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ABSTRACT

The object-oriented paradigm can be used to model
behavior, and to a lesser extent, the structure of a problem
domain. Semantic data models describe structure and
semantics. This paper unifies the behavioral focus of the
object-oriented paradigm with the structural and semantic
focus of semantic data models. It presents abstractions to
model static and derived data, composite objects, part
hierarchies, semantic constraints, and abstractions for
identifying behavior. The abstractions keep the model
close to the problem domain, are independent of language
features, and can be translated into object-oriented,
relational or network implementations.

This paper makes three principal contributions. First, a
comprehensive set of data structuring abstractions is
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described. Second, semantic constraints inherent in the
graphical representation of the abstractions are identified.
Third, abstractions for identifying behavior are described.

1. STRUCTURING ABSTRACTIONS

An approach for modeling the structure, semantics, and
operators of a problem domain is described. The approach,
called Problem Domain Modeling (PDM), extends
notations introduced for the EFO semantic data model [1,7],
the extended entity relationship semantic data model [4],
and the object-oriented Object Modeling Technique [10].

Structurally, an object is an entity that does not derive
its type from any other entity. The type of an object is
called an object type. A set of objects is represented by a
triangle enclosing its name (Fig 1). Specialized entity
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sets, which derive their type from other entities, are
represented by a circle with a directed edge drawn with a
lightly shaded fat arrow (called an inheritance arrow) to the
higher-level entity set, which may be an object set or
another specialized entity set.

The assignment of attributes is based on the
mathematical concept of a function from a domain to a
range, where the domain is the object (or entity) set and the
range is the set of values for each attribute. Notationally,
an attribute function name is enclosed in an ellipse. The
single-valued nature of the function is represented by a
directed edge to the attribute function name. Attribute
function values are described in a separate document.

Annotations Total and /:] on the directed edge describe
the nature of the function. Values for Total attributes
cannot be null. Values for 7:7 attributes can be used as
the domain of only one entity. Edges with no annotation
have no restrictions, i.e., they represent Partial functions
and attribute values can be null. Attribute functions that
are Total, 1:1 functions are candidates for key attributes in
a relational implementation. Unless otherwise annotated,
specialized entities inherit the attributes of higher-level
entities. The functional mapping from the higher-level to
the specialized entity is always Partial, 1:1. The mapping
from specialized to higher-level entity is always Total, 1:1.

The aggregation of attributes to form higher-level
attributes is called Cartesian aggregation.  Attributes so
constructed are called composite attributes. The domain of
values for a composite attribute is the cross product of
several domain sets. Cartesian aggregation is represented
by placing an x through the ellipse, which indicates
aggregated attributes are omitted from the graphical
representation. The composite attribute
EMPLOYEEJ"ame, for example, consist of the attributes
FirstName, M1, and LastName. The aggregated attributes
can be shown at a lower level of abstraction and are always
included in the domain descriptions. Composite attributes
can be nested.

Multivalued attributes have multiple values from a
domain of values. The domain of values can be simple or
composite attributes. Multivalued attributes are represented
with a double arrowhead on the directed edge to the ellipse
identifying the attribute domain, e.g., ENGINEERDegree,
with values BS, Phd, etc. A dashed directed edge indicates
an order is imposed, which is identified in the domain
descriptions.

Derived attributes [4,6,7] have their value
mathematically determined from other attribute values.
Derived attributes are represented by a dashed ellipse, e.g.,
EMPLOYEE Age. Domain descriptions for derived
attributes consists of two parts; a structural description and
a derivation rule. The derivation rules can be complex and
can use previously defined derived attributes. Functional
dependencies and derivation rules between derived attributes
are described in a separate document

1.1 Relationships

The representations of one-to-one and one-to-many
relationships are also based on the mathematical concept of
a function, where the domain is one entity set, and the
range is the related entity set. A single arrowhead on the
directed edge between related entities represents a one

cardinality, a double arrowhead represents a many
cardinality. Both the relationship and the inverse
relationship are modeled. The inverse relationship is
usually not implemented. Many-to-many relationships,
e.g., PROJECT ASSIGNMENT, are represented using the
aggregate-constructor (®). Attributes can be assigned to
relationships modeled with the aggregate-constructor. One-
to-many relationships can alternatively be represented using
the aggregate-constructor when attributes are associated
with the relationship. Dashed directed edges from
aggregate-constructors indicate ordered pairs.

1.2 Class Attributes

An object type is treated as an object itself, thereby
permitting it to have attributes; i.e., a type is an object.
Such attributes are called class attributes. A class attribute,
then, is a single attribute that applies to each object in the
set. Three kinds of class attributes are identified; shared-
value attributes, default-value attributes [2], and derived-
value attributes. A shared-value attribute is shared by each
object (and specialized entity). A default-value class
attribute is shared by each object (and specialized entity)
when the object (or specialized entity) has a null value for
its similarly named attribute. A derived-value class
attribute represents summary information aggregated from
the set as a whole. Notationally, class attributes are
represented by a box with rounded comers. Figure 2 shows
the object set CAR having CLASS OF CAR class
attributes with (shared), (default), and (derived) appended to
the attribute names. The shared-value class attribute
NumberOJWheels applies to all cars; the default-value
class attribute FuelCapacity applies to those cars that have
a null value for their similarly named attribute (because a
standard fuel tank is installed in most cars); the derived-
value class attribute NumberOfCars represents the number
of cars in the object set. Class attributes are fotal
functions. Object sets that have class attributes have a
type that extends to include the type of the class attributes.

CLASS OF CAR
Class Attributes

Number Of Wheels (shared)
Fuel Capacity (default)
Number Of Cars (derived)

Vehicle ID

Total, 1-1

Fuel Capacity

Figure 2

1.3 Specialization

Specialization is an abstraction that models ISA
relationships by considering similar entities as a sub-
classification of a higher-level set. There are two
independent reasons for specialization. First, there are
attributes relevant to the specialized entity that do not
apply to the more general entity. Second, specialized
entity sets can participate in relationships that the more
general entity set cannot. When specialization is applied.



the higher-level set is defined so that it contains attributes
common to all similar entity sets. Attributes that are not
common are assigned to specialized entity sets. Specialized
entities may themselves be specialized, forming a hierarchy
or lattice, e.g., ENGINEERING MANAGER (Fig 1).
There are three forms of specialization; attribute,
predicate, and user defined. Attribute defined specialization
is characterized by a defining attribute in the higher-level
entity, e.g., EMPLOYEE.JobType. Notationally, the
name of the defining attribute is placed on the inheritance
arrow. Predicate defined specialization is characterized by a
defining logic condition, e.g., MANAGER u ENGINEER.
Notationally, the defining predicate is placed on the
inheritance arrow. ENGINEERING MANAGER has no
additional attributes. It is included in the model because
(some) engineering managers enter into the LABOR
COMMITTEE relationship. User defined specialization
does not have a defining attribute in the higher-level entity,
e.g., there is no attribute in EMPLOYEE that
distinguishes managers from other employees. Entities
included in a user defined specialization are identified by the
user at the time the entity is created or updated rather than
by any condition that may be evaluated. Notationally,
inheritance arrows for user defined specializations are not
annotated.
Specialized entity sets can be
disjoint, and/or can cover the
higher-level entity set. Disjoint
entity sets are represented by
connecting the inheritance
arrows of the specialized entity
sets to a small circular node
circumscribing the letter d,
followed by one inheritance
arrow from the circular node to
the higher-level entity set.
Covering is represented by
connecting the inheritance
arrows to a small circular node
circumscribing the letter U, MALE
followed by one inheritance
arrow from the circular node to
the higher-level entity set.
Entity sets that are disjoint and
covering have the letters d/U in the circular node. Unless
otherwise shown, specialized entity sets are neither disjoint
nor covering. Figure 3 shows two equally reasonable
specialization hierarchies, depending on the problem
domain being modeled. Figure 3(a) models the fact that
EMPLOYEE is covered by the disjoint sets MALE and
FEMALE. Figure 3(b) models an application where the
sex of an employee may not always be known, perhaps
because it is not a field on the job application.

1.4 Attribute Inheritance

The concept of attribute inheritance from higher-level
entities to specialized entities is closely coupled with the
programming language concept of fype [3,14], There are
two prevailing concepts; type as a prototype and type as a
template. Type as a prototype supports default inheritance,
i.e., inheriting attributes from the higher-level entity is by
default unless specifically excluded by the specialized entity

Figure 3(a)

so as to be able to deal with exceptions. Type as a
template supports strict inheritance, i.e., all attributes from
the higher-level entity are inherited by the specialized
entity, which then adds additional attributes. Another
concept, attribute override, which applies to both default
and strict inheritance, restricts the domain of the inherited
attribute in a manner that does not contradict the domain of
the higher-level entity. An employee entity set may, for
example, have a derived attribute age with a domain of 18-
120, and a specialized entity set for retired employees that
restricts the domain of age to 65-120. Finally, there is the
concept of public vs private attributes. Private attributes
are never inherited, whereas public attributes are always
inherited (unless excluded or overriden).

An accurate model of a system requires that all forms of
inheritance be supported in the description of the problem
domain. The details of the actual implementation are left
to the later design phase, with the design reflecting the
limitations and capabilities of the implementation
language. The notation for representing all forms of
attribute inheritance is to append (exclude), (override), or
(private), to the attribute name. (Public need not be a
modifier because anything that is not private is public.)

~Social Security Number”

MALE FEMALE

Figure 3(b)

1.5Composite Objects

One of the fundamental structuring abstractions from
semantic data models is the concept of constructing object
sets out of other object sets. The abstraction has two
forms, composite objects and part hierarchies. The two
forms are closely related; a composite object embodies the
concept of a collection or an additive whole; a part
hierarchy embodies the concept of a more structured,
tightly coupled whole. Each adds a different dimension to
the concept of an object than that addressed by a
specialization hierarchy.

Figure | shows the composite object LABOR
COMMITTEE, which is composed of ENGINEERING
MANAGERS. The relationship from LABOR
COMMITTEE to ENGINEERING MANAGER is
represented by an attribute function to a set-constructor (®).
The attribute CommitteeOffice (e.g., treasurer) is an
attribute of engineering managers who are members of a



labor committee. Composite objects can be
nested. Membership in a composite object is
also attribute defined, predicate defined, or user
defined [5]. Notationally, the defining attribute
or predicate annotates the directed edge to the
set-constructor.  Unlabeled edges are user
defined.

Figure 4 shows another form of composite
object, a generalized object, formed by the
disjoint union of otherwise unrelated objects
[3]. Registered vehicles are either cars or
trucks, but any specific registered vehicle is
only one or the other. (The domain of the
reference attribute that represents this
relationship is either a Car ID or a Truck ID.)
Figure 4 also shows that all trucks must be
registered (the attribute function is fotal), but
cars need not be registered (the attribute function is partial).
A generalized object is different than an ISA relationship.

1.6 Part Hierarchies

The objects modeled in CAD/CAM and similar
applications are assemblies that are themselves aggregates
of other objects. At one level of abstraction an assembly
is defined and manipulated as a single object, while at
another level of abstraction the complete and detailed
aggregated structure may be viewed. An assembly of such
objects is called apart hierarchy [2,8,9], A part hierarchy
enforces referential integrity that is not enforced with a
composite object

The notation for representing part hierarchies is slightly
different than that for representing composite objects
because the relationship is stronger. Both the relationship
and its inverse need to be modeled and implemented because
a part mediates the behavior of its components, and the
components affect the behavior of the assembly. Figure 5
models the part hierarchy between CAR and BODY. The
dark fat directed edge represents the part hierarchy. The
assembly to component relationship is partial when the
assembly is constructed from the top down and total when
the assembly is constructed from the bottom-up, and is
always /:1. The inverse relationship from component to
assembly is always /:/ for a physical parts hierarchy,
cannot be 1:1 for a logical parts hierarchy, and can be either
total or partial depending on whether components can exist
independent of assemblies.

CLASS OF CAR ASSEMBLY

Operators
Display (dynamic, deep, TO component)
Rotate (static, deep, TO component)
Rotate (static, deep, TO assembly)

Total

CLASS OF BODY ASSEMBLY

Operators
Display (dynamic, deep, TO component ¢
Rotate (static, deep, TO component)
Rotate (static, deep, TO assembly)

Figure 5

Vehicle ID

Registered Vehicle Details

Vchicle Type”

Toad. 1:1
REGISTERED
VEHICLE

Vehicle Type
Total, 1:1

'ruck ID

Vehicle Type = Truck Total. 1:1

Total

Total. 1:1

Vehicle Type = Car

TRUCK

Figure 4

2.SEMANTIC CONSTRAINTS
Semantic constraints are restrictions on entity
Create/Delete operations, and on attribute value updates,
that guarantee data always reflects the underlying data
model. Consider Figure 1. The functional mapping from
DEPARTMENT to DeptNo is total, 1:1, indicating each
department must have a unique value from the domain
DeptNo. The functional mapping from DEPARTMENT
to DepartmenlName and StaffmgLevel is partial, indicating
these attribute values may have null values. The attribute
JobType is a defining attribute between EMPLOYEE and
specialized entities which are disjoint and cover
EMPLOYEE. JobType, then, must be fotal (cannot have a
null value) if the disjoint / cover set constraints are
maintained. Furthermore, inserting a new employee will
cause an insertion in either ENGINEER or SECRETARY
and deleting one of the specialized entities will cause a
deletion in EMPLOYEE. The relationship between
EMPLOYEE and DEPARTMENT is total meaning
deparunents that are the domain of the relationship cannot
be deleted. If the relationship were partial, deleting a
department would require a null value for interobject
references from EMPLOYEE to the deleted department.
Figure 6 shows four functional representations of the
ASSIGNED relationship between EMPLOYEE and
DEPARTMENT that further illustrates the semantic
information provided by functional modeling. Figure 6(a)
models the fact that all employees are assigned to
departments, and all departments are assigned employees.
Figure 6(b) models the fact that some employees may not
be assigned to a department, but all
departments have assigned employees.
Figure 6(c) models the fact that all
employees are assigned to a department,
but some departments may have no
employees. Figure 6(d) models the fact
that some employees may not be assigned
to a department, and some departments
may have no employees. The
Create/Delete/Update semantics of each is
different.

These examples show that the
rigorous application offunctions and set
constraints identifies semantic constraints
for Create/Delete/Update operators.



DEPARTMENT DEPARTMENT

Figure 6(a) Figure 6(b)

Four representations ofthe ASSIGNED relationship

DEPARTMENT DEPARTMENT

Figure 6(c) Figure 6(d)

and its inverse

Figure 6

Semantic constraints are inherent in the functional
representation. They require no special knowledge of the
problem domain. The procedure for identifying semantic
constraints can be automated if a data description language
is formalized that represents the data structure and
relationships. The text box on the next page describes
semantic constraints inherent in the conceptual
representation.

3. BEHAVIORAL ABSTRACTIONS

Adding operators to the structure of an object set defines
a class. A class encapsulates attributes and operators.
Objects are class instances that cooperate, usually through
message passing. Objects have state. The state of an
object is the value of its attributes. The state of an object
is only accessible through the operators defined for the
class. A class assumes full responsibility for managing
the state of its objects.

The relationship between operators and objects is
similar to that of class attributes. Just as one class
attribute applies to each object in an object set, so too, one
operator applies to each object in an object set. The
similarity suggests the same functional notation be used.
Figure | shows EMPLOYEE having operators identified
within the CLASS OF EMPLOYEE symbol. The
operator EMPLOYEE.Age, for example, returns a value
from the domain determined by its specification. There is
no distinction between attribute functions and operator
functions. Operators to read, write, or modify simple
attribute values are assumed and are not usually shown
[10]. Operators to read, write, or modify composite
attribute values may or may not be shown. Operator
specifications are usually described in a separate document

Just as a specialized entity inherits attributes from all
higher-level entities, so too, they inherit operators. The
operator SECRETARYAge, for example, returns the same
value as the operator EMPLOYEE Age for each secretary.
Inherited operators can also be modified in much the same
manner as inherited attributes. Operator override causes the
operator of the specialized entity to be executed instead of
the operator of the higher-level entity. Operator
augmentation causes the operator of the specialized entity
to be applied first, followed by the same-named operator in

the higher-level entity, or vice versa. The Create operator
of a specialized eritity, for example, must augment the
Create operator of its higher-level entity because specialized
entities have more attributes than their higher-level
entities.  The distinction between override and
augmentation, and the order of augmentation, is described
in the operator specification. Private operators are not
inherited. Operator semantics, for example, often differ in
the substructure of a specialization hierarchy. The modeler
may choose to inhibit operator inheritance in lieu of
augmenting the operator in the specialized entity to account
for slightly different semantics. Operator exclusion
permits exceptions to an otherwise common set of
operators [13]. The notation for indicating operator
modification is to append (private), (exclude), (augment) or
(override) to the operator name. Although attribute
inheritance occurs only within a specialization hierarchy,
operator inheritance is not similarly restricted. Operators
are inherited across different object sets, as, for example,
the CLASS OF TYPED EMP operator Hire (Fig 1).

3.1 Semantic Operators

Semantic operators reduce the gap between the problem
and its conceptual representation. Semantic create and
delete operators deal with an object in its entirety, i.e.,
with the object, all specialized entities, and all
relationships. The operators ENGINEER .Hire and
SECRETARY .Hire, for example, each create employees
who are engineers and secretaries respectively, and assigns
them to departments and to projects. Semantic operators to
read, write, and modify attribute values are declarative in
nature, rather than procedural as would be required if the
application were required to perform the join operation in a
relational implementation. The operator to read
EMPLOYEE.ProjectNo, for example, returns a non-empty
(the relationship is total) list of projects to which an
employee is assigned.

3.2 Operator Propagation

Operators in a parts hierarchy can Uigger same-named
operators of component objects [10]. Triggering iterates
over the component objects according to a sequence
identified in the operator specification. The component



Semantic Constraints Inherent in the Conceptual Representation

Update Constraints

Constraint Ul. Values for total attributes cannot have a null value.
Constraint U2. Values for /:/ attributes can be used as the domain of only one entity.
Constraint U3. The defining attribute for an attribute (or predicate) defined group of subclasses that cover a superclass

must be fotal.

Constraint U4. The defining attribute for an attribute (or predicate) defined generalized object covered by its member

objects must be fotal.

Constraint US. Modifying the value of an attribute that is used in the derivation rule of a derived attribute makes the
derived attribute appear (to the database user) as if its value was dynamically recomputed the next time it is read.

Constraint U6. Modifying the value of an attribute that is used as the defining attribute in an attribute-defined or
predicate-defined subclass (or composite object) will cause the entity to be added to (or deleted from) the related subclass entity
(or object) set as required. This rule applies recursively to all subclass entity sets that are dependent on the (possibly) new

subclass entity set.

Constraint U7. In an implementation that references objects by value (instead of distinct object identifiers), changing
the value of an attribute that is part of the object identifier (e.g., primary key in a relational system) causes the value to

change in all related relations.

Delete Constraints

i

Constraint D1. An entity that is the domain of a fotal relationship cannot be deleted. This rule takes priority over all

other deletion constraints.

Constraint D2. Deleting an entity that is the domain of a partial relationship implies either: 1) the reference from the
related entity will set to a null value; or, 2) or the aggregate-constructed entity that represents the relationship is also deleted.
Constraint D3. Deleting an entity implies that it is also deleted from all subclass entities (if any) and all composite

entities (if any).

Constraint D4. Deleting an entity from a group of subclasses that cover a superclass will also delete the superclass

entity.

Constraint D5. Deleting an entity that is used in the derivation rule of a derived attribute makes the derived attribute
appear (to the database user) as if'its value was dynamically recomputed the next time it is read.

Create Constraints

Constraint Cl. Inserting an entity that is the range of a tofal relationship implies the relationship with a related entity

will be made.

Constraint C2. Inserting an entity into a superclass causes the entity to be inserted into all attribute-defined or
predicate-defined subclasses or composite objects as determined by the defining-attribute or the defining-predicate.
Constraint C3. Inserting an entity into a superclass that is covered by a specialization hierarchy causes the entity to be

inserted in at least one of the subclass.

Constraint C4. A subclass entity cannot be inserted into a group of disjoint subclasses if it is already an entity in one

of the other subclasses.

Constraint C5. Adding an entity into a group of subclasses that cover a superclass will also add the entity to the
superclass. Ifthe covering subclass is user-defined, then additional user information may be required for the insert

Constraint C6. Inserting an entity that is used in the derivation rule of a derived attribute makes the derived shared
class attribute appear (to the database user) as if'its value was dynamically recomputed the next time it is read.

objects, themselves, may be assemblies, which may again
trigger same-named operators of their component objects.
Consider, for example, the assembly, CAR, which is
composed of component assemblies BODY, DRIVE
TRAIN, and ELECTRICAL SYSTEM, which themselves
are assemblies, down to some primitive level. How far
should the Display operator propagate? Also, the
application may need to control the depth of propagation
such that the detailed structure of each component can
dynamically be made visible or invisible. And what of the
inverse relationship? Displaying the detailed structure of a
component assembly should not necessarily cause the
higher level assembly to be displayed; whereas rotating the
component should cause a rotation of the entire assembly,
an operation the application should not be able to inhibit

The problem is similar to shallow vs deep operators that
occurs in object-oriented programming.

Different operator propagation requirements are modeled
by showing propagation attributes for both relationships
and inverse relationships [11,12], There are three
propagation attributes; the constraint attribute, which has
values dynamic or static, the depth attribute, which has
values none, shallow, or deep,; and the link attribute, which
has values TO component ox TO assembly. Figure 5
shows the application may dynamically control the display
operator (i.e., the detailed structure of a car body may be
made visible or invisible when the detailed structure of a
car is visible), and the rofate operator propagates to all
components and assemblies in the parts hierarchy.



4. VERSIONS

Many design applications require the ability to manage
multiple versions of an object before selecting the one that
satisfies the requirements. Versions are also important for
publishing applications, and for historical databases, such
as those used in accounting, legal, and financial
applications that require access to the past information of
the database.

Simplifying the more extensive treatment of Banerjee
[2], an object can be versioned in one of two manners, i.e.,
a transient version or the working version. A transient
version may be created from scratch or derived from an
existing transient or working version. A transient version
may be deleted or updated at will, or explicitly upgraded to

the working version. The working version may be updated
at will, but it may not be deleted. It must first be replaced
by a transient version that is promoted to the working
version.

Associated with each versioned object is a generic object
with attributes that include an object identifier;
NextVersionNumber\ DefaultVersionNumber, and a set of
version descriptors, one for each instantiation of the
corresponding versioned object. Individual versioned
objects are differentiated by the object identifier along with
the version number. NextVersionNumber is a derived
attribute because version numbers are automatically
generated by either the underlying database or the
application. DefaultVersionNumber is the version number
of the working version. In the absence of a user-specified

default, the most recent transient version is the default
version. The version descriptors, one for each version of
the object, includes application specific information.

A versioned object is created by a Create command,
which also creates a generic object. (The generic object
does not have a create command.) A versioned object may
also be deleted. When a versioned object is deleted the fact
that the version existed is not deleted from the generic
object. (The generic object does not have a delete
command.) References to a versioned object may be either
specific or generic. A reference to a specific object version
is statically bound. A reference to a generic version is
dynamically bound to a default version of the object.

Notationally, a versioned object is represented by

appending (version) to the object name, and a generic
object is represented by appending (generic) to the object
name. The functional relationship from the versioned
object set to the generic object set is fotal because each
versioned object is associated with a specific generic object.
The inverse relationship is partial because a generic object
is not deleted when a versioned object is deleted.

The close coupling between versioned objects and
generic objects produces inter-object constraints called
inclusion dependencies. An inclusion dependency between
attributes X of a set R and attributes T of a set S specifies
the constraint that, at any given instance, the domain of
attribute values for X must be a subset (not necessarily a
proper subset) of the active domain of values for Y.



These concepts are illustrated in Figure 7.
PUBLICATION is a versioned object of, say, all
publication versions that are currently in the distribution
network of a publisher. PUBLICATION LOG is the
associated generic object, and includes information specific
to all versions, even those that are no longer in the
distribution network. Publicationsumber is the object
identifier, which is sufficient to identify individual objects
in PUBLICATION LOG, but must be paired with
VersionNumber to identify individual versioned objects in
PUBLICATION. The other attributes are as previously
described.

5. OBJECT-ORIENTED LANGUAGES

An object is the fundamental construct of object-
oriented programming languages. Objects encapsulate type
and operators, and cooperate with related objects by
message passing. This is in contrast to more traditional
languages that separate type from operators and use a
procedural style of programming. The notion of an object
from the language perspective is as an embedded, bottom-
up component used to construct more complex objects.
Everything is an object. The notion of an object from the
problem domain modeling perspective is as an independent,
top-down component which has stepwise refinement by
decomposition applied.

More fundamentally, the underlying goals of problem
domain modeling and object-oriented programming
languages are substantially different. The goal of problem
domain modeling is to model the problem domain. An
object is viewed as an abstract representation of an entity
that exists in the mini-world being modeled. Common
type (i.e., data structure) is the conscious design decision
used to model entities. The goal of object-oriented
programming languages is modular software construction,
code sharing, and code reusability. Common behavior of
data is the conscious design decision. Problem domain
modeling and object-oriented programming languages
approach the problem from different directions and with
different goals. The two approaches are complementary.

6. SUMMARY

A comprehensive set of data structuring abstractions
was presented. The first abstraction was that of an object
being an entity with a fype that is not derived from the
type of any other entity. Attribute assignments were made
to a small number of objects rather than collecting
attributes into a data dictionary, identifying functional
dependencies, and synthesizing tables. The assignment of
attributes to objects was represented as a function. This
added semantic information that is not present in the ER
and relational models. Attribute functions that are total
identify attributes that cannot have a null value. This is
enforced in either the data description language of an
underlying data base management system, or in the
applications code. Attribute functions that are fotal, 1:1
identify candidate keys for a relational implementation.
The abstraction of aggregating simple attributes into
composite, multivalued, and derived attributes kept the
model close to the problem domain. The abstraction of
class attributes modeled real-world situations that are
difficult to represent in the relational model. None of these

abstractions conflict with the underlying theory of the
relational model, nor do they add any additional power.
They serve to keep the model close to the problem domain
and in a form that can readily be translated into an object-
oriented, relational, or network implementation.

Specialization hierarchies (or latices) model roles of an
object. Three forms of specialization were identified, i.e.,
attribute, predicate, and user defined. The need for public,
private, and exclude constraints to restrict attribute
visibility in a specialization hierarchy was identified.
Composite objects extended the object abstraction to
include objects that represented collections of other objects.
Part hierarchies added another dimension to composite
objects by addressing hierarchically organized collections of
interrelated objects.

The use of functions and set constraints identified
semantic constraints for Create/Delete/Update operators.
The semantic constraints are inherent in the functional
representation of the model. They required no special
knowledge of the problem domain. The procedure for
identifying semantic constraints can be automated if a data
description language is defined that represents the data
structure and relationships.

An approach for identifying behavior was defined. The
need for public, private, and exclude inheritance modifiers
to restrict operator visibility was identified, as well as
propagation constraints and propagation attribute values in
a parts hierarchy.  Operators deal with objects in their
entirety; are close to the problem domain; have a broader
meaning than the tuple selection, projection, and join
operators of the relational model; and are constrained to not
violate the Create/Delete/Update constraints of the semantic
constraints. Encapsulating operators with object type
defined classes.

The graphical notation for representing these
abstractions uses a small set of easily recognizable
symbols. The notation permits the definition of structures
of any complexity, while at the same time keeping the
model conceptually close to the problem domain. The
domain of problems that can be modeled is more extensive
than the domain of either the extended entity relationship or
semantic data models.
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Unification

Semantic data models describe
« Structure

* Semantics

Object-Oriented Paradigm describes:
+ Behavior

+ Structure (somewhat)

These concepts can be used to model the structure, semantics,
and operators ol a problem domain.

EG&G/EM, Inc.y

DWB 2



Description of the Problem Domain

Conceptually close to the problem domain.
Verifiablo by the customer/ user
Easily translatable to code.

Uses constructs closely aligned tp programming language
concepts

Easily translatable to object-oriented, relational, or network data
base Implementations.

Easily translatable to data entry (forms) screen design for
populating the data base.

EG&G/EM, Inc.
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Functions

A function, t, from set A to set B, expressed as f:A—» B, is a subset of the
Cartesian product A xSwlth the property that tor each ae A there is a
unique be B such that the ordered pair (a,b)e AxB.

+ fis sometimes called a mapping of A to B.
+ The set A is called the domain of t.

*  The members of Bwhich occurin (a,b)E f is called the range of t

B

Domain Range

+ Total function— every member of A maps to a member of B.
+ Parf/a/function — some members of A do not map to B.

* One-fo-ona function (};7)—mno two members ofA maptothesame

member of B.e

* Dot notation— bis called the image of a under/, expressed as a./.

EG&G/EM, Inc.
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Functions (cont)

Total Function 20 CHARACTER STRING
EMPLOYEE
EMPLOYEE.Name
Total, 1:1 Function 11 CHARACTER STRING
EMPLOYEE
Social Security Numbar
17-1000
EMPLOYEE.SocialSecurity Number
Partial Function
EMPLOYEE 13 CHARACTER STRING

Phone Number

EMPLOYEE.PhoneN umber

An Object is an Independent Component
of the Problem Domain

An entity that doe* not derive Its type from any other entity
State
Operators

Cooperate with related objects

EG&G/EM, Inc.
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Agenda
Structuring Abstractions
+ Semantic Constraints
* Behavioral Abstractions

+ Comparison with Object-Oriented Languages

The manner in which objects cooperate is not addressed.

V n EG&G/EM, Inc.y

owe 7

Representing Objects, Specialized Entities, and
Attributes

MANAGER

Attribute Functions
EMPLOYEE.Name
EMPLOYEE. Address

EMPLOYEE.Age
MANAGER.TrainingClass

owe a



Representing Class Attributes ’ Specialization Models Roles for an Object

There are two Independent reasons for specialization.

CLASS OF CAR + There are attributes relevant to the specialized entities that do not
Oiu Attribute®

Number OF Wheel* (*h¥jed) apply to the more general entity.
Fuel Capacity (default)
Number Of Car* (derived)

> The specialized entity sets can participate In relationships that the
more general entity set cannot.

Specialization models ISA relationships.

~ EG&G/EM, Inc.
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Set Constraints Attribute, predicate, and User Defined Specialization

Two equally reasonable specialization hierarchies

EMPLOYEE

MANAGER

MANAGERS ENGINEER

. 'ENGINEERING
Figure A Figure B MANAGER

\ / n
EG&G/EM, Inc. EG&G/EM, Inc.



Attribute Inheritance Representing Relationships

. ASSIGNMENT

DWB 13 DWB 14



Composite Objects Composite Objects - A Collection

One of the fundamental structuring abstraction from semantic data
models is the concept that objects can be constructed out of other

objects. EMPLOYEE

The abstraction has two forms:

+ A composite object embodies the concept of a collection or additive

whole
MANAGER
+ Apart hierarchy embodies the concept of a more structured, tightly .
coupled whole t ENGINEER SECRETARY
» LABOR >
COMMITTEE
MANAGER ~ ENGINEER
Each adds a different dimension to the concept of an object than that . .
addressed by a specialization hierarchy ENGINEERING

MANAGER

\ / N \/ n
EG&G/EM, Inc. EG&G/EM, Inc.
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A part hierarchy enforces referential integrity that is not enforced with a
composite object
Generalized objects are formed by the disjoint union of othenwise
unrelated objects

n
l EG&G/EM, Inc. = EG&G/EM, Inc.
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Operator Override

CLASS OP SQUARE
Operators
Perimeter (override)

TRIANGLE

POLYGON.Psrimeter: Sum tha length ot the edges
POLYGON.Rectangle: 2 x the length ot two consecutive edges
POLYGON.Square: 4 x the length ot any edge

DWB 25

Operator inheritance (cont)

Pr/Vate operators are not inherited.
* Exclusion permits exceptions to an otherwise common set of operators.

Operators are inherited across different object types.

CXAU oraxriovu

(frtrme)
I -4

5= WOIBCT

EG&G/EM, Inc.



r’ Behavioral Abstractions Operator Inheritance

Inherited operators can be modified in much the same manner as

+ Tha relationship between operators and objects is similar to that ot
Inherited attributes.

class attributes.

* Overridecauses the operator ot the heir to be executed instead of

+ Just as one class attribute applies to each object in an object set, so
the inherited operator.

too, one operator applies to each object In the set.

* Augmentation causes the operator of the heir to be applied first,

+ The similarity suggests the same functional notation be used.
followed by the same named inherited operator, or vice versa.

CLASS OP EMPLOYEE The distinction between override and augmentation, and the order ot
Qua Aiuabuica augmentation, is described in the operator specification document.
NumbaOfbmployecs (derived)
Operated
Ajje
Foe (private)
RecUssily (private)
AarifiiToPlofect (private)
RemovcftomPtoject (private) u

~ SociagvecuntyNumban™

\ / n
EG&G/EM, Inc.
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Semantic Constraints are Inherent in the An Object is an Independent Component A
Functional Representation of the Problem Domain

The application ot functions and set constraints identifies many An entity that does not derive its type from any other entity
semantic constraints for Create / Delete / Update operators.
State
They require no special knowledge of the problem domain.
Operators
The procedure for identifying semantic constraints can be

automated if a data description language is formalized. Cooperate with related objects

User defined constraints are not identified

\/ ~
n _——
n EG&G/EM, Incy EG&G/EM, Inc. =



Semantic Constraints Four Representations of a One-to-Many Relationship

Four fepfawntalons ol tha ASSIGNED tatalonslap ~ and its invarsa X*

The Create / Delete / Update semantics of each are different

EG&G/EM, Inc. 4, EG&G/EM, Inc.



Semantic Operators

Semantic operators reduce the gap between the problem domain and
Its conceptual representation.

Semantic create and delete operators deal with objects in their
entirety.

ENCINEER.Hire, (or example, creates an employee who is an
engineer and makes the assignment to DEPARTMENT and to
PROJECT.

Semantic operators to read, write, and modify attribute values are
declarative In nature, rather than procedural. v

EMPLOYEE.ProjectNo, tor example, returns a non-empty list of
projects to which an employee is assigned.

\ / n
EG&G/EM, Inc.

Comparison with Object-Oriented Languages

Object-Oriented Languages

+ An object is the fundamental construct of object-oriented
programming languages.

+ Objects encapsulate type and operators, and cooperate with related
objects by message passing.

The notion ofan object from the language perspective Is as an
ergl_bedded, bottom-up component used to construct more complex
objects.

* Everything Is an object.

Problem Domain Modeling

+ The notion of an object from the problem domain modeling
perspective Is as an independent, top-down component which has
stepwise refinement by decomposition applied.

\/ (|
EG&G/EM, Inc.



The Underlying Goals of Problem Domain Modeling and
Object-Oriented Programming Languages are Different

Tha goal ot problem domain modeling is an accurate representation of the
problem.

* An object is viewed as an abstract representation of an entity that
exists in the mini-world being modeled.

+ Common typeis the conscious modeling decision.

The goal of object-oriented programming languages Is modular aoftware
construction, code sharing, and code reusability.

+ Common behtvlorot data Is the conscious design decision.

A~ pecEM, tncy



