, 11-14, 11-26, 11-32, 11-37
storage groups: 11-14, 11-26, 11-37
CFS Interface program (see cfsi)
cfsi: ix, 1-1
exiting: 2-1, 4-4, 9-16
in background jobs: 1-1, 2-18, 9-42, 9-43
in batch jobs: 1-1, 2-12, 2-18
input to, case: 2-2
invoking: xi, 2-1, 4-1
prompt: 2-1
request (see request)
response (see response)
single-line execution mode: 2-1, 2-17, 2-18
status query: 2-1
wait and retry cycle: 2-1, 2-18

Index

1-2 December 1989

Common File System CFS Interface Reference: ix, 7-5, 9-1, 11-2,
Credits
charges (see CFS, charges for use)
classification level: 8-1
commands: 2-2, 2-3, 9-1
abbreviation, shortest: 2-5 (see also commands, individual)
examples of use: 9-2 (see also commands, individual)
function: 2-4, 9-1 (see also commands, individual)
individual:
add: 3-10, 8-10, 8-12, 8-13, 9-4
adopt: 7-8, 9-6
copy: 3-11, 6-13, 8-10, 8-11, 8-13, 9-7
create: 3-3, 3-4, 3-10, 4-1, 8-6, 8-14, 9-2, 9-11
delete: 3-5, 3-11, 4-3, 8-10, 9-2, 9-14
end: 4-4,9-2,9-16
free: 7-8, 8-20, 9-17
get: 3-5, 4-3, 8-10, 8-12, 8-13, 9-2, 9-18
keep: 7-8, 8-19, 9-20
list: 2-16, 3-3, 3-5, 4-2, 5-1, 8-3, 8-10, 8-11, 9-2, 9-21, A-1
modify: 3-8, 3-11, 5-2, 8-6, 8-7, 8-8, 8-9, 8-10, 8-11, 8-12,
8-13, 9-1, 9-23
move: 3-8, 3-11, 6-13, 8-10, 8-11, 8-13, 9-26
remove: 3-11, 4-3, 8-10, 9-31
replace: 8-10, 9-33
save: 3-5, 3-10, 4-2, 8-10, 8-12, 8-13, 9-2, 9-35
set: 2-10, 2-11, 2-16, 6-2, 6-3, 6-11, 7-2, 7-7, 9-37, 11-1
show: 2-16, 9-40
status: 2-16, 2-18, 9-2, 9-42
store: 3-10, 8-10, 8-12, 8-13, 9-45
keywords associated with: 2-11, 7-2, 7-4, 7-6, 9-1, 11-2 (see also
commands, individual)
parameter requirements: 2-7, 9-1 (see also commands,
individual)
security considerations: 9-2 (see also commands, individual)
command line (see request, request line)
comment: 2-2, 2-12, 2-18
complete path (see paths, complete)
complete path name (see complete path)
continuation character: 2-14, 9-2
conventions used in this manual: x, 4-1, 9-2, 10-11, 11-2
Cray User Number: x, 3-3, 10-9
ctou: B-1

December 1989 1-3 Index

CTSS: ix, 1-2
d (see dir0)
do0 (see dir0)
dir (see dir0)
dirQ (see working directories, default)
dir1-dir9 (see working directories. others)
dirn (see working directories)
dirn= (see keywords, individual, dirn and working directories)
directory node (see nodes, types, directory)
dn (see dir0)
estimate of file activity (see files, estimate of activity)
execution line (see cfsi, single-line execution mode)
fields, node (see nodes, fields)
fields, validation entries (see validation entries, fields)
file descriptor node (see nodes, types, file descriptor)
file migration program (see CFS, file migration program)
file organization (see file storage structure)
files: 1-1, 3-1,3-2
backing up: 1-3, 11-14, 11-26, 11-37
changing names: 8-10, 9-23, 11-29
copying
from UNICOS to CFS: 8-10, 9-35, 9-45
from CFS to UNICOS: 8-10, 9-18, C-1
protection mode on UNICOS: C-1
on CFS: 8-10, 8-11, 8-13, 9-7
deleting: 3-5, 8-10, 9-14
descriptor nodes (see nodes, types, file descriptor)
estimate of activity: 8-11, 9-23, 11-32
format conversion: B-1
grouping related: 3-5
identifying: 8-10, 8-11, 11-28
maximum size: 1-1
mission essential: 1-3, 11-14, 11-26, 11-37
moving: 8-10, 8-11, 8-13, 9-26
naming (see nodes, naming)
pointer to storage location: 3-2, A-3
protection on CFS: 8-1 (see also validation entries)
default access: 8-1
release date: 1-2, 8-10, 8-11, 9-23, 11-30
renaming: 8-11, 8-13, 9-23, 11-29
replacing: 8-10, 9-33
retrieval time: 1-2
retrieving: 3-5, 8-10, 8-12, 8-13, 9-18

Index

I-4 December 1989

files (continued)
saving: 3-5, 8-10, 9-35, 9-45
sharing: 3-8, 6-10, 8-1, 8-11, 8-13, 8-15 (see also validation
entries)
examples: 8-15
viewing a list of: 3-5, 4-2, 9-21, 11-18
viewing contents: 3-8, 11-16, 11-28
file size restrictions (see files, maximum size)
file storage structure: 3-1 (see also nodes and paths)
tree structures: 3-1
complex trees: 3-5, 3-10, 6-1
components: 3-1
branches: 3-1
nodes: 3-1 (see also nodes)
diagrams: 3-1, 3-2
examples: 3-4, 3-6, 3-7
levels of organization: 3-1, 3-2
reorganizing: 3-8, 9-7, 9-26
simple trees: 3-4
subtrees: 3-2
use: 3-8
file transport request, status: 2-1, 9-42
format conversion, CTSS to UNICOS: 1-2, B-1
keyset, as a parameter (see parameters, types, keyset)
keyset passwords: 7-7, 8-19, 11-17 (see also passwords, for saved
keysets)
keysets: 2-10, 7-1, 11-1 (see also keywords and parameters, types,
keyset)
access: 7-1
active: 2-10, 6-2, 6-3, 7-1, 7-2, 11-1
displaying values: 7-7, 9-37, 11-39
saved: 2-10, 6-3, 7-1, 7-7, 10-2, 11-1
access: 7-7
creating: 7-8, 9-20, 10-2
deleting: 7-8, 9-17
displaying values: 9-40, 11-39
example of use: 7-9
naming: 7-7, 10-2
password protection: 7-7, 7-8, 8-2, 8-19 (see also passwords,
for saved keysets)
retrieving: 7-8, 9-6
keywords: 2-2, 2-8, 11-1
abbreviation: 11-2 (see also keywords, individual)

December 1989 I-5 Index

keywords (continued)
changing the value of: 2-10, 9-37, 11-1
for the duration of a command: 2-10, 7-2, 9-38, 11-1
for the remainder of a session: 2-10, 7-2, 9-37, 11-1
commands associated with: 2-8, 2-10, 2-11, 7-4, 7-6, 11-1, 11-2
(see also keywords, individual)
default values: 2-9, 2-10, 7-2, 7-3, 11-1, 11-3 (see also keywords,
individual)
displaying (listing) values: 7-7, 9-37, 11-39
examples of use: 11-3 (see also keywords, individual)
function: 2-9, 11-2 (see also keywords, individual)
individual:
aval=: 8-6, 8-8, 8-11, 8-12, 8-13, 8-14, 9-23, 11-4
charge=: 5-2, 11-7
cval=: 8-7, 8-8, 9-23, 11-8
dirn=: 2-8,2-10, 6-2, 6-3, 7-2, 7-7, 11-1, 11-10
dval=: 8-9, 8-11, 9-23, 11-12
grp=: 11-14
info=: 3-3, 11-16
kpw=: 2-8 7-8, 819, 11-17
lo=: 2-8, 5-1, 8-3, 8-4, 8-10, 8-11, 11-18, A-1
lpw=: 2-8, 2-10, 7-2, 8-3, 9-3, 11-1, 11-23
ncharge=: 5-2, 8-11, 9-23, 11-25
ngrp=: 11-26
ninfo=: 8-10, 8-11, 8-13, 9-23, 11-28
nname=: §8-10, 8-11, 8-13, 9-23, 11-29
nrel=: 8-10, 8-11, 8-13, 9-24, 11-30
nuse=: 8-11, 9-24, 11-32
pwn=: 2-8 2-10, 6-11, 7-2, 7-7, 8-3, 8-14, 11-1, 11-34
setgrp=: 8-11, 9-24, 11-37
so=: 2-8, 11-39
multi-value form: 2-8, 2-10, 11-3
not described in this manual: 7-4, 11-2
single-value form: 2-8, 11-1
standalone: 2-11, 7-7, 9-37
using to
define conditions for a request: 2-8, 9-1, 11-1
define node attributes: 2-8, 9-1, 11-1
exercise display options: 2-8, 9-1, 11-1
values: 11-3
default: 7-2, 7-3, 11-3 (see also keywords, individual)
multiple: 2-8, 2-10, 11-3 (see also keywords, individual)

Index

I-6 December 1989

list options: 8-10, 8-11, 9-21, 11-18 (see also keywords, individual,
lo=)
literal names: x, 11-1
literal values: x, 2-10, 11-1
MASS: ix, 1-2
master validation entry (see validation entries, master validation
entry)
n’: 6-5, 6-6, 11-10 (see also working directories, using)
n prime notation (see n’)
nodes: 3-1 (see also file storage structure and paths)
access (see validation entries and files, sharing)
adding (creating):
file descriptor: 9-35, 9-45
root: 9-11, 9-27
subdirectory: 9-4
attributes (see nodes, fields)
classification level: 8-1
copying: 8-10, 8-11, 9-7
deleting:
directory: 9-31
file descriptor: 9-14
descendant: 3-1
fields: 3-2, 3-3, 9-8, 9-26, 9-33, 11-18, A-1
changing contents of: 8-10, 8-11, 9-23, 11-1
default values: 3-3
displaying (listing contents): 3-3, 9-21, 11-18
information stored in: 3-1, A-1 (see also nodes, fields, types)
types:
charge: 2-8, 4-2, 5-1, 11-7, 11-25
ck: 8-1
date last modified: 11-18
group: 11-14, 11-26, 11-37
info: 3-8, 8-10, 11-16, 11-18, 11-28
master user validation: 8-1, 8-3, 8-5, 8-6, 8-8, 11-4, 11-8, 11-12
node name: 11-18, 11-29
release date: 11-30
space time product starts: 5-3
storage type: 5-1
use: 11-32
user validations: 8-1, 8-3, 8-4, 8-5, 8-6, 8-8, 8-10, 8-11, 11-4,
11-§, 11-12
values
supplied by CFS: 3-3, 11-18
supplied by the user: 3-3, 11-18

December 1989 1-7 Index

nodes (continued)
moving: 8-10, 8-11, 9-26
naming: 3-3, 3-4, 3-5, 3-8, 10-9, 10-11, 11-29 (see also paths)
parent: 3-2
paths describing (see paths)
renaming; 8-10, 8-11, 8-13
types: 3-1
directory: 3-1
root: 3-1, 3-3, 3-8, 10-9, A-1
as a parameter in a request (see parameter, types, root)
associated charge number: 5-2
listing: 9-12
named: 3-4, 3-8, 10-9
userid: 3-3, 3-9, 4-1, 6-2, 10-9
subdirectory: 3-1, A-2
file descriptor: 3-1, 3-2, A-2 (see also files)
owner validation entry (see validation entries, master user
validation entries)
parameters: 2-2, 2-6, 10-1
character set: 2-6
commands required with: 2-7, 10-1 (see also parameters, types)
examples: 10-1 (see also parameters, types)
multiple: 2-6, 10-1
naming restrictions for: 10-1 (see also parameters, types)
types: 2-6, 10-1
keyset: 2-6, 10-2
path: 2-6, 3-8, 6-1, 10-4 (see also paths)
storing in a working directory: 3-9, 6-1 (see also working
directories)
supplying using a working directory: 3-9, 6-1, 10-5, 10-6,
10-7 (see also working directories)
root: 2-6, 10-9 (see also nodes, types, root)
workerfile: 2-6, 10-8, 10-11, C-1
using a minus sign (-) as: 6-5, 10-1
using a null (blank) as: 4-1, 6-4, 10-1
passwords: 7-7, 8-1, 9-3, 11-34
for nodes: 6-1, 8-1, 8-3, 8-4, 8-6, 8-13, 11-34 (sce also validation
entries, fields, password)
descendant nodes, how affected: 8-4
including in validation entries (specifying): 8-6, 8-14, 11-4, 11-8
owner password for a root with create: 8-14, 9-11, 11-34
multiple: 8-14

Index I-8 December 1989

passwords (continued)
protecting from view: 6-10, 8-14, 9-3, 11-3, 11-34
using lpw=off: 9-3, 11-23
retrieving forgotten: 8-14
supplying in a request: 6-10, 8-14, 11-34
using working directory passwords to supply in a request (see
working directory passwords)
viewing: 8-3, 9-21, 11-18, 11-23
for saved keysets: 7-7, 8-2, 8-19, 11-17
displaying: 9-40, 11-23, 11-39
permissible characters, length: 8-20, 11-17
specifying: 8-19, 11-17
supplying in a request: 7-8, 8-20, 11-17
paths: 3-1, 3-5, 3-8, 10-4
as a parameter (see parameters, types)
complete: 3-8, 3-9, 3-10, 6-1, 6-2, 6-4, 10-4
default protection: 8-1
description: 3-1 (see also file storage structure)
naming restrictions: 10-4
characters permitted: 10-4
length: 3-9, 10-4
partial: 3-9
rules for specifying: 3-9, 10-5
use of: 3-8, 10-5 (see also working directories)
Programmer Aides: 8-14
Programming Assistance: ix, 9-1, 11-29
pw (see pw0)
pwO (see working directory passwords)
pwn (see working directory passwords)
pwn = (see keywords, individual and working directory passwords)
request: 1-1,2-1, 2-2
characters with special meanings in: 2-14, 2-15
elements of: 2-2 (see also commands, parameters, keywords,
and comment)
order: 2-2, 2-12
format: 2-2, 2-12
request line: 2-2, 2-14
continuing to another terminal line: 2-14
multiple requests in: 2-13
rules pertaining to use: 2-12
status of: 2-1, 9-42
termination of: xi, 2-14

December 1989 1-9 Index

response: 1-1, 2-1, 2-12, 2-16
examples: 4-1
types: 2-16
error: 2-16, 10-7, 10-9
normal: 2-16
informational: 2-16
unexpected: 6-3, 10-7, 11-1
release date (see files, release date)
retrieval time, CFS files: 1-2
root (see nodes, types, directory, root)
root, as a parameter (see parameters, types, root)
root directory (see root)
root node (see root)
security: 8-1, 9-2 (see also files, sharing and validation entries and
passwords)
mission essential files: 1-3, 11-14, 11-26, 11-37
sharing files: 3-8, 8-1 (see also files, sharing)
single-line execution mode (see cfsi)
space-time product (see CFS, charges for use, storage space charge)
status query: 2-1
storage devices (see CFS, storage devices)
storage groups (see CFS, storage groups)
subdirectories (see subdirectory nodes)
subdirectory nodes (see nodes, types, directory, subdirectory)
symbolic values: x, 2-10
terminating a session: 4-4, 9-16
unexpected responses: 6-3, 10-7, 11-1
userid: x (see also Cray User Number)
used to grant access permission (see validation entries, fields,
userid)
userid root (see nodes, types, directory, root, userid)
user validation entry (see validation entries, user validation entry)
validation entries: 8-1, 8-2, 8-4
changing: 8-7, 11-8
creating (adding): 8-6, 11-4
deleting: 8-9, 11-12
fields: 8-2, 11-4, 11-8, 11-12
access rights: 8-1, 8-2, 8-4, 8-13
defaults: 8-4
types: 8-2, 8-10
append (a): 8-2, 8-12
bestow (b): 8-2, 8-6, 8-12, 8-13

Index 1-10 December 1989

validation entries (continued)
fields (continued)
access rights (continued)
types (continued)
execute (e): 8-2, 8-12, 8-13
insert (i): 8-2, 8-12, 8-13
modify (m): 8-2, 8-6, 8-11, 8-13
read (r): 8-2, 8-10, 8-13
write (w): 8-2, 8-10, 8-13
using a null character: 8-2
modifier: 8-3, 8-9
types: 8-9
and (a): 8-3,8-9
or (0): 83,89
set (s): 8-3, 8-9
password: 8-2, 8-13 (see also passwords)
permissible characters: 8-13
permissible length: 8-13
using a null character (blank): 8-13
using a minus sign (-): 8-13
userid: 8-2
listing (viewing): 8-3, 8-4, 9-21, 11-18
master user (owner) validation entry: 8-1, 8-6, 8-7, 8-8, 8-9,
11-4, 11-8, 11-12 (see also nodes, fields, types, master
user validation)
rules for use: 8-4
user validation entries: 8-1, 8-6, 8-7, 8-8, 8-9, 11-4, 11-8, 11-12
(see also nodes, fields, types, user validation)
wait and retry cycle: 2-18
workerfile: 4-1
workerfile, as a parameter: 10-11, C-1 (see also parameters, types,
workerfile)
worker system: 1-1
working directories (dirn): 3-9, 6-1, 10-5, 11-10
appending contents to a partial path: 3-10, 6-2, 6-4, 6-6, 10-5
as part of an active keyset: 6-2, 6-3
default (dir0): 3-9, 10-5, 10-6, 11-10
alternate names: 6-2
contents: 3-9, 6-2
default value: 3-9, 6-2

December 1989 I1-11 Index

working directories (continued)
others (dir1-dir9): 3-9, 10-5, 11-10
contents: 6-2
replacing the contents of: 6-2
restoring the contents of: 6-3
storing a path in: 6-2
for the duration of a request: 6-2
for the remainder of a session: 6-2
using: 6-3, 10-5, 11-10
dir0: 3-9, 4-1, 4-2, 6-4, 10-5
dirl-dir9: 6-6, 10-5
using n’ to specify: 6-6, 6-13, 10-6, 11-10
examples: 6-6
using working directory passwords with: 6-1, 11-10 (see also
working directory passwords)
viewing the contents of: 6-3
working directory passwords: 6-1, 6-10, 11-10, 11-23, 11-34
as part of an active keyset: 6-11, 11-10
default (pw0): 6-11
default values of pw0 through pw9: 6-11
relation to working directories: 6-10, 11-10, 11-34
storing passwords as: 6-11
for the duration of a request (temporarily): 6-11
for the remainder of a session: 6-12
supplying passwords using: 6-1, 6-11, 6-12, 6-13, 11-10
special situations: 6-13
viewing: 6-11, 9-37, 11-23
Z number: x

CREDITS

Using the K-25 C&TD Common File System: A Guide to CFSI was prepared by Sandra
Edwards with technical assistance from Sandy Guinn, John McMillan, Debbie Bryant,
Janice Hensley, Mark Smith, and Kris Norris. Diagrams were produced by Sherry
Gordon.

Using the K-25 C&TD Common File System: A Guide to CFSI is a local adaptation of
the Common File System CFS Interface Reference, a manual produced by the Los
Alamos National Laboratory (prepared by Ted Spitzmiller with technical assistance
from Tyce McLarty, Marge Devany, Catherine Mexal, and Glen Carter). That
manual bears the following notice:

Copyright, 1987, The Regents of the University of California. This
document was produced under a U.S. Government contract (W-7405-
ENG-36) by the Los Alamos National Laboratory, which is operated by
the University of California for the U.S. Department of Energy. The U.S.
Government is licensed to use, reproduce, and distribute this document.
Permission is granted to the public to copy and use this document without
charge, provided that this notice and any statement of authorshipare
reproduced on all copies. Neither the Government nor the University
makes any warranty, express or implied, or assumes any liability for the
use of this document.

