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DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.
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This result generalizes and extends earlier results of McLeod and Serrin [1], 
Peletier and Serrin [2], and Peletier and Serrin [3].

In Section 2 we present a brief outline of the proof of the theorem; details 
can be found in our article [4]. A further generalization for quasilinear diffusion 
equations of the type V ■ (a(|Vu|)Vu + /(u) = 0 can be found in our article [6].

The proof of the theorem generalizes to the case of a bounded radially sym­
metric domain in the following sense. If / satisfies the conditions of the theorem, 
then the boundary value problem

Au + /(u) = 0, x e BR) u(x) = 0, n • Vu(x) = 0, x G dBR, (4)

admits at most one ground state solution. Here, Br is the ball of finite radius 
R centered at the origin in Rw; OBr is its boundary, and n is the outward unit 
normal at the boundary. Notice that the zero normal gradient condition at the 
boundary must be specified in this case. (It is satisfied automatically in the 
unbounded case.)

2 Proof of Theorem 1

2.1 Preliminaries

Any ground state solution of (1) is radially symmetric (see [5]), so u depends 
only on r = |x|. If 1 denotes differentiation with respect to r, then u satisfies

u" +
N — 1

u' + f(u) = 0, r > 0;

1/(0) = 0; lim u(r) = 0.

(5)

(6)

Two identities play a crucial role in the following analysis. They are obtained by 
multiplying (5) by u' and respectively, and integrating over (ri,^),

-(u'(r))2 + F(u(r))

r2(JV-i) ( I(u'(r))2 + F^r))

2=-(^-l) rku'{s)fds, (7)
rx Jrx s

\ =2(N-l) [ * s2N-3F{(u(s))ds. (8)
/Jr! dr!

One can show, using (7), that limr_oo u'(r) exists and

lim u'(r) — 0; (9)r—+-oo

and similarly, using (8), that limr_00 r2(;v_1)(-|(u'(r))2 + F(u(r))) exists and

lim r2^-1) f^(w'(r))2 + F(u(r))'] =/\, (10)
r->oo \ 2 J
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where X = 0 if iV = 2; if TV > 2, then limr-xx) rN 2u{r) = (A^ — 2) 1\/‘2K. 
Letting r2 —► oo in (7), we obtain the identity

1 r00 i
-(u'(r))2 + F(u(r)) - (N-1) J -(u'(s))2 ds, r>0, (11)

and similarly, from (8),

r2(N-i) Q(u'(r))2 + F(u(r))^ = K - 2(N - 1) s2N-3F((u(s)) ds, r > 0.

(12)

We observe that, whereas (9) follows from the definition of a ground state solu­
tion, the analogous condition u'(R) = 0 must be imposed if the domain under 
consideration is the ball Br] cf. (4).

Lemma 1 If u is a ground state solution of (1), then u(0) > /?.

Proof. Taking r = 0 in (11), we find that P(u(0)) > 0; hence, u(0) > /?. □

Lemma 2 Any ground state solution of (1) is monotonically decreasing on its 
support.

Proof. Let u be a ground state solution of (1) and let R be the lowest upper 
bound (possibly oo) of the support of u. Let a = inf{r 6 [0,i?) : u'(s) < 
0 for all s S (r, R)}. We have u(a) > 0 and u'(a) = 0. Suppose a > 0 and u has 
a local maximum at a. Then there exists a point b G [0, a), such that u'(b) = 0 
and u' > 0 on (6, a). Because limr_,flu(r) = 0, there must be a point c G (a, R) 
where u(c) = u(6).

Taking ri — b and r2 = c in (7), we arrive at a contradiction. We must 
therefore conclude that either a = 0 or, if a > 0, then u"(a) = 0. The latter 
configuration is impossible, because / is Lipschitz at u{d), so iz(r) = u(a) is the 
(unique) solution of (5) that starts at u(a) with zero slope. It must therefore 
be the case that a = 0. □

2.2 Distinct Solutions Do Not Intersect

We assume that ui and u? are two ground state solutions of (1) and show that, 
if the graphs of ui and U2 intersect, then ui and U2 are identical.

Lemma 3 If u\{r) — U2(r) > /? for some r > 0, then u\ and U2 are identical.

Proof. The lemma follows from the sublinearity of /. Suppose that ui(a) = 
ii2(a) = r for some a > 0, where r > /?, and that ui > v.2 on [0, a). The equality 
u^a) = u'2(a) is ruled out, because / is Lipschitz at ui(a), so it must be the

3



case that u'^a) < u'2(a). We have (u2 — j3)f{u\) — (ui — /?)/(u2) < 0 on [0, a]. 
Since u\ and «2 satisfy (5), it follows that

(u2 - /?)« + ({N - lyrXj) > («! - /?)(«2 + {{N - l)/r)u'2), (13)

and therefore
((«2 - (3)rN-lu[)' > ((Ul - t3)rN-'u'2)', (14)

on [0,o]. Upon integration over [0,a], we find that u^a) > u2(a), a contradic­
tion. □

Lemma 4 //0 < Mi(r) = u2(?’) < /? for some r > 0, tAen Wi and n2 nne 
identical.

Proof. We prove the lemma in two steps. In the first step we rule out the 
possibility that the graphs of u\ and u2 have more than one point in common, 
once they are at or below the horizontal line u — (3. In the second step we show 
that they cannot even have a single point in common.

Suppose that there are two distinct points a and b (a < b) such that /? > 
til (a) = i*2(a) > 1*1(6) = i*2(6) > 0. Without loss of generality, we may assume 
that ui > 1*2 on (a,b). By continuity, there exists a pair of points (c,d), with 
a < c < d < b, such that t*i(d) = t*2(c) and i*i(d) = i*i(c). Applying (8) to t*i 
on [a,c(] and to i*2 on [a,c] and subtracting the two expressions, we arrive at 
the identity

(^(iv-i) _ c2(*v-i)) + - la^-^uKa))2 - (i*'(a))2]

ot/v _ r(a) r^))2*-3 _ (^))2'v~3 
JtL^d) V lui(rl(u))l lu2(r2(w))| f?(t*) du. (15)

Here, ri and r2 are the inverse functions for i*i and i*2! respectively (i.e., 
Uj = i* for 0 < i* < i*;(0), j = 1,2). The expression in the left member
is positive, while the right member is negative, a contradiction. The possibility 
of two points of intersection is thus ruled out.

Suppose that there is a single point a > 0 where 0 < t*i(a) = 1*2(11) < /?• 
Without loss of generality we may assume that t*i(r) > i*2(i') for r > a.

Let
Kj = lim r2^-1) (^(i*)(r))2 + F(u(r)) \ , j = 1,2. (16)

r—►00 J

Applying (8) to 1*1 and 1*2 on [a, r] and subtracting the resulting equations, we 
obtain

—a2(JV-1)[(i*i(a))2 — (i*2(a))2]

4



F(u)du. (17)= Ki - K2 2(N — 1)
r(a) AnCu))2^-3 

u(r) V hi(rl(u))i
(r2(u))2jv 3\
K(ri(w))| /

The expression in the left member is negative. Under the integral sign, the 
expression inside the parentheses is positive, while F(u) is zero or negative, 
so the integral is certainly negative. Hence, if Ki > K2 (which is certainly 
true if TV = 2), the expression in the right member is positive, and we have a 
contradiction.

It remains to investigate those cases where TV > 2 and K\ < K2. Take 
e < g(/V2 — Ki) and choose r sufficiently large that

< K\ + e, (18)

r2(N 1) Q(u,2(r))2 + F(u2(r))^ > Ki 

From (18) we obtain
/ ^ „ \/2(/Vi + e) + e

M!(r) < ' (N — '2)rN~'2 •

(19)

(20)

By reducing e if necessary, we can certainly achieve that ^/2(A'i + e) + e < 
a/2(/V2 - e). Thus,

V2(I<2 ~ Q
(TV - 2)rN~2'

On the other hand, it follows from (19) that

ui(r) < (21)

u2(r) >
V2(A2 ~ e) 

(TV — 2)rN~2'
(22)

These results imply that ui(r) < u2(r) for r sufficiently large. But this conclu­
sion contradicts the earlier assumption that ui(r) > u2(r) for all r > a. Thus, 
the possibility that the graphs of ui and u2 intersect is ruled out. □

On the basis of Lemmas 3 and 4 we conclude that distinct ground state solutions 
of (1) do not intersect.

2.3 Distinct Solutions Must Intersect

According to Lemma 2, any ground state solution of (1) is (strictly) decreasing 
on its support. Thus, if r ► u(r) is a ground state solution, the inverse u i—► r(u) 
is well defined on [0, u(0)] by the identity u(r(u)) = u. Let v be defined by the 
expression

v{u) — i(u'(r(u)))2, 0 < u < u(0). (23)
A
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Thus,
(24)u'(r) = —y/2v(u(r)), r > 0.

We now use the pair (u,v) as the coordinates for a phase plane analysis.
From (23) we obtain dv/du = u"{r{u)). As u satisfies (5), it follows that

-j- = N ^ y/2v - f(u), 0 < u < u(0). (25)
du r(u)

Furthermore,
u(0) = 0, u(u(0)) = 0. (26)

We prove the following lemma.

Lemma 5 //iti and are two distinct ground state solutions of (1), then 
«i(r) = U2(r) for at least one value r > 0.

Proof. Let ui and U2 denote two distinct ground state solutions of (1). The 
graphs of Ui and u2 do not intersect; without loss of generality we assume that 
ui(r) > u2(r) for all r > 0. Denoting the inverse functions for Ui and u2 by rj 
and r2, we then have ri(u) > r2(u) for all u 6 (0,U2(0)).

We now analyze the trajectories of the two solutions in the (u, u)-phase plane, 
distinguishing them by their respective indices.

Because ri(u) > r2(u) near 0, Vi and v2 satisfy

^ - /(«), n > 0; ^(0) = 0; (27)

and

S = ^yv/^_/(u)’u>0; V2(0) = 0- (28)
Notice that the right hand sides of the differential equations are not Lipschitz. 
Hence, it is only possible to compare the maximal solutions of these initial value 
problems, unless we can somehow guarantee that there are no other solutions. 
The condition /? > 0 serves this purpose.

We refer to our article [7], where we investigated initial value problems of 
the type

x' = p{t)xa + q{t), t > 0; a:(0) = 0, (29)

where 0 < a < 1 and p and q are integrable near 0. We showed that (29) has at 
most one nontrivial nonnegative solution if (i) p and the first integral Q of q are 
nonnegative near 0; and (ii) for every t > 0, there is a point r £ (0,t), where 
Q(r) > 0.

In the case of (27) and (28), where a = |, p(t) = (TV — l)V2/r(t), and 
q(t) = —f(t), the condition (i) is satisfied, and (ii) is satisfied if /? > 0, unless / 
vanishes identically near 0. If / vanishes identically near 0, a trivial modification 
suffices to establish uniqueness, again provided that /? > 0.

6



The direct comparison yields the inequality

tq(u) < v2(u), u e [0,u2(0)]. (30)

If ui(0) > it2(0)j then U!(u2(0)) > 0, while ^2(u2(0)) = 0. This would clearly 
contradict (30), so at this point we must conclude that ui(0) = U2(0).

The inequality (30) implies that |u,1(r1(u))| < |u2(r2(u))|. Furthermore, 
ri(u) > r2(^)1 so

KOi(u))l ^ |u2(7’2(w))I rn
-------/ \— < ------ 7-\—> u G [0, u2(0)j.ri(u) r2(u) (31)

Next, we apply (11) to ui and u2 at r = 0 and subtract the resulting equations. 
We find /*o° 1 /’CO 1

(32)
JfOO 1 fOO 1

“(ui(r))2 dr — / -(t/2(r))2 dr,

0 r Jo r
or, after a transformation of variables

l»;(n(»))l/
ri(u)

du -l
«2(0) | / (r2(M))l

r2(u)
du. (33)

We recall that ui(0) = u2(0) and conclude that the inequality (31) is compatible 
with the identity (33) if and only if u'1(r1(u)) = u2(r2(u)) for all u E [0,ui(0)]. 
This equality, in turn, implies that Ui and u2 coincide everywhere. But here 
we have arrived at a contradiction, since we had assumed that ui and u2 were 
distinct. Hence, if uj and u2 are distinct, their graphs must intersect at some 
point r > 0. □

The Monotone Separation Lemma of Peletier and Serrin [2, Lemma 9] is an 
immediate consequence of Lemma 5. We formulate it as a corollary.

Corollary 1 If ui and u2 are two distinct ground state solutions of (1) and 
u^r) = u2(r) = r for some r > 0, then u 1—► ri(u) — r2(u) is monotone 
nonincreasing on [0,r].

2.4 Completion of the Proof of Theorem 1

In Section 2.2 we found that if the graphs of two ground state solutions of (1) 
intersect at some point, then they coincide everywhere. On the other hand, 
according to Lemma 5, the graphs of two distinct ground state solutions must 
intersect at some point. Clearly, we have a contradicition, unless (1) admits no 
more than one ground state solution, as asserted.
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