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ABSTRACT
The object-oriented paradigm can be used to model 

behavior, and to a lesser extent, the structure of a problem 
domain. Semantic data models describe structure and 
semantics. This paper unifies the behavioral focus of the 
object-oriented paradigm with the structural and semantic 
focus of semantic data models. It presents abstractions to 
model static and derived data, composite objects, part 
hierarchies, semantic constraints, and abstractions for 
identifying behavior. The abstractions keep the model 
close to the problem domain, are independent of language 
features, and can be translated into object-oriented, 
relational or network implementations.

This paper makes three principal contributions. First, a 
comprehensive set of data structuring abstractions is

described. Second, semantic constraints inherent in the 
graphical representation of the abstractions are identified. 
Third, abstractions for identifying behavior are described.

1. STRUCTURING ABSTRACTIONS
An approach for modeling the structure, semantics, and 

operators of a problem domain is described. The approach, 
called Problem Domain Modeling (PDM), extends 
notations introduced for the EFO semantic data model [1,7], 
the extended entity relationship semantic data model [4], 
and the object-oriented Object Modeling Technique [10].

Structurally, an object is an entity that does not derive 
its type from any other entity. The type of an object is 
called an object type. A set of objects is represented by a 
triangle enclosing its name (Fig 1). Specialized entity
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sets, which derive their type from other entities, are 
represented by a circle with a directed edge drawn with a 
lightly shaded fat arrow (called an inheritance arrow) to the 
higher-level entity set, which may be an object set or 
another specialized entity set.

The assignment of attributes is based on the 
mathematical concept of a function from a domain to a 
range, where the domain is the object (or entity) set and the 
range is the set of values for each attribute. Notationally, 
an attribute function name is enclosed in an ellipse. The 
single-valued nature of the function is represented by a 
directed edge to the attribute function name. Attribute 
function values are described in a separate document.

Annotations Total and 1:1 on the directed edge describe 
the nature of the function. Values for Total attributes 
cannot be null. Values for 7:7 attributes can be used as 
the domain of only one entity. Edges with no annotation 
have no restrictions, i.e., they represent Partial functions 
and attribute values can be null. Attribute functions that 
are Total, 1:1 functions are candidates for key attributes in 
a relational implementation. Unless otherwise annotated, 
specialized entities inherit the attributes of higher-level 
entities. The functional mapping from the higher-level to 
the specialized entity is always Partial, 1:1. The mapping 
from specialized to higher-level entity is always Total, 1:1.

The aggregation of attributes to form higher-level 
attributes is called Cartesian aggregation. Attributes so 
constructed are called composite attributes. The domain of 
values for a composite attribute is the cross product of 
several domain sets. Cartesian aggregation is represented 
by placing an x through the ellipse, which indicates 
aggregated attributes are omitted from the graphical 
representation. The composite attribute 
EMPLOY EE J^ame, for example, consist of the attributes 
FirstName, M1, and LastName. The aggregated attributes 
can be shown at a lower level of abstraction and are always 
included in the domain descriptions. Composite attributes 
can be nested.

Multivalued attributes have multiple values from a 
domain of values. The domain of values can be simple or 
composite attributes. Multivalued attributes are represented 
with a double arrowhead on the directed edge to the ellipse 
identifying the attribute domain, e.g., ENGINEERDegree, 
with values BS, Phd, etc. A dashed directed edge indicates 
an order is imposed, which is identified in the domain 
descriptions.

Derived attributes [4,6,7] have their value 
mathematically determined from other attribute values. 
Derived attributes are represented by a dashed ellipse, e.g., 
EMPLOYEE.Age. Domain descriptions for derived 
attributes consists of two parts; a structural description and 
a derivation rule. The derivation rules can be complex and 
can use previously defined derived attributes. Functional 
dependencies and derivation rules between derived attributes 
are described in a separate document

1.1 Relationships
The representations of one-to-one and one-to-many 

relationships are also based on the mathematical concept of 
a function, where the domain is one entity set, and the 
range is the related entity set. A single arrowhead on the 
directed edge between related entities represents a one

cardinality, a double arrowhead represents a many 
cardinality. Both the relationship and the inverse 
relationship are modeled. The inverse relationship is 
usually not implemented. Many-to-many relationships, 
e.g., PROJECT ASSIGNMENT, are represented using the 
aggregate-constructor (®). Attributes can be assigned to 
relationships modeled with the aggregate-constructor. One- 
to-many relationships can alternatively be represented using 
the aggregate-constructor when attributes are associated 
with the relationship. Dashed directed edges from 
aggregate-constructors indicate ordered pairs.

1.2 Class Attributes
An object type is treated as an object itself, thereby 

permitting it to have attributes; i.e., a type is an object. 
Such attributes are called class attributes. A class attribute, 
then, is a single attribute that applies to each object in the 
set. Three kinds of class attributes are identified; shared- 
value attributes, default-value attributes [2], and derived- 
value attributes. A shared-value attribute is shared by each 
object (and specialized entity). A default-value class 
attribute is shared by each object (and specialized entity) 
when the object (or specialized entity) has a null value for 
its similarly named attribute. A derived-value class 
attribute represents summary information aggregated from 
the set as a whole. Notationally, class attributes are 
represented by a box with rounded comers. Figure 2 shows 
the object set CAR having CLASS OF CAR class 
attributes with (shared), (default), and (derived) appended to 
the attribute names. The shared-value class attribute 
NumberOJWheels applies to all cars; the default-value 
class attribute FuelCapacity applies to those cars that have 
a null value for their similarly named attribute (because a 
standard fuel tank is installed in most cars); the derived- 
value class attribute NumberOfCars represents the number 
of cars in the object set. Class attributes are total 
functions. Object sets that have class attributes have a 
type that extends to include the type of the class attributes.

CLASS OF CAR 
Class Attributes

Number Of Wheels (shared) 
Fuel Capacity (default) 
Number Of Cars (derived)

Vehicle ID

Total, 1-1

Fuel Capacity

Figure 2

1.3 Specialization
Specialization is an abstraction that models ISA 

relationships by considering similar entities as a sub­
classification of a higher-level set. There are two 
independent reasons for specialization. First, there are 
attributes relevant to the specialized entity that do not 
apply to the more general entity. Second, specialized 
entity sets can participate in relationships that the more 
general entity set cannot. When specialization is applied.
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the higher-level set is defined so that it contains attributes 
common to all similar entity sets. Attributes that are not 
common are assigned to specialized entity sets. Specialized 
entities may themselves be specialized, forming a hierarchy 
or lattice, e.g., ENGINEERING MANAGER (Fig 1).

There are three forms of specialization; attribute, 
predicate, and user defined. Attribute defined specialization 
is characterized by a defining attribute in the higher-level 
entity, e.g., EMPLOYEE.JobType. Notationally, the 
name of the defining attribute is placed on the inheritance 
arrow. Predicate defined specialization is characterized by a 
defining logic condition, e.g., MANAGER u ENGINEER. 
Notationally, the defining predicate is placed on the 
inheritance arrow. ENGINEERING MANAGER has no 
additional attributes. It is included in the model because 
(some) engineering managers enter into the LABOR 
COMMITTEE relationship. User defined specialization 
does not have a defining attribute in the higher-level entity, 
e.g., there is no attribute in EMPLOYEE that 
distinguishes managers from other employees. Entities 
included in a user defined specialization are identified by the 
user at the time the entity is created or updated rather than 
by any condition that may be evaluated. Notationally, 
inheritance arrows for user defined specializations are not 
annotated.

Specialized entity sets can be 
disjoint, and/or can cover the 
higher-level entity set. Disjoint 
entity sets are represented by 
connecting the inheritance 
arrows of the specialized entity 
sets to a small circular node 
circumscribing the letter d, 
followed by one inheritance 
arrow from the circular node to 
the higher-level entity set.
Covering is represented by 
connecting the inheritance 
arrows to a small circular node 
circumscribing the letter U, 
followed by one inheritance 
arrow from the circular node to 
the higher-level entity set.
Entity sets that are disjoint and 
covering have the letters d/U in the circular node. Unless 
otherwise shown, specialized entity sets are neither disjoint 
nor covering. Figure 3 shows two equally reasonable 
specialization hierarchies, depending on the problem 
domain being modeled. Figure 3(a) models the fact that 
EMPLOYEE is covered by the disjoint sets MALE and 
FEMALE. Figure 3(b) models an application where the 
sex of an employee may not always be known, perhaps 
because it is not a field on the job application.

1.4 Attribute Inheritance
The concept of attribute inheritance from higher-level 

entities to specialized entities is closely coupled with the 
programming language concept of type [3,14], There are 
two prevailing concepts; type as a prototype and type as a 
template. Type as a prototype supports default inheritance, 
i.e., inheriting attributes from the higher-level entity is by 
default unless specifically excluded by the specialized entity

so as to be able to deal with exceptions. Type as a 
template supports strict inheritance, i.e., all attributes from 
the higher-level entity are inherited by the specialized 
entity, which then adds additional attributes. Another 
concept, attribute override, which applies to both default 
and strict inheritance, restricts the domain of the inherited 
attribute in a manner that does not contradict the domain of 
the higher-level entity. An employee entity set may, for 
example, have a derived attribute age with a domain of 18- 
120, and a specialized entity set for retired employees that 
restricts the domain of age to 65-120. Finally, there is the 
concept of public vs private attributes. Private attributes 
are never inherited, whereas public attributes are always 
inherited (unless excluded or overriden).

An accurate model of a system requires that all forms of 
inheritance be supported in the description of the problem 
domain. The details of the actual implementation are left 
to the later design phase, with the design reflecting the 
limitations and capabilities of the implementation 
language. The notation for representing all forms of 
attribute inheritance is to append (exclude), (override), or 
(private), to the attribute name. (Public need not be a 
modifier because anything that is not private is public.)

1.5 Composite Objects
One of the fundamental structuring abstractions from 

semantic data models is the concept of constructing object 
sets out of other object sets. The abstraction has two 
forms, composite objects and part hierarchies. The two 
forms are closely related; a composite object embodies the 
concept of a collection or an additive whole; a part 
hierarchy embodies the concept of a more structured, 
tightly coupled whole. Each adds a different dimension to 
the concept of an object than that addressed by a 
specialization hierarchy.

Figure 1 shows the composite object LABOR 
COMMITTEE, which is composed of ENGINEERING 
MANAGERS. The relationship from LABOR 
COMMITTEE to ENGINEERING MANAGER is 
represented by an attribute function to a set-constructor (®). 
The attribute CommitteeOffice (e.g., treasurer) is an 
attribute of engineering managers who are members of a

^Social Security Number^

MALE MALE FEMALE

Figure 3(a) Figure 3(b)
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V chicle T ype^Vehicle ID

Toad. 1:1
REGISTERED

Registered Vehicle Details VEHICLE

Vehicle Type 
Total, 1:1

'ruck ID

Total. 1:1Vehicle Type = Truck 
Total

Total. 1:1

Vehicle Type = Car

TRUCK

Figure 4

labor committee. Composite objects can be 
nested. Membership in a composite object is 
also attribute defined, predicate defined, or user 
defined [5]. Notationally, the defining attribute 
or predicate annotates the directed edge to the 
set-constructor. Unlabeled edges are user 
defined.

Figure 4 shows another form of composite 
object, a generalized object, formed by the 
disjoint union of otherwise unrelated objects
[3]. Registered vehicles are either cars or 
trucks, but any specific registered vehicle is 
only one or the other. (The domain of the 
reference attribute that represents this 
relationship is either a Car ID or a Truck ID.)
Figure 4 also shows that all trucks must be 
registered (the attribute function is total), but 
cars need not be registered (the attribute function is partial). 
A generalized object is different than an ISA relationship.

1.6 Part Hierarchies
The objects modeled in CAD/CAM and similar 

applications are assemblies that are themselves aggregates 
of other objects. At one level of abstraction an assembly 
is defined and manipulated as a single object, while at 
another level of abstraction the complete and detailed 
aggregated structure may be viewed. An assembly of such 
objects is called a part hierarchy [2,8,9], A part hierarchy 
enforces referential integrity that is not enforced with a 
composite object

The notation for representing part hierarchies is slightly 
different than that for representing composite objects 
because the relationship is stronger. Both the relationship 
and its inverse need to be modeled and implemented because 
a part mediates the behavior of its components, and the 
components affect the behavior of the assembly. Figure 5 
models the part hierarchy between CAR and BODY. The 
dark fat directed edge represents the part hierarchy. The 
assembly to component relationship is partial when the 
assembly is constructed from the top down and total when 
the assembly is constructed from the bottom-up, and is 
always 1:1. The inverse relationship from component to 
assembly is always 1:1 for a physical parts hierarchy, 
cannot be 1:1 for a logical parts hierarchy, and can be either 
total or partial depending on whether components can exist 
independent of assemblies.

2. SEMANTIC CONSTRAINTS
Semantic constraints are restrictions on entity 

Create/Delete operations, and on attribute value updates, 
that guarantee data always reflects the underlying data 
model. Consider Figure 1. The functional mapping from 
DEPARTMENT to DeptNo is total, 1:1, indicating each 
department must have a unique value from the domain 
DeptNo. The functional mapping from DEPARTMENT 
to DepartmenlName and StaffmgLevel is partial, indicating 
these attribute values may have null values. The attribute 
JobType is a defining attribute between EMPLOYEE and 
specialized entities which are disjoint and cover 
EMPLOYEE. JobType, then, must be total (cannot have a 
null value) if the disjoint / cover set constraints are 
maintained. Furthermore, inserting a new employee will 
cause an insertion in either ENGINEER or SECRETARY 
and deleting one of the specialized entities will cause a 
deletion in EMPLOYEE. The relationship between 
EMPLOYEE and DEPARTMENT is total meaning 
deparunents that are the domain of the relationship cannot 
be deleted. If the relationship were partial, deleting a 
department would require a null value for interobject 
references from EMPLOYEE to the deleted department.

Figure 6 shows four functional representations of the 
ASSIGNED relationship between EMPLOYEE and 
DEPARTMENT that further illustrates the semantic 

„ information provided by functional modeling. Figure 6(a) 
models the fact that all employees are assigned to 
departments, and all departments are assigned employees. 
Figure 6(b) models the fact that some employees may not 

be assigned to a department, but all 
departments have assigned employees. 
Figure 6(c) models the fact that all 
employees are assigned to a department, 
but some departments may have no 
employees. Figure 6(d) models the fact 
that some employees may not be assigned 
to a department, and some departments 
may have no employees. The 
Create/Delete/Update semantics of each is 
different.

These examples show that the 
rigorous application of functions and set 
constraints identifies semantic constraints 
for Create/Delete/Update operators.

CLASS OF BODY ASSEMBLY 
Operators

Display (dynamic, deep, TO component < 
Rotate (static, deep, TO component) 
Rotate (static, deep, TO assembly)

CLASS OF CAR ASSEMBLY 
Operators

Display (dynamic, deep, TO component) 
Rotate (static, deep, TO component) 
Rotate (static, deep, TO assembly)

Figure 5

Total
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DEPARTMENTDEPARTMENT DEPARTMENT DEPARTMENT

Figure 6(d)Figure 6(b) Figure 6(c)

Four representations of the ASSIGNED relationship and its inverse

Figure 6

Figure 6(a)

Semantic constraints are inherent in the functional 
representation. They require no special knowledge of the 
problem domain. The procedure for identifying semantic 
constraints can be automated if a data description language 
is formalized that represents the data structure and 
relationships. The text box on the next page describes 
semantic constraints inherent in the conceptual 
representation.

3. BEHAVIORAL ABSTRACTIONS
Adding operators to the structure of an object set defines 

a class. A class encapsulates attributes and operators. 
Objects are class instances that cooperate, usually through 
message passing. Objects have state. The state of an 
object is the value of its attributes. The state of an object 
is only accessible through the operators defined for the 
class. A class assumes full responsibility for managing 
the state of its objects.

The relationship between operators and objects is 
similar to that of class attributes. Just as one class 
attribute applies to each object in an object set, so too, one 
operator applies to each object in an object set. The 
similarity suggests the same functional notation be used. 
Figure 1 shows EMPLOYEE having operators identified 
within the CLASS OF EMPLOYEE symbol. The 
operator EMPLOYEE.Age, for example, returns a value 
from the domain determined by its specification. There is 
no distinction between attribute functions and operator 
functions. Operators to read, write, or modify simple 
attribute values are assumed and are not usually shown 
[10]. Operators to read, write, or modify composite 
attribute values may or may not be shown. Operator 
specifications are usually described in a separate document

Just as a specialized entity inherits attributes from all 
higher-level entities, so too, they inherit operators. The 
operator SECRETARY Age, for example, returns the same 
value as the operator EMPLOYEE Age for each secretary. 
Inherited operators can also be modified in much the same 
manner as inherited attributes. Operator override causes the 
operator of the specialized entity to be executed instead of 
the operator of the higher-level entity. Operator 
augmentation causes the operator of the specialized entity 
to be applied first, followed by the same-named operator in

the higher-level entity, or vice versa. The Create operator 
of a specialized eritity, for example, must augment the 
Create operator of its higher-level entity because specialized 
entities have more attributes than their higher-level 
entities. The distinction between override and 
augmentation, and the order of augmentation, is described 
in the operator specification. Private operators are not 
inherited. Operator semantics, for example, often differ in 
the substructure of a specialization hierarchy. The modeler 
may choose to inhibit operator inheritance in lieu of 
augmenting the operator in the specialized entity to account 
for slightly different semantics. Operator exclusion 
permits exceptions to an otherwise common set of 
operators [13]. The notation for indicating operator 
modification is to append (private), (exclude), (augment) or 
(override) to the operator name. Although attribute 
inheritance occurs only within a specialization hierarchy, 
operator inheritance is not similarly restricted. Operators 
are inherited across different object sets, as, for example, 
the CLASS OF TYPED EMP operator Hire (Fig 1).

3.1 Semantic Operators
Semantic operators reduce the gap between the problem 

and its conceptual representation. Semantic create and 
delete operators deal with an object in its entirety, i.e., 
with the object, all specialized entities, and all 
relationships. The operators ENGINEER .Hire and 
SECRETARY .Hire, for example, each create employees 
who are engineers and secretaries respectively, and assigns 
them to departments and to projects. Semantic operators to 
read, write, and modify attribute values are declarative in 
nature, rather than procedural as would be required if the 
application were required to perform the join operation in a 
relational implementation. The operator to read 
EMPLOYEE.ProjectNo, for example, returns a non-empty 
(the relationship is total) list of projects to which an 
employee is assigned.

3.2 Operator Propagation
Operators in a parts hierarchy can Uigger same-named 

operators of component objects [10]. Triggering iterates 
over the component objects according to a sequence 
identified in the operator specification. The component
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Semantic Constraints Inherent in the Conceptual Representation

Update Constraints
Constraint Ul. Values for total attributes cannot have a null value.
Constraint U2. Values for 1:1 attributes can be used as the domain of only one entity.
Constraint U3. The defining attribute for an attribute (or predicate) defined group of subclasses that cover a superclass 

must be total.
Constraint U4. The defining attribute for an attribute (or predicate) defined generalized object covered by its member 

objects must be total.
Constraint US. Modifying the value of an attribute that is used in the derivation rule of a derived attribute makes the 

derived attribute appear (to the database user) as if its value was dynamically recomputed the next time it is read.
Constraint U6. Modifying the value of an attribute that is used as the defining attribute in an attribute-defined or 

predicate-defined subclass (or composite object) will cause the entity to be added to (or deleted from) the related subclass entity 
(or object) set as required. This rule applies recursively to all subclass entity sets that are dependent on the (possibly) new 
subclass entity set.

Constraint U7. In an implementation that references objects by value (instead of distinct object identifiers), changing 
the value of an attribute that is part of the object identifier (e.g., primary key in a relational system) causes the value to 
change in all related relations.

i
Delete Constraints

Constraint Dl. An entity that is the domain of a total relationship cannot be deleted. This rule takes priority over all 
other deletion constraints.

Constraint D2. Deleting an entity that is the domain of a partial relationship implies either: 1) the reference from the 
related entity will set to a null value; or, 2) or the aggregate-constructed entity that represents the relationship is also deleted.

Constraint D3. Deleting an entity implies that it is also deleted from all subclass entities (if any) and all composite 
entities (if any).

Constraint D4. Deleting an entity from a group of subclasses that cover a superclass will also delete the superclass 
entity.

Constraint D5. Deleting an entity that is used in the derivation rule of a derived attribute makes the derived attribute 
appear (to the database user) as if its value was dynamically recomputed the next time it is read.

Create Constraints
Constraint Cl. Inserting an entity that is the range of a total relationship implies the relationship with a related entity 

will be made.
Constraint C2. Inserting an entity into a superclass causes the entity to be inserted into all attribute-defined or 

predicate-defined subclasses or composite objects as determined by the defining-attribute or the defining-predicate.
Constraint C3. Inserting an entity into a superclass that is covered by a specialization hierarchy causes the entity to be 

inserted in at least one of the subclass.
Constraint C4. A subclass entity cannot be inserted into a group of disjoint subclasses if it is already an entity in one 

of the other subclasses.
Constraint C5. Adding an entity into a group of subclasses that cover a superclass will also add the entity to the 

superclass. If the covering subclass is user-defined, then additional user information may be required for the insert
Constraint C6. Inserting an entity that is used in the derivation rule of a derived attribute makes the derived shared 

class attribute appear (to the database user) as if its value was dynamically recomputed the next time it is read.

objects, themselves, may be assemblies, which may again 
trigger same-named operators of their component objects. 
Consider, for example, the assembly, CAR, which is 
composed of component assemblies BODY, DRIVE 
TRAIN, and ELECTRICAL SYSTEM, which themselves 
are assemblies, down to some primitive level. How far 
should the Display operator propagate? Also, the 
application may need to control the depth of propagation 
such that the detailed structure of each component can 
dynamically be made visible or invisible. And what of the 
inverse relationship? Displaying the detailed structure of a 
component assembly should not necessarily cause the 
higher level assembly to be displayed; whereas rotating the 
component should cause a rotation of the entire assembly, 
an operation the application should not be able to inhibit

The problem is similar to shallow vs deep operators that 
occurs in object-oriented programming.

Different operator propagation requirements are modeled 
by showing propagation attributes for both relationships 
and inverse relationships [11,12], There are three 
propagation attributes; the constraint attribute, which has 
values dynamic or static, the depth attribute, which has 
values none, shallow, or deep; and the link attribute, which 
has values TO component ox TO assembly. Figure 5 
shows the application may dynamically control the display 
operator (i.e., the detailed structure of a car body may be 
made visible or invisible when the detailed structure of a 
car is visible), and the rotate operator propagates to all 
components and assemblies in the parts hierarchy.
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4. VERSIONS
Many design applications require the ability to manage 

multiple versions of an object before selecting the one that 
satisfies the requirements. Versions are also important for 
publishing applications, and for historical databases, such 
as those used in accounting, legal, and financial 
applications that require access to the past information of 
the database.

Simplifying the more extensive treatment of Banerjee 
[2], an object can be versioned in one of two manners, i.e., 
a transient version or the working version. A transient 
version may be created from scratch or derived from an 
existing transient or working version. A transient version 
may be deleted or updated at will, or explicitly upgraded to

default, the most recent transient version is the default 
version. The version descriptors, one for each version of 
the object, includes application specific information.

A versioned object is created by a Create command, 
which also creates a generic object. (The generic object 
does not have a create command.) A versioned object may 
also be deleted. When a versioned object is deleted the fact 
that the version existed is not deleted from the generic 
object. (The generic object does not have a delete 
command.) References to a versioned object may be either 
specific or generic. A reference to a specific object version 
is statically bound. A reference to a generic version is 
dynamically bound to a default version of the object.

Notationally, a versioned object is represented by

the working version. The working version may be updated 
at will, but it may not be deleted. It must first be replaced 
by a transient version that is promoted to the working 
version.

Associated with each versioned object is a generic object 
with attributes that include an object identifier; 
NextVersionNumber\ DefaultVersionNumber; and a set of 
version descriptors, one for each instantiation of the 
corresponding versioned object. Individual versioned 
objects are differentiated by the object identifier along with 
the version number. NextVersionN umber is a derived 
attribute because version numbers are automatically 
generated by either the underlying database or the 
application. DefaultVersionN umber is the version number 
of the working version. In the absence of a user-specified

appending (version) to the object name, and a generic 
object is represented by appending (generic) to the object 
name. The functional relationship from the versioned 
object set to the generic object set is total because each 
versioned object is associated with a specific generic object. 
The inverse relationship is partial because a generic object 
is not deleted when a versioned object is deleted.

The close coupling between versioned objects and 
generic objects produces inter-object constraints called 
inclusion dependencies. An inclusion dependency between 
attributes X of a set R and attributes T of a set S specifies 
the constraint that, at any given instance, the domain of 
attribute values for X must be a subset (not necessarily a 
proper subset) of the active domain of values for Y.
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These concepts are illustrated in Figure 7. 
PUBLICATION is a versioned object of, say, all 
publication versions that are currently in the distribution 
network of a publisher. PUBLICATION LOG is the 
associated generic object, and includes information specific 
to all versions, even those that are no longer in the 
distribution network. Publications umber is the object 
identifier, which is sufficient to identify individual objects 
in PUBLICATION LOG, but must be paired with 
VersionNumber to identify individual versioned objects in 
PUBLICATION. The other attributes are as previously 
described.

5. OBJECT-ORIENTED LANGUAGES
An object is the fundamental construct of object- 

oriented programming languages. Objects encapsulate type 
and operators, and cooperate with related objects by 
message passing. This is in contrast to more traditional 
languages that separate type from operators and use a 
procedural style of programming. The notion of an object 
from the language perspective is as an embedded, bottom- 
up component used to construct more complex objects. 
Everything is an object. The notion of an object from the 
problem domain modeling perspective is as an independent, 
top-down component which has stepwise refinement by 
decomposition applied.

More fundamentally, the underlying goals of problem 
domain modeling and object-oriented programming 
languages are substantially different. The goal of problem 
domain modeling is to model the problem domain. An 
object is viewed as an abstract representation of an entity 
that exists in the mini-world being modeled. Common 
type (i.e., data structure) is the conscious design decision 
used to model entities. The goal of object-oriented 
programming languages is modular software construction, 
code sharing, and code reusability. Common behavior of 
data is the conscious design decision. Problem domain 
modeling and object-oriented programming languages 
approach the problem from different directions and with 
different goals. The two approaches are complementary.

6. SUMMARY
A comprehensive set of data structuring abstractions 

was presented. The first abstraction was that of an object 
being an entity with a type that is not derived from the 
type of any other entity. Attribute assignments were made 
to a small number of objects rather than collecting 
attributes into a data dictionary, identifying functional 
dependencies, and synthesizing tables. The assignment of 
attributes to objects was represented as a function. This 
added semantic information that is not present in the ER 
and relational models. Attribute functions that are total 
identify attributes that cannot have a null value. This is 
enforced in either the data description language of an 
underlying data base management system, or in the 
applications code. Attribute functions that are total, 1:1 
identify candidate keys for a relational implementation. 
The abstraction of aggregating simple attributes into 
composite, multivalued, and derived attributes kept the 
model close to the problem domain. The abstraction of 
class attributes modeled real-world situations that are 
difficult to represent in the relational model. None of these

abstractions conflict with the underlying theory of the 
relational model, nor do they add any additional power. 
They serve to keep the model close to the problem domain 
and in a form that can readily be translated into an object- 
oriented, relational, or network implementation.

Specialization hierarchies (or latices) model roles of an 
object. Three forms of specialization were identified, i.e., 
attribute, predicate, and user defined. The need for public, 
private, and exclude constraints to restrict attribute 
visibility in a specialization hierarchy was identified. 
Composite objects extended the object abstraction to 
include objects that represented collections of other objects. 
Part hierarchies added another dimension to composite 
objects by addressing hierarchically organized collections of 
interrelated objects.

The use of functions and set constraints identified 
semantic constraints for Create/Delete/Update operators. 
The semantic constraints are inherent in the functional 
representation of the model. They required no special 
knowledge of the problem domain. The procedure for 
identifying semantic constraints can be automated if a data 
description language is defined that represents the data 
structure and relationships.

An approach for identifying behavior was defined. The 
need for public, private, and exclude inheritance modifiers 
to restrict operator visibility was identified, as well as 
propagation constraints and propagation attribute values in 
a parts hierarchy. Operators deal with objects in their 
entirety; are close to the problem domain; have a broader 
meaning than the tuple selection, projection, and join 
operators of the relational model; and are constrained to not 
violate the Create/Delete/Update constraints of the semantic 
constraints. Encapsulating operators with object type 
defined classes.

The graphical notation for representing these 
abstractions uses a small set of easily recognizable 
symbols. The notation permits the definition of structures 
of any complexity, while at the same time keeping the 
model conceptually close to the problem domain. The 
domain of problems that can be modeled is more extensive 
than the domain of either the extended entity relationship or 
semantic data models.
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1

Unification

Semantic data models describe
• Structure
• Semantics

Object-Oriented Paradigm describes:
• Behavior
• Structure (somewhat)

These concepts can be used to model the structure, semantics, 
and operators ol a problem domain.

V n yEG&G/EM, Inc. '
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Description of the Problem Domain

• Conceptually close to the problem domain.

Verifiablo by the customer / user

• Easily translatable to code.

Uses constructs closely aligned tp programming language 
concepts

• Easily translatable to object-oriented, relational, or network data 
base Implementations.

• Easily translatable to data entry (forms) screen design for 
populating the data base.

n
EG&G/EM, Inc.V
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Functions

A function, t, from set A to set B, expressed as f:A —» B, is a subset of the 
Cartesian product A xSwIth the property that tor each ae A there is a 
unique be B such that the ordered pair (a,b)e AxB.
• f is sometimes called a mapping of A to B.
• The set A is called the domain of t.
• The members of Bwhich occur in (a,b)E f is called the range of t

A

Domain

B

>-b
Range

• Total function— every member of A maps to a member of B.
• Parf/a/function — some members of A do not map to B.
• One-fo-ona function (};7)—no two members of A maptothesame 

member of B. •
• Dot notation— bis called the image of a under/, expressed as a./.

n
EG&G/EM, Inc.
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Functions (cont)

Total Function 20 CHARACTER STRING
EMPLOYEE

EMPLOYEE. Name

Total, 1:1 Function 11 CHARACTER STRING
EMPLOYEE

Social Security Numbar
17-1000

EM PLOYEE.SocialSecurity Number

Partial Function 13 CHARACTER STRINGEMPLOYEE
Phone Number

EMPLOYEE.PhoneN umber

DWB 5

An Object is an Independent Component 
of the Problem Domain

A

• An entity that doe* not derive Its type from any other entity

• State

• Operators

• Cooperate with related objects

V n
EG&G/EM, Inc.
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Agenda

Structuring Abstractions

• Semantic Constraints

• Behavioral Abstractions

• Comparison with Object-Oriented Languages

The manner in which objects cooperate is not addressed.

V n yEG&G/EM, Inc. '
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Representing Objects, Specialized Entities, and 
Attributes

MANAGER

Attribute Functions 
EMPLOYEE.Name 
EMPLOYEE. Address

EMPLOYEE.Age
MANAGER.TrainingClass

owe a



Representing Class Attributes

CLASS OF CAR 
Ojlu Attribute*

Number Of Wheel* (*h*jed) 
Fuel Capacity (default) 
Number Of Car* (derived)

DWB 9

Specialization Models Roles for an Objectr
There are two Independent reasons for specialization.

• There are attributes relevant to the specialized entities that do not 
apply to the more general entity.

> The specialized entity sets can participate In relationships that the 
more general entity set cannot.

Specialization models ISA relationships.

V EG&G/EM, Inc.



Set Constraints

Two equally reasonable specialization hierarchies

Figure A Figure B

EG&G/EM, Inc.

Attribute, predicate, and User Defined Specialization

EMPLOYEE

MANAGER

MANAGERS ENGINEER

'ENGINEERING
MANAGER

V n
EG&G/EM, Inc.



Attribute Inheritance

DWB 13

Representing Relationships

. ASSIGNMENT

DWB 14



r Composite Objects

One of the fundamental structuring abstraction from semantic data 
models is the concept that objects can be constructed out of other 
objects.

The abstraction has two forms:

• A 
w

composite
hole

object embodies the concept of a collection or additive

• Apart hierarchy embodies the concept of a more structured, tightly 
coupled whole t

Each adds a different dimension to the concept of an object than that 
addressed by a specialization hierarchy

V n
EG&G/EM, Inc.
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Composite Objects - A Collection

EMPLOYEE

MANAGER

SECRETARYENGINEER
r LABOR > 
COMMITTEE

MANAGER ^ ENGINEER

ENGINEERING
MANAGER

V n
EG&G/EM, Inc.



Generalized objects are formed by the disjoint union of othenwise 
unrelated objects

11 /EG&G/EM, Inc. '
V

DWB 17

A part hierarchy enforces referential integrity that is not enforced with a 
composite object

V n
EG&G/EM, Inc.



Operator Override

POLYGON.Psrimeter: Sum tha length ot the edges 
POLYGON.Rectangle: 2 x the length ot two consecutive edges 
POLYGON.Square: 4 x the length ot any edge

TRIANGLE

CLASS OP SQUARE
Operators

Perimeter (override)

DWB 25

Operator inheritance (cont)

Pr/Vate operators are not inherited.

• Exclusion permits exceptions to an otherwise common set of operators. 

Operators are inherited across different object types.

cxau or axriovu

(frtrme)

IL^ -l4
JS> WtOIBCT

n
EG&G/EM, Inc.



r Behavioral Abstractions

• Tha relationship between operators and objects is similar to that ot 
class attributes.

• Just as one class attribute applies to each object in an object set, so 
too, one operator applies to each object In the set.

• The similarity suggests the same functional notation be used.

CLASS OP EMPLOYEE
Qua Aiuabuiea

NumbaOfbmployecs (derived) 
Operated 

Ajje
Foe (private)
RecUssi/y (private) 
AarifiiToPlofect (private) 
RemovcftomPtoject (private) u

^ SociagvccuntyN'umba^^

n
EG&G/EM, Inc.JV
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Operator Inheritance

Inherited operators can be modified in much the same manner as 
Inherited attributes.

• Override causes the operator ot the heir to be executed instead of 
the inherited operator.

• Augmentation causes the operator of the heir to be applied first, 
followed by the same named inherited operator, or vice versa.

The distinction between override and augmentation, and the order ot 
augmentation, is described in the operator specification document.

DWB 24



Semantic Constraints are Inherent in the 
Functional Representation

• The application ot functions and set constraints identifies many 
semantic constraints for Create / Delete / Update operators.

• They require no special knowledge of the problem domain.

• The procedure for identifying semantic constraints can be 
automated if a data description language is formalized.

• User defined constraints are not identified

V n yEG&G/EM, Inc.'
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An Object is an Independent Component 
of the Problem Domain

An entity that does not derive its type from any other entity

State

Operators

Cooperate with related objects

A

n /
EG&G/EM, Inc. '



Semantic Constraints

EG&G/EM, Inc.

Four Representations of a One-to-Many Relationship

Four fepf awn talons ol tha ASSIGNED tatalonslap and its invarsa X*

The Create / Delete / Update semantics of each are different

4,^ EG&G/EM, Inc.



Semantic Operators

Semantic operators reduce the gap between the problem domain and 
Its conceptual representation.

• Semantic create and delete operators deal with objects in their 
entirety.

ENCINEER.Hire, (or example, creates an employee who is an 
engineer and makes the assignment to DEPARTMENT and to 
PROJECT.

• Semantic operators to read, write, and modify attribute values are 
declarative In nature, rather than procedural. v

EMPLOYEE.ProjectNo, tor example, returns a non-empty list of 
projects to which an employee is assigned.

V n
EG&G/EM, Inc.

Comparison with Object-Oriented Languages

Object-Oriented Languages
• An object is the fundamental construct of object-oriented 

programming languages.

• Objects encapsulate type and operators, and cooperate with related 
objects by message passing.

The notion of an object from the language perspective Is as an 
embedded, bottom-up component used to construct more complex 
objects.

• Everything Is an object.

Problem Domain Modeling
• The notion of an object from the problem domain modeling

perspective Is as an independent, top-down component which has 
stepwise refinement by decomposition applied.

V n
EG&G/EM, Inc.



The Underlying Goals of Problem Domain Modeling and 
Object-Oriented Programming Languages are Different

Tha goal ot problem domain modeling is an accurate representation of the 
problem.

• An object is viewed as an abstract representation of an entity that 
exists in the mini-world being modeled.

• Common type is the conscious modeling decision.

The goal of object-oriented programming languages Is modular aoftware 
construction, code sharing, and code reusability.

• Common behtvlor ot data Is the conscious design decision.

V n y4,^ EG&G/EM, Inc.'


