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ABSTRACT 

Two minimum a c t i v i t y  b l a n k e t  des igns  a r e  desc r ibed ,  based on t h e  AN' TEPR c i r c u l a r  de  
2  

s i g n  parameters.  A f i r s t  w a l l  loading  (plasma on) of 1.0 MW(th)/m has  been assumed.   he' 

f i r s t  op t ion  i s  composed of SAP ( s i n t e r e d  aluminum product)  modules. The ova l  shaped 'SAP " 

s h e l l ,  i n  which 4 5 %  of t h e  f u s i o n  energy is removed, is  maintained a t  a tempera ture  of g 
- 4 0 0 ~ ~  by a He c o o l a n t  s t ream. The remaining 55% of t h e  f u s i o n  energy i s  depos i t ed  i n  2 , 

thermal ly  i n s u l a t e d  h o t  i n t e r i o r  ( S i c  and B C) and removed by a s e p a r a t e  He c o o l a n t ,  w i t h  
3 

4 
e x i t  temperature of 800 C. I n  t h e  second op t ion ,  t h e  b l anke t  is  a t h i c k  g r a p h i t e  b l o c k k j .  

s t r u c t u r e  (-50 cm t h i c k a e s s )  w i t h  SAP c o o l a n t  t ubes  c d r r y i n g  H e  (50  atm) embedded cieep + *' 
w i t h i n  t h e  g r a p h i t e  t o  minimize r a d i a t i o n  damage. The neut ron  and gamma energy depos i t ed  

i n  t h e  g r a p h i t e  i s  r a d i a t e d  a l o n g  i n t e r n a l  slots and conducted through t h e  g r a p h i t e . t o  the1 

:oolant tubes .  To reduce  s u r f a c e  evapora t ion  above 2 0 0 0 ~ ~ ,  t h e  b l anke t  s u r f a c e  is  r a d i a  
' 

2; ,# 

t i v e l y  - cooled t o  a low tempera ture  r a d i a t i o n  s i n k ,  a bank of He cooled SAP tubes izF~ 
I -4 

ipproxirnately 20% of t h e  f u s i o n  energy i s  removed i n  t h i s  r eg ion ,  t h e  remaining 80% i n  tna  

primary graphi te -a lumin-~m b lanke t .  Both b l anke t  op t ions  a r e  mounted on heavy A1 backing I 

) p l a t e s ,  cooled by He, which a r e  i n  t u r n - s u p p o r t e d  from t h e  f ixed  sh i e l c  
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J. F i l l o  

1. INTRODUCTION 

A s  . p a r t  of t h e  program t o  demonstrate  commercial fus ion  power, ERDA has  planned f o r  

t h e  ope ra t ion  of a  Tokamak exper imenta l  power r e a c t o r  (EPR) us ing  t h e  d e u t e r i u m - t r i t i u m  

(D-T) f u e l  c y c l e .  Th i s  dev ice  may produce n e t  power o r  simply show i n ' p r i n c i p l e  t h e  

c d p a b i l i t y  f o r  n e t  power. For  c e r t a i n  t h e  EPR w i l l  have a  b l anke t  and poss ib ly  a  few 

b.lanket modules con ta in ing  . l i t h i u m  f o r  t r i t i u m  breeding .  . . -  

A s  a consequence of f a s t  14 MeV neut rons  moderated i n  t h e  b l a n k e t ,  many c a n d i d a t e  

b l anke t  m a t e r i a l s  may 'be s e r i o u s l y  a c t i v a t e d  and induced r a d i a t i o n  damage n e c e s s i t a t e  f r e -  

quent  replacement o f  t h e  b l anke t .  It i s  d e s i r a b l e  t h e r e f o r e  t h a t  t h e  b l anke t  be made from 

m a t e r i a l s  t h a t  e x h i b i t  l i t t l e  o r  no r e s i d u a l  r a d i o a c t i v i t y  . t he reby  eas ing  t h e  problems 

a s s o c i a t e d  w i t h  r e p a i r ,  maintenance, replacement and s t o r a g e  of b l anke t  components. Th i s  

paper  d e s c r i b e s  two d i f f e t e n t  minimum a c t i v i t y  b l anke t  concepts ,  one based on SAP . ( s i n t e r e d  

a.luminum product)  a s .  t h e  s t r u c t u r a l  m a t e r i a l  akd t h e  othe,r ,  a  g r a p h i t e  s c r e e n  p r o t e c t i n g  

SAP coo l ing  tubes ,  c u r r e n t l y  under s tudy  a t    rook haven Nat iona l  Labora tory  (BNL). The . ' 

. ' p resent  e f f o r t  r ep re sen t s  a  c o n t i n u a t i o n  of t he  minimum a c t i v i t y  concept  i n i t i a l l y  proposed 

by Powell,  e t  a l .  [I]. 

2 .. OVERALL MECHANICAL DESIGN ' 

. . 

To p l a c e  t h e  b l anke t  concepts  i n  c o n t e x t  . . we cons ide r  a Tokamak r e a c t o r ,  s c h e m a t i c a l l y  

de.picted i n  Fig: (1) .  The b l anke t  r eg ion  i s  ail octiidecagon i n  c r o s s  s e c t i o n .  A modular 

I 

! b lanke t  approach f o r  bo th  b l anke t  des igns  i s  shown, wi th  a  f i xed  cont inuous s h i e l d  suppor t -  

i n g  t h e  modules. The i n n e r  w a l l  of t h e  s h i e l d  forms t h e  primary vacuum s e a l .  Modules can 

be i n s e r t e d  and removed through a  s e t  of r e l a t i v e l y  smal l  acces s  p o r t s  ( e . g . ,  36) i n  t h e  

shieldr-The comp-l.&-e-bhnket - i s  formed by t h e  assembly-.of---200. modules;- -Connections .be-  - .  

tween f ixed  headers  and nodules  a r e  made on t h e  o u t s i d e  of  t h e  s h i e l d ,  a s  w e l l  a s  t h e  

vacuum s e a l s  between t h e  f ixed  s h i e l d  and t h e  removable s h i e l d  p lugs  (on the  o r d e r  of 1-2 

, m a c r o s s )  which cover  t h e  acces s  p o r t s .  A l l  connec t ions  and s e a l s  can  be made by d i r e c t  

acces s .  

3. ALUMINUM BLANKET-COOLING REQUIREMENTS - 
The f i r s t  b l anke t  op t ion  i s  composed of c y l i n d r i c a l  aluminum c a n i s t e r s ,  t h e  c a n i s t e r  

d e s i g n  being e s s e n t i a l l y  33 cm wide x  50 cm x  5 m long-wise wi th  a  SAP w a l l  about  2 . 5  cm 

t h i c k .  Cool ing 'passages  c a r r y  He t o  hold t h e  SAP s h e l l  temperature w i t h i n  t h e  p re sc r ibed  

l i m i t s  of ~ 4 0 0 ~ ~ .  T y p i c a l l y  3  s h e l l s  a r e  mounted on a  heavy aluminum backing p l a t e  t o  form 

1 a module Fig.  ( 2 )  which i n  t u r n  i s  a t t ached  t o  t he  s h i e l d .  What t h e  drdwing does n o t  show 

( b u t  analyzed i n  d e t a i l  by a  f i n i t e  element s t r e s s  code) i s  t h a t  t h e  o u t e r  s i d e  w a l l s  of t he  

two o u t e r  c a n i s t e r s  need t o  be r e in fo rced  by a  tapered suppor t  t o .  reduce s t r e s s e s  t o  
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. . a c c e p t a b l e  l e v e l s .  . I n  &enera1  t h e  middle c a n i s t e r  i s  l a t e r a l l y  supported by ad jacen t  

I c a n i s t e r s ,  b u t  may r e q u i r e  a d d i t i o n a l  re inforcement  by tapered  s u p p o r t s  i n  s p e c i a l  r eg ions .  

I Immediately behind t h e  i n s u l a t e d  aluminum w a l l  and ex tending  f o r  approximately 20 cm i s  a  

I r eg ion  of  s i l i c o n  ca rb ide .  b locks  i n  which most of t h e  neut ron  moderation t akes  p l ace .  
. . 

I Behind t h e  S i c  b l o c k s , .  ; h e r e  i s  3 0  cm of B C i n  which t h e  remainder  of t h e  n e u t r o n  s lowing 
4 

/ down and a b s o r p t i o n  occurs .  Thus t h e  bulk  of t h e  ' fus ion  energy i s  absorbed by t h e s e  h igh  

1 t empera ture  ceramic m a t e r i a l s  £rom whence i t  is  t r a n s f e r r e d  t o  t h e  helium c o o l a n t ,  s e p a r a t e  
. . 

0 
f r o m  t h e  s h ~ l l c o o l i n g ,  a t  temperatures  of t h e  o r d e r  of 700-800 C. For t h e  ceramic m a t e r i a l s  

i n s i d e  t h e  c a n i s t e r ,  no a t t empt  , i s  made to  push them t o  t h e i r  t empera ture  l i m i t s  bu t  r a t h e r  

base t h e  h o t  helium tempera tures  on e x i s t i n g  HTGR technology,  i t  be ing  f u l l y  recognized 

t h a t  a t  some f u t u r e  d a t e  a n  op t imiza t ion  might i n d i c a t e  h ighe r  tempera tures .  L a s t l y ,  i n -  I 

. t e r n a l  i n s u l a t i o n  t o  s e g r e g a t e  t h e  r e l a t i v e l y  coo l  meta l  s h e l l  from t h e  subs t a n t i a l l y  h o t t e r  

ceramic i n t e r i o r  is  incorpora ted  i n  t h e  des ign .  

We base  t h e  b l a n k e t  a n a l y s i s . o f  t h e  EPR.on t h e  fo l lowing  c r i t e r i a :  a )  a 'p lasma burn 
. . 2 

- t ima-of .  30: s e r . o n  and 3 0 : s e c  : o f f ; .  b-) a.~ail~-loading:of::1.~(th)/m~ dur ing  the  on. cyc le , .  - . 

2 
r e s u l t i n g  i n  'an average  load ing  of 0 .5  MM/m f o r  thd e n t i r e  c y c l e ;  c )  Am-TEPR [ 2 ]  c i r c u l a r  

plasma . r e a c t o r  dimensions (mkjor r ad ius  = 6.25'111, minor r a d i u s  = 2.'1 m); and d) no t r i t i u m  

breeding .  

F ig .  ( 3 )  shows s c h e n a t i c a l l y  t h e  s h e l l  coo l ing  c o n f i g u r a t i o n .  The i n l e t  and o u t l e t  

headers  run  t h e  f u l l  1en;th of t h e  c a n i s t e r .  From t h e s e  headers  i n d i v i d u a l  coo lan t  passages 

c a r r y  t h e  s h e l l  c o o l a n t  s i r c u r n f e r e n t i a l l y  around t h e  c a n i s t e r  wa l l .  For  t h e  hel ium cooled 
0 

s h e l l  helium i s  i n  a t  2 0 3 ' ~  and out  a t  380 C a t  40 atm p res su re .  The c h a r a c t e r i s t i c  Rey- 
3  nolds  number is  such thae  f o r  t h e  He cooled s h e l l ,  ~ e - 5 x 1 0 ~  t o  14x10 wh i l e  £how through 

t h e  bed is  laminar .  

S ince  two c o o l a n t  c i r c u i t s  a r e  contemplated,  i . e . ,  one t o  coo l  t h e  SAP.can i s t e r  and 
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t h e  o t h e r  t o  c/&?iithe hot  i n t e r i o r ,  i t  i s  impera t ive  t o  de te rmine  t h e  t o t a l  h e a t  flow t o  
: A,// a 

. each  circuit',,) th.e neutron-gamma h e a t i n g  determined on t h e  b a s i s  of t h e  one-dimensional 
I.; 8 

computer program ANISN [3]. 
I 

The i n c i d e n t  energy f l u x  amounts t o  3.5 Mev of t h e  t o t a l  17.4 Mev depos i ted  o r  20%. 

Th i s  i s  a l l  depos i ted  w i t h i n  t h e  f i r s t  few m i l l i m e t e r s  of t h e  f i r s t  w a l l  and i s  e s s e n t i a l l y  ' a s u r f a c e  e f f e c t .  Neutron and gamma ray  h e a t i n g  of t h e  f i r s t  wa l l  amounts t o  about  4.4 W / C C  
I 

which f o r  a  2 .5 cm t h i c k  w a l l  amounts t o  a n  a d d i t i o n a l  11%. Neutron and gamma ray h e a t i n g  

of t h e  s i d e  w a l l s  amounts t o  a n  a d d i t i o n a l  8.1%. Heat leakage  from t h e  ho t  i n t e r i o r  r eg ion  

depends on the tempera ture  l e v e l s  i n  t h e  c a n i s t e r  wa l l  and i n t e r i o r ,  t h e  amount and q u a l i t y  

of i n s u l a t i o n  used,  and t h e  c o n t a c t  a r e a .  Using 2.5 cm t h i c k  l a y e r  of g r a p h i t e  f e l t  w i t h  a 

thermal  c o n d u c t i v i t y  of 0 . 0 0 3 6 ~ / c m O ~  r e s u l t s  i n  a n  a d d i t i o n a l  h e a t  flow of ~ 5 . 5 % .  - Thus t h e  . . 

t o t a l  h e a t  p i ck  up i n  t h e  c a n i s t e r  w a l l  coo l ing  c i r c u i t  amounts t o  45% o f  t h a t  genera ted  

by t h e  plasma p l u s  neu t ron  and gamma r e a c t i o n s , i n  t h e  w a l l  s t r u c t u r e .  The remaining 55% 

i s  absorbed i n  t h e  h o t t e r  i n t e r i o r .  

Hav.ing determined t h e  h e a t  p i c k  up i n  t he  c a n i s t e r  w a l l ,  t h e  c o o l a n t '  flow can be 

e s t a b l i s h e d  c o n s i s t e n t  w i t h  p rev ious ly  e s t a b l i s h e d  SAP tempera ture  ' l i m i t s .  Opt imiza t ion  of 

t h e  l o c a t i o n  of t h e  w a l l  c o o l a n t  passages o r  of t h e i r  dimensions has  n o t  been a t tempted .  

Based on a n  a r b i t r a r y  . (seemingly reasonable)  . cho ice  of dimensions i . e . ,  coo l ing  passages  0.2 

cm by 0 .1  cm, 0:2 cm between c e n t e r  l i n e s ,  t he  two dimensional  tempera ture  d i s t r i b u t i o n  i n  

t h e  c a n i s t q r  w a l l  was de te rmined-us ing  the  h e a t  conduct ion  code,  HEATING-3 [4] from.which 
0 

i t  was determined t h a t  t h e  maximum AT i n s i d e  t h e  SAP was 4 C du r ing  t h e  "plasma on" phase 

of t h e  c y c l e .  . The SAP has a smal l  h e a t  c a p a c i t y  compared t o  i t s  i n t e r i o r  c o n t e n t s  and i t  

w i l l  probably be  necessary  t o  e s s e n t i a l l y  s t o p  t h e  He c o o l a n t  flow t o  t h e  s h e l l  du r ing  t h e  

plasma o f f  pe r iod .  

The remaining 55% of t h e  h e a t  t o  be recovered from t h e  ceramic i n t e r n a l s  r e p r e s e n t s  a  

much e a s i e r  d e s i g n  problem s i n c e  1 )  t h e  f i l l e r  m a t e r i a l  has  no s t r u c t u r a l  f u n c t i o n  and 2)  ' t h e  o p e r a t i n g  te inpera tures-  i n  t h e  He c i r c u i t  were  e s t a b l i s h e d  based on HTGR technology and 

a r e  w e l l  'below t h e  'me l t i ng  p o i n t s  of t h e  ca rb ides  ( > 2 0 0 0 ~ ~ ) .  

The c a r b i d e  bed could be formed i n  a  v a r i e t y  of shapes  and s i z e s .  What was s e l e c t e d  

, 
f o r  t h i s  d e s i g n  was a rod bundle composed ... . of r e c t a n g u l a r  rods  w i t h  spaces  t o  provide  c o o l a n t  

. .  . 

passages  between t h e  tod c l u s t e r s .    he hot  helium flows t h r u  t h e  packed bed f o r  t h e  f u l l  

l e n g t h  of t h e  module, t u r n s  around and flows back t h r u  t h e  f u l l  l e n g t h  of t h e  module. To 

maximize t h e  s h i e l d i n g  f u n c t i o n ,  t h e  voidage permi t ted  f o r  t h e s e  coo lan t  passages was l i m i t -  

ed t'o 15%. S i n c e  t h e  thermal  c a p a c i t y  of.  t he  ceramic rod bundle i s  l a r g e  r e l a t i v e  t o  t h e  

; thermal  c a p a c i t y  of t h e  hel ium coo lan t  s t ream, i t  should be p e r f e c t l y  a c c e p t a b l e  t o  main ta in  
I 

/ t h e  same c o o l a n t  flow t h r u  both  t h e  plasma on and plasma o f f  phase of t he  c y c l e  and t o  wi th-  
2  

, draw t h e  h e a t  a t  t h e  ave rage  r a t e  based on 0 . 5  MW/m . 
Headers o r  manifolds  a r e  impor tan t  i n s i d e  each c a n i s t e r '  t o  i n s u r e  uniform coo l ing  of 

t h e  c a n i s t e r  w a l l  and e q u a l l y  important  e x t e r n a l  t o  t h e  b l anke t  p rope r  t o  i n s u r e  uniform 

flow t o  each of t h e  b l anke t  modules. A d e t a i l e d  a n a l y s i s  bclsed on t h e  methacb of Acrivos 

[5] f o r  t h e  i n t e r n a l  c a n i s t e r  headers  l eads  t o  t he  conc lus ion  t h a t  t he  maximum d e v i a t i o n  

i n  flow is only  3% which should not  p re sen t  any problem. A s  might be a n t i c i p a t e d  f o r  most 

of t h e  flow p a t h ,  t h e  flow i s  t u r b u l e n t  then  laminar  a s  i t  approaches t h e  end of t he  log .  

A summary of t he  aluminum b lanke t  process  cond i t i ons  a r e  shown i n  Table I. 
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TABLE I. TYPICAL THEYL AND HYDRAULIC CHARACTERISTICS OF THE A L U M I N U M  BTANKET AT 
0 .5  ~ ~ ( t h ) / r n  (Avg) WALL LOADING FOR AN EPR 

I Nominal Reactor  Power 300 MW 

F r a c t i o n  of Power t o  Cold C i r c u i t  0.45 

F r a c t i o n  of  Power t o  Hot C i r c u i t  0.55 
0 0 

i Maximum F i r s t  Wal lTempera ture ,  C 400; Maximum Carbide Bed Temperature,  C 1450 

Cold C i r c u i t  Condit ions Hot C i r c u i t  Condi t ions  

Coolant He He 
I 

0 
In l e t .Tempera tu re ,  C 

0 
O u t l e t  ~ e m ~ e r a t u r e ,  C 

o p e r a t i n g  P res su re ,  p s i a  

Flow Rate,  g / s e c  .' 

Channel Veloc i ty ,  m/s,ec . . 3  5  2 . 2  . 
2  0 

Heat T r a n s f e r  Coef f  i c i e n . t ,  ..w/cm - C 0.35 0.08 

Blanket  P r e s s u r e  Drop, ~ s i a ,  ' . 13.5 , .  8 

Pumping 'Power a s  F r a c t i o n  of Total  Power 0.022 0.01 - 

'4 .  GRAPHITE BLANKET-COQLING REQUIREMENTS ' 

In t h i s  s e c t i o n  we .eons ide r  a s i g n i f i c a n t l y  d i f f e r e n t  b l anke t  des ign .  Of t h e  low atomic 

number  material^ c i t e d  f o r  b l anke t  m a t e r i a l s  carbon o r  g r a p h i t e  i s  one silch a t t r a c t i v e  

m a t e r i a l ,  and has been employed i n  a  s e r i e s  of BNL' de s igns  [6 ,7] .  

The primary b l anke t  i s  a  t h i c k  s c r e e n  of g r a p h i t e  blocks F ig .  ( 4 ) .  Bremsstrahlung 

energy i s  depos i t ed  on t h e  g r a p h i t e  s u r f a c e  and r e - r a d i a t e d  away a s  thermal  . r a d i a t i o n  s o  

I 

I . I  
. * .  ! 

t h a t  t h e  f i r s t  w a l l  i s  r a d i a t i v e l y  cooled.  A l l  of neut ron  and gamma depos i t ed  energy is 

thermal ly  r a d i a t e d  down c a v i t i e s  between t h e  b locks  o r  conducted through t h e  b locks  t o  t h e  . . . .  . 
secondary b l anke t  where i t  i s  absorbed by a  row of SAP tubes  cooled by h i g h  p r e s s u r e  helium. 

The g r a p h i t e  blocks a r e  mounted on heavy A 1  backing p l a t e s ,  cooled by He, which a r e  i n  t u r n  

supported from the  f i x e d  s h i e l d .  The c o o l a n t  tubes a r e  p ro t ec t ed  by t h e  pr imary b l anke t  

from r a d i a t i o n  damage and should no t  r e q u i r e  replacement du.ring t h e  l i f e  of a n  EPR. To r e -  
0 

duce-  surface-evaporati.on-above 2000.-C;.. t h e  . s a r i a c e -  is.. r a d i a t i v e l y  cool-ed. t o  a-  bank-. of 

c o o l a n t  SAP tubes  ( t h e  l'ow tempera ture  r a d i a t i o n  s i n k )  recessed  from t h e  g r a p h i t e  s u r f a c e  

and p ro t ec t ed  by t h e  g r a p h i t e .  Replacement of t h e  s i n k  may o r  may not  be necessary  du r ing  

t h e  l i f e  of a n  EPR. I n  t h e  c a s e  t h a t  replacement i s  necessary  i t  could be done much f a s t e r , .  

t h e  s i n k  being loca t ed  on t h e  o u t e r  r e g i o n . o f  ~ h e  t o r u s ,  and cheaper  t han  i f  t h e  e n t i r e  

b l a n k e t  were convent iona l .  
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In.  o r d e r  t o  e v a l u a t e  t h e  des ign  p o t e n t i a l  of t h i s  new minimum a c t i v i t y  b l anke t  concept ,  

. d e t a i l e d  thermal a n a l y s i s  was undertaken t o  de te rmine  maximum s u r f a c e  tempera tures ,  t o  pre-  

d i c t  t h e  s t eady ,  p e r i o d i c  temperatures  w i t h i n  t h e  s t r u c t u r e ,  and t o  de te rmine  the  h e a t  f l u x  

t o  t h e  i n t e r n a l  coo lan t  tubes deep w i t h i n  t-he s t r u c t u r e  w i th  t h e  h e a t  t r a n s f e r  computer 

code,  CONRAD [B]. For t h e  EPR case ,  WL=1.0 ~ ( t ' h ) / m ~  w i t h  SAP c o o l a n t  tubes  a t  400°c, we 

f i n d  t h a t  -80% o f  t h e  f u s i o n  energy i s  removed i n  t h e  primary graphite-aluminum b lanke t  

w h i l e  t h e  remaining 20% i s  i n  t h e  low-temperature s i n k .  With a  bu lk  g r a p h i t e  s u r f a c e ,  10% 

1 low tempera ture  r a d i a t i o n  s i n k  t h e  p r i n c i p a l  f i n d i n g s  a r e : .  t h e  g r a p h i t e  s u r f a c e  t e v p e r a t u r e ,  I 
0 

does not  'exceed -1800 C,  t h e  maximum s u r f a c e  tempera ture  dec reas ing  wi th  a n  i n c r e a s e  Tmax' 
i n  t h e  percentage  of low temperature r a d i a t i o n  s i n k  a re? ;  t he  maximum h e a t  p i c k  up Q by max 
t h e  coo l ing  tubes  - i s .  -300~/cm dur ing  t h e  plasma burn whi le  Q i s  --285~/cm dur ing  t h e  o f f -  min 
per iod  of each pu l se .  These va lues  a r e  found t o  be e s s e n t i a l l y .  independent of coo l ing  tube  

1 arrangement.  The f l o w  c o n d i t i o n  f o r  t h e  h i g h  p r e s s u r e  (50  atm) hel ium coo lan t  i s  t u r b u l e n t ,  I 
w i t h  v a r i a b l e  c i r c u m f e r e n t i a l  h e a t  f l u x .  

' The most . f avo rab le  c o n d i t i o n s  found. f o r  uniform h e a t  p i ck  up by t h e .  c o o l a n t :  tubes  .a re :  

a )  an- L-shaped ~ o n f i ~ u r a t i 6 . n :  of .  tubes ; b) r ad i a t i . on  gap. b e t i k e n  t h e  SAP tubes  and a d j a c e n t  

g r a p h i t e ;  and c )  by s e l e c t i v e l y  surrounding th.9 tubes  w i t h  py rograph i t e ,  i . . e . ,  by surround- 

i n g  on ly  a few o f  the.. tubes  wi th  py ropraph i t e  and dependent on geomet r i ca l  l o c a t i o n  i n  t h e  
. I 

t u b e  mat r ix .  The low c o n d u c t i v i t y  d i r e c t i o n  i s  o r i e n t e d  pe rpend icu la r  t o  t h e  tube  s u r f a c e .  

The maximum t o  minimum h e a t  p i ck  up d i f f e r e n c e  ( w i t h  r e s p e c t  t o  uni formi ty  of h e a t  p i c k  up 

by each tube  p e r  s ec )  i s  reduced t o  <2 t o  1. Tube s u r f a c e  temperature excurs ions  a r e  I 
n e g l t g i b l e  du r ing  t h e  plasma on-off per iod .  Of t h e  thermal  energy reaching  t h e  SAP t ubes  

. . 
approximate ly .  60% a r r i v e s  v i a  r a d i a t i o n  down t h e  cavity..;. 

5. ACTIVATION LEVEL I 
For .  .both-.b.lanket.. op t ions  ... t h e  . f e a s i b i l i t y -  o f .  hands-on maintenance i s  addressed.  Dosage 

. . . - . . - . . 
I c a l c u l a t i o n s  f o r  t h e  b l a n k e t - a n d  s h i e l d  a re 'per formed f o r  a  man s t and ing  o u t s i d e  t h e  f i x e d  

- I 
s h i e l d  (1 meter  t h i c k ;  w i th  A 1  s t r u c t u r e  and B . C  and water  c o o l a n t )  15  days a f t e r . r e a c t o r  

4 I 
shutdown, assuming a  1 y e a r  r e a c t o r  ope ra t ion .  R e s u l t s  i n d i c a t e '  t h a t  i t  should be p o s s i b l e  I 
t o -  perform-hands=.on--maintenance- a t .  s e l e c t e d  - a reas  on t h e  - o u t s i d e  s u r f a c e  of t h e  s h i e l d .  The.  I 

-3 
dose  t o  personnel  would be l e s s  than  10  rem pe r  day. A l l  r e s i d u a l  a c t i v a t i o n s  a r e  al lowed 

1 f o r  i n  t h e  b l anke t  and s h i e l d  inc lud ing  those  of t h e  bulk  m a t e r i a l s  (Al ,  C ,  S i c ,  B4C, 

H20, A 1  0  ) and whatever i m p u r i t i e s  can  be expected.  Nuclear c a l c u l a t i o n s  were made wi th  
2  3 

100 Group P3S8 ANISN runs  f o r  neutrons and 21  groups f o r  gammas. A l l  t ransmuta t ions  and 

decays a r e  included t o  2nd gene ra t ion  products .  

6 .  CONCLUSIONS 

The modular des igns  presented have t h e  fo l lowing  f e a t u r e s :  smal l  number of modules 

(-200 f o r  t h e  e n t i r e  b l anke t )  each of r e l a t i v e l y  modest t o t a l  weight ,  r ap id  replacement of I 
t h e  e n t i r e  b l anke t  through a  s e t  of r e l a t i v e l y  sma l l  acces s  p o r t s  on t h e  e x t e r i o r  major 

c i rcumference  of t h e  b l anke t  ( t y p . i c a l l y ,  36 ...p o r t s )  ,.. and r e a d y . . a c c e s s i b i l i t y .  t o  the .  r e g i o n  

o u t s i d e  t h e  b l a n k e t  and s h i e l d .  Resu l t s  i n d i c a t e  t h a t  i't should be p o s s i b l e  t o  perform I 
hands-on maintenance a t  s e l e c t e d  a r e a s  on t h e  c u t s i d e  s u r f a c e  of t h e  s h i e l d .  Acceptable  

thermal  power convers ion  e f f i c i e n c i e s ,  i . e . ,  36.6% f o r  t h e  SAP module, can  be achieved w i t h  
I I low a c t i v i t y  b l anke t s .  
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1 3.  Fillo 

. '  
Fig. 1 Schematic representation of tokamak reactor showing modular blanket concept 

1 Fig. 2 .  EPR aluminum blanket module-triplet 

I Fig. 3 Typical shell cooling configuration 

I Fig. 4 EPR graphite blanket module 
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