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This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.
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This result generalizes and extends earlier results of McLeod and Serrin [1],
Peletier and Serrin [2], and Peletier and Serrin [3].

In Section 2 we present a brief outline of the proof of the theorem; details
can be found in our article [4]. A further generalization for quasilinear diffusion
equations of the type V1 (a(|Vu|)Vu + /(u) = 0 can be found in our article [6].

The proof of the theorem generalizes to the case of a bounded radially sym-
metric domain in the following sense. If / satisfies the conditions of the theorem,
then the boundary value problem

Au+/(u) =0,xe BR Uux) =0, n*Vux) =0, x G dBR, (@]

admits at most one ground state solution. Here, Br is the ball of finite radius
R centered at the origin in Rw; OBR is its boundary, and n is the outward unit
normal at the boundary. Notice that the zero normal gradient condition at the
boundary must be specified in this case. (It is satisfied automatically in the
unbounded case.)

2  Proof of Theorem 1

2.1 Preliminaries

Any ground state solution of (1) is radially symmetric (see [5]), so u depends
only on r = |x|. If] denotes differentiation with respect to r, then u satisfies

N—1
u' + W' fw) =0, 1> 0; 5)
1/(0) = 0; lim w() = 0. ©)
Two identities play a crucial role in the following analysis. They are obtained by
multiplying (5) by u' and respectively, and integrating over (ri,”),
—_ (= r

_u' ) + Flu(r)) 2 (=1 7Kkze'{s)fds, @)

7 Jr s
r2(3v-i) [ T2 + F7r) =2(N-1) [ *s2N-3F{(u(s))ds. (8)

/Jr! dr!

One can show, using (7), that limr oo u'(r) exists and
rlg-rolo u'(r) — 0; 9
and similarly, using (8), that limr_ 00 r2(;v_1)(-|(u'(r))2 + F'(u(r))) exists and

lim 22>-1) PA(W'(r)2 + F(u(r))'] =/\, (10)
->00 \2 J



where X = 0 if iV = 2; if TV > 2, then limr-xx) »N 2u{r) = (A* —2) I\/2K
Letting 12 — oo in (7), we obtain the identity

Lot + Futry) — v-1) st ds, =0, (1)

and similarly, from (8),
r2(N-i) QQ'(r)2 + Flu(m)» = K- 2(N-1) S2N-3F((u(s)) ds, r > 0.

daz
We observe that, whereas (9) follows from the definition of a ground state solu-
tion, the analogous condition u'(R) = 0 must be imposed if the domain under
consideration is the ball BR] cf. (4).

Lemma [ Ifu is a ground state solution of (1), then u(0) > /2.

Proof. Taking r =0 in (11), we find that P(u(0)) > 0; hence, u(0) > /?. o

Lemma 2 Any ground state solution of (1) is monotonically decreasing on its
support.

Proof. Let u be a ground state solution of (1) and let R be the lowest upper
bound (possibly 00) of the support of u. Let ¢ = inf{r 6 [0,i?) : u'(s) <
0 for all s S (r, R)}. We have u(a) > 0 and u'(a@) = 0. Suppose a > 0 and u has
a local maximum at a. Then there exists a point b G [0, @), such that u'(h) = 0
and u' > 0 on (6, a). Because limr ,flu(r) = 0, there must be a point ¢ G (a, R)
where u(c) = u(6).

Taking i — b and 12 = c in (7), we arrive at a contradiction. We must
therefore conclude that either a = 0 or, if a > 0, then u"(a) = 0. The latter
configuration is impossible, because / is Lipschitz at u{d), so iz(r) = u(a) is the
(unique) solution of (5) that starts at u(a) with zero slope. It must therefore
be the case that a = 0. O

2.2 Distinct Solutions Do Not Intersect

We assume that ui and u? are two ground state solutions of (1) and show that,
if the graphs of ui and U2 intersect, then ui and U2 are identical.

Lemma 3 Ifu\{r) — U2(r) > ? for some r > 0, then u\ and U2 are identical.

Proof. The lemma follows from the sublinearity of /. Suppose that ui(a) =
ii2(a) = r for some a > 0, where r > /?, and that ui > v.2 on [0, a). The equality
u™a) = u'2(a) is ruled out, because / is Lipschitz at ui(a), so it must be the



case that u'*a) < u'2(a). We have (u2 —j3)ffu\) — (ui —/?)/(u2) < 0 on [0, a].
Since u\ and «2 satisfy (5), it follows that

2 — /2D« + (N - 1yrXj) > («! = /D2 + {N - D/r)u’?), (13)

and therefore
((«2 = B)rN-tu/)' > ((Ul = t3)rN-"u"2)’, (14)

on [0,0]. Upon integration over [0,a], we find that u™a) > u2(a), a contradic-
tion. O

Lemma 4 //0 < Mi(r) = u2(?’) < /? for some r > 0, tAen Wi and n2 nne
identical.

Proof. We prove the lemma in two steps. In the first step we rule out the
possibility that the graphs of u\ and u2 have more than one point in common,
once they are at or below the horizontal line # — (3. In the second step we show
that they cannot even have a single point in common.

Suppose that there are two distinct points a and b (@ < b) such that /? >
til (a) = i*2(a) > 1*1(6) = 1¥2(6) > 0. Without loss of generality, we may assume
that ui > "2 on (a,b). By continuity, there exists a pair of points (c¢,d), with
a < ¢ < d < b, such that t*i(d) = t*2(c) and i*i(d) = i*i(c). Applying (8) to t*i
on [a,c(] and to i*2 on [a,c] and subtracting the two expressions, we arrive at
the identity

(M(v-i) | c2(*v-i)) + - la~-~uKa))? - (i*'(a))2)

ot/v. = (a) T™)I2*3 (DI .
JLA) Y i(rlul 22wy ) dw (15)

Here, ri and r2 are the inverse functions for i*i and i*2! respectively (i.e.,
Ui = i* for 0 < i* < i*;(0), s = 1,2). The expression in the left member
is positive, while the right member is negative, a contradiction. The possibility
of two points of intersection is thus ruled out.

Suppose that there is a single point a > 0 where 0 < t*i(a) = I¥2(11) < /2
Without loss of generality we may assume that t*i(r) > i*2(i") for » > a.

Let

Kj = lim r27™-1) GO + Fum) \ , j = 1,2. (16)
=00 J

Applying (8) to [*I and 1*2 on [a, r] and subtracting the resulting equations, we

obtain
—a2(JV-D[(*i(a))2 — (i*2(a))2]



) x(a) AnCu))2™-3  (r2(w))2jv 3\
Koz 20D oV hi@d@) Koy 20 0D
The expression in the left member is negative. Under the integral sign, the
expression inside the parentheses is positive, while F(u) is zero or negative,
so the integral is certainly negative. Hence, if Ki > K2 (which is certainly
true if TV = 2), the expression in the right member is positive, and we have a
contradiction.
It remains to investigate those cases where TV > 2 and K\ < K2 Take
e < g(/V2 — Ki) and choose r sufficiently large that

= K\ + e, (18)

r2(N 1) Q(u2(r))? + F(u2(m)”™ > Ki (19)

From (18) we obtain
/M, V2(/Vi+e)+e
Mli(r) <' (N —"2)rN~7 0y

By reducing ¢ if necessary, we can certainly achieve that ~/2(A'i +e) + ¢ <
Y2(/V2 — e). Thus,
V2(I<2 ~ Q

i <
R Y @b

On the other hand, it follows from (19) that

, V2(A2 ~ ¢ 22
>
WO =y )N 2

These results imply that ui(r) < u2(r) for r sufficiently large. But this conclu-
sion contradicts the earlier assumption that ui(r) > u2(r) for all » > a. Thus,
the possibility that the graphs of ui and u intersect is ruled out. O

On the basis of Lemmas 3 and 4 we conclude that distinct ground state solutions
of (1) do not intersect.

2.3 Distinct Solutions Must Intersect

According to Lemma 2, any ground state solution of (1) is (strictly) decreasing
on its support. Thus, ifr ) u(r) is a ground state solution, the inverse u i} r(u)
is well defined on [0, u(0)] by the identity u(7(x)) = u. Let v be defined by the
expression
viu) — i(u'(r(u)))2, 0 < u < u(0). (23)
4



Thus,
u'(r) = —2v(u(r)), r > 0. (24)

We now use the pair (u,v) as the coordinates for a phase plane analysis.
From (23) we obtain dv/du = u"{r{u)). As u satisfies (5), it follows that

- =N "y2v - f(u), 0 <u < u(0). (25)
du r(u)
Furthermore,
u(0) = 0, u(u(0)) = 0. (26)

We prove the following lemma.

Lemma 5 //iti and are two distinct ground state solutions of (1), then
«i(r) = Uz2(7) for at least one value r > 0.

Proof. Let ui and U2 denote two distinct ground state solutions of (1). The
graphs of Ui and u? do not intersect; without loss of generality we assume that
ui(r) > u2(r) for all r > 0. Denoting the inverse functions for Ui and u by 1j
and 72, we then have ri(u) > r2(u) for all u 6 (0,U2(0)).

We now analyze the trajectories of the two solutions in the (u, u)-phase plane,
distinguishing them by their respective indices.

Because ri(u) > r2(u) near 0, Vi and v satisfy

- = /(«), n> 0; ~(0) = 0; (27)

and
S =y /(u)’uw>0; V(0)=0 (26)

Notice that the right hand sides of the differential equations are not Lipschitz.
Hence, it is only possible to compare the maximal solutions of these initial value
problems, unless we can somehow guarantee that there are no other solutions.
The condition /? > 0 serves this purpose.
We refer to our article [7], where we investigated initial value problems of
the type
x'=pi{)xa + qfy), t > 0; a:(0) = 0, (29)

where 0 < a < | and p and ¢ are integrable near 0. We showed that (29) has at
most one nontrivial nonnegative solution if (i) p and the first integral Q of'q are
nonnegative near 0; and (ii) for every ¢ > 0, there is a point r £ (0,t), where
Q) > 0.

In the case of (27) and (28), where a = |, p(® = (IV — DV2/r(t), and
q(t) = —f(1), the condition (i) is satisfied, and (ii) is satisfied if/? > 0, unless /
vanishes identically near 0. If / vanishes identically near 0, a trivial modification
suffices to establish uniqueness, again provided that /? > 0.



The direct comparison yields the inequality
tq(u) < v2(u), u e [0,u2(0)]. 30)

If ui(0) > iz2(0)j then U!(u2(0)) > 0, while *2(u2(0)) = 0. This would clearly
contradict (30), so at this point we must conclude that ui(0) = U2(0).

The inequality (30) implies that |ul(rl(u))] < [u2(r2(u))|. Furthermore,
ri(u) > r2™1 so

. e
Kg&g@ < ’UZg%zng> u G [0, w20)i (1)

Next, we apply (11) to ui and u2 at r = ( and subtract the resulting equations.
We find Jee ) f00 |
““ui(m)2dr— /7  -(t/2(r))2 dr, (32)

0

r Jo r
or, after a transformation of variables

/ Dy, — Q0 11

ri(u) ow (33)

We recall that ui(0) = u2(0) and conclude that the inequality (31) is compatible
with the identity (33) if and only if u'l(r1(u)) = u2(r2(uw)) for all ¥ E [0,ui(0)].
This equality, in turn, implies that Ui and u? coincide everywhere. But here
we have arrived at a contradiction, since we had assumed that ui and z2 were
distinct. Hence, if uj and u? are distinct, their graphs must intersect at some
point r > 0. O

The Monotone Separation Lemma of Peletier and Serrin [2, Lemma 9] is an
immediate consequence of Lemma 5. We formulate it as a corollary.

Corollary 1 Ifui and ul are two distinct ground state solutions of (1) and
u”™r) = u2(r) = r for some r > 0, then u = ri(u) — r2(u) is monotone
nonincreasing on [0,r].

2.4 Completion of the Proof of Theorem 1

In Section 2.2 we found that if the graphs of two ground state solutions of (1)
intersect at some point, then they coincide everywhere. On the other hand,
according to Lemma 5, the graphs of two distinct ground state solutions must
intersect at some point. Clearly, we have a contradicition, unless (1) admits no
more than one ground state solution, as asserted.
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