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Stud ie s  of unpro tec ted  loss-of-flow a c c i d e n t s  i n  t h e  CRBR f o r  v a r i o u s  
r a t e s  of flow coastdown and w i t h  va r ious  op t ions  i n  t h e  SAS 3A code d i d  n o t  
l ead  t o  cond i t i ons  f o r  a  v i o l e n t  disassembly. Maximum f u e l  temperatures  using 
the  SLUMF'Y module f o r  disassembly were i n  t h e  rarlgt! 4000-4500°C.. An approx- 
imate t rea tment  of t h e  LOF-driven TOP acc iden t ,  no t  proper ly  modeled by SAS 3A, 
i n d i c a t e s  t h e  p o s s i b i l i e y  of  some increase 111 acc iden t  s e v e r i t y .  Thc c f f e c t  

' o f  f i s s i o n  gas i n  d i s p e r s i n g  f u e l  was not  taken i n t o  account i n  t h e s e  
c a l c u l a t i o n s .  Parameter v a r i a t i o n s  inc luded  t h e  presence o r  absence of a x i a l  
f u e l  expansion and of c l a d  motion and use  of  t h e  moving coolant  f i l m  model 
versus  t h e  s t a t i c  ' f i lm  model. Study of  s e v e r e  p ipe  r u p t u r e  acc iden t s  w i th  
scram i n d i c a t e d  t h a t  p.in power d e n s i t y  and fue l -c lad  conductance were important  
parameters  i n  determining what coo lan t  f low r a t e  was needed t o  pr.event b o i l i n g  
af t e r  t h e  rup tu re .  P t  appears  t h a t  f o r  the CRBR when e l ~ g i l l e e i i i ~ g  hat  channcl  
f a c t o r s  a r e  considered,  t h i s  f r a c t i o n  would have t o  exceed 25%. 

I. INTKOUUCTION 

Although h y p o t h e t i c a l  c o r e  d i s r u p t i v e  acc iden t s  (HCDA's) i n  LMFBRts a r e  
regarded a s  very  u n l i k e l y ,  t h e r e  have been and a r e  cont inuing  t o  be ex t ens ive  
s t u d i e s  of what t h e  consequences o f  such even t s  might be ,  i n  o r d e r  t o  a s s u r e  
t h a t  any hazard t o  t h e  p u b l i c  from o p e r a t i o n  of LMFBR'S is of n e g l i g i b l e  prob- 
a b i l i t y .  The p r e s e n t  paper  i s  concerned wi th  s t u d i e s  of acc iden t s  i n i t i , a t e d  
i n  t h e  Clinch River  Breeder Reactor  ( C R B R ) ~  by a  l o s s  of sodium coolant  flow 
(LOF) coupled wi th  a  f a i l u r e  t o  scram, l ead ing  t o  p o s s i b l e  sodium b o i l i n g  and 
void ing ,  c l ad  mel t ing ,  and even tua l  f u e l  me l t i ng  and vapor i za t ion .  Such acc i -  
den t s  could r e s u l t  from a l o s s  o f  e l e c t r i c a l  power t o  t h e  primary sodium pumps, 
o r ,  regarded a s  much l e s s  l i k e l y ,  a  massive primary p ipe  rupture .  The purpose 
of t h e  p re sen t  s e r i e s  of  c a l c u l a t i o n s  i s  t o  g a i n  understanding of acc iden t  
c h a r a c t e r i s t i c s  and t o  s tudy  t h e  l i m i t a t i o n s  of a v a i l a b l e  computational t o o l s  
f o r  acc iden t  c a l c u l a t i o n s .  Although LOF a c c i d e n t s  a r e  n o t  t h e  only  ones t h a t  
have been cons idered  f o r  LMFBR's, they  l e a d  t o  a  s u f f i c i e n t l y  wide range  of 
phenomena t o  g i v e  cons ide rab le  i n s i g h t  i n t o  t h e  behavior  of HCDA1s ,  and t h e i r  
consequences a r e  u sua l ly  found t o  bound t h o s e  of o t h e r  acc iden t s .  

11. PHYSICAL MODEL OF THE CRBR 

The c h a r a c t e r i s t i c s  of t h e  c u r r e n t  des ign  of t h e  CRBR a r e  d e t a i l e d  i n  t h e  
Pre l iminary  Sa fe ty  Analys is  Report (PSAR). The CRBR has  a  thermal  power of 
975 MW, of which about  95% i s  genera ted  i n  t h e  c o r e  w i th  f r e s h  f u e l  i n  t h e  
beginning-of- l i f  e  (BOL) s t a t e ,  w i t h  which we s h a l l  be  mainly concerned here .  
The co re  h e i g h t  i s  91.44 cm, and t h e  c o r e  conta ins  108 f u e l  assemblies  i n  t h e  
inne r  enrichment zone and 98 f u e l  assemblies  i n  t h e  two rows of t h e  o u t e r .  
enrichment zone, p l u s  19  c o n t r o l  and s a f e t y  rod l o c a t i o n s ,  a s  shown in .  Fig. 1. 
The subassembly p i t c h  a t  h o t ,  f u l l  power cond i t i ons  i s  12.16 cm. For t h e  
purpose of LOF c a l c u l a t i o n s  w i t h  t h e  SAS-3A Code t h e  f u e l  subassemblies have 
been grouped a s  shown i n  Table I i n t o  10 channels ,  f o r  each of which SAS per- 
forms c a l c u l a t i o n s  f o r  a  s i n g l e  f u e l  p i n  r ep re sen t ing  a l l  t h e  p ins  i n  t h e  
subassemblies  i n  t h e  g iven  channel.  The power d i s t r i b u t i o n  i n  t h i s  t a b l e  was 
based on 2 D  t r i a n g u l a r  mesh c a l c u l a t i o n s .  



PC - PR l MARY CONTROL SYSTEM' ( I 5  H O D S )  

SC - SECONDARY CONTROL SYSTEM ( 4  RODS) 

RS - REMOVABLE RADl  A L  S H l  E L 0  ( 3 2 4 )  

I C - INNER CORE ZONE ' (  108) 

OC - OUTER CORE ZONE (90) 

RB - R A D I A L  BLANKET ( 1 5 0 )  

Fig. 1. Reactor Core Cross-section for CRBR. 
ANL Neg. No. 116-76-10. 



 able I .  Ten Channel Model of CRBR 

Relative Coolant Relative Relative 
Number of . Radial Mass Relative Radial Power/Flow 

S AS Subassemblies Power, Velocity,  Power/Flow Power, - BOEC 
Channel (Ring) BOL Statc  g/r.m2-sec BOL State  BOEC State  State  

Reac t iv i ty  c o e f f i c i e n t s  needed f o r  t h e  SAS-3A code2 were c a l c u l a t e d  us ing  
an  R-Z model of t h e  CRBR shown i n  F ig .  2. Symmetry about t h e  a x i a l  midplane 

, was assumed i n  t h e s e  c a l c u l a t i o n s .  P a r t i a l l y  i n s e r t e d  c o n t r o l  rods  w i l l  cause 
asymmetries,  b u t  t h e  e f f e c t  of t h e s e  asymmetries on t h e  o v e r a l l  t r a n s i e n t  
a n a l y s i s ,  i . e . ,  on t h e  sequence of events  and the  condi t ions  a t  disassembly, 
i s  be l ieved  t o  be very s m a l l .  I n  any event  an R-Z model i s  r a t h e r  crude f o r  
accounting f o r  c o n t r o l  rod e f f e c t s ,  and a  r e a l l y  s a t i s f a c t o r y  t rea tment  re-  
q u i r e s  a  3D t r i a n g u l a r  mesh ca l cu la t ion ,  n o t  y e t  f e a s i b l e  f o r  us .  For t h e  
c e n t r a l  c o n t r o l  rod and f o r  t h e  6 c o n t r o l  rods on t h e  f l a t s  of row 7 uniformly 
smeared poison corresponding t o  a  65% i n s e r t i o n  of t h e s e  rods  was c a l c u l a t e d  
f o r  c r i t i c a l i t y .  Other c o n t r o l  rods were assumed completely withdrawn. 

111. CALCULATION OF PHYSICS PARAMETERS 

R e a c t i v i t y  c o e f f i c i e n t s  and d i s t r i b u t i o n  f o r  t h e  CMR were ca l cu la -  
ted  us ing  t h e  ENDFIB-I11 d a t a  i n  t h e  M C ~ - Z ( ~ )  and S D X ~  codes. Sepa ra t e  c ros s  
s e c t i o n  s e t s  were generated f o r  i n n e r  core  and o u t e r  co re  reg ions ,  r a d i a l  

. b l a n k e t ,  and r a d i a l  r e f l e c t o r ,  w i th  sodium both  p r e s e n t  and voided. Reac t iv i ty  
worths  were c a l c u l a t e d  us ing  f i r s  t -order  p e r t u r b a t i o n  theo ry ,  w i t h  sodium 
assumed voided only from w i t h i n  fue l ed  subassemblies .  S ince  t h e  sodium between 
t h e  subassembly' cans ' and  i n  c o n t r o l  . rods and c o n t r o l  rod channels was not  
assumed voided,  e f f e c t i v e l y  only about two-thirds .of t h e  t o t a l  sodium i n i t i a l l y  
i n  t h e  core  was assumed voided i n  t h e  f l u x  and a d j o i n t  c a l c u l a t i o n s  used i n  
ob ta in ing  t h e  voided Doppler e f f e c t .  A 27 group energy s t r u c t u r e  was used 
f o r  t h e  c ros s  s e c t i o n s  w i t h  t h e  f i r s t  21 being of uniform 0.5 l e tha rgy  from 
10 MeV. Values of r e a c t i v i t y  c o e f f i c i e n t s  t o t a l e d  over r eg ions  a r e  given i n  
Table 11. D e t a i l s  of f u e l  c y c l e  c a l c u l a t i o n s  performed i n  connect ion wi th  t h e  
equ i l i b r ium cyc le  parameter c a l c u l a t i o n s  a r e  g iven  i n  Ref. 5 .  The d i s t r i b u t i o n  

v of va r ious  phys ics  parameters  a r e  shown f o r  t h e  SAS channels  i n  F igs .  3-7 f o r  
beginning-of- l i fe  (BOL) s t a t e  f o r  t h e  r e a c t o r .  
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Fig.  3 .  Axial Power D i s t r i b u t i o n  f o r  CRBR, BOL S t a t e .  
L e t t e r s  A, By C, e t c .  r e f e r  t o  Channels 1, 2 ,  
3,  etc: r e spec t ive ly .  ANL Neg. No. 116-76-18. 



HEIGHT FROM LOWER BLANKET BOTTtlH [CM) 

Fig .  4. F u e l  Worth for CRBR, BOL S t a t e .  
ANL Neg. No. 116-76-11. 



HEIGHT (CM. 1 FRC~M LClWER BLFINKET BClTTBM 

Fig. 5. Sodium Void Worth f o r  CRBR, BOL s t a t e .  
ANC Neg. No. 116-76-12 . . 



HEIGHT (CM. 1 FRBM LaWER BLflNKET BBTTBM 

Fig. 6. Clad Worth f o r  CRBR, BOL S t a t e .  
ANL Neg. No. 116-76-14. 



HEIGHT FROM LBWER BLflNKET BBTTBM ICtll  

. Fig. 7.  Doppler Wor th .Di s t r ibu t ion  f o r  CRBR, BOL State. 
ANL Neg. No, ' 116-76-16. 



TABLE 11, CRBR Reac t iv i ty  and P o w e r w  ca l cu l a t i on )  

Inner Outer Axial Radial  
Core Core Blankets Blanket Total 

530.6 . 405.7 13.7 25.0 975.0 ROT, 
Power, MWt 497.4 369.4 32.7 '75.5 975.0 BOEC 

459.8 363.5 52.2 99.5 975.0 EOEC 
/. , . .- -. 

Sodium Void 9.964 -3.936 -2.373 -1.805 1.850 BOL 
13.200 -0.172 -2.246 -1.516 9.266 BOEC 
14.488 -0.971 . -2.544 -1.494 9.480 EOEC 

Unvoided Doppler -4.699 -1.511 -0.863 -0.831 -7.904 BOL 
dk -3.567 -0.955 -1.017 -1.116 -6.655 BOEC . Coeff. ,  T- x l o 3  
k d ~  -3.995 -1. ails -1.352 -I.. . 3 f i ~  0.058 EOEC 

.-- 1 - P .. . 
Voided buppler '  -3.282 -1.080 -0.754 -0'. 769 -5.886 BOL 

dk Coeff. ,  T- x l o 3  -2.457 -0.694 -0.866 -1.038 -5.055 BOEC 
kdT -2.844 -0.964 -1.146 -1.261 -6.214 EOEC 

-... - 

IV. SAS..--3A CODE CAPABILITY 

Documentation of  th,e SAS-3A code is  so f a r  a lmost  e n t i r e l y  i n  i n t e r n a l  
ANL r e p o r t s  which have n o t  rece ived  wide d i ~ t r i b u t i o n . ~ - l l  For an LOF a c c i -  
dent  t h i s  code c a l c u l a t e s  coolan t  h e a t i n g  and b o i l i n g ,  c l ad  and f u e l  h e a t i n g ,  
mel t ing  and motion, and t h e  r e s u l t a n t  r e a c t i v i t y  feedback e f f e c t s  on t h e  power 
h i s t o r y ,  u s ing  a  p o i n t  k i n e t i c s  model. The r e a c t i v i t y  e f f e c t s  of f u e l  a x i a l  
expansion and s t r u c t u r e d  r a d i a l  expansion feedback can a l s o  b e  taken  i n t o  
account .  

I n  t h e  b o i l i n g  process  t h e  l i q u i d  f i l m  on c l ad  and s t r u c t u r e  may b e  con- 
s ide red  e i t h e r  s t a t i o n a r y ,  o r  motion of t h e  f i l m  through t h e  a c t i o n  of g r a v i t y  
and sodium vapor f r i c t i o n  may be taken  i n t o  account .  c a l c u l a t i o ~ ~  01 I i l m  
motion has heen found t o  glve a more a c c u r a t e  p i c t u r e  of f i l m  dryout  and re-  
we t t i ng  than  t h e  assumption of a  s t a t i c  f i l m . 2 ,  lo  , 

Motion of molten c l a d  Is calcu;lated by t h e  CLAZAS module of SAS-3A.8 The 
r e s u l t i n g  r e a c t i v i t y  e f f e c t  h a s  been found t o  b e  impor tan t  f o r  sma l l e r  r e a c t o r s .  
such as t h e  FTR. Clad motion r e a c t i v i t y  becomes p r o g r e s s i v e l y  l e s s  impor t an t  
a s  r e a c t o r  s i z e  i n c r e a s e s  because promPC c r i t i c a l i t y ,  t h e  achievement of which 
is needed t o  produce a  l a r g e  power rise and co re  disassembly,  i s  more r e a d i l y  
a t t a i n e d  from sodium void ing  alone.  

When f u e l  and c l a d  mel t  and t h e  p i n  geometry i s  t h e r e f o r e  des t royed ,  t h e  
a x i a l  motion of t h e  r e s u l t i n g  mixture of f u e l ,  s t e e l ,  and f i s s i o n  gas i s  c a l -  
cu l a t ed  by t h e  SLUMPY module of SAS-3A us ing  compressible  hydrodynamics. 
Slumping of molten f u e l  under g r a v i t y  can add r e a c t i v i t y ;  shutdown occurs  
even tua l ly  from d i s p e r s a l  of c o r e  m a t e r i a l  from f u e l  o r  s t e e l  vapor  p r e s s u r e  
o r  from t h e  a c t i o n  of f i s s i o n  gas .  There i s  no c a p a b i l i t y  f o r  con t inu ing  t h e  
c a l c u l a t i o n  beyond t h e  l i m i t e d  motion of a  f i r s t  n e u t r o n i c  shutdown. If d i s -  
p e r s a l  of t h e  c o r e  m a t e r i a l  t o  o t h e r  p a r t s  of t h e  system i s  blocked by f r o z e n  
c l ad  and/or  f u e l ,  r e c r i t i c a l i t y  i s  a p o s s i b i l i t y ,  b u t  t h i s  cannot c u r r e n t l y  
be c a l c u l a t e d  wi th  SAS. 



'V.. PUMP COASTDOWN CALCULATIONS 

A. Parameter S tud ie s  Performed 

1. I n t r o d u c t i o n  

Parametcro w e  have v a r i e d  i n  t h e  BOL pump coastdown c a l c u l a t t o n s  
inc lude  t h e  presence o r  absence of c l a d  motion, t h e  presence  o r  absence of 
a x i a l  expansion, and t h e  use  of t h e  sodium f i l m  motion model o r  t h e  s t a t i c  
f i l m  model. 

We have made only very l i m i t e d  SAS c a l c u l a t i o n s  f o r  t h e  equ i l i b r ium c y c l e  
because i t  appeared i n  view of t h e  l i m i t s  of c u r r e n t  SAS modeling t h a t  n o t  much 
more u s e f u l  in format ion  would b e  obta ined  beyond. t h a t  gleaned from t h e  BOL 
s t u d i e s .  We have however, made some parameter s t u d i e s  t o  scope c e r t a i n  impor- 
t a n t  burnup e f f e c t s .  F i s s i o n  gas i s  impor tan t  in t i a ~ i s i e ~ i l :  u.verpowei (TOP) 
type  p i n  f a i l u r e s ,  i n  which sodium i s  s t i l l  f lowing and t h e  c l ad  i s  n o t  y e t  
melted,  wi th  c l a d  f a i l u r e  occurr ing  from gas p re s su re  o r  f u e l  expansion dur ing  
t h e  t r a n s i e n t .  TOP-type f a i l u r e s  can occur  during a  LOP i n  lower power r eg ions  
of t h e  r e a c t o r ,  and might c o n t r i b u t e  important  r e a c t i v i t y  e f f e c t s  from f u e l  
motion and sodium void ing  caused by a  molten fue l -coolant  i n t e r a c t i o n  (FCI). 
The SAS-FCI module of S A S - ~ A ( ~ )  was developed t o  handle  TOP-type p i n  f a i l u r e s ,  
bu t  i t  i s  of l i m i t e d  use  i n  a  LOF acc iden t  because i t  cannot b e  app l i ed  - i n  
channels i n  which sodium b o i l i n g  i s  occu r r ing .  SAS-FCI a l s o  has  o t h e r  s e r i o u s  
d e f e c t s  from a modeling s t a n d p o i n t .  An e s t i m a t e  i s  given l a t e r  of t h e  p o s s i b l e  
r e a c t i v i t y  e f f e c t s  of p i n  f a i l u r e s  of t h i s  type i n  t h e  CRBR us ing  t h e  PLUTO 
~ o d e , l . ~  which has a  more advanced t rea tment  of t h e  hydrodynamics of t h e  e jec-  
t i o n  of molten f u e l  i n t o  l i q u i d  sodium. PLUTO i s  a s t anda lone  code which does 
not  c a l c u l a t e  power gene ra t ion  o r  h e a t  t r a n s f e r  i n s i d e  t h e  p i n .  It can  h e  
used t o  e s t i m a t e  feedback e f f e c t s  which can then  b e  i n s e r t e d  i n t o  SAS. Repre- 
s e n t a t i v e  amounts of f i s s i o n  gas were assumed i n  t h e  PLUTO ca lcu la t , i ons  . 

Another p o t e n t i a l l y  important  e f f e c t  of f i s s i o n  gas i s  i n  d i s p e r s i n g  f u e l  
i n  a  disassembly.  Th i s  could r e s u l t  i n  f i n a l  f u e l  temperatures  hundreds of 
degrees C lower than  i f  gene ra t ion  of f u e l  vapor p r e s s u r e  i s  needed, bu t  t h e r e  
i s  much u n c e r t a i n t y  about  t h e  e f f e c t i v e n e s s  of f i s s i o n  gas i n  d i s p e r s i n g  f u e l  
and we have no t  taken  i t  i n t o  accoun t . .  We have, however, s t u d i e d  t h e  e f f e c t  
of a  s m a l l  concen t r a t ion  of f i s s i o n  gas  on the  r a t e  of f u e l  slumping i n  t h e  
BOL cases .  

A t h i r d  e f f e c t  of cons ider ing  a n  equ i l i b r ium c y c l e  i n s t e a d  of an,unburned 
c o r e  is t h a t  t h e r e  is  more he t e rogene i ty  i n  t h e  c o r e  because of t h e  presence  
of f u e l  i n  va r ious  s t a g e s  of burnup.. This  w i l l  i n t roduce  more incoherence 
i n t o  t h e  va r ious  r e a c t i v i t y  feedback than  we have c a l c u l a t e d ,  which w i l l  tend 
t o  reduce ramp r a t e s  somewhat. 

The e f f e c t  of burnup on fue l - c l ad  gap conductance can b e  impor tan t  i n  
gas-bonded f u e l  i n  i t s  e f f e c t - o n  f u e l  temperature.  The s i g n i f i c a n c e  of gap 
conductance f o r  p ipe  r u p t u r e  a c c i d e n t s  i s  d iscussed  i n  Sec t ion  V I .  

F i n a l l y ,  f o r  t h e  equ i l i b r ium cyc le  r e a c t i v i t y  e f f e c t s  a r e  l e s s  f avo rab le  
t han  f o r  t h e  BOL s t a t e  i n  t h a t  t h e  sodium void  e f f e c t  is 30-40% more p o s i t i v e  
and t h e  Doppler c o e f f i c i e n t  i s  lower by 20-30%, as s e e n  i n  Table  11. Limited 
c a l c u l a t i o n s  wi th  beginning-of-equilibrium cyc le  (BOFC) r e a c t i v i t y  c o e f f i c i e n t s ,  
descr ibed  below i n  Sec t ion  V.A.7 ,  d i d  no t  however r e s u l t  i n  an  i n c r e a s e  i n  
acc iden t  s e v e r i t y .  



2.  E f f e c t  of Sodiwn Fi lm Motion 

A l l  t h e  c a l c u l a t i o n s  presented  i n  t h i s  r e p o r t  used t h e  s t a t i c  sodium 
f i l m  model un le s s  t h e  use  of t h e  f i l m  motion model i s  s p e c i f i c a l l y  i n d i c a t e d .  
I n  Tables  111, I V ,  and V i t  i s  s e e n  t h a t  t he  e f f e c t  of sodium t i l m  motion on 
t h e  r e s u l t s  i s  no t  l a r g e .  Comparison of t h e  corresponding c o r e  wi th  a  s t a t i c  
f i l m  assumed i n d i c a t e s  a  t ime de lay  of 0 . 1  s e c  o r  l e s s  i n  t h e  s t a r t  of c l a d  
and f u e l  motion wi th  t h e  f i l m  motion model, because of t h e  g r e a t e r  tendency 
f o r  r ewe t t i ng  of t h e  dr ied-out  c l a d .  The u l t i m a t e  consequences of t h e  d i f f e r -  
ences between t h e  two models a s  f a r  a s  disassembly cond i t i ons  a r e  concerned a r e  
i nconsequen t i a l ,  however, as i s  s e e n  i n  Table  V.  Fur ther  comparisons of t h e  
moving and s t a t i c  f i l m  models a r e  g iven  i n  Sec t ion  V I .  

3 .  E f f e c t  of Clad Motion 

Clad motion r e a c t i v i t y  ramp r a t e s  a r e  s e e n  t o  b e  l a r g e r  t h a n  t h o s e  
from f u e l  slumping and from sodium void ing  i n  cases  i n  which c l a d  motion i s  
al lowed.  There i s  much u n c e r t a i n t y  surrounding c l a d  motion. l?auske13 h a s  
recent.l:, hypothesized t h a t  because of incoherence e f f e c t s  among t h e  subchannels  
uf a subassembly chere  w l l l  be bypassing of sodium vapor around t h e  r e g i o n  of 
molten c l a d ,  wi th  t h e  r e s u l t  t h a t  c l a d  d r a i n i n g  under g r a v i t y  w i l l  a l t e r n a t e  
wir:h levitation by sodium vapor,  l eav ing  l i t t l e  n e t  c l a d  motion. Whatever t h e  
m e r i t s  of t h i s  hypothesis  a r e ,  i t  does seem reasonab le  t h a t  ou r  c a l c u l a t i o n s  
a r e  g iv ing  an  upper l i m i t  t o  c l ad  motion e f f e c t s .  SAS n o t  only does no t  account  
f o r  intrasubassembly inc l~he rence ,  b u t  we have a l s o  lumped a  l a r g e  number of 
suLassemblies i n  a  s i n g l e  channel ,  thus  n o t  t ak ing  account  of power and coo lan t  
flow r a t e  v a r i a t i o n s  t h a t  a c t u a l l y  e x i s t  among t h e s e  subassemblies .  Th i s  in -  
coherence would tend t o  smooth ou t  v a r i a t i o n s  i n  t h e  ramp r a t e  and probably 
lead  t o  lower peak va lues .  I n  any even t ,  w i th  t h e  p r e s e n t  SAS modeling inc lud -  
ing  t h e  u s e  of S L W Y  f o r  disassembly c a l c u l a t i o n s  t h e  i n c r e a s e  i n  ramp r a t e  
caused by c l a d  motion does n o t  g r e a t l y  a f f e c t  t h e  u l t i m a t e  s e v e r i t y  of d i s -  
assembly a s  represented  by t h e  peak f u e l  temperature.  A s  long as t h e r e  is  n o t  
a l a r g e  change i n  ramp r a t e  and a  c e r t a i n  amount of prompt nega t ive  feedback 
is  a v a i l a b l e ,  t h e  i n t r o d u c t i o n  of cons ide rab le  p o s i t i v e  and nega t ive  e f f e c t s  
changco t h e  d e t a i l e d  course uf d n  a c c l d e n t  bur: does n o t  a f f e c t  i t s  o v e r a l l  
s e v e r i t y  g r e a t l y .  There a r e  compensating e f f e c t s  which cause j u s t  s u f f i c i e n t  
r e a c t i v i t y  t o  be in t roduced  t o  b r i n g  t h e  r e a c t o r  t o  t h e  v i c i n i t y  of prompt 
criLlcal, a t  which p o i n t  a power r i s e  i n t roduces  nega t ive  r e a c t i v i t y  feedback,  
causing t h i s  neu t ron ic  shutdown. I n  our  c a l c u l a t i o n s  t h i s  shutdown i s  caused 
by motion of f u e l  under i ts  own vapor p re s su re .  

4.  E f f e q t  of Axia l  Expansion 

The e f f e c t  of a x i a l  expansion on f i n a l  f u e l  tempera ture  i s  l i k e w i s e  
seen  t o  be i n s i g n i f i c a n t .  I t  should b e  mentioned t h a t  t h e  a x i a l  expansion 
r e a c t i v i t y  ca l cu la t ed  by SAS is. much too  l a r g e  because of a n  e r r o r  i n  t h e  f o r -  
mula used, a s i d e  from any ques t ion  of t h e  v a l i d i t y  of t h e  p h y s i c a l  assumptions 
involved.  It is es t imated  t h a t  t h e  va lues  c a l c u l a t e d  by SAS should b e  mul t i -  
p l i e d  by 0.4. Even w i t h  t h i s  l a r g e  overes t imate  t h e  f u e l  temperature i n  d i s -  
assembly is  n o t  much a f f e c t e d .  



' F u e l  
Slumping R e l a t i v e  Mel t  

S t a r t .  S e c  Power F r  

TABLE 111. S t a r t i n g  Times f o r  B o i l i n g ,  C lad  H o t i o n ,  and  F u e l  ~ o t i o n ~  f o r  
. ., Pump Coas tdown ~ a l c u l a t i d r i s  Without Scram 

Clad  Motion R e l a t i v e  
S t a r t ,  S e c  Power 

S t a t i c  F i l m  
No A x i a l  Exp 
No C l ~ d  Motion 

B o i l i n g  R e l a t i v e  
Time, S e c  Power 

18 .133  3 .45  
15.71.5 0 .847  
1 6 . 0 4 8  0.844 
1 6 . 1 3 1  0 .836  ' 

18 .230  2.89 
1 8 . 2 3 1  2.89 
18.159 3.. 39 
16 .026  0.843 
18 .348  2 .84  
18 .366  2 . 8 1  

Case  

Channe l  

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  

Clad  Motion R e l a t i v e  
S t a r t .  S e c  Power 

F u e l  
Slumping R e l a t i v e  M e l t  

S t a r t ,  S e c  Power Fr-  

24.560 44 .6  .0 .365 
24.312 22.7 0 .354  
24.415 22.9 0 .315  
24.536 24.6 0 . 2 9 2  

S t a t i c  F i l m  
A x i a l  Exp 

No Clad  Motion 

B o i l i n g  R e l a t i v e  
Time, S e c  Power 

21.864 1 .29  
17 .863  0.759 
18 .309  0.749 

'20 .418  0 . 9 8 2  
22.278 1 . 0 3  
22.169 1 . 1 4  
22 .002  1 .12  
15 .380  0 .742  
23.792 1 . 4 8  

S t a t i c  F i l m  
No A x i a l  Exp 
Clad  Motion 

B o i l i n g  R e l a t i v e  
Time.  S e c  Power 

18 .167  2.97 
15.716 0 .847  
16.032 0 . 8 4 3  
16.139 0 . 8 3 5  
1 8 . 2 9 4  7.12 
1 8 . 2 9 8  6 .17  
1 8 . 2 3 3  3 . 0 8  
16 .030  0 .843  
18 .346  3 .95  
18 .359  3.87 

F i l m  Motion 
No A x i a l  Exp 

B o i l i n g  R e l a t i v e  
b 

Time,  S e c  Power 

18.937 3.49 
15 .716  0.847 
16.030 0.844 
16 .120  0.836 
18 .335  4 .38  . 
1 8 . 3 4 1  4 .23  
18 .274  3 .68  
1 6 . 0 3 0  0 .844  
1 8 . 4 4 0  . . 4 .23  
1 8 . 4 5 5  5 . 1 1  

Clad Motion R e l a t i v e  
S t a r t .  S e c  Power - 

' 

as lumping  o n  Clad  M e l t i n g  & M e l t i n g  of  I n n e r  U n r e s t r u c t u r e d  F u e l .  

I 
23.79;: 1 . 4 8  

S t a t i c F i l m  . 
A x i a l  Exp 

Clad Mot ion  

B o i l i n g  R e l a t i v e  
Time,  Sec  Power 

21.545 3 . 5 3  
17 .862  0.759 
18 .309  0.749 
20.418 0.982 
21.774 2.15 
21.754 . 2,33 
21.601 2.18 
18.380 0.142 

- 21.974 1 . 6 7  
21.842 1 .96  

. ' F u e l  
Slumping R e l a t i v e  Mel t  

S t a r t .  S e c  Power F r  

- -- -- 

F u e l  
Slumping R e l a t i v e  Mel t  

S t a r t ,  S e c  Power F r  

F u e l  
Slumping R e l a t i v e  Mel t  

S t a r t .  Sec  Power. F r  



Table I V .  F r a c t i o n  of Core Voided o f  Sodiua a t  Disassembly 

1 2 3 4 Case 5 

S t a ~ i c  Film S t a t i c  F i l n '  
Film Motion S t a t i c  Film. Axia l  Exp. St-atLc Film Axial  Exp . 
No Axial  Exp. No Axial  Exp. Clad EIotion No Axia l  Exp.  KO Clad Motion 
C l ~ d  Motion Clad Motion (No Gas) No Clad Motion (No Gas) 

Time, s e c  

Core Core Core Ccre Core 
Sub- Void Void Foid Vcid Void 

Channel assembly F r a c t i o n  F r a c t i o n  F r a c t i c n  F r a c t i o n  F r a c t i o n  

High power 
Channels 1-4, 7,, 8 96 (P. 689 0.722 0.697 0.301 0.868 

Low power 
Channels 5 ,  6 ,  9 ,  10 10 2 0 -049 0.054 0 .232 0.321 0.220 



TABLE V -  Disassembly Condi t ions  f o r  CRBR Pump Coastdown Ca lcu la t ions  Without.  Scram, BOL S t a t e  
. . 

Case 1 2 3 4 %  5 

Sodium Film Moving S t a t i c  S t a t i c  S t a t i c  S t a r i c  
Axial  Expansion N o No Yes Yes No 
Clad Motion Yes Yes Yes No No 
F i s s i o n  .Gas Yes Yes Yes No Yes No Yes Yes 
PLUTO Feedback,  N o No No No s . No No . . No Yes 

Time, Sec 
Peak Power (a )  

blax. Temp, O C ( ~ )  
R e a c t i v i t y  , $ 

.Na Voiding 
Clad Mot i o n  
Fuel  Motion 
Doppler 
Programmed 
Axia l  Expansion 
Net 

Ramp Ra te ,  $ / sec  
Na Voiding 
Clad Motion 
Fuel  Motion 
Programmed 

T o t a l  20;5 ' 18.5  34.2  39.7 15 -1 24.7 22 ,O 96 .1  

( a ) ~ e l a t i v e  to normal r e a c t o r  power 
(b)For  compress ible  f u e l  r eg ion  i n  SLUMPY. 



5 .  E f f e c t  of Ambient F i s s i o n  Gas on Fuel  s lumping 

We observed t h a t  t h e  drag  e f f e c t  on slumping f u e l  of ambient f i s s i o n  
gas a t  on ly  s e v e r a l  atmospheres p r e s s u r e  was s u f f i c i e n t  t o  reduce t h e  f u e l  
v e l o c i t y  cons iderably  below t h a t  of a f r e e  f a l l .  I n  a n  e f f o r t  t o  f i n d  a n  
upper l i m i t  t o  t h e  ramp r a t e  t h a t  could b e  produced by f u e l  slumping, w e  s e l -  
ec t ed  cases  i n  which a x i a l  expansion feedback was p r e s e n t  t o  e l i m i n a t e  t h e  
f i s s i o n  gas  drag  e f f e c t  ( ca ses  l a b e l e d  "no f i s s i o n  gas" i n  Table  V) . Some 
augmentation of t h e  f u e l  slumping ramp r a t e  was a t t a i n e d  i n  t h i s  way, b.ut t h e  
maximum ramp r a t e  a t t a i n e d  of $19/sec is  s t i l l  moderate.  There are l i m i t s  t o  
how l a r g e  f u e l  slumping ramp r a t e s  under g r a v i t y  can b e  even i n  t h e  absence of 
o the r  p o s i t i v e  feedbacks.14 Considering t h a t  t h e r e  w i l l  always be  a c e r t a i n  
amount of f i s s i o n  and f i l l  gas  p r e s e n t  t o  e x e r t  a drag  ' e f f e c t ,  and t h a t  l e v i -  

. t a t i o n  of f u e l  by f i s s i o n  gas escaping from f u e l  dur ing  a t r a n s i e n t  may very  
w e l l  occur ,  i t  is  hard .to s e e  how very h igh  f u e l  slumping ramp r a t e s  can occuP 
i n  a n  LMFBR. 

E f f e c t  of BOEC R e a c t i v i t y  C o e f f i c i e n t s  and Power D i s t r i b u t i o n  

Because of t h e  unfavorable  v a r i a t i o n s  of r e a c t i v i t y  r .nr f f i ,c ianfs  
frnm tho BOL to DOEC *Lace i i ld lca ted  i n  Table  11, a SAS pump coastdown ca lcu-  
l a t i o n  was performed f o r  no a x i a l  expansion and no c l a d  motion using t h e  BOEC 
r e a c t i v i t y  c o e f f i c i e n t s  . The same subassembly assignments  and coolant  ve lo-  
c i t i e s  a s  t hose  i n  Table I f o r  t h e  BOL s t a t e  were used i n  t h e s e  c a l c u l a t i o n s ,  
bu t  a n  a l t e r e d  power d i s t r i b u t i o n  based ua a r a d i a l  model of t h e  CRBR was used 
(Table I )  . Resu l t s  of t h i s  c a l c u l a t i o n  a r e  g iven  i n  Tables  V I  and V I I  . 

Table V I .  S t a r t i n g  Times f o r , B o i l i n g  and Fuel Motion f o r  Pump Coastdown 
Calculat ions Without Scram f o r . t h e  CRBR With BOEC React ivi ty  
Coeff ic ients ,  No Clad Motion, No Axial Expansion 

BOL rowel' Dlu ~ ~ l b u t l o n  BOEC Power Dis t r ibu t ion  

Boiling ~ e l a t i v e ~  Boiling ~ e l a  t ivea 

Channel - Time. Sec Power Time. Sec Power 

1 13.051 Z b 12.175 0 ;968 
2 13.424 0.968 . 12.266 0.967 
3 . 13.686 0.965 13.252 2.02 

4 13.728 - 0,960 1 7  L?& a.33 
5 is.076 36 13.931 24 
6 15.076 36 13.989 68 
7 15.061 2 7 13.920 16.3 
8 13.669 0.966 13.658 3.12 

49 9 .15.091 5 1 13.969 
10 15.092 5 3 13.486 2.55 

BOL Power Dis t r ibu t ion  BOEC Power Dis t r ibu t ion  

Fuel Fuel 
. Slumping Relat ive Me1 t Slumping Relat ive Melt 

Channel Time. Sec Power Fract ion Channel Time.Sec Power Fract ion 

%ormalized t o  Steady-State Power. I 



Tnblc  VII. Disassembly Condi t ions  f o r  Pump Coastdown CalcliLations 
Without Scram f.or BOEC R e a c t i v i t y  Coefficient 

' No Axia l  Expansion, No Clad Motion : 

Case - BOL Power D i s t r i b u t i o n  BOEC Pow,er D i s t r i b u t i o n  

Time, Sec 15.164 14.013 
Peak Power 2 2 2  9 3 
Max. Temp, O C  4375 4093 I ' 

I 

R e a c t i v i t y  , $ 

Na voiding.' 
Fuel  Motion 
Doppler 
Net 

Kamp tiare, $/set 

Na Voiding 1 5  0 
Fuel  Motion 0 6 
T o t a l  1 5  6 

The i n t e r e s t i n g  r e s u l t  was obta ined  t h a t  t h e  disassembly a t t a i n e d  was mi lder  
than i n  t h e  corresponding BOL case .  Analysis  of t h e  r e s u l t s  i n d i c a t e d  t h a t  
t h e  e f f e c t  of i nc reased  incoherence r e s u l t i n g  from t h e  a l t e r e d  power d i s t r i -  
bu t ion  caused a  dec rease  i n  ramp r a t e s  t h a t  outweighed t h e  changes i n  r e a c t i v i t y  
c o e f f i c i e n t s .  Also t h e r e  were compensating e f f e c t s  among feedbacks i n  t h a t  t h e  
reduced Doppler c o e f f i c i e n t  meant t h a t  l e s s  sodium void ing  was needed t o  a t t a i n  
prompt c r i t i c a l ,  a l s o  tending  t o  reduce t h e  sodium void ing  ramp r a t e ,  I n  t u r n  
decreased sodium void ing  meant t h a t  t h e  sodium-in Doppler c o e f f i c i e n t  app l i ed  
over  more of t h e  co re ,  s o  t h a t  t h e  e f f e c t i v e  Doppler c o e f f i c i e n t  was n o t  reduced 
a s  much a s  i t  o therwise  would have been. 

I n  o rde r  t o  s e p a r a t e  t h e  e f f e c t  of power d i s t r i b u t i o n  from t h a t  of reac- 
t i v i t y  c o e f f i c i e n t s  a  SAS c a l c u l a t i o n  was performed under t h e  same assumptions 

. as t h e  o n e . j u s t  descr ibed  except  t h a t  t h e  BOL r a d i a l  power d i s t r i b u t i o n  was 
used. Resu l t s  a r e  a l s o  given i n  Tables  VI and V T I .  A s l i g h t l y  more s e v e r e  
disassemb-ly was a t t a i n e d  comparable t o  t h a t  f o r  t h e  corresponding c a s e  us ing  
t h e  BOL r e a c t i v i t y  ~ o e f f i c ~ e n t s .  Compared t o  t h a t  ca se  t h e r e  was l e s s  oppor- 

. 
t u n i t y  f o r  f u e l  motion r e a c t i v i t y  because of t h e  more p o s i t i v e  sodium void 
r e a c t i v i t y  a d d i t i o n .  Another complicat ing f a c t o r  i n  t h e  case  of t h e  BOL power 
d i s t r i b u t i o n  and t h e  BOEC c o e f f i c i e n t s  was t h a t  t h e  more r ap id  power r i s e  asso- ' 

c i a t e d  wi th  more coherence and more 'pos i t i ve  feedback c o e f f i c i e n t s  caused h igh  
f u e l  mel t  f r a c t i o n s  t o  b e  a t t a i n e d  b e f o r e  c l a d  mel t ing  was complete, a  cond i t i on  
requi red  f o r  f u e l  slumping i n  our  c a l c u l a t i o n .  T h i s  may a l s o  have ac t ed  t o  
reduce f u e l  motion r e a c t i v i t y  e f f e c t s .  Whether t h i s  SAS modeling o p t i o n  cor res -  
ponds t o  phys i ca l  r e a l i t y  i s  a n  open ques t ion  s i n c e  c l ad  f a i l u r e  and f u e l  motion 
might very  w e l l  occur  be fo re  complete c l a d  mel t ing  a t  h igh  f u e l  melt  f r a c t i o n s .  

It appears  t h a t  because of compensating feedback e f f e c t s  changes i n  reac-  
t i v i t y  c o e f f i c i e n t s  of t h e  s i z e  found i n  going from t h e  BOL t o  t h e  BOEC s t a t e  
a r e  no t  l i k e l y  t o  produce important  changes i n  acc iden t  s e v e r i t y .  



7. Es t imate  of R e a c t i v i t y  E f f e c t  of LOF-Driven TOP 

It i s  s e e n  i n  Table  I V  t h a t ,  when disasscmbly cond i t i ons  a r e  reached 
i n  a  LOF a c c i d e n t  i n  t h e  CRBR, low power channels  have sodium s t i l l  l a r g e l y  
unvoided and t h e  c l a d  i s  t h e r e f o r e  s t i l l  i n t a c t .  This  i s  a cond i t i on  t h a t  t h e  
p re sen t  SAS code cannot cope w i t h  adequate ly ,  a s  mentioned e a r l i e r .  

Ca lcu la t ions  have been performed w i t h  t h e  PLUTO code12 t o  t r y  t o  g e t  
a  more r e a l i s t i c  eva lua t ion  of t h e  p o s s i b l e  r e a c t i v i t y  e f f e c t s  from f u e l  and 
sodium motion i n  t h e  lower-powered channels. I f  p l n  f a i l u r e  i s  assumed t o  occur  
a t  t h e  a x i a l  cen te r  of t h e  co re ,  motion of molten f u e l  i n s i d e  the  p i n  through 
t h e  c l a d  r i p  w i l l  b e  toward t h e  cen te r  of t h e  co re  and w i l l  add r e a c t i v i t y .  
Sodium void ing  a s  a  r e s u l t  of f u e l  and f i s s i o n  gas motion through t h e  c l a d  
f a i l u r e  w i l l  a l s o  b e  p o s i t i v e  i n i t i a l l y .  The e f f e c t  of a  number of v a r i a b l e s  
on t h e  p o s s i b l e  r e a c t i v i t y  ramp r a t e s  h a s  heen explored .  Tllese v a r i a b l e s  i n c l u d e  
p i n  cav l ly  r a d l u s  ( r ad ius  of molten f u e l  r eg ion ,  iu which motion i s  assumed 
poss ib l e )  , c a v i t y  temperature,  c a v i t y  f i s s i o n  gas con ten t ,  and s t r e n g t h  of f u e l -  
coolan t  i n t e r a c t i o n .  Reference va lues  f o r  t h e s e  v a r i a b l e s  were ass igned  on t h e  
b a s i s  of r e s u l t s  i n  low-powered channels  a t  the  t i m e  of f a i l u r e  of high-powered 
channels i n  an LOF c a l c u l a t i o n  f o r  t h e  CRRR. Thc r e f e r e u c e  FCI parameters  rep- 
r e s e n t  a mild i n t e r a c t i o n  t h a t  seems reasonable  on t h e  b a s i s  of a v a i l a b l e  exp- 
e r i l u r ~ l t s  . l6 Var ia t ions  of parameters  were madc over  what were considered t o  
be  redsonable limits, and conserva t ive  va lues  of f u e l  and sodium ramp r a t e s  from 
TOP-type f a i l u r e s  i n  t h e  low-powered channels were c a l c u l a t e d .  C~herrnt f a i l u r c  
w i t h i n  a  few mi,Xlincrnnd%r i s  ~cquttec l  11 rhe ramp r a t e  i s  t o  b e  maximized, be- 
cause a f t e r  about  10 mi l l i s econds  a f t e r  f a i l u r e  t h e  r a t e  oL f u e l  e j e c t i o n  from 
t h e  p i n  caused by t h e  assumed f i s s i o n  gas i n  t h e  c a v i t y  s t a r t s  t o  dec rease .  
Examination of t h e  SAS LOF r e s u l t s  f o r  t h e  BOL s t a t e  i n d i c a t e d  t h a t  such  coher- 
ence would b e  a  reasonable  assumption f o r  24 subassemblies  i n  Row 7, 18  i n  Row 8,  
and 1 8  i n  Row 9 of t h e  CRBR, corresponding t o  SAS channels  6 ,  8 ,  and 10  i n  o u r  
BOL model. For t h e  equ i l i b r ium cyc le  t h e r e  should b e  l e s s  coherence than  f o r  
t h e  BOL s t a t e .  A c o n s ~ r v a t i v c  e s t i n ~ a l e  of t h e  ramp r a t e  dur ing  t h e  f i r s t  10  
mi l l i seconds  a f t e r  p i n  f a i l u r e ,  assuming t h e s e  60 subassemblies  t o  f a i l  coher- 
e n t l y ,  is $50/second f o r  f u e l  and $25/second f o r  sodium (Appendix). The t o t a l  
amount of r e a c t i v i t y  added i n  50 mi l l i s econds ,  assuming f u e l  noL t o  be  swept 
out  bu t  t o  reuai l l  i n  t h e  channcl a t  t h e  p o i n t  of expu l s ion ,  i s  about $1 from 
f u e l  motion and about $0.4 from sodium motion. The consequence of a $75/~46 
ramp r a t e  a t  t h e  time nf prQrnpt r r i t i c a l i c g  I n  dl1 SAS c a l c u l a t i o n  i s  g iven  i n  
'l'abie &. With a toLa l  ramp r a t e  of ~ 1 0 0  $ / sec ,  t h e  maximum f u e l  temperature i s  
about 5 1 5 0 ' ~ .  Use of equi l ibr ium-cycle  r e a c t i v i t y  c o e f f i c i e n t s  f o r  such a  
r e a c t i v i t y  a d d i t i o n  has  n o t  been i n v e s t i g a t e d  b u t  from t h e  work i n  t h e  preceding  
s e c t i o n  seems un l ike ly  t o  make an  important  d i f f e r e n c e .  Although we have made 
only a  rough e s t ima te  of t h e  e f f e c t  of t h e  LOF-driven TOP, t h e  i n d i c a t i o n  i s  
t h a t  i t  should not  be a  s e v e r e  problem i n  t h e  CRBR. 

Once t h e  f a i l u r e  p o i n t  is  assumed t o  move away from t h e  a x i a l  c e n t e r  
of t h e  core ,  r e a c t i v i t y  a d d i t i o n  r a t e s  drop r a p i d l y .  For f a i l u r e  10 cm above 
t h e  c e n t e r  of t h e  co re  t h e  f u e l  r e a c t i v i t y  change i s  only  about 40% of t h a t  
f o r  c e n t r a l  f a i l u r e ;  f o r  20 cm above t h e  c e n t e r  t h e  r e a c t i v i t y  change becomes 
negat ive .  For f a i l u r e  below t h e  cen te r  of t h e  c o r e  f u e l  sweepout can  pro long  
the time of p o s i t i v e  r e a c t i v i t y  a d d i t i o n  from f u e l  motion; t h i s  has  no t  y e t  
been eva lua ted  i n  d e t a i l .  The sodium-react ivi ty  e f f e c t  f o r  f a i l u r e  10 cm above 
t h e  c e n t e r  of t h e  core  i t  i s  40-50% of t h e  va lue  f o r  c e n t r a l  f a i l u r e .  For 
f a i l u r e  10 cm below t h e  c e n t e r  of t h e  core  t h e  sodimi-react ivi ty  ramp r a t e  is 
s l i g h t l y  l a r g e r  t han  f o r  c e n t r a l  f a i l u r e .  



: .. There is  a r e a l .  q u e s t i o n  about  "hether t h e  f u e l  motion i n s i d e  the  .pin 
a f t e r  f a i l u r e  i n  ..these-PLUTO c a l c u l a t i o n s  is a c t u a l l y  phys i ca l ly  p o s s i b l e .  A 
cons ide rab le  amount of f u e l  mel t ing  may b e  needed b e f o r e  t h e r e  i s  much mob i l i t y  
of f u e l  i n s i d e  t h e  p i n ,  and by t h a t  time f i s s i o n  gas e v o l u t i o n  may have caused 
massive p i n  f a i l u r e  . (l 5, I n  a d d i t i o n ,  f o r  a LOF acc iden t  a l a r g e  a x i a l  r eg ion  
of t h e  p i n  .clad i s  a t  nea r ly  t h e  same temperature,  s o  t h a t  t h e  concept of a 
s i n g l e  l o c a l i z e d  c l a d  f a i l u r e  t o  which a l l  f u e l  movec may no t  b e  r e a l i s t i c .  
There i s  no exper imenta l  in format ion  on p i n  f a i l u r e s  a t  h igh  ramp r a t e s  w i th  
h o t  c l a d  t o  i n d i c a t e  what f u e l  melt  f r a c t i o n  can  be  a t ta in .ed  before massive 
p i n  f a i l u r e .  For f r e s h  f u e l  t h e r e  i s  c e r t a i n l y  a l i k e l i h o o d  of h igh  melt  f r ac -  
t i o n s ,  b u t  t h e r e  .is l i t t l e  f i s s i o n  gas a v a i l a b l e  t o  expe l  f u e l  o r  sodium. Fuel  
vapor p re s su re ,  no t  accounted f o r  i n  PLUTO, becomes s i g n i f  i c d n t  between 3500 
and 4000°K. 

B. E f f e c t  of Modeling of .Disassembly.-Accident S e v e r i t y  . 

Changes, in .model ing  assumptions o r  i n p u t  parameters  might l ead  t o  more 
severe  disassembly cond i t i ons  than  we have c a l c u l a t e d ,  a s i d e  from t h e  p o s s i b l e  
e f f e c t  of t h e  MF-driven TOP. For' example, i n  SLUMPY t h e  p re s su re  generated 
by t h e  f u e l  from vapor p re s su re  o r  f i s s i o n  gas  p r e s s u r e  must exceed a s p e c i f i e d  
ambient p r e s s u r e  b e f o r e  any f u e l  motion occurs .  We used t h e  d e f a u l t  va lue  of 
2.5 atm f o r  t h i s  t h re sho ld .  S e t t i n g  t h i s  p re s su re  a t  a h igh  va lue  t o  s imu la t e  
r e s i s t a n c e  t o  f u e l  movement from s t r u c t u r e  o r  s o l i d  f u e l  would i n c r e a s e  acc i -  
dent  s e v e r i t y .  ~ t h e r w i s ' e  on ly  sma l l  p re s su re s  need t o  b e  generated t o  produce 
disassembly i n  t h e  SLUMPY model. Another example of how modeling o r  i n p u t  
assumptions can a f f e c t  SLUMPY r e s u l t s  i s  a f fo rded  by one of t h e  ca ses  considered 
i n  HCDA s t u d i e s  f o r  t h e  C R B R . ~ ~  By making what seems t o  b e  a r a t h e r  improbable 
combination of assumptions, i t  i s  p o s s i b l e  t o  o b t a i n  a coherent  compaction of 
t h e  f u e l  compressible  r e g i o n  by vapor p r e s s u r e  of l i q u i d  sodium r e e n t e r i n g  t h e  
core  from below and contact i r lg  hot '  c l ad .  The r e s u l t a n t  r e a c t i v i t y  e f f e c t  e l e -  
v a t e s  t h e  f i n a l  f u e l  temperature hundreds of degrees C above what i s  obtained 
wi th  t h e  o r i g i n a l  model. 

Another modeling assumption t h a t  r e s u l t s  i n  h i g h e r  f i n a l  f u e l  temperatures  
i s  t o  abandon SAS a t  a g iven  p o i n t  when t h e  r e a c t o r ' i s  a t  o r  nea r  prompt c r i t i -  
, c a l  and t o  cont inue  t h e  c a l c u l a t i o n  w i t h  VENUS. It  i s  customary i n  t h i s  pro- 
cedure t o  assume t h a t  t h e  core  is  completely voided of sodium which considerably 
lowers t h e  Doppler c o e f f i c i e n t .  A s  a r e s u l t  t h e  f i n a l  fuel: temperature is 
hundreds of O C  h ighe r  t han  i t  would b e  i f  t h e  Doppler c o e f f i c i e n t  dur ing  d i s -  
assembly was computed more a c c u r a t e l y .  l6  

V I .  PIPE RWTURE CALCULATIONS 

A. I n t r o d u c t i o n  

P r i o r  t o  t h e  c a l c u l a t i o n  descr ibed  i n . S e c t i o n  V ,  a s e r i e s  of SAS ca l cu la -  
t i o n s  a t  va ry ing  f low r a t e s  t o  s i m u l a t e  t h e  e f f e c t  of p i p e  rup tu re  acc iden t s  
was c a r r i e d  o u t  w i t h  a pre l iminary ,  somewhat i n a c c u r a t e  model of t h e  BOL s t a t e  
of t h e  CRBR. It i s  no t  be l i eved  t h a t  t h e s e  i n a c c u r a c i e s  i n  t h e  model made any 
e s s e n t i a l  d i f f e r e n c e  i n  t h e  conclusions reached i n  t h e  s t u d i e s  i n  P a r t  B ,  bu t  
do a f f e c t  . those  i n  P a r t  C ,  which must b e  regarded a s  pre l iminary .  Two ranges 
of coastdown r a t e s  were s t u d i e d .  Less  s e v e r e  p i p e  rup tu re  c a l c u l a t i o n s  w i t h  



flow decay r a t e s  of s e v e r a l  seconds were made' w i t h  scram assumed i n o p e r a t i v e .  
For ,extreme p i p e  r u p t u r e  a c c i d e n t s ,  i n  which f low decay occurred i n  s e v e r a l  
t e n t h s  of a  second, , c a l c u l a t i o n s  were made bo th  w i t h  and wi thout  scram, b u t  i n  
t h e  l a t t e r  ca se  t h e  c a l c u l a t i o n  was foliowed only  long enough to . . e s t ima te  when 
coo1,ant b o i l i n g  would begin.  

B, Less Extreme P i p e  Rupture Accidents  

Flow reduc t ion  r a t e s  assumed f o r  t h e  l e s s  extreme p i p e  r ~ l p t u r e  a c c i d e n t s  
a n d - a l s o  f o r  a pump coastdowa c a l c u l a t i o n  c a r r i e d  out  w i t h  t h e  o l d e r  model a r e  
shown ' i n  Fig. 8. The i n d i c a t e d  decay pe r iods  of 1.5 s e c  and 4.5 s e c  a r e  only 
approximate as t h e  assumed f low decay i s  no t  r e a l l y  exponen t i a l .  Also shown 
f o r  comparison is t h e  .pump coas tdown flow reduc t ion  curve  f o r  t h e  CRBR s p e c i f i e d  
i n  t h e  PSAR. Resu l t s  of t h e s e  c a l c u l a t i o n s  a r e  g iven  i n  Tables  V I I I  and I X .  

I 

- 

CRBR PUMP 
COAST DOWN - 

- 

- 
PIPE RUPTURE 

F i g .  8. Flow Reduction Rates for Pump Coastdown and f o r  Less 
Extreme Pi.pp: Rl-lptur~ C n w s  . AIiIL PiGg . Idr 1 .  l l b - ' / 6  -20 . 

Channels 1, 2 ,  3, and 7 i n  t h i s  model correspond t o  subassemb'lies i n  rows 2 ,  3 ,  
4 ,  and p a r t  of row 8 ,  and r ep resen t  reg ions  of h ighe r  power o r  h i g h e r  power-to- 
flow r a t i o .  No a x i a l  expansion feedback o r  e f f e c t  of f i s s i o n  gas  i n  d i s p e r s i n g  
f u e l  was assumed i n  t h e s e  c a l c u l a t i o n s .  I t  is  s e e n  t h a t ,  w h i l e  flow coastdown 
r a t e  a f f e c t s  t h e  t ime s c a l e  of even t s ,  i t  h a s  no s i g n i f i c a n t  e f f e c t  o n . t h e  
s e v e r i t y  of disassembly,  which i s  l i m i t e d  as was t h e  c a s e ' f o r  t h e  c a l c u l a t i o n s  
i n  Sec t ion  V: F l u c t u a t i o n s  of ramp r a t e s  among va r ious  c a s e s  a r e  probably n o t  
s i g n i f i c a n t  as t h e  va lues  of t h e s e  r a t e s  vary w i t h  t ime i n  t h e  v i c i n i t y  of 
prompt c r i t i c a l ,  due somewhat t o  t h e  1arge;number of subassemblies  grouped i n  



T a b l e  V I I I .  S t a r t i n g  Times f o r  Sodium Bo i l i ng ,  Clad  Mot ion ,  
and F u e l  Mot ion  f o r  LOF Cases  Wi thou t  Scram, 
O r i g i n a l  R e a c t o r  Model 

Case  
B o i i i n g  Clad  Motion F u e l  Motion 

Channel  . Time,  S e c .  S t a r t ,  S e c .  S t a r t ,  S e c .  

Pump 
Coas tdown 

4 . 5  S e c  
P i p e  Rup tu r e  

1 . 5  S e c  
P i p e  Rup tu r e  

T a b l e  I X .  Disassembly  C o n d i t i o n s  f o r  LOF Cases  Wi thou t  Scram, 
O r l g i  n a l  R e a c t o r  Model 

Case  
Pump 4 . 5 ' S e c  1 . 5  S e c  

Coas tdown P i p e  Rup tu r e  P i p e  Rup tu r e  

D i s  a s  semb l y  , 

Ramp R a t e s ,  $ /Sec  
Na Vo id ing  
Clad  Motion 

' F u e l  Motion 

Disassembly  Time, .  Sec .  .25 .460  10 .130  4.247 
, . 

Max. F u e l  Temp, OC 4534 4 200 4234 

R e a c t i v i t y  Feedback a t  
prompt C r i t i c a l ,  $ 

Doppler  -1.288 -1.143 -1.040 
Na Void 1 .648  1 .155  1 .831  
Clad  Motion 0 .629  0 .366  0 .223  
F u e l  Motion 0 .017  0 .026  0 .011  
Net  0 .997  1 .004  1 .025  

Na Vo id ing  
I n n e r  Core  
Outer Core 



a channel.  A s  w i t h  t h e  cases  d iscussed  i n  Sec t ion  V,  ramp r a t e s  a r e  c a l c u l a t e d  
t o  be moderate, w i t h  c l a d  motion tending t o  b e  predominant over  sodium void ing  
and f u e l  motion e f f e c t s  be ing  r a t h e r  sma l l .  I n  t h e s e  c a l c u l a t i o n s  a l s o  t h e  
p o s s i b l e  e f f e c t  of TOP-type f a i l u r e s  i n  low-power r eg ions  has  n o t  been taken  
i n t o  account ,  a l though t h e  p o s s i b i l i t y  ul: such even t s  i s  ev iden t  from t h e  l a r g e  
amount of sodium remaining i n  t h e  co re  . a t  prompt c r i t i c a l i t y .  

I n  the. c a s e  of t h e  1 . 5  s e c  p i p e  r u p t u r e  t h e  e f f e c t  of us ing  t h e  sodium 
f i l m  motion model was i n v e s t i g a t e d  . Although t h e  d e t a i l e d  void ing  p a t  t a m s  
d i f f e r e d  i n  the two cases  (F ig .  9 v s .  F ig .  10) t h e  t imes  f o r  c l a d  mel t ing  w a s  
delayed by only 0 . 1  s e c  o r  l e s s  because of.  t h e  g r e a t e r  r ewe t t i ng  of t h e  c l a d  . .  

r e s u l t i n g  .from inc reased  coolant  o s c i l l a t i o n s .  According t o  Hbppner, l 7  t h e s e  
increased  o s c i l l a t i o n s  a r e  due t o  i nc reased  vapor f low r e s u l t i n g  from a reduced 
f i l m  th ickness  on s t r u c t u r e  (subassembly co re  w a l l  and w i r e  wrap) i n  t h e  SAS . 

model, A t h i c k  f i l m  on s t r u c t u r e  L e s u l t s  f r o m  t h e  f a c t  t h a t  t h e r e  is  no h e a t  
gene ra t ion  i n  t h e  s t r u c t u r e  t o  vapor ize  t h e  f i l m . a n d  a c t i o n  of vapor t o  s t r i p  
i t  o f f ,  a s  happens i n  t h e  f i l m  motion model. I n  t h e  "two-phase f r i c t i o n  f a c t o r "  
opt ion ,  used i n  Tables  VII.1 and I X  and i n  F i g . .  10, t h e  vapor-film f r i c t i o n  f a c t o r  
i s  enhanced by a m u l t i p l i e r  t o  account  f o r  "flooding" of t h e  f i l m ,  which g r e a t -  
l y  i nc reases  t h c  f s i c ~ l u n  f a c t o r .  Th i s  m u l t i p l i e r  i s  a f u n c t i o n  of t h e  1iqui.d 
f i l m  t h i ckness ,  and t h e  r e s u l t  i s  t h a t  t h e  t h i c k  f i l m  on t h e  strucLure. ca ses  a 
reduced vapor flow a~ld ' r ' educed  o s c i l l a t i o n  of t h e  vapor- l iqu id  i n t e r f a c e .  Th i s  
whole e f f e c t  is r a t h e r  a r t i f i c i a l  because t h e  modeling of t h e  s t r u c t u r e  i s  crude  
t o  begin  wi th ,  and t h e  t h i c k  f i l m  on t h e  s t r u c t u r e  should  b e  swept away by vapor  
f r i c t i o n ,  a s  p red ic t ed  by t h e  f i l m  motion model. A b e t t e r  course  i n  app ly ing  
t h e  s t a t i c  f i l m  model i s  t o  e l e c t  t h e  o p t i o n  of s e t t i n g  t h e  f r i c t i o n  f a c t o r  
m u l t i p l i e r  e q u a l  t o  u n i t y .  The r e s u l t  of t h i s  (F ig .  11) i s  indeed t o  i n c r e a s e  
r ewe t t i ng  of t h e  c l a d  somewhat and t o  de lay  t h e  t ime of c l ad  mel t ing  s l i g h t l y ,  
a l though t h e  d e t a i l e d  p a t t e r n  of vo id ing  and r ewe t t i ng  i s  n o t  t h e  same a s  f o r  
t h e  f i l m  motion model. This  s l i g h t  de lay  i n  c l ad  w e t t i n g  had a n  impor tan t  
consequence i n  t h e  course  of t h e  a c c i d e n t  a s  c a l c u l a t e d  by SAS-3A both w i t h  f i l m  
motion and wi th  t h e  one-phase f r i c t i o n  f a c t o r  i n  t h a t  t h e  s i t u a t i o n  a r o s e  t h a t  
t h e  c r i t e r i o n  f o r  f u e l  slumping ( i n  t h i s  c a s e  me l t i ng  of t h e  innermost node of 
t h e  un res t ruc tu red  f u e l )  was s a t i s f i e d  be fo re  c l ad  mel t ing  was complete.  (There 
w a s  only about  a 0.02 second de lay  between c l ad  motion and f u e l  motion w i t h  t h e  
two-phase f r i c t i o n  f a c t o r . )  Under t h e s e  circumstances t h e  SLUMPY module of SAS 
w i t h  t h e  p a r t i c u l a r  i n p u t  op t ions  s e l e c t e d  caused c l a d  mot i sn  t o  he s l ~ p p r e a s a d ,  
clad t o  be mixed w i L 1 1 ,  f u e l ,  and sodium vapor t o  l e v i t a t e  t h e  mixture from t h e  
core ,  causing shutdown w i t h  t h e  f u e l  only a t  i t s  me l t ing  p o i n t ,  2767 '~ .  T h i s  
a c t i o n  of sodium vapor is  i n  sha rp  c o n t r a s t  t o  t h e  compaction of f u e l  by sodium 
vapor p re s su re  obta ined  w i t h  d i f f e r e n t  parameter assumptions mentioned i n  
Sec t ion  V-C. Thq p h y s i c a l  argument behind t h i s  i s  t h a t ,  i f  no c l a d  motion occu r s ,  
no blockage of coo lan t  passages by f r o z e n  c l a d . w i l 1  occur ,  and sweepout of f u e l  
by sodium vapor i s  reasonable.18 It  seems . p h y s i c a l l y  unreasonable t h a t  such  a 
s h o r t  de lay  i n  c l a d  mel t ing  should i n f l u e n c e  t o  t h i s  e x t e n t  whether o r  n o t  f u e l  
sweepout by sodium vapor should occur ,  and t h i s  a s p e c t  of t he  SAS modeling seems 
somewhat ques t ionab le .  A s m a l l  de lay  i n  c l a d  mel t ing  reasonably could,  however, 
determine whether o r  no t  c l ad  motion occurred be fo re  t h e  s t a r t  of f u e l  motion, 
which could have impor tan t  consequences w i t h  r e s p e c t  t o  r e a c t i v i t y  e f f e c t s  and 
t o  t h c  p o s s i b l e  plugging of coolant  passages by f rozen  c l a d .  Providing ,a more 
a c c u r a t e  e v a l u a t i o n  of t h i s  ques t ion  may b e  t h e  most impor tan t  f u n c t i o n  of t h e  
f i l m  motion model. 
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Fig. 9. Sodium Liquid-vapor Interface Location f o r  1 .5  sec  Pipe Rupture Accident, 
Film Motion Option, 2-phase Fr ic t ion Factor. Cross-hatzhed areas represent 
f i l m  dryout. Blank area a t  r i gh t  represents clad melting. Dashed l i n e  
gives sodium voiding reac t iv i ty .  ANL Neg. No. 116-76-17. 
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Fig. 10. Sodium Liquid-vapor Interface L o c a t i ~ n  f o r  1.5 sec  Pipe Rupture Accident, 
S t a t i c  Film, 2-phase Fr ic t ion Factor. ANL 14eg. No. 116-76-15. 
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Fig. 11. Sodium Liquid-vapor In te r face  Location f o r  1.5 s e c  Pi2e Rupture Accident, 
S t a t i c  Film, 1-phase F r i c t i o n  Factor.  ANL Neg. No. 116-76-13. 



C. More Extreme Pipe  Rupture Accidents 

The purpose of t h i s  series of ca lcu la t ions  was t o  study condit ions a r i s i n g  
with extremely rapid  flow decay, such a s  might occur wi th  a double-ended p i p e  
rupture  a t  t h e  reac to r  coolant i n l e t  nozzle. I n  order  t o  achieve an extremely 
rapid flow reduct ion i n  SAS i f  was found necessary t o  use  a tabular  inpu t  of 
AP/APo, t h e  r a t i o  of t h e  pump head t o  t h e  s teady-s ta te  value,  as a func t ion  of 
t i m e .  AP/AP~ was u n i t y  u n t i l  t = 0.004 sec ,  and then he ld  constant  a t  var ious  
f i n a l  va lues  ranging from 0.01 t o  0.1. These r a t i o s  labeled  simply AP, by 
which they w i l l  be re fe r red  t o  henceforth,  appear as parameters i n  Fig. 12, which 
shows t h e  corresponding rate of flow reduct ion obtained a s  a func t ion  of t i m e ,  
and i n  Fig. 13  and 14. 

I n  cases without scram i t  was found t h a t  sodium b o i l i n g  would no t  occur 
u n t i l  about 1.3 seconds regardless  of t h e  r a t e  of flow coastdown simply because 
of t h e  hea t  t r a n s f e r  time constants  involved, There was a l s o  not  much s e n s i t i v i t y  
t o  s teady-s ta te  power-to-flow r a t i o .  This  t i m e  was extended t o  about 1.5 seconds 
f o r  AP up t o  0.05 and t o  2-3 seconds f o r  AP = 0.10. The r e a c t o r  power s t ayed  
near normal u n t i l  b o i l i n g  occurred, and a c t u a l l y  decreased t o  about 0 .8  of nor- 
m a l  i n  t h e  slower of t h e  flow decays considered he re  because of a negat ive  e f f e c t  
of expansion nf hnt snrlium above t h e  corn,  In t h e  most r ap id  flow decays t h e  
hea t  capacity of t h e  upper blanket  k ~ p t  t h e  sodium cooler  and t h e  power s t ayed  
a t  nolmal. 

The very rap id  flow coastdown cases without scram have n o t  been pursued 
beyond t h e  s t a r t  of bo i l ing .  I f  they w e r e ,  disassembly condit ions similar co 
those of Table V and Table I X  should be obtained. Because a massive p ipe  rup- 
t u r e  accident  is genera l ly  regarded a s  being an event  of very low p r o b a b i l i t y ,  
i t  seems most reasonable t o  assume t h a t ,  i f  i t  d id  occur, scram would b e  oper- 
a t i v e .  Accordingly, f o r  AP = 0.02 and AP = 0.03, scram was assumed e f f e c t i v e  
a t  about 0.6 s e c  a f t e r  at tainment of a power t o  flow r a t i o  r e l a t i v e  t o  s t eady  
s t a t e  of 1.15 i n  any channel, a condit ion which according t o  Fig .  11 was a t t a i n e d  
i n  0.01-0.02 seconds. The r e s u l t i n g  f u e l  and sodium temperatures was a func t ion  
of t i m e  a r e  shown i n  Figs. 1 3  and 14. 

I 
b 

- 
The average power densi ty  i n  Channel 1 was assumed t o  be  8.6 kw/ft  and i n  - 

Channel 2 i t  was 9.1 kw/ft. The assumed coolant flows w e r e  592 gms/cm2 and 
731 gms/cm2-sec i n  Channels 1 and 2 respect ively ,  based on a subassembly c ross  
s e c t i o n a l  area of 37.2 cm2. I n  the  CRBR the  average power densi ty  f o r  t h e  F 
average channel is  6.6 kw/ft and f o r  the  peak channel, using only nuclear  peaking 
f a c t o r s ,  i t , i s  9.1 kw/ft.  Design coolant flows f o r  t h e  average and h o t t e s t  b 

channel a r e  568 and 626 gms/cm2-sec. Our assumed condit ions were thus s l i g h t l y  P 

less severe  thah f o r  t h e  CRBR peak channel, excluding engineering ho t  channel 
and flow maldis t r i b u t i o n  f a c t o r s .  l When these  f a c t o r s  a r e  included,  t h e  t r a n s i e n t  
condit ion i n  a CRBR pipe  rup tu re  becomes considerably more severe  than we have 
assumed. Boil ing would c l e a r l y  occur i n  the  CRBR f o r  t h e  f r a c t i o n a l  f i n a l  flow 

' 

rates we have considered h e r e  when these  hot  channel f a c t o r s  are appl ied .  

It appears t h a t  i n  our model a b o i l i n g  temperature of 9909C, inc luding lo0 
superheat ,  would be a t t a i n e d  i n  t h e  AP = 0.02 case ( f i n a l  f low 7% of o r i g i n a l )  
but  not  i n  t h e  AP = 0.03 case ( f i n a l  f low 11% of o r i g i n a l ) .  Actually t h e  o u t l e t  
pressure  i n  these  ca lcu la t ions  of 2.1 atm may be  too high,  and a b o i l i n g  t e m -  
pe ra tu re  of 950°C, about what waa 'a t ta ined i n  t h e  AP = 0.03 case,  i s  probably 
more appropriate.  Although t h e  f i n a l  f r a c t i o n a l  f low of 6.6% i n  t h e  AP = 0.02 
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Fig. 13. Resul ts  f o r  Extreme Pipe Rupture Accident 
wi th  Ssrsm, AP = f7.W. 
ANL Neg. No. 116-76-8. 
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Fig. 14.  Resul ts  f o r  Extreme Pipe Rupture Accident 
with Scram, AP = 0.03.. 
ANL Neg. No..116-76-21. 



case  about ba lances  t h e  decay h e a t  power of  6.4% of normal a t t a i n e d  a f t e r  
s e v e r a l  seconds, t h e  e f f e c t  of t h e  h e a t  s t o r e d  i n  t h e  p i n  causes  overhea t ing  
of t h e  coo lan t  t o  occur.  

Besides t h e  p i n  power d e n s i t y  and coo lan t  f low r a t e ,  an impor tan t  f a c t o r  
a f f e c t i n g  LOF b o i l i n g  cond i t i ons  f o r  a gas-bonded p i n  i s  ~11e fue l -c lod  gap 
conductance, which a f f e c t s  t h e  h e a t  s t o r e d  i n  t h e  p i n  and t h e  r a t e  a t  which 
hea t  is  t r a n s f e r r e d  t o  t h e  coolant  under t r a n s i e n t  cond i t i ons .  l9 I n  our  c a l -  
c u l a t i o n s  t h e  gap conductance was about  1.0 watt/cm2-'c. This  conductance is  
s e n s i t i v e  tu Lurnup bccause of  the e f f e c t  both on gap widths and on bond gas 
composition: conduc t iv i ty  i s  much lower f o r  f i s s i o n  gas than  f o r  He. While 
i t  is  hard t o  t e l l  i n  p r a c t i c e  what t h e  r i g h t  combination of gap width and 
bond gas composition i s  f o r  i r r a d i a t e d  f u e l ,  a conductance of about  0.4 seems 
t o  be a reasonable  lower bound i n  t h e  l i g h t  of t h e  LIFE-I1 c o r r e l a t i o n 2 0  and 
uf r a s u l t o  from t h e  wa, ter-reactor  program.21 We have eva lua t ed  t h e  e f f e c t  of 
a decrease  i n  gap conductance t o  0.4 watt/cm2-'C and found ~ 1 l d l :  i a  t h i o  ease 
b o i l i n g  occurred f o r  AP = 0.05 ( f i n a l  f low 18% of t h e  o r i g i n a l ) ,  bu t  d i d  n o t  
f o r  AP = 0.10 ( f i n a l  f low 28% of o r i g i n a l ) .  Evalua t ion  of gap conductance 
thus seems t o  r e p r e s e n t  a l a r g e  u n c e r t a i n t y  i n  determining what flow r a t e  is 
needed t o  prcvcnt  c o o l a n t . h o i l i n g  i n  a p i p e  r u p t u r e  acc iden t .  

V I I .  CONCLUSIONS 

The feedback mechanisms we have considered do n o t  l e a d  t o  v f o f e ~ ~ t  i n i t i a l .  
disassembly r e g a r d l e s s  of assumptivn made about  c l a d  motion, a x i a l  f u e l  expan- 
s i o n ,  o r  flow coastdown r a t e .  Considerable  v a r i a t i o n s  i n  feedback c o e f f i c i e n t s  
can occur wi thout  important  e f f e c t s  on a c c i d e n t  s e v e r i t y  because of compensat- 
i ng  changes t h a t  tend  t o  t a k e  p l ace ,  provided t h e r e  i s  n o t  a l a r g e  change i n  
r e a c t i v i t y  ramp r a t e  and t h a t  a reasonable  prompt n e g a t i v e  feedback is  p re sen t .  
In p a r t i c u l a r ,  b u t n u p ' e f f e c t s  do n o t  seem t o  be  of c r u c i a l  importance i n  in-  
c r eas ing  acc iden t  s e v e r i t y .  Even mi lde r  disassembli 'es  than  we have c a l c u l a t e d  
a r e  p o s s i b l e  i f  f u e l  sweepout by sodium l i q u i d  o r  vapor o r  by f i s s i o n  gas could  
occur.  A crude e v a l u a t i o n  of t h e  e f f e c t  of t h e  LOF-driven TOP, which cannot  b e  
t r e a t e d  adequate ly  by SAS-3A, i n d i c a t e s  that  i n  t h e  CRBR i t  might cause  a mod- 
e r a t e  i n c r e a s e  i n  acc iden t  s e v e r i t y .  Fuel  slumping and sodium void ing  r e a c t i v -  
j t y  ranip r a c e s  tend t o  b e  s m a l l e r  t han  those  from c l o d  motion a s  c a l c u l a t e d  by 
CLAZAS, b u t  t h e  coca1 raiup ra tc  i n  che a1:isence s f  a LOF=clrl.~ren. TOP does no t  
exceed $40/sec.  S u b s t a n t i a l l y  h ighe r  ramp r a t e s  than those  found h e r e  a r e  
conceivable  b u t  t h e  assumptions needed t o  o b t a i n  them tend t o  be r a t h e r  f a r -  
fe tched .  

Study of very  r a p i d  f low decay t r a n s i e n t s  presumed t o  r e s u l t  from double- 
, ended p ipe  r u p t u r e s  i n d i c a t e s  cons ide rab le  s e n s i t i v i t y  of b o i l i n g  c o n d i t i o n s  t o  

f u e l  p in  power d e n s i t y  and fue l - c l ad  gap conductance. For t h e  h o t t e s t  channel  
of t h e  CRBR, t ak ing  i n t o  account  engineer ing  h o t  channel  f a c t o r s ,  f lows f o r  
s e v e r a l  seconds a f t e r  t h e  r u p t u r e  g r e a t e r  t han  25% of t h e  i n i t i a l  f low appear  
t o  be needed t o  prevent  b o i l i n g .  
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APPENDIX 

PARAMETER STUDIES WIT11 PLUTO TO ESTIMATE 
RAMP RATES I N  A LOF-DRIVEN TOP 

Resu l t s  of parameter s t u d i e s  w i t h  PLUTO f o r  an  assumed c e n t r a l  f i g u r e  a r e  
given i n  Table A l .  I n  t h i s  Table "B" r e f e r s  t o  t h e  base  case ,  whic.h i s  the  
f i r s t  one l i s t e d .  Blank e n t r i e s  i n  t h e  t a b l e  imply t h a t  t h e  a p p r o p r i a t e  v a l u e  
is t h e  n e a r e s t  non-blank e n t r y  above. Resu l t s  a r e  g iven  i n  terms of molten , 

f u e l  expe l l ed  per  p i n  and sodium r e a c t i v i t y  change pe r  subassembly a t  10 and 
50 mi l l i s econds  a f t e r  p i n  f a i l u r e .  I t  was f e l t  t h a t  because of u n c e r t a i n t y  i n  
f u e l  motion i n  t h e  channel ,  cons ider ing  t h a t  PLUTO does n o t  account  f o r  f u e l  
f r e e z i n g ,  t h e  t o t a l  f u e l  expel led  from t h e  p i n  i s  more s i g n i f i c a n t  a s  i t  g ives  
a  measure of t h e  t o t a l  r e a c t i v i t y  e f f e c t  t h a t  would occur  i f  f u e l  expel led  from 
t h e  p i n  remained a t  t h e  po in t  of c l ad  f a i l u r e ,  a  conserva t ive  assumption. The 
s i g n i f i c a n c e  of t h e  f u e l  mass expe l l ed  can b e  understood by n n t i n g  that 13 gms 
of f u e l  expel led  from t h e  c e n t e r  of a  p i n  i n  CRBR subassembly Ring 8 and no t  
moving i n  t h e  channel corresponds t o  about  $0.01 p e r  subassembly; t h e  co r r e s -  
ponding va lues  f o r  Ring 7 and Ring 9 a r e  $0.007 and $0.0085. These va lues  
t oge the r  w i t h  t h e  coherence of f a i l u r e  assumed above l e a d  t o  a  fuel-motion 
ramp r a t e  of $50/sec over  10 mi l l i s econds .  Although 1 3  gms f u e l  expuls ion  i n  
10 mi l l i s econds  is  not  t h e  l a r g e s t  va lue  i n  t h e  t a b l e ,  i t  appeared t o  b e  s u f -  
f i c i e n t l y  conserva t ive  i n  view of t h e  assumption of c e n t r a l  f a i l u r e  and of no 
f u e l  motion i n  t h e  channel .  

TABLE Al. PLUTO R e s u l t s  - F a i l u r e  a t  Core Center 

- 

Na R e a c t i v i t y  

G m  Per 
F i s s i o n  Suhnssembly 
Gasfgm P a r t i c l e  Fue 1 Cavity Cavity Channel Fuel  dk x l o 5  
Fuel Kadius. Thermal Radfus. Temp., Maas Per P i n  (CRBR Rine 8)  

Case x 103 cm Conduct iv i ty  cm O K  10 ms 50 m s  10 m s  50 ms 

NOTE: "B," base  c a s e .  



For sodium r e a c t i v i t y ,  t h e  p o s i t i v e  e f f e c t  i n  Ring 8  i s  about  cance l l ed  
by a  nega t ive  e f f e c t  i n  Ring 9 .  For Ring 7  void ing  t h e  worth per  subassembly 
f o r  t h e  f i r s t  10 mi l l i s econds  i s  about  2.3 t imes t h a t  i n  Ring 8, which f o r  
24 subassemblies l eads  t o  a  void worth' of .about 2.3 x 1 . 3  x k x 24 o r  ~ $ 0 . 2 5  
and a  ramp r a t e  f o r  t h e  f i r s t  10 mi l l i s econds  of ~ $ 2 5 / s e c .  

It  is  seen  (Cases "B," 1, 2) t h a t  change i n  c a v i t y  temperature over  a  
reasonable  range has l i t t l e  e f f e c t  on r e a c t i v i t y  a s  t h e  f i ss ion-gas  p r e s s u r e  
does no t  change much. Note t h a t  f u e l  vapor p r e s s u r e  i s  n o t  taken  i n t o  account ,  
and a t  4000°K becomes comparable t o  t h e  f i s s ion -gas  p r e s s u r e  10  t o  20 m i l l i -  
seconds a f t e r  p i n  f a i l u r e .  The e f f e c t  of c a v i t y  tempera ture  cannot r e a l l y  b e  
c a l c u l a t e d  s a t i s f a c t o r i l y  above about  3700 o r  3 8 0 0 ' ~  wi thou t  p u t t i n g  i n  f u e l  
vapor e f f e c t s .  

I n  t h e  .next  s e t  of c a l c u l a t i o n s  (Cases 3 ,  4,  5 ) ,  t h e  s t r e n g t h  of t h e  f u e l -  
coolan t  i n t e r a c t i o n  (FCI) has  been v a r i e d  by va ry ing  t h e  f u e l - p a r t i c l e  r a d i u s ,  
t o  which t h e  h e a t  t r a n s f e r  c o e f f i c i e n t  between f u e l  and coo lan t  i s  assumed i n -  
v e r s e l y  p r o p o r t i o n a l  i n  t h e  s t e a d y - s t a t e  Cho-Wright formalism assumed h e r e .  
I n  t h e  l a s t  l i n e  of t h e  t a b l e  (Case 12) t h e  p a r t i c l e  r a d i u s  i s  s e t  i n i t i a l l y  
a t  0.050 cm and a f t e r  10  mi l l i s econds  i s  assumed t o  dec rease  by f ragmenta t ion  
t o  0.010 c m .  A s t r o n g  FCI i s  s e e n  t o  de lay  t h e  e j e c t i o n  of f u e l  from t h e  p i n ,  
and t o  i n c r e a s e  t h e  sodium r e a c t i v i t y  somewhat. ,The sodium r e a c t i v i t y  i s  l e s s  
a t  50 mi l l i s econds  w i t h  a  s t r o n g  FCI because more vo id ing  i n  reg ions  of nega- 
t i v e  void worth occurs .  

. . . . , .. .. . . . , . 

The next  group of c a l c u l a t i o n s  (Cases 6 ,  7,  8) e x p l o r e s ' t h e  e f f e c t  of 
vary ing  f i s s i o n  gas  con ten t  over what seems t o  b e  a  r ea sonab le  range f o r  irra- 
d i a t e d  f u e l  on t h e  b a s i s  of SAS-3A c a l c u l a t i o n s .  The FCI has  been e l imina ted  
i n  t h e s e  cases  by s e t t i n g  t h e  f u e l  conduc t iv i ty  e q u a l  t o  zero .  Comparison of 
t h e  second of t h e s e  cases  w i t h  t h e  base  c a s e  shows t h a t  t h e  b a s e  case  FCI i s  . 
too  weak t o  have much e f f e c t  compared t o  t h e  e f f e c t  of f i s s i o n  . The 5as sodium-voiding r e a c t i v i t y  is  low f o r  a gas content  of 0 . 1  x 10- because w i t h  
t h e  FCI c u t  of f  l i t t l e  vo id ing  of sodium occurs .  
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